
A11103 08^523

NAFL INST OF STANDARDS & TECH R.I.C,

A1 1 1 03089223
Fife, Dennis W/Computer software managem
QC100 .U57 N0.500-, 11, 1977 C.I NBS-PUB

CE & TECHNOLOGY;

COMPUTER
SOFTWARE MANAGEME^
A PRIMER FOR
PROJECT MANAGEMENT
AND OUALITY CONTROL

500-11

7

NBS Special Publication 500-11

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to

strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this

end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and
technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro-

mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute

for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the

Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist-

ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-

tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab-

oratory Astrophysics" — Cryogenics- — Electromagnetics - — Time and Frequency^.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure-

ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti-

tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air

and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of avail-

able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth-

ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of

the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product

Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building

Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services

designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection,

acquisition, and effective utilization of automatic data processing equipment: and serves as the principal focus wthin the exec-

utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer

languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process

to facilitate technological change in the private sector by examining and experimenting with Government policies and prac-

tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede

the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific informa-

tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in-

formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services

to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the

following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library —
Office of International Standards — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, utiless otherwise noted; mailing address Washington, D.C. 20234.

' Located at Boulder, Colorado 80302.

ANDAJRDS

1977

COMPUTER SCIENCE & TECHNOLOGY:

Computer Software Management: A Primer for

Project Management and Quality Control

Dennis W. Fife

Systems and Software Division

Institute for Computer Science and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch. Assistant Secretary for Science and Technology

i^liMATIONAL BUREAU OF STANDARDS. Ernest Ambler, Acting Director

Issued July 1977

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publication.

National Bureau of Standards Special Publication 500-11
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-11, 58 pages (July 1977)

CODEN: XNBSAV

Library of Congress Cataloging in Publication Data

Fife, Dennis W.

Computer software management.

(Computer science & technology) (NBS special publication ; 500-1 1)

Bibliography: p.

Supt. of Docs. No.: Ci3. 10:500-1

1

1. Electronic data processing—Management, 2. Programming
(Electronic computers)—Management. I. Title. II. Series. III. Series:

United States. National Bureau of Standards. Special publication
;

500-11.

QC100.U57 no. 500-11 [QA76.9.M3] 602Ms [658'.05'4042] 77-608127

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1977

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $2

Stock No. 003-<X)3-O1796-7

PKEFACt.

Ttie National Bureau of Standards is tne
primary technical advisor on computers tor
government agencies (Brooks Act, Public Law
&9-3k)6) . NBb assists Federal agencies in specitic
projects, ana so obtains first-hand experience
with agency problems and competencies. This guide
was prepared drawing upon extensive contacts with
government computing personnel, and using the
published recommendations of authorities m
software management. A variety of executive
guides and primers in other fields were reviewed
in choosing the scope and approach to the material
covered here. uther staff members ot trie

Institute for Computer Sciences and Technology
assisted by reviewing the material as it was
developed. The author was helped particularly by
the constructive comments of I. Trotter Hardy ana
Theoaore Linden.

NOTICE TO READERS

This guide is intended to become a standard
reference for managing Federal government software
projects. Comments by the readers on its

completeness, clarity, etc. would be valuable in

making appropriate revisions for this purpose. A
postage-free reader evaluation form is included at
the back of the report, and you are encouraged to

complete and return it.

-iii-

TABLE OF CONTENTS

Page

Why this guide was written 1

Who this guide is for 2

What this guide is for 2

What this guide is not for . 3

How to use this guide 3

Why software management is important 3

Why every agency needs software management 5

IBasic tasks of software management 7

#The qualities of superior software 13

Organizing for software management 15

Minimizing early problems 21

Guidelines for design and programming 29

Guidelines for testing 33

Avoiding endless software problems 38

The need for software production tools 40

Standards for quality control 42

Fitting controls to the project size 45

Final homilies 47

References 48

Section with specific guidelines.

-V-

List of Figures

Page

1. The Life Cycle of a Software Product 10

2. Chart of Basic Quality Control Documents ... 11

3. A Representative Team Organization 19

4. A Representative Organization for
a Large Project 20

5. Chart of Recommended Minimum Milestones ... 28

6. Chart of Recommended Quality Controls 46

-vi-

COMPUTER SOFTWARE MANAGEMENT:
A primer for project management

and quality control

Dennis w. Fife

Today, providing computer software involves
greater cost and risK than providing computer
equipment, because Hardware is mass produced by
industry using proven technology, wnile sottware
IS still produced mostly Dy tne craft of
individual computer programmers. This brief guide
IS intended tor managers who are responsible for
computer projects, to explain the use of quality
controls and software management methods. The
typical problems of software development are
explained. Over twenty distinct quality controls
are defined, and recommendations are given for
software management actions. Empirical
information is included that would help top
executives to appreciate the potential problems
and importance of software management.

Keywords: computer management; computer
programming; computer project control; computer
software; software engineering; software quality;
software reliability.

Whi Trilb oUlbE wAb WRITTEN

Computer software is the computer instructions or
programs, as well as the data files and descriptive manuals,
that nave to be provided to maKe computer equipment
(hardware) perform useful services. Today, providing
software involves greater cost and risk than providing the
equipment, because hardware is mass produced by industry
using proven technology, while software is still produced
mostly by the craft of individual computer programmers and
users.

-1-

Software management is the technical and management
control throughout the life cycle of all software that
supports an organization's mission and objectives. Software
management is effective when high quality software is being
obtained with reasonable and controllable costs. Software
management is inadequate when poor decisions and lax
technical controls result in faulty software performance,
computer service fiascos, or project cost overruns. The
unabated high cost of software as well as many publicized
cases of software catastrophes are convincing evidence that
software management is poorly understood and practiced in
most organizations.

The problem is deep-seated and serious, because many
managers who control software projects do not have
professional computing expertise, and many programmers lack
the technical sKills to properly design and produce the
Highly complex computer software needed today. Equally
important, the expansion of computer applications over the
last twenty years has far outpaced the evolution of basic
principles and engineering discipline in software design and
proQuction. Much more applied research is needed before
software engineering will progress to the effectiveness
found in other engineering and production fields.

WHO THIS GUIDE IS FOR

This guide is intended for managers and staff who are
responsible for computer projects. These will be data
processing professionals and supervisors primarily. But the
intended audience also includes executives and managers who
were not trained as computer professionals and who perhaps
have never used a computer themselves. Every reader will
need to understand the rudiments of computer operation and
programming.

WHAT THIS GUIDE IS FUR

The objective of this guide is to give the reaaer an
appreciation of the software pitfalls in computer projects,
and to explain tne use of quality controls ana software
management methods. The typical problems of software
production are highlighted, and recommendations are given

-2-

for setting up software management procedures.

AriAT This bUIDL IS NUT FOK

The brevity ana special purpose of tnis guide mean tnat
It is unsuitable for otner important purposes. In
particular, tnis guide is NOT a survey of programming
methods, NOK a handbook for the direct supervision of
computer programmers. Its use cannot compensate for a lack
of technical expertise that is essential to direct
management of software design, development, and maintenance.
Finally, this guide is NOT a popular treatment to arouse the
interest and concern of the general public. It is expected
that readers have a professional interest and obligation in
decision-making for software projects.

HOW TO USE THIS GUIDE

The sections marked by (#) in the Table of Contents
contain specific recommendations and guidelines for
effective software management. This material should be
utilized to develop appropriate administrative oroers or
management procedures to implement the recommended practices
in all software projects. Selected references for further
stuay of the more important topics are given at the end of
this guide. Aaaitional sections of this guide contain
information that woula benefit a senior executive in
unaer stand ing the problems ana importance of software
management.

WHY SOFTWARE MANAGEMENT IS IMPORTANT

Software is a very expensive resource for government.

The procurement and development of computer software is
"big business" for many organizations, including the
government. Estimates of Federal government spending range
as high as as $5 billion annually on software, and the
accumulated investment in current Federal software probably

-3-

exceeds $25 billion dollars. Software costs greatly exceed
equipment costs over the useful life of computer services,
and the initial development costs for government software
systems are growing to enormous levels. For instance, cost
estimates for the newly proposed Tax Administration System
of the Internal Revenue Service are well over $500 million
dollars, and the Air Force has estimated its software costs
for command and control systems in the 1980 's will be
several billion dollars.

*The government software inventory is large and complex.

Among the more than 8,000 government computer
installations, many have 500 or more programs for specific
government tasks, in addition to others acquired from the
computer manufacturer for general support of computer
operation. Government computer applications, which include
sophisticated military systems as well as public service
systems handling millions of accounts, are typical of the
most challenging uses of computer technology within the
sta te-of -the-ar t

.

*Software flaws and mismanagement can be ruinous to
government projects and public services, and even to
national goals.

Government and business are completely dependent on
computer services today. Manual methods are no longer
considered because human means cannot be organized to handle
the volume of data and short deadlines that are needed in
widespread public services. Social and economic activity is
geared to the performance of computer systems. Examples are
many, as in airline reservations systems or the Social
Security Administration systems that distribute over $50
billion annually to about 25 million individuals. These
benefits are possible only with effective management of the
computer software. In recent years, recurring cases of
major software failures have demonstrated the serious
consequences of software mismanagement to legislators,
journalists, and the public. One dramatic case occurred in
1975, when a government agency made more than $500 million
in overpayments to individuals as a result of erroneous
computer programs.

*No technology or standard practice now exists that will
surely prevent faulty design, logical errors, cost overrun,
or late delivery for any software project.

The preparation and maintenance of computer software is
a laborious, human task that can require the coordinated
effort of dozens or even hundreds of programmers. The

-4-

possibilities for program errors, poor design, or poor
decision-making may be higher than in any other technical
field, because of extreme technical complexity and the lack
of standards and common practices in this new technology.
The speed ana volume of data handling by the computer
creates disastrous consequences from errors in programs and
accentuates the difficulties caused by only minor design
flaws. Tnere is no practical method Known that will
guarantee software as free from errors or design flaws.
Althougn programming productivity has been improving, the
aavances have not kept pace with the tremendous growth m
computer applications ana the aramatic gains in performance
versus cost for computer hardware over the past twenty
years. There are very few standard computer programs for
common applications. There are no standards covering common
work practices and technical goals, such as the measurement
of software reliability. Thus, every software project is a
unique effort. Success or failure is determined more by the
individual technical skills and management capability of the
personnel involved, than by any other factor.

WHY EVERY AGENCY NEEDS SOFTWARE MANAGEMENT

Software management must be the responsibility of the
computer user organization.

Over 7S% of all software is developed by the users of
computers, rather than the manufacturers of computer
equipment or the producers of commercial software. Although
the computer industry is working to improve software
management for its products, industry cannot be expected to
provide a comprenensive solution, nor to cover the unique
circumstances of each computer user,

Software design and programming is a complex technical
activity that must be directed effectively.

Although many people nowadays may understand the
rudiments of programming from college or even high school
courses, the simple homework exercises in such courses do
not represent the "real world" of professional practice.
The design and production of numerous programs that must
work together for a major service, such as the payroll of a

large business, is not routine effort that can go
unsupervised or be done by junior personnel. The funds and
personnel resources involved may be a major investment for
the organization, and the technical choices may drastically

-5-

affect non-computer work processes in management, clerical,
and client relations areas. Technically complex programs
may demand advanced professional SKill which is very scarce
and must be carefully airected at the critical technical
problems. Management and technical control by a
professional software designer is essential for resolving
complex design issues and for directing programmers to
produce a specified product within cost and schedule
targets

.

Software management establishes accountability for project
decisions and objectives, and provides upper management with
visible measures of progress toward desired goals.

Software projects usually are initiated by managers in
such areas as payroll, engineering, plant and supply, etc.
Although they may control the project budget and schedule,
and have the best information on potential benefits and
requirements, they are often unprepared to conduct a design
project or to judge the results provided by an outside
technical group. Thus, software designers sometimes worK
independently using their own judgement, with little
pressure to reliably estimate their progress and the
remaining work or costs. Software management mcluaes
cneckpoints to assure that important objectives and issues
are carefully evaluated by the concerned parties, especially
m regard to cost , qual i ty , and scneaule, and tnat users and
designers take their appropriate responsibility for tne
decisions made.

Software management provides the technical controls and
resource management to produce high quality software within
acceptable funding and time limits.

Software management emphasizes technical criteria and
working procedures to resolve the technical issues that are
critical to the success or failure of a project. Major
questions commonly arise concerning the feasibility or
performance of a desired system, the attainable quality of
the system considering the resources available to produce
it, and the methodology for design and testing in order to
achieve the most effective software product. Software
management delineates quality controls, standards, planning
factors, and experience data which help designers and
programmers to organize and direct their efforts efficiently
in solving such problems within available cost and time
1 imits

.

Software management controls costs after software operation
beg ins

.

The useful life of software for a significant service
typically is over eight years. Experience has shown that
continual changes are necessary in software, to correct
previously unknown errors, to improve useability or
performance, or to include new functions required because of
legal, administrative, or technical changes. As much as 70%
of software cost occurs in this redesign and maintenance,
after software has been delivered and put into use. It is
important to recognize that maintenance is no less
cnallenginy than development, for change to programs
involves new aesign work ana snould be aone accoramg to
planned cost and time goals. software management
t^roceaures, consistently appliea throughout the sottware
life, will maKe best use of limited funas by stressing close
management of effort toward tne most needea sottware
capabil 1 t les

.

BASIC TASKS OF SOFTWARE MANAGEMENT

Software management consists of all the technical and
management activities, decisions, and controls that are
directly required to purchase, produce, or maintain software
throughout the useful life of a computer system or service.

Software management is primarily concerned with
computer programs, data files, and documentation, rather
than the computer equipment configuration that executes the
programs. Even so, software designers must have a say in
nardware decisions if they are to meet the goals for a

computer service. The term "system" will be used here for
the combination of hardware and software that provides a

computer service. Since software has little purpose without
haraware, the terms "system" ana "software" may be used
in terchangeaoly without causing confusion.

ine basic activities ana aecisions are best introducea
in relation to tne commonly recognizea pnases of a system's
life cycle, snown in tigure 1. Tne INITIATION pnase
involves the assessment of an existing, inadequate system,
in order to determine the feasioility of replacing it witn
an improved system. The four pnases, DEFINITION through
TESTING, are the development period, where a new or improved
software product is being designed and implemented. The
OPERATION phase starts with tne operation of a new system by
Its intended users, and includes the subsequent maintenance
and minor redesigns that user experience may dictate.
Eventually, maintenance no longer suffices for needed

-7-

improvements, and another development cycle is begun.

Specitic guidelines for each phase will be given after
the following summary of the tasks included. Figure 2 helps
to understand each phase by summarizing the documents
produced that are needed for quality control.

*In the INITIATION phase, software management assures that
the technical designers understand the purpose and scope of
the envisioned system, and adequately perceive its required
functions

.

The INITIATION phase begins when management recognizes
that a need exists for a new or improved computer service,
and that a study should be made to formulate a software
solution. During this phase, software planners or system
analysts identify the intended users and investigate their
work processes. The planners describe the services needed
from the envisioned software, and then conceive and outline
alternative software solutions. A close working
relationship with the intended users is essential. The
alternative approaches should be described in basic terms
that users can understand. User concurrence with the stated
requirements and the recommended software approach is
mandator y

.

*The INITIATION phase assures that the recommended software
approach is technically and economically feasible.

An estimate must be made of the costs and benefits for
eacn of the potential software solutions. This will lead to
a recommended solution and provide data regarding
feasibility. Comparable existing systems are investigated
to derive cost data and to confirm that proposed solutions
are technically realizable. Any pitfalls, failures, or
questionable design areas in comparable projects should be
covered thoroughly. Comparisons of the proposed project to
past failures or problem areas would assure that they can be
avoided or resolved. General specifications must be written
to show clearly the scope and character of the recommended
solution. The INITIATION phase concludes with a report
delineating the recommended software and the supporting
analysis. Management may then approve the concept and
budget the recommended funds and personnel for acquisition
and operation of the planned system.

*The DEFINITION phase defines the functional and performance
requirements, in order to confirm that the software, when
built, would meet its objectives.

-8-

The DEFINITION phase begins when management commits
resources to the design or purchase of the proposed
software. In this phase, detailed specifications are
created for those externally apparent functions and design
characteristics that are crucial to the purpose and
operation of the software in the intended environment.
Input ana output data, processing operations, and
performance goals are defined. Tne Functional Requirements
define wnat the software must do ana the general aspects of
how It will oe constructea, rather than the details. The
DLFIWITIUN pnase concluaes with a specification that is
sufficiently precise for outsiae contracting, if uesirea.
Equally important, the spec ii ica tion allows the intended
users to confirm that tne proposed system will meet tne need
ana will nave acceptaole qualities of useability,
generality, etc.

The DEFINITION pnase provides a project plan for managing
the acquisition and installation of the system.

A thorough plan for producing or purchasing the
software is prepared as part of the DEFINITION phase.
Projections are made of the detailed costs. A delivery
schedule is laid out, including intermediate milestones and
technical reviews for evaluating progress and insuring that
the project will meet its goals. Working methods are
defined for quality control of intermediate and final
products. The plan should extend to the installation and
initial operation of the system, and should include user
training, document preparation and review, acceptance
testing, and the continuing obligations of any contractors,
vendors, or support organizations. The Project Plan is
extremely important oecause it specifies how the effort will
be managea, how problems will be resolvea, and how the
quality of the final system will be assurea.

-9-

Figure 1. Ttie Lite Cycle ot a software irroauct

Time

Time

Major technical activity

Figure 2. Chart of Basic Quality Control Documents

Life Cycle Phase Documents General Content

Initiation Feasibility Study Report Requirements analysis, definition and evaluation
of alternative solutions, recommended software
concept.

Definition Functional Requirements

Quality and Performance
Requi rements

Project Plan

External specification of software functions and

operation, including design constraints.

Desired design attributes and quantitative perform-
ance parameters for key processing operations.

Cost and work breakdown, detailed schedule including

quality assurance milestones, and definition of

primary management and quality control methods.

Design Design/Coding Standards

Design Specifications

Test Plan

Detailed design attributes and coding conventions

for qual ity

.

Software architecture, module definitions, interface

specifications, and programming requirements.

Testing criteria, testing schedule and work breakdown,

standard test case specifications.

Programming Review Reports

Unit Test Reports

Inspection Reports

Software Manuals

Program Listings

Identified discrepancies and recommendations from

team reviews.

Results of unit test for each module.

Results of inspection sessions for each subsystem.

Usage, operation and maintenance descriptions.

Source Language statements for each tested module.

Testing Test/Fault Report Results of scheduled tests.

Operati on Faul t Report

Specification

Maintenance Plan

•swmn-t-nmc r 1 rri jm*; ffl nr P"; nf dP'f"Prted or SUSDeCted

failure.

Functional and design specifications for maintenance

and improvement work.

Work breakdown, cost estimate, and schedule for

proposed rework.

-11-

*Tne DtiSluN pnase produces a tliorough design spec it ica t ion
tor guiding a timely ana pr ODlem-f r ee implementation ot the
proposed sottware.

The DtSIbW phase begins when the Functional
requirements have been validated by intended users, and
implementation of the system is approved. The DbSIbiM phase
results in detailed specifications of the internal
construction of the software, for use by programmers who
will implement the design. The DESIGN phase involves
definition of the internal architecture of the software,
performance trade-off analyses of algorithms, specification
of individual programs or modules, specification of
interactions between components of software, etc. The
Design Specifications are important as a means for resource
management and quality control during PROGRAMMING.

*In the PROGRAMMING phase, software management assures that
appropriate technical choices are made, and that high
quality workmanship is applied in producing code meeting the
Design Specifications.

The PROGRAMMING phase often is merged with DESIGN and
so may have no distinguishable starting point. PROGRAMMING
involves final technical choices for internal program design
and the creation of programming language statements or
"code" that is executable on the computer and that
implements the design. Software management here is the
aay-to-aay supervision of programmers, and guiaing and
reviewing their technical results. PROGRAMwINb effort
includes the testing by each programmer of his individual
programs and the preparation of pertinent management reports
and software aocuments. Test reports, inspection reports,
ana yzo^ram documentation act as tangible quality controls
over PKUGRAWhINu accomplishments.

*In the TESTING phase, software management assures that no
significant errors or design discrepancies will impede usage
of the system m the intended operational environment.

The TESTING phase is concerned with verifying that the
software product meets the functional specifications and
contains no significant discrepancies or logical errors to
impede its use. TESTING proceeds according to a Test Plan
prepared in the DESIGN phase, and focuses on the integration
of individual programmer results in an overall working
system. Noted discrepancies and errors are documented for
corrective action by the programming team. Gross
shortcomings in the original design or functional
specifications may be exposed; this should lead to a major
project review in order to plan and organize additional

-12-

definition and design work.

*ln OPERATION of a delivered system, software management
assures that maintenance is as well managed and controlled
as original development.

Tne OPERATION phase follows the delivery and
installation of the software in the field, and involves
periodic redesign and improvement. Software management
procedures that are recommended during development can be
streamlined to provide similar close control of the reduced
effort committed to corrective design work. Thorough
specifications, quality workmanship, effective testing, and
management review remain highly important in directing
tecnnical effort to meet cost and schedule targets.

buring the development period, the earlier activities may
oe continuea or re^jeatea in oraer to remedy aesign aefects
ana improve quality or tne final system.

Aitnougn tne successive phases defined nere should be
loiioweo whenever practical, some flexibility is aavisable,
especially wnen a project involves unusual complexity or
innovation. For example, it may be important to carry only
a part of the system through to DESIGN and PRO(jRAi'U*iIN(j , m
oraer to confirm feasibility before beginning DEFINITION for
tne entire system. Or, with limited effort available,
aeveiopment of some supporting capabilities or auxiliary
programs may be deferred until the mainstream processing is
successfully completed. So, all parts of the software need
not be at the same stage of development, and the life cycle
orientation may be viewed with some flexibility.

THE QUALITIES OF SUPERIOR SOFTWARE

These general properties are commonly accepted as
characteristic of high quality software. The techniques of
software management may be usea to control quality at
acceptaoly nign levels or to maximize quality insofar as
practical witfi tne resources ana time availaole for a

project

.

C0KKt,(^TwL6i3--progr ams perform exactly ana correctly all
tne functions expectea from the specifications, if

availaole, or else from the documentation. This means tnat
incorrect aocumen tation is as serious as an incorrect
program. Correctness is an ideal quality, that is rarely

-13-

determinable, so a more practical quality is RELIABILITY.

RELIAblLITY—Programs pertorra without significant
detectaDle errors all the functions expected from the
specifications or the documentation. high reliability
inaicates that programs are relatively trouble free m
performing what they are claimea to do. t)Ut an equally
important question is whether tne functions ana performance
are adequate and suitable to a needed purpose. The latter
quality is callea VALILITY.

VALIDITY—Programs provide the performance, all
functions, and appropriate interfaces to other software
components, that are sufficient for beneficial application
m the intended user environment. This means the software,
without additional programming or manual intervention, has
the capabilities that reasonably would be expected for its
purpose. Validity is a quality of specifications as well as
computer programs. Examples of an invalid program would be
an interactive editor that had no online function for
retrieving stored text for inspection, or a FORTRAN language
compiler that had no DO loop implementation. Validity
involves judgement of user requirements, and may change if
the intended application or purpose is altered. Because
poor reliability may render a needed function useless,
reliability is necessary to validity.

RESILIENCE (or ROBUSTNESS) —Programs continue to
perform m a reasonable way aespite violations of the
assumed input and usage conventions. Input of unacceptable
data, or an inconsistent command, should never cause a

result that is astonishing ana detrimental to the user--sucn
as tne aeletion of any valia results obtamea previously,
programs should include routine cnecKs and recovery
possibilities that are "forgiving" of common user and aata
errors. Resilience is related to the broader quality of
Ui>bat>lLlTY .

USeABILITY—Programs have functions and usage
techniques that are natural and convenient for people,
showing good consideration of human factors ana limitations.
For example, the programs have few arbitrary codes for data
in input or output, have consistent conventions in different
operating modes, and provide thorough diagnostic messages
for errors or violations of use.

CLARITY—The functions and operation of the programs
are easily understood from the user manual, and the program
design and structure are readily apparent from the listing
of program statements. This means that documentation must
be well written, but also that the program is carefully

-14-

aesignea, witn meaningful cnoices of variable names, use of
Known algoritiims, frequent ana effective comments in the
program to descrioe its operation, and a modular structure
tnat isolates separate functions for examination.

MAINTAINABILITY—Programs are well documented by
manuals and internal comments, and so well structured that
another programmer could easily repair defects or make minor
improvements. Clarity is essential for maintainability,
but also implied are a wide variety of good design
attributes, such as program functions that help to diagnose
potential problems, e. g., periodic reports of status or
control totals; or, general techniques that can be readily
adapted for change, e. g., the isolation of constants,
report titles, and otner static data as named variables.

iHOLiIFlAbILITY--Frogr am functions tnat might require
major change are well aocumented and isolatea m distinct
mouules. naintainabil 1 ty is essential to moo it iaoii i ty

.

out mod If laoil ity means tnat a concertea erfort was maae to
anticipate major cnanges, ana to plan the software aesign so
tnat tney coula oe maae easily.

oLi>*bKALlTi--frogr ams perform their functions over a
wiae ranye of input values ana usage moaes. Programs are
not limitea to special cases or ranges of values, when the
functions are commonly or reasonaoly extenaable to a more
general case.

POKTAbILITY--Progr ams are easily installed on another
computer or under another operating system program,
btanaard programming language is used, and hardware or other
software dependent features are isolated for easy change.

TESTABILITY— Programs are simply structured and use
general algorithms, to facilitate step-by-step testing of
all capabilities.

LFFICILNCY/LCONOMY— Programs have high performance
algorithms and conservatively use computer resources, such
as main storage, so that the cost of program operation is

low

.

Ui\oAwlZlWU tuK ijUFTWAKL nANAvjLi'ibNT

*A project team is tne basic organization for sottware
man ag erne n t

.

-lb-

The team approach is effective because a mix of needed
skills can be quickly assembled from an organization's
available talent, and the most talented designers can be
consistently utilized on the toughest problems. Team
practices provide better oversight and counseling tnrough
peer reviews, better dissemination of tecnnical and status
information about software modules, and better back-up of
personnel. The project team approacn will be an unusual
practice where computer personnel have been organized
according to specialties such as "operations", "system
analysis" and "systems programming". Nevertheless, the
advantages gained by forming an appropriately skilled team,
dedicated to one product objective, warrant a departure from
the traditional organization. A project team may be formed
temporarily to carry out software development, with further
effort after installation handled in the normal
organizational framework. However, the advantages of team
work apply to maintenance effort in the OPERATION phase as
well as to the development phases. So a project team may be
advisable when major maintenance or improvement activities
are done.

*For projects involving up to about 10 personnel, one
individual should be responsible for the entire system
design and the project management.

This concept has been called the "Chief Programmer"
approach, for the individual must be an exceptional
programmer as well as a very competent manager. Control
tnrough one individual, especially from ulFInITIOn through
Tt-STiNb, offers a better possibility of a consistent, nigh
quality product, than would cooperative work oy several
individuals or smaller teams. The team chief personally
defines and designs the entire system, and produces many of
the critical modules. The cnief exercises complete
authority over the technical results and team production,
he or she represents the project with users or customers and
with higher management, and decides the project commitments
made to them. The chief controls personnel assignments and
schedules, and has supervisory responsibility for all team
members. The team chief usually should have a minimum of
five years of diversified, intensive experience in system
analysis and software design, and should have demonstrated
the personal qualities, such as judgement and maturity, that
are needed for effectively supervising other specialists and
for dealing with clients and superior officials.

*The project team should include an assistant chief,
specialists for key problem areas, and supporting personnel.

-lb-

ine assistant team cniet substitutes tor tne cniet
wnenever necessary, and serves as his primary technical
aavisor. ine assistant may personally oetme, aesign, and
program some parts ot tne system. Ahen needed, particular
specialists become team members to handle difficult design
problems requiring tneir unusual knowledge and experience.
In PRuGRAwHING especially, a programming language specialist
should be available to answer questions about the effect and
performance of various instruction sequences, and to suggest
better ways of programming certain algorithms. Specialists
on program production tools, testing, and data management
techniques are advisable also. The team secretary assists
in clerical tasks aimed at improving the team productivity,
such as the preparation of computer runs, purchase of
computer supplies, handling of project records and software
documents. Additional support is advisable also in
documentation and technical writing, and in administrative
support of tne team on personnel matters, training,
management information support, etc. Figure 3 depicts a

representative team structure.

*ream techniques are appropriate also tor very large
projects

.

When faore tnan aoout ten people are needed to uo a

project, one individual cannot effectively supervise all of
them, so tne design and programming must be distriDuted
among several teams. L>4ever tneless , one manager should oe
given authority over tne entire effort, anu snould maKe the
fundamental decisions on worK oreakdown, resource
allocations, and software design. inis project manager and
his subordinate programming managers could be viewed as
comprising a team to carry out system design and project
management. Their working procedures should be similar to

those within a subordinate programming team; for instance,
conducting periodic design conferences where each team chief
presents the designs and other results of his group. The
project manager should exercise considerable technical and
design leadership, and major aspects of overall system
design would be decided by his team. Support arrangements
similar to a programming team are advisable, as suggested in

Figure 4.

*Team techniques are applicable in managing contracted
developments

.

A team approach is advisable also when the software
development will be accomplished principally by private
contractors. The project manager or team chief will serve
then as the contracting tecnnical monitor. The contracting
team, rather tnan designing and producing programs, will

-17-

prepare the technical statements of work, and other
contractual requirements such as the quality and performance
specifications, and the pro3ect plan in regard to mandatory
schedules, deliverable products, and quality controls.
Technical specialists in particular areas such as testing
and performance evaluation are also necessary on the
contracting team, and special administrative support is also
advisable to improve the quality and timely completion of
contract requirements, technical reviews, acceptance
testing, etc., as the contractors proceeds witn tne
aeveiopmen t

.

*agency-widfc direction ana evaluation of software policy and
quality control is needed m addition to individual team
luanay emen t

.

h.n upper level of software management authority is
advisable to provide consistent direction and support for
individual teams with regard to organizational policies,
standards, and objectives in software. Such an individual
or office can contribute significantly in assessing software
technology for project needs, and in reviewing project
accomplishments with a view to standardizing team
procedures, technical aids and software production tools,
and even specific software components that have wide utility
for the organization.

-18-

irigure j. A representative Team urganization

Chief Programmer

Deputy Chief

Programmer

Administrator

Technical
|

Writer 1

Speci al i sts
0 0 0 0

Up to about 10

0 Language expert

0 Testing specialist

0 Tools specialist

Figure 4. A Representative Organization for a Large Project

Chief Designer
and

Project Manager

Deputy
Desi gner/Manager

Project
Control
Office

Documentati on

Group

Tool s

Group

I

Chief
Programmer

Teams

1

1

T f» Testing
Group

1 1

*;30ftware problems originate most frequently in tne analysis
ot requirements and tne design of tne computer software.

Nearly 50% of software flaws and errors exposed m
final testing or initial use of a new system are traceable
to shortcomings and mistakes in the early stages of a
project, i. e. from INITIATION through Dt,SIGN. Most
authorities suggest that added effort in the early stages is
the best way to improve the quality of software. The effort
up to the start of PROGRAMMING should comprise about 40% of
the total development effort. A greater allocation is
advisable, provided working methods and review techniques
are geared to strong improvements in the validity and detail
of the Design Specifications.

*The primary quality controls for the INITIATION and
DEFINITION phases are system requirements documents and the
technical reviews made of them by the parties concerned.

quality control in these early stages is necessarily
juogementai, out will be aiaed considerably by stanaardized
documentation practice. Tne National oureau or Standards
nas prepared guidelines, FIPS PUb 38, tnat indicate the
content ror functional requirements, project plans, and
otner software documents. Additional guidelines ana
stanaaras wili be issued m the near future. The use oi
computer-aided text editing and document formatting will oe
especially helpful in rapidly accommodating numerous small
cnanges in specifications during repeated and lengthy
rev lews

.

*otart a Project Record with the INITIATION pnase and
continue it over the system lite.

The Project Record should be an open record of the
major decisions and of the pertinent documents and
specifications. It should be official, to clearly indicate
firm commitments, yet openly available, so that inadequacies
can be detected as early as possible and so tnat current
goals and constraints are apparent to all. This record is

distinct from a technical notebook, which also is often
effective as an informal medium for exchanging tentative
proposals among designers and programmers.

*In the INITIATION phase, identify all user tasks to be
supported by the software and the important attributes of
those tasKS.

-21-

The documentation of the INITIATION phase should
characterize the working environment in which the proposed
software will operate. This would include a description of
user tasks to be supported, the present methods and computer
aids for carrying out these tasks, and the present
limitations that the proposed system would overcome. The
description should be oriented for the users' review, so
that they may identify omissions or shortcomings of the
proposed software solution.

Maintain a continuing interaction with the users and their
managers during the development period.

The potential users or their managers are authorities
on the working environment m which tne proposed system must
tunction. They can provide vital information on the
acceptaole performance and design goals for the system, such
as input data characteristics, toleraole response time, etc.
Their strong support and involvement increases tne
likelihood of successful planning and design, and helps in
oDtaming needed requirements data and evaluations of the
t>roposed system. A highly recommended approach is to have
selected users serve as members of the project team, not
necessarily to perform design worK, but to help to decide
and to document requirements. Project milestones should
include scheduled review sessions as the requirements and
alternative solutions are evolved, to obtain user comment
and concurrence.

*S tr aightfoward automation of existing manual systems may
not yield the greatest benefits from computers.

The computer's capability to do complex processing of
large volumes of data at high speed generally means that
computers can provide better analytical assistance to human
decision-makers than could any number of clerical people.
The way in which data records are organized for manual
handling also may not be the best to use in computer storage
and retrieval. The INITIATION, DEFINITION and DESIGN phases
should include research toward new algorithms and data
handling procedures that allow the computer to serve as more
than a high-speed clerk and file cabinet. For example,
there are mathematical procedures that can greatly improve
inventory controls, scneduling for scarce resources, and
plans tor performance of complex tasks. Also, there are
well proven computer techniques that provide rapid retrieval
of the very data needed for a human task, rather than
requiring people to manually hunt through long computer
print-outs of all related data. Improved algorithms,
carefully chosen for each application, can increase human
and computer productivity by many times.

-22-

*Kadicai aavances in automation carry exceptional
r isK--exper imen t with new approaches through prototype
software, ana oe preparea to throw away one or more systems
oetore confirming the design.

Too often, the cause for software management failure is
overambition or executive zeal to bring the benefits of
automation to a pedestrian manual operation in one great
leap forwara. Never undertake to produce in a single
project step a system for which there is no technological
precedent. Keep the scope of systems within the bounds of
your experience with successful pr o j ec ts--ad vance your
system capability in modest increments.

*use consultants ana visit other organizations to identify
potential t'roblems in building a system and to verify that
system oojectives are attainable.

^jystems tnat nave any possibility or challenging tne
bta te-ot-the-ar t must be planned cautiously. uesearcners,
consultants, ana organizations wno nave pioneered an
innovative type or system can help aetine tne major pitfalls
ana now tney may oe avoioea.

stematically evaluate available software of a comi->arable
t^pe, wnetner commercial or other-user developed, oerore
maKing a ririii commitment to develop a new system.

ine feature analysis technique is very useful for
evaluating availaole software, and comparing proposed system
requirements against the current state-of- the-art. Feature
analysis proceeds by decomposing the requirements into
inaividual functions ana attributes, and then developing
snort aescriptions of what the available software provides
tor each feature. The descriptions should be organized in a

table for easy comparison. Available software, if adequate
to the need, can usually be purchased for much less than the
cost of producing similar programs. Even if new development
is required, existing software may serve for some components
and reduce overall system cost.

*i:ormulate ana evaluate alternative solutions tnat differ m
tne risK anu cost of development.

ir'ruaent management requires a looK at other choices
Detore aecidmg upon one system to be oought or built,
bmce software cost ana risK are now so important, tney
naturally are Key cons laer at ions m conceiving of competing
at^proacnes. ine possiDility of meeting tne need tnrougn
commercial camputmg services or other sources of availaole
sortware certainly should oe presentea as one alternative.

It feasible. No definite guidelines can be offerea on how
to formulate alternatives. Clearly, thorough knowledge of
the state-of-the-art is essential and will indicate
candidate solutions that are more or less innovative.

Estimate the future system costs by several techniques and
adopt a conservative projection.

There is no well formulated cost estimation method that
is highly favored and widely used. Various published data
exist on programmer production rates, but different
variables are involved and some important factors are
omitted in one case or another. BROOKS (see References)
gives a concise summary of published data. YOURDON and
WALSTGN also have data showing the gains possible with
recent innovations such as structured programming.
Experience and judgement, however, are the most accepted
means to reach an overall recommendation on the time and
funding needed. Published data should certainly be used as
a guide, noting carefully the pertinent factors included.
Examine costs of coraparaole systems and advertised costs of
commercial packages for added eviaence. Do a detailed cost
oreakdown of the system by major components and by major
technical activities or work processes. Include operation
and Development costs, to have a full life cycle investment
comparison of alternative systems. Above all, recognize the
uncertainty of any early estimate of cost, and choose a
conservatively high, yet reasonable figure. Reevaluate the
cost estimate periodically as the development proceeds and
better definition of the software evolves.

*aave the intended users review and approve the requirements
and recommended solution defined in the INITIATION phase.

User concurrence, along with any evaluations and
recommendations from the user review, should be in the
record concluding the INITIATION phase. This could be as
simple as initials in a project notebook for a very small
project, or may require an official report and approval
letter for a large project. To reach their assessment,
users should be given a cost and benefit analysis of
alternative systems, in addition to the general
specification of each.

Resist generalizing the system capability to accommoaate
requirements that cannot oe resolved before DESIGN begins.

If an imposea schedule will require starting DESIGN
before ail requirements are defined, a judgement must be
made of wnether the uncertainty allows useful effort to
proceed. If it aoes, then the unknown requirements must be

-24-

anticipated and the most likely possibilities defined. The
impact of these alternatives on the system design must be
determined, and if great enough, it may be necessary to
proceed with definition and design of several systems until
the unknowns are eliminated. Be cautious about generalizing
the required system capability to handle arbitrary, unknown
oeraands. (generalized systems often involve great risk in
aevelopment, and may have poorer performance and efficiency
tnan more constrained and specialized designs, be forceful
in investigating potential needs, m order to resolve
requirements questions and uncertainties as early as
possible

.

*Use engineering analysis, modeling or simulation, and
experience data to establish the performance needed in
critical software operations.

Software designers often assume that necessary
performance can be attained by "tuning" programs once they
are running. On the other hand, early decisions, for
instance on the hardware, the programming language, or the
principal algorithms to be used, could be so poor as to
eliminate any hope of reaching a needed level of
performance. Engineering analysis, coupled with
measurements from comparable existing software, should be
used to investigate the expected system performance as a
function of the attainable performance for basic processing
steps. Performance goals should be specified for the
critical operations, to support feasibility judgements and
to serve as validation criteria for the DESIGN and
PKOGRAMMINCj phases. Early decisions that constrain the
design or implementation approach for the software should
snow clear evidence that the necessary performance would be
achievaole

.

Include witn tne Functional Requirements the performance
and quality objectives that the delivered software must
meet.

ihe specification of quality criteria should begin in

tne ubFlNlTION phase in order to have a basis for judging
tne subsequent design. Use the definitions given above as a

starting point, to be expanded and specialized for a given
project. For example, identify the system functions that are
most subject to future modifications and the nature of the
required raodif labil ity . As another example, describe such
useability characteristics as the processing points where
recovery procedures are required and the acceptable form of
recovery. Include the quantitative performance goals for
principal algorithms and processing steps. In the Project
Plan, define the technical reviews and the evaluation

-25-

procedures tnat wiii oe used to assure tnat tne quality and
performance oDjectives are met througnout tne project.

Develop tfie Functional Requirements in a structured format,
to expedite review and validation.

A free-form narrative approach to documenting
requirements will make it difficult, except for very simple
programs, to isolate individual functions and performance
figures for later confirmation of design. A better approach
is first to decompose overall requirements into major
functional groups, such as data entry or report generation,
or into processing modes, such as online query or
transaction auditing. Then describe individual requirements
under each group with a separate statement of a function
that must be provided or a performance or design attribute
that must be achieved. Each requirement should include
criteria for confirming its achievement, the testing or
evaluation methods involved m confirmation, and any
comments or discussion that amplify the requirement
statement or snow its origin.

*Do not conclude the DhFIwITIUN pnase without having an
approved specitication tnat incorporates cnanges and
reiinements emerging from user reviews.

wever proceed into detailed design when ambiguity or
Known errors exist in the requirements specifications,
basic disagreements are more liKely to lead to tundamentdl
redesign than to minor and easily rendered change.

Formulate concrete, measurable milestones of progress for
the design, programming, testing, installation, and Initial
operation of the system.

It is impossible to exercise control and take
corrective action without concrete evidence of where
problems lie. This means that progressive milestones must
be conceived covering the life of a project. They must be
events and accomplishments that are directly observable by
the software manager, such as the receipt of a specified
document, the successful operation of a given program, or
the conclusion of a scheduled review meeting. They must be
sufficiently frequent over time to serve as progress
indicators or trouble alerts if not completed. The
dependence of later milestones on earlier events shoula be
revealed by drawing up a graph or network relating all
milestones. Progress during DESIoiNi and PKOGRAWWING should
De measured by requirea events, such as reviews or
Specifications, and not Dy programmer estimates ot percent
of code completea. The accompanying cnart describes a

-2b-

minimum recommended set of milestones over a system's life
cycle

.

Establish controls and milestones tnat will identify and
correct errors or omissions as early as possible.

The cost of correcting an error or adding capability to
a system increases significantly as a project proceeds. by
the time system testing begins, errors are over ten times
more costly to fix tnan if tney naa been recognized in
aesign. Adaitional time given to improving specifications
ana to tnorougnly critizing tnem is wortnwnile in reducing
later t^roject costs.

*Pian at least of total project effort for management
requirements ana tecnnical reviews.

when tne neeaea effort nas oeen underest imatea , wnicn
too often IS the case, careful reviews ana management
analysis may be thrown asiae to put all effort into design
and programming. Obviously this will worK to the detriment
of quality objectives, ana probably will result in even more
time required for testing and rework later. Make sure that
project estimates include the time and effort for detailed
review of work as it progresses, and for continuing review
of project schedules and resource expenditures. Insist on
using this time as intended, so that project status and
problem sources can always be accurately defined.

Plan contracts for design and production only after tne
detailed Functional Requirements and Project Plan have been
prepared ana approved.

Contractors cannot be selected or effectively monitored
without the quality assurance and validation criteria that
are emooaiea in these aocuments. They also proviae the
first practical oasis for aecomposing the development effort
into worK packages that different contractors mignt
unaertaKe. contract requirements particularly snouia call
tor stanaaraizea aocumen tation ana coorainatea tormat among
tne tunctional Kequirements and the succeeding aesign
specifications, to aia in tracing and correlating results as
tne eifort proceeds.

-27-

figure b. Chart ot Kecommended i'tinimum hilestones

Time

N
INITIATION DEFINITION DESIGN PROGRAMMING TESTING OPERATION

VAAAAAi\ A AAAA AA AA

Description of Milestones

1. Initiate Project Record with plan for feasibility study.

2. Complete analysis of user tasks to be supported.

3. Complete definition of alternative software solutions.

4. Complete feasibility study report with recommended solution.

5. Obtain user concurrence with recommended solution; budget approval
for project.

,

6. Complete Functional Requirements.

7. Complete Project Plan.

8. Complete user validation of Functional Requirements.

9. Complete software architecture and definition of major modules.

10. Complete Test Plan; and Design/Coding Standards.

11. Complete Design Specification of all component programs; tools definition,

12. Complete validation of Design Specification.

13. Complete unit testing; accept all modules for source code control.

14. Initiate fault reporting procedures.

15. Complete integration testing.

16. Complete delivery and shakedown.

GUIDELINES FOR DESIGN AND PROGRAMMING

*The second major source of problems lies in the quality of
programs as they are produced.

About 40% of software errors are traceable to
misinterpretations of specifications, errors in designing to
them, or mistakes m writing program statements. Recent
research to improve software management has concentrated on
these problems. A variety of new techniques, such as
structured programming ana automated quaiit;/ controi, are
Deginning to come into widespread practice, but much more
must be aone. misinterpretation of specifications would be
reduced by more formal or matnematical specification methods
rather tnan exclusive use of narrative English. Analytical
metnods of design, replacing tne subjective criteria used
neretoiore, would reduce tne frequency of programming errors
and costly maintenance. Software managers must Keep current
with such developing areas in software engineering research.
Continuing training programs, special in-house worksnops,
and experimental projects are good avenues for stimulating
the computer staff toward improving their working practices
and technical knowledge.

*0n beginning the DESIGN phase, prepare an explicit
specification of the quality design and programming
standards that must be observed in the DESIGN and
PROGRAMMING phases.

The Functional Requirements should be accompanied by
definitions of mandatory quality objectives, that serve as a

starting point. Using these, a list of design attrioutes
can be specified, extending in detail to conventions on the
use of programming language features and constraints for
individual program design. This expansion of quality
specifications therefore will encompass the Coding Standards
to be used in the project, and will provide a framework for
starting design of individual modules. For example, the
quality standards may define the extent of diagnostic
messages to oe provided, the types of data errors to oe
detected uy validation algoritnms, the manner of isolating
particular processes subject to future modification, etc.

Develop the Design Specifications as a hierarchy of
processes, specifying the input and output of each process,
and the data flow interconnections.

-29-

A fiierarchy is an ettective means to decoiTipose
tunctionai requirements into successively more aetaiiea
operations. ine approacii is well matched to wnat is called
"top-down" desiyn tor software, wnicn proceeds Dy successive
retinements ot general functions, until arriving at the
component modules or programs that must De implemented to
Duiia tne system. Documentation tor this tunctionai design
approacn is rather simple, and it portrays the overall
system operation in an easily followed graphical way. The
References include books ana reports on the technique.

Complete the Design Specifications before beginning to
coae

.

It is vital that the design be completely worked out
before programming begins, so that programming effort is not
wasted on erroneous design notions and so that programming,
when started, has a complete guide to assure quality work.

Decompose the system into program modules that are simple
and easily understood, usually meaning about 100 program
statements in size.

The advantages of small modules are many. Their
functions are more clearly and simply describable. This
helps direct the programmer toward a clear objective. Their
brevity improves clarity and speeds review for validity and
quality. ir'rogress may be more accurately evaluated when the
units of programming work are small ana readily understooa.

Define general service moaules to reauce duplication m
program modules.

In designing the system into modules, keep track of
replicated functions ana aefine modules that provide such
functions as services that all programs may use. These
service modules usually are those that manipulate standard
data structures in a system of programs, for example,
entering items m tables, retrieving items, managing storage
allocation, etc.

*Use standard high level programming languages.

The use of vendor -un ique programming language,
especially machine or assembly language, should be
prevented, except for very small portions of code where
assembly language may be essential to achieving the
performance goals of the software. These exceptional cases
should be strictly controlled by explicit approval. Keep a
standard high level language version of assembly programs
for documentation and maintenance assistance.

-30-

*Use structured programming tecnniques.

Structurea programming is a concept that encompasses
programming team management, design methods, and programming
technology. Numerous books and articles are available,
describing the design and programming techniques especially.
Published results from evaluation projects confirm that
increases in programmer productivity and reductions in
program errors are achieved, often as factors of two or
greater. Investment in the training and management
orientation needed to practice these methods will be
wor thwhile

.

*laentity or develop programming aids to increase team
proauctivity , ana issue guidelines to the team tor using
them

.

ipeciiic r ecommenaations on programming tools are given
later. selection of tools ana specifications tor unique
tools neeaea lor tne project snoula oe aone as early as
possible in tne ut-hlNITlQw ana DtiiGN phases.

*^^onauct weeKly reviews by tne programming team of
individuals' worK.

inis practice helps all team members to Keep informed
of the design and production as it proceeds, and may act
also as a training opportunity. But primarily it focuses
the combined talent of the team on the quality of the team
output as a whole. Errors or inferior design can be more
quickly exposed than with reviews by a single manager. The
results of each review session should be documented as a

guide for the individual programmer to improve or correct
his work. In structured programming, these review sessions
are called "structured wal k-throughs" , to suggest that each
programmer leads the team through the design and operation
of his module in the same pattern as it was developed.

*ijesign anJ program tor quality before performance.

oefore programmers make any effort to tune their
moaules for improved performance, all quality
cnar acter istics required shoula be realized. wecessary
comments ana program arrangements tor clarity,
maintainability, moo it laoil i ty , generality, ana all requirea
lunctions snould be completea ana contirmea in reviews.

*tor large projects, conauct inspections at successive
stages of aesign ana production, and make all necessary
changes before work moves to tne next stage.

-31-

In addition to team reviews of each programmer's
progress, more formal inspections are recommended tor large
projects, to examine subsystems or closely related modules
produced Dy different programming teams. Tnese inspections
siiould serve as progress milestones in tne Project Flan,
rne inspection team may include experts outside of tne
teams, in addition to tne team cniefs and tne responsiole
programmers. Tne inspection team leader (or moderator)
snoulu not nave oeen a participant in producing tne
subsystem under review ano must nave the authority to inform
nigher management of negative findings. A team size of
about ten persons maximum is aovisaole, and separate reviews
snould be made when design is complete, when code and unit
tests are complete, and when first integration tests are
comple te

.

*Use Iterative review techniques for validation.

Validation, also sometimes called verification, means
confirmation that a system is reliable, and meets its
specifications as well as the requirements of the user
environment. Team reviews or inspections should always
trace design specifications back to functional requirements,
taking note of findings from past reviews. In this way, the
logical thread that stems from the original specification is
followed to the working software, ano successively examined
for continuity and possible shortcomings. Reviews should
evaluate the suitability of the software for the intended
use, and whether the necessary quality is being achieved.

*in the FKUGRAMWING phase, the individual programmer
performs "unit testing".

unit testing determines that the individual programs
work m isolation from otners and meet the specifications
given with the assignment. unit testing must oe performed
according to standard criteria, ratner tnan ad noc methods
contrived by each programmer. The programmer provides test
reports for use in review and inspection tasks. Testing
criteria are described in the guidelines tor TbSTINb, which
follow

.

*Put program modules under source code control when unit
testing is completed.

Completion of unit testing signifies internal project
delivery of a module for integration with others in the
overall software system. Source code control restricts
further program changes to formally approved changes that
have been decided from an overall system viewpoint as
necessary to meet project goals. Source code control is

-32-

neeaea tor best use of programming effort in the terminal
period of tne development schedule.

*Before the DESIGN phase is complete, a formal test plan for
tne system should be approved.

The Test Plan should be started in the DEFINITION
phase, for the Project Plan must account for the effort
required for the testing strategy to be used. Some details
on the number of tests, test inputs, etc. cannot be
specified until the design is nearly complete. The Test
Plan describes the TESTING phase effort and the testing
schedule, and defines the standard test set, i. e. the
complete range of test cases that will be repeatedly used to
assure reliaoility of the delivered software. The
development of this standard test set is a significant
effort that must be completed by the start of TESTING. The
test cases must be provided by manual calculations or other
independent means, so that the correct output expected is
Known beforenana. other means may include program
analyzers, simulations, taoles oi ranaom numbers or function
values, results of comparable systems, etc. The aeptn of
tne lest i'lan is inoicative of the reliability tne user may
expect 11 testing is successfully completed. laeally, the
Test i'ian is aeveloped by a tecnnical group tnat is
inoepenaent of tne designers and programmers, ano that can
require tests that focus on perceived weaK points m the
design. users should be represented in test planning, and
tne final plan should oe jointly agreed oetween users and
the chief designer.

GUIDELINES FOR TESTING

Delivered software for large systems typically has errors
at a rate of one m every 3\diu program statements.

wnen iEoiii>4«o oegins, tne errors present may be three or

more times nigner than tnis rigure. Testing is the process
of executing programs with representative input data or

conditions, tor wnich tne correct results are known, to

determine wnether incorrect results occur. Testing provides
information that helps to isolate errors. Debugging is tne

- j J-

subsequent work of a programmer to explicitly identify
errors and to correct them by changes to program
instructions or data. Many large program systems never
become error-free, i. e. "correct". Instead, they are
maintained and managed m terms of the number of known
errors that are allowed to exist--i.e. successive versions
or releases are planned to reduce the known errors to some
acceptaole, but perhaps still nign rigure.

*iesting is the only practical way to detect program errors
so that they may oe eliminateo.

Testing only determines if errors are present. It
cannot verify tnat no errors exist in a program. bucn
confirmation is conceivaole m only two ways. One is to
exnaustively test tne program on every possible input. Lven
for simple programs, this could take millions of years even
If done automatically by a computer. The second conceivable
way IS to prove correctness as a logical and mathematical
theorem about the program instructions. This approach is a
current research topic in computer science, and proofs have
been done manually for simple programs up to a few hundred
instructions. Research work is now aimed at simplifying
proof requirements through programming practices suited to
this objective, and through computer theorem-proving
software that would reduce the complex mathematical effort
involved. No break-through is predicted in the near future
that would make proof -of -cor r ec tness practical ana
economical for the average programmer to use on normally
complex programs.

*Adopt specific criteria to govern unit testing of all
programs.

wany aifterent testing criteria are conceivable, out
most nave no direct relationship to possible errors ana
aesign flaws, ana so proviOe no information to improve
reliaoility. For example, one could require a speciric
number of test runs per program. but unless eacn test was
appropriately distinct, no more benefit would be obtained
tnan from running only one test. A ranaom sample among most
or a program's input values may be an effective criterion,
but It IS useful only if the valid input values are small m
number, so tnat a significantly large number of random tests
can be generated and run within the time and resources
available. Other possible criteria are:

a) test every instruction at least once;

b) test every branch of the program;

-34-

c) test every ioyicai path within tne program
witn at most one iteration or every loop.

(A logical patn is a sequence ot instructions, some possioly
repeatea, trom input to termination ol a program.) ine above
tnree criteria are successively more stringent; they are
preferable to many others because they are well airectea at
possible faults, and tend to be efficient m using test
ef f or t

.

Recommended testing guidelines that are broadly
applicable to software cannot be simply stated. The subject
is technically complex and beyond the scope of this guide.
The National Bureau of Standards is currently preparing a
guideline that will include results from current research to
develop testing theory and to lay down broadly effective
principles. The most important consideration at this time
is to avoid arbitrarily chosen tests by each programmer,
that do not clearly exercise previously untested functions
ana logic.

*bcneaule progressive tests to build up to a representative
full system test.

Testing snoula begin with discrete tests of oasic
system runctions tnat are neeoea in oraer to go more complex
ana realistic tests. Simple input, output, ana control
functions are examples. Keeping each test restricted to a

given function allows the results to clearly identify
problems encounterea. ultimately, tne software should be
exercised oy composite test cases that represent full system
operation and expected usage conditions. Composite tests
Should be conceived to stress the software performance. The
limits on such factors as accuracy, acceptable volume of
data, or number of concurrent users, should be verified if

included in the specifications. The diagnostic features of
tne software should be exercised as well with test cases
having invalid input. The Test Plan should encompass most,
if not all, of the capabilities defined in the Functional
Requirements

.

*Use program analyzers to assure that all program functions
have been exercised.

A program analyzer is a couiputer prograai that collects
data about another program, including data about it as it

operates. in particular, an analyzer can determine whether
test inputs nave caused all the program instructions to oe
used. This verifies that all capabilities have been
exercised, and identifies extraneous cooe that may have no
purpose and should oe removed.

-j5-

Experience indicates that testing usually requires about
40% of available development time.

Careful, disciplined design should reduce the need for
extensive testing, but more theoretical development and
experience with improved techniques will De needed to assure
this IS always so. Certainly, better specifications would
eliminate rework that sometimes is initiated during TESTIMG
when it becomes clear that the design was incomplete or
haphazaraly contrived. but, it seems best to be
conservative in project scnedules as well as cost estimates,
so allow a major portion of project time ror testing and
uesign rework.

*Use a fault reporting process to manage deougging and
testing

.

It IS good practice to have a formal report system by
which Detected errors ana discrepancies are recorded and
fully described. These reports will help to confirm that
all known errors are fixed before delivery. They also help
to trace multiple instances of the same anomalous behavior,
so that debugging assignments can be made for related
problems and the debugging effort reduced.

Conduct regression tests after program rework has been
done

.

The TESTING phase is primarily concerned with
integration testing, i.e. tests to determine whether
different program modules, produced rather independently,
will work together correctly. /(hen errors are found and
eliminated by debugging, new undetected errors may be
introduced. Regression testing means that previously
successful tests are rerun to detect any introduced errors.
A complete, successful run of the entire standard test set
should be accomplished on tne software oefore concluding
iE^Dl'lNG and delivery to the customer.

Supplement integration testing with system validation
reviews.

Although specifications are expected to be of nigh
caliber when PKUbRAmniNG begins, practical use of the
resulting system during TESTIwG may reveal that original
notions of desired operation were fallacious. Reviews of
test sessions should consider the general suitability of the
system as well as strict adherence to discrete functional
specifications. Any discrepancies should be considered for
rework, rather than delivering a system that in the
judgement of users and designers will not be adequate for

-36-

ttie user's t^urpose.

*lesting snouid assure a niyn measure ot reiiaoiiity tnat
wouia oe expectea in operation ot computer programs.

Correctness is tne aesirea quality tor software, but
also IS an ideal condition that otten is not economically
attainaole or contirmaole for complex software. So, tne
term " r el laDil i ty " is useful to denote the lacK of detectea
errors with respect to some basis of observation.
Observations could be made over a long time perioo of
repeated use of the software, and reliability then defined
as the ratio F/N, with F the number of detected faults, and
N the number of runs or trials of the program.

Software reliability measurements will reflect how the
software is being used, as well as the faults or errors it
contains. If routine usage is limited to previously
debugged functions, reliability will apparently be high. If
usage changes, reliability may suddenly degrade seriously,
as previously unexercised code is used and its errors
revealed

.

Reliability measurement is a recent subject of software
engineering research. i*iore results are needed before a
minimum acceptaole figure can be recommenaea. The most
effective use of reliability oata m project management also
IS not certain until more project experience is at nana.

*k'ian a snaKeaown period atter delivered software is
installea

.

A shakeaown period may be dictated by hardware alone if

a new computer system is involved, but this kind of trial
use may also effectively supplement the previously performed
integration testing of software. The shakedown scenario
should be as close to the actual anticipated usage as costs
and procedures permit, but do not depend upon the shakedown
operation for any operational service. Use the fault
reporting process and records of shakedown run time to
measure and evaluate reliability. The shakedown period
needed to attain stable and reliable operation may be
several months, particularly if hardware installation is
extended over this time and considerable user training is

being done.

-37-

AVOIDING ENDLESS SOFTWARE PROBLEMS

*Use the management techniques for development during the
OPERATION phase as well.

The programming and design ettort available during
OPERATION IS generally reduced compared with tne development
phases. however, the goals of software inanagement ao not
change; indeed, maintenance costs may dominate the total
life cycle cost of a software product. Maintenance worK on
software is still a design cnallenge, but one constrained by
tne program structure ana instructions alreaoy in use.
unless technically controllea, maintenance may aegraae
reliaoility ana otner qualities tnat were initially present,
maintenance tenas to aisorganize and complicate tne prograiii

structure, increasing the potential for errors ana tne cost
of future cnanges. It should not oe assuaiea that the
existing software is a sufficient constraint to prevent
unsupervised maintenance from Decerning costly or haphazara.
Maintenance should be conducted under a tight management
regime that includes oefinition ana scheauling of manageable
work assignments, preparation and review of specifications,
team review of design and code, standard tests, and
documen tat ion

.

*Keep a failure and discrepancy reporting process to
continually manage software reliability.

Failure reports are normal in the TESTING phase and the
initial period of OPERATION, but they continue to be
important as maintenance continues over the years. These
reports are needed for sottware managers to accurately
aetermine if maintenance work is being accomplished as
assigned and if greater testing ana rework effort is
warranted. be cautious about proposed improvements tnat are
not strongly supportea by users or inbicated by problem
r epor ts

.

*Evaluate software periodically ana plan improvements to
avoia oDsolescence ana to minimize future conversion costs.

ine nigh investment in current software ana tne high
cost of replacement often leaa to i^rolongea use or sortware
designs that nave become obsolete. Obsolescence may oe aue
to cnanging technology or economic factors, or to changes in
organizations ana worK loads. Major software subsystems
should be evaluatea periodically, to identify mod ir icat ions
that would eliminate operational limitations, or woula use

-38-

improvea naraware or sottware tecnnolo^y. wajor improvement
m an existiny system may oe economically aone tnrou^jn
progressive stayes ot reworK. equally important, rework to
stanaaroize or restructure component routines may increase
tne leasioility ot translerin9 tne sottware directly to a
luture computer com i>j ur a t ion . bucn prospects empnasize tne
importance ot standard documentation, oecause tne
replacement ot modules or interlaces would oe impractical
witnout clear oerinition ot tne existing sottware design.

*use configuration management metliods to control sottware
status

.

Configuration management involves close control ot
operational software modifications, to assure tnat
continuing service is not adversely affected by cnanges and
tnat the changes made are sufficiently important to justify
their cost within the total maintenance effort available,
proposed changes should be agreed to jointly by tne
programming group and the users, and scneduled with the
appropriate priority as part of the total worKload of the
programming team. Changes should first be made to a test
copy of the software, not tne same copy used tor everyday
service. Thus testing can proceed without delaying
operational service, and only a fully cnecKed out system is
delivered tor use.

i'er lod ically review the t^roject kecord and current
documentation, to insure tnat maintenance results are oemg
recorded tor later use oy other programmers.

rtaintenance responsibility is sometimes misconstrued as
a personal prerogative that may be done with eacn
programmer's style, unless management exerts its autnority
tor quality control to meet tne organization's neeos.
Liocumen tat ion is a tedious but crucial chore, and it is

inexcusable for operational sottware to oe altered witn no
evidence except in the code itself. As in all phases ot
software worK, management action should be as immediate as
possible. The team review process is recommended for it may
remove any appearance of management inquisition. weeKly
meetings that include reviews of documentation updates may
De sufficient to keep project information current and
compl e te

.

-39-

THE NEED FOR SOFTWARE PRODUCTION TOOLS

Software tools are computer programs that automate tasks in
the management, production, and testing of software.

A wide variety of tools have been developed and used in
the software field, but few standard tools are recognized as
applicable to every project. The most widely used tools are
the compilers for high level programming languages, that
transform program statements into executable machine codes,
inany other tools can appreciably reduce ttie tedium of
programming tasks ana can expedite tne application of
standaras to a programmer's products. Surveys of computer
installations, as well as recent project experiences, show
tnat tne value of errective tools is not wioely appreciated,
ana an aaecjuate repertoire of effective tools is selaom
t>rovided. Tne importance of good software proauction tools
is confirmea over wnelmmgly by all recent experience ana
autnor ita t ive research in software engineering.

*t^roviae interactive computer support for programming on
every project.

Developing programs and documentation on an interactive
computer facility significantly improves the efficiency and
working conditions for the programming team. Programmers
can concentrate on technical problem solving without being
limited and burdened by scheduling of computer runs, as in a

batch computer support facility. Tentative design ideas can
be experimentally programmed and evaluated in a short time,
allowing the development of a quality design to move along
rapidly. Various debugging and testing tools can be used to
snorten the time for identifying sources of errors. A
separate interactive support facility is advisable when the
operational computer is unsuitable for interactive usage
because it is intended for a batch or real-time application.
The technology and economics of interactive support software
have been amply proven, and the availability of oasic
systems is adequate for tnis general recommendation.

*use preprocessors to supplement a standard nign level
programming language.

A preprocessor accepts programming statements written
in an improved aialect ol a stanaara progr amiiiing language,
ana translates tnem into stanaara language acceptaole to a
compiler program. Tne merit of a preprocessor is tnat
restrictive conventions that still exist in stanaard
languages, sucn as card column orientation, can be

-40-

circumvented tor improving programmer productivity and
reaucmg errors, without losing tne transportability
advantages ot tne standard language. For example,
structurea programming coula De applied even witn t'UKXKAi^,
wnicn is innerently unsuitea tor it. t<qually important,
many or tne coaing stanoaras ot a pro3ect coula de cnecKed
tor eacn program oy a preprocessor, as a means ot automated
quality control. However, a preprocessor may oe aitiicult
to use together witn a symoolic aeougger , oecause the
ueougger output would rerer to tne preprocessor output
statements, ana so aeougging results woula oe aitticult to
correlate witn the source program statements.

*t,stablish a standara liorary ot specialized sottware tools.

Software tools generally are inexpensive, otten
available trom other users for the cost of reproduction, ana
sometimes concise and easily modified for unique project
needs. Tools are usually specific to one programming
language, and they perform a limited set of functions on
programs written in that language. For each language m use
then, a basic set of tools can be assembled, with each one
assisting in an important, distinct design and programming
task

.

*Use an editor, program librarian, and program analyzer as
standard tools.

An editor assists the programmer in making numerous
Changes ana aaditions to a program, without the burden of
tilling out coding forms or manipulating format aetails, ana
with less risK ot errors in repetitive, trivial changes. A
gooa editor will automatically perform routine tormattmg
ana stanaara ization actions, ana witn prompting ana cnecKing
facilities incluaea, it can prevent or laentity trivial
syntactic errors that a programmer may maKe.

a program librarian is a necessary complement to an
eaitor, ana proviaes for storing on the computer ana
retrieving all program modules and distinct versions of them
that may aevelop auring a project. The usual tile system of
an interactive computer facility may serve as an adequate
program librarian. Features that are useful ana often
provided in special tools for this purpose include
capabilities to time and date stamp different modules, to
employ special naming conventions for programs, to
efficiently store related program versions by storing only
the relative changes, etc.

A program analyzer is software that scans the source
statements in another program to collect information about

-41-

tnem or to provide tor data collection about tne program
behavior wfien it is executed. A variety ot analyzers may be
useful, tor special formatting of programs, for auditing
adherence to coding standards, for extracting cross
reference and data usage reports, for performance
measurement, for test monitoring, and similar purposes.

Many tools of these types are available, and special
tools are often economical to develop for a project.

*(Jse a simple project information system to maintain data on
schedules, milestones, and resources used on distinct tasks
and activities.

Simplicity is the key to keeping the management and
administrative effort within bounds tor small projects. For
large projects, fiscal and contractual requirements may
dictate extensive record Keeping, but it is still advisable
tor technical management to nave simplified project data
that may expose basic problems, ratner than to oe buried
under all possiole details. It a computer mtormation
system is used, it should maintain a gross networK ot major
milestones and produce a tew briet reports on manpower and
other expenditures tor tnese milestones and otner support
act IV 1 ties

.

STANDARDS FOR QUALITY CONTROL

A number of distinct quality control techniques are
known to be effective, and some have been briefly described
in the preceding. In all cases, there is no documented
standard of practice for the technique, but there are
published articles and sources ot experience to help m
developing appropriate standards for an interested
organization. A summary definition of known techniques is
given oelow.

PROJECT RLCORL/--An official journal ot project plans,
specifications, scnedules, worK assignments, oudgets,
technical standards, etc. that serves to inform all
concerned parties ot the goals, worK methoos, nistory, and

-4z-

status of the effort.

ir'ROJECT PLAi\--a detailed plan of milestones, resource
allocations, ana quality control procedures to oe used in
tne aevelopment phases tor a software product. incorporated
in tne ir'roject Kecora ana updatea as neeaea during
aevelopiuen t

.

L/ULUi-iLi.'^'iaiiow i)TAwijAKDo--unif orm requirements on
uocuiiients for tne project ana the software, tnat aetine
scope ana identification of each aocument, as well as lormat
anu content, ana that cover tne principal specifications ana
tecnnical aescr ipt ions , ootn internal to the project ana
aeliveraole witn tne sortware.

AUTuwATLb DUCUi*ibwTATIOi.M AlDb--Computer software for
text editing ana document formatting, and for automatea
preparation of program documentation such as ilow charts or
cross reference listings of aata elements ana program
s ta temen ts

.

STRUCTURED SPECIFICATIONS—The approach of coordinating
all specification documents in format and content, and using
formal or mathematical specification techniques to reduce
aiTibiguity. This facilitates successive validation
milestones as increasingly detailed specifications are
developed. The series of specifications involved begins
with the feasibility study description of system concept,
continues with the functional requirements, and extends to
the individual program module specifications.

wuALIT:^ and i^ERFORMANCb RE(^UlKEMENTS--Augmen ta t ion of
tne functional requirements, to state the specitic quality
attriDutes expected of the software and the quantitative
performance necessary m Key operations or test cases.

:3PELlFICATI0w CuwTkOL--A formal process of reviewing
and at^proving proposed changes to specifications, with
consideration of tneir tecnnical validity, impact on project
resources ano scneauie, and impact on worK completed or m
progress. Tne goal is to inhibit continuing, capricious
Changes, and instead stabilize the specifications on
distinct deliverable versions of the software that can be
managed for production.

STRUCTURED pRUGRAMMIwG—Technical practices and
criteria governing particularly the programming techniques
and language usage for increasing programming productivity
and reducing program errors.

-43-

Tup-L»uwiM PKUOKAw utVhLUPiyibw'i--'i'ne approach ot
implemen tincj and testing program systems oy Duiiding program
modules starting witn those at the most general,
application-oriented level (the "top"), and proceeding
successively down to the most specialized, computer-
dependent level (the "bottom").

DiiSIblM and CODING STAI\IDARDS--De tailed specifications of
generally applicaole design requirements based on quality
oDjectives, including such programming conventions as
indenting and spacing of program statements, use of
comments, naming of variables, use of language features,
etc

.

SOURCE CODE CONTROL—The process of labeling and
archiving program modules accepted for formal technical
control, thereby limiting future programmer modifications to
formally reviewed and approved changes.

TEAM kEVIEAS--Techn ical team conferences to audit
design proposals, specifications, and completed programs for
qual 1 ty

.

UNIT FuLD£-Rb--The programmer's technical records of
design and testing worK on individual program modules,
sometimes callea "unit development folders". As standard
uocuments in a project, these augment the project record and
specifications oy providing more technical oocumen tation as
necessary for reviews and inspections. Especially important
m large projects subject to frequent personnel changes or
r eassignmen ts

.

INbPECTIONS--Formal review and auditing of subsystems
or groups of program modules at design, code, and test
stages, by an independent technical team. Applicable to
larger projects.

STANDARD PRODUCTION TOOLS—Computer software to aid the
programming team in creation, documentation, testing, and
analysis of the deliverable programs. These would include,
for example, the standard programming language compiler,
program librarian, test data generator, symbolic debugger,
etc

.

PROGRAM ANALyZERS--Sof tware tools for automated
analysis of program modules, to confirm complete adherence
to coding standaras ana quality criteria, ana to assure
thorough testing according to standards.

PkuJElt INtORMATION--Kecora mg ana analysis ot the
allocation and expenaiture of team effort on different

-44-

modules ana milestones for the pro-gram system, and on
various production activities, in order to monitor progress
and to support best practical resource management.

TESTINb S1ANDARDS--Spec if ic criteria governing tne
program testing to De performed, to assure that programs are
unirormly tested oy all programmers and tnat all program
instructions and capaoilities are tested to the extent
pr ac t ical

.

iNuLi^LwubiNT itibT irLAiNS--use Of independent tecnnical
st^ecialists to prepare compr enensive tests of tne integrated
soitware sj-stem.

t\rtuLi Kbir'UKi 1 rormal process for documenting
oDservea errors or discrepancies m program operation ano
capaoility, to aid oeougging and reliaoility assessment, and
to validate sottware design.

CunFIvjUkAi lUN hAhAGLwENT--A formal process of
controlling the operational software status and reviewing
proposed improvements, to Dest direct maintenance effort and
to minimize impact of maintenance and testing on operational
ser V ice

.

FITTING CONTROLS TO THE PROJECT SIZE

Software projects differ tremendously m complexity,
acceptable scnedule, and available resources. More than
anytning, tne available personnel determine wnat technical
goals are acnievaole and wnat quality controls may
reasonaoly De imposed. Figure 6 illustrates a Dasic
judgement of where the above controls are best utilized m
regard to project size. Tne controls tnat are perceived to
oe more demanding of tecnnical or supporting effort are not
recommended for smaller projects.

-45-

Figure 6. Chart of Recommended quality Controls

Quality Control
Development or Improvement

Effort in Man-Years

Less than 1/2 1/2 to 2 2 to 5 Over 5

Project Record X X X X

Proiect Plan X X X X

Qual i ty/Performance
Requirements

xA YA YA X i

i

Standard Documentation X X X X
1

Program Analyzers X X X X
1

i

Standard Production Tools X X X X
i

Structured Programming X X X X 1

Ton — Hnu/n PIpwp 1 nnmpn f X X X X !

1

i
i

1

X X
i

X

X X X
I

1

Automated Documentation
Aids

YA X X i

1

Design/Coding Standards X X
V 1

X

Team Reviews X X
VX

I

Testing Standards X X ^
\

Project Information X X
w
X

Source Code Control X X

Unit Records X X

Fault Reporting X X

Configuration Management X X

Inspections X

Independent Test Plans X

-46-

FINAL HOMILIES

A few simple cautions may help to avoid unqualified
failure in undertaking software development, given present
Knowleoge of now best to do it.

Cnoose reasonable goal

s

. Although computer technology
has amazing capaoil i ties , we remain primarily limited by
human creativity m regara to software acnievemen ts

.

nave a de tailea plan Im^jortant tasKs may be forgotten
or expectations may expana unless all is recoraeu as a
reminuer

.

tut one per son m control , Tnere snoula be strong
leaaersniiJ towara one well unoerstooa concept.

use gooa tools . i^roauctive tools are tne only certain
way to accelerate nuiuan accompl isnmen ts

.

Cater to the sof twar e user . The user judgement is tne
ultimate answer on success or failure of tne product.

build up in steps . Confidence from successful
achievement of modest goals will lead more quickly to
grander oojectives.

admit mistakes early . Pursuit of the hopeless leads
only to further despair--poor choices and misconceptions
require drastic remedies as early as possible.

Conside r star ting over . Patcning a poor result has
limiteo return; a wiser action may be to start fresn at the
oeg mn ing .

-47-

REFi:;R£wCh;S

baKer , t, 'I,, "structured ir'rogr amming in a i'roauction
ir^roy ramming environment", ir^roceea ing s ot tne International
Center ence on Kel lable So£ twar e , 21-23 April lb>75, Los
Angeles, ppl7z-lb5, ibt-h Computer bociety. Long beacn,
cal itornia

.

BrooKs, F. P., Jr., Tne ivly tnical Man-£lont_h: t.ssays on
bo£ twar e Eng ineer ing , Add ison-vVesley Publishing Co.,
Reading, Mass., 1975, 195p.

Comptroller General of the United States, Lessons Learned
APou t Acquir ing Financial Management and Other Information
Systems , August 1976, 61p, available from U. S. Government
Printing Office, Washington, D. C. 2ld402, Stock No.
02W-000-00138-1.

Endres, A., "An Analysis of Errors and Their Causes in
System Programs", IEEE Transactions on Software Eng ineer ing ,

V. SE-1, n. 2, June 1975, 140-149, IEEE Computer Society,
Long Beach, Calif.

Fagan, £., "Design and Code Inspections to Reduce Errors
in program Development", Ibm Systems Journal , v. 15, n. 3,
1975, 182-211.

tiecht, iierbert, measurement , pst imation , and prediction of
^ot tware t^ei labil i ty , NASA Cr-145135, aerospace Corporation,
sjI begunoo, Calif., January ly77, 41p.

IbW Corp., Data Processing uivision. Improved Programiuing
Technolog ies--An over v lew , Installation management Keport
GC2U-l&5^-k) , October 1974 , I9p.

IBh Corp., Data processing Division, _hIPO--A Design Aid and
Documentation Technique , Installation Management Report
GC20-1851-0, October 1974, 130p.

Kernighan, B. w. and Plauger , P. J., The Elements of
Programming Style , McGraw-Hill Book Company, New York, 1974,
147p.

Kernighan, B. w. and Plauger, P. J., Sof twar

e

Tools,
Add ison-Vvesley Publishing Co., Reading, Mass., 1976 , 338p.

Mills, Harlan, "Software Development", IEEE Transactions on
Sof twar e Eng meer ing , December 1976 , 265-273.

-48-

rtyers, Glenford J., Sot twar e Rel iabil i ty : Pr inc iples and
Pr act ices , John wiley and Sons, New York, 1976, 360p.

National Bureau of Standards, Guidel ines tor Documentation
of Computer Programs and Automated Data Systems , Feder al
Information Processing Standards Publication 38, 1976
February 15, 55p.

Rochkind, M. J., "The Source Code Control System",
Proceed mg s of the First National Conference on Sof twar

e

t.ng ineer mg , 11-12 September, 1975 , Washington, D. C,
pp37-43, Illl Computer Society, Long Beach, Calif.

KUDey, K. J., et al . , "(quantitative Aspects of Software
validation", 1 llL 1 r ansae t ions on Sof twar e Lng ineer mg , v.
bt-1, n.2, June 1975, 15to-155, IlLL Computer i»ociety. Long
beacn, Calit.

van Tassel, u . , prog r am S tyle , ues ign , Lf i ic lency ,

ueougg ing , ana Testing , Pr en t ice-Hall , Inc., Lnglewooa
Clitfs, New Jersey, 1^/4, 256p.

waiston, C. l. and C. P. telix, "A Method of Program
estimation and measurement", It>t»i Systems Journal , v. 1_6, n.

1 , 19 7 7 , 54-73 .

Yourdon, l., Techniques of Program Structure and Design ,

ir'r en t ice-riall , Inc., Englewood Cliffs, New Jersey, 1975,
364p.

Yourdon, E., "A Case Study in Structured Programming:
Kedesign of a Payroll System", Digest of Paper s of I£EE
COMPCOn , September 9-11 , 1975 , Washington, D. C, 119-122,
IEEE Computer Society, Long Beach, Calif.

-49-

1

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS SP-5Q0-11

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE
COMPUTER SCIENCE & TECHNOLOGY:

Computer Software Management: A Primer for Project
Management and Quality Control

5. Publication Date

July 1977
6. Performing Organization Code

7. AUTHOR(S)
Dennis W. Fife

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as Item 9

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 77-608127

16. ABSTRACT (A 200-word or less [actual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

Today, providing computer software involves greater cost and risk than
providing computer equipment, because hardware is mass produced by industry
using proven technology, while software is still produced mostly by the craft
of individual computer programmers. This brief guide is intended for managers
who are responsible for computer projects, to explain the use of quality controls
and software management methods. The typical problems of software development
are explained. Over twenty distinct quality controls are defined, and
recommendations are given for software management actions. Empirical information
is included that would help top executives to appreciate the potential problems
and importance of software management.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Computer management; computer programming; computer project control;

computer software; software engineering; software quality; software reliability.

18. AVAILABILITY ^Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

\yCi Order From Sup. of Doc, U.S. Government Printing Office
Washington. D.C. 20402. SD Cat. No. C13.10:50&-11

1 1

Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

21. NO. OF PAGES

58

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

USCOMM-DC 29042-P74

READER EVALUATION FORM

NBS Special Publication 500-U , "Computer Software Management"

Your voluntary, anonymous comments after reading this report will help NBS to develop this guide
as a standard reference for software projects of the Federal government.

1. Where do you place yourself among the audience for this report? (Check one best answer).

Practicing computer professional^ 1 Executive or policy officialQ2

Technical professional in another field Layman[]4

2. How would you rate the clarity of the presentation? (Check one best answer).

Well written, easy to follow Difficult in spots
[]&

Generally difficult [^7 Mostly vague or unclear[\8

3. How would you rate the completeness of the guidance given? (Check one best answer)

.

Complete, with adequate discussion^ 9 Generally complete, but lacking depth [~] 10

Some omissions or inadequate analysis[^ll Serious omissions
[) 12

(Please comment below)

4. How would you rate the validity of the specific guidelines and procedures given?
(Check one best answer)^

Highly practical and consistent with most experience
\]

1

3

Reasonable and generally recommended 14 Plausible for some cases
| |

15

Mostly unjustified Ql6 (Please comment below)

Check your belief regarding each of the following statements on the need for this guide:

Strongly
Disagree

Tend to

Di saqree
Tend to

Aqree
Strongly
Aqree

a. Better guides already are used by most designers. 17 18 19 20

b. NBS is a well-known source for such information. 21 22 23 24

c. The software problem is not so important. 25 26 27 28

d. The subject is too complex for such a brief guide. 29 30 31 32

e. The problem cannot be reduced by simple rules. 33 34 35 36

f. This guide will improve government operations. 37 38 39 40

g- Standard practices are needed in this field soon. 41 42 43 44

h. Good textbooks are more beneficial than such a guidebook. 45 46 47 48

6. Your narrative comments are welcome.

Fold and Staple here. No postage required.

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON. D.C. 20234

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. S300.

RETURN POSTAGE GUARANTEED

National Bureau of Standards
Computer Science Section
TECH A36

7

Washington, DC 20234

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOI KNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. It is published in two
sections, available separately:

• Physics and Chemistry (Section A) <j\^

Papers of interest primarily to scier* orking in

these fields. This section covers a bf .ige of physi-

cal and chemical research, wit*- ^^-^ ,,r emphasis on

standards of physical measu*- ^ , fundamental con-

stants, and properties of nv ^'.isued six times a year.

.Annual subscription: D- ^^.f'^.-, $17.00; Foreign, $21.25.

• Mathematical Sci^ ^^C*'**^ Section B)
Studies and com"" ^* .is designed mainly for the math-
ematician anH .Q<v*<;tical physicist. Topics in mathemat-
ical stati#'\^,^c^^.ieory of experiment design, numerical

analysi v^..retical physics and chemistry, logical de-

sigp ^ programming of computers and computer sys-

t^ nort numerical tables. Issued quarterly. Annual
s."^ ..cription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulle-

tin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews
such issues as energy research, fire protection, building

technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, it reports the results of Bureau programs
in measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, .Sl2. 50: Foreign, .$15.65.

NONPERIODICALS

.Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences

.sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied .Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engi-

neers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth
St. N.W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmental
functions and the durability and safety characteristics

of building elements and systems.

Technical Notes—Studies or reports which are complete

in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under proce-

dures published by the Department of Commerce in Part

10, Title 15, of the Code of Federal Regulations. The
purpose of the standards is to establish nationally rec-

ognized requirements for products, and to provide all

concerned interests with a basis for common under-

standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable lang-

uage and illustrations provide useful background knowl-

edge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent

of Documents, Goi>crnmcnt Printing Office, Washington,

D.C. >(>!>()2.

Order following NBS publications—NBSIR's and FIPS
from the National Technical hiformation Services,

Sprinyrield, Va. 221GI.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-

ards Register. Register serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-

ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Techni-

cal Information Services (Springfield, Va. 22161) in

paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIiniON SERVICES

The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscrip-
tion: Domestic, 82.5.00 ;

Foreign, 8.}0.0(J

.

Liquified Natural Gas. A literature survey issued quar-
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: 1.30.00 .

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Bureau of

Standards, Cryogenic Data Center (275.02) Boulder,

Colorado 80302.

U.S. OEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D C. 20234

OFFICIAL BUSINESS

I

I

Penalty for Private Use, $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE

BOOK

