
U.b. uepanmeiii
of Commerce

National Bureau
of Standards

% L (J /

NBS

PUBLICATIONS

Computer Science
and Technology

NBS Special Publication 500-108

Guide on Data Models in

the Selection and Use of

Database Management Systems

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science c

and Technology

OF STANDAfiDS
LIBRABY

(c

NBS Special Publication 500-108

Guide on Data Models in

the Selection and Use of

Database Management Systems

Leonard J. Gallagher

Jesse M. Draper

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued January 1 984

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 83:600630

National Bureau of Standards Special Publication 500-108
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-1 08, 71 pages (Jan. 1984)

CODEN: XNBSAV

u s. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1984

For sale by the Superintendent of Documents, U.S. Government Printing Office, Wasliington, DC 20402

TABLE OF CONTENTS

Page

1. INTRODUCTION 2

1.1 Data Models and Database Management Systems 2

1.2 Evolution of Data Models and Standards 3

1.3 Purpose and Organization of this Report 5

2. DATA STRUCTURES AND DEFINITION 6

2.1 Data Types 6

2.2 Structures 8

2.2.1 The Network Model 8

2.2.2 The Relational Model 10
2.2.3 Hierarchical Models 14
2.2.4 Entity-Relationship Model 16
2.2.5 Other Structures 16

2.3 Integrity Constraints 18

2.3.1 The Network Model 18
2.3.2 The Relational Model 19
2.3.3 Other Models 20

2.4 Schema Definition 20

2.4.1 The Network Model 20
2.4.2 The Relational Model 22
2.4.3 Other Models 23

3. DATA MANIPULATION 24

3.1 Modules and Procedures 24

3.2 Database Access from External Languages 25

3.2.1 Explicit Procedure Approach 26
3.2.2 Implicit Procedure Approach 26
3.2.3 Native Syntax Approach 27

3.3 Examples 27

3.3.1 Explicit Procedure Calls 28

-iii-

3.4 Implicit Procedure Calls 31

3.5 Native Syntax 35

4. FEATURES OF THE NETWORK AND RELATIONAL MODELS 37

4.1 The Network Model 37

4.1.1 Cursors and Session State 37
4.1.2 Keeplists 38
4.1.3 Arrays 41
4.1.4 Recursive Sets 41
4.1.5 Singular Sets 42
4.1.6 Set Insertion and Retention 42
4.1.7 Set Ordering 44
4.1.8 Complex Data Structures 45

4.2 The Relational Model 45

4.2.1 Nesting and Range Variables 45
4.2.2 Views 48
4.2.3 Triggers 48
4.2.4 Flexibility 50
4.2.5 Mathematical Precision and Elegance 50
4.2.6 Performance 51

5. SELECTION ISSUES 51

5.1 System Parameters 52

5.2 Hardware and Operating System Support 52

5.3 Backup and Recovery Facilities 53

5.4 Bulk Loading and Unloading 54

5.5 Schema Manipulation 54

5.6 Access Control 55

5.7 Concurrency Control 56

5.8 Access Languages 56

5.9 Display Features 57

5.10 Support, Training, and Documentation 58

5.11 Existing User Base 58

5.12 Benchmarks and Prototypes 58

-iv-

6. CONCLUSION 59

7. ACKNOWLEDGMENTS 60

8. REFERENCES 61

-V-

Guide on Data Models in the Selection and
Use of Database Management Systems

Leonard J. Gallagher
Jesse M. Draper

Selecting a database management system in-
volves matching users' requirements and the capa-
bilities of available products. One way to sim-
plify this task is to define data models identify-
ing both data structures and the operations on
those structures. In the past every commercial
product has implemented its own data model. Now
technical committee X3H2 of the American National
Standards Institute is working on specifications
for two models that are similar but not identical
to many existing products. The network model is a
structure-oriented model that is especially suit-
able for databases with static structures and a
high volume of record-at-a-time processing. The
relational model depends more heavily on opera-
tions than structures and thus provides the flexi-
bility to handle dynamic databases. Examples
written in the draft Network Database Language and
the Relational Database Language demonstrate that
both models can answer complex queries in a

straightforward manner.

In addition to the issue of data models,
prospective buyers of database software need to
consider features that affect daily operations.
Existing hardware and operating systems sometimes
limit the choice to a few commercial products.
Systems also vary widely in their facilities for
backup and recovery, bulk loading, schema manipu-
lation, concurrency control, and report writers.

Key words: computer languages; computer software
standards; DBMS; data management; data models;
database management systems; network databases;
relational databases; system selection.

-1-

1. INTRODUCTION

Since the early 1960''s, when the formatted file systems
that preceded modern generalized database management systems
(DBMS^s) were first introduced, application developers have
been able to select from an increasing number of research
and commercial DBMS products. Recent articles in the trade
press list well over one hundred different vendors marketing
nearly two hundred separate database management products
[PERS81, SOFT82] . New products are announced continuously,
especially for small and medium-sized computers.

Today -- without any international, national, or
Federal standards -— virtually every commercial database
product is unique. Furthermore, extant database management
systems are described primarily by reference documents that
are sometimes incomplete: the products themselves provide
the ultimate specifications. It is difficult, therefore, to
characterize classes of these nonhomogeneous and undocument-
ed database management systems. Potential users need a
method for differentiating these products according to their
fundamental capabilities without becoming overwhelmed by
highly specialized features of specific implementations.
The concept of a data model provides such a means for clas-
sifying and understanding implementations of database
management systems. Fortunately, many DBMS products are
based upon one of a small number of data models that have
received extensive attention in the research literature.
Two of these models -- the network and the relational -- are
current candidates for American national standards.

This report identifies t
major data models, with speci
standards. No one data model
all database applications;
each application will determi
model

.

he characteristics of several
al emphasis on the two proposed
is uniquely appropriate for
the special characteristics of

ne the most appropriate data

1.1 Data Models and Database Management Systems

A data model is a collection of data structures togeth-
er with a collection of operations that manipulate the data
structures for the purpose of storing, querying, or process-
ing the structure contents. A data model may also include
the integrity constraints defined over the data structures,
or it may include access control facilities or mechanisms
for defining various external user views of the database.
Some data models provide physical storage structures and

-2-

physical access methods as part of the data model, but usu-
ally a data model is limited to the data structures and
operations that are available to an end user and may be ac-
cessed from an application program.

A database management system is a general purpose, ap-
plication independent, software package used in association
with computer hardware to facilitate the entry, storage,
processing, sharing, and retrieval of data from a database.
The portion of a DBMS that deals directly with the process-
ing of the data structures of a data model is sometimes re-
ferred to as the database control system. A DBMS supports a
data model and is an implementation of that data model.
Some database management systems may support multiple data
models by providing different user interfaces to the data-
base. A DBMS provides for transformation of the logical
data structures of a data model to the physical storage
structures of a particular hardware environment. The DBMS
goes beyond the data model in that it must provide for com-
munication with the operating system of the host computer,
as well as interface with programming languages or associat-
ed software systems such as data dictionaries, report writ-
ers, statistical packages, graphics, and libraries of spe-
cial data processing^ functions. A DBMS generally provides
concurrency control, backup, and restart, as well as dumping
and loading facilities for all databases under its control.

1.2 Evolution of Data Models and Standards

In the early days of data processing, when external
storage consisted of punched cards or paper or magnetic
tape, all file access was sequential; no data could be re-
trieved without first passing over all previously stored
data. Even with this restriction, however, data processing
thrived since many applications like payroll or invoicing
required no more than this limited access method. During
this time a data model consisted of just a sequence of
records, although many sophisticated specifications of mas-
ter and trailer records were forerunners of more general
structures in later data models.

With the advent of drum and disk external storage came
the notion of direct record access where each record carried
a unique record identifier that could be used in indexes or
in chains of related records. This led, in the mid 1960^s,
to early hierarchical data models that allowed direct access
of master records and record-to-record navigation over
subordinate trailer records. It was also during this period
that significant strides were made in shared access to data.

-3-

No longer was data owned by a single application; instead,
data files were stored in a "database" separate from appli-
cation programs, with file access controlled by a "database
management system."

The late 1960^s and early 1970's brought a flurry of
database research. Charles W. Bachman is widely recognized
as one of the early developers of the network approach to
data management; his 1964 paper with S.B. Williams presented
a flexible scheme for linking together records of different
types using a pointer-chain structure [BACH64] , E.F. Codd
wrote the 1970 seminal paper that defined the concepts of
normalization and joins for relational tables [CODD70].
This paper created a good deal of interest in various high
level query and manipulation languages based on a predicate
calculus. By the late 1970^s both Quel [STON76] and Sequel
[ASTR75] had achieved popularity as very powerful yet user
friendly data manipulation languages. The hierarchical ap-
proach to database management derives from a generalization
of the repeating group structures found in many programming
languages. Hierarchical systems evolved independently in
the 1960^3 so that currently there are many different ver-
sions in the marketplace. Finally, The entity-relationship
approach for describing a database became popular in 1976
with the publication of an article by P.P. Chen [CHEN76].
The model proposed originally did not include specification
of any data manipulation operations; instead, it focused on
the specification of entity types and the relationships
among them. Later authors have specified operations to make
it a complete data model [JOHN82, SHIP81] . Two conferences
have been devoted to the logical design and application of
databases defined using this approach [CHEN79, CHEN81]

.

The first attempt at a standard specification for a
specific data model occurred during 1967-71 when the CODASYL
Data Base Task Group defined structures and operations for a
network database facility in the COBOL language. The first
ANSI activity leading to recognition of different data
models occurred in 1977 with completion of the ANSI/X3/SPARC
Data Base Study Group report that presents a three-schema
architecture for database management [SPAR77] . An ANSI
technical committee, X3H2, was established in 1978 to define
a data definition language for interface from various data
manipulation languages defined by the programming language
committees. In 1981, the scope of X3H2 expanded to include
definition of ANSI standard structures and operations for
the network data model. Finally, in 1982, X3H2 was asked to
develop similar definitions for the relational data model.
The results of these tasks are the Network Database Language
(NDL) and the Relational Database Language (RDL) , two draft
ANSI specifications that are discussed in this report.

-4-

These specifications are now fairly stable, but they may
change before final adoption.

As mentioned earlier, there are no existing database
standards at either the international, national, or Federal
levels. However, the ANSI proposals are under critical re-
view by a special international database experts group that
will make recommendations to its parent International Stan-
dards Organization committee. Federal representatives have
been active participants in all ANSI database committees.
It appears likely, at least in the near term, that interna-
tional and Federal standards will derive from and be con-
sistent with resulting ANSI standards.

An important feature of the planned database standards
is that no single interface specification will exclude other
interfaces between the end user and the database. For exam-
ple, both the NDL and RDL assume a programming language in-
terface to the data, yet they acknowledge the existence of
other user interfaces such as: ad hoc query and report writ-
er languages, schema manipulation languages or data diction-
ary interfaces, special transaction processing systems that
take advantage of modern screen and graphics capabilities,
and bulk loading or unloading facilities both for database
backup and for database information interchange. Language
specifications for these additional capabilities are, at
present, unique to each DBMS vendor. If and when standard
specifications become available, they should be upwardly
compatible with established data model standards.

1.3 Purpose and Organization of this Report

The purpose of this report is to provide a tutorial in-
troduction to data models in general, with particular em-
phasis on the relational and network models defined by the
two proposed ANSI database language standards. Even though
no current commercial product satisfies either specification
exactly, the specified structures and operations are typical
of existing capabilities in a wide variety of DBMS products.
Thus the proposed languages can be used for comparison pur-
poses in DBMS selections made even before the existence of
conforming products.

The next three chapters of this report constitute the
tutorial introduction to data models. Examples based on the
network and relational models [X3H283a, X3H283b] include
specific syntax and semantics, whereas examples from the
other models are necessarily less precise. Chapter 2

describes an example database and then focuses on database

-5-

structures and their definitions in several models. Data
manipulation is the topic of Chapter 3, with a discussion of
access from external languages and a number of examples
designed to show the power of the network and relational
models in manipulating their data structures. Because exam-
ples alone cannot demonstrate all the features of a
language. Chapter 4 discusses some characteristic features
of these two data models both their particular benefits
and their limitations.

While choosing the right data model for a database is
probably the most important aspect of DBMS selection, the
data model per se does not specify all the essential
features of a product. Chapter 5 discusses many of the oth-
er issues in the selection of a DBMS: access control, back-
up, recovery, bulk loading, and concurrency control. This
chapter is not intended to be used as a specification; in-
stead, it is included to aid in recognition of critical is-
sues in the selection process. Most of the topics mentioned
in Chapter 5 pertain to the daily operation of the DBMS it-
self rather than to the logical structures and operations of
the data model.

2. DATA STRUCTURES AND DEFINITION

For the purposes of this tutorial the examples refer to
a database of information about employees and departments.
Each department has a unique name, a specific location, and
a set of employees. Employee records include name, age,
manager, and salary, plus a history of the employee^'s posi-
tions in the organization. Users of the database must be
able to retrieve employee information either directly or by
department. In describing the structures for modeling this
database, the following paragraphs focus on data types, the
actual structures, integrity constraints, and schema defini-
tion.

2.1 Data Types

Every data model has a particular collection of data
types. A data type is the definition of a set of values
that can be represented in a data model. A value is primi-
tive: it has no logical subdivision within the data model.

-6-

Such primitive values are the basis of definition for the
other data structures of the model. Most models have a
character string data type and at least one numeric data
type. Some make a distinction between fixed-length and
variable-length strings, or between exact and approximate
numeric values. Some numeric types may be defined with dif-
ferent degrees of numeric precision. Other common data
types include calendar date, time-of-day, zip code, sex
code. Boolean, money, complex numbers, long strings of text,
enumeration types, or various forms of pointers and identif-
iers.

The ANSI database committee has defined three common
data types for network and relational databases. They in-
clude character strings, exact or fixed point numbers, and
approximate or floating point numbers. In addition, the
proposed NDL and RDL specifications accommodate correspond-
ing data types in various ANSI standard programming
languages (e.g., FORTRAN, COBOL, PL/1, and Pascal). In-
stead of trying to describe the specification of each
language-specific data type in the database interface, we
will focus on the common types in our examples, referring to
them as CHARACTER, FIXED, and FLOAT, respectively.

A character string is a finite sequence of characters
taken from some well-defined character set (e.g., ASCII,
EBCDIC, BCD) . Character sets for databases may include: the
human readable "graphic characters" as specified by ANSI
X3.4 [ANSI77] , the complete set of 128 characters as speci-
fied by ANSI X3.4, various international character sets as
specified by ISO standards [IS073, IS082] or vendor specific
character sets. Each character string has a fixed length, a
positive integer associated with the string that describes
the number of characters in that string. Strings may be of
variable length up to the fixed length, but logically they
are padded with blank characters when used in comparisons.

Numbers are values that have normal mathematical pro-
perties; they are defined as real numbers with decimal base.
Fixed point numbers are assumed to be exact values, with an
associated precision and scale factor. The precision speci-
fies the number of significant decimal digits, and the scale
factor specifies the placement of the decimal point. Float-
ing point numbers, which are assumed to be approximate
values, consist of a significand and an exrad. The signifi-
cand is a fixed point number, and the exrad is an integer.
The value of the number is the value of its significand mul-
tiplied by 10 to the power of the exrad. Every floating
point number has a precision that specifies the precision of
the significand.

-7-

2.2 Structures

While data types should be consistent from one data
model to another, data structures will by definition vary.
What distinguishes a data model is not the lowest level
values, but the organization of those values into structures
and the provision of appropriate operations on those struc-
tures. The following sections show what a variety of data
structures can be built up from the elementary data types
just described.

2.2.1 The Network Model. The network data model contains
two basic data structures: records and sets. As the basic
units of data manipulation, records are stored, erased,
found, modified, and connected and disconnected from other
records. Sets, the basic units of navigation, maintain
inter-record relationships. Using logical set access paths
defined by the database schema, a user can move from one
record to another.

A record is a collection of data components, each of
which is either a data item or an array. A data item con-
sists of a single value; an array is a multi-dimensional
table of values that is represented by a sequence of data
items. Each such array has a fixed dimension that is a po-
sitive integer. Every positive integer less than or equal
to the dimension determines a direction for that array, and
each direction has an extent that is also a positive in-
teger. For example, in a two-dimensional array there are
two directions. The extent in the first direction deter-
mines the number of rows of the table, and the extent in the
second direction determines the number of columns. The
number of data items that occur in an array is the product
of the extent integers of that array. A data item within an
array is referenced by a multi-dimensional subscript. An
implicit row-major ordering of array items establishes a
unique correspondence between a data item referenced by a
subscript and its sequential position in the array represen-
tation. For example, in a two-dimensional array with three
rows and four columns, items 3-4 occupy the first row, items
5-8 the second row, and items 9-12 the third row. The sub-
script (2,3) thus references the seventh sequential posi-
tion.

All records in a network database are partitioned ac-
cording to record type. A record type defines the com-
ponents of each record occurrence of the record type and de-
clares a record name for the record type and a component
name for each component. Each record of the database is an
occurrence of exactly one record type and consists of

-8-

exactly the data items defined by that record type.

A set is a structured collection of related records.
It models the classical data processing notion of master and
trailer records. Each set is an occurrence of a set type,
which is the definition of a collection of sets all having
the same characteristics. The declaration of a set type
specifies the name of the set type and the owner and member
record types that are associated with the set type. A set
establishes a relationship among its component records that
must be maintained by the DBMS. One record from each set is
designated as the owner record of that set. Any other
record in the set is a member record. Given a set type,
there is exactly one set for each record of the owner record
type. That is, in practice an occurrence of the owner
record determines an occurrence of the set. Each set may
contain zero or more occurrences of each member record type,
but each member record occurrence may belong to at most one
set. In practice, this restriction allows navigation from a
member record to its unique owner record. The member
records of each set of a set type are maintained in a
sequential order determined by the ordering criteria of that
set type.

The network model supports two special set types:
singular and recursive. A singular set type has SYSTEM de-
clared as its owner record type. SYSTEM can be thought of
as a special record type containing exactly one record with
no data items. Hence, there is only one occurrence of a
singular set type, and it allows direct access to member
records without first navigating through multiple oc-
currences of an owner record type. A recursive set type has
the same record type declared both as the owner record type
and as a member record type; thus, it allows convenient
representation of hierarchical relationships, such as
manager/employee, among records of the same record type.

All records must be distinguishable by the DBMS, in-
cluding those that participate in the same data structures
and have the same values for each component data item. For
this reason, each record is associated with a unique record
identifier called a database key, which is a conceptual,
implementation-dependent object used to maintain position in
the database. Database keys are not directly available to
an end user. The action initiated by any database statement
is dependent upon the database keys that occur as values of
special cursors maintained by the DBMS in a session state
for each database session.

-9-

One convenient network structure for the sample data-
base is illustrated in Figure 1. This view of the database
is defined by a schema named COMPANY. Each rectangle
represents a record type with the type name in the top half
and the component names in the lower half. Set types appear
as labeled arrows drawn from the owner record type to the
member record types. The oval labeled SYSTEM represents the
owner of a "singular set" that, according to a schema order
clause, provides an alphabetical ordering of member records
by employee name.

In this example the DEPT record type contains com-
ponents named NAME and LOG to contain the department's name
and location. Each departmenf's employees form an oc-
currence of the set type PAYROLL, which, through an order
clause in the schema, orders the employees of each set ac-
cording to decreasing salary. Some of the information about
an employee — name, age, and salary -- appears explicitly
in the EMP record identified by the employee's name. Other
information, like the employee's department and manager, is
actually contained in the structure of the database rather
than in a component within a given record. For some appli-
cations it might make more sense to include in each employee
record one component containing the department and another
naming the manager. That, too, would be a legitimate net-
work structure, but it would not illustrate as many features
of the network data model. The recursive set type MANAGES
determines a one-to-many relationship from a manager to the
employees directly supervised by that manager. Each employ-
ee is the owner of a MANAGES set occurrence; however, if
that person is not a manager, the set has no member records.
Note that one restriction inherent in the set structure is
that no employee has more than one manager. Finally, the
database contains in the record types SUPERVISORS and STAFF
the employment history of each employee. Notice that the
only specified ordering of records of these types is through
their membership in sets of the type JOBHISTORY. And since
neither of these types includes a name component, their
records are connected to an employee only by membership in a
particular JOBHISTORY set, not by redundant data values.

2.2.2 The Relational Model. In the relational model the
primary data structure is the table, which is defined as an
unordered collection of rows that are not necessarily dis-
tinct. This assumption of nonuniqueness for rows contrad-
icts some theoretical definitions of the relational model,
but it is consistent with most current implementations and
with many user requirements. Uniqueness is enforced, if
necessary, by an integrity constraint. A row, which is the
smallest unit of data that can be stored into or erased from

-10-

Network Data Structures

PAYROLL

SYSTEM

ALPHA

EMP

NAME AGE SAL

JOBHISTORY

f
SUPERVISORS

POSITION STAFFSIZE STARTDATE ENDDATE

STAFF

POSITION MANAGER STARTDATE ENDDATE

Figure 1

-11-

a table, is a non-empty sequence of values. The assumption
that the values in a row are ordered is only important when
values are referenced by position rather than by name. Each
value belongs to a column, which is an unordered, named col-
lection of values of the same elementary data type. The
column is equivalent to the concept of a domain included in
some theoretical definitions, A column entry is the smal-
lest unit of data that may be selected from a table or modi-
fied in a table. Unlike the network model, the relational
model does not support arrays of values.

Each table is associated with a table definition that
specifies the table name and table characteristics as well
as the column name and column characteristics of each column
of that table. Every row of the same table has the same
cardinality and contains a value for every column of that
table. The relational model supports the notion of a "null"
value, which is comparable with but distinct from all other
values. This special value is assumed for a column position
in a row whenever no default or other non-null value is
specifically assigned.

Tables may be base tables, derived tables, or viewed
tables. Base tables have persistent storage representations
and persistent table descriptions, similar to the record
types and set types defined by a network model schema. A
derived table is a temporary table derived from one or more
base tables during the execution of a database statement.
As such, it does not become a permanent part of the data-
base; it exists no longer than does the transaction in which
it is defined. Viewed tables are derived tables that have
persistent descriptions. Each viewed table provides
subschema views of the database to external users. All
three types of tables may be the objects of database state-
ments in the relational data manipulation language.

All rows in a table must be distinguishable by the
DBMS, including those rows in the same table that have
identical values for each column. For this reason, rela-
tional implementations must rely on some kind of unique row
identifier, be it physical location in a file or use of log-
ical indicators or pointers, to distinguish rows. However,
the relational model differs from the network model in that
row identifiers are not used to represent inter-record rela-
tionships; they are used only to maintain a cursor position
within an individual table.

Figure 2 shows a possible relational structure for the
sample database. There are four tables: DEPT, EMP, SUPER-
VISORS, and STAFF. Whereas in the network database some re-
lationships could be based on specifications of set types.

-12-

Relational Data Structures

DEPT

NAME LOG

EMP

NAME AGE SAL DEPT MANAGER

SUPERVISORS

NAME POSITION STAFFSIZE STARTDATE ENDDATE

STAFF

NAME POSITION MANAGER STARTDATE ENDDATE

Figure 2

-13-

in the relational model they depend on redundant data.
Note, for example the MANAGER column in the EMP table, which
takes values that must also appear in the NAME column of
another row somewhere in the EMP table. In addition, all of
the tables except DEPT include a component for the employ-
ees^ names, and employees and departments are associated by
dynamic comparisons between the NAME column in DEPT and the
DEPT column in EMP. The DEPT column in the EMP table thus
partitions the employees by department in the same way that
the PAYROLL sets do in the network example. The relational
model does not maintain ordering of rows in base tables, so
if the ordering of employees by decreasing salary in the
network PAYROLL sets or the alphabetical ordering of employ-
ees in the network ALPHA set is important to an application,
then ordering criteria would be specified by a cursor de-
claration in an accessing module.

2.2.3 Hierarchical Models. The basic structures of
hierarchical models may be viewed as a subset of the network
model data structures defined above. The main structure is
a node (sometimes called segment or component) that is
essentially equivalent to a network model record type.
Nodes are connected one to another in a parent-child rela-
tionship very much like the owner to member record relation-
ship in a network model set type. The major restriction is
that no child node may have more than one parent node asso-
ciated with it. In the network model this restriction would
prohibit a record type from being a member of more than one
set type. The hierarchical model thus places the same res-
triction on set types that the network model places on set
occurrences. This restriction simplifies data definition to
the point that it is not necessary to define path names
(i.e. network model set names) for the link between parent
and child nodes; each such path is uniquely identified once
the owner and child nodes are known. Another restriction is
that hierarchical models often do not allow either direct
access to a child node (as does a network model singular
set) or circular node connections as in the network model
recursive set. These restrictions on data organization lim-
it the flexibility for defining highly integrated databases,
but provide certain capabilities for operational efficiency
and retrieval flexibility.

Figure 3 shows a possible hierarchical structure for the
sample database. The DEPT node is the "root" of the tree
and has one child node (EMP) in addition to its own data
items. EMP in turn has two children, the nodes SUPERVISORS
and STAFF. In this particular model the relationship among
nodes is conceptually tighter than in the network model.
Each DEPT record includes a number of EMP records, each of

-14-

Hierarchical Data Structures

EMP

NAME AGE SAL MANAGER

SUPERVISORS

POSITION STAFFS I ZE STARTDATE ENDDATE

STAFF

POSITION MANAGER STARTDATE ENDDATE

Figure 3

-15-

which includes either SUPERVISORS or STAFF records or both.
Child node occurrences cannot exist independently of a
parent node. The implementation of a hierarchy, however,
could be similar to that of a corresponding network data-
base. In either case relationships result from defined
structures (perhaps pointers) rather than from redundant
data values.

2.2.4 Entity-Relationship Model. The entity structure of
this model may be considered as equivalent to a relational
table or a network record type. In most cases only elemen-
tary data items are considered, so the array structure of
the network model would not apply. As in the case of both
record types and tables, one must assume the existence of
unique entity identifiers to distinguish among entities that
have identical data values. In most cases, such identifiers
are not externally visible or accessible. The relationship
structure of this model is a generalization of the network
model set type. Instead of only one-to-many associations
between one owner entity type and one or more member entity
types, the relationships may be many-to-many among any
number of participating entity types. The entity-
relationship model is still in its research stages [CHEN81]

,

and commercial implementations have not yet established
themselves in the marketplace. The structures are used pri-
marily for logical database design [CHEN82]

.

2.2.5 Other Structures. Many database management systems
provide for the storage and manipulation of variable repeat-
ing items. As an example, an employee record may contain a
variable repeating item for the names of family members or
for a listing of multiple telephone numbers. Early specifi-
cations of the CODASYL network model included definition of
this capability through nested repeating groups. Since CO-
DASYL specifications derived from a COBOL programming
language interface, repeating groups were defined by nested
level numbers and OCCURS clauses just as in a COBOL record.
A multi-dimensional table was defined using nested level
numbers with an OCCURS clause at each level. Such repeating
groups were deleted from the ANSI network model specifica-
tions because each repeating group is representable in terms
of arrays or in terms of additional record types and set
types. As an example, consider a nested record structure as
follows

:

-16-

RECORD NAME IS R
01 A PIC X(10)
01 B OCCURS 5 TIMES

02 C PIC X(10)
02 D OCCURS 2 TIMES PIC X(10)

This structure could be represented as a single network
model record type with A as an elementary item and C and
D as arrays. The array C would be one-dimensional, oc-
curring 5 times, and the array D would be two-dimensional,
occurring 5 by 2 times. Any references derived from the
data name B would be lost to the data model, as would the
association between occurrences of C and the first direc-
tion of D. Explanations of such associations could be car-
ried along as comments.

A second representation of the above record structure
could be through the definition of additional record types
and set types. This approach is particularly suitable if
data components B and D occur a variable number of times
instead of a fixed number. For example, A could be an
elementary item in R, C an elementary item in S, and D
an elementary item in T, where R, S, and T are different
record types. The names of record types S and T would
be derived from data components B and D respectively.
Record type R would be the owner of a set type with S as a
member, and S would be the owner of a set type with T as
a member.

The same situation could be described in the relational
model using three tables logically associated by the ap-
propriate primary and secondary keys (cf. Section 2.3.2) and
referential integrity constraints. For example, the tables
R (A,...), S (A,C,...), and T (A,C,D,...) would convey
essentially equivalent information with the following res-
trictions: column A in table R and both column A and column
C in table S would have to be declared unique; column A of
table S would have to reference column A of table R; and
columns A and C of table T would have to reference columns A
and C of table S. If the columns defined above were all of
the record, then table T alone would suffice. We have added
R and S to account for the cases where there are other com-
ponents at both the 01 and the 02 levels. These components
would constitute the other columns in tables R and S,

respectively.

The CODASYL specification of the network model also in-
cludes definitions for additional structures. An area is a

collection of records together with a sequential ordering
over them. This structure exists in many commercial pro-
ducts, usually as the logical grouping of record type

-17-

populations stored together on the same physical file or
storage device. Areas were deleted from the ANSI database
definition because each area is logically equivalent to a
singular set type with multiple member record types. The
equivalence can be demonstrated by defining exactly one ad-
ditional singular set type to represent each area. The area
name becomes the set name of the new set type. Each record
type having records in the area becomes a member record type
of the singular set type, and the sequential order of
records in the area determines the record order of member
records in the singular set.

A record order key is the declaration in a record type
that record occurrences shall be ordered on given data items
in a specified way. Record order keys were deleted from the
ANSI network model specification because each such key is
logically equivalent to a singular set type defined over
that record type. The record order declaration becomes the
order declaration for the member records in that set.

2.3 Integrity Constraints

Most data models provide some mechanisms for ensuring
the integrity, or validity, of values in the database.
These mechanisms can be as simple as a specification of a
domain that includes all valid values for a particular com-
ponent or column, or as complex as an inter-record relation-
ship that must be maintained by every transaction. Integri-
ty constraints depend on data structures and vary consider-
ably from model to model.

2.3.1 The Network Model. A network database definition may
include specification of certain integrity constraints on
the data items, records, and sets of the database. For ex-
ample, the length of strings and the precision of numbers
are important constraints that should reside with the data
itself. Additional integrity constraints may come in
several forms. A check condition is an expression that must
be satisfied by the values of a record when it is stored in
the database or inserted as a member record in a set. A de-
fault value is a value assumed by component occurrences in
the absence of a specific value supplied by a user, and a
unique constraint is a specification that no two records may
occur in the database with identical values for specified
components. Each set type description also includes specif-
ic integrity declarations. A set ordering specifies whether
the logical ordering of member records in a set is sorted,
first, last, next, prior, or system default. If order is

-18-

sorted, then a key declaration specifies the data items that
determine the order key. Set insertion declarations specify
whether the insertion of a record as a member of a set is
automatic, structural, or manual. If insertion is structur-
al, then values for the structural data items determine how
an owner record is selected from the database. A set reten-
tion declaration specifies whether the retention of a member
record in a set is fixed, mandatory, or optional. Examples
of these integrity constraints occur in Chapter 4.

2.3.2 The Relational Model. Some implementations or user
installations of the relational model include definitions
for the primary key and secondary key concepts. A primary
key is declared for a single table; it consists of a column
whose values uniquely identify a row of the table. A secon-
dary key is also declared for a single table; it relates
back to some existing primary key in a different table. The
secondary key specifies a column of its table that assumes
values comparable to values of its associated primary key.
The secondary key value of each row in a secondary key table
identifies a unique row in the primary key table. In the
absence of specific data structures to represent inter-
record relationships, primary and secondary keys are often
used to maintain logical connections between tables. In the
ANSI X3H2 relational specifications, the notions of primary
and secondary keys are not explicitly defined. Instead, a
primary key may be assumed whenever a table unique con-
straint is specified over a single column, and a secondary
key may be assumed whenever a table referential constraint
is specified. A referential constraint requires that the
"secondary key" of each row of the referencing table have a
value that is identical to the "primary key" of some row of
the referenced table. A referential constraint has some of
the same features of the network model set type in that
modify and delete statements may cascade from the primary
key row to secondary key rows.

A relational database definition may include specifica-
tion of additional integrity constraints on the rows and
columns of tables in the database. As with the network
model, this includes specification of length of strings and
precision of numbers, as well as declaration of default
values for columns and check conditions for rows and
columns. Relational table constraints also include the
unique and referential constraints defined in the preceding
paragraph. Such integrity constraints are often considered
to be part of the database structure.

-19-

2.3.3 Other Models. The integrity constraints of a
hierarchical database are specified differently by each im-
plementation of a hierarchical data model. In most cases
the integrity constraints are similar to possible con-
straints in the proposed network and relational standards.
Other models, including the entity-relationship model, can
provide similar integrity constraints. In each case there
can be atomic constraints on particular values or more ela-
borate mechanisms (such as triggers) that automatically
alter data items which depend on values changed by a user.

2.4 Schema Definition

Every data model must provide some means of defining
the structures of a particular database. Some models com-
bine data definition and data manipulation in a single
language, but most separate them in one way or another. In
some cases data definition is the province of the database
administrator alone.

Because the proposed ANSI database languages accommo-
date language-specific data types, each schema or table de-
finition has a language environment clause identifying an
ANSI standard language. To avoid focusing on a single
language, we have chosen to use in our examples a pseudo-
language with the types CHARACTER, FIXED, and FLOAT. In an
actual implementation PSEUDOLANGUAGE would have to be a
standard language listed in the ANSI database specification,
and the type declarations would match those of the chosen
language. Programs written in other languages could access
the database, but either the programs themselves or the
language compilers would be responsible for conversions
between database data types and the data types of the ac-
cessing language.

2.4.1 The Network Model. An example of the proposed schema
definition language for describing a network database is
given in Figure 4. The schema name is COMPANY. The NAME
items and the LOC item have character string values; AGE
values are integers having three significant digits, and SAL
values are decimal fractions having eight significant digits
with two decimal positions. The ORDER SORTED statements
specify that member records are to be ordered by data item
values rather than by some chronological order of insertion
or application dependent positioning; the KEY clause in each
member record description specifies the member data items
that determine this order. In the PAYROLL set, the DUPLI-
CATES phrase specifies that member records having identical

-20-

salaries are allowed as duplicates, and the relative order-
ing of duplicates is determined by system default. In the
ALPHA set, the DUPLICATES phrase specifies that two member
employees are not allowed to have the same name. The INSER-
TION and RETENTION clauses specify insertion and retention
integrity constraints for member records of the set type.
The differences among automatic, manual, or structural
insertion and fixed, mandatory, or optional retention are
discussed further in Section 4.1.6.

Defining the Example Database
In the Network Model

SCHEMA COMPANY
ENVIRONMENT PSEUDOLANGUAGE
RECORD DEPT

NAME CHARACTER 3

LOC CHARACTER 2

RECORD EMP
NAME ^CHARACTER 15
AGE FIXED 3 0

SAL FIXED 8 2

RECORD SUPERVISORS
POSITION CHARACTER 20
STAFFSIZE FIXED 3 0

STARTDATE FIXED 6 0

ENDDATE FIXED 6 0

RECORD STAFF
POSITION CHARACTER 20
MANAGER CHARACTER 15
STARTDATE FIXED 6 0

ENDDATE FIXED 6 0

SET PAYROLL
OWNER DEPT
ORDER SORTED

DUPLICATES DEFAULT
MEMBER EMP

INSERTION MANUAL RETENTION MANDATORY
KEY DESCENDING SAL

SET ALPHA
OWNER SYSTEM
ORDER SORTED

DUPLICATES PROHIBITED
MEMBER EMP

INSERTION AUTOMATIC RETENTION FIXED
KEY ASCENDING NAME

-21-

SET MANAGES
OWNER EMP
ORDER SORTED

DUPLICATES PROHIBITED
MEMBER EMP

INSERTION MANUAL RETENTION OPTIONAL
KEY ASCENDING NAME

SET JOBHISTORY
OWNER EMP
ORDER SORTED

DUPLICATES PROHIBITED
MEMBER SUPERVISORS

INSERTION AUTOMATIC RETENTION FIXED
KEY DESCENDING STARTDATE

MEMBER STAFF
INSERTION AUTOMATIC RETENTION FIXED
KEY DESCENDING STARTDATE

Figure 4

2.4,2 The Relational Model. Unlike the network model, the
relational model does not contain specific schema and
subschema definition languages. Its major data definition
statement is CREATE TABLE, which includes in its syntax the
statement form for defining columns and constraints. Figure
5 shows the syntax for defining a particular version of the
sample database. This syntax defines tables without loading
any data. For each table there is a CREATE TABLE statement
that names the table and names and defines its columns. In
the definition of EMP, for example, NAME is a column whose
values are character strings of length 15, AGE can assume
integer values from 0 to 999, SAL takes on fixed decimal
values from 0.00 to 999999.99, DEPT takes character strings
of length 3, and MANAGER is like NAME. In addition, values
in the NAME column of a given row must be unique and non-
null. Finally, values in the DEPT column are tied by an in-
tegrity constraint to values in the NAME column of the DEPT
table.

-22-

Defining the Example Database
In the Relational Model

CREATE TABLE DEPT
ENVIRONMENT PSEUDOLANGUAGE

NAME CHARACTER 3 NOT NULL
LOC CHARACTER 2 NOT NULL

UNIQUE
DEFAULT "NY"

CREATE TABLE EMP
ENVIRONMENT PSEUDOLANGUAGE
NAME CHARACTER 15
AGE FIXED 3 0

SAL FIXED 8 2

DEPT CHARACTER 3

MANAGER CHARACTER 15

NOT NULL UNIQUE

REFERENCES DEPT. NAME
CASCADE MODIFY RESTRICT ERASE

CREATE TABLE SUPERVISORS
ENVIRONMENT PSEUDOLANGUAGE

NAME

POSITION
STAFFS I ZE
STARTDATE
ENDDATE

CHARACTER 15 NOT NULL REFERENCES EMP. NAME
CASCADE MODIFY CASCADE ERASE

CHARACTER 20 NOT NULL
FIXED 3

FIXED 6

FIXED 6

NOT NULL

CREATE TABLE STAFF
ENVIRONMENT PSEUDOLANGUAGE

NAME CHARACTER 15 NOT NULL REFERENCES EMP. NAME
CASCADE MODIFY CASCADE ERASE

POSITION CHARACTER 20 NOT NULL
MANAGER CHARACTER 15
STARTDATE FIXED 6 0 NOT NULL
ENDDATE FIXED 6 0

Figure 5

2.4.3 Other Models. Schema definition for other data models
is usually similar in form to the examples given above for
the network and relational models. Since there is currently
no candidate standard for other models, the exact syntax
will vary from one product to the next. Vendors of
hierarchical systems must provide a way of defining the
structure of various nodes and their relationships to each
other. Similarly, the entity-relationship model must enable
users to define entities, attributes, and relationships.
Whatever the structure of the data model, the DBMS will have
to have not only constructs that are similar to records and

-23-

components, but also a means of defining these structures
and any relationships between them.

3. DATA MANIPULATION

In addition to data structures, a data model specifies
operations that insert, delete, or modify data in a data-
base. The specification includes both the primitive opera-
tions of the model and a mechanism for calling those opera-
tions from an external source. Whether that source is a
batch program, an interactive query language invoked from a
terminal, or an entirely separate application system is ir-
relevant to the model, although it may be very important to
a potential user trying to discriminate between competing
commercial DBMS''s. The following sections discuss some of
the possibilities for data manipulation and give explicit
examples of operations on the network and relational data-
bases defined in Chapter 2.

3.1 Modules and Procedures

As defined by ANSC X3H2, a module is a persistent ob-
ject specified by either the Network Database Language (NDL)
or the Relational Database Language (RDL) procedure
language. It consists of a language environment clause and
one or more procedure definitions, together with cursor de-
clarations if it is a relational module, and subschema and
keeplist declarations if it is a network module. The
language environment clause specifies the name of a standard
language (e.g., COBOL) from which procedures in the module
will be called. A procedure definition consists of the pro-
cedure name, a sequence of parameter declarations, and a se-
quence of statements for querying or modifying the database.
The declaration of a parameter specifies its data type and,
in a network module, specifies whether it is an elementary
value or an array of values. A parameter either assumes or
supplies values to a corresponding argument in a call of the
procedure.

Every module is associated with an application program.
A procedure in the module is referenced by an external
"call" from the application program. The call specifies the
procedure name and supplies a sequence of parameter values
corresponding in number and in data type to the parameter

-24-

declarations of that procedure. Each call of a procedure
causes its sequence of statements to be executed. The
parameters return values from the database to variables in
the application program referenced by arguments in the call
of the procedure.

Database modules and named procedures provide external
programs direct access to NDL and RDL statements with no re-
quired additions or modifications to the syntax of the ac-
cessing language. All that is needed is a correspondence
between data types and the ability to call separately com-
piled procedures written in a different language. Program-
ming languages may use these facilities directly for inter-
face to the DBMS, or they may call procedures implicitly ei-
ther by preprocessing embedded database statements or by de-
fining native syntax for invoking DBMS functions.

3.2 Database Access from External Languages

As noted above, programming languages or application
systems accessing a database need the following:

* A correspondence between data types.

* A method for calling DBMS procedures.

A standard specification for these items is analogous to the
problem of a standard specification for cross-language calls
between any two programming languages. A type correspon-
dence between DBMS data types and programming language data
types specifies the language data types that can be passed
validly as parameters to a DBMS procedure. This type
correspondence for ANSI COBOL, FORTRAN, PL/1, and Pascal is
specified by the NDL and RDL proposals. Type correspondence
in general can range from the very strict, with a one-to-one
mapping of data types, to the very flexible, involving sig-
nificant run-time conversions. The examples in Section 3.3
contain a type declaration on each side of the interface,
with an implicit assumption that the underlying type
correspondence is well-specified.

The DBMS procedure calling requirement can be satisfied
in several ways, including:

-25-

* Explicit procedures written and called directly by
the user.

* Implicit procedures embedded in a calling program and
extracted by a preprocessor.

* Native syntax defined as an extension to a program-
ming language.

The following sections discuss each of these alternatives,
and Section 3.3 provides simple examples.

3.2.1 Explicit Procedure Approach. The "explicit procedure"
approach is available to any language having a subroutine
facility capable of calling separately compiled procedures
written in a different language. In this case the end user
writes both an application program and a separate DBMS
module for each database application. A standard program-
ming language compiler compiles the application program, and
the DBMS itself compiles the DBMS module. The module con-
tains named database procedures, each consisting of a se-
quence of DBMS functions written in the database procedure
language syntax. Using its standard syntax for invoking
subroutines, the application program calls a database pro-
cedure by name. Variables defined in the application pro-
gram and passed to a DBMS procedure are declared as parame-
ters in that procedure. A method for linking the compiled
language program with the compiled DBMS module is
implementor-def ined.

3.2.2 Implicit Procedure Approach.

The "implicit procedure" approach assumes specification of
some variation of a preprocessor. References to DBMS func-
tions are embedded directly in the application program using
some convention to distinguish DBMS statements from standard
programming language statements. In this case, the program-
mer writes a single program containing a mixture of program-
ming language statements and database language statements.
The program is processed by a precompiler to produce a
"pure" external program capable of compilation by a standard
programming language compiler, and a database module, as
above, capable of compilation by the DBMS. A method of gen-
erating names for the DBMS procedures and calling them by
that name from the "pure" program is included in the specif-
ication of the preprocessor; the original source applica-
tion, written by the end user, need not provide procedure
names

.

3.2.3 Native Syntax Approach. The "native syntax" approach
involves adding specific database syntax to existing pro-
gramming languages. This syntax could be any of the follow-
ing :

* Native syntax for each DBMS function.

* New syntax for combinations of DBMS functions.

* Syntactic variations for triggering DBMS calls.

In any case, the programmer writes a single program contain-
ing integrated syntax for programming language statements
and database functions. The complete program is compiled by
a standard programming language compiler to produce object
code for a database session. If a language defines new com-
bination functions, then each such function must be defin-
able by a sequence of DBMS functions. A programming
language developer would have the option of defining syntac-
tic variations for calling DBMS functions. For example, an
NDL test function could be triggered by a native language
Boolean expression with the test result used in program con-
trol statements. h programming language could also require
a one-to-one correspondence between selected programming
language variables and database data items. Such a
correspondence would minimize the native language syntax
needed for parameter passing between the DBMS and the ac-
cessing language. If desired, the programming language
could include a facility for handling automatically all ex-
ception conditions so that the application programmer would
not have to check manually the database status after each
call to a DBMS function.

3.3 Examples

The rest of this chapter consists of a number of exam-
ples designed to illustrate some of the more common opera-
tions of the network and relational models. Other database
models will probably be analogous in some ways to one of
these two models. Navigational systems will have operations
that resemble those of the network model, and systems that
rely on retrieval through indexes will probably provide a

selection language somewhat similar to the relational cal-
culus. Whatever the model, the interface it provides to
host programming languages may fall into one of the
categories discussed above.

-27-

3.3.1 Explicit Procedure Calls. Each explicit procedure ex-
ample consists of a pure programming language main program
with calls to DBMS procedures contained in a separate DBMS
module. The main program is written entirely in the stan-
dard syntax of a programming language; all variables are de-
fined with programming language data types, and all subrou-
tine parameters are declared and passed to the external pro-
cedures in the manner standard to that programming language.
The database procedures are written in the proposed database
language and are combined together into a single database
module that can be processed separately by the DBMS. Each
database procedure has a name that is referenced in the call
from the main program. Procedures declare data types for
each parameter passed. Each procedure consists of a se-
quence of DBMS statements that use the declared parameters
to invoke DBMS functions.

Figure 6 is an example application for loading a net-
work database defined by the COMPANY schema through the fol-
lowing PERSONNEL subschema:

SUBSCHEMA PERSONNEL IN COMPANY
RECORD DEPT ALL
RECORD EMP ALL
SET PAYROLL
SET ALPHA

The program initiates a database session, inputs values for
DEPT and EMP data items from an external device, and then
creates and stores new department and employee records in
the database. The main program consists of four calls to
database procedures. In line 8, READYDEPTEMP calls DBMS
functions that ready the DEPT and EMP record types for pro-
tected update. In lines 11 and 14, STOREDEPT and STOREEMP
pass parameters that carry values for data items of depart-
ment and employee records. The corresponding database pro-
cedures then invoke DBMS functions to store the records in
the database and to connect the records to any sets that re-
quire manual connection. In line 17, FINISHLOAD calls DBMS
functions that commit the modifications of the session to
the database and finish access to the previously opened
record types.

For the relational example we assume that the relation-
al database portrayed in Figure 2 has been loaded in a
manner similar to that used to load the network database.
Figure 7 is then a relational application that uses explicit
procedures to select company employees whose current annual
salary in thousands is less than twice their current age, to
print the name of each such employee, and then to modify the

-28-

Sample Program to Load a Network Database
Using Explicitly Declared Procedures

1. Declare
2. DEPTNAME PIC X(3)
3. DEPTLOC PIC X(2)
4. EMPNAME PIC X(15)
5. EMPAGE PIC 999
6. EMPSAL PIC 9(6)V99 ;

7. Begin Main Program
8. Call READYDEPTEMP ;

9. While (Not EOF) Do
10. Accept DEPTNAME, DEPTLOC ;

11. Call STOREDEPT Using DEPTNAME DEPTLOC ;

12. While (Not EOF) Do
13. Accept EMPNAME, EMPAGE, EMPSAL ;

14. Call STOREEMP Using EMPNAME EMPAGE EMPSAL ;

15. Endwhile
16. Endwhile;
17. Call FINISHLOAD
18. End Main Program.

1. MODULE
2. ENVIRONMENT PSEUDO-LANGUAGE
3. SUBSCHEMA PERSONNEL IN COMPANY
4. PROCEDURE READYDEPTEMP
5. READY DEPT SHARED UPDATE
6. READY EMP SHARED UPDATE
7. PROCEDURE STOREDEPT
8. N CHARACTER 3

9. L CHARACTER 2

10. STORE DEPT
11. SET NAME TO N
12. SET LOC TO L
13. PROCEDURE STOREEMP
14. N CHARACTER 15
15. A FIXED 3 0

16. S FIXED 8 2

17. STORE EMP
18. SET NAME TO N
19. SET AGE TO A
20. SET SAL TO S

21. CONNECT EMP TO PAYROLL
22. PROCEDURE FINISHLOAD
23. COMMIT
24. FINISH ALL

Figure 6

-29-

Sample Program to Modify a Relational Database
Using Explicitly Declared Procedures

1. Declare EMPNAME PIC X(15)
2. EMPAGE PIC 999
3. EMPSAL PIC 9(6)V99
4. RDLCODE PIC 9(5) ;

5. Begin Main Program
6. Call EMPOPEN Using RDLCODE ;

7. If (RDLCODE <> "00000") Then
8. Begin Print "DB-ERROR" ; STOP End ;

9. Call EMPFETCH
10. Using EMPNAME EMPAGE EMPSAL RDLCODE
11. While (RDLCODE = "00000") Do
12. Print EMPNAME ;

13. Call EMPMODIFY Using EMPSAL RDLCODE ;

14. Call EMPFETCH
15. Using EMPNAME EMPAGE EMPSAL RDLCODE
16. Endwhile;
17. If (RDLCODE = "00100") Then
18. Begin Call EMPROLLBACK ;

19. Print "DB-ERROR"; STOP End ;

20. Call EMPCOMMIT ;

21. End Main Program.
1. MODULE
2. ENVIRONMENT PSEUDOLANGUAGE
3. PROCEDURE EMPOPEN
4 . STATUS
5. OPEN RAISEPAY CURSOR FOR

10. PROCEDURE EMPFETCH
11. N CHARACTER(15)
12. A FIXED (3,10)
13. S FIXED (8,2)
14. STATUS
15. FETCH RAISEPAY INTO N,A,S
16. PROCEDURE EMPMODIFY
17. S FIXED (8,2)
18. STATUS
19. MODIFY EMP
20. SET SAL = S + 5000
21. WHERE EMP IS CURRENT OF RAISEPAY
22. PROCEDURE EMPCOMMIT
23. COMMIT
24. PROCEDURE EMPROLLBACK
25. ROLLBACK

Figure 7

-30-

The chief advantage of the implicit procedure approach
is the convenience to the end programmer of being able to
write self-contained application programs. Specifications
for the preprocessor would define how NDL or RDL-MODULE
statements and NDL or RDL-CORRESPONDENCE statements produce
the resulting DBMS module with proper parameters for DBMS
procedures. The chief disadvantage of this approach is that
at present there is no standard specification for forming a
database module from an application program containing em-
bedded database statements; procedures could be defined in a
number of different ways resulting in potentially different
error messages. Another drawback is that the application
program variables are logically separate from the database
parameters, thus requiring explicit SET clauses in database
statements involving parameter passing between the DBMS and
the accessing language. In the absence of a standard
specification for a preprocessor, the explicit procedure ap-
proach given above circumvents the chief disadvantage. In
some cases, an integrated approach where DBMS function syn-
tax is combined with programming language syntax, and data-
base data items are uniquely identified with programming
language variables, may be desirable. An example of such an
approach is given in the next section.

3.5 Native Syntax

This approach for programming language interface to a

database requires specifications for invoking DBMS functions
directly as part of the programming language. Syntax for
calling these functions is integrated into existing syntax
of the language, thus requiring modifications to the pro-
gramming language compiler for handling new verbs, new con-
ditions, and possibly new reserved words. The programming
language designers may choose to integrate database excep-
tion conditions into the normal exception handling capabili-
ties of the language, or to incorporate database test state-
ments into the normal control statements of the language.

Figure 10 is an example program over our network data-
base for achieving the same employee salary modification as
in the preceding examples. It is a COBOL program with in-
tegrated DBMS functions written in proposed COBOL DML syntax
[X3J483] . The SUB-SCHEMA SECTION of each program names the
subschema to be processed, names the record types and set
types used as COBOL DML parameters in the program, names any
keeplists, and provides a one-to-one correspondence between
subschema records and data items and COBOL records and data
items. The effect of the data item correspondence is that
each execution of a COBOL DML GET, MODIFY, or STORE

-35-

Sample Program to Modify a Network Database
Using COBOL and COBOL DML Syntax

1. IDENTIFICATION DIVISION.
2. PROGRAM- ID. MODSAL.
3. ENVIRONMENT DIVISION.
4. DATA DIVISION.
5. SUB-SCHEMA SECTION.
6. DB PERSONNEL WITHIN COMPANY.
7. LD TEMP.
8. RD RECORD SECTION.
9. 01 EMP.
10. 02 NAME PIC X (15)

.

11. 02 AGE PIC 999.
12. 02 SAL PIC 9(6)V99.
13. SD ALPHA.
14. WORKING-STORAGE SECTION.
15. 77 LASTREC PIC X(3) VALUE "NO".
16. PROCEDURE DIVISION.
17. DECLARATIVES.
18. LASTREC-ERROR SECTION.
19. USE FOR DB-EXCEPTION ON "00100".
20. MOVE "YES" TO LASTREC.
21. ABNORMAL-ERROR SECTION.
22. USE FOR DB-EXCEPTION ON OTHER.
23. DISPLAY "DB ERROR". STOP RUN.
24. END DECLARATIVES.
25. MODIFY-DATABASE.
26. READY EMP USAGE-MODE IS PROTECTED RETRIEVAL.
27. IF ALPHA IS EMPTY STOP RUN.
28. FIND FIRST EMP WITHIN ALPHA.
29. PERFORM GET-REC UNTIL LASTREC = "YES".
30. END-PERFORM.
31. READY EMP USAGE-MODE IS PROTECTED UPDATE.
32. FIND FOR UPDATE FIRST WITHIN TEMP.
33. MOVE "NO" TO LASTREC.
34. PERFORM MODIFY-REC UNTIL LASTREC = "YES".
35. COMMIT. FINISH EMP. STOP RUN.
36. GET-REC.
37. GET EMP.
38. IF SAL < 2*AGE*1000; KEEP CURRENT USING TEMP.
39. FIND NEXT EMP WITHIN ALPHA.
40. MODIFY-REC.
41. GET EMP.
42. ADD 5000 TO SAL. DISPLAY NAME OF EMP.
43. MODIFY EMP.
44. FREE FIRST WITHIN TEMP.
45. FIND FOR UPDATE FIRST WITHIN TEMP.
46. END-PERFORM.

Figure 10

-36-

statement is equivalent to the corresponding NDL Statement
with implicit SET clauses for transferring data values
between a database record and a COBOL record.

The type declaration for each data item in the SUB-
SCHEMA SECTION must match the type declared for that item in
the schema. Lines 17-24 of Figure 10, DECLARATIVES, pro-
vide for automatic processing of database exception condi-
tions so that the programmer need not check the status re-
gister after each invocation of a DBMS function. According
to COBOL DML rules every possible exception condition must
correspond to exactly one USE FOR statement.

4. FEATURES OF THE NETWORK AND RELATIONAL MODELS

Chapters 2 and 3 covered the basic structures and
operations of the network and relational models, but both of
them have other features that seem more complex or require
further discussion. This chapter focuses on such charac-
teristics as arrays, recursive sets, cursors, nested
queries, and triggers. It also considers some of the advan-
tages and disadvantages of each model -- i.e., what it does
well and what it does only adequately or even poorly.

4.1 The Network Model

In its original CODASYL form the network model was
designed for handling data that batch COBOL programs could
process one record at a time. The current ANSI specifica-
tion has diverged in a number of ways from its ancestor, but
the basic orientation toward sequential processing still
remains. Cursors, keeplists, and session states enable the
DBMS to keep track of its position as it navigates through
the database. Though the bias toward COBOL is gone from the
syntax, many of the same operations are available, and with
a few exceptions the data structures are the same as always.

4.1.1 Cursors and Session State. The logical structures of
a network database may be represented graphically as a col-
lection of tables showing the record occurrences associated
with each record type and the set occurrences associated
with each set type. A table representation of a database
whose logical structures are defined by the PERSONNEL

-37-

subschema is given in Figure 11. Each record is identified
by a unique identifier called a database key. The database
key is never directly accessible by an end user but is used
to define the effect of DBMS functions on the session state
(see Figure 12) during a database session. A set is
represented by the database keys of its owner and member
records. In the set type tables of Figure 11, each owner
database key is associated with a sequence of member data-
base keys. The order of the sequence represents the order
of member records within the set.

The action initiated by a DBMS function is dependent
upon values of cursors, keeplists, and ready lists contained
in an associated session state. Figure 12 is a representa-
tion of the session state specified by the Interpretive
State section of the current draft proposed NDL for a data-
base module acting over the PERSONNEL subschema. The ses-
sion state is prepared by the DBMS prior to execution of the
first procedure in a database session, and updated whenever
DBMS statements change the state.

The cursors identify a single record from each record
type and a single set from each set type of the subschema.
Each record type cursor contains the database key of the
current record of that record type; each set type cursor
contains the database key of the owner record of the current
set of that set type together with the database key of its
current member; and the session cursor contains the database
key of the current record of the session. A keeplist, which
is a sequence of database keys that can be used by a pro-
grammer to save references to individual records, is main-
tained for each keeplist named in the associated module.
The ready list, which is maintained by the DBMS to help in
managing shared access to the database, is a list of record
names together with their share specifications.

4.1.2 Keeplists. As stated above, a keeplist is a sequence
of database keys. Some database statements add database
keys to the end of a named keeplist, and the user program
has access to both the front and the end of the sequence.
Keeplists, which are declared in a module, enable an appli-
cation program to retain and use database keys for quick re-
trieval of records to be examined or modified. They there-
fore prevent the program from having to repeat searches for
records that will be used again. In Figure 10, lines 36-39,
the procedure GET-REC tests the current EMP record and, if
it qualifies, adds its database key to the keeplist TEMP for
further work. After the last call to GET-REC, the procedure
MODIFY-DATABASE finds the first key in TEMP (line 32) and
then calls the procedure MODIFY-REC, which modifies the

-38-

NETWORK DATABASE OCCURRENCES

IN THE PERSONNEL SUBSCHEMA

EMP Records DEPT Records

DB-KEY NAME AGE SAL

1 Joe 21 18K

2 Adam 36 39K

3 Jane 18 38K

4 Sally 32 65K

DB-KEY NAME LOC

5 MKT NY

6 MFC LA

PAYROLL Sets MANAGES Sets

OWNER MEMBERS

5 2, 3

6 4, 1

OWNER MEMBERS

2 3

4 1

ALPHA Set

OWNER MEMBERS

sys 2,3,1,4

Figure 11

-39-

Session State

For the Network Database

Session Cursor

DEPT Cursor

EMP Cursor

PAYROLL Cursor

MANAGES Cursor

ALPHA Cursor

TEMP Keeplist [

Readylist

<readY specif ication>

Figure 12

-40-

record, frees the database
finds the next key in TEMP,
the new record.

key from the keeplist
and then repeats the

(line 44)

,

process for

4.1.3 Arrays. As noted in Section 2.2.5, arrays have re-
placed repeating groups in the ANSI specification of the
network model. None of the examples shows the function of
arrays, but it is not difficult to envision a situation in
which they would be useful. Although they are less flexible
and powerful than sets, they offer some advantages in sim-
plicity for data of fixed dimensions. For example, a record
type containing information about computer users might have
a component named TERMCHARS that would consist of ASCII
characters whose sequence in the array would define the
user's terminal for certain application programs. Keeping
this information in such a record would avoid the necessity
of traversing a set and locating a separate record with the
same information. In a scientific database the importance
of arrays would be even greater.

4.1.4 Recursive Sets. Recursive sets are simply sets in
which the owner record type is identical to one of the
member record types. In Figure 1 MANAGES is a recursive set
type. Each of its occurrences includes an EMP record as
owner and the records of all employees who work directly
under the person identified by the owner record. The word
"directly" is critical here, since MANAGES sets obey the
same uniqueness rules as any other set. No EMP record can
be a member of more than one MANAGES set. Recursive sets
make it easy to answer a number of questions about the rela-
tionships between records.

For example, to get a list of every employee whose im-
mediate manager is under 30, we use the ALPHA set to examine
each employee record. If the AGE component is less than 30,
we add to our result the member records of the MANAGES set
associated with the current record. When we finish travers-
ing the ALPHA set, we have our answer. To get a similar
list of all employees who are older than their immediate
managers, we traverse ALPHA again, but this time we have to
traverse every MANAGES set to select those member records
whose AGE component is smaller than the AGE component of the
owner record. An alternative form would require traversing
ALPHA and for each employee record doing a find owner using
MANAGES to obtain the record for the comparison of ages. If
the task were to get a list of all employees who have a

younger manager at any level, we would again traverse ALPHA
one record at a time. This time, however, we would find the
owner of the MANAGES set recursively until either the

-41-

starting EMP record qualified or we reached the top of the
organizational structure. In all of these cases we would be
taking advantage of existing data structures to navigate ef-
ficiently through the database.

4.1.5 Singular Sets. Singular sets -- sets whose types are
defined with SYSTEM as the owner record type — provide or-
dered access to member record types. Since there is only
one record occurrence of the type SYSTEM, there is one set
(hence, "singular") that contains all member records of each
named type. Singular sets thus provide the same functional-
ity as record order keys (one member record type) and areas
(multiple member record types) in the CODASYL model. If an
organization needs a record type sorted in several ways,
then the database administrator simply defines a new singu-
lar set for each ordering. In the example database shown in
Figure 1, ALPHA orders EMP records alphabetically according
to the NAME component and thus supplements the ordering by
department and salary defined for PAYROLL sets. Host-
language programs can use whichever order is most appropri-
ate for the application.

By default, the network specifications provide direct
access to each record type that is essentially equivalent to
the existence of a singular set type with that record type
as its only member and having system default order. Thus,
in Figure 1, it would be possible to find SUPERVISORS
descriptions that satisfy a certain condition by navigating
directly through the record type without first navigating
through DEPT and EMP record types.

4.1.6 Set Insertion and Retention. Set insertion governs
the initial insertion of member records into sets and may be
AUTOMATIC, MANUAL, or STRUCTURAL. If insertion is AUTOMAT-
IC, then whenever a new occurrence of the member record type
is stored in the database, it is automatically connected to
the set identified in the session state by the set cursor
corresponding to the set type in which the member record
type is defined. This is the option chosen for SUPERVISORS
and STAFF records in the network schema of Figure 4. As
each new STAFF or SUPERVISORS record is stored in the data-
base, it is connected automatically to the JOBHISTORY set
identified by that set cursor in the session state. A set
cursor may be positioned to the set owned by an EMP record
simply by finding that record. If insertion is MANUAL, then
records may be inserted as member records in a set only by
an explicit connect statement. This is the insertion option
specified for EMP records as members of both PAYROLL and
MANAGES sets in the example. Finally, for STRUCTURAL

-42-

insertion, the effect on a new member record is similar to
AUTOMATIC insertion, with the exception that the receiving
set is not identified by a set cursor. Instead it is
selected so that its owner record has values for certain
data components equal to corresponding values in the new
member record. For example, if the EMP record type had a
DEPT component as in the relational example, then it could
be defined as a structural member of the PAYROLL set type
with the structural specification defined as DEPT of EMP
equal to NAME of DEPT. If such were the case, then line 21
of Figure 6 would not be necessary as the connection would
take place automatically.

STRUCTURAL insertion also has an effect on the modify
statement; if a structural data item of a member record type
is modified, then it automatically becomes a member of a new
set of the same set type having an owner record that satis-
fies the structural condition. In the above modification of
the network example this would mean that any modification of
the DEPT component in an EMP record would trigger a recon-
nection of that employee to a DEPT record with a matching
department NAME. In all of the above situations, the
sequential position of the new member record in its set is
determined by the ordering criteria defined for that set
type.

Set retention governs the disposition of member records
after they have been inserted into some set. Retention may
be FIXED, MANDATORY, or OPTIONAL. For FIXED retention, a
member record remains a member of the set of first insertion
for its entire lifetime in the database. This is the option
chosen for SUPERVISORS and STAFF records in the network
schema of Figure 4. This declaration has the effect of
linking job history descriptions permanently to a specific
employee; if an employee record is erased from the database,
then all job history information pertaining to that employee
is erased at the same time.

Whenever MANDATORY retention is specified, a record,
having once become a member record of a set, remains a
member of some set of the same set type until it is erased
from the database. This is the retention option specified
for EMP records as members of PAYROLL sets in the network
example. The effect of this declaration is that once an em-
ployee record is first assigned to some department it must
remain forever assigned to that department or to some other
department in the database; it can never become unattached.
Of course, since insertion is MANUAL, a new employee record
remains unattached to any department until it is first in-
serted by a specific connect statement. Because of MANDATO-
RY retention for employees, no department record may be

-43-

erased from the database without first erasing, or connect-
ing to other departments, all employee records in the PAY-
ROLL set owned by that department. If desired, such erasure
could be effected with a single erase statement using the
full cascade option. In that situation all employees con-
nected to the erased department would be erased, and the ef-
fect of that erasure would cascade to the job history and
all other records subordinate to the erased department
record

.

With OPTIONAL retention, a member record may remain a
member of the set it was connected to, or it may be removed
either for reconnection to some other set or to become unas-
sociated with any owner record. This option is specified
for the MANAGES set type in the example. Thus an employee
may or may not have a manager recorded in the database,
depending on whether or not the EMP record is connected via
some MANAGES set to another employee. Under OPTIONAL reten-
tion, if an EMP record is erased, then the effect may or may
not cascade to subordinate employees, depending on whether
the erase statement specifies full or partial cascade.

4.1.7 Set Ordering. Set ordering is declared in the schema
for each set type; it specifies a sequential ordering for
the member records of each set. The ordering may be SORTED
by component values, in which case additional KEY clauses
specify the sort key and direction, or it may be one of the
following: chronological order as FIRST or LAST when com-
pared with previous insertions; relative positioning as NEXT
or PRIOR to a given member record; or system DEFAULT order
determined by the implementation. The schema in Figure 4

shows only the SORTED option for each member record type,
but if JOBHISTORY member records were inserted chronologi-
cally with respect to former job positions, then the effect
of order FIRST (i.e. most recent insertion put first) would
be equivalent. Likewise, in the ALPHA set for employee
records, if each new employee record were inserted in its
correct alphabetical position, then order NEXT or order PRI-
OR would be equivalent to order SORTED by ascending NAME.
System DEFAULT order, which allows the DBMS to optimize re-
trievals without having to provide a specified order, will
be the option of choice when no particular order is needed
by users. The only requirement for the DBMS in DEFAULT order
is that it be reproducible within a single transaction;
between transactions the implementation may reorder the
member records of any such set.

-44-

Even in multiple member set types, like JOBHISTORY in
the example, there is only a single sequential order for the
member records of each set. In that example, the SUPERVI-
SORS and STAFF member records might be intermixed since
STARTDATE is a common key item. If the database administra-
tor wished to partition job history descriptions by job
category — supervisor or staff -- then those member record
types would be ordered by an optional declaration in the
SORTED clause.

4.1.8 Complex Data Structures. As the previous sections
have demonstrated, the network model has a variety of com-
plex and powerful data structures. While the use of
pointers like database keys enables the DBMS to navigate
through a database efficiently, the complexity of sets, cur-
sors, keeplists, and other structures makes the network
model better suited to production applications than to ad
hoc data manipulation. Many people who have little or no
programming experience could find the data structures of the
network model difficult to learn and use. Such complexity
can also make it expensive to redefine data structures.
With so much information already encoded, the network model
probably works best ^or "static" databases, where structures
and programs that navigate through them have a relatively
long life span. The values of the database could change
frequently, but the structures should probably be stable.

4.2 The Relational Model

From its beginning the relational model has developed
independently of any programming language. Its theoreti-
cians and developers have consistently focused on the needs
of interactive users who might prefer not to write programs
in host language. This focus remains in the current ANSI
draft, though of course the specification does provide for
interfaces with traditional programming languages. The re-
lational model has repeatedly emphasized two features: the
simplicity of presenting data in tabular form, and the
mathematical soundness of table definition and manipulation.
Each of the following sections discusses either a feature of
the model or some consequences of its mathematical elegance.

4.2.1 Nesting and Range Variables. Relational DBMS' s offer
two complementary techniques for answering recursive queries
that the network model would handle with recursive sets.
The first of these involves variables that range over speci-
fied tables and enable the user to make comparisons such as

-45-

X.NAME --- Y. MANAGER. In the current draft of the ANSI rela-
tional specification these variables can be implicit the
table names themselves -- or explicitly declared synonyms
with a limited scope. A second technique involves nested
queries, in which the WHERE clause of one query includes a
sub-query. The result of the sub-query must be a table with
exactly one column.

For example, a user of the sample database could find
all the employees whose immediate managers are younger than
30 by running the query in Figure 13(a). Though the imple-
mentation of this query could vary, the logic would remain
the same. The sub-query returns a one-column table listing
the names of all employees under 30. The main query then
examines every row of EMP and selects the employee name and
manager whenever the manager is in the table of names re-
turned by the sub-query. Logically, a relational DBMS would
have to retrieve and examine every row in EMP twice, once
for the sub-query and once for the query. For n rows in
EMP, the execution time would be proportional to 2n. Of
course, an index on AGE could substantially reduce the exe-
cution time of the sub-query, but execution time for the
whole query would still be 0(n).

In the previous example the predicate within the sub-
query was absolute -- i.e., it involved a column value and a
constant. When the predicate becomes relative, as in Figure
13(b), the query is more complicated. In this case we want
to know the name and manager of every employee who is older
than his manager. Logically, the DBMS must retrieve each
row of EMP and then search EMP again for the row whose NAME
column matches the MANAGER column of the retrieved row. If
the result of the sub-query is more than a single value, it
is an error. For n rows in EMP, the execution time is pro-
portional to n**2, and an index on AGE is unlikely to im-
prove the speed.

Both of the previous queries involved a single nested
sub-query. The relational specification allows nesting to
any level, but that level must be fixed in a given query.
In the current draft of the standard, there is no way to
formulate a query that will return the names of all employ-
ees who are older than at least one of their managers, im-
mediate or higher. Because the specification omits control
structures, a user who needs the answer to this question
must write a program that climbs the organizational tree im-
plied by the MANAGER column in the EMP table. A query in
the relational data manipulation language might require two
levels of nesting for some employees and five levels for
others. A host language program, however, can retrieve rows
one at a time and store in its own data structures the

-46-

Nested Queries in the Relational Data Language

SELECT NAME, MANAGER
FROM EMP
WHERE EMP. MANAGER IN

(SELECT
FROM
WHERE

NAME
EMP
EMP. AGE < 30)

(a)

SELECT NAME, MANAGER
FROM EMP AS X
WHERE X.AGE >

(SELECT AGE
FROM EMP AS Y
WHERE X. MANAGER = Y.NAME)

(b)

Figure 13

-47-

necessary data to answer the query.

4.2.2 Views. A view in the relational model is analogous to
a subschema in the network model i.e., it defines a por-
tion of the database as it will appear to particular users.
Each view is a derived table because it results from the ex-
ecution of a statement, namely a SELECT statement; it
differs from other derived tables because the SELECT state-
ment (actually, the <query spec>) that defines it is a per-
manent part of the database rather than just an operation
during a user session. If the <query spec> selects columns
from only a single table without a sub-query, then the
resulting view is updatable; otherwise, it is read-only. A
database administrator may wish to use the CREATE VIEW
statement to establish particular views of the data for
users with similar privileges or duties.

For example. Figure 14 shows the syntax for defining a
view of the example relational database that would be suit-
able for employees who need information about the current
position of both supervisors and staff. Here the <query
speo is the union of two SELECT statements, each of which
joins the EMP table with one of the two tables containing
the job history of current employees. For each employee
only one row from either SUPERVISORS or STAFF will satisfy
the condition that ENDDATE be null. The view definition
will join the POSITION and STARTDATE columns from that row
with the row from the EMP table that has the same value in
the NAME column, and the result will be a derived table with
the columns shown in the figure. Because the view results
from more than a single table, it is not directly updatable.
It could, however, be used as a source for comparisons with
one of the base tables, which could then be updated by users
with appropriate privileges.

4.2.3 Triggers. Because relational databases depend so
heavily on operations rather than structures to maintain re-
lationships among data values, they invariably have a high
degree of data redundancy. Frequent modification of data
values that occur in several tables could result in an in-
consistent database. To avoid this problem, the current
ANSI specification provides referential integrity, which is
a technique for tying together corresponding data from dif-
ferent tables. In the example database defined in Figure 5,
for example, modification of an employee's name or deletion
of an employee's record from the EMP table would cascade
through to the SUPERVISORS and STAFF tables. Any rows in
those tables that refer to modified rows in the EMP table
automatically undergo the same modification on the

-48-

Creating a View in the Relational Data Model

CREATE VIEW EMPJOBINFO

AS SELECT EMP.ALL, SUPERVISORS. POSITION,
SUPERVISORS. STARTDATE

FROM

WHERE

EMP, SUPERVISORS

SUPERVISORS. NAME = EMP.NAME
AND SUPERVISORS ;ENDDATE = NULL

UNION

select emp.all, staff. position, staff. startdate

emp, staffFROM

WHERE STAFF. NAME = EMP.NAME
AND STAFF. ENDDATE = NULL

EMPJOBINFO

NAME AGE SAL DEPT MANAGER POSITION STARTDATE

Figure 14

corresponding columns. Any rows referring to deleted EMP
records are also deleted.

The EMP table itself is in turn tied by a referential
constraint to the DEPT table. Modifications to the NAME
column in the DEPT table cascade through to the DEPT column
in the EMP table. Deletions, however, work differently.
The RESTRICT ERASE constraint on the DEPT column in the EMP
table prohibits users from deleting department rows without
first modifying or deleting any corresponding rows in the
EMP table. In this case the constraint actually works in
the opposite direction, preventing a modification that would
result in an inconsistent database.

4.2.4 Flexibility. By relying on operations rather than
structures for much of its semantics, the relational model
makes possible a flexibility that neither the network model
nor any other structure-oriented model can match. Users who
have either a "dynamic" database or frequent ad-hoc requests
for specialized information may find this flexibility very
appealing. The current ANSI specification makes modifying
and retrieving data very simple in a large number of cases,
yet still enables a user to pose elaborate, complex queries
without incurring the overhead of a complex host language
program. In many environments such flexibility may match
exactly the needs of the user. However, the reliance on re-
trieval by value rather than by logical pointers will prob-
ably keep the relational model from performing as well as
the network model on "static" databases with infrequent
structural changes but a lot of data processing.

4.2.5 Mathematical Precision and Elegance. Since Codd''s
original formulation the people who have done research on
the relational model have in general preserved its firm
mathematical basis. The builders of experimental and com-
mercial systems have followed suit, though they have usually
found it convenient or expedient to give up the elegant but
sometimes impractical view of a table as a set of rows with
no duplicates allowed. In its current draft the relational
standard acknowledges the practical importance of allowing
duplicate rows. It does insist, however, on another impor-
tant feature of the model, the closure of tables under all
operations on them. This feature ensures that the result of
any relational operation is always another relation, or
table. No matter how simple or complex a SELECT statement
is, its result will still be a table and hence will be con-
ceptually simple.

-50-

For many users the relational data language will seem
straightforward for most operations. Its English-like ver-
sion of the predicate calculus hides some mathematical con-
structs that can confuse a user who is unfamiliar with the
language of logic and mathematics. The full power of the
predicate calculus, however, still shows up in the WHERE
clause, which specifies criteria for qualifying or selecting
rows from appropriate tables. Because this clause is power-
ful and elegant enough to meet the needs of sophisticated
users, it may sometimes prove difficult for less experienced
people to learn and use. Database administrators may wish
to construct menu-driven query capabilities for the most
common requests by inexperienced users.

4.2.6 Performance. In its early experimental implementa-
tions the relational model gained a reputation for poor per-
formance. Queries could take longer for the DBMS to answer
than a user would need to search through printed output.
Commercial implementations have improved performance consid-
erably, often by adding indexes on columns that are fre-
quently used in retrievals or by clustering values to optim-
ize relational joins. Indexes and clustering may add a lot
of overhead to relational DBMS^s, but they can reduce
response times to acceptable levels. In essence, an index
on a column provides the relational model with pointers that
are similar in function to those of the network model.
Without these pointers the relational model must do a lot of
searching to answer even some simple queries, and physical
storage decisions become important factors in performance.
Clustering often has the same physical characteristics as
the implementation of network model sets. Because indexes
and clustering affect only the performance of a DBMS and not
its functionality, they are omitted from the standard and
left to individual implementors

.

5. SELECTION ISSUES

Choosing the right data model for a particular set of
application requirements is almost certainly the first and
most important step in the selection process. But it is not
the last. This chapter discusses some of the other aspects
of a DBMS that the buyer should also consider before actual-
ly purchasing a system. Different vendors may vary enor-
mously in the markets they try to reach and in the features
they offer their customers. Those features include user in-
terfaces, support software, compatibility with hardware and

-51-

operating systems, and customer services. Only the poten-
tial buyer can decide which commercial product best meets
the needs of the users^ applications.

5.1 System Parameters

While the ANSI specifications of the network and rela-
tional models describe in detail available data structures
and operations, they do not establish or even recommend
values for a number of critical system parameters. A user
of a relational system may want to add the requirement that
the DBMS support at least a given number of columns per
table, rows per table, tables per database, or even data-
bases per operating DBMS. Similarly, a network user may
need a minimum number of components per record type, records
per record type, record types per database, sets per set
type, or set types per database. Identifying appropriate
values for these parameters could be the difference between
meeting application requirements and buying the wrong pro-
duct for the job. Understating the requirements could
result in a system that will quickly be outgrown, and over-
stating them could result in an unnecessarily slow or awk-
ward system.

There are also a number of parameters that are indepen-
dent of data model. One application may require either very
long or variable length character strings, while another may
require either a given level of precision in real numbers or
a large maximum for integer values. Some applications may
require specialized data types like bit strings to represent
video pictures or enumeration types to represent finite sets
of alternatives. In some environments it may be critical
for the DBMS to allow at least a given number of simultane-
ous users, either of the DBMS or of a particular database.

5.2 Hardware and Operating System Support

For many organizations one of the primary factors in
selecting a DBMS may be compatibility with particular
hardware and a specific operating system. In that case the
purchaser should make sure that prospective products meet
all of the organization's requirements in the existing
hardware and software environments. Even the same commer-
cial product may vary in important ways from one implementa-
tion to another. If the organization is procuring a comput-
er, an operating system, and a DBMS simultaneously, or if it
may soon change hardware or operating systems, then the

-52-

portability of prospective DBMS^s is an issue. A product
that runs on a variety of machines may give the customer im-
portant flexibility (e.g., in converting to another DBMS or
to a distributed database) that could outweigh the immediate
performance or usability of the DBMS.

Besides the possible requirement of compatibility with
particular brands of hardware and software, users have to
consider such features as the memory requirements of the
DBMS. A microcomputer with only 64K of memory may not be
suitable for a DBMS that requires 48K just for its execut-
able image. Similar problems could occur on larger
machines, where the DBMS might take up enough main memory to
hamper its own operation or the operation of other programs
running under the same operating system on the same proces-
sor. Since many DBMS^s work with large databases, a pros-
pective buyer may need to find a match between existing disk
capacity and the secondary storage requirements of a partic-
ular product. DBMS^s may vary considerably in the space
overhead necessary for efficient performance. A customer
needs to know whether a prospective DBMS can share a disk
with other files, and whether the DBMS and operating system
are compatible in their handling of files on disk. If effi-
cient operation of the DBMS requires that files be laid out
in contiguous sectors on disk, then either the operating
system must allocate disk space that way or the DBMS must
handle its own I/O.

5.3 Backup and Recovery Facilities

Establishing and operating a database are expensive and
time-consuming projects, and the DBMS must provide adequate
means to protect the user^s investment. No matter how good
the DBMS, the support software, and the computer system are,
they will suffer occasional system crashes. Every DBMS
should have some strategy for protecting the database
against these failures. At the very least the user should
demand a convenient way to backup the entire database in

case of a disastrous loss of on-line data. Weekly full
backups supplemented by daily incremental backups are one
example of a backup strategy, but losing even a day's tran-
sactions on a busy database could be costly. Some products
provide a journaling facility that keeps a record of all
transactions since the last backup. The journal file may
even be maintained on a separate disk to avoid its being
scrambled at the same time as the database. In the case of
minor crashes the DBMS can simply repeat all the transac-
tions logged since the last successful update of the data-
base on disk. For individual users some DBMS's, including

-53-

the proposed standards, provide commit points that enable a
user to specify a series of database executions as a single
transaction that is either completed successfully or not
done at all. Further guidance on protecting data files is
available in other publications available from the Institute
for Computer Sciences and Technology (ICST) within the Na-
tional Bureau of Standards (NBS) [FIPS79, FlPSSla]

.

5.4 Bulk Loading and Unloading

While a number of databases may have to be keyed in at
a terminal, the user will often want to prepare data files
without invoking the DBMS or to convert existing data files
into a format suitable for it. Bulk loading of a DBMS from
data files is probably a requirement for most production ap-
plications. A flexible loading utility that can handle a
variety of input file formats could certainly enhance the
attractiveness of a particular product. In some cases up-
grades of the DBMS or even minor changes in the schema de-
finition may require dumping the entire database and reload-
ing it after the change. Under those circumstances, of
course, bulk loading and dumping utilities would be a neces-
sity.

5.5 Schema Manipulation

A number of DBMS^s offer their users operations or
techniques for redefining data structures without having to
dump and reload the entire database. Adding a column to a
table or a field to a record is the type of schema manipula-
tion an organization may need as it expands the kinds of
data that it collects and uses. A slight change in a law or
regulation may force an agency to keep more complicated or
detailed records of its work. Potential customers should
consider not only the current requirements of applications
sharing a database, but also the likelihood that the data
structures may change with time.

While on some DBMS^s the facilities for redefining a
schema may consist of only a few commands, on others there
may be a fully integrated data dictionary to record and con-
trol schema changes. In still other environments the data
dictionary may stand entirely alone or work with the DBMS as
a separate but related product. A data dictionary can help
a database administrator manage a database by identifying
relations among structures, users of particular subschemas,
or programs and applications that depend on specific data

-54-

structures. Both ANSI and ICST are now working to produce a
standard data dictionary system. Such a tool can make mani-
pulation of a schema safer, but of course it imposes addi-
tional costs and overhead on data management. Whether or
not a data dictionary is appropriate for a particular organ-
ization depends on the nature of both the database and the
database administrator's strategy for controlling the data.

5.6 Access Control

Most applications and user environments require some
form of control over access to data. In many cases a DBMS
will offer a subschema or view facility that enables the da-
tabase administrator to restrict users to viewing only the
data that are necessary for their work. The extent of this
control could vary considerably from one system to the next.
Potential customers must understand both application re-
quirements and DBMS products well enough to know which of
the following questions are relevant to their plans:

1. Does access control extend to the level of records or
fields?

2. Does the product provide access control based on data
values or only on data structures?

3. Can users be denied the use of certain operations on
the data?

4. Can users update records or tables if they have ac-
cess only to certain fields or columns?

5. Does the database administrator have sufficient con-
trol over access rights to tailor users'* privileges
to match their needs?

6. How easy is it to change access rights to reflect
changes in user needs?

7. Are access rights attached to the user or to the
data, and which way better suits application require-
ments?

Whether it is implemented through a subschema facility or
through some other mechanism, access control is an important
consideration for almost any organization that wants

-55-

centralized data management.

5.7 Concurrency Control

Sharing data will almost inevitably cause conflicts
between users who want access to the same data at the same
time [FlPSSlb] . Fortunately, research on concurrency con-
trol in operating systems applies directly to problems in
common databases. Anyone considering a DBMS for multiple
users should make sure that the product has adequate
deadlock prevention or at least detection. A system with
only deadlock detection should provide a means for rolling
back the transactions of all blocked processes and giving
one of them the necessary priority to complete the
deadlocked transaction. If the DBMS simply grinds to a halt
when it detects a deadlock, users may find themselves wast-
ing valuable time whenever they want to update the database.

The proposed NDL and RDL standards handle concurrency
by defining the notion of a transaction, which is a sequence
of operations (statement executions) that is atomic with
respect to recovery and concurrency. A transaction ter-
minates with commit or rollback. If it terminates with
rollback, then all changes that it made to the database are
canceled. If it terminates with commit, then the changes
become part of the database. Committed changes cannot be
canceled, and changes made to the database by a transaction
cannot be perceived by other transactions until such time as
that transaction terminates with commit. The execution of
concurrent transactions is guaranteed to be serial izable

,

which means that the execution of the operations of con-
current transactions produces the same effect as some serial
execution of those same transactions. A serial execution is
one in which each transaction executes to completion before
the next transaction begins. Serializable execution of
transactions implies that all read operations are reproduci-
ble within a transaction, except for changes made by the
transaction itself.

5.8 Access Languages

Users of a database may demand specific languages for
their applications, and the purchaser of a DBMS should cer-
tainly try to match those demands against the features of
competing products. If an organization has an absolute re-
quirement for database access from FORTRAN, COBOL, and Pas-
cal programs, then it must make sure not only that the DBMS

-56-

allows such access, but also that the planned environment
has suitable compilers for those languages. If a particular
product allows access from any language that can call
separately compiled procedures, but runs only under an
operating system for which no one has written a COBOL com-
piler, then it cannot meet the organization's needs.

Besides access from traditional programming languages,
users may want even higher-level languages that enable them
to retrieve data quickly without going to the trouble of
writing a program. Navigational systems usually offer fa-
cilities that allow ad-hoc retrieval of data for queries or
reports. Relational systems generally offer a query
language based on either the relational algebra or the rela-
tional calculus, and many products based on other models
offer similar languages. Because of their precision and
elegance, these languages appeal to sophisticated users like
the people who have to select and administer a DBMS. But
for the typical nonprogrammer a language based on predicate
calculus is probably unsuitable. For these users many ven-
dors offer powerful user languages and report writers that
simplify access to the database. One vendor's user language
reportedly offers a 9€ percent savings in code and a 75 per-
cent savings in effort relative to COBOL [DRAP81] . Though
there are no candidate standards for user languages and re-
port writers, some organizations may consider them very at-
tractive features of a prospective DBMS. Users should be
aware, though, that reliance on one vendor's reporting
language for building an application means either total
dependence on that vendor through the application's life cy-
cle, or expensive rewriting in another language.

5.9 Display Features

While a wide range of access languages may be essential
to some DBMS customers, it might not be enough. A number of
companies offer attractive application packages that take
advantage of the display features of intelligent terminals.
Such packages can make database management substantially
easier, especially in an environment where a number of data-
base users have little or no programming experience. A
forms processor capable of reading a screenful of data at a
time can eliminate some of the syntactic errors that inevit-
ably occur in writing a program, no matter how simple the
language. Of course, such a powerful tool may require
equally powerful protective mechanisms to ensure the in-
tegrity of the database.

-57-

5.10 Support, Training, and Documentation

Most of the features mentioned so far have to do with
the DBMS itself. In procuring a software system as complex
as a DBMS, the customer must also consider the quantity and
quality of services provided by the vendor. Few, if any,
user organizations can handle their own software support for
a proprietary package, and training and documentation are
essential. Potential customers should determine the length
and coverage of vendor warranties, the cost of continued
software support and system upgrades, and the skill and
responsiveness of the vendor's technical support staff.
They should also find out as much as possible about training
courses and examine system documentation, including on-line
help facilities. The quality of these customer services
could greatly affect the ease of using and maintaining a
DBMS.

5.11 Existing User Base

For many products as complex as a DBMS there are na-
tional and local users' groups that can offer additional
support to new customers. Although frequently sponsored by
the vendors themselves, these groups generally express the
interests of the users. Through organization customers can
often achieve effective, reliable response to their needs
for bug fixes, design changes, or enhancements in future
releases of a system. Furthermore, other users of a partic-
ular product may have developed similar application packages
or local programs that can significantly decrease the time
and cost of developing application systems for use with the
DBMS. User groups offer a pool of experienced people who
can benefit from each other's mistakes and successes.

5.12 Benchmarks and Prototypes

However much a customer may learn about a DBMS through
discussion and reading, nothing substitutes for a good
demonstration. If it is at all practical, an organization
planning extensive database applications may want to develop
benchmarks or prototypes to test whether a given product
really does meet user requirements. For smaller systems a
feature analysis or some actual experience with small proto-
types may be sufficient. While building benchmark programs
or constructing a prototype application may be costly, it
may provide crucial performance results that otherwise would
not be available until after purchase. In some cases

-58-

vendors may be willing to help build a sample database with
appropriate programs to demonstrate the practical benefits
of their particular product. Careful comparison of bench-
mark results could be the determining factor in justifying
the selection of one DBMS over another. A forthcoming NBS
Special Publication discusses some alternatives to bench-
marking [LETM83].

6. CONCLUSION

People who are planning to use a DBMS need a systematic
way to match application requirements with the features of
commercial products. By defining basic structures and
operations, data models give users a tool both for analyzing
their requirements and for comparing alternative systems.
Ideally, it would be helpful to have precise specifications
of the data models underlying all commercial DBMS^'s. In
practical terms, however, we have to rely on models whose
specifications are in the public domain and are therefore
accessible to any company that wants to build a conforming
product. ANSC X3H2 is working on two such specifications,
one for network and another for relational databases.

These two models differ not only at the level of indi-
vidual structures and operations, but also in their design
"philosophies." The network model provides some complex
inter-record structures that can contain a lot of valuable
information. Structures in the relational model are
simpler, but powerful relational operations compensate for
the lack of structural information. As a result of this
difference in orientation, the network and relational models
serve different needs. A network DBMS may be more appropri-
ate for an organization whose applications are relatively
stable and therefore require few structural changes. Rela-
tional DBMS^s rely so heavily on data manipulation that they
can often accommodate new, unforeseen data requirements.

While there are far more data models than the two
currently in the process of standardization, most of the
others are either structure-oriented like the network model
or operation-oriented like the relational model. Particular
vendors have in many cases developed tools or features that
compensate for some of the limitations inherent in the data
model underlying their products. Potential customers, how-
ever, can still use the discussions of network and relation-
al models presented in this report as guidance in their

-59-

evaluation of other models and as a caution to recognize
that every product has its advantages and its disadvantages.
The difficult job is still to match the features of a pro-
posed DBMS with the particular application requirements of
the users.

7 . ACKNOWLEDGMENTS

We would like to acknowledge the members of American
National Standards Committee X3H2, whose careful and precise
work on the specifications of the network and relational
data models has provided so much of the background material
for this report.

-60-

8 . REFERENCES

[ANSI77] American National Standards Institute, Inc.,
American National Standard Code for Information In-
terchange , ANSI X3. 4-1977, June 9, 1977.

[ASTR75] Astrahan, M. M. and D. D. Chamberlin, "Implemen-
tation of a Structured English Query Language", in
Communications of the ACM 18:10 ' (1975) , pp. 580-
587.

[BACH64] Bachman, C.W. and S.B. Williams, "A General Pur-
pose Programming System for Random Access
Memories," Proc . Fall Joint Computer Conf . , October
1964, 26, pp. 411-422.

[CHEN76] Chen, Peter P., "The Entity Relationship Model —
Toward a Unified View of Data", in ACM Transactions
on Database Systems (March 1976) , pp. 9-36.

[CHEN79] Chen, Peter P. Proceedings of the International
Conference on Entity-Relationship Approach to Sys-
tems Analysis and Design . Los Angeles, CA, De-
cember 10-12, 1979.

[CHEN81] Chen, Peter P. Entity-Relationship Approach to
Information Modeling and Analysis ; Proceedings of
the Second International Conference on Entity-
Relationship Approach . Washington, DC, October
12-14, 1981.

-61-

[CHEN82] Chen, Peter P., I. Chung, and D. Perry. A Logi-
cal Database Design Framework. GCR 82-390, Nation-
al Bureau of Standards, 1982.

[C0DA81] CODASYL DDLC JOD 1978, Canadian Government Pub-
lishing Centre, Ottawa, Ontario K1A0S9.

[CODD70] E.F. Codd, "A Relational Model of Data for Large
Shared Data Banks," Communications of the ACM, Vol.
13, Number 6, June 1970, pp. 377-87.

[DRAP81] Draper, Jesse M. Costs and Benefits of Database
Management : Federal Experience . NBS Special Pub-
lication 500-84, National Bureau of Standards,
1981, p. 27.

[FIPS79] Guideline for Automatic Data Processing Risk
Analysis . Federal Information Processing Standards
(FIPS) Publication 65, National Bureau of Stan-
dards, August 1, 1979.

[FIPS81a] Guidelines for ADP Contingency Planning . Federal
Information Processing Standards (FIPS) Publication
87, National Bureau of Standards, March 27, 1981.

[FIPS81b] Guideline on Integrity Assurance and Control in
Database Administration . Federal Information Pro-
cessing Standards (FIPS) Publication 88, National
Bureau of Standards, August 14, 1981.

[IS073] International Organization for Standardization,
"7-bit coded character set for information process-
ing interchange," ISO 646-1973(E), 1st edition,
1973-07-01.

-62-

[IS082] International Organization for Standardization,
"Information processing — ISO 7-bit and 8-bit cod-
ed character sets — Code extension techniques,"
ISO 2022-1982 (E) , 2nd edition, 1982-12-15.

[JOHN82] Johnson, Rowland, "A Data Model for Integrating
Statistical Interpretations", in Proceedings of the
First LBL Workshop on Statistical Database Manage-
ment (March 1982) , pp. 176-189.

[LETM83] Letmanyi, Helen. Alternatives to Benchmarking
for Evaluating Computer Systems for Federal Agency
Procurement . NBS Special Publication 500-xxx, Na-
tional Bureau of Standards, forthcoming.

[PERS81] "List of Micro DBMS Software Producers," Personal
Computing , February 1981, p^ 30.

[SHIP81] Shipman, David, "The Functional Data Model and
the Data Language DAPLEX", in ACM Transactions on
Database Management Systems (March 1981) , pp. 140-
173.

[SOFT82] "DBMS Focus Report: Sampling of Systems,"
Software News, February 2, 1982, p. 30.

[SPAR77] American National Standards Institute, Inc. , The
ANSI/X3/SPARC DBMS Framework: Report of the Study
Group on Data Base Management Systems , SPARC/77-
132, October 7, 1977.

-63-

[STON76] Stonebraker, M. , E. Wong, P. Kreps, and G. Held,
"The Design and Implementation of INGRES", in ACM
Transactions on Database Systems 1:2 (1976) , pp.
189-222.

[X3H283a] "(Draft Proposed) Network Database Language,"
American National Standards Institute technical
committee X3H2 document X3H2-83-151, dated August,
1983.

[X3H283b] "(Draft Proposed) Relational Database Language,"
American National Standards Institute technical
committee X3H2 document X3H2-83-152, dated August,
1983.

[X3J483] "(Draft Proposed) COBOL Network Database Inter-
face with X3H2 Network Database Language," American
National Standards Institute technical committee
X3J4 Working Document (X3J4 . 3-16-14) , dated July 1,
1983.

-64-

N BS-n 4A iREv. 2-ao)

U.S. OEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

ms SP 500-108

2. Performing Organ. Report No, 3. Publ i cation D ate

Jariuary 1984

4. TITLE AND SUBTITLE

Cotputer Science and Technology:

Guide on Data Models in the Selection and Use of Database f'fenagement Systems

5. AUTHOR(S)
Leonard J. Gallagher and Jesse M. Draper

6. PERFORMING ORGANIZATION (If joint or other thart NBS. see in struct/on s)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 83-600630

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sumrriary of most si gnifi cant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

Selecting a database management system involves matching users' requirements and the

capabilities of available products. One way to simplify this task is to define data
models identifying both data structures and the operations on those structures. In

the past every commercial product has implemented its own data model. Now technical
committee X3H2 of the American National Standards Institute is working on specifications
for two models that are similar but not identical to many existing products. The network
model is a structure-oriented model that is especially suitable for databases with static
structures and a high volume of record-at-a-time processing. The relational model
depends more heavily on operations than structures and thus provides the flexibility to

handle dynamic databases. Examples written in the draft Network Database Language and
the Relational Database Language demonstrate that both models can answer conq)lex queries
in a straightforward manner.

In addition to the issue of data models, prospective buyers of database software need to

consider features that affect daily operations. Existing hardware and operating systems
sometimes limit the choice to a few commercial products. Systems also vary widely in

their facilities for backup and recovery, bulk loading, schema manipulation, concurrency
control, and report writers.

12. KEY WORDS(Six to twe//e entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

computer languages; coii5)uter software standards; DBMS; data management; data models;
database management systems; network databases; relational databases; system selection.

13. AVAILABILITY

[y] Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

fXl Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

71

15. Price

USCOMM-OC 9043-P90

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Nolincation key N-S03)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciphnes of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from lime to lime are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications m both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18: foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AlP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Scries— Disseminates technical irformation

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organization's.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments. Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSlR's—from
the National Technical Information Service. Springfield. VA 22161.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717 (38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor: public distribution is by the

National Technical Information Service
, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234
Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID
U S DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

