
National Bureau
of Standards

Computer Science
and Technology

NBS Special Publication 500-1 1

5

Report on Approaches to

Database Translation

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operafions in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activifies;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science <

and Technology /^c

— \Q
NBS Special Publication 500-1 15 sou

Report on Approaches to r ,

Database Translation

Leonard Gallagher and Sandra Salazar

Center for Programming Science
and Technology

Institute for Computer Sciences
and Technology

National Bureau of Standards

Washington, DC 20234

X

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued May 1 984

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 84-601055

National Bureau of Standards Special Publication 500-1 15
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-1 15,87 pages (May 1984)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1984

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

TABLE OF CONTENTS

Page

1. Introduction 2

2. The Database Translation Process 4

2.1 A General Model of Data Translation 4

2.2 Required Functions 5

2.3 The Value of a Generalized Approach 7

3. Proposed Interchange Forms 8

3.1 The Structured Data Interchange Form 8

3.2 The EXPRESS Form 10

3.3 The Data Descriptive File 12

3.4 The Data Interchange Form 14

3.5 The DIAL Interchange Form 15

3.6 SFDU Interchange Project 16

3.7 Choice of an Interchange Form 17

4. Proposed Standard Data Models 19

4.1 Data Models and Database Management Systems .. 19

4.2 Data Types For Database Interchange 20

4.3 The Network Model 2 2

4.4 The Relational Model 25

4.5 Hierarchical Models 28

4.6 Entity-Relationship Structures 30

4.7 Other Structures 31

5. Tests of Two Proposed Interchange Forms 34

5.1 Overview of Tests 34

-iii-

5.1.1 Purposes 34
5.1.2 General Procedures 35

5.2 Details of Test Procedures 35

5.2.1 The Example Database 35
5.2.2 Transformations for Interchange 39

5.3 Results of Tests 39

5.4 Conclusions from Tests 40

6. Cost/Benefit Study of Database Conversion 41

6.1 Reasons for Conversion 41

6.2 Expenses of Data Translation 42

6.3 Database Translation Within Federal Agencies . 42

6.3.1 Case Study Results 42
6.3.2 Federal DP Management Comments 44

6.4 Private Industry Database Translation 45

6.4.1 Case Study Results 45
6.4.2 End User Comments 46

. 6.5 Evolving Solutions 47

6.5.1 Case-Specific Tools 47
6.5.2 Standards 47

7. Conclusions 48

8. Acknowledgements 48

A. Appendix A - Mapping Data Structures to an ICF 49

A.l Completing The Interchange Form 49

A. 2 The DDF For Record Type Occurrences 49

A. 3 The DDF For Set Type Occurrences 54

A. 4 The Descriptive Files For Database Definition 56

A. 5 The DDF For Record Definition 56

A. 6 The DDF For Data Component Definition 58

-iv-

A. 7 The DDF For Set Definition 60

A. 8 The DDF For Member Record Definition 61

B. Appendix B - A Detailed Example of the X3L5 DDF 64

B. l The Example Database 64

B.2 Encoding the Example Database 67

B.2.1 Notation for Example 67
B.2.2 The Data Descriptive Record 67
B.2.3 The Data Records 71

C. References 79

-V-

REPORT ON APPROACHES TO DATABASE TRANSLATION

Leonard J. Gallagher
Sandra B. Salazar

Transporting a database from a source to a

target environment has often been an expensive and
complex project. In large part this is due to the
lack of standards for data models and database in-
terchange forms. This report describes approaches
to database translation, discusses candidate in-
terchange forms, and recommends a method for
representing the data structures of newly proposed
network and relational data models in a form suit-
able for database interchange. Methods for
representing other commonly used database struc-
tures in terms of the proposed standard structures
show that automated database translation is feasi-
ble for most currently installed data models.

A review of various candidate interchange
forms shows that the proposed ANSI and ISO Data
Descriptive File appears to be the best candidate
for character representation of nearly all common-
ly used database data structures. The form also
allows interchange of binary strings in the data
fields. Acceptance of standard data models and
general database interchange forms could produce
substantial benefits to DBMS users in terms of
cost savings and increased flexibility. Subse-
quent vendor supplied, automated tools for reading
and writing database structures into standard
forms for interchange would make data sharing
between non-homogeneous installations a convenient
and inexpensive operation.

Key words: ANSI; conversion; data interchange;
data models; database; DBMS; data descriptive
file; ISO DDF; interchange forms; software stan-
dards; translation.

-1-

1. Introduction

Because of the dynamic nature of the computer industry,
there is an increasing need to transfer data and application
programs from one computer environment to another. The en-
tire process of transporting an application system from one
environment to another while maintaining the functional re-
quirements of the original system is termed conversion
[COLL80]. The conversion process consists of a number of
different phases, including planning, data preparation, and
testing; but the essence of conversion is the translation
phase in which the actual source to target transfer occurs.
When a database management system (DBMS) is involved, the
conversion process is complicated, due primarily to the fact
that the DBMS imposes a structure on the data and on data
manipulation. The situation is further complicated since
there are no standard DBMS^s and consequently few general
conversion tools. Each conversion to or from a DBMS tends
to be a unique situation.

The required resources and accrued costs associated
with database translation are closely related to the dis-
similarities of the data models of the source and target en-
vironments, the availability of automated translation aids,
and the experience of the conversion personnel. The follow-
ing situations are prime factors affecting the costs of da-
tabase translation:

* There are no general-purpose database translation
aids (e.g. documented software packages or "turnkey"
products) currently available that have effective ap-
plicability to multiple translation environments.
Many agencies are required to design, develop, test,
and document the aids needed for a particular conver-
sion.

* Translation aids that do exist are usually tailored
to very specific source-and-target combinations.

* The lack of translation aids forces many database
conversions to depend on specially developed, one-
time aids constructed in-house or under contract.

* Translation experience among agency personnel is
often acquired through " live-and-learn" , on-the-job
conversion projects. In-house learning experiences
are often very expensive—especially so in this in-
stance because database translation can be very com-
plex.

-2-

Translation frequently requires detailed expertise
with the data handling conventions of two systems--
the source system and the target system. In most
data processing shops, the degree of competence is
high for any one given system but diminishes as the
scope extends beyond more than one.

DBMS and database translation standards are not
available. There is no standard DBMS that may be in-
corporated to circumvent the costs and complexities
associated with database translation. Also, there
are no standard "unload" and "load" methodologies
adhered to by the various database management pack-
ages on today^s market.

The focus of this report is restricted to one area of
the translation phase of conversion in a database environ-
ment, namely database translation . We deal with transfer-
ring data and data definitions from a source, which can be
either a batch file system or a DBMS, to a target DBMS. We
will not consider application program translation, which
deals with expressing and converting operations on the data.
Although not explicitly addressed here, a general purpose
database translation approach may be useful in a distributed
database environment involving heterogeneous DBMS's.

The purposes of this report are:

* To describe database translation and problems associ-
ated with it.

* To present and evaluate alternative approaches to da-
tabase translation.

* To describe the data structures of proposed standard
DBMS data models.

* To describe a recommended approach to database trans-
lation based upon a standard data interchange format.

* To present results of database translation studies
undertaken by the Institute for Computer Sciences and
Technology (ICST)

.

Chapter 2 describes the database translation process
and summarizes the current state of research in this area.
Following that, we discuss in chapter 3 the various inter-
change forms that have been proposed as potential standards.

-3-

Specifications for mapping between data structures and one
of the interchange forms are given in Appendix A, and de-
tailed examples appear in Appendix B, Since efficient and
cost-effective translation is dependent upon standard struc-
tures and methods, chapter 4 discusses proposed standard
data models and other commonly used data structures.
Chapters 5 and 6 report on related research undertaken by
ICST. The results of intermodel database translation exper-
iments, using two different interchange forms, are analyzed
in chapter 5. Chapter 6 summarizes a cost/benefit analysis
of database conversion performed under contract to NBS.
This report concludes with a look toward the future impact
of standardization on database translation.

2. The Database Translation Process

2.1 A General Model of Data Translation

A generalized procedure for performing data translation
from a source database or set of files to a target database
or set of files is illustrated in Figure 2.1. Essentially,
three programs— a writer, a mapper, and a reader—are in-
volved. Data, formatted according to an interchange form,
is passed between these system components in files.

An interchange form (ICF) specifies the format for the
transfer of data occurrences between DBMS's or between a
file-based system and a DBMS, as well as the format for the
transfer of the rules for the correspondence between the ICF
structures and the data occurrence structures of the source
or target data model. For example, the form might specify
that the schema (i.e. the description of the data) is
transferred as a text string, followed by the data oc-
currences .

A writer reads the source database or set of files and
writes ICF files onto some medium (such as disk, magnetic
tape, computer network) . The structures within the ICF
files correspond one-to-one to the structures within the
source database. The writer is driven by the source

-4-

database^'s schema.

A mapper reads ICF files that were produced from the
source database and writes corresponding ICF files for later
transfer to the target database. A mapper is driven by the
source and target database schemas, as well as by a table or
other structure that indicates the correspondence between
the underlying data structures of each schema.

A reader reads ICF files and writes the target data-
base. The structures within the ICF files should resemble
the structures of the target database. The reader is driven
by the target database schema.

If the source and target data models are identical,
then the mapper and one set of ICF files can be omitted, as
one set of ICF files is both the output of the writer and
the input of the reader.

2.2 Required Functions

Several functions that are required for database trans-
lation can be abstracted from the general procedure outlined
above. Standardization of the functions, and their provi-
sion by DBMS vendors, would facilitate the translation pro-
cess. These required functions are:

1. To read a source database or set of files and write
ICF files whose structures correspond to those of the
source data model.

2. To read ICF files whose structures correspond to a

specific data model and write a target database of
that same data model.

3. To read ICF files whose structures correspond to one
data model and write ICF files whose structures
correspond to a different data model. (This function
is not relevant if the source and target data models
are identical.)

-5-

Figure 2.1 General Procedure for Database Translation

-6-

2.3 The Value of a Generalized Approach

In order to make database translation an efficient and
cost-effective process, general purpose conversion aids,
that is, documented software packages that perform the func-
tions described above, must replace the use of specially
developed, one-time programs. Acceptance of a small number
of data models and a standard interchange form would hasten
vendor development of writers, readers, and mappers.

An example of user and vendor interest in a generalized
approach to data exchange is the Initial Graphics Exchange
Specification (IGES) [KELL81, SMIT83] . IGES is a communica-
tion file structure for data produced on and used by
Computer-aided Design and Computer-aided Manufacturing
(CAD/CAM) systems. This structure provides a common basis
for the automatic interchange of data between interactive
graphics design-drafting systems, for the transfer of data
to and from external application programs, and for the ar-
chiving of the data. The IGES project is an organized ef-
fort of both government and industry on a national level to
resolve interface problems by introducing a set of specifi-
cations for standard data structures and formats. That
users and vendors alike recognize the value of this response
to the data exchange problem is demonstrated by the rapid
acceptance of IGES as an American National Standard
[ANSI81]

.

In a similar manner, standardization of data models, of
an ICF, and of inter-model mappings would alleviate some of
the difficulties involved in developing general purpose
software for database translation. Standardization of an
ICF would greatly facilitate specification of inter-model
mappings, because the mappings could be defined in terms of
the ICF structures. Standardization of an ICF implies stan-
dardization of data models, because ICF structures are to be
defined along with rules for their correspondence with data
structures of specific data models. As discussed in chapter
4, proposals for a network model and a relational model are
currently under consideration by ANSC X3H2.

-7-

3. Proposed Interchange Forms

The interchange of data between different database sys-
tems can be facilitated by the use of a common interchange
form. This chapter discusses several candidates to serve
this purpose: the Structured Data Interchange Form proposed
by James P. Fry and associates at the University of Michi-
gan, the Data Descriptive File advanced by ANSI technical
committee X3L5 and ISO TC97/SC15, the data extraction and
restructuring system designed by Robert W. Taylor and
researchers at IBM Research Laboratory, a data interchange
form used by several personal computer software vendors, a
specification for application data interchange under
development within the British Standards Institution, and
the standard format data unit project under development by
NASA and other national space agencies.

Each of these candidates has characteristics that make
it potentially suitable as a database interchange form,
although some are much more general or flexible than others.
One of these candidates does stand out,' however, in that it
is already a draft international standard for data inter-
change. For this reason we focus on the Data Descriptive
File in chapter 4 and Appendix A of this report to show how
it can be used to represent the structures common to most
existing data models.

3.1 The Structured Data Interchange Form

The Structured Data Interchange Form (SDICF) [FRY81]
was designed specifically for database interchange and sup-
ports the three principal types of database management
systems--network , relational, and hierarchical. With
several refinements, it could be sufficiently general to
support the exchange of other kinds of structured data, that
is, data in which the relationships between entities and at-
tributes are explicitly described through a data definition
facility. The data interchange file consists of both the
data occurrences or values to be transferred, and a descrip-
tion of their logical and physical characteristics and the
relationships within the data. Structured data existing in
the source environment is translated into the format defined
by the SDICF. The final step, left to the user, is to
translate the SDICF into the format required by the target.

-8-

An SDICF file is composed of two sections: a descrip-
tion section and a data section. The description section
describes the logical structure of the database, includes
selected storage structure information, and partially de-
fines the format of the data section. The data section con-
tains attribute values with additional information to allow
reconstruction of the database in the target environment.

The description section contains one control record and
up to six types of description units, depending on the data
model associated with the data being described. The con-
tents of these units are summarized below:

The control record includes a schema identifier,
which is the mechanism to associate a data section
with the correct description section.

A domain unit is required to define each domain of a
relational database.

An attribute unit is required to describe each ele-
mentary piece of data accessible by the DBMS (that
is, what is termed a field, data item, element, etc.,
depending on the DBMS)

.

An aggregate unit describes an aggregate, a named
collection of attribute values within an entity. An
aggregate corresponds to a CODASYL data aggregate.

An area unit specifies a logical storage area for
record types for a CODASYL-like network database.

An entity unit defines what are termed record types,
relations, segments, etc., depending on the data
model. In the SDICF representation, an entity is a

named collection of attributes and aggregates. An
entity unit associates a name and an identifier with
the entity, defines the components (attributes and
aggregates), and specifies the primary key and
secondary indexes. To handle CODASYL-like DBMS' s,
the entity unit can include an area clause to specify
the area(s) in which instances of the entity may be
stored and a location mode clause to specify access
information. An association clause indicates the
association (s) in which the entity participates as
either a member or an owner (in the sense of the net-
work or hierarchical models)

.

_9-

An association unit declares an association, a named
collection of entities in which one entity serves as
the owner and one or more entities are members. As-
sociations are used to represent set-types in the CO-
DASYL model and parent-child relationships in the
hierarchical model, and to provide a structuring
mechanism where none explicitly exists, as in the re-
lational model.

The data section of an SDICF file contains one control
section followed by any number of data units. The control
record has the same specifications as the control record of
the description section. The data units contain the actual
data from the database being interchanged. Each data unit
contains the data of one entity instance (e.g. relation,
record occurrence) plus information needed to maintain the
database structure. This information consists of entity,
instance, area, attribute, and association identifiers, as
well as association pointers that link owner and member in-
stances of an association.

The constructs supported by the SDICF are thus a compo-
site of the constructs of the network, hierarchical, and re-
lational models. Mapping from a source database to an SDICF
file is relatively direct, with little or no restructuring.
If the interchange is intra-model, the mapping from the
SDICF file to the target database is also straight-forward.
Inter-model translation is considerably more complicated, as
the SDICF to target mapping involves restructuring at the
definition level. Much of the "implicit semantics" of a da-
tabase are not captured in the SDICF and must be recon-
structed in the target environment.

3.2 The EXPRESS Form

The Data Extraction, Processing and Restructuring Sys-
tem (EXPRESS) [TAYL82] was developed by IBM Research in the
late 1970^3 as a research prototype to study the data trans-
lation problem. EXPRESS is based on a standard interchange
form, with the added notion of high level operations on
forms.

The system follows the general translation model
described in chapter 2, with the components being referred
to as the Reader, Restructurer , and Writer, instead of the
Writer, Mapper, and Reader, respectively. The Reader is a
custom program, written in the DEFINE data description

-10-

language, that reads the file to be converted and creates an
output file in internal form. The Restructurer is a custom
program, written in the CONVERT restructuring language, that
produces one or more restructured files, also in internal
form. The Writer, also a DEFINE language program, maps the
restructured internal form files to the target database.
The system also employs a file description catalog to com-
municate internal form data structure descriptors between
the components.

EXPRESS is based on a methodology that combines a data
description capability—the "form" concept, with a data
manipulation capability— a set of restructuring operators
over forms. The data manipulation capability of EXPRESS is
claimed to produce a much more powerful tool than a form
that has merely a data description capability. The data
manipulation feature aids in restructuring in the case of
inter-model mapping, eliminating the need for the user to
write a one-shot program in a conventional language.

The form itself is a series of one or more hierarchical
"sections" of data. A section is a hierarchical record that
includes all dependents at all levels, corresponding to a
database record in some hierarchical data models. The form
can represent databases of different data models. For exam-
ple, a flat file can be considered as a series of root-only
hierarchies, and in many cases a network can be decomposed
into a family of hierarchies.

The high-level restructuring language CONVERT consists
of data mapping and data validation operators on forms.
Among these operators are SELECT, which selects sections
based on boolean qualification, projects fields, and elim-
inates subtrees; SLICE, which flattens a hierarchical branch
to a flat file; and GRAFT, which joins two hierarchies at
the root. These operators produce forms that correspond to
the structures of the target system.

Unlike the SDICF and DDF interchange forms, the EXPRESS
form was designed in conjunction with the mapper or restruc-
turer component of the translation system. Thus, the opera-
tions on the form were considered when developing the struc-
ture of the form. The requirement to produce a sufficiently
general and easy to use manipulation language for restruc-
turing in turn restricted the complexity of the form. An
interchange form that would handle more general structures
than the hierarchical structures supported by the EXPRESS
form would require more complex data description and data
manipulation languages.

-11-

The internal representation of a form is as a series of
fields and subtrees. A field is either an integer, floating
point number, or fixed or variable length character string.
Subtrees are represented by integer offsets and are connect-
ed by pointers. The section is encoded in top- to-bottom,
left-to-right order. Large sections may be segmented into
records which are identified by subsequence numbers.

Possible advantages of the EXPRESS system include the
following

:

* The form is specifically suited to non-relational
data, as it was developed for the purpose of
translating a hierarchical database.

* The encoded form does not pass information about the
source environment to the target; it is assumed that
the target system does not usually need to know the
detailed structure of the source environment. If the
detailed encoding characteristics of the data are
necessary, the recommended solution is to transmit,
along with the form description, a data description
which can be used in compiling the writer program.

* Hierarchically encoded forms preserve a physical
clustering of data that is useful in systems of all
data models.

3.3 The Data Descriptive File

The Data Descriptive File (DDF) for information inter-
change is a draft international standard under development
by ANSC X3L5 and ISO TC97/SC15 that establishes media and
machine independent formats for interchanging information
between computing systems. The proposed ISO Standard
[IS083a] specifies:

* media-independent file and data record descriptions
for information interchange.

* the description of data elements, vectors, arrays,
and hierarchies containing character strings, bit
strings, and numeric forms.

-12-

a data descriptive file comprised of a data descrip-
tive record and accompanying data records that enable
information interchange to occur with mimimal specif-
ic external description.

a special data descriptive record that describes the
characteristics of each data field within the
corresponding data records.

three levels of interchange depending on the complex-
ity of the allowed structure.

With minor changes, the DDF can be used as the inter-
change form to transport network, hierarchical, or relation-
al databases. Essentially, each structure of the data model
(eg. record type, set type, relation) is transformed into a
sequence of characters forming a single DDF. The complete
database may then be transported as a sequence of such files
on any medium capable of representing, logically, a sequence
of characters.

A Data Descriptive File consists of a Data Descriptive
Record (DDR) followed by a sequence of Data Records (DR)

.

The DDR and DR records have the same structure, consisting
of "leader", "directory", and "data" portions. The "leader"
is a sequence of 24 characters that gives the total record
length in characters, codes for the level and type of the
record, and information for reading the "directory" portion.
The "directory" establishes integer "tags" that correspond
to fields in the "data" portion of the record and gives
starting positions and lengths for all such fields. For an
interchange file consisting solely of fixed-length records
containing only fixed-length data fields in which the DR's
have identical leader and directory values, the leader and
directory of the first DR apply to all subsequent DR^s. The
leader and directory of the subsequent DR^s may be omitted.

The "data descriptive area" of the DDR contains a "data
descriptive field" for each of the "user data fields". Each
data descriptive field associates a data name or a reserved
word with each tag. The "data fields" of the "user data
area" of the DR contain the user information to be inter-
changed. Each data field is an instance of the user data
structure and data types defined by the DDR data descriptive
field with the corresponding field tag. Data names in the
DDR correspond to data values in the DR if and only if they
have identical tags.

-13-

The proposed standard provides for three implementation
levels from which the users may choose depending on the com-
plexity of their data structures. Level 1 supports multiple
fields containing simple, unstructured character strings.
Level 2 supports level 1 and also processes multiple fields
containing structured user data comprising a variety of data
types. The third level supports level 2 and hierarchical
data structures.

The Data Descriptive File form is a general form for
transferring data and does not require extensive modifica-
tions to handle different data models. One of the proposed
changes to the X3L5 specifications to support database in-
terchange is the use of several unassigned tags in the DDR
to indicate such information as record names of owner and
member record types and the kind of structure (eg. record
type, set type) represented by the DDF. Appendix A consists
of a specification for mapping database data structures to
the DDF structure.

3.4 The Data Interchange Form

In recent years several commercial software houses
dealing with application systems on personal computers have
agreed to a common Data Interchange Form (DIF) for inter-
changing simple, two-dimensional tables of information
[KALI81] . Like the Data Descriptive File (DDF) described
above, every DIF file has two parts: a "header section" con-
taining descriptive information about the table, and a "data
section" containing the data values. The DIF format is much
simpler than the DDF format in that it does not attempt to
handle variable length records, variable occurrences of data
values, sequences, array structures, bit field data, or
nested repeating groups. It handles only two data types -

numeric values that may be signed integers, decimals, or
scientific notation, and string values that may be al-
phanumeric characters with no control characters or quota-
tion marks. The numeric values are always represented in
digital form.

The basic structure of a DIF file is a "line" of infor-
mation. A line is purposely very simple so that it can be
handled by nearly all applications, even those that only
read records of 40 or fewer characters. A new line in the
DIF specification is very analogous to a field terminator in
the DDF specification. A line usually consists of just a
single data value, and in no cases does it consist of more
than two numeric values separated by a comma.

-14-

The header section of a DIP file consists of a number
of required "header items" - one to specify the table name,
one to specify the number of columns, one to specify the
number of rows, one to specify the name of each column, and
one to declare the end of the header section and the begin-
ning of the data section. DIP also specifies optional
header items, including formats for inserting comment^ and
physical size information. Each header item consists of
three lines of information - the first line identifies the
type of header item, and the second and third lines specify
the item value and give supporting information to identify
if the item refers to the whole table or to a specific num-
bered column.

The data section of a DIP file consists of a number of
"data items", each consisting of two lines of information.
A sequence of such data items specifies the data values of
each row of the table. The first line of each data item
identifies the data item type (e.g. string, numeric, or
special) and specifies the data value if the item is numer-
ic; the second line specifies the data value if the item is
a string. Both lines are always required - the line that
does not carry the data value has a NULL value. The "spe-
cial" data items are used to declare the beginning and end
of each tuple and the beginning and end of the data section
itself.

A DIP Clearinghouse [cf. KALI81] coordinates and dis-
tributes information about DIP and commercially available
programs that use DIP. Its primary application is to
transfer application data to and from a commercial
spreadsheet available on a wide range of personal computers.

3.5 The DIAL Interchange Form

The structure and representation of data for inter-
change at the application level (DIAL) [BSI82] is a draft
proposal, subject to further development, for interchanging
machine-readable, application data in the United Kingdom.
It consists of a grammar for representing data elements,
groups of data elements, and messages.

Each data element represents a value whose definition,
representation, identification, and meaning have been agreed
to by the interchanging parties. Examples include numeric
values, identification and classification codes, financial
amounts, names and addresses, or goods and services. A data
element consists of two parts, a generic part to identify
the concept and an attribute to represent the value of that

-15-

occurrence. Each data element agreed to for data inter-
change is assigned a unique 4-character identifier that
serves to identify occurrences of that element in the inter-
change form.

A group is used to link logically related data ele-
ments. Groups facilitate the representation of nested and
repeated data values. Each group has a definition that is
agreed to in advance by the interchanging parties. The de-
finition consists of a list of data elements that may be
present in that group and a unique 3-character identifica-
tion tag for the group.

A message is the basic unit of data interchange. It
may represent a document or form (e.g. invoice) , or any oth-
er object of interchange (e.g. a database) that is self-
contained and can be communicated and processed independent-
ly. Each message has a definition that is agreed to in ad-
vance by the interchanging parties. The definition consists
of a list of data groups that may be present and a unique
6-character identification tag.

Messages are formatted as a sequence of characters from
a pre-defined character set consisting of uppercase letters
of the alphabet, digits, and special symbols for delimiters
and separators. A message header uniquely labels the mes-
sage and identifies the message tag and version number that
defines its contents. Facilities for routing the message
between the interchanging parties are not part of the
specification.

3.6 SFDU Interchange Project

The standard format data unit (SFDU) project was ini-
tiated by the National Aeronautics and Space Administration
(NASA) to facilitate the exchange of space research data us-
ing a variety of communication media. An SFDU is a collec-
tion of data that conforms to standard specifications for
formatting and labeling. A NASA proposal of a conceptual
framework for development of an SFDU guideline [CCSDS83] was
accepted by Panel 2, Standard Data Interchange Structures,
of the Consultative Committee for Space Data Systems (CCSDS)
in May 1983. The CCSDS is a consortium of space agencies
from a number of countries including Brazil, France, Ger-
many, Japan, the UK, and the USA.

-16-

An SFDU consists of four parts:

a globally interpretable identifier, called a primary
label

,

specific additional identifiers or descriptors of the
data, called Supplementary Labels,

the data contents, encoded in a form suitable for
communication, and

a capability for data to be appended to an existing
SFDU or for an existing SFDU to be combined with oth-
ers in a batch.

A format for the primary label was tentatively approved by
Panel 2 of CCSDS in November, 1983—development of the other
parts is continuing. Papers presented at a 1981 worhshop on
self-describing data structures [NASA82] give approaches
that may be appropriate to the other parts.

One feature of the SFDU that distinguishes it from the
SDICF, DDF, and DIAL forms described above is that it is
proposed as a binary interchange form rather than a charac-
ter string form. Although the DDF has provisions for inter-
changing bit string data fields, its labels and identifiers
are all character based. The SFDU as originally proposed
would have binary codes for all labels and would be target-
ed, primarily, for transporting binary field data.

3.7 Choice of an Interchange Form

The SDICF and EXPRESS forms are concerned with the log-
ical representation of specific database structures--they
are less concerned with physical implementation details such
as character string representations for elementary data
types, self-description of the linear representation, and
the use of length declarations and delimiters. This may not
be a disadvantage if they are used in a specific vendor en-
vironment, but application in a multiple vendor environment
would likely require additional specification in this area.
The DDF and DIF forms emphasize details of the physical lay-
out, but only for a single file. They do not specify how
integrated database structures should be represented in
terms of the file structure. Also, without additional
specification the DIF form would not be able to handle net-
work or hierarchical database structures. The DIAL form is

-17-

intended for application-specific messages whose generic
structure is pre-defined and known to both sending and re-
ceiving parties. It would not accommodate general database
structures without much additional specification. The SFDU
project has not yet matured and has no agreed upon formats
for representing user data structures.

We conclude that each of the candidate interchange
forms is incomplete and cannot be used for general database
translation without additional specification. Some forms
require specific implementation details to describe how the
data structures are laid out in linear form; others require
additional specification for mapping specific database data
structures to the candidate interchange form. We believe
that at least in the near term any successful interchange
form will have to have the same general flexibility that the
DDF has for declaring the relative position of specific data
fields in the overall linear representation of the database.
This feature would allow a file reader to handle variable
length data structures in an optimal manner. Thus we focus
our efforts in chapter 4 and in Appendix A to provide the
additional specification required for using the DDF to
represent arbitrary database structures.

We show in chapter 5 that no definitive argument can be
advanced at this time to support one of the forms SDICF or
DDF over the other, based on such considerations as com-
pleteness of specification, efficiency, or ease of use.
Thus, use of the DDF form is favored because it is already
near acceptance as an ANSI and ISO standard. Much develop-
ment time and effort can be saved by using this existing and
familiar form whenever possible. Use of the DDF, together
with the database representation rules specified in this re-
port, provides a complete specification for representing
proposed standard database structures in a linear form that
can be transported among heterogeneous database installa-
tions. Acceptance of such a standard interchange form by
the user community would make convenient vendor support
highly probable and would ensure more rapid development of
additional conversion tools and capabilities, with the
result being greatly decreased expenses for database trans-
lation and increased flexibility to users.

The DDF interchange form was never intended to be a
highly efficient representation for use in real-time data
interchange. Acceptance of the DDF as one vehicle for data-
base translation, especially for archival purposes or for
occasional data exchange, should not stifle development of
other forms that may be more suitable or offer greater effi-
ciency for specific applications or in special environments.
In particular, work on standard forms for data interchange

-18-

in open systems interconnection (OSI) [e.g. IS083b, NBS83]
will continue within Federal, ANSI, and ISO standardization
committees

.

4. Proposed Standard Data Models

4.1 Data Models and Database Management Systems

A data model is a collection of data structures togeth-
er with operations that manipulate the data structures for
the purpose of storing, querying, or processing the struc-
ture contents. A data model may also include integrity con-
straints defined over the data structures, or it may include
access control facilities or mechanisms for defining various
external user views of the database. Some data models pro-
vide physical storage structures and physical access methods
as part of the data model, but usually a data model is lim-
ited to the data structures and operations that are avail-
able to an end user and may be accessed from an application
program.

A database management system (DBMS) is a general pur-
pose, application independent, software package used in as-
sociation with computer hardware to facilitate the entry,
storage, processing, sharing, and retrieval of data from a
database. The portion of a DBMS that deals directly with
the processing of the data structures of a data model is
sometimes referred to as the database control system. A
DBMS supports a data model and is an implementation of that
data model. Some database management systems may support
multiple data models by providing different user interfaces
to the database. A DBMS provides for transformation of the
logical data structures of a data model to the physical
storage structures of a particular hardware environment.
The DBMS goes beyond the data model in that it must provide
for communication with the operating system of the host com-
puter, as well as interface with programming languages or
associated software systems such as data dictionaries, re-
port writers, statistical packages, and libraries of special

-19-

data processing functions. A DBMS also provides concurrency
control, backup, and restart, as well as dumping and loading
facilities for all databases under its control.

Since database translation is concerned with transport-
ing databases rather than database application programs,
this document focuses on the data structures of data models
and is not concerned with different data manipulation opera-
tions that may be used to distinguish different data models.
This allows us to make certain simplifications in partition-
ing data models by structure, since many data models have
nearly identical structures but widely varying operations.
This chapter presents an overview of the data structures as-
sociated with data models that have been mentioned exten-
sively in the literature, including network, hierarchical,
and relational data models, as well as "entity-relationship"
structures and structures associated with various "value-
based" approaches to database management. The network and
relational data models are given principal attention because
they are candidates for standardization by the American Na-
tional Standards Institute (ANSI) [X3H283a, X3H283b] . The
data structures of most other data models may be described
in terms of network or relational structures. Database in-
terchange involving non-standard data models would then re-
quire one extra step to define the data in terms of standard
structures before interchange. The following sections
describe how this might be accomplished.

4.2 Data Types For Database Interchange

Every data model has its favorite collection of data
types. A data type is the definition of a set of values
that can be represented in a data model. A value is primi-
tive in that it has no logical subdivision within the data
model. Values are the basis of definition for the other
data structures of a data model. Most data models have a
character string data type and at least one numeric data
type. Some models make a distinction between fixed-length
and variable-length strings, or between exact and approxi-
mate numeric values. Most numeric types may be defined with
different degrees of numeric precision. Other favorite data
types include: calendar date, time-of-day, zip code, sex
code. Boolean, money, complex numbers, long strings of text,
enumeration types, or various forms of pointers and identif-
iers. For database interchange, each of these types may be
represented as a sequence of characters or bits. American
National Standard X3.42 [ANSI75] gives a standard character
string representation of explicit and implicit decimal point

-20-

and scaled and unsealed representations of numeric values.
Other syntactic representations for elementary data types
[e.g. CCITT83, NBS83] are under consideration by IEEE, ISO,
and other standards developing bodies.

The ANSI database committee has defined a set of data
types derived from the established ANSI standard programming
languages. Instead of trying to describe all such data
types we will focus on three elementary types that are com-
mon to a number of languages. These include character
strings, fixed point numbers, and floating point numbers.
Subsequent paragraphs present definitions of these common
data types and Appendix A shows how they might map to ANSI
X3.42 representations in a standard database interchange
form.

A character string is a finite sequence of characters
taken from some well-defined character set. Character sets
for databases may include: the human readable "graphic char-
acters" as specified by ANSI X3.4 [ANSI77] , the complete set
of 128 characters as specified by ANSI X3.4, various inter-
national character sets as specified by ISO standards, or
application-specific character sets such as videotex or spe-
cial graphics symbols. Each character string has a fixed
length , a positive integer associated with the string that
describes the number of characters or number of bits in that
string. Strings may be of variable length, but logically
they are padded with blank characters when used in comparis-
ons or interchange.

Numbers are values that have normal mathematical pro-
perties. They are defined as real numbers with decimal
base. Fixed point numbers are assumed to be "exact" values.
All fixed point numbers have an associated precision and
scale . The precision is a positive integer that specifies
the number of significant decimal digits. The scale is a

signed integer that indicates the position of the decimal
point. Floating point numbers are assumed to be "approxi-
mate" values. Floating point numbers consist of a mantissa
and an exponent. The mantissa is a fixed point number. The
exponent is an integer that specifies the value of the
number to be the value of its mantissa multiplied by 10 to
the power of the exponent. Every floating point number has
a precision . The precision is a positive integer that
specifies the precision of the mantissa. The scale factor
of the mantissa is non-negative and less than or equal to
the precision.

-21-

The following sections describe specific data models.
We assume that the data types just described are the elemen-
tary data types of these data models. For database inter-
change, all other data types would first be described in
terms of one of these. Appendix A specifies representations
of the two numeric types in terms of ANSI standard numeric
representation forms [ANSI75] , and shows how all elementary
types could be described using the ANSI/ISO DDF [IS083a] as
a database interchange form.

4.3 The Network Model

The network approach to database management originated
in the 1960" s and has evolved over the years to become ac-
cepted as one of the major approaches for managing struc-
tured data in a database. In 1971, the CODASYL Data Base
Task Group produced functional and language specifications
[DBTG71] for incorporating network database structures in
the COBOL programming language. In subsequent Journals of
Development, CODASYL DDLC produced language specifications
for defining data structures and CODASYL COBOL produced
language specifications for COBOL DML operations. In May
1978, the American National Standards Committee X3 formed a
new X3 technical committee, X3H2 Database, to develop an
ANSI standard for database data definition. In 1981, the
X3H2 program of work was extended to include development of
both structures and operations for the network model.
Specifications for the logical data structures and basic
operations of a draft proposed American national standard
network database language (NDL) [X3H283a] have been complet-
ed by this committee. This proposed standard provides func-
tional capabilities for designing, accessing, maintaining,
controlling, and protecting the database. The following net-
work model data structure definitions are derived from the
X3H2 specifications.

The network data model contains two basic data struc-
tures: the record and the set. The record is the basic
unit of data manipulation. Records are stored, erased,
found, modified, and connected and disconnected from other
records. The set is the basic unit of navigation. The set
is a structure that maintains inter-record relationships. A
user is able to move from one record to another along logi-
cal set access paths defined by the database schema.

-22-

A record is a collection of data components. A com-
ponent is either a data item or an array. A data item con-
sists of a single value; an array is a sequence of data
items. Each array has a fixed d imension that is a positive
integer. Each positive integer less than or equal to the
dimension determines a direction for that array. Each
direction has an extent that is also a positive integer.
For example, in a two-dimensional array, the extent in the
first direction determines the number of rows and the extent
in the second direction determines the number of columns.
The number of data items that occur in an array is the pro-
duct of the extent integers of that array. A data item
within an array is referenced by a multi-dimensional sub-
script. An implicit row-major ordering of array items es-
tablishes a unique correspondence between a data item refer-
enced by a subscript and its sequential position in the ar-
ray. For example, in a two-dimensional array with three
rows and four columns, items 1-4 occupy the first row, items
5-8 the second row, and items 9-12 the third row. The sub-
script (2,3) thus references the seventh sequential posi-
tion.

All records in a database are partitioned according to
record type. A record type is the definition of a named
collection of record occurrences all having the same com-
ponent characteristics. A record type defines the com-
ponents of each record occurrence of the record type and de-
clares a record name for the record type and a component
name for each component. Each record of the database is an
occurrence of exactly one record type and consists of exact-
ly the data items defined by that record type.

A set is a collection of related records. It is an oc-
currence of a set type , which is the definition of a named
collection of set occurrences all having the same charac-
teristics. The declaration of a set type specifies a set
name for the set type and specifies the owner and member
record types that are associated with the set type. The set
establishes a relationship among its component records that
must be maintained by the DBMS. One record from each set is
designated as the owner record of that set. Any other
record in the set is a member record. The owner record of
each set of a given set type is a record occurrence from its
owner record type. Each record from the owner record type
is the owner record of exactly one set occurrence of that
set type. A record occurrence of a member record type of a

given set type is a member record of at most one set of that
set type. The member records of each set of a set type are
maintained in a sequential order determined by the schema
ordering criteria for that set type.

The network model supports two special set types:
singular and recursive . A singular set type has SYSTEM de-
clared as its owner record type. SYSTEM may be thought of
as a special record type consisting of exactly one record,
the system record, having no data items. Hence there is
only one set occurance of a singular set type, and it always
allows direct access to member records without first navi-
gating through an owner record. A recursive set type has
the same record type declared both as the owner record type
and as a member record type; thus it allows convenient
representation of hierarchical relationships, such as
manager/employee, among records of the same record type.

All records must be distinguishable by the DBMS, in-
cluding those that participate in the same data structures
and have the same values for each component data item. For
this reason, each record is associated with a unique record
identifier called a database key . The database key is a
conceptual object used to maintain position in the database;
it is not directly available to an end user. The action in-
itiated by any database statement is dependent upon the da-
tabase keys that occur as values of special cursors main-
tained by the DBMS in a session state for each database ses-
sion. For database interchange, an external representation
of database keys is needed to identify both records and
their participation in set relationships. We assume the ex-
istence of a facility within the DBMS to make the external
representation of each database key available as a fixed-
length string of characters. As described in Appendix A,
the occurrences of each set type may then be represented in
a data descriptive file using the character string database
key representations.

A network database definition may include specification
of certain integrity constraints on the data items, records,
and sets of the database. For example, the length of
strings and the precision of numbers are important con-
straints that should persist with the data itself. Addi-
tional integrity constraints may be derived from the follow-
ing: a check condition is an expression that must be satis-
fied by the values of a record when it is stored in the da-
tabase or inserted as a member record in a set, a default
value is a value assumed by component occurrences in the ab-
sence of a specific value supplied by a user, and a unique
constraint is a specification that no two records may occur
in the database with identical values for specified com-
ponents .

-24-

A set type description also includes specific integrity
declarations. A set order ing specifies whether the logical
ordering of member records in a set is sorted, first, last,
next, prior, or system default. If order is sorted, then a
key declaration specifies the data items that determine the
order key. A set insertion declaration specifies whether
the insertion of a record as a member of a set is automatic,
structural, or manual. If insertion is structural, then
values for the structural data items determine how an owner
record is selected from the database. A set retention de-
claration specifies whether the retention of a member record
in a set is fixed, mandatory, or optional.

All of the above declarations are integrity constraints
often considered to be part of the database structure that
should be preserved during database interchange. These de-
clarations could be exchanged via the standard character
string syntax of the network model Schema Definition
Language [X3H283a] , or they could be represented using the
same data interchange forms that represent the data oc-
currences. The first alternative is generally preferable;
but if that is not suitable, then appendix A shows a pro-
posed format for the latter alternative.

4.4 The Relational Model

The relational approach to database management began in
1970 with the publication of E.F. Codd''s paper [CODD70] pro-
posing basic structures and algebraic operations for a rela-
tional data model. This paper spawned a flurry of interest
in various high level query and manipulation languages based
on a predicate calculus. By the late 1970^s both Quel
[STON76] and Sequel [ASTR75] had achieved popularity as very
powerful yet user friendly data manipulation languages. In
October 1982, the ANSI database committee was charged with
an additional project to standardize an interface to the re-
lational model. Specifications for the logical data struc-
tures and basic operations of a draft proposed American na-
tional standard relational database language (RDL) [X3H283b]
have been completed by this committee. The ANSI data mani-
pulation language is a close derivative of Sequel. The pro-
posed standard provides functional capabilities for defin-
ing, querying, protecting, and altering relational data-
bases, as well as functions to support modification of
structure and constraint definitions. The following rela-
tional model data structure definitions are derived from the
X3H2 specifications.

-25-

The primary data structure of the relational model is a
table , which is defined in terms of rows and columns . A
column is an unordered collection of values of the same ele-
mentary data type, and a column entry is a single value of
that data type. A value from a column is the smallest unit
of data that may be selected from a table and the smallest
unit of data that can be modified in a table. Unlike the
network model, the relational model does not support arrays
of values. A row is a non-empty sequence of values, and it
is the smallest unit of data that can be stored into a table
or erased from a table. The table itself is an unordered
collection of rows that are not necessarily distinct.

Each table is associated with a table definition that
defines the table name and table characteristics as well as
the column name and column characteristics of each column of
that table. Every row of the same table has the same cardi-
nality and contains a value for every column of that table.
The relational model supports the notion of null values.
The null value is a special value that is comparable with
any value, but is distinct from all non-null values. The
null value is assumed for a column position in a row whenev-
er no non-null value is specifically a.ssigned.

Tables may be base tables, derived tables, or viewed
tables. A base table has a persistent storage representa-
tion and a persistent table description. A derived table is
a temporary table derived from one or more base tables dur-
ing the execution of a database statement. A viewed table
is a derived table that has a persistent description. A
viewed table provides subschema views of the database to
external users. All three types of tables may be the ob-
jects of database statements in the relational data manipu-
lation language, and may be the objects of database inter-
change .

All rows in a table must be distinguishable by the da-
tabase control system, including those rows in the same
table that have identical values for each column. For this
reason, relational implementations must rely on some kind of
unique row identifier, be it physical placement in a file or
use of logical indicators or pointers, to distinguish rows.
However, the relational model is different from the network
model in that row identifiers are not necessary to maintain
position in the database or to represent inter-record rela-
tionships. Hence, it is never necessary to require that
record identifiers be known to end users or that they be
representable in database interchange forms.

-26-

Even with the above difference in row identifiers, and
with the absence of arrays and the addition of null values,
a relational table is still essentially identical to the
record occurrences of a network model record type. For the
purposes of database translation, a table may be represented
in an interchange form as a record type population. We do
not state specific rules in Appendix A for representing
tables via the DDF interchange form; instead we assume that
the record type rules apply equally to tables, with the ex-
ception that database keys can be ignored and a special null
value representation is needed for null character strings
and numbers.

Some implementations or user installations of the rela-
tional model include definitions for the pr imary key and
secondary key concepts. A primary key is declared for a
single table; it consists of a column whose values uniquely
identify a row of the table. A secondary key is also de-
clared for a single table; it relates back to some existing
primary key in a different table. The secondary key speci-
fies a column of its table that assumes values comparable to
values of its associated primary key. The secondary key
value of each row in a secondary key table identifies a
unique row in the primary key table. In the absence of
specific data structures to represent inter-record relation-
ships, primary and secondary keys are often used to maintain
logical connections between tables.

In the ANSI X3H2 relational specifications, the notions
of primary and secondary keys are not explicitly defined.
Instead, a primary key may be assumed whenever a table
unique constraint is specified over a single column, and a
secondary key may be assumed whenever a table referential
constraint is specified. A referential constraint requires
that the "secondary key" of each row of the referencing
table have a value that is identical to the "primary key" of
some row of the referenced table. A referential constraint
has some of the same features of the network model set type
in that modify and delete statements may cascade from the
primary key row to secondary key rows.

A relational database definition may include specifica-
tion of certain integrity constraints on the rows and
columns of tables in the database. As with the network
model, this includes specification of length of strings and
precision of numbers, as well as declaration of default
values for columns and check conditions for rows and
columns. Relational table constraints also include the
unique and referential constraints defined in the preceding
paragraph. Such integrity constraints are often considered
to be part of the database structure and thus subject to

-27-

preservation during database translation. These declara-
tions could be exchanged via the standard character string
syntax of the create table statement in the relational data-
base language. This would be the most straight-forward
method for interchanging integrity constraints provided that
the target system is capable of parsing the syntax.

Integrity constraints could also be interchanged by us-
ing system catalogue tables. Most relational database
management systems maintain a schema database, consisting of
catalogue tables accessible to end users, that contains all
of the structure and integrity information about the data-
base. At the present time there is no standard format for
these tables and each implementation defines its own. If
system catalogue tables exist, they can be interchanged in
the same manner as regular data tables, thus giving a con-
venient method for interchanging integrity constraints and
other schema information. If neither of these interchange
methods are suitable, then relational integrity constraints
could be interchanged by using the data descriptive files
described in Appendix A. Since the only constraint in the
relational model that is truly different from those in the
network model is the referential constraint, it would only
be necessary to add one new representation rule in the in-
terchange form for specifying the referenced and referencing
columns.

4.5 Hierarchical Models

The hierarchical approach to database management
derives from a generalization of the repeating group struc-
tures found in many programming languages. Hierarchical
systems evolved independently in the 1960's so that current-
ly there are many different versions in the marketplace.
Most such systems support data structures similar to the re-
peating group capabilities in COBOL, but they vary widely in
their approach to data access and data manipulation. Some
systems are very navigational in that they support movement
from one record to another: up, down, and across the under-
lying tree. Other systems make extensive use of indexes and
algebraic operations on sets of record identifiers to iso-
late desired portions of the database. For the purposes of
database interchange, it is possible to ignore these signi-
ficant differences in data access methodology and concen-
trate instead on the underlying tree-like data structures
common to most such systems.

-28-

The basic structures of hierarchical models may be
viewed as a subset of the network model data structures de-
fined above. The main structure is a node (sometimes called
segment or component) that is essentially equivalent to a

network model record type. Nodes are connected one to
another in a parent-child relationship very much like the
owner to member record relationship in a network model set
type. The major restriction is that no child node may have
more than one parent node associated with it. This restric-
tion simplifies data definition to the point that it is not
necessary to define path names (i.e. network model set
names) for the link between owner and child nodes; each such
path is uniquely identified once the owner and child nodes
are known. Other restrictions are that direct access to a
child node similar to a network model singular set, or cir-
cular node connections as in the network model recursive
set, are usually not allowed. These restrictions on data
organization limit the flexibility for defining highly in-
tegrated databases, but provide certain capabilities for
operational efficiency and retrieval flexibility.

For database interchange of hierarchical databases, one
may assume that node populations are transported in the same
manner as are network model record type populations and that
parent-child relationships are transported as network model
set type populations. For naming purposes, the set type
representing such a parent-child relationship has its set
name and member record name equal to the name of the child
node, and has its owner record name equal to the name of the
parent node. The retrieval order of child node occurrences
in the hierarchical specification determines the order of
member records in each set. If retrieval order is not im-
portant, then member record order is assumed to be system
default. This method for transporting hierarchical data-
bases assumes the existence of a facility for generating
unique identifiers for each node occurrence that can be used
in the same way that database keys are used in transporting
network databases.

Another method for transporting hierarchical databases
is to assume an equivalent representation of the database
using the structures of the relational data model. This
method would require the specification of a secondary key,
as specified in the relational model above, into each child
node. Each secondary key would refer back to a primary key
in the parent node. In this manner, each hierarchical
parent node, child node, and parent-child relationship could
be represented as two tables: one for the parent node with
the primary key clearly identified, and one for the child
node with the secondary key clearly identified. If order of
the child node occurrences is critical to the hierarchical

-29-

database semantics, then the relational table representing
the child node must also contain a column for the ordinal
position of that node in its parent-child relationship.

A third alternative for transporting hierarchical data-
bases might be to make direct use of the hierarchical capa-
bilities in the data descriptive file (DDF) interchange form
[IS083a]. An hierarchical structure can be mapped into the
DDF interchange form using a single logical record for each
tree occurrence. Under this approach, a specific data tree
is first described by a binary relation in a data descrip-
tive record, then a preorder traversal of each specific tree
is contained in a data record. The proposed DDF standard
contains an appendix that presents the details of this
representation technique. Very large tree occurrences could
be broken into smaller ones provided that any parent-child
relationships lost by this subdivision are replaced by pri-
mary and secondary keys as described above.

The integrity constraints of a hierarchical database
are specified differently by each implementation of a
hierarchical data model. In most cases it will be possible
to restate the integrity constraints using the same syntax
as specified for the proposed network or relational stan-
dards. Integrity constraints could then be interchanged as
a parsable character string in the same way that network or
relational constraints are interchanged. In other cases,
the integrity constraints may be described in English text
and passed as a message along with the data.

4.6 Entity-Relationship Structures

The entity-relationship approach for describing a data-
base became popular in 1976 with the publication of an arti-
cle by P.P. Chen [CHEN76]. Two conferences [ER79,ER81] have
been devoted to the logical design and application of data-
bases defined using this approach. The model proposed ori-
ginally did not include specification of any data manipula-
tion operations; instead it focused on the specification of
entity types and the relationships among entity types.
Later authors [e.g. JOHN82, SHIPBl] have specified opera-
tions to make it a complete data model. In most application
environments, the entity and relationship specifications are
used only to define the logical organization of the data-
base. This data organization is then implemented by using
the specific data structures of a network, hierarchical, or
relational database management system.

-30-

The entity structure of this model may be considered as
equivalent to a relational table or a network record type.
In most cases only elementary data items are considered, so
the array structure of the network model would not apply.
As in the case of both record types and tables, one must as-
sume the existence of unique entity identifiers to distin-
guish among entities that have identical data values. In
most cases, such identifiers are not externally visible or
accessible. The relationship structure of this model is a

generalization of the network model set type. Instead of
representing only one-to-many associations between one owner
entity type and one or more member entity types as does the
network set, the relationships may be many-to-many among any
number of participating entity types.

For database interchange, it is necessary to assume
that some facility exists for the external representation of
entity identifiers. Then each entity type could be inter-
changed either as a network model record type, with the en-
tity identifier represented directly as a database key, or
as a relational model table, with the entity identifier in-
corporated into a primary key column. Each relationship
structure could then be represented as an additional record
type or table; this new structure would have one component
or column for each entity type participating in the rela-
tionship. Each record or row would consist of the entity
identifiers that determine one of the associations among in-
dividual entities. Integrity constraints could be restated
in terms of network or relational model integrity con-
straints, or they could be described in English text.

4.7 Other Structures

Most database structures can be represented in terms of
the specific structures defined above. As a last resort,
even the most complex data structures can be represented as
a collection of binary relationships, which in turn can be
interchanged as tables with two columns. In this section we
describe how some of the more common data structures that
have not been defined above, but yet appear in current com-
mercial products, are represented in terms of the above
structures

.

Many database management systems provide for the
storage and manipulation of variable repeating items. As an
example, an employee record may contain a variable repeating
item for the names of family members or for a listing of
multiple telephone numbers. Such record structures are not

-31-

directly repr esentable in either the network model or the
relational model. However, there are several ways that such
repeating items can be represented in either model. If
there is some known upper limit on the number of occurrences
of the repeating item, then it can be defined as a one-
dimensional array in the network model with a default value
(e.g. blanks) defined for unused positions. In the DDF in-
terchange form used in Appendix A there is an alternative
for listing such occurrences without wasting unused space.

If there is no known upper limit, or if the number of
occurrences varies widely among records, then the repeating
item could be defined as a separate record type or table.
In the network model it would be connected to the owner
record via a set, and in the relational model it would be
associated with the owner record by using a secondary key
and a referential integrity constraint in the auxilary
table. In many implementations, such a declaration would be
recognized by the system as a variable repeating item, and
the repeating values would be stored next to the owner
record in a physically optimal way.

Early specifications of the CODASYL network model in-
cluded definition of nested repeating groups. Since CODASYL
specifications assumed a COBOL programming language inter-
face, repeating groups were defined by nested level numbers
and OCCURS clauses just as in a COBOL record. A multi-
dimensional table was defined using nested level numbers
with an OCCURS clause at each level. Such repeating groups
were deleted from the ANSI network model specifications be-
cause each repeating group is easily representable in terms
of arrays or in terms of additional record types and set
types. As an example, consider a nested record structure as
follows

:

RECORD NAME IS R
01 A PIC X(10)
01 B OCCURS 5 TIMES

02 C PIC X(10)
02 D OCCURS 2 TIMES PIC X(10)

This structure could be represented as a single network
model record type with A as an elementary item and C and
D as arrays. The array C would be one-dimensional, oc-
curring 5 times, and the array D would be two-dimensional,
occurring 5 by 2 times. Any references derived from the
data name B would be lost to the data model, as would the
association between occurrences of C and the first direction
of D. Explanations of such associations could be carried
along as comments.

-32-

A second representation of the above record structure
could be through the definition of additional record types
and set types. This approach is particularly suitable if
data components B and D occur a variable number of times in-
stead of a fixed number. For example, A could be an elemen-
tary item in R, C an elementary item in S, and D an elemen-
tary item in T, where R, S, and T are different record
types. The names of record types S and T would be
derived from data components B and D respectively.
Record type R would be the owner of a set type with S as a
member, and S would be the owner of a set type with T as
a member.

The same situation could be described in the relational
model using three tables logically associated by the ap-
propriate primary and secondary keys and referential in-
tegrity constraints. For example, the tables R (A,...), S
(A,C,...), and T (A,C,D,...) would convey essentially
equivalent information with the following restrictions:
column A in table R and both column A and column C in table
S would have to be declared unique; column A of table S

would have to reference column A of table R; and columns A
and C of table T would have to reference columns A and C of
table S. If the columns defined above were all of the
record, then table T alone would suffice. We have added R
and S to account for the cases where there are other com-
ponents at both the 01 and the 02 levels. These components
would constitute the other columns in tables R and S,

respectively.

The CODASYL specification of the network model also in-
cludes definitions for additional structures such as areas
and record order keys . An area is a collection of records
together with a sequential ordering over the records. This
structure still exists in many commercial products, usually
as the logical grouping of record type populations stored
together on the same physical file or storage device. Areas
were deleted from the ANSI database definition because each
area is logically equivalent to a singular set type with
multiple member record types. The equivalence can be demon-
strated by defining exactly one additional singular set type
to represent each area. The area name becomes the set name
of the new set type, each record type having records con-
tained in the area becomes a member record type of the
singular set type, and the sequential order of records in
the area determines the record order of member records in
the singular set.

-33-

A record order key is the declaration in a record type
that record occurrences shall be ordered on given data items
in a specified way. Record order keys were deleted from the
ANSI network model specification because each such key is
logically equivalent to a singular set type defined over
that record type. The record order declaration becomes the
order declaration for the member records in that set. For
database interchange, areas and record order keys can be in-
terchanged as singular sets using any interchange form suit-
able for set types of the network model.

5. Tests of Two Proposed Interchange Forms

As part of the process to select an interchange form,
ICST has conducted tests using two of the proposed ICFs.
The tests performed to date are preliminary, involving only
the interchange of data, not of schemas. The SDICF and the
DDF forms were the two ICFs used in the experiments. The
rest of this chapter gives an overview of the tests, then
discusses some details, results, and conclusions.

5.1 Overview of Tests

This section describes the tests' purposes and general
procedures

.

5.1.1 Purposes.

The tests had the following purposes:

To conduct an initial, incomplete test of the adequa-
cy of each interchange form, and to find any problems
in the specifications.

To compare the amount of computer time required to
read/parse/write the two forms.

-34-

To compare the amount of space required by the two
forms

.

To compare the ease of use of the two forms. This
includes the amount of human time required to con-
struct programs to read/parse/write the two forms.

5.1.2 General Procedures.

The following general procedures were used for the
tests:

1. For each DBMS used, a schema was constructed and data
was loaded for a predefined database, described
below.

2. For each interchange form, and for each DBMS used,
interchange files that corresponded to the original
database were first written, stored on disk, then
read back in to construct a new database. The new
database was compared to the original.

3. For each interchange form, and for each ordered pair
of different DBMS^s used, interchange files that
corresponded to the source database were written,
then transported, via magnetic tape, to the target
DBMS^s site. The files were read and transformed at
the target site to construct a target database, and
finally the resulting database was compared to the
original database.

5.2 Details of Test Procedures

5.2.1 The Example Database.

Three DBMS^s, representative of the principal data
models (network, relational, and hierarchical), were used in

the experiments. The experimental database was a subset of
a "presidential" database, generated from ICST^s source
files. The schema diagrams for the three data models are
given in Figures 5.1 through 5.3. In the relational schema
diagram, key data items are underlined.

-35-

PARTY-HISTORY
party-name
year-started

LOSER-PARTY
loser-name
party-name

PRESIDENT
pres-name
birth-year
death-year
party-name
wife-name
state-name

ELECTION
year
pres-name
-electoral-votes

CONGRESS
cong-#
senate-rep-%
senate-dem-%
house-rep-%
house-dem-%

ELECTION-LOSER
year
loser-name
-electoral-votes

Figure 5.1 - Equivalent of Relational Schema ("keys" underlined)

-36-

PARTY-HISTORY
party-name
year-started

P-L

LOSER-PARTY
loser-name

I
PARTY-PRES

PRESIDENT
pres-name
birth-year
death-year

wife-name
state-name

WINNER

ELECTION
year

-electoral-votes

CONGRESS
cong-#
senate-rep-%
senate-dem-%
house-rep-%
house-dem-%

LOSER

ELECTION-LOSER

-electoral-votes

Figure 5.2 - Network Schema

PARTY-HISTORY
party-name
year-started

LOSER-PARTY
loser-name

PRESIDENT
pres-name
birth-year
death-year

wi fe-name
state-name

Y
ELECTION
year

-electoral-votes

CONGRESS
cong-#
senate-rep-%
senate-dem-%
house-rep-%
house-dem-%

ELECTION-LOSER

loser-name
-electoral-votes

Figure 5.3 - Equivalent of Hierarchical Schema

-38-

5.2.2 Transformations for Interchange.

The transformations shown below were used for inter-
change between DBMS''s. These transformations are specific
to the presidential schemas. No attempt was made to solve
the general problem of mapping between data models.

* Relational to hierarchical, or relational to network:
When a record type contains the key of another record
type, that attribute is removed from the first record
type and a set (or hierarchy) with the first record
type as member and the second record type as owner is
created. For example, an ELECTION record occurrence
loses its pres-name attribute and becomes a member of
the WINNER set occurrence (or hierarchy occurrence)
whose owner PRESIDENT record occurrence contains the
appropriate value for pres-name.

* Hierarchical to relational, or network to relational:
A child record type inherits its parenfs key. For
example, an ELECTION record occurrence acquires, as
the value of its pres-name attribute, the value in
the pres-name attribute of the PRESIDENT record oc-
currence that owns the WINNER set occurrence (or
hierarchy occurrence)

.

* Hierarchical to network: The loser-name attribute is
removed from ELECTION-LOSER records, and an L-E set
is created, as shown in the network schema diagram.
Otherwise, the transformation is straightforward.

* Network to hierarchical: An ELECTION-LOSER record
acquires, as the value of its loser-name attribute,
the value of the loser-name attribute in the parent
LOSER-PARTY record, and the L-E set is dropped. Oth-
erwise, the transformation is straightforward.

5.3 Results of Tests

The most important result of the tests was that for
each of the three DBMS's, both ICFs are adequate for
representation and interchange of data occurrences. No ma-
jor problems were found in the specifications.

-39-

with regard to space required for interchange files,
the DDF files were approximately twice as large as the SDICF
files for the sample databases. Computer time required was
correspondingly somewhat greater for the DDF files. With
regard to subjective issues, such as ease of use, time and
effort required to develop dump and load programs, etc.,
both methods were rated acceptable, with no clear preference
in forms.

There are still many aspects of the interchange forms
that remain to be tested. These include:

* General software that can dump and read the ICF for
any database (not just the presidential database)

.

* The interchange of schemas.

* The representation of arrays and floating point
numbers.

* The use of multiple occurring data items and aggre-
gates within a record.

5,4 Conclusions from Tests

The large file size and consequent added processing
time of the DDF files seem to be negative considerations
with regard to selecting a preferred ICF. However, the DDF
specification has since been changed to eliminate the re-
petition of headers in fixed-length Data Records. These re-
peated headers account for most of the difference in file
size and processing time.

The preliminary experiments have thus shown no clear
technical advantage of one form over the other. Tests in-
volving more complicated transformations and the features
listed above are appropriate next steps. The DDF form has a
clear practical advantage in that it is currently a draft
international standard with a number of prototype implemen-
tations .

-40-

6. Cost/Benefit Study of Database Conversion

In order to determine the cost savings and other bene-
fits that may be realized if standard database translation
aids were available, ICST contracted a private firm to per-
form a preliminary cost/benefit study. The study makes a
distinction between conversion, which includes both data and
application programs, and database translation, which is
only concerned with moving the data itself from one environ-
ment to another. The focus of the study is on database
translation. The remainder of this chapter presents the ma-
jor points of that study.

6.1 Reasons for Conversion

Conversion is precipitated by one or more situations
occurring because of inherent characteristics of the infor-
mation management industry. Specific reasons for conversion
within private industry and Federal agencies include:

* acquisition of new hardware,

* saturation of existing database management capabili-
ties,

* application migration between existing systems,

* introduction and implementation of new database
management capabilities,

* standardization of database management system usage
within an organization, and

* interchange of data between different installations.

The most frequent motivation for conversion is caused
by an impending upgrade in hardware from one manufacturer's
equipment to another's or between different hardware lines
of the same vendor that are not software compatible. Be-
cause many of the commercially available database management
software packages are offered by large mainframe vendors, a
move from one hardware vendor to another frequently necessi-
tates a change in database management software. It is also
possible that change can occur by simply converting from a
DBMS on the current equipment to the same DBMS on the target

-41-

hardware

.

6.2 Expenses of Data Translation

As noted above, database conversion most often occurs
as part of a change in hardware or DBMS software. Frequent-
ly, desired cost/benefit parameters associated with the da-
tabase translation portion are not segregated from the
whole. When specific costs associated with the database
translation portion of a DBMS/hardware conversion project
are not detailed, valid estimates may be difficult to
develop because there are no dependable percentage-of-the-
whole rules that apply. It is also hard to delineate data-
base translation costs in those DBMS conversion steps that
overlap (i.e., testing and verification).

Case study data emphasizes the fact that the magnitude
of database translation costs is directly affected by the
existence or non-existence of off-the-shelf translation
aids. This was dramatically illustrated by comparing two
case studies, a conversion between two vendor-supplied
DBMS^s accomplished with the use of existing conversion
aids, and an in-house DBMS to vendor-supplied DBMS conver-
sion, which required the development of unique conversion
aids. The cost ratio between the instance when conversion
aids were available and the instance where they were not,
was greater than 3 to 1.

6.3 Database Translation Within Federal Agencies

6.3.1 Case Study Results.

Twenty-nine Federal agencies supplied information for
this study, through telephone conversations, on-site visits,
and written communications. The frequency of database
translation among this group can be summarized as follows:

* 20 agencies (69%) have performed at least one non-
DBMS-to-DBMS conversion,

* 9 agencies (31%) have performed at least one DBMS-
to-DBMS conversion.

-42-

1 agency has performed a DBMS-to-non-DBMS conversion,

10 agencies (34%) are planning a DBMS-to-DBMS conver-
sion within the next 24 months,

2 agencies (7%) are planning non-DBMS-to-DBMS conver-
sions within the next 24 months.

The magnitude of the database size in the case study
translations ranged from 1,000 records (estimated at about
120,000 bytes) to 5 billion characters. Most translations
were of databases in the range of 10 million to 120 million
bytes

.

The personnel effort involved in the case study trans-
lations was dependent on the availability of translation
aids and the similarity of database structures in the source
and target environments. In the few cases where an aid,
usually a software-based "translation" package was avail-
able, managers noted that translation was "straight forward
and simple". The magnitude of the personnel effort ranged
as high as 12 person-years in those instances in which
unique translation tools had to be developed and implement-
ed. The lowest level of effort (1/2 person-year) was re-
quired in one instance in which a small database was
translated between two DBMS^s having very similar database
structures

.

Costs specific to database translation were, for the
most part, not delineated from the total costs of the relat-
ed database management system and/or hardware conversion ef-
fort. Expert sources have estimated that database transla-
tion costs run between 10 to 65 percent of the total costs
of a DBMS conversion. Two separate private industry conver-
sion sources estimated the average low-end cost of a "com-
plete" (data and programs) DBMS conversion at $500,000. One
private industry source related cost figures associated with
three complete DBMS conversion projects of $2 million, $3
million, and $5 million dollars, respectively. As with the
magnitude of personnel effort, costs are directly related to
the existence of automated conversion aids that are specific
to the source/target environments of the particular conver-
sion. These aids were available for only two of the nine
DBMS-to-DBMS conversions included in the case studies.
Based on this information, it was estimated that database
translation costs for the cases involved ranged from $25,000
to $350,000.

-43-

6.3.2 Federal DP Management Comments.

Interviews with Federal DP managers and information
from the case studies indicate an expected increase in the
frequency of DBMS-to-DBMS conversions. Only two of the con-
tacted agencies were not currently using a DBMS package, and
one of these was in a procurement process. All other agen-
cies currently use at least one DBMS package (some installa-
tions have four or more different packages)

.

Most Federal contacts felt that database conversion is
imminent for most DBMS user sites in light of the
governments hardware replacement programs. This is exem-
plified by the U.S. Air Forceps Phase IV project, recently
awarded at $400 million and intended to replace existing
hardware at several Air Force data processing centers.

Federal DP managers expressed a strong common concern
about the rising frequency of database conversion in an en-
vironment where generalized translation aids or standard
methodologies are scarce. Currently, as the common approach
to database translation. Federal agencies develop customized
translation aids for each transfer of data from one environ-
ment to another. This approach is inherently expensive: the
aids are developed for use only one time and their develop-
ment costs cannot be amortized. Additionally, reliability
is at risk by the greater likelihood of creating errors as
the database is passed from one translation aid to another.
Tracing back through several passes to a source of error can
be an unmanageable task within large translation efforts.

It has been demonstrated that significant gains in
staff productivity are possible during database translation
when automated translation aids are employed. Users have in
several cases indicated that a factor of four productivity
gain is possible. Unfortunately, currently available trans-
lation aids have limited scope and capabilities. DP
managers also indicate that a standard DBMS would consider-
ably ease future DBMS conversions, and that a standard data
description (one that was model-independent) would facili-
tate all translations.

The lack of readily available technical expertise to
support in-house translation efforts encourages Federal
agencies to contract for DBMS conversion and database trans-
lation services. Conversion is now being contracted fre-
quently enough that private industry is beginning to recog-
nize an emerging market. The establishment of new companies
and the organization of special divisions within existing
companies to specifically address DBMS and database conver-
sion are industry's responses to this growing need.

-44-

6.4 Private Industry Database Translation

6.4.1 Case Study Results.

The 17 contacts for the private industry case studies
were divided into three classes:

Class 1 - DBMS and hardware vendors, many of which
provide database conversion services.

Class 2 - Companies, other than vendors, that spe-
cialize in providing database translation services.

Class 3 - Companies that were end users of the pro-
ducts and services offered by Class 1 and Class 2

companies

.

Class 1 and Class 2 companies exhibit a bias towards a
finite number of source/target conversion environments
despite a desire to market their products and services to a
general audience. New translation aids seem to appear when-
ever a significant demand for the specific source/target
combination is detected or whenever an end user is willing
to pay for what may amount to a one-time solution.

All of the database conversion aids encountered during
this study fell into one of two categories:

* database "unload" translation aids that would input a
DBMS-specific source database and output a linearized
sequential file, and

* database "load" translation aids that would input a

linearized file and output a DBMS-specific target da-
tabase.

There were also conversion aids that would allow application
programs from the source environment to run in the target
environment without modification.

The size of the databases involved in case study trans-
lations ranged from 1.2 million characters to 5 billion
characters. One company reported that the process of load-
ing a target database of this magnitude from a sequential
interface file required 40 hours of CPU time.

-45-

The magnitude of the personnel efforts involved in da-
tabase translations was affected by the availability of da-
tabase translation aids. Case study examples describe in-
stances where large databases were converted by efforts not
exceeding a fraction (.1%) of a man-year when effective
translation aids were involved. Instances where translation
aids were developed in-line with the translation project re-
quired as much as 6 1/2 man-years of effort to translate the
databases. Most of this effort was spent on the development,
implementation, and testing of unique file translation pro-
grams designed to translate various parts of the source da-
tabase to a sequential interface file or some other form ac-
ceptable to the "load" utility of a target DBMS (one in-
stance involved 44 different source database files that had
to be translated)

.

Case study conversion project costs ranged from $86,000
to $8 million, the average was $1.96 million. The studies
indicate that database translation represents a low percen-
tage of the total conversion costs when existing automated
database conversion aids are available for the specific
source/target combination involved. Database translation is
a much higher percentage of the total costs when translation
aids do not exist and have to be developed for a specific
source/target combination. Automated translation aids did
not exist for 4 (57%) of the 7 translations included in the
case studies.

Database translation costs were conservatively estimat-
ed to range from $6,250 to $720,000 for the case studies.
These figures do not reflect the costs of translation at-
tempts that were aborted because effective translation aids
did not exist or desired translation results were never at-
tained; this event occurred in one of the case studies.

6.4.2 End User Comments.

The trend in private industry seems to favor contract-
ing with vendors or conversion service firms. Of 7 transla-
tions reviewed in the case study, 6 were contracted to ven-
dors or service firms having access to translation aids and
expertise. All 6 appeared to be "successful" translations.
The one attempted in-house translation effort was aborted
and followed by a contracted effort.

A number of vendor and conversion consulting firm
representatives expressed a strong acceptance and belief in
the feasibility of a standard translation interface file
format. Several private industry data processing managers
noted that standard translation conventions, incorporated by

-46-

the industry at large, would be adopted into their own in-
formation management policies in an attempt to reduce the
costs and frustrations associated with DBMS conversion and
database translation.

6.5 Evolving Solutions

There are currently two significantly different ways of
addressing the challenges of database translation. One sup-
ports the development of automated translation tools that
are unique to specific source and target environments. The
other proposes standardized solutions intended to support
all (or most) source and target environments.

6.5.1 Case-Specific Tools.

Vendors and conversion service companies have specific
interests in the product (s) with which they are associated.
These products may be unique DBMS packages or unique data-
base translation tools. Vendors of DBMS packages offer
limited-capability utilities that support translation from
selected competitor environments or prior generation en-
vironments to the environment of the favored DBMS. Conver-
sion service companies and consulting firms offer transla-
tion support for selected DBMS environments, concentrating
on the development and use of translation aids specific to
the environments in which expertise is maintained.

The set of "solutions" offered by these groups will re-
quire constant development and update as new database en-
vironments (new hardware and database management software)
are introduced.

6.5.2 Standards.

The identification of acceptable standard methodolo-
gies, such as a family of standard DBMS^s and a standard ICF
form, offer a more effective solution to the problems of da-
tabase translation than the currently used alternative in-
volving the continuous development and/or enhancement of
limited-capability translation products that are trying to
keep up with new technology. Lower conversion costs insure
that users are not "locked in" to one system, and thus have
more flexibility as requirements change.

-47-

7. Conclusions

This report discusses various aspects of database
translation, including: representation of database struc-
tures, analysis of potential costs, and feasibility experi-
ments involving candidate interchange forms. We conclude
that existence of standard data models and standard
representations for database translation could produce sub-
stantial benefits to DBMS users in terms of cost savings and
increased flexibility. With the proper tools, heretofore
unthinkable database translations could be accomplished at
minimum cost.

The proposed ANSI and ISO Data Descriptive File (DDF)
appears to be the best available candidate for a general in-
terchange form capable of representing nearly all commonly
used database data structures. This report provides the ad-
ditional specifications required to represent the structures
of ANSI proposed network and relational data models in terms
of the DDF. Acceptance of a general database interchange
form will ensure more rapid development of additional
conversion tools such as vendor-supplied functions for load-
ing and unloading databases into standard formats and so-
phisticated model-to-model mapping capabilities. If users
anticipate future conversions when selecting systems, then
they can require vendors to provide data structures compati-
ble with standard data models and automatic tools for con-
venient production and transmission of those structures via
standard interchange forms.

8. Acknowledgements

We wish to acknowledge the contributions of Gary
Sockut, for preliminary drafts of a Guide on Database Trans-
lation Approaches, Joseph Collica, Charles Sheppard, James
Upperman, and Raymond Youstra, for their work on translation
experiments, and Gene Dickamore, for the survey of database
translation experiences in the Federal Government and
private sector.

-48-

A. Appendix A - Mapping Data Structures to an ICF

A.l Completing The Interchange Form

This section provides a specification for mapping data
structures of the proposed American national standard net-
work data model to DDF structures. In particular, specifi-
cations are given to produce DDF^s for record type oc-
currences and set type occurrences. If the schema defini-
tion is transported separately as a character string con-
forming to the syntax of the NDL Schema Definition Language,
then these two DDF^s would be sufficient for transporting
database occurrences. In those cases where the schema de-
finition is not parsable at the target environment, we
specify four optional DDF^s to represent definitions for
each of the major NDL structures (record types, components,
set types, and members)

.

In the following subsections, underlined terms refer to
definitions given in section 4.3, and terms delimited by
double quotation marks refer to definitions given in the
proposed DDF standard [IS083a]. Items enclosed in angle
brackets, <...>, refer to syntax specified by the NDL Schema
Definition Language [X3H283a] . Specifications for the
representation of numeric values as character strings are in
American national standard X3.42 [ANSI75] . The DDF and
X3.42 specifications, together with the rules and represen-
tations of this document, give a complete linear representa-
tion of most data structures commonly used in present day
commercial database management systems.

A, 2 The DDF For Record Type Occurrences

The population of each record type in the database is
represented by a single DDF according to the following
specifications

:

1. The record name of the record type is the "file name"
of the DDF and is the name associated with "tag
0...0" in the DDR. The "tag 0...0" does not occur in
the DR's.

2. The name of the database in which the record type oc-
curs is the name associated with "tag 0...2" in the
DDR. The "tag 0...2" does not occur in the DR's.

3. The key word RECORD identifies the DDF as represent-
ing the occurrences of a record type and is the value
associated with "tag 0...3" in the DDR. The "tag
0...3" does not occur in the DR's.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard — it could be used
for this purpose in database interchange.]

4. The DR^s of a DDF representing a record type are in a
one-to-one correspondence with the records of that
record type.

5. Each record in the database is identified uniquely by
an implementor defined character string value that
represents the database key of the given record.
This value becomes the "record identifier" for each
DR and is associated with "tag 0...1" in the DR "data
fields". The key word KEY is the value associated
with "tag 0...1" in the DDR.

6. The component names associated with each record type
are recorded as values of "tags" in the DDR. Tag
numbers for data names must be greater than or equal
to ten. The numerical ordering of data names implied
by "tag numbers" has no semantic significance.

7. The value of a data item within a database record is
recorded in a "data field" of the DR corresponding to
that record. The "tag number" of the "data field" is
identical to the "tag number" of the "data descrip-
tive field" in the DDR that carries the component
name of the given data item .

8. If a record type contains no array s and if all values
are character s t r i ng

s

^ then the DDF representing the
record type population may be a "level 1" DDF. If a
record type contains arrays or fixed or floating
point numeric values, then the DDF representing that
record type must be a "level 2" DDF.

9. A "level 1" DDF is identified as such by the charac-
ter string "00" in relative positions 10-11 of the
DDR leader. Relative positions 10-11 in the DR
leaders are not used to convey any database informa-
tion; they are filled with the character string "00".

-50-

10. A "level 2" DDF is identified as such by the charac-
ter string "06" in relative positions 10-11 of the
DDR leader. This indicates that the first 6 char-
acters of each "data descriptive field" in the DDR
will consist of 2 "structure type code" characters,
2 additional "field control" characters, and 2

"user chosen graphics" characters. The 2 addition-
al "field control" positions are reserved for future
standardization and are always filled with zero di-
gits. The "user chosen graphics" characters are used
as allowed in the DDF for enhancing readability if
Data Descriptive Files are printed out for human
editing; these characters have no effect on the DDF
itself, do not impact this specification, and could
be filled with blank characters. Relative positions
10-11 in the DR leaders are not used to convey any
database information; they are filled with the char-
acter string "00".

11. In a "level 2" DDF representing a record type, the
"structure type code" of all "tag numbers" less than
ten is the character string "00". For "tag numbers"
greater than or equal to ten the "structure type
code" conveys the data type for each component name
associated with a record type.

12. A component name that references character string
values has "00" as its "structure type code" to indi-
cate that these values are transported as character
strings. All characters defined in ANS X3.4 are
valid characters; additional characters from "extend-
ed character sets" can be represented as specified in
the DDF. Integrity constraints such as the maximum
length of character string values are not directly
representable without extending the proposed struc-
tures of the DDF.

13. A component name that references fixed point values
has either "01" or "02" as its "structure type code".
If "01" is specified the values are transported as
"implicit-point-representations" without an explicit
radix point; if "02" is specified the values are
transported as "explici t-point-unscaled representa-
tions" where the radix point is part of the data. In
either case integrity constraints such as precision
and scale factor are not directly representable
without extending the structures of the DDF.

-51-

14. A component name that references floating point
values has "03" as its "structure type code" to indi-
cate that these values are transported as "explicit-
point-scaled-representations" and must contain a ra-
dix point, an exponent character "E", and an " exrad "

value. Integrity constraints such as prec ision are
not directly representable without extending the
structures of the DDF.

15. A component name that references an array of values
has a "structure type code" to identify these values
as elements of a "vector" or an "array". If the ar-
ray is to be transported as a "vector" then its di-
mension must be equal to 1. In the
"name/label/format" portion of the DDR "data descrip-
tive field", "name" conveys the component name of the
array , "label" conveys the dimension and extents of
the array , and "format" conveys the "format controls"
for the DR "data fields". The "label" is either a
"vector label" or a "cartesian label" depending on
the "structure type code" chosen. In the proposed
DDF standard these labels convey "row and column
headings" for appropriate cross sections of the ar-
ray, from which dimension and extents can be in-
ferred; in this specification for database transla-
tion the "vector" or "cartesian label" will consist
only of "unsigned- implicit-point-representations" of
positive integers to convey the extent in each direc-
tion of the array . A "vector label" consists of a
single such integer representation while a "cartesian
label" consists of a sequence of integer representa-
tions separated by the asterisk character "*". The
length of the sequence determines the dimension of
the array where the i-th integer in the sequence is
the extent in the i-th direction . The "format" can
be any valid "format control" specified in the DDF.
This "format control" always describes a sequence of
values, the sequence being the "row-major order" of
elements of the " array "

.

[NOTE: The above rule is a mis-use of the DDF vector
and cartesian labels — Non database implementations
of the proposed standard would read the integers as
row names and the dimension and extent would be lost.
It would be awkward to use the labels correctly to
convey dimension and extents — the DDF structures
could be extended so that array dimension and extents
can be directly conveyed.]

-52-

16. A component name that references an array of charac -

ter string values has either "10" or "20" as its
"structure type code". If "10" is specified the ar-
ray dimension must be equal to 1. All characters de-
fined in ANS X3.4 are valid characters except that
any "delimiters" defined in the "format control", or
implied by default, must not appear in the data; ad-
ditional characters from "extended character sets"
can be represented as specified by the DDF. Integri-
ty constraints such as the maximum length of charac-
ter string values are not directly representable
without extending the structures of the DDF.

17. A component name that references an array of fixed
point values has one of the character strings "11",
"12", "21", or "22" as its "structure type code". If
"11" or "12" is specified the array dimension must be
equal to 1. If "11" or "21" is specified the values
are transported as "implicit-point-representations"
without an explicit radix point; if "12" or "22" is
specified the values are transported as "explicit-
point-unscaled-representations" where the radix point
is part of the data. In either case, integrity con-
straints such as precision and scale factor are not
directly representable without extending the struc-
tures of the DDF.

18. A component name that references an array of float-
ing point values has either "13" or "23" as its
"structure type code". If "13" is specified the ar-
ray dimension must be equal to 1. The values are
transported as "explicit-point-scaled-
representations" and must contain a radix point, an
exponent character "E", and an "exrad " value. In-
tegrity constraints such as precision are not direct-
ly representable without extending the structures of
the DDF.

19. If the system record is contained in the database,
then the record type whose record name is SYSTEM must
be transported as a separate DDF having only one DR
with a single "record identifier" in the KEY "data
field" and having no other "data fields". The
"record identifier" chosen to represent this record
will be used in all subsequent references to the sys-
tem record.

-53-

The DDF For Set Type OccurrencesA. 3

The population of each set
represented by a single DDF
specifications

:

type in the database is
according to the following

1. The set name of the set type is the "file name" of
the DDF and is the value associated with "tag 0...0"
in the DDR. The "tag 0...0" does not occur in the
DR's.

2. The name of the database in which the record type oc-
curs is the name associated with "tag 0...2" in the
DDR. The "tag 0...2" does not occur in the DR'*s.

3. The key word SET identifies the DDF as representing a
set type and is the value of "tag 0...3" in the DDR.
The "tag 0...3" does not occur in the DR's.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard — it could be used
for this purpose in database interchange.]

4. The record name of the owner record type of the set
type represented by the DDF is the value associated
with "tag 0...4" in the DDR. The "tag 0...4" does
not occur in the DR's. If the set type is a singular
set type then the owner record name is the key word
SYSTEM.

[NOTE: This tag may be omitted if the DDF for set
definition is included in the database translation.]

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard -- it could be used
for this purpose in database interchange.]

5. The record names of the member record types of the
set type represented by the DDF are names associated
with "tag 0...5" in the DDR. The record names are
separated by one or more blank characters. The order
in which the record names occur is not significant to
this specification. The "tag 0...5" does not occur
in the DR's.

[NOTE: This tag may be omitted if the DDF for set
definition is included in the database translation.]

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard -- it could be used

-54-

for this purpose in database interchange.]

6. The DR's of a DDF representing a set type are in a
one-to-one correspondence with the sets of that set
type.

7. The DDF representing a set type is a "level 2" DDF.
A "level 2" DDF is identified as such by the charac-
ter string "06" in relative positions 10-11 of the
DDR leader. This indicates that the first 6 char-
acters of each "data descriptive field" in the DDR
will consist of 2 "structure type code" characters,
2 additional "field control" characters, and 2

"user chosen graphics" characters. The 2 addition-
al "field control" positions are reserved for future
standardization and are always filled with zero di-
gits. The "user chosen graphics" characters are used
as allowed in the DDF for enhancing readability if
Data Descriptive Files are printed out for human
editing; these characters have no effect on the DDF
itself, do not impact this specification, and could
be filled with blank characters. Relative positions
10-11 in the DR leaders are not used to convey any
database information; they are filled with the char-
acter string "00".

8. In a "level 2" DDF representing a set type, the
"structure type code" of all "tag numbers" less than
ten is the character string "00".

9. The key word OWNER is the value associated with "tag
0...1" in the DDR. The value of "tag 0..1" in each
DR is the implementor defined character string value
that serves as a representation for the database key
of the owner record of the set represented by that
DR.

10. The key word MEMBER is the value associated with
"tag 0...10" in the DDR. The "structure type code"
of this tag is "10" to indicate that the values con-
veyed by the DR's are sequences of character strings.
The "vector label" is not used and its contents are
undefined. The "format" can be any valid "format
control" specified in the DDF except that any "delim-
iter" specified by an "arbitrary non-numeric delim-
iter" in the "format control" must not appear in the
data described by that "format control".

-55-

11. The value of "tag 0...10" in a DR is a sequence of
identifiers referencing the database keys of the
member records of the set represented by that DR. If
the DR represents an empty set; that is, if the set
has no member records , then "tag 0...10" does not oc-
cur in that DR. The order of the values in the se-
quence is significant in that it is the order of the
member records in the database.

A. 4 The Descriptive Files For Database Definition

A network database schema need not be part of the data-
base translation. The necessary structure definitions are
contained in the DDF's for record types and set types. How-
ever these record and set DDF's do not contain integrity
constraints such as conditions for data items or insertion
and retention criteria for sets. In addition, the structure
definitions are scattered among the Various files. DDF's
for database definition are optional files that list all
structures contained in the database and declare all the in-
tegrity constraints associated with each structure as speci-
fied by the proposed network model DDL. DDF^s for database
definition may be included in the database translation to
assist in database reconstruction at the receiving end.

The database schema is represented by four Data
Descriptive Files, one for each of the major entries in the
proposed network model DDL. The four DDF^s together contain
information equivalent to that contained in a schema defined
by the dpANS DDL.

A. 5 The DDF For Record Definition

Structures and constraints defined by NDL Schema Defin-
ition Language <record type>^s are represented in a DDF ac-
cording to the following specifications:

1. The key word RECORD is the "file name" of the DDF and
is the value associated with "tag 0...0" in the DDR.
The "tag 0...0" does not occur in the DR's.

-56-

2. The name of the database described by the schema is
the name associated with "tag 0...2" in the DDR. The
"tag 0...2" does not occur in the DR's.

3. The key word SCHEMA identifies the DDF as represent-
ing a portion of a database schema and is the value
associated with "tag 0...3" in the DDR. The "tag
0...3" does not occur in the DR^s.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard -- it could be used
for this purpose in database interchange.]

4. The DR^s of a DDF for record definition are in a
one-to-one correspondence with the record types of
the database.

5. The DDF for record definition is a "level 1" DDF. A
"level 1" DDF is identified as such by the character
string "00" in relative positions 10-11 of the DDR
leader. Relative positions 10-11 in the DR leaders
are not used to convey any database information; they
are filled with the character string "00".

6. The key word NAME is the value associated with "tag
0...1" in the DDR. The value of "tag 0...1" in each
DR is the record name of the record type associated
with that DR.

7. The key word COMPONENT is the value associated with
"tag 0...10" in the DDR. The value of "tag 0...10"
in a DR is a list of component names occuring in the
record type . The names are separated by one or more
blank characters. The order in which the names ap-
pear is not significant. If a record type has no
data items then "tag 0...10" does not occur in its
corresponding DR,

8. The key word CHECK is the value associated with "tag
0...11" in the DDR. The value of "tag 0...11" in a
DR is a character string representation of
<condi tion>^ s specified by CHECK clauses in the
corresponding record type. Multiple <condition>''s
are separated by the ampersand character (&) . If no
CHECK is specified for a given record type then "tag
0...11" does not occur in its corresponding DR.

9. The key word UNIQUE is the value associated with "tag
0...12" in the DDR. The value of "tag 0...12" in a

DR is a character string representation of all UNIQUE
clauses specified for the corresponding record type .

-57-

Multiple clauses are separated by the ampersand char-
acter {&) , and the component identifiers that make up
each clause are separated by one or more blank char-
acters. If no UNIQUE constraints are specified for a
given record type then "tag 0...12" does not occur in
its corresponding DR.

A. 6 The DDF For Data Component Definition

Structures and constraints defined by NDL Schema Defin-
ition Language <component type>'s for describing data items
and arrays are represented in a DDF according to the follow-
ing specifications:

1. The key word COMPONENT is the "file name" of the DDF
and is the value associated with "tag 0...0" in the
DDR. The "tag 0...0" does not occur in the DR^s.

2. The name of the database described by the schema is
the name associated with "tag 0...2" in the DDR. The
"tag 0...2" does not occur in the DR's.

3. The key word SCHEMA identifies the DDF as represent-
ing a portion of a database schema and is the value
associated with "tag 0...3" in the DDR. The "tag
0...3" does not occur in the DR's.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard — it could be used
for this purpose in database interchange.]

4. The DR's of a DDF for data component definition are
in a one-to-one correspondence with all component
names, qualified by their host record names, in the
database.

5. The DDF for data component definition is a "level 1"

DDF. A "level 1" DDF is identified as such by the
character string "00" in relative positions 10-11 of
the DDR leader. Relative positions 10-11 in the DR
leaders are not used to convey any database informa-
tion; they are filled with the character string "00".

6. The key word NAME is the value associated with "tag
0...1" the the DDR. The value of "tag 0...1" in each
DR is a character string consisting of a component
name followed by a record name. The two names are

-58-

separated by one or more blank characters. The com-
ponent name qualified by its record name identifies
the data items described by the DR.

7. The key word TYPE is the value associated with "tag
0...10" in the DDR. The value of "tag 0...10" in
each DR is a character string describing the data
type of the component name represented by that DR.
It consists of one of the key words CHARACTER, BIT,
FIXED, or FLOAT, followed by two integers if FIXED is
specified and followed by one integer otherwise. The
integers represent the length of CHARACTER or BIT
types, the precision of a FLOAT type, or the prec i-

sion and scale factor of a FIXED type. The character
str ing format for an integer is defined in the pro-
posed network model DDL; the tokens are separated by
one or more blank characters.

8. The key word CHECK is the value associated with "tag
0...11" in the DDR. The value of "tag 0...11" in a
DR is a character string representation of
<condi tion>^s specified by CHECK clauses in the
corresponding component definition. Multiple
<condi tion>'s are separated by the ampersand charac-
ter (&) . If no CHECK is specified for a given com-
ponent then "tag 0...11" does not occur in its
corresponding DR.

9. The key word DEFAULT is the value associated with
"tag 0...12" in the DDR. The value of "tag 0...12"
in a DR is a literal specifying the default value for
the component name represented by that DR. The for-
mat of the <literal> is as specified in the proposed
network model DDL. If a component name does not have
an associated DEFAULT then "tag 0...12" does not oc-
cur in its corresponding DR.

10. The key word OCCURS is the value associated with
"tag 0...13" in the DDR. The value of "tag 0...13"
in a DR is a character string representing a sequence
of integers that specify the extents in each direc -

tion of an array . The character string format for an
< integer > is defined in the proposed network model
DDL; the tokens are separated by one or more blank
characters. If a component name does not reference
an array then "tag 0...13" does not occur in its
corresponding DR.

-59-

A. 7 The DDF For Set Definition

Structures and constraints defined by NDL Schema Defin-
ition Language <set type>^s are represented in a DDF accord-
ing to the following specifications:

1. The key word SET is the "file name" of the DDF and is
the value associated with "tag 0...0" in the DDR.
The "tag 0...0" does not occur in the DR^s.

2. The name of the database described by the schema is
the name associated with "tag 0...2" in the DDR. The
"tag 0...2" does not occur in the DR^'s.

3. The key word SCHEMA identifies the DDF as represent-
ing a portion of a database schema and is the value
associated with "tag 0...3" in the DDR. The "tag
0...3" does not occur in the DR's.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard — it could be used
for this purpose in database interchange.]

4. The DR''s of a DDF for set definition are in a one-
to-one correspondence with the set types of the data-
base.

5. The DDF for set definition is a "level 1" DDF. A
"level 1" DDF is identified as such by the character
string "00" in relative positions 10-11 of the DDR
leader. Relative positions 10-11 in the DR leaders
are not used to convey any database information; they
are filled with the character string "00".

6. The key word NAME is the value associated with "tag
0...1" in the DDR. The value of "tag 0...1" in each
DR is the set name of the set type associated with
that DR.

7. The key word OWNER is the value associated with "tag
0...10" in the DDR. The value of "tag 0...10" in
each DR is the record name of the owner record type
of the set type represented by the DR.

8. The key word MEMBER is the value associated with "tag
0...11" in the DDR. The value of "tag 0...11" in
each DR is a character string representing the record
names of the member record types of the set type
represented by that DR. The record names are
separated by blank characters. The order in which

-60-

the names appear is not significant.

9. The key word ORDER is the value associated with "tag
0...12" in the DDR. The value of "tag 0...12" in
each DR is a character string comprised of reserved
words and is one of the following: FIRST, LAST, NEXT,
PRIOR, DEFAULT, or SORTED.

10. The key word SORTED is the value associated with
"tag 0...13" in the DDR. The value of "tag 0...13"
in a DR is a character string comprised of either
RECORD TYPE or DUPLICATES. The "tag 0...13" occurs
in a DR only if the value of "tag 0...12" in that DR
is the key word SORTED.

11. The key words RECORD TYPE comprise the value associ-
ated with "tag 0...14" in the DDR. The value of "tag
0...14" in a DR is a character string determined by a

list of record names as specified by the RECORD TYPE
sequence phrase in the proposed network model schema.
The record names are separated by one or more blank
characters. The "tag 0...14" occurs in a DR only if
the value of "tag 0...13" in that DR is the character
string RECORD TYPE.

12. The key word DUPLICATES is the value associated with
"tag 0...15" in the DDR. The value of "tag 0...15"
in a DR is a character string comprised of reserved
words and is one of the following: PROHIBITED, FIRST,
LAST, or DEFAULT. The "tag 0...15" does not occur in
a DR unless the value of "tag 0...13" in that DR is
the key word DUPLICATES.

A. 8 The DDF For Member Record Definition

Structures and constraints defined by NDL Schema Defin-
ition Language <member clause>'s are represented by a DDF
according to the following specifications:

1. The key word MEMBER is the "file name" of the DDF and
is the value associated with "tag 0...0" in the DDR.
The "tag 0...0" does not occur in the DR'*s.

2. The name of the database described by the schema is
the name associated with "tag 0...2" in the DDR. The
"tag 0...2" does not occur in the DR^s.

-61-

3. The key word SCHEMA identifies the DDF as represent-
ing a portion of a database schema and is the value
associated with "tag 0..,3" in the DDR. The "tag
0...3" does not occur in the DR's.

[NOTE: This tag is reserved for future standardiza-
tion in the proposed DDF standard — it could be used
for this purpose in database interchange.]

4. The DR's of a DDF for member record definition are in
a one-to-one correspondence with record types quali-
fied by the set name of the set type in which they
serve as member record types .

5. The DDF for member record definition is a "level 1"

DDF. A "level 1" DDF is identified as such by the
character string "00" in relative positions 10-11 of
the DDR leader. Relative positions 10-11 in the DR
leaders are not used to convey any database informa-
tion; they are filled with the character string "00".

6. The key word NAME is the value associated with "tag
0...1" in the DDR. The value of "tag 0...1" in each
DR is a character string consisting of a record name
followed by a set name. The two names are separated
by one or more blank characters. The record name
qualified by its set name identifies the record type
as a member of the specified set type .

7. The key word INSERTION is the value associated with
"tag 0...10" in the DDR. The value of "tag 0...10"
in each DR is one of the key words AUTOMATIC, STRUC-
TURAL, or MANUAL as specified in the INSERTION clause
of the network model schema. If STRUCTURAL is speci-
fied then it is followed by the character string
specified by the accompanying <structural specifica-
t ion>

.

8. The key word RETENTION is the value associated with
"tag 0...11" in the DDR. The value of "tag 0...11"
in each DR is one of the key words FIXED, MANDATORY,
or OPTIONAL as specified in the RETENTION clause of
the proposed network model schema.

9. The key word UNIQUE is the value associated with "tag
0...12" in the DDR. The value of "tag 0...12" in a
DR is a character string representation of all UNIQUE
clauses specified for the corresponding member record
type . The clauses are separated by the asterisk
character (*) and the component- ident i f iers that make
up each clause are separated by one or more blank

-62-

characters. If no UNIQUE clause is specified for a
given member then "tag 0...12" does not occur in its
corresponding DR.

10. The key word KEY is the value associated with "tag
0 13" in the DDR. The value of "tag 0...13" in a
DR is a character string representing the ordering
criteria as specified for member records of the
member record type associated with the given DR. The
format of the ordering criteria is that defined by
the ASCENDING and DESCENDING phrases in the proposed
network model DDL. If no KEY clause is specified for
a given member then "tag 0...13" does not occur in
its corresponding DR.

11. The key word DUPLICATES is the value associated with
"tag 0...14" in the DDR. The value of "tag 0...14"
in a DR is a character string of reserved words and
is one of the following: PROHIBITED, FIRST, LAST, or
DEFAULT. If no KEY clause is specified for a given
member, or if the KEY clause does not contain a <key
duplicates> phrase, then "tag 0...14" does not occur
in its corresponding DR.

12. The key word CHECK is the value associated with "tag
0...15" in the DDR. The value of "tag 0...15" in a
DR is a character string representation of
<condition>^s specified by CHECK clauses in the
corresponding member record type. Multiple
<condition>'s are separated by the ampersand charac-
ter (&) . If no CHECK is specified for a given member
then "tag 0...15" does not occur in its corresponding
DR.

-63-

B. Appendix B - A Detailed Example of the X3L5 DDF

This section gives a detailed example of representing a
network database as a character string for database transla-
tion, according to the proposed ANSI and ISO Data Descrip-
tive File standard.

B.l The Example Database

The database has the following complexities:

- Network Structure
- Many-to-many Relationships
- Information Bearing Sets
- NULL or DEFAULT values
- Variable Length Array
- Owner Records Without Members
- Member Records Without Owners
- Records With Identical Values
- Fixed Point Numeric Values

This example is easily expandable to include singular sets,
record order keys, or nested repeating groups (e.g. on
loser)

.

The schema of the example database "ELECTION" is dep-
icted in a Bachman diagram in Figure B.l. The database con-
sists of three record types: PRESIDENT, SENATE, and LIAISON,
and two set types: SENATESTAFF and PRESAIDES.

According to the specifications contained in Appendix
A, the network database is resolved into tabular counter-
parts and transmitted as a set of tables. Thus each record
type and each set type forms a table to be described and
transmitted as a data descriptive file. Figure B.2 shows
the information contained in the five DDFs for this example.
A logical record identifier, the field KEY, has been added
to each record. The tags and associated values are
displayed above each DDF representation.

-64-

PRESIDENT

YEAR WINNER LOSER

SENATE

SESSION REP DEM

SENATESTAFF PRESAIDES

LIAISON

STAFFNAME POSITION

gure B.l - Bachman Diagram of ELECTION Database

0: PRESIDENT 2: ELECTION 3: RECORD 0: SENATE ELECTION RECORD

KEY YEAR WINNER LOSERS

01 1960 Kennedy Nixon

02 1963 Johnson N/A

03 1964 Johnson Goldwater

04 1968 Nixon Humphrey
Wallace

05 1972 Nixon McGovern
Wallace
Paulsen

06 1974 Ford N/A

r———

-

KEY SESSION REP DEM

07 89 32.2 66.8

08 90 36. 3 62.6

09 91 43.8 49. 4

10 92 45.1 53.2

11 93 43.0 55.8

12 94 -9.9 -9.9

0; LIAISON 2: ELECTION 3: RECORD
0 rSENATESTAFF 2: ELECT ION 3: SET

4: PRESIDENT 5: LIAISON

KEY STAFFNAME POSITION

13 Johnson VP

14 Sorensen Lobby

15 Humphrey VP

16 Humphrey VP

17 Rostow Advisor

18 Baker Advisor

19 Agnew VP

20 Haig Chief Staff

21 Agnew VP

22 Agnew VP

23 Ford Appt VP

24 Haldeman Chief Staff

25 Haig Advisor

26 Haig Chief Staff

27 Rockefeller Appt VP

OWNER MEMBER

01 13 14

02

03 15 16 17 18

04 19

05 20 21 22 23 24

06 25 26 27

OrPRESAIDES 2: ELECTION 3: SET
4: SENATE 5: LIAISON

OWNER MEMBER

07 15

08 16 17 18

09 19

10 20 21

11 22 23 24 25

12 26 27

Figure B.2 - X3L5 DDF Representation of ELECTION Database

-66-

B.2 Encoding the Example Database

The remainder of this section contains the encoding of
the ELECTION database as a character string according to the
specifications of Appendix A. A character-by-character
description of the DDF is given below. Examples are from
the DDF for the "PRESIDENT" record type (refer to Figure
B.3), unless otherwise indicated.

B.2.1 Notation for Example.

1. In the following examples, these printable characters
have been substituted for delimiters (the column/row refer-
ences to ANSI X3.32 for the nonprintable characters are
given in parentheses)

:

; Field terminator (1/14)
& Unit (subfield) terminator (1/15)

2. The "space" character is used in the character string
representation to separate fields in the Leader, Directory,
and Fields of the DDR and DR. This is for editorial pur-
poses only and is not part of the recorded character string.
Where the actual "space" character is required to be record-
ed, it will be represented by the "#" character.

3. CP is an abbreviation for character position.

B.2. 2 The Data Descriptive Record.

The Data Descriptive Record (DDR) consists of three areas:
Leader, Directory, and Data Descriptive Area.

Description of DDR Leader

The DDR Leader is a 24-character area.

CP 0-4 Record Length - Total length of the DDR in bytes.
0 signifies a length in excess of 99999.

Example: "00181" indicates a DDR length of 181 bytes.

CP 5 Implementation Level
Digit 1, 2, or 3, indicating that the file
conforms to a level 1, 2, or 3 file.

-67-

Example: "2" indicates a level 2 DDF, meaning that
compound data (eg. arrays) , as well as elementary
character data can be represented.

CP 6 Leader Identifier - Specifies that the record is the
DDR and contains the character "L",

CP 7 Inline Code Extension Indicator - Indicates if inline
escape sequences are used in data fields to
designate extended coded character sets.
a. # means no extensions are used
b. E means that extensions are used

CP 8 Reserved for future standardization

CP 9 Application Indicator - Reserved for future
standardization and contains #.

CP 10-11 Field Control Length - Number of bytes of the Field
devoted to codes and delimiters.
a. 00 for elementary character data fields
b. 06 for compound data fields
c. 09 if extended code sets used in fields

Example: "06" indicates that compound data fields occur

CP 12-16 Base Address of Data Descriptive Area - The position
of the first data descriptive field.
This is equivalent to the combined length in
bytes of the leader and directory.

Example: "00081" indicates that the data descriptive
area begins at relative position 81.

CP 17-19 Extended Character Set Indicator - Specifies the use
of default coded character set extensions.

a) (2/0) (2/0) (2/0) - Only the ISO 646 character
set has been designated as the default for
the file.

b) (2/0) (2/1) (2/0) - Extended character sets
have been designated as the default for
one or more data fields.

c) Any other value - An extended character set
has been designated as the default for the
entire file.

Example: "###" indicates that the default extended
character set is in use.

-68-

CP 20-23 Entry Map - Specifies the lengths of directory entry
subfields. This field has the identical structure
in both the DDR and the DR leaders.

CP 20 Size of Field Length - Specifies the size in bytes
of the field length subfield of directory entries.

CP 21 Size of Field Position - Specifies the size in bytes
of the field position subfield of directory entries.

CP 22 Reserved for future standardization - Reserved for an
extended entry map and contains "0".

CP 23 Size of Field Tag - Specifies the size in bytes of the
field tag subfield of the directory entries.

Example: "3302" indicates 3 bytes for each of the
field length and field position subfields and
2 bytes for the tag subfield.

Description of DDR Directory

Directory entries are 3-tuples, consisting of Field
Tag, Field Length, and Field Position.

Field Tag - Identifies a data descriptive field.
The meanings of the various tags are given in the
previous appendix. Tags 00 through 09 indicate
special fields, while tags 10 and above refer to
the actual data fields.

Field Length - Specifies the length in bytes of the field
to which it corresponds.

Field Position - Specifies the relative position of the
first byte in the field referenced by the entry.

Examples: "00 016 000" indicates the file control field
(tag 00) which is 16 bytes in length. The
associated field is "00 00 ;& PRESIDENT;".

"01 010 016" indicates the record identifier field
(tag 01) which is 10 bytes in length and begins at
relative position 16. The associated field is
"00 00 ;& KEY;".

Note that the directory is terminated by the delimiter ";".

-69-

Description of DDR Data Descriptive Area

The data descriptive area of the DDR contains in its
data fields information that defines and describes the
corresponding data fields of the DR^'s (those that have the
same tag) and provides control parameters.

For compound data fields, each field is composed of
several subfields:

CP 0-3 Field Controls

CP 0 Data Structure

CP 1

a) 0 - Elementary
b) 1 - Vector
c) 2 - Array

. Type
a) 0 - Character
b) 1 - Implicit point
c) 2 - Explicit point
d) 3 - Explicit point, scaled
e) 4 - Character mode bit string
f) 5 - Bit field
g) 6 - Mixed types

CP 2-3 00

CP 4-5 Field and Unit Terminators

For elementary data fields, the above subfields are cko-

itted. For example, the LIAISON Record Type (Figure B.5)
consists only of elementary data. The DDF is Level 1, as
indicated in the DDR Directory, and the DDR Fields do not
contain codes and delimiters.

The Field Controls and Terminators subfields are fol-
lowed by the Name, Label, and Format Controls subfields.
These subfields are delimited by the unit terminator.

Examples: "00 00 ;& WINNER;" corresponds to tag 11
and indicates an elementary character string.
WINNER is the data field name.

"01 00 ?& YEAR;" corresponds to tag 10 and
indicates an implicit point numeric representation.
YEAR is the data field name.

"10 00 ;& L0SERS&3& (A(,))

;
" corresponds to 12

and indicates a character vector with the name LOSERS.

-70-

The label "3" denotes the number of elements of the
vector. The format controls "(A(,))" signify character
data, with elements delimited by commas.

The first two fields have special meanings:

"00 00 ;& PRESIDENT;" is the File Control Field
and corresponds to tag 00. PRESIDENT is the file
name of the DDF (and also the record name for this
record type DDF)

.

"00 00 ;& KEY;" is the Record Identifier Field
and corresponds to tag 01. This indicates that the
first field in each DR is a record identifier
(a database key, in this specification)

.

B.2.3 The Data Records.

Each Data Record (DR) consists, like the DDR, of three
areas: Leader, Directory, and User Data Area. For a DDF
that consists of only fixed-length data fields, the leaders
and directories of the DR''s will be identical. In this
case, only the leader and directory of the first DR need be
specified

.

Many of the DR fields have identical specifications to
the corresponding DDR fields, so the reader will be referred
to the DDR discussion where applicable.

Description of DR Leader

CP 0-4 Record Length - Total length of the DR in bytes.

Example: "00079" indicates a DR length of 79 bytes.

CP 5 Reserved for future standardization.

CP 6 Leader Identifier - Specifies that the record is a DR.

a) D means that a leader and directory appear
in all subsequent DR^s.

b) R means that the leader and directory of the
first DR apply to all subsequent DR's.

Examples: "D" indicates that a leader and directory
appear in each DR.

-71-

In the DDF for the SENATE Record Type,
"R" indicates that a leader and directory
appear only in the first DR.

CP 7-11 Reserved for future standardization.

CP 12-16 Base Address of User Data Area - The position
of the first user data field of a DR record.

Example: "00057" indicates that the user data
begins at relative position 57.

CP 17-19 Reserved for future standardization.

CP 20-23 Entry Map - Specifies the lengths of directory entry
subfields. Refer to the description for the DDR.

Descr iption of DR Directory

Directory entries are 3-tuples, consisting of Field
Tag, Field Length, and Field Position. The descriptions
given for the DDR Directory apply here as well.

Examples: In the first DR of the PRESIDENT Record Type,
"01 003 000" indicates the record identifier field
(tag 01) which is 3 bytes in length. The associated
field is "01;".

Also in this DR, "10 005 003" indicates the
data corresponding to tag 10, namely "YEAR".
The associated data field is "I960;".

Description of DR User Data Area

The User Data Fields of the DR contain the actual data-
base. For a DDF containing only elementary character data
fields, the data fields contain a single string . of charac-
ters. For a DDF containing compound data fields, the data
can be characters, delimiters, and bit strings which conform
to the specifications given in the corresponding data
descriptive field.

Example: "04 ;1968 ;Nixon;Humphrey,Wallace; " indicates
a record identifier of 04, a "YEAR" field of 1968,
a "WINNER" field of Nixon, and 2 elements in the
vector "LOSERS", namely Humphrey and Wallace.

-72-

Informational Recorded on Media

Data Descpt. Record

DDR Leader
DDR Directory

DDR Fields
Tag 00 (File Ctrl) 00 00

;

•& PRESIDENT;
Tag 01 (Record Id) 00 00

,

•& KEY;
Tag 02 00 00

,

•& ELECTION;
Tag 03 00 00

,

•& RECORD

;

Tag 10 01 00
,

•& YEAR;
Tag 11 00 00

,

•& WINNER;
Tag 12 10 00

,
;& L0SERS&3& (A(,))

;

Data Records

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

00181 2 L # # # 06 00081 ### 3302
00 016 000 01 010 016 02 015 026 03 013 041
10 Oil 054 11 013 065 12 022 078;

00079 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 008 008
01 ; 1960 ; Kennedy ; Nixon;

12 006 016;

00077 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 008 008 12 004
02 ; 1963 ; Johnson ;N/A;

016;

00083 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 008 008
0 3 ; 1964 ; Johnson; Goldwater

;

00088 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 006 008
04 ; 1968 ; Nixon; Humphrey,Wallace;

12 010 016;

12 017 014;

00096 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 006 008 12 025
05 ; 1972 ; Nixon; McGovern,Wallace,Paulsen;

014;

00074 # D ##### 00057 ### 3302
01 003 000 10 005 003 11 005 008
06;19 74;Ford;N/A;

12 004 013;

Figure B.3 - DDF for the PRESIDENT Record Type

-73-

Informational Recorded on Media

Data Descpt. Record

DDR Leader
DDR Directory

Tag 00 (File Ctrl) 00 00
,

•& SENATE

;

Tag 01 (Record Id) 00 00
;
•& KEY;

Tag 02 00 00
;

•& ELECTION;
Tag 03 00 00

,

•& RECORD

;

Tag 10 01 00
,

SESSION;
Tag 11 02 00 ;& REPUBLICAN;
Tag 12 02 00

,
DEMOCRAT;

Data Records

RR Leader
DR Directory
DR Fields

DR Fields

DR Fields

DR Fields

DR Fields

DR Fields

00178 2 L # # # 06 00081 ### 3302
00 013 000 01 010 013 02 015 023 03 013 038
10 014 051 11 017 065 12 015 082;

00073 # D ##### 00057 ### 3302
01 003 000 10 003 003 11 005 006 12 005 Oil
07;89;32.2;66.8

08;90;36.3;62.6

09; 91; 43. 8; 49.

4

10;92;45.1;53.2

11;93;43.0;55.8

12;94;-9.9;-9.9

Figure B.4 - DDF for the SENATE Record Type

-74-

Informational Recorded on Media

Data Descpt. Record

DDR Leader
DDR Directory

DDR Fields
Tag 00 (File Ctrl)
Tag 01 (Record Id)
Tag 02
Tag 03
Tag 10
Tag 11

Data Records

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

00120 1 L # # # 00 00073 ### 3302
00 008 000 01 004 008 02 009 012 03 007
10 010 028 11 009 038;

LIAISON;
KEY;
ELECTION;
RECORD;
STAFFNAME

;

POSITION;

00063 # D ##### 00049 ### 3302
01 003 000 10 008 003 11 003 Oil;
13 ; Johnson; VP

;

00067 # D ##### 00049 ### 3302
01 003 000 10 009 003 11 006 012;
14 ;Sorenson; Lobby

;

00064 # D ##### 00049 ### 3302
01 003 000 10 009 003 11 003 012;
1 5 ; Humph r ey ; VP

;

00064 # D ##### 00049 ### 3302
01 003 000 10 009 003 11 003 012;
1 6 ; Humph r ey ; VP

;

00067 # D ##### 00049 ### 3302
01 003 000 10 007 003 11 008 010;
17 ;Ros tow; Advisor

;

00066 # D ##### 00049 ### 3302
01 003 000 10 006 003 11 008 009;
18 ; Baker ; Advisor

;

Figure B.5 - DDF for the LIAISON Record Type

-75-

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

00061 # D ##### 00049 ### 3302
01 003 000 10 006 003 11 003 009;
19 ;Agnew; VP

;

00069 # D ##### 00049 ### 3302
01 003 000 10 005 003 11 012 008;
20;Haig;Chief Staff;

00061 # D ##### 00049 ### 3302
01 003 000 10 006 003 11 003 009;
21 ;Agnew; VP

;

00061 # D ##### 00049 ### 3302
01 003 000 10 006 003 11 003 009;
22 ;Agnew; VP

;

00065 # D ##### 00049 ### 3302
01 003 000 10 005 003 11 008 008;
23;Ford;Appt VP;

00073 # D ##### 00049 ### 3302
01 003 000 10 009 003 11 012 012;
24 ;Haldeman; Chief Staff;

00065 # D ##### 00049 ### 3302
01 003 000 10 005 003 11 008 008;
25 ;Haig ; Advisor

;

00069 # D ##### 00049 ### 3302
01 003 000 10 005 003 11 012 008;
26;Haig;Chief Staff;

00072 # D ##### 00049 ### 3302
01 003 000 10 012 003 11 008 015;
27;Rockefeller ;Appt VP;

Figure B.5 - DDF for the LIAISON Record Type (continued)

-76-

Informational Recorded on Media

Data Descpt. Record

DDR Leader
DDR Directory

DDR Fields
Tag 00 (File Ctrl) 00 00 ;& SENATESTAFF;
Tag 01 (Record Id) 00 00 ;& OWNER;
Tag 02 00 00 ;& ELECTION;
Tag 03 00 00 ;& SET;
Tag 04 00 00 PRESIDENT;
Tag 05 00 00 LIAISON;
Tag 10 10 00 ;& MEMBERS. & (5A(,)) ;

Data Records

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

00188 2 L # # # 06 00081 ### 3302
00 018 000 01 012 018 02 015 030 03 010
04 016 055 05 014 071 10 022 085;

00050 # D ##### 00041 ### 3302
01 003 000 10 006 003;
01;13,14;

00036 # D ##### 00033 ### 3302
01 003 000;
02;

00056 # D ##### 00041 ### 3302
01 003 000 10 012 003;
03;15,16,17,18;

00047 # D ##### 00041 ### 3302
01 003 000 10 003 003;
04;19;

00059 # D ##### 00041 ### 3302
01 003 000 10 015 003;
05;20,21,22,23,24;

00053 # D ##### 00041 ### 3302
01 003 000 10 009 003;
06;25,26,27;

Figure B.6 - DDF for the SENATESTAFF Set Type

-77-

Informational Recorded on Media

Data Descpt. Record

DDR Leader
DDR Directory

DDR Fields
Tag 00 (File Ctrl) 00 00

,

•& PRESAIDES;
Tag 01 (Record Id) 00 00

,

'& OWNER?
Tag 02 00 00

;
•& ELECTION;

Tag 03 00 00
;
•& SET;

Tag 04 00 00
i

•& SENATE;
Tag 05 00 00

,

•& LIAISON;
Tag 10 10 00

;
•& MEMBERS. & (4A(,)) ;

Data Records

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

DR Leader
DR Directory
DR Fields

00183 2 L # # # 06 00081 ### 3302
00 018 000 01 012 018 02 015 030 03 010 045
04 013 055 05 014 068 10 022 082;

00047 # D ##### 00041 ### 3302
01 003 000 10 003 003;
07;15;

00053 # D ##### 00041 ### 3302
01 003 000 10 009 003;
08;16,17,18;

00047 # D ##### 00041 ### 3302
01 003 000 10 003 003;
09;19;

00050 # D ##### 00041 ### 3302
01 003 000 10 006 003;
10; 20, 21;

00056 # D ##### 00041 ### 3302
01 003 000 10 012 003;
11;22,23,24,25;

00050 # D ##### 00041 ### 3302
01 003 000 10 006 003;
12;26,27;

Figure B.7 - DDF for the PRESAIDES Set Type

-78-

C. References

[ANSI75] American National Standards Institute, Inc.

,

Amer ican National Standard for the Representation
of Numer ic Values in Character Str ings for Informa-
tion Interchange , ANSI X3. 42-1975, August 4, 1975.

[ANSI77] American National Standards Institute, Inc.

,

Amer ican National Standard Code for Information In-
terchange , ANSI X3. 4-1977, June 9, 1977.

[ANSI81] American National Standards Institute, Inc.
Amer ican National Standard for an Initial Graphics
Exchange Specification, ANSI Y14.26M, September
1981, ASME, 345 E. 47th St, New York, NY 10017.

[ASTR75] Astrahan, M. M. and D. D. Chamberlin, "Implemen-
tation of a Structured English Query Language", in
Communications of the ACM 18=12 (1975) , pp. 580-
587.

[BSI82] British Standards Institution, "The structure and
representation of data for interchange at the ap-
plication level (DIAL)", Draft for Development,
Part 1 1981, Part 2 1982, BSI, 2 Park Street, Lon-
don WlA 2BS, UK.

[CCITT83] International Telephone and Telegraph Consulta-
tive Committee, "Message Handling Systems: Presen-
tation Transfer Syntax and Notation", Draft Recom-
mendation X.409, 1983.

[CCSDS83] Consultative Committee for Space Data Systems,
"Standard Format Data Units", Draft Report of Panel
2 on Standard Data Interchange Structures, June
1983.

[CHEN76] Chen P.P., "The Entity Relationship Model — To-
ward a Unified View of Data", in ACM Transactions
on Database Systems (March 1976) , pp. 9-36.

[CODD70] Codd, E. F. , "A Relational Model for Large Shared
Data Banks", in Communications of the ACM 13 ;

6

(1970) , pp. 377-387.

-79-

[COLL80]

[DBTG71]

[ER79]

[ER81]

[FRY81]

[IS083a]

[IS083b]

[JOHN82]

[KALI81]

[KELL81]

Collica, Joseph, Mark Skall, and Gloria Bolotsky,
"Conversion of Federal ADP Systems: A Tutorial",
NBS SP 500-62, National Bureau of Standards, Wash-
ington, D.C., August, 1980.

"April 1971 Report of the CODASYL Database Task
Group (DBTG) . Published by ACM, BCS, and IFIP.

Proceedings of the International Conference on
Entity-Relationship Approach to Systems Analysis
and Design . Los Angeles, CA, December 10-12, 1979.

Entity-Relationship Approach to Information
Modeling and Analysis : Proceedings of the Second
International Conference on Entity -Relationship Ap-
proach . Washington, DC, October 12-14, 1981.

Fry, J. P., et al.. Draft Specification for a
Structured Data Interchange Form , rep. NBSIR 81-
2315, National Bureau of Standards, July 1981.

International Organization for Standardization,
"Information Processing - Specification for a Data
Descriptive File for Information Interchange", ISO
DIS 8211, May 1983.

International Organization for Standardization,
"Open Systems Interconnection - File Transfer Over-
view, Virtual Filestore, File Service Definition,
File Protocol Specification", working draft docu-
ments ISO/TC97/SC16 N1669, N1670, N1671, N1672.

Johnson, Rowland, "A Data Model for Integrating
Statistical Interpretations", in Proceedings of the
First LBL Workshop on Statistical Database Manage-
ment (March 1982) , pp. 176-189.

"DIF: A Format for Data Exchange between Applica-
tion Programs", Byte , Volume 6, Number 11, November
1981.

Kelly, J.C., Wolf, Robert, Kennicott, Philip and
Roger N. Nagel, "A Technical Briefing on the Ini-
tial Graphics Exchange Specification (IGES)", rep.
NBSIR 81-2297, National Bureau of Standards, July
1981.

-80-

[NASA82] National Aeronautics and Space Administration,
Procedings of the Workshop on Self-Descr ibing Data
StructureS r Nick Roussopoulos , editor, University
of Maryland, October 27-28, 1982.

[NBS83] National Bureau of Standards, "Message Format for
Computer-Based Message Systems", FIPS PUB 98, March
1983.

[SHIP81] Shipman, David, "The Functional Data Model and
the Datalanguage DAPLEX", in ACM Transactions on
Database Management Systems (March 1981) , pp. 140-
173.

[SMIT83] Smith, Bradford M. , "IGES: A Key to CAD/CAM Sys-
tems Integration", in IEEE Computer Graphics and
Applications (November 1983), pp. 78-83.

[STON76] Stonebraker, M. , E. Wong, P. Kreps, and G. Held,
"The Design and Implementation of INGRES", in ACM
Transactions on Database Systems 1:3^ (1976) , pp.
189-222.

[TAYL82] Taylor, Robert W. , "Experiences Using Generalized
Data Translation Techniques for Database Inter-
change", North-Holland Publishing Company, Comput-
ers & Standards 1 (1982) , pp. 111-118.

[X3H283a] "Draft Proposed Network Database Language", ANSC
X3H2, document X3H2-83-151, August 1983.

[X3H283b] "Draft Proposed Relational Database Language",
ANSC X3H2, document X3H2-83-152, August 1983.

-81-

NBS-n4A 'REV. 2-ec)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-115

2. Performing Organ. Report No, 3. Publication Date

May 1984

4. TITLE AND SUBTITLE
Coirputer Science and Technology:

Report on Approaches to Database Translation

5. AUTHOR(S)
Leonard Gallagher and Sandra Salazar

S. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATiONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 84-601055

:

' Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11, ABSTRAC I (A 200-word or less factual summary of most si gnificant information,
bi bliography or literature survey, mention it here)

If document includes a si gnificant

Transporting a database from a source to a target environment \ms often been an
expensive and complex project. In large part this is due to the lack of standards for
data models and database interchange forms. This report describes approaches to data-
base translation, discusses candidate interchange forms, and recommends a method for
representing the data structures of newly proposed network and relational data models
in a form suitable for database interchange. Methods for -representi ng other commonly
used database structures in terms of the proposed standard structures show that auto-
mated database translation is feasible for most currently installed data models.

A review of various candidate interchange forms shows that the proposed ANSI and ISO
Data Descriptive File appears to be the best candidate for character representation of
nearly all commonly used database data structures. The form also allows interchange of
binary strings in the data fields. Acceptance of standard data models and general data-
base interchange forms could produce substantial benefits to DBMS users in terms of cost
savings and increased flexibility. Subsequent vendor supplied, automated tools for
reading and writing database structures into standard forms for interchange would make
data sharing between non-homogeneous installations a convenient .and inexpensive
operation.

12. KEY WORDS {Six to twelve entries; alphabet/co/ order; capitalize onfy proper names; and separate key words by semicolon s)

ANSI; conversion; data interchange; data models? database? DBMS-, data descriptive
file; ISO DDF? interchange forms^ software standards-, translation.

13. AVAILABILITY

Unlimited

i
i
For Official Distribution. Do Not Release to NTlS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington. D.C.
20402.

Order prom Naconal Technical I n^crnation Service NT'S), Spnngfield, VA. 22161

14. NO. Ofi
PRINTED PAGES

87

15. Pr-ce

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification <ey N-503)

*U.S. GOVERNMENT PRINTING OFFICE : 1984 0-420-997/159

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from, time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to ail recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription; domestic

SI 8; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data .Act (Public Law
90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society
(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical irformation

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-
ments. Government Printing Office. Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Service, Springfield. VA 22161.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127). and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor: public distribution is by the

National Technical Information Service
, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234
Official Business

Penalty for Private Use S300

