
National Bureau
of Standards

Computer Science novi^ \m

and Technology

NBS Special Publication 500-104

'^•S'"' Proceedings of the
Computer Performance

PUBLICATIONS Evaluation Users Group
19th IVIeeting

"CPE - A NEW PERSPECTIVE:
The impact of the technology

revolution.

"

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

WATIONAL BtJREAO

0? sjamdardS
USRAKt

NBS Special Publication 500-104

Proceedings of the

Computer Performance
Evaluation Users Group (CPEUG)
19th Meeting

San Francisco, California

October 25 - 28, 1983

Proceedings Editor

Deborah Mobray

Conference Host
Navy Regional Data Automation Center

Department of the Navy

Sponsored by

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued October 1983

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 82-600594

National Bureau of Standards Special Publication 500-104
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-104, 236 pages (Oct. 1983)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1983

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Price $6.50

(Add 25 percent for other than U.S. mailing)

FOREWORD

The data processing environment has undergone profound changes since CPEUG was
founded in 1971. Microcomputers, at that time existed only in specialized
process control applications. Now end-user microcomputers are commonplace and
their users have expectations unheard of twelve years ago. In parallel has been
the increasing perception of traditional large, mainframe data processing as

only one aspect of a broader view of information resources and information
technology. With these changes, the challenge of providing efficient and
effective user support has also grown.

It is with these changes in mind that this year's CPEUG conference has chosen as

a theme "CPE-A New Perspective: The impact of the technology revolution." This
year's conference offers topics ranging from microcomputers to supercomputers.
The increasingly complex area of data communications is presented as well as

topics in office automation, software improvement and engineering, capacity
planning, and quality assurance, to mention just a few. The diversity of topics
reflects the broad range of areas which CPE analysts must now consider.

The challenges inherent in the increasingly complex areas of information
technology also provide new opportunities to increase the effectiveness of the

services we provide. Even as the technology has grown so has the volume and
type of information which the users wish to store, manipulate, and retrieve. We
must be knowledgeable in many new areas to ensure that we are using not only the

most efficient means available but also the must effective.

This year's CPEUG topics were specifically chosen to reflect the breadth of the
CPE field. I believe you will enjoy them as well as learn from them.

JOHN CARON
CPEUG 83 Conference Chairperson

3

PREFACE

The theme of CPEUG 83, "CPE - A NEW PERSPECTIVE: The impact of the
technology revolution," focuses on the rapid introduction of sophisticated
end-user technology, and addresses the impact of this revolution on CPE and the
CPE professional. The debate over the question raised several years ago by a

former CPEUG Program Chairman: "How will CPE, traditionally associated with
large central computers, change in an era of smaller, cheaper hardware and
improved digital communications?" intensifies. The CPE professional is

challenged to react to the new technology and trends. The keynote address,
"Microcomputers: The Risks and Rewards" and the keynote panel "Information
System Cost Performance •— New Directions" highlights and sets the framework for
this challenge and debate. The conference focuses on the integration of user
microcomputer systems into the overall ADP structure and concentrates on micros
and end user computing activities — "Strengthening the End-User Interface",
"Managing End-User Computing", for example. The growing relative importance of
software is recognized and software related issues are addressed in several
sessions.

As in the previous Conferences, tutorials, case studies, panels, and
technical sessions are included in the program. There are several sessions that
address the information needs of the first-time attendees, experienced CPE
analysts, managers, and interested data processing professionals. The CPEUG
Conference is one of the indispensable events on the calendar of computer
performance professionals. CPEUG 83 provides a forum for shaping subsequent
Conferences throughout the 1980 's.

The CPEUG 83 program was the work of many people. Paul Roth ^ Vice
Chairperson for academia; Jim Sprung Vice Chairperson for industry; Arnold
Johnson, Vice Chairperson for Government; and Dr Deborah Mobray, Proceedings
Editor, were this year's vital links to broaden program participation. The
Conference Committee, session chairpersons, authors, and tutors all deserve
recognition for their time, patience, and participation. The invaluable support
of Sylvia Mabie merits special thanks.

CHARLES A. SELF
CPEUG 83 Chairperson
October 1983

4

ABSTRACT

These Proceedings record the papers that were presented at the Nineteenth
Meeting of the Computer Performance Evaluation Users Group (CPEUG 83) held
October 25-28, 1983 in San Francisco, CA. CPEUG 83 recognized the rapid
introduction of sophisticated end-user technology into the information processing
environment and addressed the challenges posed to the CPE community. CPEUG 83

offered topics ranging from microcomputers to supercomputers. The increasingly
complex area of data communications was presented as well as topics in office
automation, software improvement and engineering, capacity planning, and quality
assurance. The program was divided into three parallel sessions and included
technical papers, case studies, tutorials, and panels. Technical papers are
presented in the Proceedings in their entirety.

Key words: acquisition, benchmarking, capacity planning, computer
performance evaluation, configuration management /quality assurance, cost
accounting and chargeback, data communications, end-user computing, local area
networks, microcomputers, modeling techniques, office automation, performance
management, software engineering, and software improvement.

The material contained herein is the viewpoint of the authors of specific
papers. Publication of their papers in this volume does not necessarily

constitute an endorsement by the Computer Performance Evaluation Users Group

(CPEUG) or the National Bureau of Standards. The material has been published in

an effort to disseminate information and to promote the state-of-the-art of

computer performance measurement, simulation, and evaluation.

5

CPEUG Advisory Board

James E. Weatherbee, Chairman
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

Dennis M. Gilbert, Executive Secretary
National Bureau of Standards

Washington, DC

Carl R. Palmer
U.S. General Accounting Office

Washington, DC

Nancy Doane
General Services Administration

Washington, DC

John Caron
General Services Administration

Washington, DC

6

CONFERENCE COMMITTEE

CONFERENCE CHAIRPERSON

PROGRAM CHAIRPERSON

PROGRAM VICE-CHAIRPERSON FOR
FEDERAL GOVERNMENT

PROGRAM VICE-CHAIRPERSON FOR
INDUSTRY

PROGRAM VICE-CHAIRPERSON FOR
ACADEMIA

PUBLICATIONS CHAIRPERSONS

PUBLICITY CHAIRPERSON

AWARDS CHAIRPERSON

REGISTRATION CHAIRPERSON

PROCEEDINGS EDITOR

John Caron
General Services Administration
(703) 756-6151

Charles Self
Federal Computer Performance
Evaluation & Simulation Center
(FEDSIM)

(703) 274-7045

Arnold Johnson
Federal Software Testing Center
(703) 756-6153

Jim Sprung
MITRE Corporation
(703) 827-6446

Paul Roth
Virginia Polytechnical Institute
(703) 698-6023

Ken Moore
Federal Reserve Board
(202) 452-2832

Helen Letmanyi
National Bureau of Standards
(301) 921-3485

Barbara Anderson
Information Systems and Networks
Corporation
(703) 694-8180

Dennis Shaw
US General Accounting Office
(202) 275-6187

Hal Hawes
Federal Computer Performance
Evaluation and Simulation Center
(FEDSIM)

(703) 274-7910

Deborah Mobray
Veterans Administration
(202) 389-2646

7

NATIONAL ARRANGEMENTS CHAIRPERSON

FINANCE CHAIRPERSON

VENDOR EXHIBITS CHAIRPERSON

LOCAL HOST

Art Chantker '

Department of Transportation
(202) 426-0945

Tom Buschbach
Federal Conversion Support Center
(703) 756-6156

Helen McEwan
Federal Software Exchange
(703) 756-6150

Robert Taylor
Navy Regional Automation Center
(415) 869-5202

8

TABLE OF CONTENTS

FOREWORD 3

PREFACE 4

ABSTRACT 5

CPEUG ADVISORY BOARD 6

CONFERENCE COMMITTEE 7

PROGRAM 12

LOCAL AREA NETWORKS

THEORETICAL PERFORMANCE ANALYSIS OF VIRTUAL CIRCUIT LAN SLIDING
WINDOW FLOW CONTROL

E. Arthurs
G.L. Chesson
B.W. Stuck
Bell Laboratories 24

MODELLING AND MONITORING A LAN, ONE EXPERIENCE
W. Bruce Watson
Lawrence Livermore National Laboratory 32

MODELLING TECHNIQUES

QUEUE LENGTH CHARACTERISTICS AT VERY FAST, CONSTANT SERVICE TIME
MERGER NODES

Chaim Ziegler
Brooklyn College 56

THE APPLICATION OF MULTIVARIATE STATISTICAL TECHNIQUES TO COMPUTER
PERFORMANCE EVALUATION USING SIMULATED DATA

Thomas C. Hartrum
Air Force Institute of Technology 64

IMPROVING THE ACCURACY OF A WORKING-SET-ORIENTED GENERATIVE MODEL
OF PROGRAM BEHAVIOR

Domenico Ferrari
Tzong-yu Paul Lee

University of California, Berkeley 78

SOFTWARE IMPROVEMENT

SOFTWARE IMPROVEMENT PROGRAM
Opal R. Stroup
Defense Mapping Agency 86

9

SOFTWARE IMPROVEMENT PROGRAM (SIP): A TREATMENT FOR SOFTWARE
SENILITY

Carol A. Houtz
Federal Conversion Support Center. ... 92

SOFTWARE IMPROVEMENT THROUGH AUTOMATED NORMALIZATION
Dr. Michael G. Walker
WBG, Inc 108

CAPACITY PLANNING

ALGEBRAIC MODELS FOR CPU SIZING
Robert A. Orchard
College of Staten Island 116

SOFTWARE ENGINEERING

ESTABLISHING A SOFTWARE ENGINEERING TECHNOLOGY (SET)

L. Arnold Johnson
William R. Milligan
General Services Administration 135

CHARACTERISTICS OF SOFTWARE DEVELOPMENT TEAM STRUCTURES AND THEIR
IMPACT ON SOFTWARE DEVELOPMENT

Anneliese von Mayrhauser
Illinois Institute of Technology 150

MICROS AND END-USER COMPUTING

MANAGING END-USER COMPUTING
SESSION OVERVIEW

Thomas N, Pyke, Jr.

National Bureau of Standards 161

INFORMATION CENTERS: THE USER'S ANSWER TO THE COMPUTER ROOM
Esther P. Georgatos
Veterans Administration 163

MICROS AND THE NEW CPE ENVIRONMENT
SESSION OVERVIEW

Dennis M. Gilbert
National Bureau of Standards . 168

AN ORGANIZATION MODEL AND CASE STUDY FOR MICROCOMPUTER CPE
Malcolm Campbell
State of Missouri . 169

FEDERAL MICROCOMPUTER ACTIVITIES
SESSION OVERVIEW

Allen L. Hankinson
National Bureau of Standards 177

10

DATA PROCESSING USER SERVICE - A PROBLEM; A PROPOSED SOLUTION
Thomas H. Acklen
Veterans Administration 178

COST ACCOUNTING AND CHARGEBACK

STANDARD COSTING FOR ADP SERVICES
David R. Vincent
Institute for Software Engineering

CONFIGURATION MANAGEMENT

AUTOMATING CONFIGURATION MANAGEMENT
ILt Enrique G. DeJesus
iLt Craig J. Riesberg
Scott AFB 187

PERFORMANCE MANAGEMENT

THE TERMINAL PROBE METHOD REVISITED. SOME STATISTICAL
CONSIDERATIONS

Luis Felipe Cabrera
Pontificia Universidad Catolica de Chile

SOME ELEMENTS OF SOFTWARE FUNCTION AND COST ANALYSIS AS

RELATED TO PERFORMANCE
John E. Gaffney, Jr.

Federal Systems Division 215

BENCHMARKING

BENCHMARK AND CONVERSION TOOL: TEST DATA REDUCTION PROGRAM
Frances A. Kazlauski
Naval Data Automation Command

11

PROGRAM

MONDAY, OCTOBER 24

7:00 PM SOCIAL HOUR AND REGISTRATION
to

10:00 PM

TUESDAY, OCTOBER 25

8:00 AM COFFEE AND REGISTRATION

10:00 AM WELCOMING ADDRESSES:
John Caron
Office of Software Development and Information

Technology
General Services Administration
Washington, DC

Robert Taylor
Navy Regional Data Automation Center
San Francisco, CA

10:15 AM PROGRAM OVERVIEW
Charles A. Self
Federal Computer Performance Evaluation and Simulation Center
(FEDSIM)
Washington, DC

10:30 AM KEYNOTE ADDRESS: Microcomputers — The Risks and
Rewards

Thomas Willmott
International Data Corp
Framingham, MA

11:30 AM CONFERENCE LUNCHEON AND SPEAKER: Supercomputer
Architectures
John Machado ,

U.S. Navy
Washington, DC

2:30 PM KEYNOTE PANEL: Information System Cost Performance —
New Directions

Chairperson: Thomas F. Wyrick, Manager
Telecommunicatons Modeling and Analysis
GTE Service Corporation
Tampa, FL

12

Carl Palmer, Deputy for Operations
Information Management and Technology
Division
General Accounting Office
Washington, DC

Thomas Bell, President
Computer Technology Group
Palos Verdes Estates, CA

David R. Vincent
General Manager
Institute for Software Engineering
Sunnyvale , CA

5:00 PM VENDOR EXHIBITS AND COCKTAIL RECEPTION

13

TRACK A PROGRAM

WEDNESDAY, OCTOBER 26

8:00 AM COFFEE AND REGISTRATION

9:00 AM SESSION: Local Area Networks
Chairperson: Ron Rutledge

Department of Transportation
Cambridge, MA

Flow Control Performance and LAN's
Bart Stuck, Bell Laboratories
Murray Hill, NJ

Modeling and Monitoring a LAN
W. Bruce Watson
Lawrence Livermore National Laboratory
Livermore , CA

Performance Evaluation of LAN's in the
Government
Ken J. Thurber and Harvey Freeman
Architecture Technology Corporation
Minneapolis, MN

Performance Considerations for Personal Computers and
LAN ' s

Ken Omahen
Digital Equipment Corporation
Maynard,MA

12:30 PM CONFERENCE LUNCHEON AND SPEAKER: CPE and

V CPEUG — Another Look
Paul Roth
Virginia Polytechnical Institute
Blacksburg, VA

3:00 PM SESSION: Modeling Techniques
Chairperson: Charles Shub

American Bell
Denver, CO

Queue Length Characteristics at Very Fast,

Constant Service Time Merger Nodes
Chaim Ziegler
Brooklyn College
Brooklyn, NY

AISIM: An Interactive Graphics Discret Event
Simulation Tool
Herman Schultz
MITRE Corporation
Bradford, MA

14

William Letendre
US Air Force Electronics Systems Division
Hanscom AFB, MA

The Application of Multivariate
Statistical Techniques to Computer
Performance Evaluation Using Simulated
Data
Thomas Hartrum
Air Force Institute of Technology
Wrigth-Patterson AFB, OH

Improving the Accuracy of a
Working-Set-Oriented
Generative Model of Program Behavior
Domenico Ferrari
Tzong-Yu Paul Lee
University of California
Berkley, CA

5:00 PM VENDOR EXHIBITS AND COCKTAIL RECEPTION

THURSDAY, OCTOBER 27

8:00 AM COFFEE AND REGISTRATION

9:00 AM SESSION: Managing End-User Computing
Chairperson: Tom Pyke

National Bureau of Standards
Gaithersburg , MD

The Evaluation of the Information Resource
Center Concept
Tom Pyke
National Bureau of Standards
Gaithersburg, MD

Information Center: The Users Answer to the Computer
Room
Esther Georgatos
Veterans Administration
Washington, DC

Support Structures: A Management Tool
Lawrence K. Berenson
Department of Interior
Washington, DC

11:00 AM SESSION: Micros and the New CPE Environment
Chairperson: Dennis M. Gilbert

National Bureau of Standards
Gaithersburg, MD

15

An Organizational Model and Case Study for
Microcomputer CPE
Malcom Campbell
State of Missouri

,
Jefferson City, Missouri

System Trends (Integrated
Environments/Interfacing Micros)
(To be Announced)

Micros and Converging Technologies
(To be Announced)

12:30 PM CONFERENCE LUNCHEON AND AWARDS PRESENTATION

3:00 PM SESSION: Federal Microcomputer Activities
Chairperson: Al Hankinson

National Bureau of Standards
Gaithersburg , MD

National Bureau of Standards Microcomputer
Products and Activities
Dennis M. Gilbert
National Bureau of Standards
Gaithersburg, MD

GSA Small System Initiatives
Ralph Simmons
General Services Administration
Washington, DC

A Government-wide Approach to Individual and
Organizational Productivity
Al Duncan

V Department of Transportation, Inspector
General
Washington, DC

FRIDAY, OCTOBER 28

9:00 AM SESSION: Office Automation
Chairperson: Larry Jackson

MITRE Corporation
Mclean, VA

Assessing the Impact of Organizational and Human
Factors During Office Automation Implementations
Bob Kovach and Paul Chandler
MITRE Corporation
McLean , VA

GSA End-User Computer Pilot Project
Jerry Whiting
General Services Administration
Washington, DC

16

11:00 AM SESSION: Strengthening the End-User Interface
Chairperson: Thomas H. Acklen

Veterans Administration
Austin, TX

Information Centers: Creating and
Supporting Independent Users
Trish Fineran
United States Department of Agriculture
Information Technology Center
Washington, DC

Data Processing Users Service -

A Problem; A Proposed Solution
Thomas H. Acklen
Veterans Administration
Austin, TX

Microcomputer Policy: Enhancing End-User Productivity
Donald E. Humphries
National Oceanic Atmospheric Administration
Washington, DC

17

TRACK B PROGRAM

WEDNESDAY, OCTOBER 26

9:00 AM PANEL: CPE in the University?
Chairperson: Paul Roth

Virginia Polytechnical Institute
Blacksburg, VA

PANEL MEMBERS: Paul Roth
Virginia Polytechnical Institute
Blacksburg, VA

Charles Shub
American Bell
Denver, CO

Domenico Ferrari
University of California
Berkeley, CA

Bernie Domanski
City College of New York
New York, NY

11:00 AM SESSION: Benchmarking
Chairperson: Robert E. Waters

Air Force Computer Acquisition Center
Hanscom AFB, MA

Benchmark and Conversion Tool:
Test Data Reduction
Frances A. Kazlauski

\^ Naval Data Automation Command
Washington, DC

System Integration and Test Using an
Automated Test Support System
TRW
Redondo Beach, CA

Benchmark Strategies
Robert E. Waters
Air Force Computer Acquisition Center
Hanscom AFB, MA

The Live Test Demonstration Manual - A
Format Tutorial
Lt Anthony F. Burnet to
Air Force Computer Acquisition Center
Hanscom AFB, MA

18

3:00 PM SESSION: Software Improvement
Chairperson: Carol Houtz

Federal Conversion Support Center
Washington, DC

Software Improvement Program
Opal A. Stroup
Defense Mapping Agency
US Naval Observatory
Washington, DC

Software Alternatives Available to Federal Agencies
Steven Merritt
General Accounting Office
Washington, DC

Impact of Software Obsolescence in Federal ADP
Operations
Steven Merritt
General Accounting Office
Washington, DC

Software Improvement Program (SIP): A Treatment for
Software Senility
Carol A. Houtz
Federal Conversion Support Center
Washington, DC

Software Improvement Through Automated
Normalization
Michael G. Walker
WBG, Inc

McLean, VA
THURSDAY, OCTOBER 27

9:00 AM SESSION: Capacity Planning
Chairperson: James Sprung

MITRE Corporation
McLean , VA

Algebraic Models for CPU Sizing
Robert A. Orchard
Bell Laboratories
Whippany, NJ

An Approach to Capacity Management
James Weatherbee
Federal Computer Performance Evaluation and Simulation

Center (FEDSIM)

Washington, DC

19

Specifying Computer Hardware Requirements for Planning
James Sprung, Ray Komajda, and Connie
Kulik
MITRE
McLean, VA

11:00 AM SESSION: Configuration Management /Quality Assurance
Chairperson: Barbara Christoph

MITRE Corporation
McLean, VA

Automating Configuration Management
Craig Riesberg and Lt DeJesus
HQMAC/ADCI
United States Air Force
Scott AFB, IL

Quality Assurance Overview
Margaret Brouse
MITRE Corporation
McLean , VA

3:00 PM SESSION: Software Engineering
Chairperson: George N. Baird

Federal Conversion Support Center
Washington, DC

Establishing a Software Engineering Technology (SET)

L. Arnold Johnson and William Milligan
Federal Conversion Support Center
Washington, DC

Software Testing Techniques Used by Federal Agencies

\^ James V. Rinaldi, Jr.

General Accounting Office
Washington, DC

Characteristics of Software Development Team Structures
and Their Impact on Software Development
Ann von Mayrhauser
Illinois Institute of Technology
Chicago, IL

An Engineering Approach to Software Testing
Gary Fisher
Federal Conversion Support Center
Washington, DC

20

FRIDAY, OCTOBER 28

9:00 AM SESSION: Performance Management
Chairperson: Donald R. Deese

Federal Computer Performance Evaluation and Simulation
Center (FEDSIM)
Washington, DC

The Terminal Probe Method Revisited. Some Statistical
Considerations
Luis Felio Cabrera
Catholic University of Chile
Santiago, Chile

Some Elements of Software Functions and Cost Analysis
as Related to Performance
John E. Gaffney, Jr
International Business Machines
Gaithersburg, MD

Modeling and Measuring to Improve Network Cost
Performance
Ronald K. Leighton
GTE Services Corporation
Tampa, FL

11:00 AM SESSION: Cost Accounting and Chargeback
Chairperson: Dean Halstead

Federal Computer Performance Evaluation and Simulation
Center (FEDSIM)
Washington, DC

Standard Costing for ADP Services
David R. Vincent
Institute for Software Engineering
Sunnyvale , CA

Cost and Revenue System at Parklawn Data Center
Tim Carrico
Parklawn Data Center
Health and Human Services
Rockville, MD

Developing a DP Charging System for the FAA

Harvey Kaplan
Federal Aviation Administration
Washington, DC

21

TRACK C PROGRAM

WEDNESDAY, OCTOBER 26

9:00 AM TUTORIAL: Requirements Analysis and Workload
Characterization

Carl Palmer
General Accounting Office
Washington, DC

10:00 AM TUTORIAL: Use of Benchmarking in the Federal ADP
Procurement Process

Dennis Shaw
General Accounting Office
Washington, DC

11:00 AM TUTORIAL: Software Development Guidelines

Anneliesse von Mayrhauser
Illinois Institute of Technology
Chicago, IL

3:00 PM TUTORIAL: Microcomputer Software

John Caron
Office of Software Development and
Information Technology
General Services Administration
Washington, DC

4:00 PM TUTORIAL: Usability

David F. Stevens
Lawrence Berkeley Laboratory
University of California
Berkeley, CA

THURSDAY, OCTOBER 27

9:00 AM TUTORIAL: IRM Planning

Nancy Doane
Federal IRM Planning Support Program
Washington, DC

10:00 AM TUTORIAL: Computer Service Selection

Anneliese von Mayrhauser
Dennis Erwin Witte
Illinois Institute of Technology
Chicago, IL

22

11:00 AM TUTORIAL: Security Certification of Applications
Software

Fred Tompkins
MITRE
McLean , VA

3:00 PM TUTORIAL: ACMS: A Computer Modeling System

Duane Ball
Federal Computer Performance Evaluation
and Simulation Center (FEDSIM)
Washington, DC

4:00 PM TUTORIAL: Software Instrumentation Points

James P. Bouhana
Wang Institute of Graduate Studies
Tyngsboro, MA

FRIDAY, OCTOBER 28

9:00 AM TUTORIAL: Implementing a DP Chargeback System

Dean Halstead
Federal Computer Performance Evaluation
and Simulation Center (FEDSIM)
Washington, DC

23

Theoretical Performance Analysis of Virtual Circuit LAN
Sliding Window Flow Control

E.Arthurs

G.L.Chesson

B.W.Stuck

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

A transmitter breaks a message up into packets and transmits the
packets to a receiver over a single virtual circuit within a local area
network. The receiver has a finite amount of storage capacity for

buffering messages. A sliding window protocol turns the transmitter
on and off to insure there is always storage room in the receiver for

packets. Mean throughput rate and delay statistics are studied as a
function of model parameters.

1. Introduction

Our purpose is to study the traffic handling characteristics of a

policy for pacing the flow of information from a transmitter to a

receiver over a logical abstraction of a physical circuit (a so called

virtual circuit) within a local area network. If the receiver has only

a limited amount of storage, and the transmitter is faster than the

receiver, messages can be transmitted and blocked or rejected by the

receiver because no room is available. A protocol is used for

controlling the flow of information to insure that no packet is lost

due to no room being available, as well as for other reasons. Since

the transmitter must be turned on and off to insure no messages are

lost, what is the penalty in mean throughput rate and message delay

statistics as a function of receiver buffering and transmitter and

receiver processing speeds? References on this subject are found

elsewhere (e.g., Tanenbaum, 1981, pp. 187- 196).

Examples of such mechanisms are stop-start protocols where the

transmitter stops until the receiver acknowledges receipt of the

message (e.g.. Binary Synchronous Communications (IBM)), Digital

Equipment's product line for Digital Network Architecture

(Wecker,1980; Tanenbaum, 1981, pp.172-174), IBM's product line

for Systems Network Architecture framework (Green, 1979; Atkins,

1980), the Defense Advance Research Project Agency Transport

Control Protocol (Tanenbaum. 1981, pp.373-377) or CCITT's X.25

(Tanenbaum, 1981, pp. 167-172). This mechanism would be used to

transfer files from one computer to another, for example, over a local

area network.

In our opinion, at the present time a great deal of guidance is

required to engineer such systems (cf. the current literature: Bux,

Kuemmerle, Truong, 1980; Easton, 1980; FayoUe, Gelenbe, Pujolle,

1978; Kleinrock, 1978A, 1978B; Reiser, 1979; Sunshine, 1976, 1977;

Traynham, Steen, 1977; Yu, Majithia, 1979; Luderer, Che,

Marshall, 1982; Luderer, Che, Haggerty, Kirslis. Marshall, 1981).

This work analyzes a model for a class of of protocols, so called

sliding window* protocols, for controlling the flow of information

between a transmitter and receiver. Granted certain assumptions

that are felt to be reasonable for local area network applications, it is

* The term window arises from picturing a window onto the stream of packets at the

transmitter, with the window open onto packets that have been transmitted but not

yet acknowledged. The window slides as packets are acknowledged along with the

transmitted packets.

possible to engineer a virtual circuit to achieve predictable

performance. The protocol is described in detail elsewhere (Knuth,

1981; Tanenbaum, 1981, pp. 148- 164); here, in the interest of

brevity, we will describe only the aspects pertinent to traffic handling

characteristics. It is representative of a great many protocols

currently in use, each of which differs in detail in terms of error

handling, but not in terms of pacing the flow of data between the

transmitter and receiver (cf Schwartz, 1982, for an analysis of a

protocol with the same control of flow of data but a different

acknowledgement strategy).

We ignore a wide variety of phenomena that must be dealt with in

an actual system that in our opinion are sufficiently rare to have

negligible impact on traffic handling characteristics. In particular,

we ignore the impact of the local area network corrupting or losing

packets, the impact of using the local area network and the

interfaces for both control (virtual circuit set up and take down,

packet acknowledgement) and data transfer, the impact of local area

network delay being dependent upon the workload, and a variety of

hardware and software failures.

Lest the reader feel that this problem is straightforward, we quote

one authority:

"...flow control procedures are rather difficult to invent and

extremely difficult to analyze. ..to date there is no satisfactory

theory or procedure for designing flow control procedures, much
less evaluating their performance..." L.Kleinrock, 1978A

2. Summary

We determine quantitative tradeoffs between the time the

transmitter and receiver spend on packet processing, local area

network propagation delays, receiver storage space for buffering

packets, and flow control parameters (in particular the maximum
number of unacknowledged packets at the transmitter, denoted by W
for window) to achieve different levels of performance (e.g., mean
throughput rate and delay statistics).

A mathematical model or abstraction of an actual communication

system is developed. First, we summarize the performance of this

model using mean values for transmitter and receiver packet

processing times before analyzing the impact of fluctuations on

performance. In our opinion, the mean value analysis is probably

the most important level of measurement and analysis in practice.

A system can be engineered to have a low message throughput rate

and small message delays, or it can have a high message throughput

rate and large message delays. The problem is to find the point at

which message delay becomes unacceptable. We do so in two steps:

first we find the maximum mean throughput rate, which presumably

will lead to large delays; then we back off from the maximum mean
throughput rate to a lower rate which will lead to smaller

(acceptable) delays. There are three potential bottlenecks in this

communication system, the transmitter, the receiver, and the local

area network. In many applications, it is often desirable for the

transmitter and receiver to be bottlenecks, not the local area

network: put differently, we demand the different devices connected

to the local area network be incapable of generating enough

messages to generate unacceptable delays in message transmission

through the channel.

24

From discussions with a variety of knowledgeable engineers,

currently available products achieve a packet delay in the local area

network of one hundred to five hundred microseconds, while packet

transmitter and receiver processing delays of one to five milliseconds

are typical. For this case, where network delays between the

transmitter and receiver are negligible compared to packet

processing times, when the transmitter and receiver are mismatched

in speed by a ratio of two or more, i.e., either the transmitter is

much faster or slower than the receiver, one or the other is a

bottleneck, and the mean value analysis appears adequate for sizing

mean throughput rate and mean delay. It is only in the intermediate

region of comparable transmitter and receiver speeds that there is

significant interaction between the choice of flow control parameters

and message arrival and transmission time statistics.

Upper and lower bounds on mean throughput rate are determined

using only the mean times to handle each stage of packet processing

and the receiver bulTer size; determining the lower bound was

previously an unsolved problem. Moreover these bounds are sharp,

in the sense that they can be achieved if the fluctuations about the

means become sufficiently small or sufficiently large. Put differently,

given only mean value information, these bounds quantify the best

possible mean throughput rate. The method of analysis is based

upon a systematic application of Little's Law (Little, 1961). The

analysis leading to the upper bound is well known; the lower bound

is evidently novel. The lower bound is positive and hence we have

shown that at this level of analysis this protocol cannot deadlock.

This occurs when the transmitter and receiver both have packets and

acknowledgements to send but cannot because receiver buffer space

is not available for the transmitter and vice versa.

Three cases are examined in detail: buffering one, two, and an

infinite number of message packets at the receiver. Buffering one

packet allows for no concurrency or parallel operation of the

transmitter and receiver; buffering more than one packet allows for

some concurrency and also smooths out bursts of packets, storing

them until they can be processed. Performance (mean throughput

rate and packet delay), can be significantly increased (provided the

transmitter and receiver packet processing times are comparable to

one another) in going from one to two packet buffering at the

receiver, and is only marginally increased in going from two to

infinite packet buffering. This is clear on physical grounds: there is

only one transmitter and one receiver, and the best possible

concurrency is achieved when both are busy, i.e., when the

transmitter is filling one buffer and the receiver is emptying another.

A single packet buffer at the receiver is a bottleneck limiting the

maximum mean throughput rate of packet transmission; moving to

two or more buffers at the receiver allows the transmitter or the

receiver processor to become the bottleneck. Since it might not be

known in practice which was the bottleneck, this suggests choosing

two buffers in the receiver.

To proceed further, we make additional assumptions beyond mean

values, to test both our modeling assumptions as well as the

numerical parameters. In particular, we can quantify the impact of

fluctuations about the mean values on performance.

The first case is a Jackson network model with associated product

form distribution for the number of packets at each node in the

network. The Jackson network assumptions allow us to obtain an

exact calculation of mean throughput rate. The analysis uses

techniques that are standard for Jackson networks (Kelly, 1976,

1979). In practice, packet processing times at the transmitter and

receiver are widely felt to be much smaller than that found in this

type of model, so this would lead to pessimistic performance, in

fact, there is little difference between the mean throughput rate

upper bound which is achieved with no fluctuations in packet

processing times and the Jackson network analysis. In either case,

choosing two buffers at the receiver achieves virtually all of the

traffic handling gain.

The second model deals with the mean throughput rate and delay

statistics with negligible network delay, for the special cases of

W=l, W=2, and W=oo. If the transmitter and receiver packet

processing times are independent identically distributed constant

random variables, we obtain not simply mean values, but

distributions. We show that the long term time averaged delay

statistics for W^l and W—>°° are identical. This was previously

only conjecture.

3. System and Model Description

The system that motivated this work is described elsewhere (Fraser,

1979; Chesson, 1979, 1980; Luderer, Che, Haggerty, Kirslis,

Marshall, 1981; Luderer, Che, Marshall, 1982).

3.1 Hardware Configuration

A set of terminals and computer systems are interconnected via a

local area network switching system.

3.2 Functional Operation

A pair of digital systems communicate with one another as follows:

After a full duplex virtual circuit is set up over the local area

network, one system transmits a message to the other; the

transmitter breaks each message over each virtual circuit up into

packets, and stores the transmitted packets until the receiver sends

an acknowledgement that transmitted packets were properly

received.

When the system is started, the transmitter starts a packet sequence

counter, denoted C, at zero. Messages are transmitted in order of

arrival; packets within messages are transmitted in order over the

virtual circuit. Each packet has a sequence number that is used to

pace the flow of data from the source to the sink. Each time the

transmitter sends a packet, C is incremented by one; each time the

transmitter receives an acknowledgement, C is decremented by one

and flushes this packet from its transmitter buffer. Hence, the

packet sequence counter slides from the first packet to the last, with

packets from different messages possibly interleaved. The maximum
number of packets that can be buffered by the receiver is called the

window denoted W. The largest the transmitter packet sequence

counter can be is W: the transmitter knows the receiver can buffer

at most this many packets. Each packet holds one receiver bulTer;

when the packet sequence counter strikes W the transmitter ceases

to send messages, until a minimum number of acknowledgements are

received. A start/stop protocol would have a window of size one

(W— 1): the transmitter would send the first packet of a message

and wait for a positive acknowledgement before sending the next

packet, and so forth. A double buffering protocol would have a

window size of two (W=2).

How frequently should the receiver acknowledge packets? Ideally it

should be done after each packet; however, if this requires an

unacceptable amount of processor time at the transmitter or at the

receiver or both, then acknowledgements could be batched. The

normal operating regime is where control packets are much less

frequent than data packets; hence, to first order, we might focus

attention on the data packet mean processing time alone.

3.3 Queueing Network Model

The queueing model of this system (Figure 1) follows the above

description quite closely.

3.3.1 Queues and Servers The system consists of a staging queue

(with no server), a transmitter queue (with one server), a transmitter

to receiver queue (with W servers), a receiver queue (with one

server), and a receiver to transmitter queue (with W servers).

3.3.2 Packet Flow Through Queueing Network A packet migrates

from one queue to another: packets arrive at an external queue

where they are staged, before migrating to the transmitter queue,

then through the transmitter to receiver queue, then to the receiver

25

queue, then finally to the receiver to transmitter queue, before

leaving the system; a packet is in the system if it is in the

transmitter or receiver queue (waiting or in execution), in the

propagation queue from the transmitter to the receiver and vice

versa.

3.3.3 Service Required for Each Step of Packet Communications

Each packet requires some processing time by the transmitter,

denoted T,rans, including both packet processing time and data

transmission time. Each packet propagates from the transmitter to

receiver, in a mean time denoted Tuans-rec- Each packet requires

receiver processing time, denoted Tree- Each receiver

acknowledgement packet propagates from the receiver to the

transmitter in a time interval denoted Trec-irans- The receiver and

transmitter processing times are assumed to include the time to

handle acknowledgement processing.

3.3.4 Flow Control Policy Arriving packets are stored in the

staging queue. If there are less than W packets in the system, the

packet immediately enters the transmitter queue; otherwise, the

packet waits in the staging queue.

3.3.5 Phenomena Ignored By Model If a packet is not received by

the receiver (e.g., because it was lost in transmission, because the

receiver buffer overflowed, because the sink acknowledgement that

the packet was received is lost, or for other reasons) the sender will

not receive an acknowledgement within a given time interval called a

time out interval (measured from the end of a given packet

transmission) and the sender will retransmit the packet. If the

receiver did in fact correctly receive a packet, when a new copy of

that packet arrives it will be rejected and another acknowledgement

will be sent. We ignore the impact of time outs, failures of different

sorts, and noise which can garble a packet. Furthermore, we assume

the packet delay due to the local area network is not a function of

the message load, i.e., we assume the local area network simply adds

delay to packet transmission. In a well designed system, these would

be rare events, having little impact on performance.

ACKNOWLEDGEMENT
CONTROL

o
o

o
L,

ARRIVALS

STAGING

RECEIVER TO
TRANSMITTER
PROPAGATION

o
o

TRANSMITterQ RECEIVER

TRANSMITTER
TO RECEIVER
PROPAGATION

DEPARTURES

T f MAXIMUM NUMBER
H IN SYSTEM LESS THAN

I OR EQUAL TO W

Figure l.Queueing Network Block Diagram

4. Mean Throughput Rate Mean Value Analysis (cf Reiser, 1979; Fayolle et

al, 1978)

The ingredients in the mean value analysis are

[l] The transmitter processes a packet; this step has a mean
duration Ttrans and it requires the transmitter processor

I2] The packet propagates over the link from the transmitter to

the receiver; this step has a mean duration T,rans-rec-

[3] The receiver processes the packet; this step has a mean
duration Tree and it requires the receiver processor.

[4] Acknowledgements of correct receipt of the packet are

batched up and then propagate from the receiver to the

transmitter; this step has a mean duration Trec-tram-

The acknowledgement processing per message at the transmitter and
receiver is assumed to be included in T,ran; and Tree respectively.

In an appendix, we obtain upper and lower bounds on the maximum
mean throughput rate, assuming there are aiwavs sufficiently many
packets at the staging queue that there are W packets in the system.

Here we simply summarize the results:

(1)

y^upper = min

Slower -wtr,

^ rec * ^ trans "I" ^ trans —rec ^ rec
^

'/

w
reci "I" J trans—rec

> 0

The physical interpretation of the upper bound on mean throughput

rate is as follows

• If the transmitter is the bottleneck, then

X _ 1

• If the receiver is the bottleneck, then

X - !
i^upper —

'^'^ ' ree

• If the number of buffers is the bottleneck, then

W
trans —rec + 'Tree + J rec—trans

(2a)

(2b)

(2c)

The physical interpretation of the lower bound is that at most one

packet at a time is being handled by the system. The practical

import of the lower bound is that the maximum mean throughput

rate is always positive, and hence the system cannot deadlock or

stop transmitting packets.

4.1 Negligible Local Area Network Delay

In a local area network, packet delay due to the network is presumed

to be negligible compared to packet delay at the transmitter and

receiver. This special case merits closer examination. From this

point on in this section, we assume Ttrans-ree = Tree-lrans=0.

First, we assume that W=\. If we do so, we see

'Kupper ' min 1

7TT, (3)

In words, the maximum rate of transmitting packets is the reciprocal

of the sum of the mean time spent by the transmitter plus the mean
time spent by the receiver.

Increasing the number of buffers from one to two, W=\ to 1V=2

always increases the maximum mean throughput rate, and now we

see

Supper = min T,
1 1

' rec
w>i (4)

Furthermore, this increase is maximized for Trans^Tree^ and then

the upper bound doubles in going from one buffer to more than one

buffer. Why is this so? By having more than one buffer, both the

26

transmitter and receiver can simultaneously be filling and emptying a
buffer, allowing greater concurrency or parallelism compared with
the single buffer case. We also note that allowing more than two
buffers, e.g., infinite buffers, will not increase the upper bound on the
maximum mean throughput rate any further; intuitively, we only

have two serially reusable resources, the transmitter and receiver,

and double buffering keeps them both busy simultaneously. This

suggests investigating the three cases of single buffering, double

buffering, and more than double buffering, in the subsequent

sections. For the lower bound on mean throughput rate, we see that

1
(5)

which is identical to the upper bound for W=\. Why is this so?

There may be significant fluctuation about the mean values shown
above, and in the limit of one big swing about the mean value all of

the messages will pile up at one stage in the network and nothing

will be transmitted until buffers become available.

4.2 Nonnegligible Local Area Network Delay

For the case where the local area delay is not negligible compared to

the transmitter and receiver processing time per packet, the upper

bound on mean throughput rate will increase as a linear function of

the amount of buffering available at the receiver, until either the

transmitter or the receiver becomes a limiting bottleneck. When
does this in fact occur in our model?

Figure 2 plots these upper and lower bounds, as well as the results of

an Jackson queueing network analysis (e.g., Kelly, 1976, 1979), for

the special case where

Ttrans = T,rec—irans (6)

In Figure 2A we have chosen the typical case, negligible network

delay versus transmitter and receiver processing time, while in 2B all

these times are equal to one another, and in Figure 2C the network

delay is ten times the transmitter and receiver processing times.

3-
:2

E(Tr^.,.^.)=t 0 SEC
E(T^r„,)= 1 0 SEC

r«„™n„,-»,^™.=0 I SEC

LEGEND

D = »/EAN VALUE LOWER BOUND
0 - EXPONENTIAL NETWORK ANALYSIS
1 = UEAN VALUE UPPER BOUND

12-0

BUFFERS

Figure 2A.Maximum Mean Throughput Rate vs W
The fraction of time the queueing network model predicts the system

to be in state 7 is denoted by -iriJ) where

T J^-, Ttrans —rec
' trans T

' trans —rec

T ' rec—trans
' rec 7 1

^ rec —trans
(7)

The system partition function denoted G is chosen to normalize the

probability distribution:

^ir(y) - 1 (8)

—O PI

E(T,wi.s,nTc,)=' 0 SEC
E(Tuc,m,)=1 0 SEC

T,„,„ m,F ^mcric-^ 1 0 SEC

LEGEND

= MEAN VALUE LOWER BOUND
o = EXPONENTIAL NETWORK ANALYSIS
A = MEAN VALUE UPPER BOUND

12 0

BUFFERS

Figure 2B.Maximum Mean Throughput Rate vs IV

1

I

E(T,u,i„rT„)=1-0 SEC
E(Tua„„)=10 SEC

n«™.mf~o~cm»=)0.0 SEC

LEGEND

D = UEAN VALUE LOWER BOUND
0 : EXPONENTIAL NETWORK ANALYSIS
1 = MEAN VALUE UPPER BOUND

~~B

BUFFERS

Figure 2C.Maximum Mean Tiiroughput Rate vs W
Two regimes are evident, one where the buffers are the bottleneck

and the mean throughput rate grows linearly in the number of

buffers, and one where the receiver is the bottleneck and the mean
throughput rate is independent of the number of buffers. For Figure

2A this occurs at IV=2; for Figure 2B this occurs at W=4; for

Figure 2C this occurs at W=22. As we see, there is little need for

large buffers at the receiver in a local area network, at this level of

analysis, provided the network delay is negligible compared to the

packet processing delay. As is evident from the figures, the Jackson

network analysis tracks quite closely the mean value upper bound on

throughput rate.. Since the Jackson network analysis assumes the

packet processing times have significantly greater fluctuation about

their mean than in actual systems constant processing time per

packet, and since the agreement (at this level of analysis) between

the mean value upper bound and the Jackson network is quite close,

this suggests using the mean value upper bound as a guide to setting

flow control parameters, because it is quite straightforward to

analyze.

27

5. Delay Statistics Analysis for W-1 and W-2 with Negligible Network

Delay

For the special case of W=l and IV=2 with T,rans-rec= Trec-irans^O,

we wish to calculate the moment generating function of the packet

delay random variable Tjeiay, which is measured from the instant a

packet arrives until it is completely processed by the transmitter and
receiver. We assume that packets arrive at the transmitter

according to simple Poisson statistics, i.e., the packet interarrival

times are independent identically distributed exponential random
variables with mean interarrival time l/X. The packet processing

times at the transmitter and receiver are assumed to be independent

identically distributed random variables denoted by Tirans and Trec\

these have associated moment generating functions

E [exp (-Z Tirans) 1 = G,rans (z) (9)

E[exp(-zTrec)] = Greciz) (10)

5.1 Delay Statistics for W = l with Negligible Network Delay

For W=\ the system acts as a single serially reusable resource whose
service time is the sum of the transmitter and receiver packet

processing times. The maximum mean throughput rate is the

reciprocal of the sum of the mean packet processing times at the

transmitter and receiver:

1

^ I i trans ~^ ^ rec J

The moment generating function for packet delay is given by

Elexp(~zTcielay)] =

J trans (z) Grec(z)

(11)

(12)

z(l - XE(j,rans + Tree)) r

Packet delay is denoted by the random variable Tdeiay~ measured
from the time a packet arrives until it leaves, and its mean is given

by

E[Tdelay] - 2[\ - Ktfj
X£[(7-„.„ + Trec)^ + E(T,rans) + £(r.,,Xl3)

^" ^ rec

5.2 Delay Statistics for W = 2 with Negligible Network Delay

Figure 3 shows an illustrative arrival pattern and completion pattern

of packets for the H^=2 case. This suggests analyzing the delay

atistics for this case in two stages:

© ©CD

IDLE

IDLE

®
TT T

I T, I I

I I
(Dl

I I

I
I

I

I I

I I

I

I

®

SYSTEM

Q
INFINITE
CAPACITY
BUFFER

TRANSMITTER

ZERO
DELAY
CHANNEL o-

L.

BUFFER RECEIVER*

CAPACITY
» 2 PACKETS

I

I

Figure 4.Queueing Network Block Diagram for]V=2

The first stage acts as a modified M/G/1 queueing system, with the

modification being that the initial service time of a busy period has a

different distribution from the other service times during a busy

period. The random variable 7",„„ denotes the initial service time at

the first stage during a busy period, and is given by

Tini, = maxlT,rans,Trec - Ta \ = T,rans + max[0,Trec - 1(14)

where Ta is the arrival time of packet that ends the idle period and

makes the transmitter busy. Note that for the case where

Tiram>Trer. e.g., when both times are constant, this initial interval

involves transmitter delay, and all the delay will occur at the

transmitter and none at the receiver. The random variable Tmax

denotes the service times of all but the first packet during a busy

period:

-* max maxiTtransJreA (15)

The moment generating functions for these random variables are

denoted by

E[exp (-Z Tinii

)

] = Ginu (z) (16)

E [exp (-Z Tmax)] = G max (z) (17)

The distribution for the interarrival time is given by

PROB[Ta <X] = 1 - exp{-\X) \ = 1/E[Ta] (18)

If the packet delay distribution is nontrivial, the maximum mean
throughput rate must be less than the mean of Tmax:

X£:[rmax] = \El ftlQX (Ttrans •, Tree)] ^ 1 (19)

ARRIVALS

OEPARTURF«

TRANSMITTEI

To determine the delay statistics, we look at completion times of

packets finishing the first stage of processing. At this epochs we can

associate an imbedded Markov chain, where Nk,K'^0 denotes the

number of packets in system at the kth completion epoch. From

earlier definitions, we can write

E[X'^^^'\Nk=0] = GiniiMl - X)] (20)

E[X'^^^'\Nk=J>0] = A'-/-iG„,ax[X(l-A')] (21)

IOLE
I

^jl RECEIVER

The invariant measure associated with the imbedded Markov chain

for Nk,K'^0 is denoted by ir^t, which has moment generating

function fCY):

1® ilOLE r(^) = ^^kxi^ (22)

TIME

Figure 3.111ustrative Operation for W=2

[1] The first stage is the time from packet arrival at the

transmitter to the start of service at the receiver

[2] The second stage is the time from the start of service at the

receiver to the completion of service

Figure 4 shows a queueing network block diagram of this modified

system.

We now substitute into this expression using previously defined

functions:

fU) = TToGinuMX -X)]+ 5:A''i^-'irA:Gmax[X(l - X)] (23)

Rearranging this, we find

,X)]- G
'max(^)

maxtXd X)]
(24)

In order for fCY) to be a proper moment generating function, we

require f(l) = l, and hence

28

_ 1 -XElTu^] .

1 +Kk[lini, - ^ma.l
(25)

Now we have an expression for the moment generating function for

the number in system at completion epochs to the first stage of

packet processing. We want to relate this to packet delay. Because

the arrival statistics were assumed to be Poisson, the moment

generating function for the time spent in the first stage equals the

moment generating function evaluated at Y=i\ - Y)/\ which

is a deep generalization of Little's Law (Conway, Maxwell, Miller.

1967, EO.20, pp.156). Hence, the total packet delay moment

generating function is now known:

E{exp(-zTdelay) \ = f "^"^ Grec (z) (26)

\-XE[Tmij] , (z - X)G,n„ (z) ,+ XGrm^iz) Q
I "t" A.i [y irut i max! Z - \[\ - Gmax(zjJ

For the special case where the transmitter and receiver packet

service times are constant, the delay distribution for W=2 is

identical to that for W—'oo.

The mean packet delay is given by

E{Tdelay]

E I Tinii ax J

1 "I" Ail [1 inii I niax

The first term is due to the start

transmitter packet processing time

waiting time in the buffer, and the

processing time. For the special

receiver packet processing times

illustrative results in Figure 5; the

to that for ff—», and for normal

smaller than for ff=l.

of busy period and includes the

, the second term is due to the

third term is the receiver packet

case where the transmitter and

are constant, we have plotted

mean delay for H^=2 is identical

operating regions is significantly

12.0

10.0

> 8.0

-J

6 6.0
<
a.

<
Z 4.0

2.0

0.0

W=2/

\

/ w=aD

1 1 1 1 1

0.0 0.2 0.4 0.6 0.8

PACKETS/SEC
^0 1.2

Figure S.Mean Packet Delay vs Arrival Rate

expression for Pf—~, which shows how close the VF=2 delay

statistics can in fact be.

6. DeUy Statistics Analysis with Negligible Network Packet Delay for

^f=oo

Our goal is to calculate the moment generating function of the

packet delay random variable Td^iay, measured from the 'n^tant a

-^et arrives at the transmitter until it departs the receiver. We

examine two special cases for w=oo assuming

Tirans-rec— Trec-irans—0. The packet arrival statistics are Poisson: the

interarrival times are indeoendent identically distributed exponential

random variables with mean interarrival time 1/X. The transmitter

and receiver packet processing times are independent identically

distributed random variables, with mean transmitter and receiver

packet processing times denoted by T,rans and Tree respectively.

6.1 Exponentially Distributed Packet Processing Times

The first case is where the transmitter and receiver packet processing

times are mutually independent exponential distributions. This is a

Jackson network (Kelly, 1976, 1979) and we merely cite the results

E I Tdelay 1
— ' ^^^^ -p

i ~" A V trans T"

XT 2

+ . / , .

tram) Zy\ — KTrec)2(1 - kl

' rec
(28)

+ Tr,

The latter form is given to suggest that the mean packet processing

times at the transmitter and receiver are augmented by a form

suggestive of the mean waiting time for an M/M/1 queueing system,

for the transmitter and the receiver.

(27) 6.2 Deterministic or Constant Packet Processing Times

The second case is where the transmitter and receiver packet

processing times are deterministic or constant. Packets are assumed

to arrive at time instants denoted by t=0,A\,A \ + Aj,--- so that Ak
is the interarrival time between the (k-l)th and kth packet. The

time spent by the kth packet waiting to begin service at the

transmitter and at the receiver is denoted by Tirans.w, and Trec.w^,

respectively.

For H^=oo, the following recursions specify the waiting time

sequences for packets at the transmitter and receiver:

T,rans.W,„ = mOX (Q,T,rans .W. + Tuans " Ak + \) (29)

^w. = niax(.Q,Trec.W^ + Tree " (G + l
- Q)) (30)

where Ck is the completion time of the kth packet by the

transmitter:

+ Ak + T,irans
.
(f. + T„ (31)

Our goal is to show that the total time spent by a packet waiting at

the transmitter and the receiver, denoted by Tiy^, is given by

= max[0,Tiv, + Tn Ak + \] (32)

where Tm2.x^>nax[Ttrans ^Tree^ is the larger of the two packet

processing times.

Two cases arise. First, if the transmitter is the slower of the pair,

i.e..

Ttrans — Tmin — WAX [Tt, ? , Tree] (33)

then Tree.tv,=0 for all values of k, i.e., there is no waiting at the

receiver at all. The closest spacing in time of packets departing from

the transmitter is greater than Tree, and hence we have shown

Tw,„ = max[0,Tw, + ^max - Ak + \] (34)

The second can be handled in two steps. First, if

Ttrans.W^ + Ttrans — Ak + l ^ 0 (35)

then from the recursions we see

Q+ l
- Ck = Ttrans (36)

and hence

Tirans.W^„ + Tree.W^„ (37)

= Tirans.W^ + Ttrans — Ak+ l + max[0,Trec.}V, + T^max - T,rans]

= Ttrans.W, + Trec.W, + T'max — Ak +] > 0

29'

or in other words

Tw,,, = Tw, + r^ax - Ak+x (38)

as was desired. The second special case is the converse: if

Tirans.W^„ = 0 T,rans,W^ + Ttrans — Ak + \ < 0 (39)

so that

C/t + l
— Ck = Ak + \

— Tirans.W^ + Ttrans,W^„ (40)

Substituting this into the earlier recursions, we see

Tiram,W^„ + Trec.W^„ (41)

= max[0,Ttrans.W^ + Trec.tV^ + T'max — Ak + \]

or in other words

rpf.,, = inaxlO,Tw, + T'max - Ak+\] (42)

and hence we have obtained our desired result.

Using this recursion, the mean packet delay is given by

EiTdelay] = T,rans + Tree + 2(1^- v/
'

Lx) ^ ^ ^'^^^

6.3 Interpretation of Results

For the first case, the transmitter and receiver processing times

exponentially distributed, the mean packet delay is identical to that

of two M/M/1 queueing systems. The mean packet processing time

is inflated or multiplied by the reciprocal of the fraction of time each

stage is idle.

For the second case, the transmitter and receiver processing times

deterministic or constant, the mean packet delay looks like that of a

single M/D/1 queueing system, with the slowest stage contributing

all the waiting time, while all the stages contribute to the packet

processing time delay. For the case where Ttrans > Tree this will be

the case; for the case where Ttrans <Tree, in fact there will be some
delay at the transmitter stage, simply due to the bursty nature of the

Poisson process (i.e., an arrival has a nonzero probability of occuring

within the transmitter packet processing time of a previous arrival),

but the system behaves as if all the waiting were at the transmitter.

Due caution is needed.

References

[1] E.Arthurs, B.W.Stuck, Upper and Lower Bounds on Mean
Throughput Rate and Mean Delay in Queueing Networks

with Memory Constraints, Bell System Technical Journal, 62

(2), 541-581 (1983).

[2] J.Atkins, Path Control: The Transport Network of SNA,
IEEE Transactions on Communications, 28 (4) 527-538

(1980).

[3] W.Bux, K.Kuemmerle, H.Linh Truong, Balanced HDLC
Procedures: A Performance Analysis, IEEE Trans.

Communications, 28 (ll), 1889-1898 (1980).

[4] G.L.Chesson, DATAKIT Software Architecture. 20.2.1-

20.2.5, Proceedings International Communications

Conference, Boston, Massachusetts, 1979.

[5] G.L.Chesson, A.G. Eraser, DATAKIT Network Architecture.

COMPCON'80, 25-28 February 1980, San Francisco,

California, IEEE Catalog Number 1491-0/80, pp.59-61

[6] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of

Scheduling, Addison-Wesley, Reading, Massachusetts, 1967;

Little's formula, pp. 18-1 9.

[7] M.C.Easton, Batch Throughput Efficiency of

ADCCP/HDLC/SDLC Selective Reject Protocols. IEEE
Trans.Communications, 28 (2), 187-195 (1980).

[8] G.FayoUe, E.Gelenbe, G.Pujolle, An Analytic Evaluation of
the Performance of the "Send and Wait" Protocol, IEEE
Trans.Communications, 26 (3), 313-319(1978).

[9] A.G.Fraser, DATAKIT- -A Modular Network for

Synchronous and Asynchronous Traffic, 20.1.1-20.1.3,

Proceedings International Communications Conference,

Boston, Mass., 1979.

[10] P.E.Green, An Introduction to Network Architecture. IBM
Systems Journal, 18 (2), 202-222 (1979).

[11] G.C.Hunt, Sequential Arrays of Waiting Lines. Operations

Research, 4, 674-683 (1956).

[12] IBM, General Information- -Binary Synchronous

Communications, IBM Systems Reference Library, GA27-
3004-2.

[13] IBM, MSPfl Binary Synchronous Communications: Program
Logic Manual, GY34-00 12-1.

[14] F.P.Kelly, Networks of Queues. Advances in Applied

Probability, 8, 416-432 (1976).

[15] F.P.Kelly, Reversibility and Stochastic Networks, Wiley,

Chichester, 1979.

[16] L.Kleinrock, Principles and Lessons in Packet

Communications. Proceedings IEEE, 66 (11), 1320-

1329(1978;A).

[17] L.Kleinrock, On Flow Control, Proc. Int. Conf.

Communications, Toronto, Canada, 27.2-1—27.2-5, June

1978;B.

[18] D.E.Knuth, Verification of Link-Level Protocols. BIT, 21,

31-36 (1981).

[19] Wolfgang Kramer, Investigations of Systems with Queues in

Series. Institute of Switching and Data Technics, University

of Stuttgart, Report #22(1975).

[20] J. D.C. Little, Proof of the Queueing Formula L=\W,
Operations Research, 9 (3), 383-386(1961).

[21] G.W.R.Luderer, H.Che, W.T.Marshall, A Virtual Circuit

Switch as the Basis for Distributed Systems, Journal of

Telecommunication Networks, 1, 147-160 (1982).

[22] G.W.R.Luderer H.Che, J.P.Haggerty, P.A.Kirslis,

W.T.Marshall, A Distributed UNIX System Based on a

Virtual Circuit Switch. ACM Operating Systems Review, 15

(5), 160-168 (8th Symposium on Operating Systems

Principles, Asilomar, 14-16 December 1981), ACM 534810.

[23] M.F.Neuts, Two Queues in Series With a Finite,

Intermediate Waiting Room, J.App.Prob., 5, 123-142 (1968).

[24] M.F.Neuts, Matrix Geometric Solutions in Stochastic Models,

Section 5.2, pp.217-232, Johns Hopkins Press, Baltimore,

MD, 1981.

[25] M.Reiser, A Queueing Network Analysis of Computer

Networks with Window Flow Control, IEEE

Trans.Communications, 27 (8), 1199-1209(1979).

[26] M.Schwartz, Performance Analysis of the SNA Virtual

Route Pacing Control, IEEE Transactions on

Communications, 30 (1), 172-184 (1982)

[27] C.A.Sunshine, Factors in Interprocess Communication

Protocol Efficiency for Computer Networks, AFIP NCC,
pp.571-576(1976).

[28] C.A.Sunshine, Efficiency of Interprocess Communication

Protocols for Computer Networks, IEEE Transactions on

Communications, 25, 287-293(1977).

30

[29] A.S.Tanenbaum, Computer Networks, especially Section 4.2,

pp.148-164, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[30] K.C.Traynham, R.F.Steen, SDLC and BSC on Satellite

Links: A Performance Comparison, Computer

Communication Review, 1977

(311 S.Wecker, DNA: The Digital Network Architecture. IEEE
Transactions on Communications, 28 (4), 510-525 (1980).

[32] L.W.Yu, J.C.Majithia, An Analysis of One Direction of
Window Mechanism. IEEE Trans.Communications, 27 (5),

778-788(1979).

31i

I

I

Modelling and Monitoring a LAN
One Experience

W. Bruce Watson

Lawrence Livermore National Laboratory
Livermore, California

This is a partial summary of efforts to design, model,
measure and optimize a large, Hyperchanne 1 -based , local
network. 1 elaborate upon the cyclic interaction of these
four activities and contrast our successes and failures in
each with its costs.

Keywords: discrete event simulation; Hyperchannel based
network; model validation; network monitoring; network
performance evaluation.

1. Introduction

Clark, Pogran and Reed^ have
suggested that the issues of local
network design can be classified as
either configuration issues or protocol
issues. They visualize networks as
consisting of four basic elements; the
transmission medium, a control mechanism,
the interfaces and the protocols.
Network performance is not only strongly
dependent upon each of these elements,
but also upon their mutual interactions.

As has been pointed out by
Sunshine^, Pouzin and Zimmermann*^, and
others, network traffic properties such
as message sizes, rates and their
distributions have a great effect on

i4orU funded by the Nat i ona I Bureau of
Standards and performed under the
auspices of the U.S. Department of
Energy by the Lawrence Livermore
National Laboratory under the contract
number N-7405-ENG-H8

.

32

network performance, and further that
performance is not only strongly
dependent on the traffic but also upon
the mutual interaction of the traffic,

the configuration and the protocols.

The study and characterization of

these interactions is one of the goals of

current local network research at LLNL
More specifically, the Local Network
Research Group (LNRG) is currently
investigating the traffic characteristics
and network performance in an operational
High Data Rate Local Network (HDRLN) as
part of a study being conducted for the
National Bureau of Standards (NBS). As
currently envisioned, the NBS sponsored
investigation will not only rely on
monitoring and measuring techniques, but
also make extensive use of a model, a

comprehensive, discrete event, computer,
simulation of Network Systems
Corporation's (NSC) Hyperchannel

Monitors and models can be and have
been of critical importance in the

design, implementation and tuning of

local area networks (LAN) and network
operating systems (NOS). For example,
modelling and simulation can verify and
explore the anticipated performance of

tentative LAN designs well in advance of

their actual implementation. Once
implemented, modelling and monitoring can
help the designer better understand and
tune the implementation enabling him to

enhance its performance in some desirable
way. This is basically an iterative or
feedback process that is a part of the
larger, cyclic, design-measure-model
process depicted in figure 1. Modelling
and monitoring provide the feedback
without which effective design is not
possible. This design-measure-model
process is certainly nothing new and I

only mention it here to stress its cyclic

nature and that much of its usefulness
derives from the fact that it is cyclic.

Modelling, for example, is a way of

checking out a design through simulating

Design

^ Model

Implement

Tune

Measure

Model/Validation

Extrapolate

Figure 1. The cyclic, design-model-measure process

(i), showing various possible feedback paths (j).

its behavior m advance of (or

concurrently with) its actual
implementation. Ideally, as flaws are
detected or enhancements discovered
during the design's simulation,
beneficial modifications are fed back
into the original design and its model,
the whole process being repeated. This
is a cyclic process that is hopefully
speedily and cheeply convergent. Today,
no serious designer of network protocols
and hardware fails to simulate his

designs. It is probably the only
practical way of knowing whether complex
state diagrams are complete and accurate,
or of selecting one from among a set of

competing designs.

Figure 1 indicates that the points
of feedback m this cyclic process occur
at the modelling and measuring locations.

Without modelling and measuring,
successful and efficient design and
implementation of things as complex as

networks becomes difficult if not
altogether impossible. If you don't
(can't) model it, how can you hope to

understand it, and if you don't measure
it how do you know if it's working right

(how can you hope to fix it)?

So, the NBS project will proceed by
a composite of simulation and measurement
methodologies m the following way: we
will use a monitor to study the
performance of LLNL's HDRLN, the Craynet
(a Hyperchannel based LAN); we will also

use this monitor to validate LLNL's

discrete event, computer simulation of

the Hyperchannel; and we will use this

validated simulation to characterize the
performance of a HDRLN at extrapolated
loads (loads derived from measured values

by extrapolation).

1 shall use the cyclic,

design-model-measure paradigm as the

schema throughout the remainder of the

paper for elaborating upon our
experiences, our successes and failures,

and the costs.

2. Design

The Craynet, figures 2, 3 and 4, a

high data rate local network (HDRLN), is

the only access the user's have to LLNL's
complement of three (soon to be four)

Cray computers. It is also the only
access the Crays have to facilities such
as the long term storage and transfer of

33

1 m 1 m 9.2 m 1 m 1 m

SEL
OCTO-
PORT.

A
470

9.7 m

B.

I CONC. i

B.

A A A A A A A
130 130 130 220 510 400 400

A
400

A
327

A
120

A
120

A
540

10 m 5 m 1 m 5 m 1 m

A
540

A
400

8.5 m

Connectors A.

A. - LEA 76-903301 {RG59B/U)
KC59-232 (BNC)

B. - BELDEN 9248 (RG 6/U)

TEI 14949-UPL20-41

A. B.

C. - ANDREWS FHJ4-75
ANDREWS 44AN75 (N-Serles)

C- BELDEN 9292

Figure 2. The CRAYNET, a schematic showing connectors, spacing, adapter types and attached hosts.

34

CHORS

CRAY1

D
CRAY1

E

CRAY! K1110

S

7600

R

7600

U
7600

MASS

K1105

jUmux

4600

jjtmux

4400

OCTO-
PORT

3000
Terms

3400
Terms

Lo

TMDS
Hi

TMDS
1400

Terms
1000

Terms

P

PDP-10

- 0 - - X -

Combo Combo
ATL

000

Terms

200

Terms

600

Terms

400

Terms

Figure 3. OCTOPUS NETWORK, with the CRAYNET subnet shown in heavy black lines.

files as well as to the usual output
devices.

Figure 2 is a schematic diagram of

the various Network Systems Corporation
(NSC) Hyperchannel adapters that are

attached (or will soon be attached) to

the Craynet. It shows their spacing
along the Hyperchannel coaxial cable, the
connectors each one uses as well as the
computer/service to which each one is

connected.

35

A = Adapter number
X = Transfer rate Mbps
P = Adapter priority

Device = Host/device

TYPE = Adapter TYPE
Q = 320-3200 kbits/msg burst mode
0 = 320-3200 kbits/msg multiplex

mode
= 1 kbits/msg, multiplex mode
= 25-250 kbits/msg multiplex mode

50/12

CHORSl 10/7

A540

Figiire 4. An older, single CRAY version of CRAYNET showing traffic patterns and message sizes.

Octopus, figure 3, LLNL's computer
network, has evolved over the last 15
years as a packet switched, store and
forward, partially connected mesh

network. The Hyperchannel based Craynet
is represented in figure 3 by the heavy
black lines. It is the latest addition
to the Octopus network.

36

Figure 3 depicts the logical
interconnection of the three Cray
computers, a plethora of storage devices,
output devices and terminal
concentrators. The Craynet, a broadcast
network, is thought of as an adjunct to
the Octopus network. It was looked upon
as a simple way of achieving many point
to point paths amongst all the various
host machines, output/storage devices,
and terminal concentrators for all newly
acquired computers.

Indeed, some of the traffic on the
Craynet is store and forward traffic from
the Octopus network— internetwork traffic

requiring certain machines to act as
gateways. For example, files from the
Crays destined for the automated tape
library (ATL) must pass through the
multiple access storage system (MASS),
which acts in this instance as a gateway
to the older part of the octopus network.
The actual path of transfer is then,
Cray*MASS^7600-S=>PDP-10=>ATL. I mention
this because we at LLNL tend to think of

and use (and possibly short sightedly so)

the Hyperchannel as just another link in

the existing message network, the
Octopus.

Table 1 presents the data paths
within the Craynet indicating the message
size and modes of transmission per path.
It is interesting but not surprising to

observe that many paths are not used.
Indeed, if one considers only the major
traffic and assumes that messages never
need to travel in store and forward mode,
the Craynet configuration logically

begins to resemble a star, with the three
Cray adapters as the central node and the
concentrator/storage/output adapters as

the peripheral nodes. Figure 4 depicts
this for an older, single Cray version of

the Craynet.

The Crays are large, fast computers
operated under timesharing. Their
principle use is in the numerical
solution of large systems of partial

differential equations pertaining to

physics calculations. During the day,
most programmers/physicists are
developing new versions of their
calculations or debugging existing ones.

In addition, a large number of users are
preparing input to these calculations to

be performed during nightly production
runs. Finally, a lot of users use these
machines to further process and analyze
results and output from previous nights'

production runs. During the night and on
weekends, the Crays are mainly used in

production mode.

There are radical differences
between the daytime, user generated tasks
and nighttime, production oriented tasks
of the Crays. During the day, the tasks
are numerous, small and execute for short
periods of time. The opposite conditions
occur at night. Because the timesharing
system is tuned to reflect this
disparity, interactivity is very poor
during the nighttime hours, and large
programs seldom get loaded or executed
during the daytime hours.

3. Model

It is unfortunate from the
standpoint of this cyclic paradigm whose
virtues 1 am trying to extol that the
Hyperchannel, the Craynet, and the
Octopus network itself were designed and
implemented without the aid of any formal
modelling or computer simulation
techniques.

Who knows how much easier it would
have been to do all of this, or how much
more efficient these designs could have
been had modelling been used?
Unfortunately, history does not record
its alternatives, and it's difficult if

not silly to try to argue with success.

As an aside, it's worth noting that
during the initial design of Ethernet,
extensive use was made of modelling and
computer simulation techniques to
eliminate the useless or deleterious
features, and optimize the favorable
ones. By such a process, its designers
finally arrived at what has come to be
called Ethernet— carrier sense multiple
access with collision detection (CSMA/CD)
with binary backoff and retry. Both the
original Ethernet and the now
commercially available product perform
excellently the tasks for which they were
designed.

The Hyperchannel, on the other hand,
which predates the Ethernet by quite a
few years as a commercial product, was
designed and implemented almost entirely
without the use of models and simulation.
With its CSMA media access method and
link level protocols, it is capable of

operating faster than 8000 messages a
second (512 bytes per message), i.e. 120

37

Table 1. Showing message sizes, paths and transmission modes for the CRAYNET. Here, O represents 1.2-250 kbits/msg

sent in multiplex mode; # represents 0.49 mbits/msg sent in burst mode; and 0 represents 0.49 mbits/msg sent in

multiplex mode.

C
c C C C M M P P 7 7 7 H
R R R R A S m D S D V 8 T 6 6 6 0
A A A A S E u P T P A 1 M 0 0 0 R
Y Y Y Y S L X -11 C -10 X 9 D 0 0 0 S

-C -C -C -D -D -D -E -E -E -F -F -F -1 -2 's S -R -S -U -1 -2

micro-seconds per message. Yet when the
various hosts in the Craynet, figures 2,

3 and 4, are subjected to loads such as
given m tables 1, 2 and 3, they are
unable to present to the network a load

anywhere near this magnitude, perhaps a

few hundred messages per second on a

sustained basis (and during peaks?).
Weil, m 1977, as part of a research
project at LLNL to evaluate Hyperchannel

38

Table 2. CRAYNET message sizes, frequencies, modes and paths where BM = data stream mode,

and MM = packet mode.

Source Msg. Max. Msg.

Adapter # Sink Size Frequency Msg.

(= priority) Adapter # (K-bits) (msg/sec) Mode* Description

1 (12,22,25) A,

5

490

16 /i on4yu

Z KlJ,Z^,Zb) iU A on y- (-17 f 9

J (,14,Z4,Z/;
-7 9 9 c;n (' 9 ^z-zjU \ :

J

-7 (T /, O/i 0"7 ^3 {iii,za,z/

)

Q Qa,

9

9 Q
. Z- . 0 4

T. / 1 /i 9/i 0~7 ^ 11 1 ^ 9 A
. z— . 0 \ J

39-269

1 C 1 9"^ 9< 'I 1 Q 9n

/i c 19 1 /i 99 9"^iz , 14 , ZZ , Z5 4>U

/. c
^» 5 17 490

A, 5 7,8,9,11,21 .018-.

8

(?)

6

7 J , 14 , z4 , z

7

.018 _< z\i)

7
0011 1

c

0,9 , 11 , 15 n 1 0 0•Olo-.o (o\
\ ')

7 21 C?) (?)

0
8 3,14,24,27 .018 £ 21."^)

8 9,11,15,21 .018-.

8

(?)

9 3,14,24,27 mo
• Ulo _£ Z \ i)

9 11 1 c 0111 ,15,21 mo Q.Uio-.o

10 13,2,23,26 490

11 3,14,24,27 .018

11 17 490 (?)

15 3,14,21,24,27 .018-.

8

(?)

16 1 ,12,22,25 490 (?)

17 490 (?)

17 11 490 (?)

18

19

20

21 3,14,24,27 .018-.

8

(?)

16 A, 5,

7

490 (?)

21 A,

5

(?)

21 7,8,9,11,15 .018-.

8

(?)

BM CRAY-D to MASS (file xfer)

BM CRAY-D to CDC 819 DISKS

MM CRAY-D to STC tapes

BM CRAY-D to SEL

MM CRAY-D to terminals

MM Store & fwd backup terminal msgs

MM CRAY to TMDS (Text-Pix Display)

MM CRAY to CHORS

BM MASS to CRAYs (file xfer)

BM MASS to 7600 (file xfer store/fwd)

MM Store & fwd backup terminal msg

MM SEL to CRAYs terminal MS

MM SEL to TTYs (store & fwd), I/O

MM SEL to TMDS (?)

MM y-mux to CRAYs input TTY msg

MM y-mux, store & fwd TTY msg, I/O

MM PDP-11 to CRAYs input TTY msg

MM PDP-11, store & fwd TTY msg I/O

MM STC Tape to CRAYs

MM PDP-10 to CRAYs store/fwd TTY input

BM PDP-10 to 7600-S store/fwd xfer

MM VAX store/fwd TTY msg I/O

BM 819 's to CRAYs file xfer

BM MASS to CRAYs file xfer

BM 7600s to PDP-10 store/fwd file

CHORS

CHORS

MM TMDS to CRAY msg store/fwd

BM SEL/MASS store/fwd file xfer via 819

MM TMDS to MASS

MM TMDS, store/fwd TTY msg I/O

39

Key to Tables 1 and 2

STC STORAGE TECHNOLOGY CORP.

CRAY CRAY RESEARCH CORP. CRAY-1

7600 CONTROL DATA CORP. 7600

PDP-11 DIGITAL ELECTRONICS CORP.

VAX DIGITAL ELECTRONICS CORP.

PDP-10 DIGITAL ELECTRONICS CORP.

TMDS LCC designed

819 'S CONTROL DATA CORP.

SEL SYSTEMS ENGINEERING CORP.

y-MUX LCC designed

MASS LCC designed

CHOPS LCC designed

tape controller and 6250 bpi drive

computer

computer

secondary terminal concentrator

computer

computer

_television display monitor s_ystem

network disk(s)

internet gateway (octoport)

terminal concentrator 9600 baud

multiple £ccess s^torage s^ystem (CDC

38/500, TI-980

computer hardcopy output recording

system (18000 1pm printer and yfilm)

based networks and their potential, a

discrete event computer simulation of the
Hyperchannel was developed. The initial

thrust of this project was to explore the
performance of such networks, but very
quickly its goal became the detailed
examination of Hyperchannel functionality
(adapter hardware and protocols). Much
was learned and much,
reported, mostly about certain
shortcomings and inadequacies of these
protocols, and their impact on
performance at loads higher than occur in

the Craynet.

I bring this up only to indicate the
feedback that took place subsequently in

the design of their new product, the
Hyperbus. NSC did cooperate extensively
with us during the development of the
Hyperchannel model, and corrected those
problems brought out by simulation that
were ecomically feasible to correct.
However, a few potentially serious
shortcomings remained, notably in the
area of buffer management. Today if one
compares Hyperchannel functionality with
that of the new Hyperbus, one can't help

but observe that many of these
shortcomings were corrected in its

design.

What I am describing here is a

design-model feedback path that
transcended not only a succession of

products, but also the relationship
between vendor and customer, where all of

the designing occurred in a private
corporation and all of its simulation
occurred in a government laboratory. As
one could expect, such a feedback path is

greatly attenuated by the conflict

between a corporation's need to protect
its ideas and the government's insistence
that the results of all publicly funded
research end up in the public domain.
Add to this conflict of needs the legal

restriction that the U. S. government
may not fund a project that would result

in an unfair advantage for some
corporation(s) over its competitors.

As another example, 1 have been
assured on several occasions by people
within Control Data Corporation (CDC)
that not only did they benefit from our

40

studies of the Hyperchannel in the design
of their own network product, the Loosely
Coupled Network (LCN), they also made
great use of their own computer models
and simulations.

And lastly, the American National
Standards Institute (ANSI) also
benefitted from the LLNL and CDC
simulations. That is, the ANSI
committee, X3T9.5, proposed standard, the
Local Distributed Data Interface (LDDl)
that is currently in the final stages of

approval, embodies basically a

Hyperchannel-like design with, in my
opinion, all of its shortcomings and
inadequacies corrected. The point I am
trying to make is that in at least three
instances a design was improved by the
feedback of information obtained as a

direct result of the simulation of the
original design.

What did all of this cost? The
costs lie mainly in three categories:
language costs, model development costs,

and simulation execution costs. We used
the ASPOL language (a CDC software
product for 6600 and 7600 machines only),

which operates only under CDC operating
systems. As simulation languages go, it

was fairly inexpensive to acquire and to

master (compared to CACl's SIMSCRIPT),
but not particularly powerful or
ubiquitous (compared again to SIMSCRIPT).
The model required about one half of a

man year to program and debug. Finally,

computer simulation used about an hour of

CDC-7600 cpu time per study (depending of

course on the nature of the study) for

the type we did.'^'^-^-'^-^-^

Before I leave this section on
modelling/simulation, I'd like to explain
how the model was used to help design a

network monitor (currently being built

for LLNL by an outside corporation
entirely with funds provided by NBS). If

.

the reader wishes to avoid reading a lot

of gory detail about buffer size

determinations, he may skip ahead to the
measurement section.

The Hyperchannel Monitor Device
(HMD), figure 5, will detect, time-stamp,
bus-label and write to magnetic tape
selected portions of all frames that
appear on each Hyperchannel transmission
cable (bus) to which it is attached.
Specifically, the selected portions are

the frame header and part of the frame
body, figure 6.

41

1.6 Mbps

8089
8089
Buffer

1

50 Mbps

50 Mbps
I

^Hypch. bus 6 #2
]

#1 o Hypch. bus

Figure 5. A schematic of the HMD showing data paths,

(dotted lines), position of critical buffers and FIFOs,

and maximum, data transfer rates in megabits/second.

The HMD is totally passive as far as
the Craynet is concerned in that it never
originates any network messages of its

own, nor is ever the explicit recipient
of any. It will not impair the normal
operation of the Craynet in any way. It

attaches to the Hyperchannel at the
physical end of the buses replacing the
terminators that are usually there.

Since each bus normally operates at

a rate of 50 megabits/second (Mbps), the
HMD must be able to copy bits from each
bus into internal buffers at this same

Part Field Bits

Sync 24

Frame code 8

Access code 16

To 8

Frame From 8

header Response 16

Length count 16

Header checkword 16

Data
field

Data

Data checkword

Sync

n

16

56

Fig. 6. Hyperchannel frame format.

rate. The 50 megabits/second rate is the
instantaneous maximum rate at which bits

could arrive at the HMD. However, due to

the time multiplexed aspect of the
Hyperchannel bus access strategy, and the
fact that it is only the fronts of frames
that are copied, the average, sustained
maximum data rate is only a few
megabits/second.

As the HMD collects data, it writes
it to a magnetic tape. Data reduction
and data base management routines will

subsequently analyze the data on these
tapes on some suitable computer(s) in the
Livermore Computer Center (LCC).

At the outset, by far the most
critical design question we had to answer
was, Could the various internal buffers
in the HMD keep up with the data rates
expected to exist on the Craynet? To
answer this question, we used the
discrete event simulation model of the
Hyperchannel. We subjected the modelled
Hyperchannel, figure 2, to a steady state
load similar to those discussed in the
above section and depicted in the plots
at the end of this memo. As far as we
could tell, this load is real and
typical, and amounts to about 5% of the
Craynets capacity.

Briefly reviewing the internal
buffers of the HMD, figure 5, there is a

FIFO buffer that receives data from the
Hyperchannel bus, i.e. there is one FIFO
per bus in the network. Each FIFO is

capable of receiving data at the bus rate

of 50 Mbps. Each FIFO consists of 32 (or
64, 96, 128) 128-byte entries. Each
entry can hold the data captured from one
and only one Hyperchannel frame. Not all

of the bits in a Hyperchannel frame are
desired, only the leading bits containing
information about the frames function,
size and routing, figure 6. So, no more
than 77-bytes of data are ever captured
from any Hyperchannel frame. There is,

in addition, a 5-byte time stamp and a
1-byte bus label that must ultimately be
appended to these data bytes prior to
their being written to tape.
Consequently, the maximum amount of data
to be written to tape for each frame
appearing on a Hyperchannel bus is

83-bytes. To simplify the subsequent
retrieval of data from this tape, all

tape records must be some multiple of

this 83-byte logical record.

To continue, the FIFO empties into
an intermediate buffer in the 8089 bus
board in which it resides. Each 8089
buffer is easily capable of keeping pace
with its FIFO, (but not with the
Hyperchannel bus), so this interface is

not likely to be a bottleneck and
requires no further attention.

Each 8089 buffer empties over the
multibus into the 8086 buffer, moving
over this path at a maximum rate of 16
Mbps. Finally, the 8086 buffer empties
to tape, also over the multibus, at a

maximum rate of 1.6 Mbps (1600BP1 at

1251PS).

We will ignore for the time being
such concerns as whether or not a FIFO
can simultaneously fill from the bus side
and empty out the 8089 side. Similarly,

we need to know that the 8089 and 8086
buffers can empty and fill

simultaneously, and if not, what effect
this will have on their data transfer
rates.

The first question examined with the
aid of the simulation model was. Can a

FIFO keep up with the Hyperchannel bus
for the presented loads? Two 32X128-byte
FIFOs can empty at 16 Mbps in about 4

milliseconds, assuming that all 128 bytes
of each entry moves to the appropriate
8089 buffer regardless of whether they
hold data or not. If this is the case,
we next ask how many frames will appear
on the two Hyperchannel buses in any
given 4 millisecond window?

42

Specifically, is it more than 64? What
we are dealing with now is not bit rates
but frame and entry rates. The model
indicates that for the given load,
monitored for a 20 second period, 85% of

the 4 millisecond windows contain fewer
that 10 frames, but the probability is

almost 100% that at least three 4
millisecond windows will contain in

excess of 64 frames. The implication is

that the FIFOs will overflow once every
6.66 seconds for the given load on the
average. That is, no FIFO of any depth
can hope to keep up with the Hyperchannel
if it is emptied as described above.

On the other hand, if only data bits

are transferred, we get a different
result. In this case, we can think of a

128-byte-wide entry as merely an
addressing convenience, and that when
data moves from these entries to the 8089
buffer, only data, time stamp and
bus-label bits are taken. When operated
in this fashion, we can ignore the frame
rates and concentrate simply on the bit

rates associated with the data captured
from the buses.

For the same load used in the above
experiment, we observed: that the
average number of bytes captured from the
Hyperchannel frames was about 45
bytes/frame; that the peak data rate for

both buses combined was 60 Mbps, for a 4
millisecond period; that the peak capture
rate for both buses combined was about 8

Mbps for a 4 millisecond period; and that
the average data rate for the captured
data over the 20 seconds of the
experiment was about 380 kbps.

Since the FIFOs are emptied at 16

Mbps, it does not appear that a two 32
entry FIFOs will ever overflow for the
loads modelled even when we consider the
extra load created by the addition of the
6 bytes of time stamp and bus label.

That is, each captured, 45-byte record is

expanded to 51 bytes, thus resulting in

an apparent FIFO-to-8089 buffer bandwidth
of about 45/51^*^'s, or 84%, of its actual
value.

How often do peaks occur on a

Hyperchannel bus under a normal load, a

load that we have tried to model given
the data plotted in the figures within
this report? We can not answer this

question. This is one of the questions
we hope to answer once we have the HMD.
Unfortunately, it is one of the things we

43

needed to know in order to properly
design it. However, if we subject the
simulated network to the steady state
load described herein, contention peaks
occur. A contention peak is one that
occurs due to the randomizing effects of

the contention algorithm upon bus access
granted to various nodes with various
size messages to send.

The model does give us a feeling for

what the magnitude, frequency and
duration of these contention peaks is.

The two buses together peak at a rate of

60 Mbps for a duration of 4 milliseconds,
once every 20 seconds. Lesser peaks
occur more frequently. For example, a 40
Mbps peak of 4 milliseconds duration
occurs once every 0.2 seconds.

The next questions we answer are,

What was the average rate at which bits

were captured during the simulated time?
and How does this compare to the
8086-to-tape write rate?

During the 20 seconds of simulated
operation, data was captured at a rate of

380 kbps. Again, the average number of

captured bits/hyperchannel frame is 45
bytes. These captured data bits are
augmented with 6 bytes of time stamp and
bus label, expanding the number of bits

destined for tape from 45 to 51 bytes
worth. However, to maintain simplicity

in the subsequent retrieval of data from
this tape, these 45 (plus the 6 above)
bytes flow onto tape in 83-byte records,
(or multiples of 83-byte records). We
recall that simplicity is often expensive
as we note that imbedding 45 bytes of

data in 83 byte records acts to diminish
the effective bandwidth of the tape, i.e.

a reduction from 1.6 Mbps to .867 Mbps.
Fortunately for us, 867 kbps is more than
adequate to keep up with the average
capture rate of 380 kbps.

What we need to know next is the
size of the 8086 buffer required to

handle the peaks likely to occur. Again,

since we know nothing about these peaks,
the best we can do is explore the effects

of contention peaks. For the sake of

argument, lets postulate an 8086 buffer
that requires one second to write to

tape, realizing that the rate at which
data is written to tape depends on a lot

of factors such as multibus availability

and the average number of bits

captured/Hyperchannel frame. We
simulated the load described herein.

looking at .5 second windows trying to

determine if any of these windows
contained more captured bits than would
fit into half of some size 8086 buffer.
That is we are simultaneously trying to

determine the size of the 8086 buffer and
the effective 8086-to-tape transfer rate.

We found that during 205 seconds of

simulated time, the average captured data
rate was 412 kbps and that the average
number of bytes capture/Hyperchannel
frame was 45. The fact that this latter

average is so high means that data could
move to tape at more than half (45/83^'s)
its peak, rate or at .867 Mbps. This
implies that an 8086 buffer that is as
large as or larger than .867megabits
could keep up with the contention peaks
associated with the steady state load
simulated. Further examination of

simulated results shows that of the 410
.5 second windows in this experiment,
none contained more than 350 kbits.

The same experiment was conducted
assuming an 8086 buffer half as large as
above, i.e. 512 kbits, capable of being
written to tape in .5 seconds. Looking
at .25 second windows, we observed that
about 1% of them contain more than 256
kbits, i.e. more than half of the 8086
buffer. This implies that 1% of the time
a 512 kbits buffer would fail to buffer
the input peaks.

One final observation is that as the
number of bits per message presented to

the Hyperchannel decreases, the average
number of bytes captured per Hyperchannel
frame decreases. The implication is

clear; the effective 8086-to-tape
bandwidth will decrease as a consequence.
That is, the tape will be less likely to

keep up for two reasons; data (mainly
protocol frames) is arriving too quickly,
and the transfer bandwidth is diminished.

I think 1 can conclude from all of

this that for the loads modelled, any
reasonably large 8086 buffer, e.g. 1024
kbits, should enable the tape to keep up
with the Hyperchannel, assuming that the
multibus can accommodate a doubly
buffered 8086 buffer.

Those were the major design
questions we had to answer before we
could have any confidence that a monitor
could be built, a monitor that would
capture the desired data almost 100% of

the time. It is possibly worth noting

two things in passing. First, the above
use of the model is a premier example of

the cyclic design process depicted in

figure 1. For 1 have described how the
network model helped design the network
monitor, the monitor which itself

subsequently will help validate the
model. And second, once there is a
computer simulation, it is relatively
easy, inexpensive, and informative to
perform a peripheral study such as this

one.

4. Measure

There are at least two ways to

measure the performance and behavior of a
broadcast network. One can install

software network wide in every host
operating system and thereby measure and
monitor every host's network related
activity. However, he would have to

design such software uniquely for each
different host system. Presumably the
results of such monitoring would somehow
be collected later at some central point
for analysis and interpretation.
Alternatively, one can simply just

monitor the broadcast network's
transmission medium.

Each of these two techniques has its

advantages and disadvantages. For
example, using host resident software, it

IS easy to determine network message
queues and host to host transmission
delays, and network throughput on a per
host basis; but it is almost if not in

fact totally impossible to synchronize
the initialization of host monitoring
software network wide so that all the
measurement periods cover exactly the
same period of real time. In addition,
if the network itself is used for the
continuous collection of measurement data
at a central sight, then the network's
performance will have been effected by
the measurement process. Finally, if

network monitoring software was not
included in the design of each host's
operating system at its outset, adding it

later is usually prohibitively expensive
if not impossible to accomplish given a

diversity of hosts such as in the
Craynet. On the other hand, using the
second alternative, medium monitoring,
network message queue length information
IS inaccessible, and transmission delay
can only be inferred and then only during
periods of low loads (no message queues).
However, network throughput information

44

is precisely knowable for arbitrarily
small or large measurement periods.
Ideally, one would proceed by using both
techniques, and indeed we at LLNL are
attempting to measure the Craynet by a
composite of both methods.

4.1 Software monitor

What follows next is a brief

description of the kinds of things we've
been able to measure so far using
monitoring software residing in some (but
by no means all) hosts. Following that
is a commentary upon and evaluation of

our results so far.

The Craynet is currently monitored
by the systems of some of the host
computers connected to it. The data
accumulated by these host systems is

periodically and routinely collected,

analyzed and plotted. Much useful
information is thereby available
concerning the use that the various hosts
make of the network. The Cray operating
system monitors all of its own traffic

into and out of the Craynet. It is not
practical nor desirable to present all of

the results of the data thus collected.
However, I shall present some of the more
interesting results pertaining to

peripheral I/O, terminal message and file

transfer activity. The plots, figures 7

to 17, were obtained from just the Cray-C
machine, the most heavily used of the
four Cray computers.

In figure 7 is plotted the number of

user-job initializations/minute during a

24 hour period. The number of

initializations peaks at a value of

65/minute just before lunch.

In figure 8 is plotted the number of

user-jobs loaded into main memory for
execution under timesharing per minute
during a 24 hour period. The number of

loads peaks at a value of 350/second just
before lunch.

In figure 9 is plotted the number of

output files generated per minute during
a 24 hour period. The number peaks at a

value of 4/minute at 7 pm. This peak
occurs then, because a lot of low
priority output files, which are

8 12 16

Time (hours)

Figure 8. The total number of user programs

initializations per minute.

8 12 16 20

Time (hours)

8 12 16 20 24

Time (hours)

Figure 7. The number of first-time initializations of

user programs per minute.

Figure 9. The total number of user/program generated

output files per minute.

45

accumulated during the day, are
off-loaded at night. Incidentally, some
of these files are sent over the
Cray-Chors path (see table 2 and figure
4).

Figures 10, 11 and 12 plot data that
pertains to disc file creations and data
transfers to/from the Cray machines
disks. It is interesting to note, figure
12, the transfer rate reaches a peak
value of 50 megabits/second, a peak that
is maintained for hours at a time. None
of this disc activity involves the
Craynet or Hyperchannel.

The previous plots and discussion
are intended to give the reader some
feeling for the kinds and intensity of

Time (hours)

Figure 10. The total number of files created by

user/utility programs per minute.

40

0 I i I I I I I I I I I I I

0 4 8 12 16 20 24

Time (hours)

Figure 11. The total number of disc accesses per second

caused by user/utility/system programs.

Time (hours)

Figure 12. The total number of bits/second of disk traffic

into/out of CRAY-C machine.

activities taking place on the Cray
machines. It is one of the purposes of

the NBS study to somehow relate this

activity and intensity to the traffic

measured on the Craynet. However, this
work can not continue until the
Hyperchannel monitor device becomes
available.

Figures 13 and 14 depict the
terminal traffic in and out of the Cray
C-machine over a 24 hour day. These
figures show that the maximum input rate
is about 350 messages/minute, (8000
bytes/minute). These messages arrive at

the Cray-C machine over a variety of

paths from the different terminal
concentrators, (see table— 1). It is not
possible to distinguish amongst the

Time (hours)

Figure 13. The total message traffic to/from CRAY-C
machine for all terminal concentrators.

46

0)

30

20

^ 10

1

1

1

1

1

1

1
1

1

1
1

1

'

Total

: .
Input

pi

i , 1

l-'^^^stAr

0 4 8 12 16 20 24

Time (hours)

Figure 14. The total message traffic, in kilo bytes/

minute, into and out of the CRAY-C machine for all

concentrators.

of data flow over a 24 hour day from the
Cray-C machine to the TMDS.

File transfers, in bits/second, to
and from the MASS storage device are
plotted in figure 16, and reach a peak
value of 3.5 megabits/second around 3 pm.
The maximum network message associated
with such file transers contains around
200 kilobits.

The computer hardcopy output
recording system (CHORS) provides the
users with their principle output
service. It is to the CHORS utility that
files are sent when destined to become
paper, film or fiche. Figure 17 shows
the data traffic from the Cray-C machine
to the CHORS utility adapter. This path
peaks at a value of 210 kilobits/second.

contributions of these various paths to

this data.

The television monitor display
system (TMDS) provides the users with
various display facilities at their
terminals. By far the most common use to

which the TMDS is put is in the area of

word processing. The display of textual
data requires relatively small network
messages, i.e 32 kilobits/message. The
TMDS is also used for the display of

graphical or plotted data usually
generated during the nighttime production
run of some physics calculation. The
messages required to support such
pictures contain about 256 kilobits each.
In figure 15, we see displayed the rate

Time (hours)

Figure 15. The total traffic, in kilo bits/second, of

text and picture data into the TMDS.

47

Time (hours)

Figure 16. The total file transfer, in mega bits/second,

into out of the CRAY-C machine to/from MASS and

ATL combined.

0 4 8 12 16 20 24

Time (hours)

Figure 17. The total file transfer, in kilo bits/second,

to the CHORS from the CRAY-C machine.

Table 2 contains a summary of this

data and similar data obtained for the
other Cray computers. In every instance,
peak values are used. This table
indicates the degree to which we
understand each path. What is not
depicted in the figures and tables so far

is the distribution in time and size of

the messages on these paths. It is not
depicted because we do not know it. We
do know the maximum, minimum and type of

the messages on most of these paths. We
do know, figures 13 to 17, qualitatively
how the load/utilization varies during
the day on most of these paths.

4.2 Medium monitor

If we had the Hyperchannel monitor
device, the HMD described earlier, how
would we use it and what sense could we
make of the data collected by it?

The measurement process is simply
described. The HMD is enabled, allowed
to collect as much data as required to

achieve statistically meaningful results,

and then the collected data is analyzed.

The tape is written with the
selected portions of 390 frames per
record. It represents therefore a time

history of the state transitions of every
active adapter in the network. To be
more specific, the header of each frame
contains the destination adapter address,
the source adapter address, frame
function and length of data associated
with the frame. These four pieces of

information together with the time-stamp
^Jhow us to accurately follow the state
transitions of every active adapter in

the network. Using the transmission
protocols given in figures 18a and 18b,

it is possible to determine the
beginning, length and end of each message
transmitted in the network as well as its

path (source/destination address pair).

For a large sample of messages, we could
expect to determine the message
throughput and delay associated with each
path through the network at any moment of

the day. However, this point needs
elaboration.

For the sake of the discussion that
follows, let us define the Hyperchannel
monitor (HM) as consisting of the HMD
together with an output tape and the tape
analysis program. Barring collisions,

for any given frame from some source

I

adapter, there is usually a corresponding I

response frame. A response frame can
either be favorable (an ack) or
unfavorable (a reject). In the case of a
definite response, the HM will detect it

and modify the state of the adapters
involved. The lack of a response will be
inferred by the HM by observing the
behavior of the unsatisfied adapter, e.g.

it will retry the unacknowledged frame.
After some suitable number of retries, an
adapter will abort the message
transmission. Aborts can occur at any
point in the transmission protocol, and
the HM can detect (infer) them because of

the transmitting adapter's deviation from
it. A host may reattempt the message
transmission upon receiving an abort
indication from its attached adapter.

Eventhough the HM is unable to

distinguish between new and reattempted
messages, it does know not to count the
bits of an aborted, partially transmitted
message. Consequently, while the HM can
determine the network utilization, it can
not determine the message delay (host to

host transmission delay). It can
determine the message transmission delay
associated with successful transmissions
only. We could think of this as the
"transmission delay", conditioned by the
number of message aborts. It may be
possible depending on the protocol
involved to know the length of an aborted
message.

Once the path behavior is

sufficiently quantified, it would be
|

possible through various statistical

methods to determine such things as if

and when there is any mutual interactions
between paths.

So far, the network monitoring
software resides in the Cray OSs only,

and there are no plans to add a similar

facility to the other hosts in the
Craynet. In addition to this, since the
monitoring software is resident at all

times in the Cray OSs, efficiency and
space considerations severely limit its

capabilities and frequency of execution.
Consequently, measurements are reported
for half hour collection periods. That
is to say, finer granularity is not
possible without impacting host
performance m unacceptable ways. It's

fair to say that half hour wide
collection periods do not provide a

characterization of the instantaneous
behavior of a network. Till now, our use

48

M
E

S

A'

G
E

Set
reserve

on Flag 8

Copy
registers

| ^2

Receive

data

Associated

data?

No

Clear

Flag 8

Yes

No

No

Set

Flag A

Clear

Flag 8

Multiplex

mode?

Yes

Set Flag A

Set Flag 9

Data block

ready?

c

Yes

Flag A
clear?

No Yes

Flag 9

clear?

Copy
registers

[

Receive

data

Last data

block?

No

Clear

Flag 9

Clear

Flag A

Clear

Flag 9

Exit

Yes

Yes

No

Data block

ready?

Yes

Copy
registers

Received
Flag A
clear?

Yes No

No
Received
Flag 9
set?

Yes

Receive

data

Last data

block?

No

Clear

Flag 9

Figure 18a. The transmitter protocol.

49

Figure 18b. The receiver protocol.

50

of monitoring software is at best
incomplete (not resident in all network
hosts) and too coarse to allow proper
characterization of network traffic with
the detail required for the NBS study.

With respect to the medium
monitoring approach, as of this writing,
our outside vendor has not yet completed
work on the Hyperchannel monitor. This
$175,000 piece of equipment, originally
to be built in six months as part of a
research contract with and funded by the
NBS, is 13 months past scheduled
completion. And because it is 13 months
behind schedule, the success of this
research project has been seriously
jeopardized. Not only that, the absence
of this monitoring equipment has eroded
the case for the design-model-measure
methodology I have been trying to build
within my own group.

In any event, whereas we suffered
basically from too little data using the
software monitor approach, we will

probably suffer from too much data using
the medium monitor approach. In ten
minutes of monitoring the Hyperchannel
under a 5% load, enough data will be
collected to fill a standard size

magnetic tape. It will probably take
more than an hour to analyze this much
data using something like a Digital

Equipment Corporation VAX/780. This
disparity between sample width and
analysis time will prove to be a

troublesome but not insurmountable
obstacle in the successful and timely

completion of the NBS research project.

5. Model Validation

The model, which simulates Network
Systems Corporation's (NSC) Hyperchannel,
is the same one used extensively in the
past to produce much useful knowledge
pertaining to certain inadequacies and
interactions of the lower level

protocols, '^•^ inadequacies of the
adapter management and buffering
strategies,® and probed the nature of the
interactions of network traffic,

configuration, and these protocols. ' We
have validated this model to a certain
extent^ and so have great confidence in

it. However, given the nature of the
current investigation and the importance
of the role the model will play, we feel

that it is necessary to formally and
extensively demonstrate the model's

validity. Once we have determined that
it accurately portrays network
performance at low to medium loads, we
will use the model to study performance
and traffic characteristics at medium to
high loads, a kind of computational
extrapolation.

We resort to this extrapolation
technique, because the Craynet as
currently configured is not able to
generate the level of traffic required
for the complete characterization of

network traffic and performance called
for in the NBS study. Consequently, our
approach will be to measure and
characterize the traffic that exists in

the current, operational Craynet in

numerous data transfer situations, and
then use the validated model to study its

performance at higher loads.

The rest of this section will detail
the process of model validation, briefly
reviewing previous studies and papers
exploring the possibility of using their
results in this process. The validation
process will make extensive use of the
Hyperchannel Monitor Device (HMD).

The first step will be to determine
that the sequence and timing of the
frames of the lowest level protocol,
figures 18a and 18b, exchanged in a

simple two adapter configuration are
exactly duplicated in sequence, and
statistically and acceptably approximated
in timing. This step can be performed on
either the Cray network or a test
network.

As a second step, the model will

attempt to predict network performance in

the three node, two data path
configuration of figure 19. In the past,

we have studied this configuration, known
as the message switch, extensively
because of its sensitivity to how adapter
buffers are managed and to certain
aspects of the lowest level

protocols. Specifically, the high
data transfer path will operate at its

maximum rate, while the slow path will

attempt to transmit at various, slower
rates. Simulation results^ have shown
that the fast and slow paths interfere

with each other under these
circumstances. We will determine the
message throughput and delay of the two
paths experimentally, using the HMD
and/or processes residing in the attached
hosts. Again simulated performance must

51

Host a

50 Mbps

Host 5

5 Mbps

Adapter Adapter

High-speed

path

Adapter

Low-speed
path

50 Mbps

!)l

Host^ Kliz

Figure 19. Uni-directional message switch.

approximate measured performance in an
acceptably statistical way. We will

probably perform this step in a test

network owing to the impossibility of

dedicating the Craynet to experiments
even of brief duration. A test network
will probably consist of three or four
nodes and one bus, where the nodes will

consist of a 7600 PPU/A120, a PDP11/A400,
a SEL/A470, or a VAX/A400. However, it

may be possible to conduct the message
switch and other experiments on the
Craynet during periods of minimal
activity, collect the data with the HMD
and subsequently identify and verify

those periods of time within the sample
in which the strict constraints of the
original experiment were met.

The last step in the model
validation process will be to measure and
model the sequence and timing of

exchanged frames in a four node, two path
configuration. Again, the goal is to

verify that the model exactly duplicates
the sequence of exchanged frames and
suitably approximates their timing.

Experiments involving more nodes and
buses are probably not possible since we
can not intefere with the normal
functioning of the Craynet.

In a previous paper, I reported on
the effect of segregating messages
according to size, to wit, long and short
messages were each transmitted over a bus
dedicated to their respective sizes. The
hypothesis was that somehow these two

sizes (and types) of messages interfered
with each other. The results reported in

[7] do not support such a hypothesis, in

fact, they indicate the contrary, i.e.

the failure to segregate messages in this
manner has no effect on network
performance. It will not be possible to
validate these results^ using the HMD
owing to the impossibility either of

reproducing the configuration in [6], a
five node two bus network, as a test
network, or of modifying the host systems
in the Craynet to behave in this manner.

Yeh and Donnelley^ modelled the NSC
Hyperchannel, (protocols and hardware),
as it existed in 1978. Their simulations
detected deadlocks and node priority
reversals. Because NSC has long since
remedied these shortcomings through
modifications of adapter architecture and
microcode, 1 see no possible way of using
the HMD either in a test network or in

the Craynet itself to validate their
results.

Yeh and Donnelley"^ studied their own
solution to these deadlock/reversal
problems, viz. the recycling timer, and
compared its effects to those produced by
NSC's modifications, viz. wait flags and
a binary exponential retry mechanism. No
Hyperchannel experiment could validate
the results obtained using their solution
since this would require extensive
modifications of Hyperchannel
architecture and microcode.

Model validation and performance
monitoring share many of the same
problems. In order to validate a model,
the thing modelled must be subjected to

experiments in which it is controlled in

some precise way, a way that can be
duplicated by the model. In the case of

networks, this usually entails modifying
the operating system of the hosts
involved in the validation experiment so
that they use the network in some
computationally meaningful way, e.g.

submitting messages to the network that
have nice distributions in size and
interarrival time. Not only must the
experimenter control the presented load
precisely, he must also have some way of

measuring the network's response to the
load with equal precision. Again, one
can either use a medium monitor and/or
system resident software to do this. If

one decides to use system resident
software, he is presented with the
additional problem of how to synchronize

52

the various hosts in an experiment so
that they all use the same time interval.
If one relies instead upon some kind of a

hardware monitor, he may be prevented
from knowing certain aspects of the
network's performance, e,g, message
delay, that ultimately translates into an
only partial validation of the model.

Even though we do not yet have a
monitor, we have been able to validate
our model using system resident
software.^ The problems here were finding
host computers that could be diverted
from their normal function long enough to

conduct an experiment, and finding a

willing systems programmer for each host
involved. I was able to do both, and in

our one and only set of validation
experiments, the message switch, figure
19, alluded to earlier, we strung
together two CDC-7600 FPUs and a Systems
Engineering Laboratory (SEL) 32/75 and
their appropriate adapters. The
operating systems in both the FPU and SEL
computers is written in assembly
language. Fortunately, the FPU operating
system had already been modified for use
as part of the Hyperchannel acceptance
test procedure. All that remained was to

modify the operating system of the SEL
host. This was done, experiments were
run subsequently and the results are
reported in [9]. Given the great paucity
of statistical routines in both operating
systems (no random number generators,
mean or variance calculations), and that
they were written in assembly language,
and that both the system programmer and
network technician were volunteering
their 'spare' time to this effort, we had
to settle for less than scientifically

definitive, but nonetheless gratifying,

results.

A truly and scientifically

definitive validation of our model
occurred almost incidentally when Franta
and Heath^^ at the University of

Minnesota validated their own analytical
model of the Hyperchannel. They were
able to realize the ideal in model
validation experiments, for they had at

their disposal a 6 node Hyperchannel
network over which they had total

control— they provided their own host
system software; they were able to modify
the adapter microcode to suit their
needs; they had the use of a passive,
medium monitor; and they had absolute
control of and knowledge of the load
presented to their test network. In

addition to validating their own model,
they were intent on studying the
performance of the Hyperchannel,
identifying its critical parameters and
metrics.

It was a simple task for us to
simulate their experiments and compare
our results with theirs.

And at what cost all of this? The
software alluded to above required about
two and a half man years. All

Hyperchannel hardware, microcode
modifications and engineering support
were supplied by Network Systems
Corporation free of charge. And as for
actual funds used then, I do not know nor
am allowed to know or report the source
or the amount of the research grant
supporting this project. However, I have
been told that within university
environments and as grants go, this one
was small.

6. Extrapolate

As I have explained earlier, the
Craynet has never been able to generate
loads greater than 5% of Hyperchannel
capacity with normal traffic on a

sustained basis. As a consequence, we do
not have and will probably never have any
real experience with Hyperchannel
performance at medium to high loads (>

50% of capacity, what I have termed
hypothetical or extrapolated loads).
However, we have already used the model
to study its behavior at these
hypothetical or extrapolated
loads. 4-5.6.7.8,9

fg^^^.^ jjjQg^ i-j^g

shortcomings and inadequacies of the
Hyperchannel alluded to throughout this

paper occur only during such loads. Much
of this early work represents what I have
termed extrapolation— the exploration of

realms of performance unreachable by
means other than computer simulation.

This IS the more or less traditional use
to which computer simulation is put, and
presumably what is learned thereby helps
one subsequently to actualize designs
capable of such performance.

Extrapolation can be used in another
sense here, not just in regard to

studying performance at hypothetical
loads of existing and/or experimental
designs. The other sense of the word has
to do with modelling or simulation
itself. The layered nature of network

53

functionality, both hardware and
protocols, lends itself naturally to an
incremental model contruction
technique. That is, once we have
confidence in the simulation and
modelling of the lower layers, we are
able to add onto it models and
simulations of higher layer
functionality. Easier said than done.
One may be justified in adding new layers
to the model in that he has great
confidence in its validity, but most
computers and operating systems could
care less how justified you feel or how
much confidence you have in your own
programs. Once your program no longer
fits in memory, it no longer runs. Once
your program grows to monstrous
complexity, such large amounts of real

time are required to produce results that
it begins to lose significance as a part
of the design-model-measure paradigm.

The growth of complexity and use of

computer resources in modelling
increasing layers of protocols stems
directly from the mutual interaction of

these layers themselves and the impact of

this interaction on overall performance.
For example, in the Hyperchannel each
host to host message requires the sending
host to undergo a three step interaction
with its Hyperchannel adapter before the
data (the original message) can cross the
interface between them. Once that step
is accomplished, the sending host's
adapter and receiving host's adapter go
through a minimum of 8 steps to actually
move the data between them. The
receiving adapter must then go through
some protocol to move the data it's just

received (the original message) up into
the receiving host. A considerable
amount of amplification can result as a

message passes downward through layers
and layers of protocols both in the
number of bits (lower layers encapsulate
higher layer's data in passing it

downward to the next layer) and in the
number of in teractions (hand shakes,
buffer negotiations, exchanges of

remembered state, acks etc.).

How does the modeller/simulationist
proceed m this matter given this fact of

life? One can proceed by means of what
I've termed extrapolation in which that
part of a model dealing with the lower
layers is replaced by something simpler
that imitates (simulates?) the behavior
of the lower layers. To be more
specific, our approach will use data

derived from Hyperchannel monitor studies
to characterize Hyperchannel behavior,
i.e. to determine the message delay
distribution as a function of path,
message size and ambient load within the
network. We will also use the existing
model to tell us what kinds of message
delay distributions occur at extrapolated
loads. Then we will build a new model
that simulates the functionality of host
to host message traffic and the
appropriate higher layers of protocols, a

model in which we replace the lowest
layers of protocols and hardware (the
Hyperchannel itself) with these delay
distributions.

7. Conclusion

1 have described a cyclic,

design-measure-model methodology
currently being used to study a large,

Hyperchannel based LAN at the Lawrence
Livermore National Laboratory. This NBS
sponsored project expects to characterize
this network's traffic and corresponding
performance. However, many questions
remain concerning how best to proceed in

this matter.

Re f erence s

[l] Clark D. D., Progran K. T., and
Reed D. P., An Introduction to
Local Area Networks, Proceedings
of the IEEE, Special Issue on
Packet Communications Networks ,

November, 1978, pp. 1497-1517.

[2] Sunshine C. A., Factors in
Interprocess Communication
Protocol Efficiency for Computer
Networks, AFIPS Conf . Proc

.

.

NCC, vol 45, June 1976

[3] Pouzin L. , and Zimmermann H. , A
Tutorial on Protocols,
Proceedings of the IEEE, Special
Issue on Packet Communications
Ne tworks

,

November, 1978, pp.
1346-1371.

[4] Donnelley, J. E. and Yeh J.

W. , Simulation Studies of Round
Robin Contention in a Prioritized
Broadcast Network, University of
California, Lawrence Livermore
Laboratory UCRL-81715, 1978 also
Proceedings of the Th i r

d

54

Minnesota Conference on Local
Networks . 1978.

[5] Donnelley, J. E. and Yeh J.

W., Interaction Between Protocol
Levels In a Prioritized CSMA
Broadcast Network, University of
California, Lawrence Livermore
Laboratory UCRL-81151, 1978.
Also, Proceedings of the Third
Berkeley Workshop on Distributed
Data Base Management and Computer
Networks , 1978.

[6] Nessett D. M., Protocols for
Buffer-Space Allocation in CSMA
Broadcast Networks with
Intelligent Interfaces,
University of California,
Lawrence Livermore Laboratory
UCRL-81687 , 1978. Also,
Proceedings of the Th i r

d

Minnesota Conference on Local
Networks . 1978.

[7] Watson W. B., Simulation Study
of the Traffic Dependent
Performance of a Pr i or i t i z i ed

,

CSMA Broadcast Network, Computer
Networks , 3, 1979, pp. 427-434.

[8] Watson W. B., Simulation Study
of the Configuration Dependent
Performance of a Pr i or i t i z i ed

,

CSMA Broadcast Network, Computer ,

14, No. 2, February, 1981, pp.
51-58.

[9] Watson W. B., Validation of a

Discrete Event Computer Model of
Network Systems Corporation's
Hyperchanne 1 , Proceedings of the
7^^" Conference on Local Computer
Ne twork s

,

Minneapolis, Minnesota,
1978, pp. 44-49.

[10] Franta W. R., Heath J. R..
Performance of Hyperchannel
Networks: Parameters,
Measurements, Models and
Analysis, University of Minnesota
Computer Science Depar tment
Technical Report 82-3, January ,

1982 .

[11] Yeh J. W. , Simulation of Local
Computer Networks—a Case Study,
Computer Networks , 3, 1979,

pp .401-417

.

55

QUEUE LENGTH CHARACTERISTICS AT VERY FAST. CONSTANT SERVICE TIME MERGER NODES

Chaim Ziegler

Brooklyn College

Dept. of Computer & Information Science

Bedford Ave. & Ave. H

Brooklyn, N.Y. 11210

Abstract;

This paper concerns itself with the determina-

tion of the steady-state queue length distribu-

tions at very fast merger nodes that are present

within queueing networks. We study a network with

a tree topology in which a given server at a node

of the network provides each of its customers with

an equal, constant amount of service time, A very

fast merger node is defined as a node at which the

service rate is greater than or equal to the sum

of the service rates of the channels feeding into

the merger node. Inputs following general, in-

dependent probability distributions are con-

sidered. A condition for absolute stability at the

merger node is derived. The exact queue length

distribution is found for a subset of these fast

merger nodes via a combinatorial analysis of pos-

sible arrival patterns of customers into the

merger node.

I. Introduction;

This paper concerns the study of the state

probabilities of the queueing network shown in

Figure 1 . In Figure 1 , each node shown represents

an infinite storage, FCFS queueing facility

equipped with a single server that has a constant

service time of
fj^

(customer/sec) (or service time

of s^ sec/customer) i=1,2 n.

We assume that the network is being fed by

"n" mutually independent streams of customers

governed by some general probability distribution

with mean arrival rate of (packets/sec.) for

the class i stream, i=1,2,...,n, >^ 0 . Each

This work was partially supported by the National

Science Foundation under grant ECS-8105963 and by

PSC-CUNY Research Award 13665.

'customer is considered to consist of a single,

fixed length packet of data which is to be

transmitted through the network. Class i packets

initially enter the network at node N^ where they

are then processed and transmitted to node N
n+1

for additional processing. At node N^^-jt all n

packet streams are merged and processed by a sin-

gle common server. Hence, node N , is called a
n+1

merger node.

This paper is directed towards obtaining vari-

ous queue length characteristics at the merger

node, N^_^^ . The discussion is limited to the case

where the service rate at N^^^^
, /J^^i. is greater

than or equal to the sum of the service rates of

the feeder channels (i.e.,

n . n

jLi . > 5^ u. or < y—) . In earlier work
"n+1 - A.'^i s , - .'^,s.

1=1 n+1 1=1 1

[1,2], it has been shown that condition on p^^.^ is

a sufficient condition for absolute stability at

the merger node when n = 2. Here, we extend this

result to general values of "n". In addition, in

those papers, for the subcase

^n+1 - ""^^ ^2 ^n^

> n max (p^ , p^. •••• F^^^ '
steady-

state waiting time statistics were derived. Here,

we turn to the queue length probabilities and once

again derive results for general values of "n".

II. Stability Condition for Very Fast Merger Nodes

Our study begins with a derivation of an in-

teresting stability property for the case

n

Hn+1 ^ Z Hi • earlier work [1,2], it was shown
i=1

that for the case n=2, the number of packets wait-

ing for service on queue could never exceed one.

This will now be generalized for arbitrary values

of "n".

56

Theorem 1

For the case fi^_^^ >^ Z ^'i'
the merger node

i=1

W < (n-1) s_ (la)

Nq < n-1 (lb)

where the quantities W and are defined as:

W = The waiting time (queueing time) in an

arbitrary packet at N
^ ^ n+1

= the number of packets on queue at N^^^^

Proof:

The proof will be via a worst case analysis

which occurs when , is set to its minimum'n+1
n

value; that is, = ^ P^. This value of
^^^^

yields the greatest probability for the queue

length to grow.

n

With /J^^^ = Z Hi • without loss of generality
* i = 1

one can sort the "n" parallel feeding channels
into ascending order of magnitude and obtain

^ = "^i Vl i=1 .2 n (2a)

where

(2b)

i-1

1- ^ (1/k)

-1

and

j< k^ _< (n+1-i)

Z (1/k) = 1

i=1

i-1
1- ^ (1/k)

j=l

•1

(2c)

A worst case arrival pattern into N , is now
n+1

constructed by assuming that class i packets are

arriving into N^^^ at regular intervals of

seconds. Thus, with

t. . = the arrival time into N^^^ of the j^*^

class i packets, i=1,2,...,n,
it follows that

t. . = [xi-(j-1)]k.s^^^ ; i=1.2 n
;

j=1.2 0<x.<1 (3)

where is a fractional offset from time zero for

the first class i arrival.

An induction procedure will now be used to

prove the theorem. This will be done by introduc-

ing the notation,
A th
= the waiting time at N^^^ of the j

class i packet, and showing that W^^ _< s^^^

for all i and j.

To begin. Theorem 1 is trivially true for the

case n = 1. (In fact, in [1,2], it has been proven

true for n = 2.) It is now assumed that Theorem 1

is true for "n-1" channels feeding the merger

node. It must now be shown that this implies vali-

dity of theorem 1 for "n" channels feeding N
n+1

(as shown in Fig. 1)

.

With "n" feeding channels, it can be stated
that

"ii < Vr i=1.2. (4)

This is true because until the arrival of the

first class i packet, node N^^^ sees an arrival

pattern from at most n-1 classes of packets

(excluding the class i stream) with s^^^ less than

the parallel combination of the service times of

the feeding channels. Thus, (4) is true by the

induction assumption.

To complete the proof, we need only show

for all j. We need concern our-

selves only with the case where the busy period

W. . < (n-1)s„

has been continuous from t^^ through t^y Other-

wise, a renewal point of Process m would have

occurred, where Process m is defined as the pro-

cess whereby a class m packet initiates the

current busy period m=1,2,...,n.

To derive an expression for it is

observed that in the interval (t. t. .), there
11, 1

J

will be j-2 additional class i arrivals and

class m arrivals. Consequently,
t. —t.

,

ij i1

L'^m^n+IJ

"ij
= [(^ij-Wil-Vl)-(j-2); "n+1

^J-^i1n

^ k s
m=1 L "1 1+1-

m/i

'n+1
-t

ij (5)

57

"n+1

n

m=1

m= 1 m

m^i

Theorem 2:

For the case s^_^^ < l/n min(s^ .Sg, . . . ,s^) , the

equilibrium queue length distribution at a random

instant of time at node N^^^ of Figure 1 is given

by

n n C. . n (-n)^"^V
(6)

where

= the equilibrium probability that node

N , contains "i" packets (both on
n+1

queue and in service), i=0,1,...,n;

+ (j-1)k.

= W.^ <(n-1)s

1 _
'n+1

n+1

where we have use of both (2c) and (i|).

This proves (la). Equation (lb) follows

directly from (la). Q.E.D.

Theorem 1 has direct implications on buffer size

requirements at a very fast merger node.

III. The Case s^_^^ < 1/n min(s^ .s^,... ,s^) (or

Pn+i 1 " max(/u^ ,^2 p^))

For the case s^_^^ _< i/n min(s^ ,S2, . . . ,s^) , it

is intuitive that the number of packets serviced

within a busy period at N^^^ can also not exceed

"n". (For example, if "n" packets arrived in a

common interval of s , seconds, then a second
n+1 '

packet belonging to any class can not arrive into

, for at least ns„ . seconds from the arrival
n+1 n+1

time of its first packet. By that time, all "n"

original packets must already have been serviced

at N^_^^ and, hence, the busy period ended.) Furth-

ermore, each packet serviced in a busy period must

come from a different class.

The following theorem, concerning the queue

length probabilities at node N

stated
n+1

can now be

C. . = the total number of arrival patterns
ij

that will leave "i" packets in the

system at a random observation epoch,

given that there were "j" arrivals in

the (n)(s^^^) seconds directly preced-

ing the observation epoch;

L=0

(6a)

xj^=0 ^k=o

_k=1,2 L k=L+1 ,L+2, . . . , j-i-1

j-i-1

IT
k=1

where

k-1

m=1

X,.

j-i-1

m=1

L

i+L- X
m=1

j-i-1

(n-j+i)
j-i-L- Y

m=L+1

k-1

i_2+k- y x ; k=1 ,2, . . . ,L

m=1

k-L-1

m=1

k=L+1 ,L+2, . . . ,
j-i-1

(Note: see Appendix A for the derivation of C^^)

t the sum of the products of taken "k"

at a time, k=0,1,...,n; that is.

58

n-1 n

i=1j=i+l'
^'

r (7)

'n-1

23 n

i=1 j = i+1

Now, with defined as above, it can be con-

cluded that the probability of observing "i"

packets in the system at the observation epoch

conditioned on the event that "j" packets arrived

in the last "n" slots is

i = r

where
Pi = h^n+V ^='•2 (8)

Proof;

To begin the proof, Figure 2 illustrates the

random instant of time at which an observation is

to be made of the state of the system at node

n+1

Noting that the probability that a class "i"

packet arrives within any particular slot is given

by

Pi = >i^n+r ^=^'2 " (9)

It has already been shown that the total and that the probability that a class "i" packet

number of packets resident at N , can never
n+

1

exceed "n". This fact, implies that any packet

present in the system at our observation epoch

must have arrived within the immediately preceding

ns^_^^ seconds. Consequently, to illustrate this in

Figure 2, a time line has been drawn of length

ns^_^^ seconds extending back from our random

observation epoch (random time t). In addition,

.the time line has been partitioned into "n" equal

intervals (or slots) , each of length s^^^ seconds.

A pause is taken to note that since

s_ , < 1/n min(s, , s„ , . . . , s), the maximum length
n+1 — 1

' 2 n

of a busy period must be ns^^^ seconds. Hence, a

renewal point, which for our purposes is a conclu-

sion of a busy period, must occur within the

seconds depicted in Figure 2.

Continuing with the proof, it is noted that

since s^^^ < i/n min(s^,S2,
'^n^'

over the

interval (t-ns^_^^ ,t) , at most one packet from each

of the "n" different classes of packets arrived

into N^_^^ . In addition, if a class "i" packet

arrives within this interval, it arrives with

equal probability within any of the "n" slots

shown in Figure 2. This is true simply because

our observation epoch is completely random. Conse-

quently, the total number of ways for "j" packets

to arrive at N^^^ within the "n" slots preceding

the observation epoch, drawing from our population
of "n" different classes of packets, is

arrives over the interval (t-ns^^^,t) is

"Pi = ">i^n+r ^=''2 " (10)

it follows that the probability of having "j"

arrivals over the "n" slots of the interval (t-

ns^_^^ ,t) is given by

(11)

(np^)(np2)...(npj)(1-npj^^)(1-npj^2^...(1-np„)

- (npi)(np2)...(np._^)(1-np.)(np.^^)(1-np.^2)

...d-np^)

+ (np^)(np2)...(np._^)(1-npj)(1-np.^^)

...(1-np^_^)(np^)

+ (1-np^) (1-np2) . .
.

(1-npn-
(Tn->1 ^ • • •

^ Tn^

= 1
k=j

where V^^ is as defined above. This result, (11),

was derived by calculating all possible combina-

tions of having "j" different arrivals from the

59

"n" possible claisses over the indicated interval.

Of consequence, using (3) and (6), it is found

that the joint probability of observing "i" pack-

ets in the system at the observation epoch AND

having "j" arrivals within the last "n" slots is
given by

C.. n r

''|(-1)^~^(n)\ 1 (12)

k=j

Finally, to conclude the proof, the uncondi-

tional probability of observing "i" packets in the

system at the observation epoch is obtained. This

is done by summing (12) over all possible "j". The
result is

n n

j=0 ^-^kzj

)(-n)''~-^Vt

(13)

which proves the theorem. Q.E.D.

With a bit of tedious algebra, one can now

proceed to determine the steady-state mean charac-

teristics at N , . Defining
n+1

N = the steady-state mean number of arbitrary

class packets in the system at node

n+1

'

Nq = the steady-state mean number of arbi-

trary class packets on queue at node

Vr
one finds

and

i=0 ' k=2
^

n-1
N = Si?. - T i^v,
q -^^ 1+1 , 2 k

(lUa)

(14b)
i=0 k=2

which are pleasing results.

Little's Formula [3] can now be used on (14a)

and (14b) to find the steady-state mean response

time and mean queueing time respectively. (This

extends the results of our earlier papers [1,2) to

general n.)

To complete this section, the queue length

distributions for a specific class packet at the

merger node is derived. To do this, we define

P^"^^ = the steady-state probability of having

"i" class "j" packets in the system at

the merger node, i=0,1; j=1,2 n

p^9^, = the steady-state prbability of having
q(i)

"i" class "j" packets on queue at the

merger node, i=1,2; j=1,2,...,n.

?[^^ and P^9-s can be derived using a similar
1 q(i)

approach as that used in the proof of Theorem 1

.

However, a much simpler derivation is possible if

one looks at (14a) and (14b) and realizes that

n

N= ^P
j=1

(j)

and

n ,

N - P^J^

(15a)

(15b)

Then, using the fact that not more than a single

packet from each class can be processed over (t-

ns^_^^ ,t) ,
simple symmetry arguments yield

P^j) = v! + i^^^v' j=1,2 n (16a)

^ ^ k=2

p(j) , i_p(j), j = l,2 n (16b)

and

n
(k-1)!, •

p(j)
Vl) -

,^2 2 -k
V,. j=1.2 n (17a)

Pq(0) = ^-Pq(i)' J=^'2 n (17b)

I

where is found by taking only those terms from

in which
pj

appears and is defined as the pro-

duct of AND the sum of the products of the
p^

taken "k" at a time, i=1,2,...,n; i ^ j ;

k=0,1 , . . . ,n-1

.

IV. Conclusion:

In this paper, we have successfully derived

the steady-state queue length distributions at a

merger node for a certain class of network condi-

tions. We calculated these results by an analysis

of the arrival patterns of the input streams into

the merger node. We believe this technique can be

60

utilized in the study of a variety of network

structures.

slots.

References:

[1] C. Ziegler and D.L. Schilling, "Waiting Times

at Fast Merger Nodes," Conference Record of ICC

•80, pp. 23.2-1 - 23.2-6, June 1980.

[2] C. Ziegler and D.L. Schilling, "Waiting Times

at Very Fast, Constant Service Time Merger Nodes,"

accepted for publication in IEEE Transactions on

Communications

.

2) "i" arrivals occur in slot 1 (i = 0 , 1 , . . . ,
j-

3) AND "j-i-1" arrivals occur in slot 2 AND

one arrival occurs in any one of the

remaining "n-2" slots,

3) "i" arrivals occur in slot 1 (i=0 , 1 , . . . ,
j-

3) AND "k" arrivals occur in slot 2

(k=0,1 j-i-2) AND "j-i-k" arrivals

occur in slot 3.

This yields

[3] J.D.C. Little, "A Proof of the Queueing For-

mula L= > W," Oper. Res., Vol. 9 PP. 383-7, 1961.

Appendix A:

In this appendix, we derive the equation for

C^j. This will be done by first solving for some

simple cases and then generalizing the results.

We begin by noting that

0, fori>j (A-1)

Hence, we must only consider 0<i£j_<n.

For i=j, all "j" arrivals must occur within

slot 1. Thus, remembering that there are "n" dif-

ferent classes of packets, we have

C . .

J.J
(A-2)

For i=j-1, there are two possibilities;

namely, having "j-1" arrivals in slot 1 and one

arrival in any other slot OR having "i" arrivals

in slot 1 and

i=0,1 , . . . , j-2. Consequently,

J-1 .J

("1 1(n-1) + (A-3)

Moving to the case i=j-2, we find that there

are now three possibilities:

1) "j-2" arrivals occur in slot 1 AND "i"

arrivals occur in slot 2 (i=0,1) AND "2-i"

arrivals occur over the remaining "n-2"

-
(3) i„ (i] U--'-'

* 0 1 K

^ 0 irir 0 (A-4)

In a similar manner, one can show that for

i=j-3 there are four possibilities to consider
which yield

^„.(j.3)-l-k](„.3,3-i-K

61

- (") .1 1 f^) P^']
0--.':g--3>^-'-

Proceeding recursively with this method, one

finds that for the general term, i=j-q, we obtain

C .

j-q,j (A-6)

i=0 k=0 L=0

q-l_i_k-L-.

1
m=0

rj-i-k-L-...-m"l q_i_k-L-,
r„) j-q-1 1 2-k q_2-k-L-... r •w r . iQ-i-k-L- . . .-mj ^

""^^

*f"Kio JoJo- Jo f^ft1Pii-p-'-t--]

fi:;:^i:::::]<n-^)'-'-^-^-

lo"'" P] ft'] P1"] - p-'-t^-]

P^-i-Li::::;j<"-^>^

.-m

.-m

n1
J-q-1 j-q-i 1

1=0 k=0 L=0

q-3-L-
<

m

-2-L-...-m

J-q-1 j-q-i j-q-i-k+1

i = 0 k=0 UO

„> j-q-1 J-q-i j-q-i-k+1

^] .1. Jo Jo

j-q-1 j-q-i j-q-i-k+1

i=0 k=0 lIo

which can be written as

i P) p^'iM e---]
rj-i-k-L-...-m1 , 2-m
I 2-m J("-q)

I'" P] P"j P-L-1 -
j-3-i-k-L

1
m=0

j-3-i-k-L.

.

1
m=0

j-2-i-k-L-. . .-m

p=0 p] m

62

'ID

I

_k=l,2,...,L k=L+l ,L+2, . . . ,
j-i-1

j-i-1
n
k=l

k-1

ni=l

(A-7)

\ -1

m=l
L

in=l

where

k-1
L-2+k- ^ X • k=l,2,...,L

m=l
(A-7a)

and

k-L-1

.1
'^^ = k-L- J x^; k=L+l,L+2,..., j-i-1 (A-7b)

(A-7C)

k=l,2,...,L k=L+l,L+2,..., j-i-1

i_l ^-^i
i+l-x^-x,

1II I ... I I

2-x^ 3-x^-X2 Zj_._^II
'L+1-" ''L+2-" *L+3- ^j-i-r

An alternate form for C^^ is

'13 (A-8)

Jo (^-i-^

^k

I,

_ k-1,2 , . . . ,L k=L+l ,L+2, j-i-1 L

L
n
k=l

k-1
i+L- 2 >

m=l
X,.

) J

j-i-1
n

k»L+l

k-1

I
m=l

("-j*i''"'"'''n,=t+l'''"

Class 1 1

ParketB '

Class 2
Packsts

Claea n
Packets

Fig. 1: A Queuelng Network Cooslstlog of "n+1 " Single Server Queues and

"n " Extornol Inputs with a Merger Node at N^^-j^.

t-8.n+1

n-l ^ n-2
^

_| 3
j

^
J

1
I

Observation
Random

^ Eponh

n+1

Pig. 2; Illuatratlon of a Random Observation Ipoch at the Merger Node of Figure 1.

63

THE APPLICATION OF MULTIVARIATE STATISTICAL TECHNIQUES
TO COMPUTER PERFORMANCE EVALUATION

USING SIMULATED DATA

Thomas C. Hartrum

Air Force Institute of Technology
Department of Electrical Engineering

Wright-Patterson AFB, OH 45433

and

Gregory Magavero

Aerospace Guidance and Metrology Center
Newark Air Force Station, OH 43055

This paper considers the application of multivariate
statistical techniques to the analysis of data for use in
computer performance evaluation (CPE). Traditionally,
multilinear regression analysis has been used in the
analysis of CPE data. More recently cluster analysis has
found applications in this field, both in workload analysis
[1] and in performance modeling [2]. However, both
approaches have problems when applied to the type of data
often encountered in CPE studies. In recent years, several
new statistical techniques have been developed to overcome
or compensate for these problems. Although these
techniques have been used in a variety of business and
social applications, little has been reported on their
applicability to CPE. This study considered a total of
seven multivariate statistical techniques: multilinear
regression (as a baseline technique), cluster analysis,
ridge regression, automatic interaction detection (AID),
canonical correlation analysis, factor analysis, and
discriminant analysis. Each technique was examined for its
theoretical capabilities and expected usefulness in a CPE
environment. Then each technique was applied to several
sets of CPE data. In order to conduct a controlled
experiment, the data was generated by CPESIM, a simulation
of a multiuser mainframe computer system [3]. Based on the
results of their application to simulated CPE data, it was
found that all of the techniques could be useful to varying
degrees and in varying ways [4]. Some gave better
predictability than regression, based on the r-squared
value, some gave a better analysis of interrelationships
between parameters, and so forth. Because of their
individual natures, then, each technique was found to be
most useful to particular types of problems. Thus a given
CPE problem might not be able to use all of the techniques.
As a whole, however, these techniques should be considered
by anyone performing statistical analysis of computer
system data .

64

Key Words: Automatic interaction detection (AID);
canonical correlation analysis; cluster analysis; computer
performance analysis; computer performance evaluation; CPE;
discriminant analysis; empirical modeling; factor analysis;
multilinear regression analysis; ridge regression;
statistical techniques.

1 . Introduc t ion

There has been considerable
interest over the years in modeling
computer systems for computer per-
formance evaluation (CPE) purposes.
Three types of models are usually
recognized: simulation models; ana-
lytical models (such as queueing); and
empirical models. The use of these
models usually falls into one of two
catagories. These are for predictive
purposes (to pose "what if" type of
questions for planning) and for
explanatory purposes (to gain a better
understanding of how the system works).

The two types of empirical models
classically used in CPE are multilinear
regression analysis and cluster anal-
ysis. Typically regression analysis
has been used for performance modeling
(e.g. modeling turnaround time as a

function of several workload
parameters) [1], while cluster analysis
has been used for modeling workloads
[2], although an extension of
clustering to performance modeling has
been suggested [3]. However, several
other statistical techniques have
become available in recent years.
These have found useful applications in
the areas of operations research and in
the social sciences. Little, however,
has been reported as to their
applicability in the area of computer
performance evaluation.

This study considers the
application of five new techniques to
CPE use, along with multilinear
regression analysis and cluster
analysis as bases for comparison
[4], [5]. The five techniques
considered are ridge regression,
Automatic Interaction Detection (AID),
canonical correlation analysis, factor
analysis, and discriminant analysis.
The objective of this paper is not to
provide a theoretical foundation for
these techniques (although appropriate
references are provided for the
interested reader), but rather to
present an overview of the techniques
and the result of the application of
these techniques in a CPE environment.

IFigures in brackets indicate the
literature references at the end of
this paper.

The basic shortcomings of
regression analysis and cluster
analysis, along with a brief
introduction to the five new
techniques, are provided in the Section
2. Then the CPE environment in which
this study was made is discussed in

In Section 4, each of the
is presented, along with a

of its results in the
Finally, a summary of the

cone lus ions is

Section 3.
techniques
discuss ion
expe r imen t

.

results and associated
presented .

2. Overview of the Techniques

Multilinear regression analysis
was probably the earliest used
empirical modeling technique in CPE.
The basic approach of regression
analysis is to model a dependent
variable as a function of several
independent (or predictor) variables,
on the assumption that this represents
a cause and effect relationship. In its
most popular form, multiple independent
variables are allowed, and the
dependent variable is expressed as a

linear combination of the independent
variables, with the coefficients being
the primary model parameters. In an
empirical technique a black-box
approach is taken. Rather than start
with an understanding of how the system
works, a model is assumed (e.g. the
linear relationship just described) and
the model parameters are evaluated from
empirical data. This is accomplished by
observing the values of the dependent
and independent variables in the real
system being modeled, then finding a

"best" fit of the model to this
emp irical data.

Several
be calculated
model fits the
important is

determination

,

r-squared valu
0 and 1.0) ind
variation of

about its me
exp lained by
of computer t

r-squared val
the variation
an r-squared

statistical measures can
to determine how well the
data. Perhaps the most

the coefficient of
often referred to as the

e. This number, (between
icates the proportion of

the dependent variable
an value that can be
the model. Thus a model

urnaround time with an

ue of .82 explains 82% of

in turnaround. Although
value of 1.0 would be

65

ideal, due to the stochastic nature of
CPE data such a value is not to be
expected. An r-squared greater than
measure of the model itself is the
statistical significance of each of the
coefficients. This provides a means of
testing the hypothesis that a given
coefficient is zero. If that
hypothesis cannot be rejected, then the
coefficient can be considered
statistically zero, which means that
the corresponding independent variable
does not influence the dependent
variable, and thus can be eliminated
from the model. This is an important
tool when using the model in an
explanatory mode, to understand how the
system works .

There are many restrictive
assumptions made about the data when
performing a multilinear regression
analysis. The most important is that
the relationship is linear. In many
real cases it is not. However, the
ability to detect nonlinearity and the
formulation of an appropriate nonlinear
regression model are not simple, and
are beyond the experience of many
practical CPE analysts. Another
problem that is common in a CPE
environment is that the independent
variables are not truely independent
from each other, but rather may be
highly correlated with each other.
This has the result of distorting the
coefficients, and can lead to a

variable being dropped from the model
as unimportant when in fact that is not
the case. If such a high correlation
does exist between variables, the data
is said to be mu 1 1 i co 1 ine ar . The
predictive capability of the resulting
regression model is often satisfactory,
but from an explanatory point of view
the importance of predictor variables
may be misrepresented in the model.

Ridge regression attempts to
reduce the effects of mu 1 t i co 1 ine ar i t

y

in a regression model [4][5]. As such,
it is basically a variation of
multilinear regression analysis. A
small amount of bias is injected into
the calculations in order to generate a

set of coefficients that compensate for
the effect of mu 1 t i co 1 ine ar i t y

.

Factor analysis carries this
approach one step further by trying to
find a surrogate variable or "factor"
to replace the two or more variables
that show high correlation [6]. Thus
in the previous example a single factor
"job size" might replace the correlated
variables memory size and CPU time.

Although originally used as a tool
to help characterize workloads for
generating simulation models, cluster
analysis can help detect
mu 1 t ico 1 ine ar i t y . Thus, for example,
one might find high correlation between
memory requirements and CPU time. This
might show up as a cluster of jobs with
small memory requirements and small CPU
requirements, and another cluster of
jobs requiring both large amounts of
memory and large CPU times. In
addit ion, cluster analysis is useful
even when the relationship between
predictor variables is nonlinear.

Discriminant analysis is similar
to cluster analysis in that one tries
to determine a discriminant function
which can then be used to assign jobs
to different groups [7]. Data known to
be in separate groups is first analyzed
to determine the appropriate
discriminant function. The resulting
function can then be used to classify
new jobs into the appropriate group.
This technique requires that the groups
be known in order that the discriminant
function can be determined, while
traditional clustering algorithms
determine the groups by iterative
techniques

.

Canonical correlation analysis is
similar to factor analysis in that it

attempts to reduce the dimensionality
of the data. It relates one group of
variables to a second group of
variables. This implies a data set with
multiple dependent variables. An
example might include turnaround time,
I/O time required, and input queue time
as dependent variables, with CPU time,
number of disk I/Os, number of tape
I/Os, and number of lines printed as
independent variables.

Another problem with multilinear
regression analysis occurs when the
value of one variable changes the
coefficient (i.e. the effect) of
another variable. For example, as a

computer job's memory requirement gets
larger, the effect of that job's CPU
time on its turnaround time may get
smaller (perhaps because fewer jobs can
fit into the system, hence the job gets
more frequent access to the CPU). Thus
the coefficient of CPU time for overall
jobs isn't really a constant, although
regression analysis would assign one.
Such data is said to be nonadditive.
This condition affects both the
predictive and explanatory power of the
model, although the former can be
corrected for, once nona dd i t iv i t y has
been detected.

66

Automatic Interaction Detection
(AID) is useful in detecting
nonadd i t iv i t y [8] . It is similar to
cluster analysis in that it attempts to
partition the data into separate
groups. However, whereas cluster
analysis looks only at the independent
variables to form clusters, AID uses
predefined boundaries in the dependent
variable to group the data. If
no nadd i t iv i t y is detected, it can be
corrected for in the regression model
by introducing a crossproduct term
between the variables in question.

Clearly there are some differences
in the types of data or situation in
which these different techniques might
be applied. It is unlikely that all
techniques will be useful in a given
problem. In order to compare their
usefulness, however, an attempt was
made to apply them in as similar an
environment as possible. This
environment is discussed in the next
section.

3. The Experimental Environment

In order to test the various
statistical techniques under
consideration, a source of computer
system performance data was needed.
However, as noted in the last section,
not all of the techniques were expected
to be equally applicable to a given
problem. On the other hand, if

significantly different systems were
used for the tests, then comparison of
the results would be less meaningful.
Therefore, it was decided that for the
initial evaluation of these techniques
simulated data would be used. Due to
its ready availability, user
familiarity, and the fact that it was
developed for CPE experiments, the
CPESIM simulation was selected.

The CPESIM simulation was
developed at the Air Force Institute of
Technology in 1979 as a teaching aid
for the CPE course taught there [9].
CPESIM is a simulation of a single
processor, mu 1 t ipro gr ammed , batch
oriented mainframe. The peripheral and
operating system configurations and the
workload can be controlled. The
simulated computer processes the
simulated workload, and generates
accounting data, software monitor data,
and hardware monitor data. Thus the use
of this simulation allows data to be
generated under controlled and variable
conditions .

The CPESIM accounting data was
used as the source of the data for this
study. Table 1 shows the variables
used. Turnaround time was used as the
dependent variable in all
I/O time was also used as
variable in the canonical
ana lysis

.

cases , and
a dependent
correlation

Table 1. CPESIM Independent Variables
(Defined for Each Computer Job)

Variable Description

CPU CPU seconds used

MEMORY K-bytes of CM used

CARDS Number of cards read

LINES Number of lines printed

DISKIO Number of disk accesses

TAPEIO Number of tape accesses

TAPES Number of tapes mounted

TARRIV Job arrival time (in hours)

lOTIME Total job I/O time (seconds)
Highly correlated

with DISKIO & TAPEIO

TURN A job's batch turnaround time

Two primary data sets and two
variants were created using CPESIM.
These are defined in Table 2. Not all
of these sets were used for every
technique. In addition, Data set 3 was
created for use in demonstrating ridge
regression. This latter set was not
generated by CPESIM, but was
hand -bu i 1 1

.

4. Test Results

Multilinear regression analysis
was used to model turnaround time as a

function of the independent variables.
This provided a baseline for comparison
of the other techniques. The regression
results are indicated in Table 3. The
mu 1 1 i CO 1 ine ar i t y index was generated
using the ridge regression technique,
as presented later in this paper. Note
that Data Set 1, which excludes lOTIME,
exhibits little mu 1 t ico 1 inear i t y , while

67

Table 2 - CPESIM Data Sets

Data Set Observations Description

1 787 Complex workload from four
organizations, each
different, over five 8-hour
days. High degree of
competition for resources.
lOTIME not included.

la 787 Same as Set 1 except lOTIME
is used as an idependent
variable, introducing known
multicolinearity.

2 106 Simplest data set from one
organization over 4 days.
Virtually no competition
for resources. lOTIME is

inc lud ed .

2a 452 Same as Set 2 except ex-
tended to twenty days data.

3 25 This set consists of three
variables. XI and X2 are
statistically independent,
while X2 and X3 are highly
correlated.

Data Sets la and 2 show increased
levels of multicolinearity due to the
high correlation of lOTIME with TAPEIO
and DISKIO. This effect is diminished
in Data Set la due to the complexity of
the system and the high competition for
resources. Data Set 3 was regressed
both without X3 and with X3 included.
Note that the coefficients of X2 and X3
have a compensating effect, resulting
in a predictive capability equivalent
to that obtained when X3 was excluded
from the mo del.

4.1 Ridge Regression

The first new technique considered
was ridge r egr e s s ion . The objective of
this technique is to detect the
presence of multicolinearity and to
correct for it by generating an
improved set of regression
coefficients. There is no intent to
change the predictive capability of the
model. The benefit gained is a set of
coefficients that more truely represent
the importance of the predictor
variables. The ridge regression
program generates the new coefficients
and also a Variance Inflation Factor
(VIF) which is an index of the amount
of multicolinearity. Thus little
change would be expected for Data Set
1, some change for Data Set la, and
noticable change for Data Set 2.

Table 3 - Multilinear Regression Results
(Standardized Coefficients)

Mu 1 1 ico -

Data CPU Central Tape Lines Disk Tape I/O R- linearity
Set Time Memory Drives Prntd I/Os I/Os Time Sqrd Index

1 . 123 . 359 . 223 .046 . 156 .097 424 1 .2

la . 11 2 .371 .235 .025 .053-. 132 . 26 5 8.3

Data Tape Disk Tape I/O R- Multicolinearity
Set Drives I/Os I/Os Time Sqrd Index

-.00094 -.00009 -.00150 .00173 .8334 69.5

Data R- Multicolinearity
Set XI X2 X3 Sqrd Index

3 4.07 0.34
3 3.84 28.68 -28.54 .803 2458.9

68

The approach is to recalculate the
regression coefficients, introducing a
small amount of bias k into the
calculations. When k=0, the same
values are generated as for multilinear
regression. It is desirable to keep k
as small as possible. The algorithm
increases k iteratively until some
heuristic stopping criterion is met.
Those criteria considered in this
effort include (1) all VIFs less than
10 [5]; (2) all VIFS less than 1 [4];
and (3) all signs correct [5]. Data
Set 3 is used to illustrate the effect.
In this set XI and X2 are statistically
independent while X2 and X3 are almost
perfectly correlated.

Table 4. Ridge Regression Resul

The results are shown in Table 4.
For Data Set 3, two of the heuristics
resulted in nearly the same
coefficients as were generated by
multilinear regression when X3 was not
included. For Data Set 2, the
coefficients changed significantly with
little degradation in r-squared. For
Data Set la, there was a noticeable,
but small change in the coefficients.
Again r-squared was not affected.
Finally, as expected, for Data Set 1

two of the heuristics indicated that no
bias should be added at all. The
criterion "all VIFs less than 1" did
require a bias of k=0.105, but the
actual coefficients changed little.

ts (Standardized Coefficients).

Data Set 1 (I/O Time Excluded.)

CPU Central Tape Lines Disk Tape I/O
k Time Memory Drives Prntd I/Os I/Os Time Heuristic

0.000 .123 .359 .223 .046 .156 .097 VIFs<10, Signs
0.105 .118 .329 .211 .053 .145 .098 VIFs < 1

Data Set la (I/O Time Included.)

CPU Central Tape L ine s Disk Tape I/O
k Time Memor y Drives Prntd I/Os I/Os Time Heur ist ic

0 .000 .112 .371 .235 .025 .053 -.132 .26 5 OLS
0 .015 .111 .365 .231 .030 .084 - .059 .181 VIFS < 10
0 .070 .109 .347 .222 .037 .105 .002 .117 S igns
0 .110 .108 .335 .216 .040 .107 .015 .105 VIFs < 1

Data Set 2

CPU Central Tape Lines Disk Tape I/O
k Time Memory Drives Prntd I/Os I/Os Time Heuristic R-sqr

0.000 -.00094 -.00009 -.00150 .00173 OLS .8334
0.012 -.00133 .00001 -.00025 .00051 VIFs<10 .7553
0.044 -.00124 .00000 .00000 .00026 Signs .7199
0.092 -.00102 .00001 .00006 .00019 VIFs<l .7093

Data Set 3

k XI X2 X3 Heuristic R-sqr

0 .000 3 .84 28.7 -28.5 OLS . 8030
0 .004 4.05 1.12 -0.79 VIFs < 10 . 7 932
0 .024 3.97 0.34 -0.01 VIFs < 1

0 .026 3.97 0.33 0 .00 Signs correct . 7 922

69

Overall, ridge regression did
improve the regression coefficients,
most notably in those cases exhibiting
large mu 1 t i co 1 ine ar i t y . The criteria
"all VIFs less than 1" and "all signs
correct" gave approximately the same
results, and appeared to give better
results than "all VIFs less than 10".

4.2 Factor Analysis

Factor analysis provides another
solution to the problem of
multico linear ity . The objective here
is to find the underlying structure of
the data, then generate a new set of
variables, called "factors," to
describe the data. Usually there are
fewer factors than original predictor
variables, and little or no
multico 1 inear ity should exist among
them. Thus for Data Set 3, two factors
would be generated. One would be
equivalent to XI, while the other would
be representative of X2 and X3

.

This technique yields results that
may be more useful from an explanatory
point of view than ridge regression.
The latter may still tend to hide the
importance of a variable. Consider
Data Set 3. One could argue that both
X2 and X3 are equally important, and
either could be used for predictive
purposes. While ridge regression
reduced the inflated coefficient of X2
to reflect its proper importance, it

essentially eliminated X3 by giving it
a near zero coefficient. Factor
analysis would explicitly show that
there were two underlying factors that
characterize the data, and that both X2
and X3 were equally related to the
second factor. One then usually has
two options for replacing predictor
variables with factors. One approach
is to use surrogate variables. Here a

predictor variable is found that has a

high correlation with the factor
(called a "high loading"), and that
variable is used. In Data Set 3, such
an approach would indicate the use of
XI and X2 (or equally XI and X3) as the
surrogate variables. If no single
variable is highly loaded on a factor,
then the factor values may be
calculated as a weighted (by the
loadings) sum of the predictor values.
Once one of these techniques has been
applied, then multilinear regression is
applied to the factors to generate the
new model. It should be noted that
factor analysis is applied to only the
predictor variables; the dependent
variable is not included in the factor
ana lysis itself.

This technique was applied to Data
Sets 1, la, and 2a. The results are
shown in Table 5. In all cases only two
underlying factors could be found. The
results for Data Set la are very
appealing. lOTIME, DISKIO, and TAPEIO
were highly loaded on one factor, while
everything else was moderately loaded
on the other factor. A good approach
might be to replace lOTIME, DISKIO, and
TAPEIO with Factor One, and leave the
other variables alone. 57% of the
variation in the predictor variables is
accounted for by the factors for this
data set. Similarly, the results for
Data Set 2a indicates one factor
represents disk I/O (which seems to
account for most of the I/O time) while
the other factor represents tape I/O.
The high correlations result in these
factors accounting for 89% of the
predictor variables. The results for
Data Set 1 are more difficult to
interpret. Factor one is a combination
of MEMORY, TAPES, LINES, and TAPEIO,
while factor two seems to depend
primarily on TARRIV and CARDS. Only
43% of the variation in the predictor
variables is modeled by these factors.

Table 5. Factor Analysis Results
(Varimax Rotated Factor Matrix After
Rotation with Kaiser Normalization)

Data
Set

la

2a

Variable

TARRIV
CPU
MEMORY
TAPES
CARDS
LINES
DISKIO
TAPEIO

lOTIME
CPU
MEMORY
TAPES
LINES
DISKIO
TAPEIO

lOTIME
TAPES
DISKIO
TAPEIO

Principal Components
Factor Number

1 2

,1350
,56 59
,6370
,7529
,2642
,5887
,3402
,6297

.9553
,1737
,0189
,3825
,1280
,6140
,8411

9469
,0074
9876
2140

- .6048
.2576

-.3271
.0738
.6574
.0785
.4274
.1912

.2357

.6184

.6904

.6244

.6591

.0529

.2412

.3111

.8883

.0349

.8694

70

When highly related predictor
variables are in the model, factor
analysis would seem to do a better job
of eliminating mu 1 t i co 1 ine ar i t y than
ridge regression. However, it is a

more involved procedure.

4.3 Cluster Analysis

Cluster analysis provides another
method for attacking the problem of
some underlying relationship between
the supposedly independent predictor
variables. Mu 1 t i co 1 ine ar i t y implies a

linear relationship between the
predictor variables. Thus a

scattergram of two highly correlated
variables would resemble a straight
1 ine .

Cons ider a

Suppo se that all
small amounts of
amounts of CPU time
jobs that require
memory require
t iipe . All

nonlinear example,
jobs that require
memory use large
In addition, all

large amounts of
large amounts of CPU

jobs with small CPU
requirements use an intermediate amount
of memory. A scattergram for such a

workload might appear as in Figure 1.
CPU time and memory are not highly
correlated, nor would factor analysis
find a single underlying factor to

replace both of them. Yet clearly the
two are not truely independent.

CPU
Time

Memor y

Figure 1. Nonlinear Relationship of Data

Cluster ana
problem by par
into clusters, o

jobs , based on
(i.e. the predic
separate regres
developed for
analysis starts
such clusters,
converges to a s

lysis approaches this
titioning the workload
r groups, of similar
the workload parameters
tor variables). Then a

sion model can be

each cluster. Cluster
with no knowledge of
and then iteratively

et of natural clusters.

When cluster analysis was applied
to the data sets in question, natural
clusters were found. Much of the
workload was discarded as falling
between clusters. No improvement to
the turnaround time model was found
using the resulting clusters. This is
primarily a result of the fact that
CPESIM currently generates the workload
parameters independently, and does not
provide for producing related
parameters. However, previous studies
[3] have indicated a usefulness of
cluster analysis to this problem. In
addition, cluster analysis has been
well accepted by the CPE community for
workload analysis and generation of
simulation inputs [2].

4.4 Discriminant Analysis

Once it
catagorized
d i s c r iminan

t

technique for

is known that jobs can be
into discrete groups,
analysis provides a

classifying them. The
groups must be known in advance.
Discriminant analysis determines a

discriminant function, based on
empirical data, that can then be used
to determine the proper group for new
jobs. Some possible applications to CPE
data are such things as (1) to which
user organization does each job
belong?; (2) to which cluster does a

job belong (but this can be done using
cluster analysis)?: or (3) to which
class of turnaround times will a job
belong? This latter question might be
useful in predicting turnaround times.
A problem is that discriminant analysis
works best when there are clearly
defined, distinct groups. Turnaround
time tends to be a continuously
distributed variable. Thus arbitrarily
partitioning turnaround time will tend
to generate groups that are not well
separated .

This technique was applied to Data
Set 1. For the first test, turnaround
time was partitioned into three
classes: jobs with turnaround times of
less than 0.5 hour; those with
turnaround times between 0.5 and 1.5
hours; and those jobs with turnaround
times greater than 1.5 hours. Half of
the 787 cases were randomly selected
and used to generate the discriminant
function, the other half were used to
test it. Table 6 shows the resulting
three group centroids. Table 7 shows
the resulting classification errors.

In an attempt to find more clearly
separable groups, the data was divided
into two groups at a turnaround time of
3.2 hours. These represented "regular"
jobs and slow jobs. However, only nine

71

Table 6. Group Centroids Table 8. Discriminant Function
Coefficients

Group
Numb er

1

2

3

Discriminant
Func t ion

1 .226
-0.191
-1 .086

Group Discriminant
Function

Normal -0.02472
Outliers 2.13691

Table 7. Classification Matrices for
Discriminant Analysis Example, 3 Groups

Table 9. Classification Matrices for
Discriminant Analysis Example, 2 Groups

Results for Cases Used for Analysis

Actual Number Predicted Group
Group of Cases 1 2 3

1 107 85
79.4%

18
16.8%

4

3.7%

2 186 48
25.8%

84
45.2%

54
29 .0%

3 88 5

5.7%
25

28.4%
58

6 5.9%

59.58% grouped correctly.

Results for Cases Not Used for Ana ly s is

Actual
Group

Number
of Cases

Predicted
1 2

Group
3

1 121 95
78.5%

23
19.0%

3

2.5%

2 192 53
27 .6%

79
41 .1%

60
31.1%

3 93 4
4.3%

31

33.3%
58

62.4%

57 .14% grouped correc tly.

jobs fell into the slow group, leaving

778 cases in the regular group. The

two group centroids are shown in Table

8, while the classification errors are

indicated in Table 9. Note that 113 of

the regular jobs were misc las s if ied as

slow jobs - considerably more than the

nine actual ones.

Discriminant analysis is not a

useful tool unless the data is known to

fit into well defined, distinct
classes. The CPESIM data did not

provide a good example of such an

environment

.

Classification Results

Actua 1

Group

Norma 1

Outliers

Numb er
of Cases

778

Predicted Group
Normal Outliers

665
85 .5%

113
14.5%

8

88.9%11.1%

85.51% of all cases classified correctly

4.5 Canonical Correlation Analysis

Canonical correlation analysis is

a technique for reducing the
dimensionality of data. It relates two

sets, each of which contains several
related variables. Similar to

regression analysis, which models a

single dependent variable as a function
of a set of predicitor variables, this

technique allows a set of related
dependent variables to be modeled as a

function of a set of predictor
variables. Note that each set should
consist of variables that are somehow
related

.

The approach
canonical variates

is to def ine two
X* and Y*, where

and

X* =

Y* =

AiXi

BiYi

where the Xi represent the
or predictor, variables
represent the dependent
These two models
simultaneously for the

(1)

(2)

independent

,

and the Yi
variables

.

are solved
CO ef f ic ient s

72

subject to maximizing the correlation
between X* and Y*. The coefficients
indicate the contribution of each
variable to the corresponding canonical
variate. Canonical loadings measure
the correlation of each variable with
its canonical variate. Redundancy is

defined as a measure of the amount of
variaton in the predictor set that is

explained by the dependent set, similar
to the r-squared value in regression.

This technique was applied to Data
Sets la and 2a. Turnaround time and
lOTIME were included in the dependent
set as related variables, and the
remaining predictor variables were
included in the other set. The results
for Data Set 1 are shown in Table 10.
For the y variate, note the high
loading of lOTIME for one solution and
for turnaround time for the other
solution. This implies that these two
dependent variables are not really
related. Note also the loadings of the
X variates. For this case, two
independent regression models would
have been more appropriate. Table 11
presents the results for Data Set 2a.
These results are more useful. Note
that both dependent variables are
highly loaded on the canonical variate
in the first solution. Notice the high
redundancy. The X loadings indicate
the importance of the individual
predictor variables in determining the
dependent set, which might be
characterized as "job run time" in this
case.

Thus canonical correlaton has
limited usefulness in CPE. The primary
problem with its application is
defining a set of related dependent
variables of interest.

4.6 Automatic Interaction Detection (AID)

Automatic interaction detection
(AID) is another data partitioning
scheme, but with a different objective.
Its purpose is to detect the presence
of nonadd i t iv i t y , or interaction
between variables. The data is split
into two groups based on one of the
predictor variables in order to form
the two groups with the least
within-group variation of the dependent
variable values and the maximum
between-groups variation. Then each
group is further split and so forth,
creating a tree. If the resulting tree
is symmetrical, then no interaction
between variables is suspected. A
nonsymmetric tree indicates that
interaction exists. Such nonadd i t iv i t

y

can be corrected for (in a predictive
sense) by adding product terms to the
regression model.

This technique was applied to Data
Sets 1 and 2. Figure 2 shows the
resulting tree for Data Set 2. Since
this was the simple data set,
intuitively no interaction was
expected, and the symmetric tree bears
that out. Figure 3 is the tree for
Data Set 1. Here assymetry is cleary

Table 10. Results of Canonical Correlation Analysis
(Data Set la)

Variate

x-variables

TARRIV
CPU
MEMORY
DISKIO
TAPEIO
TAPES
CARDS
LINES

Redundanc y

CANVARl
Canon ic a 1

CANVAR2
Canon ic a 1

Coef f Load ing Coef f Load ing

0 .0070 -0.0353 0 .4777 0 .4997

0 .0105 0 . 2998 0 .0845 0 . 2573

0 .0068 0 . 2334 0.3789 0 . 5366

0 .2157 0.3842 -0.0695 0 .0415

0 . 9290 0.9755 -0 .4147 -0 .0224

0 .0019 0.4612 0 .7743 0 .6981

0 .0061 0 . 2566 -0.0179 0 .0350

0 .0203 0.2743 -0 .0662 0 .1526

0.1972 0 .0798

Total

0.2770

x-v ar ia b 1 e

s

TURN
lOTIME

Redundancy

0 .0026
0 . 9990

0.3713
1 .0000

0.5615

1 .0760
0 .3995

0 . 9285
-0 .0024

0.2462 0 .8077

73

Table 11. Results of Canonical Correlation Analysis
(Data Set 2a)

Var ia t e CANVARl CANVAR2
Canon ic a 1 Canon ic a 1

x-var iab 1 es c oef f Lo a d ing Coef f Lo a d ing

TARRI

V

-0 .0004 0 . 0126 -0 .0077 -0 . 0949
CPU 0 .0040 -0 . 0104 -0 . 637 9 -0 . 6499
MEMORY -0 .0034 0 . 0054 -0 .0350 -0 . 0454
DISKIO 0 . 8702 0 . 9183 0 .0474 0 . 0154
TAPEIO 0 .3932 0 . 4988 0 .07 52 0 . 067 5

TAPES -0 .0011 0 . 2606 -0 .0158 0 . 0054
CARDS 0 .0112 0 . 07 88 -0 .3000 -0 . 3323
LINES 0 .0490 0 . 0863 -0 .6908 -0 . 6916

Redundanc y 0 . 1453 0 . 1057

Total

0.2510

x-var iab 1 es

TURN
lOTIME

-0.0369
1.0297

0.7969
0.9998

1 .7040
1 . 3582

-0.6041
-0.0217

Redundancy 0 . 8095 0 .1504 0.9599

evident, indicati
present. Adding
(MEMORY)x(TARRIV)
improved the r-sq
to 0.505. Thes
1 ight of the fact
have indicated a

drives and acces
starts to backlog
arrival time wi
even more.

ng that interaction is
the two product terms
and (DRIVES)x(TARRIV)

uared value from 0.424
e terms make sense in
that other techniques

problem due to tape
ses, and as the system
,

jobs with a later
11 tend to be impacted

Thus automatic interaction
detection does seem to be a good tool
for the detection of interaction
(nonadd it iv ity) between variables in
CPE modeling.

5. Conclusions

This study considered the
application of seven techniques to the
empirical modeling of turnaround time
in a CPE environment. Multiple linear
regression analysis was used as a

baseline on four sets of data. Then
each of the other techniques was
applied to see if the model could be
improved. It was found that ridge
regression was a useful tool in

removing the distortion of regression
coefficients due to mu 1 t i co 1 ine ar i t y

,

but that it tended to give the proper
coefficient for one variable at the
expense of the related variable.
Factor analysis, on the other hand,
took a more basic approach by finding a

new set of variables, or factors, to

characterize the workload. The

relation of mu 1 t i co 1 ine ar variables to
these factors could be clearly seen,
and mul tico 1 inear ity was removed from
the model when the factors were used in
place of the original predictor
variables. Cluster analysis extended
this solution to cases where a
nonlinear relationship exists between
predictor variables by partitioning the
workload into sets of similar jobs, so
that when modeled separately
mul tico 1 inear i ty was not a problem.
Discriminant analysis appears to have
limited use in CPE, providing a
technique for classifying jobs into
previously defined, clearly distinct
groups. Similarly, canonical
correlation analysis seems to be useful
only when a group of dependent
performance variables can by defined to
be modeled as a function of the
predictor variables. Finally, Automatic
Interaction Detection (AID) was found
to be a useful tool for the detection
of nonadd i t iv i t y , or interaction,
between variables.

Current efforts are under way to

test these techniques further. Data is

being generated to allow explicit
demonstration of the capabilities of

cluster analysis, and to demonstrate
the ability to use several of these
techniques jointly to improve a given
regression model. In addition to these

tests with simulated data, an effort is

under way to apply these techniques to

data measured on an actual online

s y s t em

.

74

11 >750

> 2501

DISKIO

0-2500

LINES

10 <750

>751

901-2500

DISKIO

15 > 1451

LINES

14

0-900

LINES

17

751-1400

> 55

CPU

16

>111

CPU

0-110

13

<55

901-2500

DISKIO

12 0-900

Figure 2. Augmented AID Skeleton Tree for Data Set 2a

75

3 -

>51

5

> 2 .0

TARRIV

0- 1.9

4

>71

11

3

TAPES

0-2

0-70

13

> 8.0

TARRIV

2-7 . 99

12

TAPEIO

0-50 > 37

MEMORY

0-36

r_
X5 —

> 4.0

TARRIV

0-3.99

21

71-205

MEMORY

37-70

20

14

>101

CARDS

0-100

18

(— 17

> 251

CPU

0-250

16

Figure 3. Augmented AID Skeleton Tree for Data Set 1

76

Ref er enc e s

[1] Gomaa, H. "A Modelling Approach to
the Evaluation of Computer System
Performance," pp. 171-179, Modelling
and Performance Evaluation of Computer
Sy s t ems^ Nor th Ho 1 1 and Pub lishing
Company , 1976.

[2] Agrawala, A.K. and J.M. Mohr, "Some
Results of the Clustering Approach to
Workload Modelling," Proceedings of the
Thirteenth Meeting of the Computer
Performance Evaluation Users Group , pp .

23-38, 1977.

[3] Hartrum, Thomas C. and Jimmy W.
Thompson, "The Application of
Clustering Techniques to Computer
Performance Modelling," Proceedings of
the 15th Meeting of the Computer
Performance User's Group , October,
1 97 9 .

[4] Stover, Margaret A., App lication of
Statistical Analysis Techniques to
Comput er Per f ormanc e Evaluation ,

Master's Thesis , Air Force Institute of
Technology, Wr igh t -Pa t t er s on Air Force
Base , Ohio , 1981 .

[5] Magavero, Gregory, A Study of
Multivariate Statistical Ana lysis
Techniq ues for Computer Performance
Evaluation. Master's Thesis, Air Force
Institute of Technology,
Wright-Patterson Air Force Base, Ohio,
AFIT/GCS/EE/ 82D-23 , 1 982 .

[6] Bennett, Spencer and Davey Bowers,
An Introduc t ion to Multivariate
Techniques for Social and Behavioral
Sciences , John Wiley and Sons, New
York, 1976.

[7] Nie, Norman H., et al, SPSS
Statistical Package for the Social
Sciences . McGraw-Hill, N.Y., 1975.

[8] Gooch, L.L., Policy Capturing with
Local Models: the Application of the
Automa tic Interaction Detect ion
Technique in Mode 1 ing Judg ement ,

unpublished PhD dissertation.
University of Texas, Austin, TX , 1972.

[9] Hartrum, Thomas C, "CPESIM - A
Teaching Tool for CPE," Annual Computer
Performance Management Users' Group
Meeting - Minutes . Apr. 14-17, 1980,
Gunter AFS, AL.

77

IMPROMNG THE ACCURACY OF A WORiaNG-SET-ORIENTED
GENERATIVE MODEL OF PROGRAM BEHAVIOR^

Domenico Ferrari

Tzong-yu Paul Lee

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720

An experiment based on trace-driven simulation is carried out to study various

improvement strategies for a working-set-oriented generative model. Working

set size strings extracted from a real program trace are used as inputs to the

generative model. The memory demand and page fault rate of these artificial

memory reference strings are compared with those of the original real reference

string under the working set policy. The same strings are also tested under two

different memory management policies : the page fault frequency policy and the

least recently used policy. Artificial strings generated with proper strategies

behave quite well under both the working set and the page fault frequency poli-

cies. However, they behave less than satisfactorily under the least recently used

policy.

Key words: Generative model; program behavior; working set policy; workload

characterization.

1. Introduction

In the study of program behavior, memory
referencing patterns have long been a subject of

interest. On the one hand, various memory manage-
ment policies have been proposed and implemented to

optimize the utilization of system resources and
increase system performance. On the other hand,

techniques that enable compilers to generate better-

behaved code in order to achieve the same purpose

have been studied. Various methods for restructuring

programs so as to improve their referencing behavior

have also been investigated [Ferr76a].

Very often, in these studies, program reference

*The research reported here has been supported by the National Scieace
Foundation under grant MCS8O-12900.

strings are used to compare the performances of vari-

ous memory management policies or to validate

models of program behavior. These strings are usu-

ally collected by interpretively executing real pro-

grams on an existing system, but this process is rather

tedious and generally very expensive. The use of

artificial strings instead of real strings has some clear

advantages if the former reflect the behavior of the

latter. Artificial strings are usually produced by gen-

erative models of program behavior [Sage73a], that

ideally should use relatively few parameters and be

based on relatively fast algorithms.

It is usually not necessary to reproduce a

program's behavior exactly; consequently, the genera-

tive model will try to reproduce those properties of a

78

real string which are deemed to be important in the
context in which the artificial string is to be used. In
this study, the memory demand and the page fault

rate have been chosen as the importauj; aspects of a
real string to be reproduced. Our primary context is

that of the working set policy [Denn68a], but we shall

also be comparing a real and several artificial strings

under the page fault frequency policy (Chu76a] and
the least recently used policy [MattTOa). For conveni-
ence, these policies shall be referred to as WS, PFF,
and LRU respectively.

The generative model evaluated here, which is

based on a working set characterization and repro-
duces given working set size dynamics, was proposed
by Ferrari [FerrSla] and first implemented by Dutt
[DuttSla]. This paper deals with various improve-
ment strategies that can be applied to this working-
set-oriented generative model.

The generative model is described in the next
section. The proposed improvement strategies for the
model and the design of the experiments are detailed

in Sections 3 and 4, respectively. The results and
their analysis are presented in Section 5. Finally, in

the last section, conclusions are drawn from the out-

come of the experiment, and directions for future
research are provided.

2. Background

The goal of a generative model is to provide a

sequence of page references v/aose characteristics of

interest are similar to those of the modeled program.

The generative model evaluated here is based on the

sequence (or on sequences) of working set sizes and

possibly on other parameters. While it is desirable to

reproduce the dynamic behavior of the modeled pro-

gram as accurately as possible, it is also important to

minimize the number of parameters needed for the

generative model. A sequence of working set sizes is

generally redundant in its information content, as it

can be completely specified by the sequence of the

pairs (li,Wi), where is the time at which the work-

ing set size (wss) curve changes its slope, and w,- is

the wss at that time. This sequence is the input to

the generative model used in the experiment.

When a sequence of wss's is given, the window
size T used to define the working sets must always be

specified. The reference string generated by the

model on the basis of the given wss curve does not

coincide with the original real string (if there is one).

However, with appropriate generation algorithms, the

generated string might be made to possess the essen-

tial characteristics of the modeled one. In principle,

all possible reference strings of length n form a vector

space 5" where 5 is the page set. By specifying a

particular sequence of wss's, we focus on the subspace

of this vector space whose elements all have the given

wss characterization.

The input to the generative model is the given

wss sequence, which is defined for a given window size

T. The wss sequence corresponding to the artificial

string produced by the model with a different window
size will generally be difi'erent from that of the

modeled program under the same conditions. Perfor-

mance indices of other kinds are usually different also.

The string generation algorithms used in this

study can be classified into two general categories :

the single T generation algorithms and the double T
algorithms. By 'single T generation' we refer to the

generation of an artificial string based on one wss

sequence, corresponding to one value of T. By 'double

T generation' we refer to the generation of an

artificial string based on two wss sequences. By speci-

fying two wss sequences with two different window
sizes, the subset of reference strings that can be gen-

erated is further constrained. With the use of

appropriate generation strategies, the artificial string

is expected to represent the modeled program's

behavior under various memory management policies

more accurately than the string generated by a single

T wss characterization.

The properties of working set size strings and the

feasibility of both single and double T generation

algorithms are treated extensively in [FerrSlb],

[Ferr82a|, and [Lee82b|.

3. Improvement Strategies

The original generative model incorporated a

very simple strategy, since its main purpose was to

gain some insight into the behavior of artificial refer-

ence strings [DuttSla]. The artificial reference string

was generated with a single working set size string

extracted from a real program reference string. In the

strategy, three queues of pages are maintained : the

external queue (E), the candidate queue (C), and the

forbidden queue (F). Initially, all pages are in the

external queue. Whenever the working set size

increases, a new page is chosen from the external

queue and used as the page to be referenced next.

When the working set size does not increase, the next'

reference is chosen from the candidate queue. Now, if

the working set size does not decrease T units of time

later, the chosen page is put into the candidate queue,

since it is to be re-referenced within the next working

set window. Otherwise, the page is put into the for-

bidden queue, whose members cannot be referenced.

Furthermore, if the working set size decreases, the

page in the forbidden queue that was referenced T
time units earlier is moved to the external queue for

future use. The candidate queue is managed by a

FIFO policy for simplicity, and the external queue by

a LIFO policy for economy.

With these simple data structures and strategies,

the artificial string generated is fairly accurate under

the WS policy with a window size larger than or equal

to the one used in its geneiiitioa. However, its

behavior under both the PFF and LRU policies is

unacceptable [DuttSla]. Under the PFF policy, once

enough pages manage to be in memory, no further

page fault can ever occur. Under the LRU policy, the

cyclic referencing behavior due to the FIFO manage-

ment of the candidate queue creates a large number of

page faults. Ba.sed on these observations, three gen-

eral improvement strategies were proposed.

(1) Use Two Working Set Size Strings

The idea behind this approach is that forcing the

artificial string to follow two dynamic wss characteri-

zations with two reasonably spaced working set win-

dow sizes may coerce it to reproduce the original

string's behavior more accurately. For example, the

artificial string generated with this strategy may not

be as sensitive to a change of window size.

(2) Use All Pages

All distinct pages that are referenced in the real

program reference string will be put in the external

queue and used in some fashion. Instead of managing

the external queue by a LIFO policy, new pages are

chosen according to one of two criteria. The tirst is to

cycle the pages in the external queue in FIFO order.

Intuitively, each page will be referenced in the

artificial string when its turn comes. The second is to

use the pages in the external queue in such a way as

to match the real program profile, i.e., the relative

referencing frequency of each page. The rationale

behind the latter approach is to account, at least to

some extent, for the identity of the referenced pages;

this attempt at reproducing referencing frequencies

may improve the behavior of the artificial reference

string under various memory management policies.

(3) Reuse Previously Referenced Page

The cyclic referencing pattern of the original

strategy causes severe problems with the LRU pohcy.

Program referencing behaviors generally exhibit a

high degree of locality. In particular, there is a high

probability that the current page coincides with the

page just referenced.

4. Design of the Experiments

4.1. Parameters of the modeJ

The parameters of the model are estimated from

a real trace. This trace was obtained from the inter-

pretive execution of an APL program on an IBM
360/91 machine. Except for the v^'ss characteriza-

tions, which were obtained from the first 550,000

references, all parameters were derived for the first

500,000 references. Various performance indices of

the real trace, later used for comparisons, were also

gathered by trace-driven simulations from the same

500,000 references.

Three wss characterizations were obtained, v/ith

window sizes of 5000, 10000, and 20000 references,

respectively. For single T generation, the wss charac-

terization with window size 10000 was used, whereas

the other two were used for double T generation. As
mentioned in Section 2, a wss characterization is a

sequence of pairs, where t is a time at which the

slope of the wss curve changes, and w is the value of

the wss at that time. The numbers of pairs needed by

the three characterizations of the APL program trace

are 1157, 619, and 525 for window sizes of 5000,

10000, and 20000, respectively. The nominal window

size of 10000 was chosen for two reasons. First, this

window is not so short as to obliterate the program's

phase transition behavior [DuttSla] and not so long as

to require too much memory space. Secondly, in the

neighborhood of window size 10000, the space-time

product curve shows rather stable and relatively low

values.

The coefficient of resilience is defined here as

the probability that the page referenced next is the

same as the currently referenced one. In essence, this

is the probability of referencing the top of the stack in

an LRU environment (it is often called dj in the stack

distance probability distribution [Spir77a|). The value

of the estimate of this parameter from the real trace is

0.544.

The number of distinct pages in the first 500,000

references of the real trace was found to be 110. Not

surprisingly, the most frequently referenced page

accounts for 25 percent of the references; also, 20

percent of the pages account for 88 percent of the

references.

4.2. Performance indices

Various performance indices were chosen for com-

paring real and artificial strings. To compute the

space-time product, the page wait time was assumed

to be constant and equal to 10000 references. The
primary performance indices considered in the various

contexts are listed below.

(1) WS environment

Mean working set size, page fault rate, space-

time product, working set size distribution, and inter-

fault time distribution are the primary indices we are

interested in when the WS policy is used.

(2) PFF environment

Mean working set size, page fault rate, space-

time product, working set size distribution, and inter-

fault time distribution are the primary indices of con-

cern in the PFF case. The parameter / of the PFF
algorithm, i.e., the threshold of interfault times, was

chosen to equal 1543 references. This is the value of

the mean interfault time obtained under the WS pol-

icy with a window size equal to 10000 references.

(3) LRU environment

Page fault rate, space-time product, interfault

time distribution, and stack distance probability dis-

tribution are the primary indices of concern in the

LRU case. For the stack distance probability distri-

bution, the probability dj of referencing the top of the

stack is particularly important. The parameter of the

LRU policy, i.e., the fixed partition size, was chosen

to be 21 page frames. This is the mean working set

size with a window size of 10000. Under the assump-

tions made by Denning and Schwartz [Denn72a], this

choice for LRU should produce the same page fault

rate as the WS policy with window size 10000.

4.3. Overview of the Experiments

4.3.1. Artificial Strings

Twelve artificial strings, each 500,000 references

long, were generated and compared with the real

string. The names of the artificial strings rellect the

three control variables of the experiment : the number

of wss characterizations, the way to select a new page

when one is needed, and the method for re-using

pages already in the working set.

A string name consists of three characters XYZ,
where X is 5 in the case of single T generation, and D
in the case of double T generation; the binary variable

Y is 0 if the old pages are re-used in FIFO order (i.e.,

pages are selected from the candidate queue in the

order in which they were put in), and is 1 if the pro-

bability of referencing the previously referenced page

rather than the first in the candidate queue is taken

into account (in this case, the number of consecutive

references to the same page is geometrically distri-

buted); finally, the variable Z is 0 if new pages are

selected from the external queue in LIFO order, 1 if

new pages are selected from the external queue in

FIFO order (in this case, the external page queue ini-

tially contains a number of pages equal to the the

total number of distinct pages referenced in the real

string), and 2 if new pages are selected from the exter-

nal queue according to a given relative frequency dis-

tribution of page references (in this case, the usage

record of each page is continuously updated so that

the appropriate page can be chosen to match the

given frequency distribution).

4.3.2. Data structures

To generate the six strings named S**, the sim-

ple 3-queue data structure described in Section 3 is

used.

To generate the six strings named D**, we could

operate with two sets of queues, each corresponding to

one wss characterization : one set will consist of Cj,

Fi, and El, and the other of C2, F2, and £'2- Each

page would be at any given time in one (and only one)

of the three queues in each set. However, if these six

queues were implemented as described, it would be
necessary to calculate a large number of intersections

of two queues, one from each set. To speed up the

generation algorithm, a data structure consisting of

five doubly-linked lists (queues) was implemented.
Each queue in the structure corresponds to a particu-

lar intersection of the two queues mentioned above.

Fortunately, not all possible intersections of the six

original queues are needed in the generation of refer-

ence strings. The five (intersection) queues required

are CiCo, F1F2, -^iE2, C1E2, and (^1^2-

All pages are initially in the E1E2 queue. When
in both wss characterizations the wss increases, a nevv'

page is selected from the E1E2 queue according to the

strategy specified by variable Z. When in both wss

characterizations the wss does not increase, a page is

selected from the CjC2 queue. When the wss with

the larger T does not have to be increased and the

other needs to be increased, a page is selected from

the C1E2 queue.

After the page to be referenced next is chosen,

the queue to which this page should be added is to be

selected. When the page has to be re-referenced in

order to remain in both working sets later, the page is

put into the CjC2 queue. When the page has to drop

out of both working sets later, and cannot therefore

be re-referenced until then, it is put into the / 1^2
queue. When the page has to remain in the working

set with the larger T, but has to drop out of the

working set with the smaller T, the page is put into

the C1F2 queue.

A page stays in the F1F2 queue until it drops out

of both working sets, at which time the page is

released and moved to the £^£2 queue. Similarly, a

page stays in the C1F2 queue until it drops out of the

working set with the smaller T, at which time the

page is released and sent to the C1E2 queue. No
other transitions of pages between queues are possible.

It should be noted that this arrangement of the data

structures also maintains the chronological ordering of

arrival of the pages in each queue. Therefore, no

search is needed to select and delete a page when the

FIFO strategy is used.

5. Experimental Results and Their Analysis

The generation of 500,000 references with a single

window size took from 275 seconds to 421 seconds of

VAX-1 1/780 CPU time depending on the options

chosen. The generation of 500,000 references with

two window sizes took from 306 seconds to 466

seconds of VAX-11/780 CPU time depending on the

options chosen. The remarkable efficiency of the dou-

ble T generation algorithm is due to the carefully

planned structure of the queues, which eliminates the

need to do linear searches on them in most cases. An
optimized version of the generation program, without

statistics gathering, is expected to run twice as fast as

the version we have used to gather such voluminous

statistics as page reference distribution.

The strings were run under various memory
management policies, and their performance indices

were compared with those produced under the same

policies by the real string. These comparisons are dis-

cussed in the following subsections. Notice that string

SOO is essentially the same as the string generated in

an earlier experiment [DuttSla].

5.1. Characterization of Artificial Strings

Two statistics are listed in Table 1 for com-

parison : the total number of distinct pages used in

each string, and the coefficient of resilience. The
number of distinct pages used in S02, Sl2, D02, and

Dl2 would reach 110 if the string generated were

infinitely long. However, due to the very small proba-

bility densities at the tail of the distribution, only a

fraction of all pages are actually used when generating

500,000 references.

5.2. WS policy results

Artificial strings v/ere executed under the WS
policy with window size 10000 if they were generated

with one T, and also with other window sizes if they

Table 1. Characteristics of the Strings

number of coefficient of
string

distinct pages resilience

SOO 56 0.000

SOI 110 0.000
QnoU U.UuU

SlO 56

Sll 110 0 544

S12 80 0 544

tteai 1 1 n U.D44

DOO 78 0.000
v\n 1 1 1 A U.UUO

D02 80 0.000

DIO 78 0.544

Dll 110 0.544

D12 80 0.544

were generated with two T's. Their performance
indices were found to be exactly the same as those of
the real string executed under the same window
size(s). This was expected, but strengthened our
confidence in the correctness of the generation pro-
grams. The results for the real string under the WS
policy with several different window sizes are given in

Table 2.

Table 2. WS Results for the Real String

window mean max changes of space time page fault max
size wss wss slope product rate interfault time

20000 26.17 78 525 1.10E8 0.000562 111695

15000 23.67 67 554 1.G7E8 0.000592 111695

10000 20.90 56 619 1.06E8 0.000648 111695

7500 19.29 51 742 1.14E8 C.000770 65292

5000 16.90 45 1157 1.29E8 0.00118 32092

Table 3. WS Policy (T:=7500)

mean max changes of space time page fault max
string

wss wss slope product rate interfault time

D** 19.38 51 772 1.18E8 0.000800 80577

Real 19.29 51 742 1.14ES 0.000770 65292

Table 4. WS Policy (T=10G00)

string
mean
wss

max
wss

changes of

slope

space tim^e

product

page fault

rate

max
interfault time

D**
Real

21.05

20.90

56

56

613

619

1.05E8

1.06E8

0.000642

0.000648

111695

111695

Table 5. WS Policy (T=150C0)

string
mean
wss

max
wss

changes of

slope

space time

product

page fault

rate

max
interfault time

D** 23.71 67 532 1.05E8 0.000570 111695

Real 23.67 67 554 1.07E8 0.000592 111695

82

When generating artificial strings with two win-
dow sizes, it is of interest to investigate the accuracy

of the characterization for values of T between the

two window sizes used in the generation phase. The
results for three intermediate values of T are summar-
ized in Tables 3, and 4, and 5. Not only the first

moment results but also the distributions were found
to be very close (within 5 percent) to those of the real

string [Lee82a].

As shown in the tables, the results for all

artificial strings named D** were found to be identi-

cal. This observation was generalized in the following

theorem, whose proof is lengthy and has therefore

been omitted here (it can be found in [Lee82a]).

Theorem
Strings D=^* generated from two wss characteriza-

tions with window sizes T, and Ti, with T,<Ti,
have the same wss characterizations for any T
such that T,<T<Ti.

5.3. PFF policy results

That the accuracy of strings SOO and SlO is quite

low under the PFF policy is not too surprising. This

inaccuracy is due to the fact that, when new pages are

taken from the external queue in LIFO order, no

further page faults can occur after all pages are

brought into memory. However, if in the string gen-

eration algorithm we increase the size of the page

population at the time a new page is selected, we can

adequately reproduce the performance of the real

string under the PFF policy. .\lso double T genera-

tion produces accurate artificial strings. This

encouraging result is due in part to the similarity

between the WS and PFF policies in their dynamic

and adaptive allocation of memory to programs. The
PFF policy results are summarized in Table 6.

5.4. LRU policy results

The performances of all artificial strings under

LRU difi'er significantly from that of the real .string.

Even making various modifications to the original

simple generation algorithm, accuracies are still unsa-

tisfactory. During the simulation, also the LRU stack

distance probability distribution was obtained. The
probabilities dj of referencing the top of the stack are

reported in Table 7. One reason for the inaccuracy of

the artificial strings is that the value of the parameter

m, the number of page frames allocated to the pro-

gram in the LRU experiments, was not appropriate.

The page fault rate produced by the real program

trace with a memory allocation of 21 page frames was

more than twice that produced by the WS policy with

window size 10000. It is clear that the APL trace

does not satisfy all of the assumptions made by Den-

ning and Schwartz [Denn72a]. Assuming that the

reference string is stationary is probably unrealistic in

this experiment. Similar findings were reported in the

literature by other authors (see for example

(Smit76a]).

A new value for the parameter m was obtained

by trying to match the measured page fault rate of

the real string under the WS policy with window size

10,000 references. This nevv' value of m turned out to

be 31 page frames. The performance indices obtained

from the LRU policy with the new m are given in

Table 8. As shown in Table 9, this change resulted in

an improvement of almost one order of magnitude in

the accuracy of the artificial strings. However, the

accuracy is still unsatisfactory. Working-set-oriented

artificial strings cannot be reliably used in LRU
environments.

Table 6. PFF Policy (1=1543)

mean max changes of space time page fault max
string

wss wss slope product rate interfault time

SOO 55.50 56 56 4.30E7 0.000112 490024

SOI 20.97 67 318 1.02E8 0.000648 111695

S02 26.16 64 260 8.83E7 0.000528 111695

SlO 55.5 56 56 4.32E7 0.000112 490024

Sll 20.97 67 318 1.02E8 0.000648 111695

S12 27.68 64 255 8.89E7 0.000516 111695

Real 20.71 67 417 1.17E8 0.000842 80339

DOO 21.91 67 381 1.14E8 0.000776 101010

DOl 20.63 67 413 1.18E8 0.000848 80399

D02 20.93 67 409 1.18E8 0.000836 80399

DIO 21.91 67 381 1.14E8 0.000776 101010

DU 20.63 67 413 1.18E8 0.000848 80399

D12 20.63 67 412 1.18E8 0.000846 80399

83

Table 7. LRU Policy (m=21)

string
page fault

rate

max

interfault time

space time

product (percent)

SOO

SOI

S02

SIO

Sll

S12

0.217

0.217

0.217

0.100

0.100

0.099

111834

111695

111695

111834

111695

111695

2.28E10

2.28E10

2.28E10

1.05E10

1.05E10

1.04E10

0.0

0.0

0.0

54.4

54.4

54.5

Real 0.00146 111416 1.63E08 54.4

DOO
DOl

D02
DlO
Dll
D12

0.130

0.130

0.130

0 0605

0.0606

0.0601

111702

111563

111563

111702

111563

111563

1.36E10

1.36E10

1.36E10

6.36E09

6.37E09

6.32E09

0.0

0.0

0.0

54.4

54.4

54.4

Table 8. LRU Policy (m=31)

string
page fault

rate

max

interfault time

space time

product

d,

(percent)

SOO

SOI

S02

SIO

Sll

S12

0.00990

0.0102

0.0101

0.00476

0.00502

0.00504

175482

111695

111698

175482

111695

111765

1.55E9

1.59E9

1.58E9

7.54E8

7.94E8

7.96E8

0.0

0.0

0.0

54.4

54.4

54.5

Real 0.000670 175392 1.19E8 54.4

DOO
DOl

D02
DIO
Dll

D12

0.00896

0.00913

0.00908

0.00439

0.00456

0.00454

175392

111895

111695

175392

111695

111695

1.40E9

1.43E9

1.42E9

6.96E8

7.23E8

7.20E8

0.0

0.0

0.0

54.4

54.4

54.4

Table 0. Ratio of LRU Performance Indices

string

page fault rate

(artificial/real)

space time product

(artificial/real)

m=21 m=31 m=21 m=31
SOO 148.63 14.78 139.88 13.03

SOI 148.63 15.22 139.88 13.36

S02 148.63 15.07 139.88 13.28

SIO 68.49 7.10 64.42 6.34

Sll 68.49 7.49 64.42 6.67

S12 67.81 7.52 63.80 6.69

DOO 89.04 13.37 83.44 11.76

DOl 89.04 13.63 83.44 12.02

D02 89.04 13.55 83.44 11.93

DIO 41.44 6.55 39.02 5.85

Dll 41.51 6.81 39.08 6.08

D12 41.16 6.78 38.77 6.05

6. Conclusions

The tradeoff among the possible choices for a

generation algorithm has two aspects : accuracy and

complexity. A strategy more sophisticated than the

simplest one should definitely be selected if perfor-

mance indices are unacceptably inaccurate without it.

Such a strategy should also be incorporated into the

generation algorithm if it adds relatively little to the

complexity of the implementation and to the cost of

the generation process, while appreciably increasing

the accuracies of some of the performance indices of

interest.

In a WS environment, since the accuracy of the

double T generative model is practically independent

of which strategies are chosen, it is clear that simpli-

city is the primary concern. DOO could be a reason-

able candidate; however, DlO has a better coefficient

of resilience. Single T generation is not considered

here because of the clear advantage of double T
generation in the sensitivity of the accuracy to the

choice of working set window size.

Double T generation provides acceptable results

even in the PFF policy case. It is clear that taking

into account the number of distinct pages and using

them in FIFO order when a new page is needed is

very cost-effective.

The results of the LRU experiments were not

very satisfactory, but we should not expect that a

WS-based approach for string generation will

automatically provide a good accuracy under the LRU
policy. Even in this case, double T generation with

the minimum number of pages (DlO) is the most

cost-effective solution among those studied in this

paper.

All things considered, a double T generation algo-

rithm is undoubtedly a better choice than any single

T generation algorithm. The coefficient of resilience

can be taken into account by the algorithm to

improve the accuracy in a non-WS environment. At
the same time, having the artificial string reference

the same number of distinct pages as the real one is

also very beneficial. In summary, the Dll strategy

should be used.

To improve the accuracy of the model in an LRU
environment, incorporating into the algorithm the

first order properties of LRU behavior may prove use-

ful. For instance, considering more than one stack

distance probability, e.g., dg and d^, in the generation

phase of the algorithm may shape the artificial string

to be more LRU-like.

The obvious extension of the double T generation

approach is a triple T generation algorithm [Ferr82a].

With three reasonably spaced window sizes, the

model's accuracy in terms of first moment results as

well as of distributions should increase. However, it is

not known whether the further gains in model accu-

84

racy will justify the increase in the complexity of the

generation algorithm.

References

[Chu76:i]

W. W. Can and H. Opderbeck, "Program

Behavior and the Page Fault Frequency Replace-

ment Algorithm," Computer 9, 11 (November

1976), 29-38.

[Denn68a|

P. J. Denning, "The Working Set Model of Pro-

gram Behavior," Conam. ACM, 11, 5 (May 1968),

323-333.

[Denn72a]

P. J. Denning and S. C. Schwartz, "Properties of

the Working Set Model," Comm. ACM, 15, 3

(March 1972), 191-198.

[Dutt81a]

C. R. Dutt, "Dynamic Characterization and

Reproduction of Program Memory Consumption
with Working-Set-Based Generative Model,"

Master's Report, University of California at

Berkeley, August 1981.

[Ferr76a]

D. Ferrari, "The Improvement of Program
Behavior," Computer 9, 11 (November 1976), 39-

47.

[Ferr81a]

D. Ferrari, "Characterization and Reproduction

of the Referencing Dynamics of Programs," Per-

formance '81, F. Kylstra, Ed., North-Holland,

Amsterdam, (November 1681), 363-372.

[FerrSlb]

D. Ferrari, "A Generative Model of Working Set

Dynamics," Proc. SIGMETRICS Conference on

Measurement and Modeling on Computer Sys-

tems (September 1981), 52-57.

[Ferr82a]

D. Ferrari, "Working Set Size Strings," CS
PROGRES Report No. 82.10, Computer Science

Division, University of California at Berkeley,

December 1982.

[Lee82a]

T. P. Lee, "Experimental Design of a Generative

Model Based on Working Set Size Characteriza-

tions," CS PROGRES Report No. 82.6, Com-
puter Science Division, University of California at

Berkeley, June 1982.

[Lee82b]

T. P. Lee, "The Properties and Limiting

Behavior of Working Set Size Strings and Flat-

faults," Report No. UCB/CSD 82/108, Computer
Science Division, University of California at

Berkeley, November 1982.

[Matt70al

R. L. Mattson, J. Gescei, D. R., Slutz, and L L.

Traiger, "Evaluation Techniques for Storage
Hierarchies," IBM Syst. J., 9, 2 (1970), 79-117.

[Sage73a]

G. R. Sager, "Reproducing Program Memory
Reference Behavior," Proc. of Computer Science
and Statistics : 7th Annual Symposium on the
Interface (October 1973), 41-47.

(Smit76a]

A. J. Smith, "A Modified Working Set Paging
Algorithm," IEEE Trans. Computers, C-25, 9
(September 1976), 94-101.

[Spir77a]

J. R. Spirn, "Program Behavior : Models and
Measurements," Elsevier, New York, 1977.

85

SOFTWARE IMPROVEMENT PROGRAM

Opal R. Stroup

Defense Mapping Agency
U.S. Naval Observatory
Washington, DC 20305

This paper summarizes DMA's approach to upgrade its SPERRY Scientific and
Technical software while modernizing the Agency's software practices. The objec-
tives of the five-year software improvement program are« increased productivity;
improved software quality, maintainability, reliability, and portability; and
standardization of software development practices. Both current problems and the
program to introduce a modern programming environment, improve existing software
and upgrade personnel skills to support the new environment are detailed.

Key words) automated verification; COBOL; DMA; FORTRAN; modern programming;
programming standards; software conversion; software improvement; SPERRY 1100;

structured programming

1. Introduction

The Defense Mapping Agency (DMA) is currently
in the initial stages of a five-year program to
upgrade its SPERRY 1100 Scientific * Technical
(SiT) software while modernizing the Agency's
software production practices. Ultimate objec-
tives of this Software Improvement Program (SIP)

are; increased productivity; improved software
quality, maintainability, reliability, and
portability; and standardization of software
development practices. This paper provides an
overview of the DMA Software Improvement Program.
Before describing the Software Improvement
Program, it is appropriate to mention DMA's
mission, products, and organization.

2. DMA Mission and Products

DMA's mission is to provide Mapping, Charting
and Geodetic (MCJG) support and services for the
Secretary of Defense, the Joint Chiefs of Staff
and military departments, and other DoD Compo-
nents through the production and worldwide
distribution of maps, charts, precise positioning
data, and digital data for strategic and tactical
military operations and weapons systems. DMA's
mission also includes carrying out statutory
responsibilities to provide nautical charts and
marine navigational data for use by U.S. vessels
and navigators in general.

DMA has five Components including two

Production Centers (the Aerospace Center (AC) in

St. Louis, MO, and the Hydrographi c/Topographi

c

Center (HTC) in Brookmont, Md) which produce the
MCS6 products and data.

Software may be considered a subproduct of
the previously mentioned products rather than an
end-product in itself. DMA's software is used to
produce, maintain, store, and manipulate data, to
drive mapping and charting equipment, produce and
validate mathematical models, generate data in

digital format, and to perform other functions
which create DMA products.

3. Background

The DMA computing environment includes SPERRY
1100 main frames as illustrated in Figure 1*.

The SPERRY acquisition history from 1972 to the
present as well as the systems which will be in

place in 1983 are also illustrated. In 1978, DMA

initiated the "Phase II Computer Replacement
Program" to competitively acquire computing
capacity to support the Agency in the 1982-1990

time frame, by replacing the four SPERRY 1100s
(one 1108 and one 1100/42 per Center). As part of
the replacement activity, DMA and the Federal
Conversion Support Center (FCSC) performed a

software conversion cost analysis (using the FCSC

cost model) for each of several acquisition

86

Year AC HTC

1972 1108 1108

1977 1108
1100/42

1108
1100/42

1980 1100/81
1100/82

1100/81
1100/81

1983 IIOO/OZ Zxl
1100/84 4x4
1100/82 2x1
1100/62 2x2

1100/BZ Zxl
1100/82 1x1
1100/62 MP 2x1
1100/61 1x1

Figure 1. 5PERRY ACQUISITION HISTORY

alternatives being considered. To provide the
best tradeoff between maximizing competition and
avoiding the $30 to $40 million cost of convert-
ing DMA's entire applications software inventory
to a new target machine^ DMA selected the follow-
ing strategyi upgrade of the SPERRY CPUs,
memory, card equipment and printers; competitive
acquisition of tapes disks, and terminals, soft-
ware redesign; competitive contracts for data
base conceptual design and implementation; local
area networking, and technical support services.

In granting the Delegation of Procurement
Authority (DPA) [11]> GSA suggested that the
Agency implement a software improvement program
to ensure that DHA will establisn an environment
which will foster competitive conditions for

subsequent procurements. DMA had already recog-

-.ized a need to improve software and the software
development environment and had several on-going
related, independent activities in progress.

Included in these activities were several

Research t Development activities in the area of
software development tools.

The Software Improvement Program is intended

to consolidate into a single coordinated program
many on-going, related activities which have been

developing independently. The plan builds on

prior Center accomplishments to avoid duplication

of effort and to benefit from lessons learneQ

during previous activities [12]. It will

initially be implemented for the SPERRY 1100

systems but will later be extended to the mini-

computer environment as well.

The operational concept for SPERRY upgrade
for the S*T systems calls for transitioning the

Agency from a centralized, batch-oriented data

processing environment to an interactive process-

ing environment. This includesi acquisition of

approximately 500 interactive terminals (HTC -

300, AC - 200); exploitation of data base manage-

ment concepts and networking; and conversion of

non-standard production software to ANS standard

languages (ANS FORTRAN X3.9, 1978 [1]; ANS COBOL,
X3.23, 1974). Transition from the current
batch-oriented environment to interactive envi-
ronment alone is a significant task. This task
is complicated by production software deficien-
cies, lack of required skills, insufficient
automated data processing (ADP) staff, and the
absence of a modern programming environment.
Several recent independent studies [4,5,6] have
identified serious deficiencies in DMA's
production software. These deficiencies may be
categorized as follows:

1. Multiple versions of production programs.

2. Non-ANS Standard (therefore, nonportable)
code.

3. Obsolete coding practices resulting in soft-
ware which is difficult to maintain.

4. Logical design which is hardware-dependent
and inefficient.

5. Poor end-user interface.

6. High error-off rate (much of which results
from poor user interface).

Most DMA softwa re developers have received
formal university training in disciplines other
than computer sci ences/ software engineering
(e.g., physical science, mathematics, earth
science, cartography, geography, geodesy, photo-
grammetry, etc.) and few have training/experience
in designing interactive software systems. There
is insufficient ADP manpower to perform a massive
software redesign while simultaneously support-
ing normal DMA production. Finally, DMA is in
only the initial stages of introducing those
tools and techniques which constitute a Modern
Programming Environment (MPE). Therefore, we
have initiated the SIP and directed it at three
areas;

1. Software upgrade. (i.e., software
. cleanup

and software redesign).

2. Upgrading of software development personnel
ski lis.

3. Introduction of an MPE into DMA.

4. Software Upgrade

Improvement of the existing SPERRY 1100 3*T
software will require three major tasks:

1. Inventory of existing software

2. Cleanup of selected existing COBOL and
FORTRAN software

' Figures in brackets indicate the literature references at the end of this paper.

87

3. Redesign of selected software.

Centers have compiled and continue to refine

inventories of existing SPERRY SiT software.

Centers are identifying candidates for cleanup

and/or redesign using such criteria asi the

anticipated life of the software; whether and in

what time frame the software i s to be off-loaded

from the SPERRY 1100; frequency of software use;

and criticality of the software to the DMA
mi ssi on

.

The "cleanup" will consist of five major
activities: baseline definition* translation*
restructuring, validation, and documentation.
Center personnel and/or contractors may accom-
plish cleanup of software. To the extent possi-
ble, cleanup i s to be accomplished with automated
tools rather than manually. The ultimate goal of
the cleanup effort is that all SPERRY SiT soft-
ware will be structured, free of vendor
extensions, conform to ANS standards, and docu-
mented according to DOD standards.

Baseline definition refers to comprehensive
testing of software with retention of results for
future comparisons.

Translation is defined as the conversion of
existing COBOL or FORTRAN code to ANS COBOL
X3,23, 197^, or ANS FORTRAN X3.9, 1978 (FORTRAN
77) respectively, with the removal of vendor
extensions. The removal of vendor extensions
will in no case result in the loss of function.
Once the existing SPERRY 1100 software has been
converted to the ANS standard, future conversion
to non-3PERRY mainframe or conversion to the ANS
subset for minicomputer systems will be more
easily accomplished. Translation to ANS Standard
will result in more portable,
non-vendor-dependent code. DMA does not have a

translator tool to accomplish this task. Manual
translation would be extremely laboi— intensive
and error prone. Therefore, DMA plans to require
"software redesign/cleanup contractors" to
provide such a tool.

Restructuring is the changing of nonstruc-
tured code to structured code (i.e., code
containing only the following logic structures:
Sequence Block. IF-THEN-ELSE, DO UNTIL, DO WHILE,
CASE). Restructuring reveals the structure of an
algorithm so that its existing code may be main-
tained, modified, or documented. The
restructuring process does not change program
logic, and it does not redesign "spaghetti."
However, the structured code generated by the
structurizer is more readable than the original
code and, therefore, is more maintainable,

DMA owns a FORTRAN Automated Verification
System (FAVS) [8,9] which provides a FORTRAN
structurizer as one of its major subsystems.
FAVS is currently being made ready for production
use via a maintenance contract with the tool
developer. General Research Corporation (GRC).

Similarly, a COBOL Automated Verfication System
(CAVS) [2] is being developed for DMA. A
restructuring capability for COBOL is an option
which DMA may exercise.

The validation task refers to the duplication
of baseline testing for cleaned up software to
ensure that the process did not introduce errors.

The software documentation task consists of
both automatic and manual generation of documen-
tation .

During software cleanup, missing or inade-
quate documentation will be augmented with both
automatically and manually generated materials.
Automatic generation of reports about code such
as stati c analysi s (ANS standard violations, flow
analysis errors, portability and flow metrics);
complete layout of all files; detailed
cross-reference of all statements; and a map of
data usage in the COBOL procedure division will
be produced as software is cleaned up/redesigned.
The purpose of the reports is to assist mainte-
nance programmers in reading and analyzing code
and in controlling the impact of program modifi-
cation ,

The FAVS will provide the following documen-
tation for FORTRAN code; invocation summary,
common matrices, input/output statements, and
cross-reference of external variables for multi-
ple modules; and symbol reports, cross-reference
reports, invocation space reports, and invocation
bands reports for individual modules [8], CAVS
(when available) will generate the following
reports: an indented listing of COBOL source;
cross-reference of calling and called programs;
cross-reference of program and file interaction;
cross-references of program and copy text
instruction showning where copy texts are used;
cross-reference of program versus linkage section
contents; reports showing where all identifiers
are defined, set, and used; and a cross-reference
of identifiers by record position and programs,
showing fields defined, set and used, and when
and where identifier names differ [2].

During the inventory phases. Centers identi-
fied documentation available for application
programs. Missing user documentation is to be
written ("manually") during the redesign effort.
In cases where contractors perform software rede-
sign, the contractor will prepare such missing
documents. In cases where required improvement
includes "only" enhancing/preparing documenta-
tion, in-house effort will be used.

To allow the Centers to solve a variety of
software problems, redesign in broadly defined as
any appropriate combination of the following:

1, Rewrite all or portions of the code for
interactivity,

2. Redesign of the user interface (leave the
code untouched while creating a new "front
end" to improve user interface).

3. Optimization of those portions of code Mhich
consume the greatest resources (based on
results of instrumentation and use of
metri cs)

,

4. Rewrite portions of the code to increase
rel i abi 1 i ty

.

5. "Scrap" the existing program and rewrite the
algorithm using the "structured code" as a

basis for understanding.

5. Approach

The DMA approach to the software improvement
effort is to contract for the redesign/cleanup of
selected software. DMA intends to award Basic
Ordering Agreements (BOAs) to all contractors
possessing certain corporate experience* person-
nel experience* and software tool
access/exper i ence . A Request for Proposals (RFP)
was issued in 1982 for Software Resdesi gn/cleanup
and proposal evaluation is in progress. On a

case-by-case basis* DMA will issue delivery
orders describing the desiered redesign. A firm
fixed-price contract will be awarded for each
delivery order on the basis of technical approach
and cost. The contractor may be tasked with
cleanup only or cleanup plus desired redesign
activities. The contractor is being required to
use automated tools to translated code to AN5
Standard* and restructure it. New code is to be
rewritten using only structured programming
contructs. In some cases* the contractor will
redesign software that has been cleaned-up
in-house. In others* unstructured* untranslated
code will be the contractor's input — especially
during the early stages of the effort. Since DMA
is concurrently attempting to introduce several
tools into the sofware development environment*
(e.g .* FORTRAN precompiler)* contractors will
be required to interface with them. For example,
a contractor writing structured FORTRAN would be
required to use those constructs and delimiters
acceptable to the DMATRAN precompiler.

6. MPE Implementation

The improvement (cleanup and redesign) of DMA
software will consume a significant amount of
resources over a period of five years. To obtain
maximum return from this investment, DMA must
take actions to ensure that
modification/maintenance of the improved soft-
ware does not result in the introduction of the
deficiences discussed above. Moreover, all new
software developed must be of the same (or
higher) quality as the improved software. There-
fo re* DMA is concurrently introducing a SPERRY
1100 Modern Programming Environment (MPE). The
MPE will include a centralized Production Program
Library which will be the repository for
production programs and documentation (in human
and machine readable form). As each software
system is cleaned up and/or redesigned* it will
be migrated into the production program library

at the appropriate Center and will be placed
under control of the newly formed Configuration
Control Board (CCB)

.

Tools to support an MPE implementation plan
may be grouped into three general cateogriesi
(1) conversion aids for software* (2) management
aids for existing software* and (3) productivity
assistance tools. Three categories of conversion
aids are considered in this plan; static analyz-
ers* precompilers* and structuring engines. The
FORTRAN Automated Verification System (FAVS)
provides each of these tools. FAVS deficiences
are currently being corrected so that the tool
can be introduced for production use. Similarly*
the CAVS will be made available for production
use once it is production-ready. A COBOL precom-
piler which will interface with CAVS is also
available. The term precompiler is used here to
refer to a tool which simplifies the task of
writing structured code in such languages as
FORTRAN and COBOL which do not support all of the
structured figures.

Two classes of tools to manage existing soft-
ware (whether developed in-house or by contrac-
tors) are being considered by DMA.

The first class of such tools is the code
auditor to automatically check for adherence to

Center standards [10] for structuring and ANS
standards. Use of such a tool would allow DMA to
avoid the more laboi— intensive* and erroi—prone
manual methods. However* acquisition of a tool
is not anticipated prior to introduction of stan-
dards.

The second class of tools being considered
are configuration control tools which automat-
ically track changes to software and permit only
authorized changes to an official version of
software. DMA plans to investigate acquisition
of such a tool to support the CCB activities. In

the interim a manual system is being implemented.

DMA has a great deal of batch-oriented soft-
ware which requires some form of interactivity.
Two approaches can be taken when introducing
interactivity. A separate user interface can be

written for each program. A second approach is

to provide a dialog manager capability to intei

—

face with the operating system rather than using
COBOL and FORTRAN to do this interface. DMA

plans the second approach and has acquired the
SPERRY Display Processing System (DPS 1100) which
separates the development and use of predefined
screens from the application program itself.

Center personnel are currently learr<ing to use
thi s tool

.

The third major phase of implementing DMA's
SPERRY 1100 MPE is the introduction of Standards
(which apply to all mainframe and minicomputer
software development) into the Centers.

DMA has issued a foui—volume set* "DMA Soft-
ware Life Cycle Standards"* which is tutorial in

nature* takes into consideration Center differ

—

89

Qncesr conforms to DoD Automated Data Systems
(ADS) documentation standards (DoD 7935) and

reflects state-of-the-art ADP software

practices. It consists ofi DMA Software Design

and Implementation Standards Manual (SDISM);

Structured Programming in FORTRAN [14]; Struc-

tured Programming in COBOL [13]; and Structured
Malk-Through Guidelines. Volumes II and III

detail the simulation of basic structured

programming constructs and> thus allow generation
of "structured code" without the use of precom-
pilers. Volume IV provides general guidelines
for structured walk-throughs for all software
life cycle phases. Following Center review* the
standards will be introduced in a phased manner.
An additional document. "Software Contracting
Guidelines" is being developed to assist non-ADP
personnel in contracting for software.

7. Skills Upgrade

The third major area addressed by the SIP is

the upgrading of the skills of both managers and
software developers. Areas of emphasis for
managers are: quality assurance, managing struc-
tured programming projects, project management
and control, state-of-the-art awareness, produc-
tivity assurance, and contracting for software.
Managers must understand the concepts and methods
employed in an MPE since they differ from those
of the traditional software projects.

Four areas of training will be emphasized for
software developers: (1) 5PERRY skills. (2)

state-of-the-art awareness. (3) MPE
introduction, and Cf) new technology. As with
management training, a variety of methods (e.g..

lectures, seminars, laboratory, video cassette,
on-site) will be used. Training topics include:

the structured software life cycle, applying
standards; use of tools (e.g.. FAVS. DMATRAN);
designing interactive systems; using terminals;
SPERRY refreshers; data base maintenance, query
language/report generators; structured life
cycle standards; redesigning existing software;

and optimization techniques, networking, commu-
nications and graphics.

8. Summary

In summary. DMA is commmitted to a five-year
Software Improvement Program encompassing ijiree

major areas: introduction of a modern programming
environment, improvement of existing software,
and upgrading development and management skills
to support the new environment. General policy
includes: adoption/use of structured programming
as a standard, maximizing the use of tools to

facilitate software development, compliance with
ANS COBOL and FORTRAN standards,
establishment/use of a centralized program
library, adoption/enforcement of software life
cycle standards, elimination of multiple versions
of common software, establishment of quality
assurance groups to ensure adherence to
standards. introduction of a Configuration
Control Board, introduction of interactivity, and
a phased approach to software cleanup/redesign in

which high priority software is cleaned
up/redesigned first.

Successful implementation will provide the
following benefits:

1. A competitive environment in which DMA will
not be locked into a single hardware vendor
because of the di ff i culty/costl i ness of
software conversion.

2. A standard software base in which production
software is identifiable and maintainable.

3. Standard software development practices
within and between Centers.

4. Tools to improve productivity.

5. A modern environment offering increased job
satisfaction to software developers.

References

[1] American National Standards Programming
Language . FORTRAN. ANS X3.9. 1978.

[2] COBOL Automated Verification System (CAVS):
Study Phase . Rome Air Development Center.
Griffiss Air Force Base. New York.
RADC-TR-81-11. March 1981.

[3] DMAHTC Modern Programming Experience ,

In-Process Review (IPR) Vu-Graphs.
DMAHTC, Brookline. Md, August 1981.

['f] DMA Modern Programming Environment Study »

prepared for Rome Air Development Center,
Griffiss Air Force Base, New York ,

RADC-TR-79-343, January 1980.

[5] DMA Programming Support Library (PSD Pilot
Project Interim Evaluation Report ,

IBM/F5D . prepared for Rome Air Develop-
ment Center. Griffiss Air Force Base. New
York. Contract Number RADC
F30602-79-C-0121. November 1980;

[6] DMA Software Conversion Study , HQ DMA, U.S.

Naval Observatory. Uashington. DC 20315.

[7] DoD Automated Data Systems Documentation
Standards . DoD 7935. February 1983.

[8] FORTRAN Automated Verification System User
Manual CR-1-754/1. General Research
Corporation, prepared for Rome Air Devel-
opment Center, Griffiss Air Force Base,

New York, Contract Number RADC
F30602-76-C-0'i36, April 1980.

[9] FORTRAN Automated Verification System (FAVS)

Rome Air Development Center, Griffiss
Air Force Base. New York. RADC-TR-78-268

.

3 volumes, 1979.

90

[10] Fife, Dennis, "Computer Software Management

t

A Primer for Project Management and Quali-
ty Control" , NBS Special Publication
500-11, U.S. Department of Commerce, Wash-
ington, DC, July 1977.

[11] General Serv i ces Admi n i strati on (GSA) letter
, granting DMA a Delegation of Procurement
Authority (DPA), 15 July 1981.

[12] Krygiel, A. J., "Lessons Learned on the Road
to a Modern Programming Environment" , HQ
DMA, U.S. Naval Observatory, Washington,
DC 20315.

[13] Structured Programming in COBOL , HQ DMA,

U.S. Naval Observatory, Washington, DC

20315, 1982.

[1^] Structured Programming in FORTRAN , HQ DMA,

U.S. Naval Observatory, Washington, DC

20315, 1982.

91

SOFTWARE IMPROVEMENT PROGRAM (SIP): A TREATMENT FOR SOFTWARE SENILITY

Carol A. Houtz

Federal Conversion Support Center
Office of Software Development and Information Technology

General Services Administration
5203 Leesburg Pike, Suite 1100

Falls Church, VA 22041

ADP organizations are plagued with high maintenance costs, long delays in

responding to users' changing needs, and continued development and maintenance
of antiquated, outmoded, and relatively obsolete software. This software can be

thought of as being in an advanced state of software senility, a degenerative
condition, which if not corrected, will eventually render the software totally

useless. A reversal of this situation requires a Software Improvement Program

(sip), which is a treatment for the ills of software senility, and offers a cure

for many of the software problems from which most ADP organizations are

suffering. A SIP is an incremental and evolutionary approach to modernizing
software to maximize its value, quality, efficiency, and effectiveness, while

simultaneously preserving the value of past software investments and enabling
the organization to capitolize on today's modern ADP technology, as well as

future technological advances in the field. This paper describes the SIP

philosophy and presents a strategy for implementing a dynamic, ongoing SIP

coupled with a sound Software Engineering Technology (SET), to attack the

causative factors of the ever-growing software crisis.

Key Words: Software Engineering Technology (SET); software improvement;

Software Improvement Program (SIP); software obsolescense; stepwise refinement.

1. Need for Software Improvement

Over the past several decades there have
been substantial changes in the automatic data
processing (ADP) industry. There have been
dramatic increases in hardware productivity,
with a significant decrease in the footprint of

the hardware configuration due to its reduced
size, component modularity, and lowered air-
conditioning and electrical consumption.
Simultaneously, total ADP costs have continued
to rise with the largest costs shifting from
hardware to software. This shift in costs is

primarily due to substantial automatic data
processing equipment (ADPE) price reductions,
coupled with increased personnel costs for

software development and maintenance activities.

During this same period of high-powered,
low-cost, rapidly-advancing ADPE, many ADP
organizations are facing a software crisis.
Software activities are still labor intensive,
with little increases in productivity being
realized in software production and maintenance.
Resource utilization has shifted from software

development activities to maintenance, with over

half of all software personnel involved in

correcting software errors, modifying software

to change its functions or extend its life,j^and

simply keeping the software operational [1] .

Most existing government software is well

over a decade old, with some as much as twenty

to twenty-five years old. Much of the software

was originally written on second-generation
hardware and operating systems, in machine-
dependent and nonstandard languages, and have

undergone several hardware, operating system,

and language conversions. Most of this software

was written with little or no utilization of

software design, programming, or testing stan-

dards, guidelines, or procedures; required
substantial operator intervention; utilized
sequentially accessed card and tape input and

output files; and had minimal, inadequate, or in

some cases, a total lack of documentation.

Figures in brackets indicate the

literature references at the end of this paper.

92

Embedded in this aging software were
home-grown system utility and operating system
features such as sorts, merges, record buffers,
copies, and manual restarts. These features
were included, of necessity, in the software
because most of the features of modern software
package utilities and operating systems, which
we now take for granted, were not available as
packages or in operating systems of that day.
Many of these home-grown utilities and operating
systems are no longer supported by the devel-
oping organization or the vendor, nor is there a

readily available and adequate pool of pro-
grammers for maintenance of this software.

In the past, bigger or more powerful ADPE
configurations, or emulation or simulation has
been a quick fix for these software problems.
But increasingly, the hardware fix for the

software aches and pains has been found to be a

fleeting panacea, or a temporary solution at

best; and today's modern systems cannot, and do
not, support emulation or simulation of the

older programming features and practices.

Coupled with these problems of aging
software, ADP organizations are plagued with
high maintenance costs, long delays in respond-
ing to users' changing needs, and continued
development and operation of antiquated and
underpowered computer software. Productivity
increases for ADP organizations with these
problems are severely limited, if not impossible
to attain, due to the proliferation of archaic
software analysis, design, coding, and testing
features and techniques; low-level and nonstan-
dard languages; machine or environment depen-
dencies; and custom-written utilities.

This antiquated, aging, outmoded, and
relatively obsolete software is in need of

modernization. While this software cannot be

termed totally obsolete, because it is still
operational, it can be thought of as being in an
advanced state of software senility. Software
senility is a degenerative condition, which if

not corrected, will eventually render the

software totally useless.

In view of the many and complex, afore-
mentioned software problems, and the emerging
trend that the software crisis will continue to

grow and worsen, a quick fix or single solution
to the problems is not feasible, and a direct
conversion from the problem environment to a

modern ADPE system and environment is virtually
impossible. To solve these problems and combat
the software crisis, a program must be insti-
tuted to preserve the value of past software
investments as much as possible, and provide an
incremental and evolutionary approach to modern-
izing the existing software to maximize its

value, quality, effectiveness, and efficiency.

Such a software improvement program (SIP)

is described herein as a treatment for the ills

of software senility, and offers a cure for many
of the software problems from which today's

government ADP organizations are suffering.
Institutionalization of a sound software engi-
neering technology (SET), coupled with a

dynamic, ongoing SIP, can attack the causative
factors of the software crisis; and provide the

government with viable, modernized, effective,
efficient, and high quality ADP systems, capable
of capitolizing on today's modern ADP tech-
nology, as well as future technological advances
in the field.

2 . Goals of a SIP

There are many goals for a SIP to achieve.
The most important of them being to-

improve software maintenance and
control

;

reduce delays in responding to users'

needs

;

improve software quality;

increase programmer productivity;

decrease software maintenance costs;

institutionalize processes;

change software from a reactive to

proactive state;

extend the software's life; and

put the organization in a position to

take advantage of new and emerging
technology

.

However, the end goals of a SIP are not

only to improve software maintenance and

control, but also to achieve as much isolation
of function and standardization of interfaces
within the software systems as possible. The

achievement of these goals is attained through-

isolating system functions;

allowing for interchangeability of

system functions; and

facilitating change of elements within
function.

Isolating system functions through modu-
larization is a natural step towards avoiding
reliance upon one architecture or environment,

and increases software maintainability and

understandability . As functions are isolated,

more design alternatives present themselves and

further possibilities of segmentation emerge.

Thus, isolation of function holds the key to

selecting cost-effective and efficient system
alternatives in the future.

Functions should also be interchangeable
with alternative design realizations to

facilitate functional interfaces. This

93

interchangeability of function, usually achieved

through the use of reuseable and standardized

modules of code, ensures an easier change in the

means of performing a function. For example,

exchanging a called module that accesses a tape

file for a called module that accesses a disk

data set.

Facilitating the change of elements within

functions refers to the software's portability

and maintainability. Better portability and

easier maintainability through the use of

single-function, standardized, and reuseable

modules of code is paramount to achieving the

goals of a SIP. Easier changeability of the

software and its functions, increases and

ensures more efficient use of the key data

processing resources, especially people and

machines. Standardizing, modularizing, para-

meterizing, and documenting the software are

several techniques that aid in facilitating the

change of elements within functions.

Improving the software's quality (i.e.,

making the software better), is probably the

best available means of achieving the SIP's

goals. Software quality is a measure of its

excellence, worth, or value against some ideal

or standard. Although quality is an ill-defined

term, there are many specific properties, or

attributes, by which it can be defined or

measured [2]. Figure 1 illustrates a proposed

hierarchy of the major software quality attri-

butes and their subordinate attributes. Although

the subattributes are listed under only one

major attribute, it must be stressed that

several of them could conceivably be listed

under more than one major attribute. For the

sake of clarity and to minimize misunder-
standings, each subattribute has been listed

only once, under the major attribute with which

it is most often associated.

It must be noted that it is rarely possible

for all software quality attributes or subattri-

butes to be implemented. It is first necessary

to define the SIP's goals, and then the improve-

ment objectives for each individual software

application. Appropriate tradeoff decisions must

then be made among the various quality attri-

butes and subattributes, and the goals and

objectives to be achieved. For example, some

processing efficiency may have to be sacrificed

to achieve more maintainability, and vice versa.

3. Description of a SIP

A SIP can be thought of as a preventive

maintenance program for software. Like ADPE

preventive maintenance, software must also be

periodically and systematically cleaned-up,

fine-tuned, optimized, and enhanced to keep it

in working order and capable of fulfilling its

current and future requirements.

The concept of software improvement is not

new, rather it is an outgrowth of normal
day-to-day software maintenance projects and an

extension of conversion projects. Some types of
software improvement, such as realigning code
and implementing naming conventions, are
presently performed concurrently with such
everyday tasks as software modification or main-
tenance, or for conversion from one computer
configuration to another. However, these
improvements are traditionally performed on a

random, piecemeal basis, without structure or
overall software or organizational considera-
tions.

Such improvement decisions are usually made
by the individual programmer without the benefit
of managerial input. This bottom-up, piecemeal
approach to software improvement is unstruc-
tured, and usually results in an unsuccessful
attempt to cohesively improve the current
software and acquire and use modern tools and
techniques

.

In contrast to the traditional, single-
purpose software improvement approach, the
modern software improvement approach, as
described hereinafter, actually serves multiple
purposes. Under the modern software improvement
approach, improvements are not performed to meet
only a single need or objective, but rather to
accomplish several objectives and reconcile
multiple problem areas. Also, the decisions as
to when software improvement is needed and what
types of improvements are needed are not left to
the individual programmer or analyst, and the
improvements are not performed in a casual
manner. Rather, these decisions and the improve-
ment performance are institutionalized as a

formal process to which all programmers and
analysts must adhere.

While the software improvement concept may
not be new, the software improvement approach to

building or improving systems, is innovative and
more sophisticated than the conventional and
more simplistic software life-cycle approach.
The software improvement approach to building
and improving systems [1] is built on the key
assumptions that-

most major ADP organizations have a

decade or more of investment in soft-
ware

;

most Federal organizations are almost
entirely dependent on their software to

meet their mission;

keeping software operational is diffi-
cult enough without deviating from that
baseline of software to add enhancements
or change functions through major
redesign or new development, which is

thought to be an uncertain and risky
business; and

there is a need to support new appli-
cations to keep ADP costs low and
service levels high.

94

USEABILITY

RELIABILITY EFFICIENCY PORTABILITY MAINTAINABILITY

^ependablllty^

^Accuracy
^

^mplementablllTy^

^Uniformity
^ ^ Modularity

^

dependenc ^Te stability ^

^euseabinty ^ ^odlf lability

^

^nderstandability^

^C o n c 1 8 e n e s8^

^Simplicity
^

Figure 1. Hierarchy of Software Quality Attributes

95

The software improvement approach to

improving existing systems, or building new
systems from existing software, is different
from the conventional system development
approach in that it recognizes-

the existence and characteristics of the

current systems that support day-to-day
operations

;

the existence of other operational
systems that may be integrated to

replace functions in an existing
system;

the inherent problems in engineering new
code in any quantity;

that existing systems are frequently the

only specification of existing
processes

;

the need to preserve the testing
integrity of the current system while
moving to a new or improved system;

, that many faults or deficiencies in an
: existing system can be accurately and

cost-effectively corrected by improving
it;

the need for an orderly, incremental
approach to the building or improving of

a system that allows for adequate
testing, manageable pieces, constant
achievement and growth, and progress
feedback;

. the need for a useable version of the

new or improved system at each stage of
development or improvement, allowing for

rapid capitalization upon the new system
and its components; and

the virtual impossibility of completely
re-engineering or redeveloping very
large systems within a reasonable time

frame [3] .

The universe of software, from which a

desired application can be built or improved on,

can be conceived as a triangle, as illustrated
in Figure 2,

At the apex of the triangle is all of the

"software that currently exists" in production
today. This software performs the functions
that the organization needs to conduct its

day-to-day business. Because this software is

already working and tested, it has an intrinsic
value to the organization and represents the

• vested interest an organization has in its own
software applications. Existing software is

usually salvaged, transferred, and incorporated
into a new or improved system by purging any
undesirable or unnecessary software, leaving
some of the software as it is, and improving the
remaining software through conversion, refine-

ment, and enhancement activities. While it is
typically the easiest and most accurate to test
and the least costly to produce, this software
is often the most expensive code to maintain
because it is usually undocumented and built in
a "patchwork" fashion.

At the bottom left-hand corner of the
triangle is "other operational software that
exists" in other organizations. This external
software represents the software packages
available from industry or other ADP organiza-
tions. While this software may suffer from some
deficiencies, it may be modified to fit the
organization's needs. Also, many software
packages are highly maintainable, well
documented, and quite portable, and may not
require extensive, if any, modification.
External software is usually incorporated into a
system by replacing existing code with an
existing package. This software is typically
somewhere between existing and new software in
cost, accuracy, and maintainability, depending
on the package's functions and its level of
sophistication.

Finally, at the bottom right-hand corner is
"new software," which does not yet exist and
must therefore be engineered. While this code
is typically the easiest to maintain because it
is state-of-the-art and newly documented, in
terms of accuracy it is normally the most
difficult to engineer and the most risky to
undertake because there is no existing baseline
from which to test or measure. It is also the
most costly to produce because it must be
engineered from "scratch." This software should
be incorporated into a system as a last resort,
if transfer of the existing software or replace-
ment with a package is not feasible. Neverthe-
less, any new software should be engineered
using modern programming practices to ensure
software that is well documented; fits the
application better; is easy to support, read,
understand, modify, and enhance; and is less
expensive and time consuming to maintain.

The software improvement approach to
improving an existing system or constructing a
new one, thus is one of-

determining on a case-by-case basis, the
source (e.g., existing internal soft-
ware, existing external software
package, or new software) of the
software or software subpiece;

determining the actions required to
modify and/or implement the software
(e.g., purge the software from the
system; salvage the current software by
leaving it alone and moving it as it is;

salvage the current software by
improving it through conversion,
refinement, and/or enhancement; replace
the current software with an external
software package; or redesign/ newly
develop the software);

96

97

assessing the software's source and
actions required against the costs,
benefits, and risks of each; and, then

developing a strategy or plan for the

software's purge, transfer, improvement,
integration, and/or redesign/ new
development into the improved or newly
constructed system.

In summary, four basic advantages of the

software improvement approach to improving or

building a system over the conventional system
development approach are that it-

minimizes uncertainty and risk by

maximizing the utilization of testable
components

;

preserves the value of past software
investment as much as possible and

avoids the dangers of failure inherent
in the "tear-it-down-and-start-anew"
approach

;

enables the project to be broken into
small, manageable pieces with an

operational system at each phase; and

is iterative in nature, which allows for

the tasks performed to be repeated in an

orderly, incremental fashion with
constant achievement, growth, and
feedback, until the overall objectives
of the project are met.

4. Stepwise Refinement

Because of the large amount of software
that exists in most ADP organizations, most
software can't be improved in one "lump sura."

Thus, the software must be divided into smaller,

more manageable increments, that progress
through the software improvement process as a

work unit. Increments can be based on system,

subsystem, or project boundaries, or by func-

tional areas (e.g., input, edit, file update,

report generation, or error handling) . The key

is to subdivide the software minimizing the

interfaces between the groups. The absense, or

minimization, of increment interfaces makes the

improvements for each increment more indepen-
dent, and allows the concurrent improvement of

several increments at a time.

AlsOj because of the vast differences that

may exist between the current and desired
software environments, most needed improvements
can't be accomplished in one "quantum leap."

Thus, the improvements for each increment are

accomplished in multiple steps or releases [3]

of logically related sets of improvement
activities that are performed at one time.

Improvements are normally subdivided by activity
type into the three basic releases of conver-
sion, refinement, and enhancement as depicted in

Figure 3.

As illustrated in Figure 3, the software
improvement activities under these three
releases range from simple translation of code
to complete re-engineering of existing systems.
The software improvement activities flow from
one release to the next; thus, there is no
"clear cut" dividing line between each release,
and some functional overlap is inevitable.

The decisions as to the number of releases
necessary to improve each increment, and the
improvement activities to be performed in each
release, are dependent on the size of the
increment, overall number and type of improve-
ments required, and priority of the improve-
ments. Improvement activities can be combined
into one large release, or further subdivided
into multiple mini-releases as illustrated in
Figure 4. Figure 4 also illustrates the stepwise
refinement approach to upgrading and modernizing
the software, with continual advancement and the
opportunity between each stp to reevaluate the
SIP plans and results, and to introduce changes
as necessary.

Software improvement conversion activities
transform the software, without functional
change, standardizing it and making it environ-
ment independent. Without standardization and
independence, the next two releases, refinement
and enhancement, would be extremely difficult,
if not impossible, to accomplish. Standardized
software, that is as independent as possible,
lends itself to manipulation by automated means
and proceduralized processes, and facilitates
flexibility for future requirements (e.g.,
moving to a new environment)

.

Software improvement refinement activities
modernize the software to a state-of-the-art
status and improve software maintainability and
programmer productivity. Refinement is a

prerequisite for software enhancement to ensure
enhancements are not being made to unmaintain-
able software with obsolete coding features
(e.g., EXAMINE or ALTER statements in COBOL), or
outdated or incorrect functional requirements.

Software improvement enhancement activities
optimize the value, quality, efficiency, and
effectiveness of the software enabling easier
technical redesigns, easier addition of modern
"technological" features and capabilities, and
more efficient and effective use of resources.
Without enhancement, the standardized and
modernized software may still not function
efficiently or effectively, or fulfill the

user's desired requirements.

Improvement activities do not have to be
subdivided into these three basic releases or
foil ow the suggested release flow. They can be
combined into one large release, or further
subdivided into multiple mini-releases. The
decisions as to the number of releases necessary
to improve each increment, and the improvement
activities to be performed in each release, are
dependent on the size of the increment, overall

98

• STANDARDIZE CODE

• UPGRADE SOFTWARE

CONVERSION • TRANSLATE LANGUAGES

• REMOVE DEPENDENCIES

• RESTRUCTURE CODE

\
• REALIGN CODE

• REMOVE ARCHAIC FEATURES

• CLEAN-UP CODE

REFINEMENT- • STREAMLINE JOBSTREAMS

• ISOLATE SYSTEM FUNCTIONS

• MODULARIZE CODE

\
• CREATE DOCUMENTATION

• ENABLE FUNCTION INTERCHANGEABILITY

• PERFORM TECHNICAL REDESIGNS

ENHANCEMENT- • REVISE FILE ACCESSING MECHANISMS

• ADD POTENTIAL FOR FUTURE FEATURES

Figure 3. Typical Software Improvement Release Flow and Activities

99

100

number and type of improvements required, and
priority of the improvements.

5. Major Benefits of a SIP

The tasks required during the software
improvement process encompass a broad range of
activities, and at a minimum include-

performing a software inventory and
analysis

;

developing SIP plan(s);

establishing engineering elements;

preparing work packages;

preparing test data sets;

developing software improvement release
specifications;

improving the software;

unit and system testing the improved
software

;

documenting the software;

acceptance testing the improved soft-
ware ; and

transitioning the improved software into
produc cion

.

From this list of tasks, it is clear that a

SIP is labor, management, machine-resource, and,

possibly, deadline intensive. However, in spite
of the problems that will inevitably arise, a

SIP can be successfully engineered and prove
highly beneficial to the organization.

The advantage of utilizing state-of-the-art
technological advances, such as teleprocessing,
data base management systems (DBMS) , and mass
storage, is one such benefit. Also, a SIP
provides the capability to use this modern
technology without being "locked in" to archi-
tectural or environmental dependencies.

Another benefit is the potential for more
efficient and effective programmer productivity.
Existing software, after improvement, can be
maintained much more efficiently and the
programmer's span of control should be greatly
increased. That is, after software improvement,
a programmer can maintain significantly more
lines of code or system functions due to the

increased maintainability and under s tandabi 1 ity
of the improved software. The result is

increased availability of an organization's most
scarce resource — skilled programmers. A SIP
more efficiently uses key resources, both people
and machines. More readily available junior
personnel can be used for both new development
and maintenance, with improved productivity,
lower risk, and less training. The more senior

personnel can be used for more advanced tasks
such as systems design or analysis, or tool
evaluation and selection.

Additionally, the incorporation of a

Software Engineering Technology (SET), con-
sisting of a synchronized set of software
standards and guidelines, procedures, tools,
quality assurance, and training implemented
through and coupled with a dynamic, ongoing SIP,
simplifies the learning required of programmers
and analysts. The simplified learning enables
the institutionalization of a single training
program for a common methodology and consoli-
dated goals and objectives.

More efficient use of the ADPE is also
possible because the state-of-the-art ADPE will
not simply emulate obsolete or out-of-date
functions. Rather, it will perform the techno-
logically advanced activities for which it was
designed

.

Many additional benefits can be achieved
with a thorough, comprehensive, and well-
planned, -analyzed, and -managed SIP. Some of

these include-

improved user service levels;

more flexibility for future require-
ments;

the capability for automatic documenta-
tion and/or code generation;

enhanced error recovery, system
debugging, testing, data integrity, and

security features;

increased software quality (i.e.,

reliability, efficiency, portability,
and/or maintainability);

improved quality of software end-
products (e.g., reports, statistics, and

programs) ; and

a synchronized, formalized, and tested

SET for the SIP.

6. SIP and SET Interrelationship

As previously discussed, the SIP works
closely, and in tandem with a SET. A SET, as

depicted in Figure 5, consists of a synchronized
group of five equally important software
engineering elements:

standards and guidelines;
procedures;
tools;
quality assurance (QA) ; and

training.

These five software engineering elements
direct and control all software activities
throughout the software's life cycle [4], and

101

I

I

102

for different software engineering or

re-engineering purposes (e.g., software develop-
ment, maintenance, improvement, conversion, or

redesign). Thus, the SET addresses, on an
organization-wide basis, the software engi-
neering methods, metrics, and latest controls
for managing an installation's software activ-
ities, while the SIP addresses the upgrading of
the existing software (i.e., programs, modules,
job streams, files, and documentation) with
regard to the SET baseline.

The same five engineering elements of a SET
are required, in a specialized sense, for a SIP.

The establishment of these five engineering
elements as a formalized SET is paramount to the

successful implementation of a SIP. Improvement
and installation standards, guidelines, and
procedures are required to standardize the

software activities and the software, so they
can be measured, controlled, and improved.
Specialized improvement tools are both necessary
and desirable to increase programmer produc-
tivity, enforce systemization , and improve
controls. QA is required to quantitatively prove
that the SIP is a viable and worthwhile effort,

ensure that the improvements made actually
resolve the problems, identify and measure the

resultant improvements and benefits, and control
and enforce the quality of the software and the

improvement performance. Finally, training and

retraining are also necessary, for without them
successful accomplishment of the SIP would be

next to impossible and the improved software and
methodologies would quickly degrade.

The establishment of a SIP and a SET are

separate, but interrelated and coordinated
processes. Each can be established indepen-
dently of the other, but each has a controlling
or influencing effect on the other. That is,

the standards and guidelines, procedures, tools,

QA, and training established for the installa-
tion as a SET, define the framework for, and

provide a baseline from which, the SIP can
operate. In this sense, the SIP cannot, for

example, set standards that oppose those
instituted in the SET, or use tools that

conflict with the tool's technology chosen for

the organization and established in the SET.

Conversely, standards and guidelines,
procedures, tools, QA, and training, when estab-
lished in a SIP, limit the choices of the SET.

For example, the SET cannot institute software
or installation standards different from those

just implemented by a SIP, or maintained and

enforced by the improvement tools. If either
the SIP or SET institute engineering elements
without considering the organizational impact,

or short- and long-term consequences, the

resulting software and engineering activities
will, at best, be chaotic and consist of a

"patchwork" of styles, structure, and standards.

A SIP and a SET should be established
together, one complementing the other. This

double-barreled approach to resolving software

problems can be thought of as a Software and
Technology Modernization Program (STMP). Figure
6 illustrates a typical interrelationship of the

SIP and SET as integral parts of a STMP.
Implementing a STMP thus becomes an effort to-

identify needed program-unique or
organization-wide engineering elements
(i.e., standards and guidelines, proce-
dures, tools, QA mechanisms, and
training)

;

consider long-term software activities
and consequences (e.g., ADPE and
software compatibility, the upward
compatibility of software changes, and
technological advancements) , and analyze
the full spectrum of impact (e.g.,
across engineering activities, or
between projects), before adopting any
specific standards, procedures, etc.;

isolate the program-unique engineering
elements for the SIP from the

organization-wide engineering elements
for the SET;

adopt and institute as part of the SIP,
the program-unique engineering elements;
and

adopt and institute as part of the SET,
the organization-wide engineering
elements

.

7. Synosis of a SIP

A synopsis of the six key principles of a

SIP are:

Evolutionary Growth: That is, build on
your past software investment as much as

possible by purging some of the soft-
ware, leaving some of it alone,
replacing some software with packages,
improving most of the software, and
redesigning or newly developing only
that which is absolutely necessary.

Incremental Improvement: Minimize the

risk of failure and make the SIP more
manageable by grouping the software,
through functional decomposition, into
smaller, logical subpieces with minimal
interfaces

.

Top-Down Planning with Bottom-Up Input;

Plan in a hierarchical manner, from a

general, overall SIP level, progressing
to more specific, increment levels.

Allow for continual feedback, analysis,
and evaluation of improvement plans,
results, and methodologies.

SIP Pilot Project: Prototype the

improvements, engineering elements, and
methodologies on a small scale to

empirically demonstrate the feasibility

103

o «

104

and success of the improvements, method-
ologies, and plans; and to help solve,

early in the SIP life cycle, any
technical problems that may occur.

Release Specifications: Subdivide the

improvements required for each increment
into logically related sets of improve-
ment activities that can be performed at

one time (e.g., conversion, refinement,
and enhancement) . Develop release
specifications which direct and control
the improvements to be performed for

each release of an increment. Be sure to

include in the specifications the

specific improvements required for each
individual system, subsystem, program,
module, job stream, and/or file in the

increment, as well as the required
deliverables, standards of performance,
and acceptance criteria.

Engineering Elements (SET): Establish
within the SIP, or as a baseline SET,

formalized engineering elements (i.e.,

standards and guidelines, procedures,
tools, QA, and training) to be imple-
mented, employed, and enforced by the

SIP.

While the SIP guidelines presented here may
not seem to be "earthshaking," they are a less

risky, more formalized means of modernizing the

organization's information processing, and have
been found to be " tried-and-true ." The use of

these SIP guidelines is strongly encouraged, and

in concert with a strong SET, will promote more
uniform, thorough, cost-effective, and efficient
software and software engineering activities.

8. SIP Case Studies

The most successful organizations have
recognized that their software is a key asset,

which must be developed, managed, controlled,
and maintained with as much care and attention
as their other important assets. That is why
these organizations have invested, or are

investing, significant resources into SIP's,

using principles similar to those described
here

.

The experiences of these organizations
should not be considered unique. The concept of

a SIP is indeed a valid alternative to the two

traditional choices of "don' t-touch-it-or-it-
will-fall-apart" and "tear-it-down-and-start-
anew." Unless the functions are changing,
substantial redesigns may not be necessary, and

a SIP may solve immediate, as well as long-range

ADP problems. It is an alternative with

principles and procedures applicable to most
government agencies, and must be given serious

consideration.

Several organizations have successfully
established and undertaken SIP's. Some examples

of these organizations are the Office of

Personnel Management (OPM) in Washington, DC;

Raytheon Service Company in Boston, MA; NCR
Corporation in San Diego County, CA; and the San

Diego County Department of Education in San

Diego, CA.

Several years ago, OPM undertook a SIP with
gratifying results. Many of its ADP systems
were developed in Assembler language for an RCA
Spectra 70/45, and when converted to COBOL,
still reflected the second generation logic of

the earlier Assembler code. OPM decided to adopt
a controlled system improvement approach,
migrating in steps from a second to third
generation system. The decision was also made to

convert the Assembler code to ANSI COBOL to

simplify maintenance and enhance portability
considerations [5].

Similarly, in the late seventies and early
eighties, Raytheon undertook a SIP with the

primary objective of developing, implementing,
and perfecting a reuseable code methodology for

accelerating applications development. By using
reuseable code, 40 to 60 percent of the redun-
dancy in their business applications development
was eliminated, and maintenance was substan-
tially improved [6].

In late 1976, the NCR Corporation undertook
a large scale Quality Improvement Program (QIP)

for a major set of systems software for over 103

separate products. This software set included
operating systems, compilers, peripheral
software, data utilities, and telecommunications
handlers, and totaled over 1.3 million lines of

source code. The QIP was initiated to provide
improvements in the software base and to take

advantage of recent advances in the state-of-
the-art of software engineering. NCR found

several major favorable effects resulting from

the QIP, such as a substantial reduction in

outstanding problems in the software base, a

reduction in the average number of error reports
per month, total elimination of problem back-
logs, and a significant reduction in late

responses to problem reports. All of these

improvements are reflected in an improved
perception of the quality of the software, and

allowed NCR to make a very substantial redirec-
tion in funds from support of existing products
to the development of new ones [2].

Finally, the San Diego County Department of

Education's ADP data center cut its maintenance
time by 70 percent as a result of a SIP. This
startling reduction in the data center'

s

program-maintenance load has resulted primarily
from the decision to adopt and convert to

structured design and programming techniques,

with ongoing and formalized ADP training in

these same areas. While the primary emphasis in

this effort was on redesigning and replacing the

existing systems, rather than salvaging the

existing systems, the six key principles of a

SIP were basically adhered to [7],

Besides the organizations that have

established and undertaken successful SIP's,

several Federal organizations are currently in

the initial steps of establishing SIP's.

Several of these organizations include the

Social Security Administration (SSA) in Balti-
more, MD; Veterans Administration's (VA) Data
Processing Center (DPC) in Austin, TX; and

Defense Mapping Agency (DMA) in Washington, DC.

The SIP being established by the SSA is a

key example where the two traditional alterna-
tives are infeasible. SSA is in the process of

transitioning its more than 16,689 computer
programs, containing over 11 million lines of

code, from a "survival" mode to a state-of-the-
art environment. To leave the systems alone
will only result in further ADP system deter-
ioration and seriously jeopardize the agency's
ability to perform its basic mission. Con-
versely, to redesign all software would be

extremely risky, require maximum reinvestment of

resources, and require more time than SSA has to

survive the current crisis. Thus, the key is an
incremental, evolutionary improvement approach,
aimed at a recovery of SSA' s heavy investment in

its software, and the ability to take advantage
of new ADP technological advances [8]

.

The VA' s Austin DPC is another example
where top management has recognized that the

efficiency and effectiveness of their mission is

a function of their software. The Austin DPC
has over three million lines of code of applica-
tion software. Like software in most government
agencies and industry, this software was not
developed overnight; rather it has evolved over
many years, with layer upon layer of modifica-
tion making it even more complex, unmangeable,
and unmaintainable. Together with a hardware-
upgrade and SET initiative, the Austin DPC is

initiating a SIP to cut escalating ADP costs,
improve the quality of service to the veteran,
and better support far-reaching management
decisions [9]

.

The DMA is currently in the initial stages
of a five-year program to upgrade its software
and modernize it software production practices.
The ultimate objectives of this SIP are to

increase productivity, improve software quality,
and standardize software development practices.
DMA' s SIP encompasses the three major areas of
introducing of a modern programming environment,
improving existing software, and upgrading
development and management skills to support the

new environment [10].

Several more organizations establishing
sip's are Tupperware in Orlando, FL; Ford
Aerospace and Communications Corporation in

Sunnyvale, CA; and New Jersey State Government.

From the preceeding discussion, it should
be clear that organizations who can no longer
afford outdated and inefficient information
processing, want to combat the software crisis,
want to stop "software "senility" in its tracks,

106

and, on the whole, need to modernize their
software and software engineering technologies
must establish a SIP. A commitment to undertake
a SIP begins with top management, progresses
through the ADP organization, and, ultimately,
ends with the user. Top management commitment
to the SIP is a major factor for its success,
and manifests itself in three forms:

First, top management must acknowledge
that a software problem really exists,
and resolve to correct it.

Second, top management must be willing
to "put their money where their mouth
is." That is, they must not offer only
"lip service," but be willing to devote
the resources necessary to implement the

SIP. Resources include people, dollars,
time, ADPE

,
tools, and other miscella-

neous supplies and materials.

Third, top management must actively
support the SIP and ADP organization by
helping to advertise the SIP goals,
objectives, benefits, and achievements,
and by gaining user involvement and

support

.

There are three documents currently
published on the subject of software improvement
that may be of further interest to organizations
contemplating a SIP. These documents are listed

in the references [1, 11, 12] and contain more
detailed information on the need for software
improvement, planning and implementing a SIP,

and the actual software improvement process.

Re ferences

[1] Office of Software Development, General
Services Administration, Software
Improvement - A Needed Process in the

Federal Government, Report No. OSD-81-102,
June 3, 1981.

[2] Woodmancy, Donald A., "A Software Quality
Improvement Program," NCR Corporation, San

Diego, CA, IEEE Catalog No. 79CH1479-5/C

,

1979 .

[3] Office of Software Development, General
Services Administration, Long Range Plan,

Report No. OSD-82-104, April 9, 1982.

[4] Federal Software Testing Center, General
Services Administration, Establishing a

Software Engineering Technology (SET),

Report No. OSD/FSTC--83/014 , June 1983.

[5] Cooper, Roger, "Upgrading Federal Computers
Through Existing Systems," Government
Executive, August 1979.

[6] Lanergan, Robert G. and Poynton, Brian A.,

"Reusable Code: The Application Develop-
ment Technique of the Future," Raytheon

Service Company.

[7] Beeler, Jeffry, "Manager Cuts Maintenance
Time by 70%," Computerwor Id

,
January 31,

1983.

[8] Social Security Administration, U.S.
Departmetn of Health and Human Services,
Systems Modernization Plan

,
February

1982.

[9] Austin, Texas Data Processing Center,
Veterans Administration, Software Iraprove-

ment Program (SIP) Macroplan
,
August 1983.

[10] Stroup, Opal R. , DMA Software Improvement
Program

,
Talking Paper for Federal DP Expo

(Session E-2) "Dealing with Obsolescence:
Conversion and Upgrading," DMA, U.S. Naval
Observatory, Washington DC, April 12,

1983.

[11] Federal Conversion Support Center, General
Services Administration, Guidelines for

Planning and Implementing a Software
Improvement Program (SIP), Report No.

OSD/FCSC-83/004, May 1983.

[12] Federal Conversion Support Center, General
Services Administration, The Software
Improvement (Sl) Process — Its Phases and
Tasks, Report No. OSD/FCSC-83/006

,
July

1983.

107

SOFTWARE IMPROVEMENT
THROUGH

AUTOMATED NORMALIZATION

Dr. Michael G. Walker

WBG, Inc.

1489 Chain Bridge Road
McLean, Virginia 22101

1. Introduction

Many major ADP centers have a decade or more
invested in their applications software and the

organizations they support are almost totally de-

pendent upon its operation. The software "works"

in that its logic is basically correct and it

supports the organization's mission. In most
centers, merely keeping the software operational

is such a difficult task that any change to the

baseline, either to enhance or add functions, is

reasonably perceived as both risky and expensive.
However, the software must be improved to keep

ADP costs low and service reliable. Software im-

provement is the process of modernizing software
by retaining its fundamental logic while upgrad-

ing its reliability, economy, and flexibility.
The goal of improvement is to posture software to

take advantage of new technology.

The software improvement approach differs
from traditional system development because soft-

ware improvement recognizes the following factors:

0 the fact that current systems "work";

0 the substantial investment in current
systems;

0 the technical and informational properties
of current systems;

0 the interchangeability of some of these

properties with functions of other systems;

0 the risks in developing new programs in any
but trivial quantities;

0 the only specifications for many existing
systems are the systems themselves;

0 the desirability for an orderly improvement
process;

0 the need for a usable system at every stage
of improvement, and

0 the cost and technical difficulties of re-

engineering a large system within a reason-
able time frame.

The combination and interaction of the above
factors suggest that most organizations with
substantial investments in software should improve
their software incrementally and not redevelop the

total system. Some software is so old and so

patched that it can't be improved. However, where
software improvement is possible it has the follow

ing advantages:

1. minimizes risk by retaining an operable
basel ine;

2. preserves value of past software investment;

3. upgrades in small, manageable, and testable
elements; and

4. progresses by iteratively enhancing the

existing baseline.

Organizations with large software investments
like the Federal Government, are underwriting am-

bitious programs of software improvement. For in-

stance, the Social Security Administration, the

Defense Mapping Agency and Veterans Administration
have all initiated large software improvement pro-

grams to modernize their computer software includ-

ing its features, capabilities, and engineering
practices. Also the General Services Administra-
tion Office of Software Development has initiated

a government-wide software improvement program to

upgrade software systems across the Federal

Government. (Software Improvement - a Needed

Process in the Federal Government GSA Report No.

OSD-81-102.")

Normalization is the initial and most fund-

amental technical process in achieving software

improvement. It is the process of standardizing

existing systems thus making them maintainable,

enhanceable and portable as well as posturing them

to take advantage of new technology. After a

system is normalized, it can be more easily re-

fined and optimized, new functions can be added in

108

a predictable manner, and economies can be real-
i zed

.

This paper defines normalization by: (1)
demonstrating how it improves a typical applica-
tions capability (our example will show a COBOL
application ttiat utilizes both a Teleprocessing
Monitor(TP) and a Data Base Management System
(DBMS)), (2) describing how it can be automated,
and (3) providing two examples in which it has
been used to improve software.

2. Normalization: A Definition

Normalization is the process of improving
software by making it:

0 enhanceable

0 maintainable; and

0 portable.

Enhanceable software can be economically im-
proved either by adding new functions or by re-
fining and optimizing current functions. Main-
tainable software can be quickly and reliably
fixed when it breaks or can be modified when
changes are requested. Portable software can be
moved from one computing environment to another
to take advantage of the technological economies
and advancements of new hardware or software.
Normalization improves these attributes of exist-
ing software.

Exhibit 1 outlines a typical COBOL system
before it has been improved through normalization.
The applications software is intertwined with the
supporting environment, as well as knotted with
extensions to a vendor's COBOL, with interfaces
to a DBMS and to TP.

BEFORE NORMALIZATION

PROGRAM MUST
HAVE KNOWLEDGE

OF SYSTEM

CODE WITH
VENDOR
EXTENSION

VENDORS
COMPILER<- -»

PACKAGE
SPECIFIC
TP CALL

<- -»
TP PACKAGE

PACKAGE
SPECIFIC
DBMS CALL

DBMS
PACKAGE

COBOL SYSTEM
APPLICATION
PROGRAM

Exhibit 1. Typical COBOL On-Line System
Before Normalization

The applications software must "know" the
characteristics of the DBMS, the TP, and the
operations control language (OCL) peculiar to the
computing environment. The program syntax has
extensions that frequently are inconsistent with
ANS standards. Program semantics use data in
ways peculiar to the source vendor's architecture.
Program logic is linked to the DBMS, the TP and
the operating systems by imbedding "knowledge" of
these packages throughout the code. As a result,
any significant change in either the code or the
packages has a profound impact upon the other.
The problems of maintaining and enhancing such a

system are significant.

Exhibit 2 depicts a normalized capability in
which the knots have been untied and the applica-
tions "freed" from the host system through stand-
ardization and information "hiding." The program
syntax has been normalized into ANS approved con-
structs and the semantics normalized so the pro-
grams will produce the same results if they are
executed on other vendors computers. The know-
ledge of the DBMS, the TP, and the operating
system has been separated from the application
logic and embedded in bridge programs. This means
the application programs can be changed without
impacting the system, and that the DBMS or TP can
be changed without altering the program's logic.
The interface knowledge is "hidden" in the bridge
programs. There is some processing overhead in-

volved in hiding the information. The cost bene-
fits come from reductions in software costs.
Normalization trades improvement in software
quality for extra computer cycles.

AFTER NORMALIZATION

PROGRAM FREED SYSTEM KNOWLEDGE
OF SYSTEM IN BRIDGE
KNOWLEDGE PROGRAM

ANS STANDARD
COBOL CODE

f-> ANS APPROVED
COMPILER

GENERIC TP

CALL

> TP BRIDGE
PROGRAM

GENERIC DBMS

CALLS

DBMS

BRIDGE
PROGRAM

COBOL SYSTEM
APPLICATION
PROGRAM

Exhibit 2. Typical COBOL On-Line
Capability After Normalization

Exhibit 3 outlines a total picture of how
normalization improves applications software.

109

The system has been made more enhanceable, main-
tainable, and portable as a result of normaliza-
tion. The software has been improved while pre-

serving the legacy and investment in the appli-
cations logic. This improvement was managed with-

out redevelopment. Thus, the risks of developing
new code were avoided; the costs and technical

difficulties of engineering a new system were
obviated; and the investment in the current system
was preserved. The following sections will des-

cribe how to normalize a system and will offer
two examples of a successful normalization.

PftOGftAP BUST

HAVt KNOWLtrS
OF STSTEM Of STSIEM

KHOULEDS

SrSTEH KNOMLEDGE

IN BRIDGE

CODE WITH

VENDOR
EITEHSION

PACKAGE
SPECIFIC

TP CALL

PACKAGE

SPECIFIC

Dens CALL

BRIDGE
PflOGfiAAl

COBOL
APPLICATION
PROGPAH

be changed; the software foundation will. The
programs must be normalized both in terms of their
syntax and semantics. This entails translating
non-ANS statements into ANS and normalizing the
use of data. The DBMS must be normalized in terms
of program calls and interfaces, data schema, and
data representation. This entails standardizing
the interface between the program's logic and the
system's handling of data. The TP monitor must be
normalized in terms of program calls and inter-
faces, message handling capabilities, and screen
formats. This entails standardizing the interface
between the program's logic and the system's hand-
ling of transactions. The operating control lang-
uage must be normalized in terms of standardized
utilities and job streams. This entails standard-
izing the interface between the program's logic
and the operating system. The program documenta-
tion must be normalized in terms of applying a

standardized and automated documentation tool
that will keep it accurate and current,

To address each system element, three tasks
must be completed. These tasks, outlined in
Exhibit 5, are; Evaluation, Translation, and
Verification and Validation, Each must be com-
pleted using each system element shown in Exhibit
4.

Exhibit 3, Comparison of a System Before
and After Normalizing

3, Normalization: The Process

To improve a software applications system,
each system element should be normalized. This
may include upgrading the programs, DBMS, TP Mon-
itor, Operating System and documentation as shown
in Exhibit 4. The basic program logic will not

PROGRAMS

0 Syntax
0 Semantics

DATA BASE MANAGEMENT SYSTEM

0 Program Calls

0 Data Schema

0 Data

;
TELEPROCESSING MONITOR

0 Program Gal Is

; 0 Message Handling
0 Screen Fonnats

OPERATING CONTROL LANGUAGE

0 Utilities

0 OCL

DOCUMENTATION

0 Automated Program Documentation

EVALUATION

0 identify each change to each element

0 summarize and analyze these changes

TRANSLATION

0 make each needed change

0 incorporate change into system

VERIFY AND VALIDATE

0 test translated system

0 certify functional equivalence

Exhibit 5. Tasks That Must Be Accomplished
to Normalize a System.

Eval uation (EVAL) identifies the. individual
changes to each software element and the manner in

which each change must be made. EVAL also summar-
izes these changes and performs an analysis on the
summary. This analysis provides a quantitative
picture of the difficulty of normalization and
provides statistics on which to base the schedule
and cost of the subsequent tasks. Exhibit 6 shows

how an automated evaluation technology parses the

system elements, identifies each change, and

summarizes the changes.

Exhibit 4. Software Elements That Must
Be Normalized

110

OCL ttr Sf-eoBS

1*

In ".e"^ aces

TOOL

Syritai

SeiTiait ICS

TP Calls

CCL Calls

TP Cf'en9*s

Message HindMng
Serpen ForcastS

OICIS Cftariges 0 OCL CHriges

Schema Bw^ StreMS
Data Pepreseniatlon Standard utilities

Files

fields

Exhibit 8 compares three methods of organiz-
ing a normalization, the manual approach, the
partial automated approach, and the integrated
automated approach. These approaches differ in
the amount of technology each uses. The cost and
risk of normalization can be significantly reduc-
ed as the technology for normalizing is improved
from disjointed manual processes to integrated
automated processes.

tata I"t«rf»c«
I

Exhibit 6. Automated Software Evaluation

Transl ation (TRAN) makes each change identi-
fied in the evaluation and incorporates these
changes into the system. The translator(s) must
change the programs, DBMS, TP, OCL, and document-
ation. Thus there is a specific TRAN tool for
each of these elements. TRAN changes the programs
into ANS COBOL and normalizes their use of data;
builds DBMS bridge programs, normalizes DDL schema,
and translates data into the new models and repre-
sentations; builds TP screen formats and stand-
ardized interfaces; builds new OCL streams; and
generates new documentation.

Validation and Verification (V&V) tests each
change and validates that the normalized system
is the functional equivalent of the pre-normal i zed
system. V&V testing includes both unit level and
system level testing and verifies the normalized
software at the unit level and the system level.
V&V provides a testbed for testing, verifying,
and validating the normalization.

Exhibit 7 outlines a five-by-three array
that represents the work that must be accomplished
to normalize a system. The intersection of each
system element and each normalization task repre-
sents work that must be accomplished to complete
the normalization. Its composite represents the
total effort to do the job. Additionally, each
individual piece of work must be coordinated into
a broader, integrated effort. If they are not,
the sum of the costs of the parts may be much
greater than the value returned by the total
effort. When this happens normalization, like
system development, becomes a risky expensive
undertaki ng

.

TUIiSACTlOM PBX[SSIM

INTEGRATED
AUTOMATED
APPROAU

PARTiAL
AUTOWTEO
APPROACH

Exhibit 7. Relationships of Elements That Must
Be Normalized to Task Needed to Normalize.

Exhibit 8. Comparison of Three Methods of
Organizing a Normalization Project

The most risky approach is the conventional
manual process that relies totally on manual
effort to complete the job. This method features
all of the problems associated with finding, keep-
ing, and managing large staffs plus the problems
of managing the quality of unpredictable, error-
prone, manual techniques. The manual approach
entails the risks of redevelopment without offer-
ing the potential benefits of a "new" system.

The partial automated approach is an improve-
ment over the manual. It relies on selecting
tools from various sources and combining these
tools with man-hours needed to use them. This
method is an improvement over the manual because
it applies some modern technology (e.g., it sub-

stitutes predictable technology for manually
efforts). However, it is plagued with the manage-
ment problems of coordinating disjointed tools and

techniques, adjusting uneven staffing requirements
(some tools are more labor saving than others),
and integrating these variables into a total pro-

ject effort. Often the gains of using disjointed
tools and techniques are lost to the inefficien-
cies of managing and coordinating them.

The preferable methodology is the integrated
automated approach depicted in Exhibit 8 and which
features tools that not only fit each specific
work area but are also part of a total technical
process. This preferable technology is tool or

technique intensive and "fills" each box with a

large amount of automation and a much smaller
amount of manual effort. The tools reinforce each

other in an integrated and supportive manner. For

example, the evaluation tools (EVAL) provide in-

formation and a framework that the translation
tools (TRAN) use to make the changes identified in

the evaluation phase. These changes provide the

audit trail that the verification and validation
tools (V&V) use to verify the quality of the

normalized system.

Ill

Exhibits 9a and 9b show the work flow for an
automated normalization. It starts with the
planning step and ends with a fully tested sys-
tem. Each step in the process is assisted by

techniques whose products intergrate with sub-
sequent steps. The steps should be aided by tools
as follows:

STfP

Pl<innlng

TOOt

EVAL

Basel Inln^ VAV

HuiH Conversion itnlt Proqnn Support LtUrary (PSl)

fackaqes

Translate r>rogr«»i. TftAN (PW. WWIS. TP)

nuns, fp

Convert Test Fl let rflAN (DflHS)

Convert Test JCL IRAN (OTL)

Unit Test

Convert System Fl les TOM (nBMS)

Convert System OCl TRAN (OCL)

Systea Tett VAV

Acceptance Ttit VAV

Dncment Systw POC

Exhibit 9a, Phases, Steps & Tools of Normali-

zation Work Flow and Work Processes

PLANNING PHASE CONVERSION PKASE

Exhibit 9b. Normalization Work Flow and
Work Processes

are not managed correctly, the normalization
effort will fail. Automation makes these steps
both manageable and predictable.

The baselining step, shown in Exhibit 10,
prepares the software for normalization. It pro-
duces a definitive specification, an empirically
derived picture of the current production software
system. It includes not only each of the software
elements but also the dynamic behavior of these
elements as they are tested, including test data,
test transactions and processing results.

1 . Identl f> Soul

3. Conpi

4. Idenfjr data 'o

Eiec-.t* program ,

6. Capture d/nari": I

7. Capture eipectefl output of progi

6. Does ciecution coverage equal 701?

9. 1' "ot , reoo steps * through B "ith more dat*

10. Proceed to con.ers^oo Step.

•St ing [tiase' tne)

.

1 test data.
of program (base'ln

I (baseline

IHSTBuKEHTED

i
(4) IDENTIFT

1

DATA

(TEST » PftODUCTlCW}

ItlSTftuKENTeo

LOAD
MODULE

MODULE
[VSV TOOL)

DYNAHIC

(6} PPOGOAM
BCHAVIOR

EXPECTeo

(7) PftO&fiW

ODTPL'T

:ONVERSIQ«

STEP

uia

Exhibit 10, Baselining Step in Planning
Process

The System Test, shown in Exhibit 11, verifies
that the normalized system is functionally equiv-
alent to the baselined system. It uses the de-

finitive specification provided by the baseline to

verify that the improved normalized system produces
"exactly" the same answers as the baselined copy.

The amount of effort for the total job and

the distribution of work per phase depends upon

the size of the job and the difficulty of the
normalization. However, the integrated approach
makes the effort predictable and the risk manage-
able.

Two Key Steps

The two key steps in managing a successful
normalization are baselining and systems testing.
Normalization is not simply performing the trans-
lation step. Although automated translation is

necessary it is certainly not sufficient to manage
the normalization process. Every step should be

automated but the baselining and testing steps are
especially critical because these steps can have
the most deleterious impact on the normalization
effect.

Baselining and System Testing can be very
labor intensive and very unpredictable if they
are not aided by automation. As much as fifty
percent of an improvement effort can be spent in

baselining and system testing; and if these steps

Correct

Pnqrms
(ViV TOOL)

(3)

IHSTBIHENT

1 r

E>ecute
Norma 11 zed

System
(m Tool)

(4)

t i

Nonulized
Dati

Oynteilc

ill
£lyn«irlc

Normal !•<} B«se11>wd

ProgrwB Proqrm
Behavior Belravlor

Place noriMUzeiJ syston

Split Systw into progr,

Instofiwnt with pi-obes i

Executed instrumented ru

Capture dynair

Captu
Conpa

n ViV testbed
IS and data
ing VSV tool

tnal I led code

of normal i led prrtgra*

pected output of normalized prograa

Oi bascl'ied results

jtorwtlzed Systai

Functional EquWalMt

Corrtct normal 1 red

Programs and retast

Jbrwliied Syst«i

ts WCCEPTt »)

unctlonal Equivaltfit

Exhibit 11, System Test Step in Conversion
Phase

One of the great assets of normalization is

this ability to produce a definitive specification
and to test against it. After a baseline is cap-
tured, it is the specification. The improved
system must produce the exact answers as the base-

112

line. When it does, the system is accepted as
functionally equivalent. Because the V&V tech-
nology helps automate this process, normalization
verification can be predictably planned and man-
aged and its cost controlled.

The automated V&V technology is used in both
baselining and testing. For Basel ining, the V&V
technology is used: (1) to instrument the soft-
ware with probes; (2) to run test data against
the instrumented programs; and (3) to capture
the execution behavior, the flow of the programs,
and the expected output. Exhibit 10 shows a

step-by-step flow of the baselining process. The
system elements, test data, execution stream, and
expected output are all captured and are all part
of the baseline. This totality forms the accept-
ance criteria for the normalized system. It is

used as the definitive specification in the

System Test step to verify that the normalized
system is the functional equivalent of the base-
lined system.

The risks of converting both the hardware and
software in one step was so great the Agency wisely
decided to minimize the software related risks by

improving software prior to its conversion. The
Agency chose to normalize its inventory of pro-
grams into ANS 74 COBOL and a single DBMS, and
operating systems, and TP monitor prior to acquis-
ition. It used normalization to help in both
hardware procurement and software improvement. In

its hardqare selection, it used software and
normalization to create a multi-target benchmark
package that is executable across many vendor lines
and to provide this package for the Live Test
Demonstration (LTD) of each vendor's proposed
hardware solutions.

In its software improvement, the agency used
normalization to upgrade its most critical pro-

grams into a more portable, maintainable, and en-

hanceable status prior to hardware implementation.
Thus, by normalizing, the Agency met its two basic
goal s:

For System Testing, the

used as shown in Exhibit 11.

software is instrumented and

conditions as the baselined
behavior during the test is

This behavior is compared wi

duced in the baselining step

in the results of the System
line Test are identified and
functionally equivalent.

V&V technology is

The normalized
tesed under the same

software. The system
captured and stored,

th the results pro-
Any discrepancies

Tests and the Base-
the code is made

Each phase and step of the normalization
process can be automated and controlled to pro-

duce predictable results. Through automated
normalization, software can be improved in a

manageable fashion and the risk and expense of

improving software can be tightly managed and

control led.

The following section provides two examples
of software improvement projects that used auto-

mated normalization to modernize software. The

first example involves using normalization to

minimize the risk of transition in the hardware
acquisition of a DoD Agency. The second example

involves using normalization to move a major on-

line capability from one computing environment

to another.

4. Normalization as Part of a

Hardware Selection Strategy

EXAMPLE 1 . A DoD Agency is replacing 35

large mainframes that are part of a nationally
distributed capability and that are interconnected
by an internal telecommunications network and are

connected to a DOD wide digital data network.
This hardware inventory includes IBM, and HONEY-
WELL computers and the software inventory in-

cludes approximately eight million lines of COBOL

and assembler, several data base management
systems, and several TP monitors. The Agency is

planning to replace most of these computers in

a single buy and to convert to a single vendor's

DBMS and TP software package.

1. Minimizing transition risk by putting its most
critical software into a normalized posture
prior to hardware installation, helping ensure
the Agency of a smoother risk free transition
period.

2. Maximi zi ng hardware competition by providing
every vendor with the same normalized easily
executable LTD benchmark package that will

minimize the bidding vendors conversion costs
and maximize their ability to compete for
government business. This competition will

reduce the Agency's life cycle costs and in-

crease its systems quality by multiplying its

options of possible vendors.

Exhibit 12 shows how the Agency's benchmark
package for the LTD was selected, normalized and

veri f i ed

.

5 T s T i " ~r- ! V S T ! » ~T

NOPnALIZE
BENCHMARK
PACILAGE

BRIDGE
(TOTAL)

BRIDGE
(TIS)

ANS
COMPILER

UHIVAC

DBHS
BRIDGE

(OMS 1100)
MOD

TP

BRIDGE

Exhibit 12. Normalizing + Verifying
Benchmark Package for LTD

113

0 Representative programs and transactions were
selected from across the Agency's inventory
of systems. These programs represent the

types of processing the Agency will conduct
over the next ten years and the types of
processing the hardware must support both in

terms of the functions, volume, and mix of
transactions.

0 Since the Agency's processing demands are
impacted by sudden and extreme surges in

transaction volumes, the LTD must also model
these heavy but sporadic transaction loads.

The programs selected for the benchmark pack-

age were normalized into a multi -target
status. This normalization was verified on

IBM in a CINCOM TOTAL MVS environment and in

UNIVAC in a DMS 1100 environment. These are

two radically different environments. This

process involved normalizing:

0 languages;

0 interfaces;
0 DBMS;

0 TP;

0 OS;

0 hardware; and

0 documentation.

Automation makes the process technically
possi ble.

0 Since the normalizing process is automated,
the verification took place in a very timely
manner matching the writing and release of

the hardware RFP. The benchmark package that
was provided vendors for the LTD included the
normalized programs and data together with
detailed specifications for the bridges.

The multi -target normalization established
a common baseline of programs and transactions
that vendors benchmarked in the LTD thus providing
the Agency with two valuable measures:

Normalization is a Migration Strategy

EXAMPLE 2 . A U.S. Government civilian
Agency operates a nationally distributed network
of terminals connected to a large data center.
As the initial step in its computing modernization
strategy, the Agency normalized its software cap-
ability and migrated from twin Honeywell 6680s to

an IBM 3081 environment. The characteristics of
the normalization were as follows:

Project Initiation
Project Completion
System Implementation

April 1982
January 1983
17 January 1983

Lines of Code

Termi nal

s

Transactions

SOURCE COMPUTER
H6680 (2)
'68 COBOL

TDS
IDS

200,000 COBOL
550
250,000 per day average

TARGET COMPUTER
IBM 3081

'74 COBOL
CICS
VSAM

The normalization process moved the Agency's
capability from the source to the target environ-
ment, standardized the programs into ANS '74 COBOL,

implemented information hiding of both the DBMS

and TP functions, and documented the programs.
Exhibit 13 shows the change brought about by

normal ization.

NORMftLlZftTION

1. The performance of the normalized software
and

2. A comparison of the performance of vendor's
hardware using the normalized software.

Because the code is normalized, it can also be

used to provide performance measurement after
installation of the new equipment.

Normalization helped meet the goals of

maximum competition and minimum conversion risk.

Competition is maximi zed by using portable soft-

ware for the LTD thus mi nimi zi ng vendors conver-
sion costs and risks. This should induce more
vendors to compete to supply the Agency with hard-
ware. Life cycle costs are minimized by having
a unified software environment normalized for ease
of maintenance and enhancement and fitted to the
hardware so processing loads can be met. This
should reduce the software maintenance and enhance-
ment costs that contribute approximately 80% of

the Agency's ADP operational expenses.

Exhibit 13, Example of Normalization

The Agency had three basic goals that had to

be met for a successful conversion:

0 uninterrupted service during conversion;

0 reliable and maintainable information

following conversion; and

0 conversion in a very tight time frame.

Automated normalization was selected as the

migration strategy because it met these goals.

The Agency's Data Processing Center supports

a nationally distributed network of terminals that

is an integral part of the everyday operations of

the total Agency and is critical to supporting

the Agency's mission. It is essential that the

computer provide uninterrupted and responsive

service to the Agencies network of terminals. It

was mandatory that this service be provided

114

throughout the conversion process and that the
uninterrupted responsiveness must not degrade
during the transition period.

The Agency gathers, stores, tracks, and
accounts for financial data representing billions
of dollars per year and for personnel data cover-
ing hundreds-of-mi 1 1 ions of people per year.
This information must be accurate and audi table
at all times. Therefore the software that gathers,
processes and supports this information must be

both reliable in its operations and maintainable
as it is changed. It was mandatory that the
conversion process must improve both the reliabil-
ity and the maintainability of the software.

The Agency's schedule dictated that the con-
version be completed in a nine month time frame,
that parallel processing be limited to less than
30 days, and that the target environment be re-
liable and maintainable immediately after tran-
sition. It was mandatory that the conversion
process be automated and meet this very tight
schedule.

Exhibit 13 shows the before and after picture
of the normalization. The system was normalized
during the April to December period, was run in

parallel for less than 30 days, and went live on
January 17th 1983. The Agency met all three of
its conversion goals. The Data Center provided
uninterrupted service during transition, the
software remained reliable and auditable, and the
conversion was completed on time meeting the

Agency's schedule.

5. Summary

Software improvement is a procedure that
preserves an ADP organization's past investments
and sunk costs in programs and information pro-

cessing. Software improvement differs from soft-
ware redesign or development because it minimizes
the risks of reprogrammi ng by modernizing in

incremental, testable steps. Through software
improvement, organizations can modernize their
information processing in a controlled manner,
thus minimizing risks.

Normalization is the initial step in software
improvement; it is the standardization of existing
software, making it more enhanceable, maintainable,
and portable. Automated normalization is a cost-

effective and resource-efficient technical fact,

that has been successfully demonstrated in several
instances and is available in today's marketplace.
Automated normalization makes software improve-

ment highly economical, feasible, and timely. In

summary, it is a way to modernize existing systems

while preserving past investments as much as

possible, and putting the systems in a position

to take advantage of new and emerging ADP tech-

nologies.

115

Algebraic Models for CPU Sizing

Robert A. Orchard

Department of Computer Science

College of Staten Island

City University of New York

ABSTRACT

This paper describes a CPU sizing methodology developed by the author for a corporate Performance and

Configuration Group. The objective of this study was to effectively predict CPU utilization and total workload

turnaround time for future batch workloads. This was accomplished through the implementation of certain algebraic

models which successfully model the various components (i.e., CPU, I/O, etc.) of a computer system, capturing the

dynamic interrelationship of hardware configuration, operating system logic and application workload. The result of

this work is an algorithm which will accurately forecast average CPU utilization, volume independent CPU
utilization, initiator turnaround and workload turnaround time for a given workload on various CPU models (3031,

168-3, 168-3 MP, 3033, 3033 MP). From a planning viewpoint, this information is extremely important in

determining hardware needs as application workload characteristics change.

1. INTRODUCTION

This paper describes a CPU sizing methodology

developed by the author for a corporate Performance

and Configuration Group. The objective of this study

was to effectively predict CPU utilization and total

workload turnaround time for future batch workloads.

This was accomplished through the implementation of

certain algebraic models which successfully model the

various components (i.e., CPU, I/O, etc.) of a

computer system, capturing the dynamic

interrelationship of hardware configuration, operating

system logic and application workload. The result of

this work is an algorithm which will accurately

forecast average CPU utilization, volume independent

CPU utilization, initiator turnaround and workload

turnaround time for a given workload on various CPU
models (3031, 168-3, 168-3 MP, 3033, 3033 MP).'

From a planning viewpoint, this information is

1. See Appendix B for the MIPS rates for the various CPU rnodels.

extremely important in determining hardware needs as

application workload characteristics change. The
model is formally developed in Appendix A and an

overview and application of the model is presented in

the following sections.

2. Model Overview

Input to the model consists of 'jobs' which are

characterized by total problem program (pp) seconds

consumed, I/O counts by device type (e.g., 3330, 3350,

3400, etc.,), total I/O count and initiator (priority

group) assignment. From this input, the model

predicts three system variables: CPU utilization,

initiator turnaround and workload turnaround.

Considering the complexity of a computer system

which employs hardware and software interrupting,

priority scheduling and system resource competition

through the multi-programming of jobs this is a non-

trivial task. The algebraic models implemented,

however, are simple but effective in capturing the

dynamics of such a computer system. For this model

average I/O behavior is assumed (i.e., minimal I/O

queueing)

.

116

The algebraic model approach views a workload as a

queue of jobs competing for CPU time, where CPU
time can be spent in problem program state (pp),

supervisor state (ss) or wait state. The total number

in queue is bounded by the total number of initiators

active (multiprogramming level) and jobs are

prioritized in order to keep the CPU as active as

possible. The job initiated with the highest priority

has the best chance of securing CPU time. CPU
control is relinquished when I/O is requested by the

job holding the CPU or if a higher priority job causes

an interrupt. Once the I/O request is satisfied, the job

again competes for CPU time. Viewed in this way, the

amount of CPU time consumed for a job in a given

period depends on the character of the competing jobs.

Taking this one step further, it is possible to view this

activity as a competition between initiator workloads

rather than jobs. The character of an initiator is

determined by the character of all jobs assigned to it.

Each initiator is characterized by it's I/O rate it's

standalone CPU rate and it's turnaround time . The
dynamic interrelationship of competing initiators is

modeled through a set of simultaneous equations.

The number of simultaneous equations to model a

given workload is the total number of initiators

assigned to the workload. The solution of these

equations determines which initiator drops out of the

mix first since the "work" assigned to that initiator is

complete. A new set of simultaneous equations for the

remaining initiators and remaining "work" is then

constructed. The solution to each set of simultaneous

equations is the degraded CPU rates^ for the active

initiators in each time interval. Using these degraded

CPU rates, the intervals for each initiator to complete

their workloads are computed. The shortest interval

identifies the initiator that drops out. The workloads

for the other initiators are adjusted by the CPU time

consumed by each initiator over the interval. The

algorithm continues iteratively until all initiators

complete their "work". Total workload turnaround

then is the time it takes for the last initiator to

complete its work measured from the start of the first

initiator. CPU utilization for the machine under study

is then calculated.

3. Data Preparation

An actual CPU sizing study was performed using

workload information supplied by a large application

on IBM mainframes. The workload characteristics

(CPU problem program seconds and I/O (EXCP)
counts by device type) were obtained using System

Management Facility (SMF) log data collected on

site. The objective of the study was to predict CPU
utilization and workload turnaround for future

projected workloads using the current batch workload

as a baseline. Future workload characteristics were

defined by the corporate Performance and

Configuration Group.

An SMF Stripper program was used to extract the job

characteristics used for input to the modeling program.

The SMF stripper program stored the stripped data in

a hierarchical database from which job and system

summary reports were generated to help validate the

models' predicted results.

4. Model Validation

For the purpose of validating the model, with respect

to a baseline, one day was chosen from the monthly

workload as input to the model program. The CPU
utilization and workload turnaround for the test day

was obtained via reports generated by the database

system. Data for this day reflected heavy CPU and

I/O activity. Selected jobs were extracted from the

database, assigned to initiators and input to the model.

The jobs were assigned to four initiators according to

their I/O rate with highest priority given to I/O bound

jobs. These assignments could have been made
according to the actual initiators assigned to the

baseline workload but this information was not

available. However, the method used to assign jobs to

various priority initiators by there lO boundedness

(I/O rates) is in common use by computer system

planners in charge of job scheduling. The idea, of

course, being to overlap I/O and CPU utilization. The

results, actual and predicted, are shown in Table 1.

Table 1

Validation Results

Actual Predicted % Error

Problem

program (pp) 295.64 295.64

(minutes)

2. See Appendix A for definition.

Supervisor

state (ss)

(minutes)

CPU
utilization

(percent)

Workload

turnaround

(hours)

70.33 62.5

55.4

11.0

51.1

11.68

0.0

11.1

7.3

5.8

117

It is important to note that the actual workload

contained elements which we were not able to model

and which were irrelevant to the batch workload

modeled. These elements (e.g., IMS start-up and I/O

from started tasks) were minimal but do inflate the

observed error on supervisor state which we believe to

be in the neighborhood of 3%-4% based on previous

validation experiences with the model. Also, certain

approximations to non critical operating system

overhead in the model are "noisy".

5. Batch Workloads

Nine workloads were defined by the Performance and

Configuration Group as input to the model. Table 2

briefly describes each of these workloads. Again, the

objective of the study was to predict CPU utilization

and turnaround time for each workload on various

machines and to gain insight into the behavior of the

workloads under machine upgrades.

Table 2

Batch Workloads

Description

WORKLOAD A anticipated workload for end of

month processing

WORKLOAD C2 subset of WORKLOAD C for

support processor

Each workload was run through the model for various

machines (3031, 168-3, 168-3 MP, 3033, 3033 MP).
Each workload run, utilized four initiators. For the

purpose of comparison, the model results were divided

into three groups as follows:

Group I - consisting of workloads A, B and C

Group II - consisting of workloads Al, Bl and CI

Group III - consisting of workloads A2, B2 and C2

The results from the various model runs were plotted

by group and are shown in Figures 1-9. These graphs

depict the workload turnaround times, the average

CPU utilization and the volume independent CPU
utilization forecast for the nine workloads modeled.

Volume independent CPU utilization represents the

CPU utilization when all initiators are competing for

CPU time and indicates the CPU power required if

the volume of work offered sustains all initiators active

over an unspecified period of time. Individual initiator

turnaround time were available, but were not plotted

for this study.

WORKLOAD B anticipated workload for end of

week processing

WORKLOAD C anticipated workload for middle

of week processing

WORKLOAD Al subset of WORKLOAD A which

could be split out and run on a

separate processor (termed

primary) in a dual computer

environment

WORKLOAD A2 subset of WORKLOAD A
(containing the remaining jobs of

WORKLOAD A not included in

WORKLOAD Al) which could

be run on a second processor

(termed support) in a dual

computer environment

WORKLOAD Bl subset of WORKLOAD B for

primary processor

WORKLOAD B2 subset of WORKLOAD B for

support processor

WORKLOAD CI subset of WORKLOAD C for

primary processor

6. Discussion

Perhaps the most interesting conclusion to be drawn

from the model results, pertains to the character of the

batch workload and its behavior under various CPU
processing speeds. From the turnaround times forecast

for the different workloads, the benefits realized by

upgrading to a faster CPU (i.e., going from a 3031 to

a 168-3, 3033, 3033 MP) became less and less.

Looking at Figures 1, 4, 7 (Workload Turnaround)

one can observe that the workload turnaround times

predicted for a 3033 and 3033 MP are very close. The

reason for this phenomenon is that the modeled

workloads are becoming constrained by their level of

I/O activity and the number of initiators assigned to

the mix.

Another characteristic of this phenomenon is that in

addition to the number of initiators assigned to the

mix, the effectiveness of a particular assignment of

jobs to initiator is not invariant under an increase in

the speed of the CPU. For example, in comparing the

workload turnaround time for workload A (Figure 1)

with a subset of itself, workload A2 (Figure 7), the

following facts are noted.

i. the assignment of jobs to initiators (the initiator

structure) is different in Figure 1 than in Figure

7 but within each figure across machines the

initiator structure is constant.

118

ii. on the 3031 the turnaround time for workload A
is 48.5 hours and that for workload is 44.6

hours. On the 3033 MP the turnaround time for

workload A^is 13.8 hours while that of workload

A2 is 15.2 hours.

These facts suggest that as a workload becomes more

I/O bound (i.e. faster CPU) the initiator structure

may become a more predominant factor in turnaround

time. The effect of initiator structure on turnaround

time as a function of machine speed is being further

investigated.

The above issues suggest that to insure batch workload

turnaround improvement when upgrading to a faster

CPU that the initiator structure should be studied. It

may be necessary to change the number of initiators as

well as the method of assignment of the jobs to the

initiators. The optimum results will be a function

dependency relationships between jobs in the workload.

Further, as mentioned earlier, average I/O behavior

was assumed throughout this study. Upgrading to a

faster CPU will speed up the delivery rate of I/O

requests to the I/O subsystems. This may cause I/O

bottlenecks in the actual system. Such a situation may
be relieved by a better distribution of data balancing

across channels, controllers, and devices or by purchase

of additional peripheral hardware.

7. Summary

An algebraic model for a multiprogrammed computer

system has been developed (Appendix A) and an

application of the model to a problem in CPU sizing

described. A more extensive algebraic model

incorporating other sources of contention (I/O

subsystem, memory, etc.) has been developed and will

appear in a forthcoming paper. Algebraic models

other than simultaneous linear equations are available.

I would like to take this opportunity to acknowledge

many early stimulating discussions with H. Pat Artis

on dynamic job scheduling, which motivated this

research on algebraic models of computer systems.

References

[I] H. P. Artis, "Capacity Planning for MVS
Computer Systems", in Performance of

Computer Installations, D. Ferrari, Ed., North

Holland Publishing, 1978.

[2] P. J. Denning, J. P. Buzen, "Operational

Analysis of Queueing Network Models",

Computing Surveys, Vol. 10, No. 3, Sept. 1978.

APPENDIX A

An Algebraic Model for CPU Sizing

A.l Introduction

A new methodology for modeling computer

systems has been developed using sequences of

algebraic models. The approach can be used in

conjunction with dynamic mix analysis techniques on

workload clusters^''' and is similar in flavor to

[2]
operational models of computer systems . The

particular algebraic model used in this paper for CPU

sizing will be introduced as a set of simultaneous

equations. The modeling approach taken here consists

of the following mainpoints:

a. The conversion of application workload into

workload on the various components of the

system.

b. The rates at which this work is carried out

can be represented by the utilizations of

the components involved (CPU, channels,

devices, etc.).

c. By studying the logic of the operating

system, critical sequences of highly

repetitive operating system module activity

can be isolated. These are primarily

sequences necessary to support the read

and write activity of an application

program and include as elements such

modules as the I/O supervisor, interrupt

handler, and dispatcher.

This information, together with certain

application program parameters, is sufficient to

determine the induced work and work rates

(utilizations) on all processes classically of interest in

the system. For purpose of this paper attention is

restricted to CPU utilization only.

119

In this model it is assumed that no I/O

contention (queueing) is occurring and that all I/O

operations take the "average" time to complete. A

parameter to account for deviations from this

assumption is built into the model for potential use. It

is also assumed that paging (or swapping) is not a

significant problem and in a similar manner as I/O

degradation, a parameter to account for deviations

from this assumption can be built into the model.

Submodels can then be used to estimate these

parameters. This expanded approach has been used

and benchmark validated in a more complete algebraic

model of a computer system than outlined in this

paper.

We also assume there are N jobs

competing for the central processing unit (CPU) under

a preemptive priority dispatching discipline for service.

An application program in control of the CPU can be

interrupted and lose control of the CPU if either a

program of higher priority preempts or the program

itself issues a request for an I/O operation.

We are interested in isolating certain key

parameters of application programs which characterize

the logical interaction between program and operating

system modules. These parameters, ideally, will be

invariant under multiprogramming since they will

represent interaction with the operating system which

must be carried out regardless of the collection of

programs with which a given program is executed.

Total number of application program CPU seconds

consumed and the number of I/O's issued per

application program CPU second are examples of such

invariant parameters. As we will see, the latter will

allow us to calculate the CPU time expended by the

operating system to service the application program

requests for I/O operations as a function of the

multiprogrammed mix.

The following is a list of operational

definitions necessary to describe the quantities used in

the model. For a given application program, Pj, the

following standalone attributes are defined.

Cj = total application problem program CPU time

for program i

Tj = total single thread elapsed time of program i

E' = total number of tape I/O's issued by program i

Ef* = total number of disk I/O's issued by program i

Cj = (E' + Ei'')/Cj is called the I/O rate of program

i

rj = Cj/Tj is called the CPU rate of program i

The following multiprogrammed attributes are also

defined.

Tj = total elapsed time of program i when

multiprogrammed

fi = Cj/Tj is called the degraded CPU rate for

program i

At' = average time to do a tape I/O

Atf* = average time to do a disk I/O

Certain quantities related to the operating system will

also be referenced as follows.

6' — sum of CPU timings through all operating

system modules invoked to support one I/O.

The sequence of operating system modules

invoked is called the I/O critical path.

N = number of programs running in the

multiprogrammed job mix (i.e., number of

initiators active).

12U

9(N) = CPU rate of all operating system module

activity not on the I/O critical path. This is a

function of N and the multiprogrammed mix

characteristics.

A.2 Model FormulatioD

A. 2. 1 Operating System If we assume the operating

system modules run in supervisor state disabled for

interrupts, then the operating system modules once

they gain control of the CPU cannot be preempted by

an application program. Therefore, operating system

modules on the I/O critical path invoked by the

process of issuing an I/O request, take on the priority

of the invoking programs in order to gain control of

the CPU, but once in control, they behave as the

highest priority jobs in the multiprogrammed mix.

Since an operating system module is itself

a program, the CPU rate of the module is proportional

to the CPU rates and I/O rates of the programs

invoking it. Once activated, the module will degrade

all application program CPU rates with the exception

of the invoking program. All operating system module

activity not included in the I/O critical path is lumped

into one pseudo-operating system module which is

considered to run at highest priority with CPU rate

0(N).

The CPU rate of that portion of the

operating system representing modules on the I/O

critical path is given by

N
I - 2 fi ei

i-l

where

f| *- CPU seconds/elapsed second

e, = I/O's/CPU second

e' = CPU seconds/ I/O

Note that f
j
is the actual degraded CPU

rate of program i which we will ultimately solve for.

If S is the total operating system CPU rate

then

s = eiN) + 1

In order to fully characterize the total

operating system CPU rate, it is necessary to

determine OiN). Total CPU rate of all I/O critical

operating system modules is obtainable as well as total

operating system CPU rate. Hence, we may assume

both S and I are known quantitatively. Unpublished

experimental results with operating systems have

indicated that 0(N) varies linearly with increasing

multiprogramming level. We therefore assume

fl(N) = k(N)S

where k(N) is a linear function depending on the

number of programs in the mix. Since S is diN) + I,

e(N) = k(N)(e(N) + I)

or

0(N) = I(k(N)/(l-k(N))

5(N) is now seen to be a function of multiprogram

depth and though the expression I also a function of

the I/O characteristics of the programs being

multiprogrammed. The expression k(N)/(l-k(N)) will

be referred to as simply the term K, the dependence on

N being assumed. k(N) can be empirically

determined given 6'), total number of I/O's in a mix,

multiprogramming level, S and the discussion in this

section.

121

A. 2. 2 Application Programs Next we turn our

attention to determining the degraded CPU rates fi of

each program in the mix in order to determine total

CPU utilization required and the turnaround time for

the mix.

Essential to the modeling technique

developed in this paper is a three level hierarchical

view of time. Given any process, one considers first

the passage of elapsed (clock on the wall) time.

Within an interval of such time, certain subintervals

may be made available within which a process can

become active. That is, the process may become active

for none, some, or all of the subinterval. Hence, one

can distinguish three types of time: elapsed time,

available time, and process active time. This situation

is indicated in Figure A-1.

THREE LEVEL VIEW OF TIME

i
D ©

Figure A-1

Note that if there are several processes

competing for available time within an interval of

elapsed time, then what is nonavailable time for one

process may be available time for competing processes.

This is true fc/ example when programs compete for

the elapsed time of a CPU. On the top line of Figure

A-1, the dotted regions represent time spent on

competing processes and the hashed region time that

was available to a process but not used, i.e., the

process was not active. The darkened regions indicate

process active time. There are therefore, two possible

ways to represent a process utilization; with respect to

elapsed time and with respect to available time. This

distinction is of fundamental importance in the solution

of many computer system problems since any attempt

to increase a process utilization beyond the maximum

value indicated when utilization is computed with

respect to available time must be achieved at the

expense of competing process utilization.

If program execution in a

multiprogrammed computer system is viewed as a

process competing for available CPU time, then the

degraded CPU rate of a program, as the model will

calculate it, is equivalent to process utilization with

respect to elapsed time and not available time. Its

single thread CPU rate is equivalent to process

utilization with respect to available time. For the

single thread (standalone) case, available time is

precisely elapsed time. The degraded CPU rate for

program i, f], is unknown since Tj, the degraded

elapsed time, is not known. However, f] may be

represented as an analytic expression derived as

follows.

Let us assume that program i has higher

priority than program i + I and that the operating

122

system modules, once they have gained control of the

CPU, cannot be preempted. Further, suppose a unit of

available CPU time is made accessible to programs in

a multiprogrammed mix. We would like to

characterize the "average" competition for the unit of

available CPU time by the programs and system

modules constituting the mix. In other words, given a

unit of CPU time (e.g., a CPU second), it is of interest

to determine how the time is expended on the various

processes competing for the CPU resource.

Consider an available CPU second. Since

the operating system has top priority, 0(N) + I is the

average fraction of the second taken by the operating

system. The CPU time remaining for problem

program state activity is then 1 — (fl(N) + I) seconds.

For a particular program, the expression representing

operating system overhead time unavailable for

problem program activity must be modified slightly. A

program will never be degraded by its own I/O

operating system overhead since it is assumed that it is

no longer competing for the CPU resource until the

I/O request is satisfied. Hence, define

li = I - Tfifi'

so that Ij, represents all critical operating system

module CPU rate except that induced by program i.

Assuming that no I/O contention is

present, the top priority application program will take,

on the average, a fraction ri of the available CPU time

or

f, = r,(l - (fl(N) + I,))

of the initial available CPU second. The next highest

priority program will take on the average a fraction Tj

of the remaining CPU time or

f2 = rjd - (eiN) +I2 + f,))

of the initial available CPU second.

In general, the ith program experiencing no

I/O contention will take on the average a fraction t„ of

the remaining available CPU time or

fi = rid - (e(N) + li + 2 fj))

j<i

of the initial available CPU second. Figure A-2

indicates the initial available CPU second and the

corresponding time lines for the equations given above.

If it is assumed that I/O contention is

present, then the above equations can be modified so

that,

fi = di^d - e(N) + li + 2fj)) (A-1)

i = 1,2,.. .N

where di is a parameter reflecting degradation due to

I/O contention and 0 <^ di _< 1. di may itself be

represented as an algebraic model or as the output of a

simulation or queueing model.

Tj may be approximated as follows,

ri = Ci/(Ci + (Ei'Ati' + Ej^Ati") (A-2)

+ e'iEl + Ef))

or obtained by actually running the job on the

computer system.

Equation (A-1) represents a set of N simultaneous

equations in the N unknowns, fi. Solving this set of

123

equations for the f|, with d| = 1 for all i, allows us to

them compute the following functions of the degraded

rates.

Turnaround (Service, Response) Time for Program i

^ APPENDIX B

Supervisor State (SS) CPU Utilization

S = 0(N) + I

N
= 2 (K + l)ei6l'fi

i-l

Problem Program (PP) CPU Utilization

N

i-l

Total CPU Utilization

U = S + P

N
= 2 (1 + (K + l)ei0')fi

i-l

Contribution of each Program to Total CPU

Utilization

fi + (K + Dei^'fi

PP SS

MIPS RATES

3031 1.2

168-3 2.7

168-3MP/AP 4.5

3033 4.6

3033 MP/AP 7.6

124

INITIAL AVAILABLE CPU SECOND

OPERATING
SYSTEM AVAILABLE CPU TIME FOR PROGRAM 1

6l(N) + I, 1-(6I(N)+I,)

OPERATING
SYSTEM PROGRAM 1 AVAILABLE CPU TIME FOR PROGRAM 2

0(N) + l2 r|(l-(fl(N)+Ii)) l-(e{N)+l2 + f,)

OPERATING PROGRAM 1 PROGRAM i

AVAILABLE CPU TIME
SYSTEM FOR PROGRAM i+1

«(N) + Ii+, r,(l-(0(N)+Ii)) ri(l-{fl(N)+Ii+2fj))
l-(0(N) + I,+,+ 2 fj)

j<i+l

fl fi

Figure (A-2)

125

CL
D
O
L
CD

I

(0

L

C
D
O
L
0
c
L
D

-D
0
O

L
O

cn
I

CO

£L

I

CD ^
(o a.

X
(T) CO

CO CO

J

I

a
<o
-J u

O

/

/

/ L

$
I
I
I
i

*

« /

4

a

o

a<o
5^

o

I M I I I I I I I I I I I I 1 I I I I

<0 <^ CM S C9 (O
C\J CM CSJ CM

fSJ S GO

Figure 1

126

Fiquro 2

127

128

130

o
E
D

Fiquro 6

131

(O
CT)CT>(T)(\l(\J(\JC\JC\J'"«'-«'-«^<—

•

Fiqure 7

132

133

0
E
D

O
Figure 9

134

ESTABLISHING A SOFTWARE ENGINEERING TECHNOLOGY (SET)

L. Arnold Johnson
and

William R. Milligan

Federal Software Testing Center
Office of Software Development and Information Technology

General Services Administration
5203 Leesburg Pike, Suite HOG

Falls Church, VA 22041

This paper will discuss the concept of software engineering as provided by
Dr. Barry Boehm as "the application of science and mathematics by which
the capabilities of computer equipment are made useful to man via computer
programs, procedures, and associated documentation." It can serve as a

starting point for developing and institutionalizing a modern Software
Engineering Technology (SET). The document defines key elements which
comprise a SET and suggests a method for formulation of these elements
into a technology that encompasses all of the primary stages of the

software life cycle. It presents a discussion of the types modern day
software engineering practices. The approach emphasizes the incremental
integration of software tools into the technology as a means of increasing
productivity, establishing regularity and uniformity, and improving
control over software systems.

"The past is but the beginning of a beginning, and all that is and has
been is but the twilight of the dawn."

Key Words: Software Engineering Technology (SET); Software Engineering;

software tools; software management.

H.G. Wells
The Discovery of the Future (1901)

1.1 Software Engineering application of science and mathematics by which
the capabilities of computer equipment are made
useful to man via computer programs, procedures,
and associated documentation" [1]. Software
engineering is sometimes referred to as the

discipline which brings order to the software
life cycle development process. There are many
techniques such as top down design, structured
programming, thread testing, HIPO charts, etc.,

all of which bring a form of discipline to the

development and management of software.
Defining the techniques employed by an

organization through the use of standards and
procedures is a primary means of establishing
order in software development and management.

Software engineering encompasses a wide range of

techniques and methods for managing, developing,

and maintaining computer software. It is

sometimes thought of in the more restrictive

sense to cover only programming methodology.

Software engineering actually covers a much

broader scope and includes all of the

disciplines which are used in dealing with

software throughout its life cycle.

I

A more formal definition of software engineering

is provided by Dr. Barry Boehm as "the

135

I.

Along with a discipline come the measurements

and controls which permit software to be

evaluated and subsequently managed . Activities

such as critical design reviews, program design

reviews, and software change controls usually

accompany software engineering methodologies.

These functions are necessary in order to

determine if the software meets the needs of the

end user and is easy to maintain. A Software

Engineering Technology (SET) includes the

development of software standards, development

of computer and manual procedures, acquisition

of the necessary software tools, and integration

of these elements into a suitable machine

environment. The aim of the SET is that it be

a practitioner's approach to software

engineering [2]. In doing so the technology
must be flexible, yet should not sacrifice
principles. A comprehensive SET for software
development must consider all aspects of the

software life cycle if desired results are to be
obtained. For this to be possible, the factors
which affect the software life cycle phases must
be identified and a formal technology
establ ished

.

intersections of elements within a stage,

represent the theoretical details of the

technology. After the SET is developed, these
blocks should contain the detailed documentation
for the standards, procedures, tools, quality
assurance, and training for each stage. The
lines dissecting the stages and elements provide
a natural boundry for the SET components. These
divisional boundaries are logical control points
in the technology from which reviews can be

performed, quality ascertained, errors
identified and corrected, and management
decisions made. Also, the vertical lines
dividing the stages are logical points for

products, deliverables or milestones to occur.
In addition, the system environment (hardware,

methods of operation, etc.) provide a third

unillustrated , dimension to the matrix. As an

organization manages or changes its data
processing environment, the matrix may have to

be modified accordingly as additional tools,
procedures, and standards enter the environment.

1.3 SET Iterative Review Process

1.2 Components of a SET

A SET consists of two major components - stages
and elements. Stages are discrete phases of the

software life cycle identified by the type of
activities associated within the stage. The six
stages of the software life cycle for a SET are-

requirements definition and analysis;
design;
programming

;

validation;
operation; and

review.

Elements of a SET are the principle factors
which direct and control the software activities
within each software stage. The five elements
for a SET are-

stand ards

;

procedures

;

tool s

;

quality assurance; and
training

.

The combination of these five elements within a

particular environment over the six stages of
the software life cycle constitute a SET. This
SET can be built in such a way that resources of
varied quality can be used to accomplish similar
engineering tasks. Without any of the five
elements, an engineering project will not
produce a technology, but rather an unused set
of tools, standards, and procedures [3].

The association of the five different elements
with the six stages is viewed as a two

dimensional matrix as illustrated in Figure 1.

The blocks of the matrix, which are the

Because of the numerous directions software can

take, software control becomes a process of

iterative reviews. All components within the

software life cycle need to be checked and

rechecked to ensure that none of the meaning or

usefulness desired from the software is lost.

One method, as reflected in this SET, is to

continually test the quality of products from

each stage in the software life cycle.

1.4 Key Concepts of a SET

The foundation for a SET consists of the
objectives to be achieved from a technology.
The building blocks for meeting these objectives

are the standards, procedures, tools, quality
assurance, and training elements available in an

appropriate environment. For the technology to

be effective, these elements must be
interrelated so that each element compliments
the other.

Two of the most important concepts for making
effective use of any SET are the controls
administered and management support for the SET
program. Management must be willing to allocate
a sufficient, but reasonable, amount of money,
personnel, time, and other resources to the SET

program; not only to develop it, but also to

maintain and control it.

1.5 SET Objectives

No organization or technology would have

justification for existing unless identified
benefits were realized. This is particularly
true for a software engineering technology.

136

REVIEW

OPERATIONS

SET

VALIDATION

STAGES

OF

PROGRAMMING

DESIGN

RrnillREMENTS

DEFINITION

&

ANALYSIS

ELEMENTS

OF

SET

STANDARDS AND

GUIDELINES

PROCEDURES

TOOLS

QUALITY

ASSURANCE

TRAINING

i

Figure 1: Component Matrix of the SET

137

Thus, it is paramount that defined objectives be

in place so there is a common goal upon which a

SET can be built. Primary objectives of the SET

are to-

reduce overall cost of software by

reducing the effort spent on
maintenance through better planning,
design, testing, and control of

software resources;

improve software reliability by

increasing the degree of software
correctness, minimizing uncertainty,
maximizing data integrity, and

improving system security;

improve maintainability of software by
making software structure consistent,
isolating functions, having up-to-date
documentation, facilitating program

understanding, standardizing
interfaces, managing mechanisms to

control and apply changes or

enhancements quickly, etc.;

improve portability by isolating
architecture dependencies, reducing or
eliminating operator intervention,
eliminating nonstandard source code,
using high-level computer languages,
and reusing source code (i.e. reducing
development redundancy)

;

ensure software is useable by making
sure it meets requirements and
maximizes error detection in the early
stages of software development;

obtain regularity and uniformity in

such areas as program format, naming
conventions, programming standards,
system design methodology, data
isolation, maintenance change
methodology, function
interchangeab il ity

,
single-source

maintenance, and test and acceptance
criteria

;

establish controls and measurement of
software for project monitoring,
evaluation of software, management
decisions, tracking, auditing, etc.;

improve organization productivity
through increased programmer
productivity, increased hardware
performance, reduced learning curves,
increased programmer effectiveness, and
broader skills at both technical and
management levels; and

improve product quality and
responsiveness to user requirements.

1.6 Environment's Effect on the SET

There are certain factors which have an effect

or influence upon the development and

implementation of a SET. This common influence
on the SET is referred to as the environment.

The environment is the aggregate of

organizational, technical, and managerial
conditions of the ADP activity, which make the

definition of each SET unique. Thus, the effect
the environment has upon the SET is different
for each organization. Add to this the fact
that an organization' s environment is constantly
changing with time. Therefore, the SET must be
flexible and conducive to changes in the
environment

.

2. Overview of Software Life Cycle Stages

The software life cycle includes the six stages
of-

requirements definition and analysis;
design;
programming;
validation;
operation; and

review.

2.1 Requirements Definition and Analysis Stage

The Requirements Definition and Analysis Stage
begins after a feasibility study has recommended
that a new or modified system be developed for

computer processing, and that recommendation has
been accepted by management. The purpose of
this stage is to define specific functional
capabilities required for the system, define
performance requirements that must be met, and

identify all information that the system will

use or produce. The results of this stage
become input to the next stage, which is the

design of the new or modified system. To avoid

limiting the system designer's ability to

consider a variety of design options,

requirements defined by this stage must
concentrate on specifying what the system is to
do — not how to do it.

Analysis includes the study of a business area
or application, leading to the specification of

a new or modified system. It consists of

interviewing the user about what the current
system does or should do, what extra features

are desired in the new system, and what
constraints should be placed on the new system.

There are repeated interactions with the user in

order to reach a clear understanding of new
system requirements. The most important product
of system analysis is the functional
specification. The user must be given adequate
time to review the functional specification

138

before it is passed to the system designer, as

this can alleviate problems later. If care is

taken to ensure that all of the data and
processing requirements have been identified,
then required user changes can be kept to a

-minium. However, even though care is taken to

review and finalize requirements with the user,
the definition of requirements is an interactive
process throughout the system life cycle, with
specification changes identified during later
life cycle stages.

2.2 Design Stage

Design includes the tasks of detailed
specification of software, data, hardware and
processing requirements, and the segmentation of
processes into programs. The design process
involves moving through successive levels until
the system has been defined sufficiently for
software development to begin. This
decomposition facilitates human comprehension by
breaking down a large, complex problem into
smaller, more manageable pieces.

In addition to moving through successive levels
of conceptualization in decomposition of the
problem, there is also some iteration of the
steps in the design process. Most often the
initial solution to the problem is not the best;
and as the designer moves from one level of
conceptualization to the next, more insight is

gained into the ramifications of the problem and
design refinements may then be made.

A system can be viewed as a group of data
processing entities. The designer describes
these entities in terms of their input/output
and processing performed to accomplish the
transformation from input to output. Interfaces
and control sequences of the data processing
entities are described along with descriptions
of the data that flows between them. This forms
the "logical" structure of the system.

2.3 Programming Stage

Programming includes detailed design of the

processing logic, preparation of a plan for

testing the program, development of test data,
code production, unit testing the code, and

documentation. This stage begins with the

receipt of a specification for the development
of a new program or the modification of an

existing program. The programmer's first act is

to obtain a good definition of the problem to be
solved. He analyzes requirements, asks
questions if clarification is needed, and

recommends modifications to the program
specification if it contains errors, omissions,
or obvious inconsistencies.

Once the problem is thoroughly defined, detailed
program design begins. The program design is

complete when the program specification,
describing program construction, is finished.
To predict whether the designed program will
function as intended, designs should be verified
by someone other than the designer as the

designer cannot always objectively evaluate his

own work.

After program design, the programmer codes the

program. In some instances design may not be
completely finished before coding begins.
Modern programming techniques such as

modularization and top down development, permit
flexibility in scheduling program development
activities by separating the program into
logically distinct portions which can be
developed and tested independently. As a

result, there is a great deal of overlap of
design, coding, testing, and documentation
activity throughout the Programming stage.

Unit testing follows coding. This purpose of
unit testing is to ensure that the unit, or
program, released for system testing is free

from internal logic or format errors and
conforms to its specifications.

2.4 Validation Stage

Validation encompasses system testing followed
by acceptance testing. The purpose of system
testing (sometimes referred to as integration
testing) is not to retest all of the detailed
functions within each program since that would
unnecessarily duplicate unit testing. Instead,
its purpose is to connect the program units to
determine whether they function together in
tandem. Thus, the main testing emphasis is on
the interaction between and interoperability of
software components and their interfaces.

Planning for system testing begins in the
earlier stages of the software life cycle. The
system should be tested against functional
specifications produced during the Requirements
Definition and Analysis stage. For this reason,
adequate specifications for quality must be
included and the requirements stated in a way
that can be tested. During the Design stage,
when components of the system are first

identified, the system test plan is produced as

part of the system specification. The system
test plan defines how modules or programs of the

system are to be sequenced and pieced together.
It defines the order of integration, the
functional capability of each version of the

system, and the responsibilities for producing
code that simulates the functions of nonexistent
components. Development of test cases for

system testing is accomplished during any or all

the Design, Programming, and/or Validation
stages. System test cases consist of test data
and scenarios supplied by the user, programmer,
and/or system testing component.

139

2.5 Operation Stage

The Operation stage begins after a software
product has been validated to the satisfaction
of the user and has been accepted for production
processing. This applies to both new
development efforts and enhancements to existing
systems. The operation stage includes the
executon of software and the interface between
development and operational components necessary
to ensure proper execution.

2.6 Review Stage

The Review stage begins after software is

operational and basically in a maintenance mode.
The purpose of the review stage is to provide
for periodic performance evaluations of
operational software systems. The evaluation
must address performance characteristics from
the perspective of the user, development, and
operations components with a view toward
alleviating errors and recommending
improvements. Review can be initiated based
upon management direction, problems, software
age, or scientific selection. Scientific
selection is the preferable method since it is

the least subjective. The review itself is most
effective as an internal peer group activity
conducted at the project level. Activities
associated with this stage include-

qualitative and quantitative data
gathering

;

data evaluation; and

trend analysis.

Overview of the Five Elements

Establishment of a SET in any ADP environment
consists of the development of a detailed plan
that describes and integrates the five major
elements of-

stand ards

;

procedures

;

tool s

;

quality assurance; and
training

.

This combination of standards and guidelines,
procedures, tools, quality assurance and training
forms the basis for a software technology [3].

3.1 Standards

The term "standard" can be defined as that which
is established by authority, custom, or general
consent as a basis for comparison. Data
processing standards can be grouped into two
major categories: methodology standards and

performance standards.

Methodology standards are uniform practices.
Performance standards are metrics to evaluate
performance. Methodology standards are rules of
procedures or instructions on "how-to-do-it."
Performance standards specify how well a

function should be be performed by people,
software, and machines. For example,
programming methodology standards would indicate
how a program is to be coded (i.e., what coding
form to use, how characters should be
hand-written for input, the format of the source
code listing, etc.). The programming
performance standards would state how long
program coding should take, given the experience
of the programmer, complexity of the job, and
other relevant factors or constraints.

3.2 Procedures

Procedures are methods of doing business within
an organization. They define processes which
are followed on a project or the manner of
proceeding with a task. For a SET, procedures
are really the "what-to-do" and "when" in

performing software tasks.

There are several types of procedures particular
to a SET. There are undocumented and documented
procedures, as well as manual and automated
procedures . Undocumented procedures are the
methods or processes which are performed based
upon tradition. Normally these procedures are
communicated from person to person by
word-of-mouth . Approval chains or signoff
procedures are quite often examples of this type
of procedure.

Documented procedures are formal written
procedures in a data processing shop such as
software run instructions, test case development
steps, software testing process, etc. They
serve as a source of reference to personnel for

maintaining consistency and uniformity in

completing software development tasks.

Documented procedures eliminate much of the
tr ial-and-error in determining "what-to-do" and

"when-to-do-it ." Also, documented procedures are

an invaluable source of training material when
integrating new personnel into the organization.
All procedures used in the software life cycle
should be documented including those that were
normally performed only by tradition. If not
documented, the procedures will never become
public knowledge or practice, and will not be
adopted and accepted by the data processing
per sonnel

,

Manual procedures involve activities such as:

desk checking code, obtaining management
approval for proposed system enhancements, and

interfacing with users to identify system
requirements. Automated procedures involve the

use of software tools, such as: language
analyzers, code optimizers, requirement
analyzers, and programming support tools.

140

3.3 Tools

"A software tool is a computer program that can
automate some of the labor involved in the

management, design, coding, testing, inspection,
or maintanance of other programs [4]."

There are many types of tools in widespread use
throughout the ADP industry. Their use has
become almost essential to the effective use of
computers for any application. These tools
range in size and complexity from simple aids

for individual programmers to complex tools that
can support many software projects at the same
time

.

Tools are important because they can be used to

produce software faster, more accurately, and

more uniformly, while significantly improving
personnel productivity. As a result, their use
can become an important part of software
development. More importantly, tools represent
a class of software that can be used and reused
within many different environments. Thus, the

use of tools provides the opportunity to reduce
costs and improve productivity while decreasing
development time.

3.4 Quality Assurance

Quality Assurance (QA) is the formal process of

measuring or evaluating, the degree to which
software meets standards (e.g., alignment of
code or percentage of logic executed during a

test), and/or prescribed requirements (e.g., in

the areas of accuracy, reliability, etc.). The
primary purpose of QA is to develop and maintain
better software products than those which would
otherwise have been developed and maintained
using traditional methodologies without
measurements or controls.

3.5 Training

The purpose of training is to create, through
some type of learning experience, a permanent
change in a person's behavior so that the
individual reliably performs in a certain
prescribed manner. The types and quantity of
training required for a SET depend heavily upon
an organization's personnel background and the
make-up of the SET itself.

Webster defines training as "a process or method
to lead or direct growth; to form by
instruction, discipline, or drill" [5].
Training implies a method (procedure), change
(behavior modification), and result (growth or
performance). Training in terms of the SET
requires the identification of target training
areas and specific plans of action to bring
personnel to a higher level of knowledge and

performance. Since the establishment,
institutionalization, and implementation of SET
is evolutionary, the training plan should be
structured to facilitate this process and
provide training which closely corresponds to
the SET.

4. Planning the Development of a SET

4.1 SET Planning

Developing a comprehensive SET requires detailed

planning, organizing, personnel coordination
and, most importantly, management involvement
and support. If the SET development effort is

visible in an organization, the chances that a

formal SET will be implemented increase
substantially. Establishing such an effort as

a planned program in an organization' s plan is

the first step in ensuring that the process will
receive the necessary attention. Involvement by
all parts of the organization in the development
of a SET will increase the potential for
successful implementation.

Two approaches in planning the development of a

SET can be used - a top down approach and a

bottom up approach. A top down approach
develops a theoretical structure of software
engineering, and expands this to successive
levels of detail until all tasks are completed.
The bottom up approach identifies the current
engineering process, and from this identifies
which elements of the technology are missing.
An evolutionary process of substituting tools
for existing processes, developing missing
procedures, standards, etc., by trial, analysis
and modification, will evolve the current system
towards the desired SET.

It is important that the SET development plan
provide a basic framework, direction, and

overall schedule for the project. The plan
should be structured so that it can be updated
on a periodic basis and should address all five

elements of-

stand ards

;

procedures

;

tool s

;

quality assurance; and

training

.

An organizational
tactical (short te

objectives. These
identified in an o

group of milestone
conducted by manag
is evaluated using
goals of an organi
usually establish
used to prioritize
objectives. The e

detail knowledge o

planning process involves both
rm) and strategic (long term)

objectives are usually
rganizational plan as a ranked
s. The ranking process is

ement whereby each milestone
criteria which mirror the

zation. Top level management
these criteria which are then

and rank organizational
stablishment of a SET requires

f an organizational plan to

141

establish standards, buy software tools, develop
procedures, and plan an adequate computing
facility which will best support organizational
objectives. The SET Development Plan must
strike a balance between supporting
organizational objectives and how rapidly the
engineering technology is implemented. As part
of the plan, an analysis of the current
engineering process should be conducted and
should be organized so that it can easily be
compared to the new, planned process. This
comparison will help identify actions needed to
upgrade the process. The analysis should also
identify high pay-off areas as this will help
establish priorities. From this analysis will
emerge the long range strategy and a detailed
plan [3]. Figure 2 shows a possible outline for
a SET Development Plan.

4.2 Model for Developing a SET

The method used for establishing a SET depends
on a particular organization and its staff.
There are, however, some principles which are
characteristic of any model for developing a
SET. A SET should be flexible in order to

maintain an up-to-date technology. There should
be periodic checkpoints to enable personnel to
be brought in tune with the established
technology. It should allow room for
experimentation with modern software practices.
Finally, it should allow integration of software
tools to automate manual software activities
where possible.

It is good practice to establish periodic
baselines during the SET development process
because developing a technology is generally
disruptive to an organization. It frequently
changes the way people produce and maintain
software. It requires training and makes old
procedures obsolete while requiring that new
ones be adopted. To minimize this disruption,
there should be planned periods during the SET
development process where technology is

stabilized so that personnel can upgrade their

skills and put into use the software engineering
principles formulated thus far.

Figure 3 presents a simplified model for
developing a SET. The target SET developed from

application of the model. must exist within the

boundaries of a particular environment.
Environment represents a multi-dimensional
concept that identifies the many components of

an organization and their relationships. Some
important attributes of an ADP environment
include-

size of the software organization &

personnel mix;

development environment (batch,

interactive)

;

program running environment (batch,

real-time , etc .)

;

computer type; and

involvement in tools develoment [4]

.

These attributes should be evaluated and
quantified in order to compile an organizational
profile. This profile, coupled with key SET

elements will serve to establish a custom fitted

SET baseline. Establishing a baseline SET will
require a proper environmental mix of SET
elements within the software life cycle stages

that are balanced against an organization'

s

needs and requirements.

4.3 Identifying Standards, Procedures and

Quality Assurance

Identifying standards, procedures and quality
assurance for a SET is a large and sometimes
confusing task. First there are questions such
as what software practices should be
standardized and, what processes should be
developed? Each organization developing a SET
must eventually answer these questions.
Although answers to the questions will be
different, the items to be considered can be

grouped into categories. Only then can the

translation of these categories into
preliminary, and ultimately, fully documented
standards, procedures and quality assurance
methods that fit into an organization's
environment be performed.

4.4 Standards Considerations

One important area of consideration regarding

standards is that conformance with Federal

information Processing Standards (FIPS) is a

regulation for all Federal agencies. However it

should be noted that there are waiver procedures

for most of the FIPS. The FIPS Publication
Series of the National Bureau of Standards, U.S.

Department of Commerce [6], is the official
publication relating to standards adopted and

promulgated under the provisions of Public Law
89-306 (Brooks Act) and under Part 6 of Title

15, Code of Federal Regulations. These
publications consist of guidelines and mandatory
standards for the utilization and management of

computers and automatic data processing systems
used in the Federal Government.

type of organization (private,

government , etc .) ;

4.5 Integration of Software Tools

applications (scientific, MIS) and

language(s);
The introduction of a tools oriented SET into a

142

1. PROJECT INITIATION

1.1 Purpose of SET Project
1.2 Objective and Goals of SET
1.3 SET Development Methodology
1.4 Organizational Responsibilities
1.5 Resource Estimate, Schedules and Milestones

2. SET REQUIREMENTS

1.1 Task and Deliverables
1.2 Phased Milestones
1.3 Applicable Standards
1.4 Manual and Computer Procedures
1.5 Quality Assurance Mechanisms
1.6 Tool Functions
1.7 Environment Considerations

3. CURRENT ENGINEERING PROCESS (Similar Structure to (2))

4. PRELIMINARY SET DEFINITION

4.1 Preliminary Tool Configuration
4.2 Preliminary List of standards
4.3 Preliminary Procedures
4.4 Preliminary Quality Assurance Mechanisms
4.5 Training Plan

5. SET DEVELOPMENT PLAN

5. 1 Pilot Projects
5.2 Tool Selection and Acquisition
5.3 Standards Development
5.4 Procedures Development
5.5 Quality Assurance Establishment
5.6 Training
5.7 SET Measurement and Evaluation

Fieure 2- Plan Outline for Developing a SET

143

Identify
Environment

Identify Categories of
Standards, Procedures
& Quality Assurance

^1 Analysis of

Current Engineering

Ident i f

y

Software Tool
Functions

Identify Missing
Standards, Procedures,
Quality Assurance

& Tools

(Establish SET Goals)
Preliminary Tool Configuration

" List of Standards
" Procedures
" Quality Assurance

Tool

Experimentation
&

Evaluation

Subst i t ute

Software Tools
for

Processes

Develop/Update
Standards, Procedures
& Quality Assurance

Yes

Train Personnel

Institute
SET

Figure 3: Model for Developing a SET

144

software development environment will impact the
organization in several ways. To cope with
these changes organizations will need to-

institute a methodology for software
development based on life cycle;

establish and enforce organizational
standards for software development;

supply automated tools to facilitate
the software development process;

supply training for personnel in modern
programming practices; and

provide the management commitment to

develop and sustain the environment.

The recommended approach to introducing a tools
oriented SET into a software development
environment is to solicit an abundance of user
involvement; proceed to successively more
advanced levels of the SET in a systematic,

coordinated manner; constantly obtain and
evaluate feedback; and if necessary, make
continual changes to the SET to ensure its

appropriateness to a particular environment. A
properly integrated tools oriented SET will

yield more maintainable and error-free software

more productive programmers, improved software
management, and dramatically increased control

over the software life cycle process.

5. Phasing Into the Technology

5.1 Tool Identification

SET is an evolutionary concept that migrates
from a simple technology, through several higher
levels to an advanced (state-of-the-art)
technology. SET technology differentiates from
existing software development methodologies in

that it relies heavily on the use of tools.
Tools are used to accelerate the development
process and to take advantage of extensive
simulation and modeling techniques which
facilitate high quality software development.
Examples of these include-

simulation tools;

development tools;
test and evaluation tools;
operations and maintenance tools;

performance measurement tools; and
programming support tools.

Early software development environments
consisted of a compiler and a linking loader.
Later environments included text editors and

debuggers, informal requirements and design
methods, and simple programming standards. Many
new methods and software tools have been
formulated and built during the last decade.

A software tool environmental review requires an

analysis of products generated during a software

development project and the methods and tools

useful in generating those products. The

software life cycle model emphasized the

importance of both intermediate and final

products. Each unique software life cycle model

has classes of products associated with
particular life cycle phases while others
transcend them. Requirements definition
products serve as a means of communication with
the customer. They are often informal and may
simply be notes tacked up on office walls,

compiled in a cut-and-paste mode. They may also

be expressed more formally in a language like
Structure Analysis and Design Technique (SADT)

[7]. Requirements specifications are formal
contractual documents that define the system to

be built. They are constructed after
requirements definition and, ideally, are
represented in a formal language on graphical
notation such as Problem Statement Language
(PSL)/Problem Statement Analyzer (PSA) [8]. A
test plan based on the functional properties of

the system described in the requirements
specification is also an important product. The
plan should define both test data and expected
results as well as procedures for running the

tests [9].

The design of a system is often divided into
preliminary (or architectural) design and

detailed design. Both phases result in design
products that may be either informal prose
descriptions or diagrams that are generated
using a formal design methodology such as

Structured Design [10]. In addition to system
documents, the preliminary design may also
result in the generation of "build plans." Build
plans describe the order in which modules or
parts of the system are to be designed and

built. The preliminary design may also be used
to construct schedules, budgets, resource
management procedures, milestone charts, and

maintenance procedures [11].

In addition to the source and object code
modules, the programming stage involves the

construction or modification of management
products (budgets, schedules, etc.), user
manuals, discrepancy reports, and code-based
test plans. The programming stage also includes
the generation of reports of all testing and

code analysis activities. Validation products
ensure that the software system meets system
functional specifications and requirements, and

also that as many as possible of the "Defects"
in implementation are removed. This provides
strong indications if the system is constructed

according to the design document and meets all

appropriate criteria as identified in the
requirements/specification document. Tangible
products will appear in the form of exception
reports and/or warnings about anticipated
problems. Test and evaluation tools and

techniques can be used to support the validation
process

.

145

Systems operation and maintenance are concurrent
activities. These are products important to and

either used or generated during maintenance.
They include configuration specifications,
change control procedures and plans, regression
test data and results, cross-reference
documents, and all requirements and design
specifications. The review stage of the

software life-cycle is an ongoing activity
within each stage. It is highlighted at key
milestone points where products from one stage
enter into another. Therefore the products
generated in each life-cycle stage constitute
the review products.

A tools oriented SET is an evolutionary concept
that allows migration to successively higher
levels of SET by implementing more complex tools
and their related standards and procedures.
This migration process moving into an ever
increasing tool complexity environment will be
both time consuming and difficult and at a

minimum will require extensive planning and

coordination. Obtaining top level management
commitment is a vital step in the process.

5.2 Tool Integration

A common argument against tool integration is

that it imposes an inflexible development
methodology on the development staff. One
imagines a complex tool. To use Tool A, you
must first use Tool B, and the output from A is

always processed by C and then D unless there is

input from E. The idea that an integrated tool

environment must consist of a complex structure
of interconnected tools is misleading. The
fundamental feature of some of the best known
software support systems is not their
interconnections, but the use of common kind of
data objects by all tools or facilities. The
properties of the basic data objects and the

knowledge that different parts of the system
have of objects of this kind characterize the

degree and type of integration within the

sys tem

.

A software engineering database can be used to

build an integrated software development
environment. The database provides an
integrating and unifying medium for interfacing
tools without forcing them into a complex
structure of interrelationships. Tools obtain
their information from the database and return
their results to it without having to interface
directly with other tools.

An integrated tool system which uses a common
database eliminates the need for multiple copies
of the same information. The existence of
different copies of the same information for

different tools often creates a consistency and
synchronization problem. Every time one version
of a collection of information is updated or
changed, other copies must be changed. Both the
expense and tedium of this virtualy rules out

the practicality of using certain collections of
tools unless they can be modified to work off
the database. Tools which satisfy the
requirements for tool compatibility
(parameterization of input/output locations and
the ability to call one another) can be attached
to a software engineering database with
interface for "data translator" routines. In

order to maintain flexibility, it is important
to avoid building bridges between pairs of

tools. The bridges should instead be built
between the tools and the database [11].

5.3 Benefits of SET Baseline

Entry into a SET is usually indicated by
establishing a SET baseline. This is the
minimum set of tools and technology needed for
an initial SET. It is the starting point from
which to migrate to a more advanced SET
technology. These requirements represent the
critical mass of a SET. They also translate
into a series of benefits which have common
applicability to any installation. Therefore,
an initial baseline SET would-

increase productivity;
upgrade skill capabilities;
automate routine aspects of software
design; and
reduce the time and cost of software
maintenance

For example, software tools meeting baseline
requirements could provide an increase in the
quality and quantity of software code, be much
simpler to use than writing new programs, have
expanded software design capabilities, and be
self documenting. These tools together with the

standards and procedures to use them could
constitute an initial baseline SET.

Each organization should evaluate its own
position in relation to a SET. Any environment
that provides tools that supply at a minimum
these stated benefits, can be said to have
established an initial baseline SET.

Once the baseline technology is in place, and

personnel have been trained in its use, the next
technology "release" should be planned.

Modifying a SET requires a certain amount of

overhead, such as the retraining of personnel in'

the usage of new or enhanced features. For this

reason, periodic versions (or releases) of the

SET should be planned and implemented,
incorporating more advanced tools, modifications
and/or enhancements to the existing standards
and procedures, etc. The SET documentation
should be appropriately updated, and personnel
trained in the use of the new enhanced features.

146

5.4 Establishing High Pay-Off Baselines First

The net effect of establishing a SET baseline
technology is to stabilize an ADP organization.
Upon reaching a SET baseline, an organization
will be in a much better position both
managerially and technically to proceed toward
the various higher levels of a tools oriented
SET.

The use of software tools offers inmediate
benefits in terms of time and cost savings. The
integration of software tools and advanced
management techniques, such as structured
walkthroughs, chief programmer teams, and
program reviews offer high pay-off potential for
SET. Some software development techniques which
have consistently been found to offer high
pay-off potential when used with a tool oriented
SET include-

requirements analysis and validation;
baselining on requirements
specification;
complete preliminary design; and
process design [12].

Installations to maximize their payback from
investment on new development should concentrate
on software tools and technologies which apply
to the requirements and design stages of
software life-cycle management. Mature
organizations wishing to maximize their
investment return on existing software should
concentrate on programming and software
validation tools.

5.5 Training in Relation to SET

The types and quantity of training required for
a SET depend heavily upon an organization's
personnel background and the make-up of the SET.
In most installations, data processing personnel
are not trained in the engineering disciplines.
Therefore, a significant upgrade in skills will
be necessary so that individuals can take full
advantage of the new technology.

Any training plan should utilize a balanced
approach to provide adequate training to develop
all skills required at a particular job level
and category within a SET.

The identification of tools, quality assurance,
standards and procedures to be used at critical
points in the plan is important. Tool and
technique training properly integrated into the
traiping program will ensure that an
organization is in tune with state-of-the-art
technology

.

A SET will progressively lead an ADP
organization toward a state-of-the-art
op>eration. Employees will be exposed to a
rapidly changing, complex environment. Everyone

connected with the SET will participate in the

changes and feel its affects which, without
proper training could become highly stressful.
The mitigation of stress during this dynamic
period should be a major objective of the SET
training

.

5.6 Maintaining an Up-To-Date Technology

To maintain a continuing level of technology
that will keep pace with a rapidly moving
software industry, an organization should
consider either expanding its current
information procedures and facilities or
instituting new ones to ensure its personnel and
technology stay up-to-date. Most data
processing organizations maintain some type of
library. It may be formal as in the case of a

central library or as informal as books on a

table in a conference room. The purpose of the
library is to provide a ready source of
reference on information relating to data
processing. Just as a data dictionary is vital
in the management and use of a DBMS, a current
library is vital as a rich source of information
on system's development and management.

Exposure to modern concepts in tools and

technology can help to increase individual
productivity. Concepts and disciplines being
taught in contemporary academic institutions are

quite different than those taught in prior
years. Entirely new disciplines, such as

Computer Aided Design (CAD) and Computer Aided

Manufacturing (CAM), with emphasis on

quantitative evaluation and return on investment
require much more than knowledge of theory [13].

Many data processing professionals have either
limited exposure to these concepts or no formal
exposure. SET requires an organization to

re-tool its environment with software tools and
technology. In conjunction with this, SET will
require individuals to re-tool (train) using
quantitative skills to properly take full

advantage of the new tool technology.

Success in implementing a SET is a direct result

of a balance achieved between software life

cycle management and the application of a

software tools technology. The balance is

delicate and is maintained informaly by using
the standards and procedures review process and
formally through periodic project meetings with
upper level management. It is at these meetings
where SET performance is measured against the
project plan, future milestones identified, and

specific direction is provided from upper level
management to ensure that the SET technology is

kept on track. These top level management
meetings are vital in the SET project management
process. They provide performance information
to upper level management on SET project
performance and provide the opportunity for

lower levels of ADP management to receive
specific feedback on the SET project as well as

147

any new information which could impact or
enhance the SET technology.

6.2 General Workflow for SET Development

6. Description of a SET to be Developed

6 . 1 SET Composition

A SET is composed of standards and guidelines,
procedures, quality assurance, tools, and
training applied to software life-cycle stages
in a planned balance within a carefully
engineered environment. The technology reflects
the process of replacing manual with automated
functions within a software development
environment. The development process is

characterized by the identification of baseline
technologies which incorporate software tools

and techniques with succeeding baselines
equating to higher levels of software quality,
performance and productivity. Baselines are

custom engineered for a particular organization.
They identify criteria to measure performance
and specify the required tools and technology
needed to reach a target performance plateau
specified by and for an organization. An
organization adopting a SET enters into a

constant review and evaluation process to ensure
their conformance with existing SET baseline
requirements and to identify the tools and

technology for higher baseline SET levels.

The recommended SET development plan for a

software engineering technology should include
the following major phases:

Existing engineering analysis,
SET baseline planning (goals),
SET baseline development/upgrade.

The exact nature and mix of software tools and
techniques must be determined during the initial

baseline identification process. Areas of
software technology having the highest pay-off
should be given prominent consideration in an

initial baseline SET development plan. The

composition of any technology is shaped by
factors within the particular organization, such
as its management structure for software
development, its staff, its physical workspace
and computer environment, and its applications.

As a result, different organizations may have
different software engineering technologies.

The initial baseline SET should concentrate on
the programmatic software environment. After
the initial programmatic oriented SET has been
established, the technology should be expanded
to encompass other application areas.
Subsequent SET baselines should include more
advanced tools and techniques.

The workflow for SET development is a dynamic
process subject to many factors having
environmental and technical impact. A properly
engineered and integrated SET Matrix translates
into a level of a SET. Replacing manual
functions in the matix with software tools and

techniques and institutionalizing their use
changes the complexion of the matrix and

positively impacts the technology. Technology
levels identify higher plateaus of software
engineering in the form of organizational goals.

They identify and define target functional areas
which can benefit from a carefully engineered
SET plan. The plan should define the steps
necessary to upgrade the SET by the application
of software tools and technology. A technology
plan is composed of a series of functional
upgrade plans. Each particular plan does not in

itself represent a technology level but rather
a small portion of one. The combination of
individual functional upgrade plans targeted to

meet specific organizational goals at a planned
level of productivity and performance constitute

a baseline SET. The completion and

institutionalization of all plans within a given
technology level identifies that an organization
has reached that baseline level for SET.

6.3 Subdivision of the SET for Work Assignment

SET implementation requires detail understanding
of the technology and its organizational
considerations and impact. A reflection of this
understanding is the development of a plan which
identifies software life-cycle stages and is

broken into distinct phases.

"Establishing standards, identifying and

acquiring the appropriate computer resources
needed, introducing a few mature tools and

progressively building on these capabilities is

a good approach. Prioritizing the steps and
identifying and acquiring high payoff tools and

techniques need to be clearly mapped out. This
should be done at the outset and reviewed along
the way" [14]

.

Prior to entering a tools oriented SET, an
organization should plan initially to phase into

a SET by establishing a baseline technology.
The advantage of this would include-

stabilizing an organization;
establishment of a pilot project;
phased tool implementation;
identification of high payoff areas;
testing of SET on limited scale; and
slow exposure to software tools.

The formalization and eventual
institutionalization of a SET is an extremely
complex and delicate process. Adding to the

148

complexity is the fact that the SET undergoes
continual evaluation with identified changes
being incorporated back into the technology. A
good first step in establishing a SET is to
experiment with the tools and technology. This
experimentation should be conducted on a small
scale utilizing several types of software tools.
This testing may identify difficulties and

problems that previously may have gone
undetected. The realization that these exist
may cause a re-evluation of the SET Development
Plan. The intent here is to advise slow
progression into a SET environment. Changes in
scope and content may be required to properly
tailor the SET plan to the environment. Some of
the project milestones scheduled to be included
in the baseline SET may better be handled at

higher baseline SET levels. This determination
can best be performed after an experimental
stage where organizational SET limitations can

be identified and factored into a strategic
organizational SET Development Plan.

7. Summary

Computer software is expensive to develop and
it is generally not well contolled. This is
largely due to the lack of discipline which
accompanys the development and maintenance
activities associated with software. Software
engineering is the application of a discipline
and is no more than adaptation of the
principles found in other engineering fields,
to computer software so that the capabilities
of computer equipment can be made useful to
man (i. e., not costly and can be
controlled). Establishing a SET within an
organization is not a trivial effort for it
requires involvement by all segments of the
ADP organization and it changes the way people
have been accustom to developing software. To
be encompassing it must consider all stages of
the software life cycle from requirements
definition and analysis through operations and
review. Further, it must apply the SET
elements of standards and guidelines,
procedures, tools, quality assurance and
training to these life cycle stages. Also,
there needs to be a phased plan for
establishing SET baselines in order to
stablize the people and the organization to
minimize disruption of present software
development activities. Last, and most
important, there must be liberal use of
software tools to automate the disciplines
established and to reduce the amount of labor
associated with software development and
maintenance

.

References

1. Boehm, Barry W., Software Engineering - As It

Is, 4th International Conference on Software

Engineering, IEEE Catalog No. 79Ch 1479-5 /C

,

1979.

2. Pressman, Roger S., Software Engineering: A

Practitioner's Approach , McGraw-Hill Book

Company, 1982.

3 . A Software Tools Project: A Means of

Captur ing Technology and Improving
Engineering

, Report OSD-82-101, Office of
Software Development, GSA, February 1982.

4. SOHAR, Inc., Guidelines for the Introduction
of Software Tools into a Programming

Environment , Contract NB79SBCA02 73 , Task #3

National Bureau of Standards, April 1981

5 . Webster's New Collegiate Dictionary , G . & C

.

Merriam Company, 1979.

6 . Federal Information Processing Standards
Publications (FTPS PUBS) , NBS Publications
List 58, U. S. Department of Commerce

National Bureau of Standards, February 1982.

7 . SADT, The Softech Approach to System

Development , Software Technology Co.,

Waltham, Mass., January 1976

8. Teichroew, D., and Hershey, E. A., PSL/PSA:

A Computer-aided Technique for Structured
Documentation and Analysis of Information

Systems , IEEE Trans. Software Eng. SE3 , 2

,

T977

9. Panzl
, D.J., Automatic Software Test Drivers ,

Computer 11,. 1978

10. Yourdon, E. and Constine C, Structure
Design, Printice Hall, Englewood Cliffs, NJ,

1979

11. Howden, William E., Contemporary Software

Development Environments , Communications/ ACM,
May 1982

12. Rochkind, M.J., The Source Code Control
System , IEEE Trans. Software Eng. SE-1 , 4,

1975

13. CASA, CAD/ CAM ,
Society of Manufacturing

Engineers, Library of Congress Catalog Card
Number 80-69006, 1980

14. Krygiel, Annette J., Lessons Learned on the

Road to a Modern Programming Environment
,

Defense Mapping Agency Directorate for

Systems and Techniques, 1980.

149

Characteristics of Software Development Team Structures and
their Impact on Software Development

Anneliese von Mayrhauser

Illinois Institute of Technology
Department of Computer Science

Chicago, XL 60616

Several of the team structures proposed in the literature such as
Chief Programmer Team, Surgical Team, Revised Chief Programmer
Team advocate a separation of tasks for a programming team
resulting in specific roles for the members on the team. An
analysis of these roles with respect to personality and task
requirements is presented which enables a better tailoring of
these team concepts to specific projects with a given staff.
Based on the definitions of the various roles of the different
team structures requirements for a particular position are derived
and suggestions are made how to select the most appropriate team
structure for different types of projects and known people
characteristics. Depending on how well team structure and its

requirements match problem and people characteristics indicators
can be derived pointing out possible problem areas before they

occur so that corrective action can be taken before schedules
and/or budgets are overrun and team members become dissatisfied.

I. Introduction

Almost since the beginning of programming
the problems programmers were working on
were big and complex enough that they had
to organize and work in groups. In the
beginning these groups were highly ad hoc
and unstructured which in many cases
resulted in a lot of entropy and low
quality but costly software. The
programming team as a more structured
form of organization was invented as a

cure for many a chaos oldtimers call war
stories. Pretty soon people realized
that just as a program needs not just
any, but a specific kind of structure,
human interaction between programmers
working on the same problem needs
structure, too. One of the first team
concepts which was created was that of
the Chief Programmer Team (CPT) /BAKE72/,
/MILL83/. Many of the high expectations
this concept generated were soon
shattered, however, because the problems
with software development did not go

away. Other team concepts were born,
most notably among them the Surgical Team
(ST) /BROO75/, the Revised Chief
Programmer Team (RCPT) /MCCL8I/, and
Egoless Programming (EP) /V?EIN71/. The
problems, i.e. cost and schedule
overruns, unreliable software, high
turnover still persisted, in spite of
these new organizational forms and in
spite of structured design, structured
programming, structured testing,
structured walkthroughs - one might be
tempted to say structured anything.

People started investigating the nature
of these structures, for instance how
team structure, most notably reporting
structure, influences program structure
and they realized that indeed it does to
a great extent. On the other hand we
know that most problems have an
indigenous structure, e.g. passes of a
compiler or the hierarchical structure of
many application programs. The question
then becomes whether the team structure
and the structure of the problem are

150

compatible. If they are not,
difficulties are bound to arise, because
following the team structure then goes

against the grain of the the problem
structure and vice versa.

It is important to realize that the need
for structure in the product stems from
the desire to reduce the complexity of
the problem and its solution by
partitioning it into logically
self-contained parts having the simplest
interfaces possible. Likewise the
motivation underlying the definition of
programming team concepts arises from the
need for dividing tasks into
self-contained parts which can then be
assigned to members of the team and
carried out by them v/ith the least need
for further clarification and even
communication with other team members.
Another motivation was specialization.
This is rooted in the belief that a

higher degree of specialization is more
economical, because most people are not
equally talented or skilled in all tasks
during the software development process,
and if we can assign the most highly
skilled person to a task we get better
quality and higher efficiency. This is a

concept which sometimes has been employed
to advantage in the software development
industry as it has in other industries
since Smith in 1776 first advocated the
concept of division of labor /SMIT76/
which was later taken up and further
developed by C. Babbage in 1832 who
emphasized decreased learning time and
increased skill due to repetition as some
of the advantages of specialization
/BABB32/. Later "scientific management"
/TAYL11/ went even further in
specialization leading to the attitude
underlying assembly line vjork. In
programming v;e also have the possibility
of considerable specialization and
standardization concepts which, taken to
the extreme, can lead to assembly line
programming with all the pros and cons
assembly line work is known to have.

Through research in ergonomics and
psychology we have learnt that different
degrees of specialization require
different personality characteristics.
For example, if a very strictly specified
and standardized task is assigned to an

individual with high creativity needs and
needs for high growth and responsibility,
this person will very likely feel bored
and dissatisfied because these needs are
not being met. Considerations like these
lead to another set of factors which have
to be considered: personality traits
which either facilitate or impede a set

of task assignments within a chosen team
structure. Lastly the team has to fit

into the overall organizational
structure, otherwise too much external
friction or too little involvement with

the rest of the organization may result.

The remainder of this paper will review
the most commonly advocated team
structures, i.e. CPT, RCPT, ST, and EP,

and analyze them Vfith respect to

personality requirements and degree of

specialization involved. It will
investigate the types of projects which
are most suited for which team concept
and present a set of guidelines how to

pick the right environment for the right
task.

II. Review of Concepts in Task Analysis
and Design

As pointed out earlier, the advent of

programming team structures was motivated
by the need for specialization. One
improvement hoped for was a decrease in

the overhead effort due to the need for

communication between all people who have
to interface with each other. A second
was that we would no longer need the

"renaissance-man (or woman) of

programming" who had to be able to do all

jobs involved in software development
equally well. Since people often have
very specific specialized talents, this

notion had been rather unrealistic to

begin with. Programming is a complex
task involving a multiplicity of

functions and at times as we know from

software for space flight to software for
automatic shutdowns of nuclear reactors
may be rather critical with a high need
for reliability.

Before selecting a specific team

structure for a software development

effort we have to investigate the
following dimensions for an adequate fit:
1. Degree of formalization to enable
proper management control for quality,
schedule, cost, etc. according to goals
and priorities.
2. Interaction with environment. A

development team develops software for a
user and thus has to relate to the user
or its representative. Furthermore the
team is also part of the organization
within which it is placed.
3. Product structure. This refers to
the final software product as v;ell as the
products of intermediate stages
(requirements, specifications, design,
etc.)

4. Heeds of the individual and
requirements for the individual. Here we
include the degree of clarity of task
assignment, the amount of communication
needed as well as an assessment of
adequate task attributes for the

151

individual's motivational needs. V/e need
to look at what is called task analysis
and design. One of the theories which is

helpful in this context is the Job
Characteristics Theory by Hackman and
Oldham /HACK76/ , /HACK80/. This theory
states that there are 5 different core
job dimensions which influence three
major psychological states, the primary
determinants of motivation. The 5 core
job dimensions are:
« skill variety - how many different
skills does a job require?
* task identity - to which degree is a

job done from beginning to end with a

visible outcome
~ task significance - what impact does
the job have on the environment
* autonomy - freedom and independence to

do the work (schedule and procedures)
* feedback - how much information about
quality of work performance is given
during the work

The 3 major psychological states are:
* Experienced m eani ngf ul ne ss of the work
* Experienced responsibility for work
outcomes
" Knowledge of results

Obviously not everybody needs the same
amount of task significance, autonomy,
feedback, task identity or skill variety.
Hov; much an employee needs in these core
areas in order to experience that he/she
is doing a meaningful job providing
enough responsibility and knowing enough
about the results to be satisfied depends
on that person's growth need. Some
individuals require high scope tasks
whith very high levels in all job
dimensions mentioned, others become
overly stressed when a task requires too
many skills, is too loosely defined (too
much autonomy) or does not provide
instant feedback at the end. Beyond job
characteristics v;e consequently have to
look at the skill level of a person (the
more skills the less stressful a

situation, but an overly skilled person
may get bored) but also at the three
basic work motives:
* task - performing it and becoming more
skillful
* relationships - popularity, interaction
* influence and direction over people
Motivation can be positive or negative
and vary in intensity. VJe have mentioned
task oriented motives, external stimuli.
Internal motivators are personality
traits. It has been said that DP
professionals have a very high motivating
potential due to their high growth need
(/C0UG78/) which is connected to the work
motives task and influence and direction,
but that their social needs
(relationships) are low. This is very
similar to the motivational profile for

engineers (/STEV77/). This usually also
means that their skills in this area are
not as well developed and/or that they
experience a higher stress level when
faced with such tasks than people with
higher relationship needs. Stevens and
Krochmal represent that these personality
traits result in the following "turn-ons"
and "turn-offs" for the individual
(/STEV77/, p. 168):

Turn-ons

:

1. Moving forward on project when he/she
feels it is appropriate, having and
maintaining control.
2. Being able to measure own progress.
3. Having to kee) touch only with
project progress (that affects him/her).
H. Brief, to the point, pragmatic
communication
5. Practical work
6. Personal hoals, in specific project
goal s

.

Turn-offs

:

I. V/aiting for politics, etc. or things
he/she cannot control.
2. Hot knowing how he/she is doing or
how v;ork is progressing
3. Having to keep up with things that
don't directly concern him/her, e.g.
administrative meetings.
^. Policy statements, personnel forms,
regulations.
5. Having to remember feelings,
birthdays and social events.
6. Group concerns and organizational
goal s

.

Although some of these traits shed light
on current problems in software project
management, notably staffing and control
(/THAY82/), and explain the preoccupation
with tools and development methodologies
versus proper management procedures
(/ Z0Ltl82/) , this list of motivators and
demotivators should be regarded as a

checklist for traits to be considered and
to evaluate rather than assuming that
they are alv;ays present to a high degree.
After all individuals do differ. If we
v.'ant to select the proper team structure
for a software developme.it effort vie have
to look at these factors to define tasks
vjith the proper attributes for the
members involved so that high internal
work motivation, high quality work
performance, high v;ork satisfaction and
low absenteeism and turnover is

facilitated as much as possible. With
these thoughts in mind let us now turn to
a review of the individual team
structures.

III. The Chief Programmer Team (CPT)

The CPT provides a high degree of
formalization within a strict
organizational structure, clear

152

leadership through the Chief and the
possibility for specialization through
functional separation. The reporting
structure within the team is explicitly
defined, as are the relationships between
team members. Some functions are
explicitly defined. The rigid structure
facilitates management control,
visibility of product and personel,
communication and product structure. It
also tries to guarantee continuity by
ensuring that at least two team members,
the Chief and the Backup programmer are
familiar with every aspect of the
project. The nucleus of the CPT involves
the following individuals:
1. Two technical experts, the Chief
Programmer and the Backup Programmer.
While the Chief Programmer is the
undisputed technical leader who is
responsible for the team's success, who
develops all documents of the early
phases (requirements, specifications,
design), who codes and tests the critical
parts of the system and (closely) guides
and supervises the other team members,
the Backup Programmer although he does
not have the decision making power of the
Chief Programer, acts as a backup leader
and peer to him/her. As such he has to
be totally familiar with the project in
order to be able to take over leadership
when necessary and to participate in all
important technical decisions. He is
responsible for the test plan and also
usually does research work for the Chief
Programmer. Obviously these two
functions require considerable expertise
in software development, the Chief
Programmer also has to have sound
management experience. The other
functions do not require technical and
managerial expertise at this high a

degree.
2. The clerical assistant or programming
secretary makes sure that the documents
are current and visible and maintains
libraries, test data, test results and
project documentation.
3. The programmers are junior personel
who implement the code according to the
Chief Programmer's directives.
Optionally there may be a project
administrator who reports to the Chief
Programmer and takes over some of the
administrative tasks.

When we look at the four team dimensions,
we can see that this team concept rates
very high in terms of dimension 1 , degree
of formalization. Provided that the
Chief Programmer does his/her job
correctly there is adequate possibility
for management control for quality,
schedule, cost according to priorities
and goals the Chief Programmer sets for
the team. No conflicts arise due to
ambiguous reporting structure, or
conflicting goals set by several people.

The team is relying for interaction with
its environment wholly on the chief
programmer. His responsibility is to
talk to the users as vjell as to represent
the team to the rest of the organization.
Since the team structure is hierarchical
the product structure tends to be as
v;ell. InterDiediate deliverables such as
requirements, specifications tend to be
uniform reflecting one basic philosophy,
since they are the work of one individual
(in collaboration with the Backup
leader). Often they show hierarchical
structure, because they already reflect
the division of labor for the Junior
Programmers. This role definition
reflects the need for few, gifted
individuals during the early phases of
software development (/MYER76/). When we
look at the requirements for the
individual team members there are several
classes: Highly qualified (both
technically and managerially) individuals
for the positions of Chief Programmer and
Backup Programmer. They have to possess
good people skills and be adequate
communicators in order to relate well
enough to the user (representative) to
understand what the user wants. Second
they have to be managers who can plan and
control, set goals and priorities and
assign tasks, evaluate progress and
report on progress to the higher
management level(s). Third they have to
be technical experts in the field of
application. They have to be able to
decide v/hich aspects need to be
investigated for a feasibility study,
what the software's functions will be,
what the human/machine interface will
look like, as well as being able to make
the major design decisions. The Junior
Programmers on the other hand do not have
to be quite so universally gifted.
Depending on the level of detail of the

design specification they actually may

have a very structured, specialized
coding task to do with little freedom or

room for creativity. Once the work is

assigned and specified there is little
need for communication and due to the

very technical level at which the Junior
Programmers work they do not have to have
very outstanding communication skills nor

the skills involved in requirements
analysis or specification writing.
Management skills are obviously not

needed by them. The programming
secretary has to possess skills in VJord

Processing, Technical Writing, some
programming experience as well as the
ability to communicate with team members
about such issues as change control and

document preparation.

From the explanations so far, it is quite
obvious that two of the people in this
group have to possess rather high level

153

skills in technical and management areas,
the Chief programmer and the Backup
programmer. The other roles are more
specialized. The Junior Programmers are
only involved in the implementation
phases. The programming secretary
fulfills the role of a communicator and
standards bearer, again aa specialized
function. The adminstrati ve assistant
is, although involved throughout the life
cycle, assigned administrative tasks
only. If we try to rate these roles in
terms of their core job dimensions, then
the CP has the highest ratings in all 5

dimensions. This can be very positive
for an individual v/ith high needs in all
these areas, but can lead to
over-activation through, stress and to
role-overload with the resulting decrease
in job satisfaction. The CP also has to
be fairly well balanced in his skills and
v/ork motivation in all three areas:
task, relationships, and
influence/direction. If we have an
overemphasis on one or a deficiency in
another there may be problems. This is
clearly pointed out in a critique of the
concept (/MCCL81/) which mentions the
dangers of (a) expecting too much from
the CP, the "Superprogrammer " , or (b)
having a powerhungry primadonna at the
helm (imbalance in the motivational
area). Case (a) can be dealt with
through task redesign by delegating some
of the responsibilities, the most obvious
being along major skill boundaries v?hich
span the entire software lifecycle:
managerial, administrative, and
technical. Another possibility is to do
this according to phases: requirements
and specifications versus design and
implementation. Since a considerable
amount of communication is involved in
either solution it is not a very good
idea to separate the functions strictly
along one or the other of these
dimensions. It leads to too much
communication effort between the
different "commands" as responsibilities
are shifted, unless very strict standards
are imposed which depending on the
personalities involved may not give them
enough of a sense of autonomy to keep
them satisfied.

The second danger McClure points out is
the lack of checks for the CP's ego.
This can basically be dealt with through
a similar approach: built-in delegation
of authority to make decisions, either
rotating decision making power through
different phases or splitting it
according to task areas: administrative,
managerial, technical.

The next question is to whom are these
responsibilities delegated? An obvious
first solution is to the Backup

Programmer. He has to have all the
qualifications of the CP, but so far has
no guaranteed authority unless
voluntarily delegated from the CP. Thus
the team concept creates a situation
v/hich can create high levels of negative
motivation due to a low ranking in the
job dimension autonomy. This combined
with high motivation levels in the area
influence/direction can lead to ^ potent
and lethal situation: why am I working
so hard when I do not make a difference
anyway? I knov/ as much as the CP, but
nobody does what I think should be done.
VJhy bother? In other words the result of
this structure can be a marked lack of
enthusiasm and resulting lower
performance. It should be noted that
this neeo not occur, if the relationship
skills (and motivation) of the CP are
well developed or if the autonomy needs
of the BP are not very high, but not
everybody has the talents and personality
traits to be a good "vice president"
whose role is to know it all, but to stay
in the background until something
happens

.

The Junior Programmers may also lack
enthusiasm when their work is
"overspecif ied" for their skills and
their needs. A JP may be very happy and
content with a precise low level design
specification for his/her work at first,
but resent the lack of involvement in
design decisions, the lack of
meaningf ulness in his work because he is
not given an adequate picture of the
v/hole product, and the lack of
communication for his relationship needs
at some later time. Again, this may but
need not happen, especially if the CP
realizes the growth needs of his staff
and delegates this part of the work vjhen

a JP is ready for it. Unfortunately the
CPT does not give guidelines for this.
It does provide a good learning
environment for JPs v;hen the CP and the
BP are actively pursuing making it a good
one. Again, there are no guidelines.
They have to include sample task
assignments for all levels of JPs, since
obviously a transition from JP to BP or

even CP is only going to be successful,
if the JP has been trained in all the
areas the CP has to cover. This not only
includes the lov; communication technical
tasks, but also the high communication
technical tasks such as developing user
requirements and specifications. It

spans all the technical, administrative
and managerial aspects of the entire
software development lifecycle. Unless a

JP is trained in all of these, he may not
be able to develop his/her talents as he
needs to (remember, they are known to

have high growth needs), nor will he/she
be able to prepare adequately for

154

beconing a BP or a CP. Suggested
additional guidelines for training are:
* evaluate growth need and motivations
(what do they like to do)
* evaluate major skill areas (what are
they capable of or show promise in)
* involve JP to skill level in all of
these areas (let JP do some of the work
he wants to and can do)
* reevaluate additional needs and
motivations (take stock and give feedback
to JP)
s add responsibilities in these areas to
help the JP grow.

Obviously this needs tiiae and this time
has to be built into the schedule. It is
fallacious to think that learning takes
no time on the job. It does, for the
teacher as well as for the student. The
idea of creating a good learning
environment had been one of the goals of
the CPT, but the definition of roles was
too static and did not explain adequately
the progress of the JP and how it should
be dealt with within the team structure.
Additional responsibilities should be
added in all areas of the tasks involved,
on the administrative, managerial and the
technical level with the objective to
expose the JP over time to all the
aspects of work of the CP which nov; even
includes teaching explicitly (another
responsibility which can be delegated in
degrees). It is also suggested that the
JPs are familiarized with the skills of
the programming secretary and the project
administrator, if they are motivated to
learn these skills.

IV, The Surgical Team (ST)

This team structure is very similar to
the CPT. Like the CPT it is based on the
concept of specialization, but unlike the
CPT which enables specialization to the
extent of assembly line programming for
the JPs with the resulting lov/ level of
task identity, task significance,
autonomy and possibly feedback, the
Surgical Team (ST) specializes such that
task identity and task significance still
rate high. This is achieved through
defining roles for the following areas of
specialization: technical,
administrative, editing and clerical. In
particular the roles of the team members
are defined as follows:
1 . Surgeon
He is the technical manager much the same
as the CP. One significant difference in
the ST is that a lot more administrative
tasks are delegated to the administrator
(who reports to the Surgeon). This
narrows the skill variety dimension
somewhat, which had been a cause for
possible role overload in the CPT.

2. Copilot
The Copilot's responsibilities in the
surgical team are the same as the backup
programmer's in the CPT. In addition,
the Copilot is responsible for
interfacing with other teams. This
additional function enhances the role of
the copilot, takes some of the workload
off the Surgeon and gives the copilot
some visibility which serves to increase
the sense of influence and importance
which this role lacks otherwise.
3 . Admi ni str ator
The administrator is responsible for
personel, budget and procurement which
includes space, computer time, technical
tools, and also interfaces vfith

management. This role requires limited
technical expertise, but a good deal of
administrative knowledge and qualities,
negotiating and planning skills.
4. Editor
The responsibilities of this function are
to generate all project documentation.
This requires good technical writing
skills and communication skills v;ith the
other technical members of the team.
5 . Secretaries
One or tv;o may be necessary to support
the tasks of the administrator and the
editor. They are clerical support
personnel which need typing and
communicative skills.
6. Programming clerk
This role is the same as the programming
secretary of the CPT with the same
responsibilities except for those which
now have been assigned to the Editor.
7. Toolsmith
This is a new role specializing in
providing and keeping operational all
necessary technical tools such as
utilities, libraries, debuggers, etc.
Part of this function vjas unspecified in
the previous structure and probably
assigned to one or the other of the JPs
on an ad hoc basis, part of it was the
responsibility of the programming
secretary. This role requires the skills
of a good systems programmer as v;ell as

some communication skills, because even
if the editor is responsible for
generating the documentation, the
toolsmith has to communicate to him/her
what needs to go into them.
8. Tester
The function of the tester includes the
implementation of the test plan (which is
provided by the Surgeon), creating test
data, test drivers, debug procedures and
the like. It should also include
evaluation of tests and feedback to the
group hovj well they are doing in their
implementation efforts. Maybe included
could be data collection for a software
metrics database v;hich can be used for
empirically founded cost and schedule
estimates as v/ell as quality predictions.

155

For more detail see /DEMA83/. The
function of the tester is one which does
not require the constructive ability of
implementing a coded solution, rather
he/she needs a "destructive" talent to be
able to and to enjoy finding errors and
knowing how to go about finding them, and
as many of them as possible. A patient,
perceptive, analytic detail oriented mind
is needed for this job. It is not enough
to find out that there is something
wrong, but also where and what it is.

These talents are not the same as those
of a good designer or of a reliable
coder

.

9. Language Lawyer
This individual is the expert on
programming languages and knows the most
efficient ways to implement the design
specifications as well structured code.
This definition specifies the function of
coding. Again this is a very strictly
defined function with a high degree of
specialization.

The motives underlying this team
structure are to provide a formal
structure which enables mangement control
for quality, schedule, cost according to
goals and priorities. This goal is
obviously met very nicely. As the CP in
the CPT, the Surgeon in the ST has the
power to exercise as much influence and
direction as he/she sees fit. The role
definitions are even more explicit, and
narrow for some, than in the previous
team concept. Interaction with the
environment is emphasized through the
role of the administrator (to
management), the co-pilot (to other
teams), the editor (reject documentation)
and the Surgeon who is still responsible
for user interaction. Since the
administrator reports to the Surgeon,
interfacing with management may have its
problems, because the administrator
reporting to the Surgeon may not have
adequate negotiating power. Product
structure will again reflect the
cooperation between Surgeon and Copilot
in the early phases and result in the
hierarchical structure we have seen in
the CPT for the very same reasons. We
can expect uniform project and product
documents, since they are written by the
same person. V/hen we look at the needs
and requirements of the individual, v/e

can clearly see a reduction in skill
variety for all functions involved. This
is one of the declared goals of the ST.
It has also been pointed out that this
can pose motivational difficulties, if
one of the specialized tasks is assigned
to a person who needs a higher degree of
skill variety. Task identity may also be
a problem, because the specialized skills
of the different functions may not be
needed during the entire life cycle and

this subtracts from the sense of being
involved in a job (i.e. developing a
particular piece of software) from
beginning to end. Task significance is
very high due to the idea to give team
members functions v;hich indicate that
they are experts in their ovjn right:
High task significance is supposed to
increase team morale and improve
individual recognition. With the
specialization the way it is proposed
here comes a considerable degree of
autonomy in the area of specialization as
far as procedures go, but not necessarily
with respect to schedule. The degree of
communication and cooperation these
specialized roles require prevents this.
VJe also have functions defined which may
not be perceived as having enough
autonomy which actually may be due to
overspecialization (not enough skill
variety). For example the language
lawyer may feel like a coding machine and
the toolsmith may not perceive enough
connection to the goals of the rest of
the team. Feedback is generally good in
this structure due to the need to use
each other's vjork. The major potential
difficulties in this structure arise due
to limited skill variety which may be
experienced by the team member as work
which is not meaningful enough. The
roles of the team members stress
complementary skills and thus are
enhanced by complementary work motives.
The more technical oriented roles require
task motivation and depending on the
degree of interaction with the
environment relationship and/or
influence/direction motivation (in the
case of the Surgeon). The Surgeon and
the Copilot are shari'ng some of the work
more equally now, but the Surgeon may
still experience role overload and over
activation due to the variety of skills
required from him/her. And the degree of
autonomy combined with a high
motivational level in the
influence/direction area may pose
problems for the Copilot.

The goal of a good learning environment
is remarkably absent from this team
definition. And upon investigating the
potential for growth and development of
the team members it is clear from the
definition what that means: the team
members are recognized as experts in
their respective area and that is it.
They are supposedly experts. In other
words, the concept of a junior member
does not come up. On the other hand Dp
professionals have high grov;th needs
(/COUG78/, /FITZ78/), they tend to want
to learn new things and tend to get
bored, if they have to do the same tasks
over and over. One solution is to train

156

thee outside for new and now ciore complex
tasks IH THEIR AREA OF SPECIALIZATION or,
if the function requires more than one
person, to add a trainee who during
development can learn under the
supervision of the expert. Another issue
then is the question how to train a

Copilot or a Surgeon. Since all the
other roles are so specialized, they do
not address the training in the
multiplicity of skills required from the
Surgeon. The only remedy here is to
rotate the prospective Copilot and or
Surgeon through the different functions
on the team. For some he may only have
to serve as an apprentice, for others he
may have to acquire skills high enough
for the expert position. This ensures
that there is a promotional path v;ithin a

function as well as beyond functions.
Adequate promotional paths are considered
prime motivators for continued job
satisfaction as they provide a pattern
for fulfilling growth needs. The concept
of apprentices which was added here also
serves to increase the sense of autonomy,
of being in control for those roles v/hich
may be perceived as having very little
otherwise (e.g. Copilot, Language
Lawyer)

.

This team concept should work well, when
there are two v/ell rounded and highly
qualified individuals available who can
adequately fulfill the roles of Surgeon
and Copilot whereas the rest of the team
members have specialized interests and
task motivations in the areas defined by
the functions above. They have to
possess a degree of sophistication
commensurate with the complexity of the
project. People with a need for high
skill variety are not expected to
function as well in this type of
structure in roles other than Surgeon or
Copilot

.

V. Revised Chief Programmer Team (RCPT)

This team concept is a further
development of the CPT by HcClure
(/t!CCL8l/) which tries to remedy the
following perceived shortcomings of the
CPT :

* role overload of CP
* inadequate level of autonomy of BP
* environment not open and sharing enough
* project too dependent on individual
team members (i.e. CP)
* not enough visibility for team to the
outside
* inadequate degree of formalization of
individual's responsibilities
* CP has too much power
She tries to overcome these shortcomings
mainly by redesigning the tasks and
responsibilities of the CP and the BP,
reducing the areas of responsibilities of

the CP by creating two new positions,
that of the user liaison and that of the
administrator who takes over all the
administrative tasks of the CP with the
administrative power (the CP now reports
to the adminstrator) . The user liaison
also takes over some of the
responsibilities of the CP including all
direct dealings with the user. The
coleader's role is enhanced through
additional areas of prime
responsibilities notably representation
of the team to the outside and
coordination of project turnover with the
maintenance group. He also nov; has the
responsibility of developing the test
plan. The CP only reviews it.

If we compare this structure to the
previous two, then we can clearly see
that some of the problems of the CPT and
the ST have been overcome. VJork and
recognition is more evenly spread. At
the same time there is enough structure
in this team to enable adequate
management control. As a matter of fact
the tasks are more precisely defined in
this team concept for the roles of
Surgeon/CP and Copilot/BP than in the
other concepts. Interaction with the
environment is a lot more emphasized than
before by creating two new positions, the
administrator (interface to management)
and the user liaison (interface to the
user) and explicitly mentioning the need
for communication to other teams.
Tending to those needs is the express
responsibility of the Coleader.
Maintenance preparation is another issue
which is not explicitly addressed in the
other team structures, but here it is the
Coleader's job. The team, since it is
not as strictly hierarchically structured
should adapt to a wide variety of posible
product structures. Through the primary
involvement of mainly three people, the
leader, coleader and the user liaison,
one can still expect a fairly unified
product developed in a consistent design
philosophy. The function of user liaison
ensures that the product will actually
meet the user's needs. Looking at the
requirements and needs of the individual,
we see that the roles of the four nucleus
positions no longer require the same
skill variety as in the CPT or the ST.
As a matter of fact the four positions of
administrator, project leader, coleader
and user liaison are created by follov7ing
the concept of division of labor and
specialization. All technical tasks are
the resonsibility of the project leader
and coleader, the administrator only
handles managerial and administrative
functions and the user liaison
specializes in user/developer
communication. For all these positions
this means a reduction of skill variety

157

compared to the CPT. The ST already had
made a step into this direction, but
mostly for the roles other than Surgeon
and Copilot. Thus the ST and the RCPT
differ markedly in the direction of
specialization: The RCPT reduces skill
variety for the positions most critical
to the first phases of the softv;are
development lifecycle, whereas the ST
specializes the programmer positions, but
leaves the others vjith a much higher
degree of skill variety. The RCPT
mentions similar functions as the ST
does, but it does not mandate vjhether
they should be done by a "specialist" or
by several people together v,'ith a

resulting higher skill variety for
everybody. This obviously increases this
concept's potential for skill variety as
v;ell as task identity (which is true for
the four nucleus positions anyvjay). Task
significance is higher in this concept
than in the previous ones, provided that
the programmers are not assigned to the
specialist roles of the ST. The RCPT
r!:ives the project leader considerably
less autonomy in the administrative
aspects of the v.'ork, but still leaves
freedom for schedules and procedures.
Feedback between the members of the
nucleus is expected to be fairly high,
since they work on a preliminary product
together (requirements, design), before
the final product is ready for release.
The amount of feedback for the
programmers is uncertain and depends on
the actual work assignments and control
mechanisms chosen which are left
unspecified in this concept. As a result
this concept has a good potential to
structure work such that it is
experienced as meaningful, that the team
members feel they are responsible for
work outcomes and possibly that they know
about the results of their effort. To
ensure this, it is suggested that someone
from the development team is involved in
product maintenance once the software has
been delivered. Why that is supposed to
give feedback to ALL members of the
development team is unclear, however.

Due to the degree of specialization of
the members of the nucleus we need people
with different areas of skills and
motivation, managerial skills and
influence/direction motivation as well as
relationship motivation for the
administrator. Primarily task motivation
and some relationship motivation is
needed for the leader and the coleader,
relationship and task motivation for the
user liaison, and task motivation for the
programmers. The skills required are
managerial and administrative for the
administrator, technical and
communication skills for the project
leader, and the coleader, and a great

deal of communication and negotiation
skills and some technical knowledge for
the user liaison, technical skills for
the programmers. If we have people v;ith

these qualifications we can use the RCPT
to advantage.

Once again, this team concept does not
mention training and professional grovjth
as part of the concept. It is possible
hovjever, to use the suggestions made for
the previous tv/o team: structures. Of all
the team structures reviewed this seems
to be the most balanced one (consequently
suited for the most balanced set of
people) .

VI. Egoless Programming Team (EPT)

This is the last team concept to be

reviewed. It works on the basis of free
cooperation with no specific roles or
reporting structure v.'ithin the team.
Everybody is responsible for everything.
The team works towards a common team, goal
in a totally democratic work environment.
If there is a leader or if there are
assigned rules, they have been agreed
upon by the majority of the team members
and are only assigned "until further
notice" when a subsequent vote changes
the assignments. Thus team leadership
may rotate. So can function. The idea
behind this concept is to give full
autonomy to the members of the team. In
other words there is no formalization of
team structure which enables management
control. It is thought to reinforce team
spirit similar to the Volvo experiments
(/GYLL77/, /FOY76/). This nonhostile
environment is hoped to be an excellent
learning environment because everybody is
involved in everything. One other reason
for advocating this team structure is,
that it is dangerous and unproductive to
allov; programmers to "sit on their code",
because it causes them to regard it as
extensions of their egos, resulting in
tunnel vision and more undiscovered bugs.
Also, since everybody is involved
equally, the result should be a better
integrated system. Code exchange is

mandated as an important part of the
development with the hope of having a

more visible, better readable and more
reliable system. As mentioned before,
this concept does not provide adequate
management control. This concept, also
called "autonomous v/ork groups", may have
v;orked in auto production where tasks are
well defined and repetitive, but the
developing of softv/are does not have
these properties, thus increasing the
complexity of the work significantly.
Software developments also tend to take
much longer than putting a car together.

158

The democratic approach often proves to
be much too loose for management control,
not only because the performance of the
individual cannot be evaluated easily,
but also because, since nobody has the
decision making pov/er to settle disputes
(over design decisions for example), the
whole team can turn into a debating club
where no vjork gets done. Decision making
may be postponed indefinitely. During a
crisis vjhen leadership is needed, it is
often hard to find somebody who is
v/illing to take it over.

Visibility of the development team to the
outside is another problem. There is no
one person to whom the user should talk
to, there is no one person who is in
charge of communicating with other teams
or with management. This can be very
confusing and frustrating for the people
involved. Product structure again tends
to parallel the (informal) team structure
which now depends on how team members
relate to each other. The earlier
deliverables such as requirements and
design specifications probably will not
be quite as uniform, since a lot more
people will be involved and a lot more
different opinions need to be reconciled
and integrated.

The individuals in a team structure like
this need to be able to deal with high
skill variety or be able to negotiate a
task commensurate with their inclinations
and talents. Otherv7ise they may end up
confused, overstressed and as a result
experience motivational problems. Since
everybody works very closely together and
is involved in every aspect of the
software development process, task
identity and task significance are high.
Autonomy also is rather high to the point
that team members may become disoriented,
confused, or unmotivated, because "nobody
is telling them what to do". Feedback is
built into the system through working so
closely v/ith others. As a result this
team concept lends itself to have its
members experience the meaningf ulness of
their work and knowledge of the results.
It tends to have problems in the area of
perceived responsibility for work
outcomes of the individual. People with
strong task motivation may be very happy
in this environment, but they may also
experience a lot of frustration when they
feel that they know best, but others
don't agree and they lack the
relationship motivation and the
negotiating skills to deal with the
situation. All members have to be
relationship motivated to a degree. If
there are too many people who have
significant influence/direction
motivation, they may all strive for being
the group appointed leader and severe

conflicts may result. This concept seems
to work best vjhen the group is small,
because there are less people to
communicate and negotiate with, v/hen the
members acknowledge each other as equals,
and when they have enough expertise and
are goal oriented enough to be able to
set and achieve their ovjn objectives.

The claim that this team concept provides
an excellent learning environment is only
partially justified. A "new kid on the
block" may in the beginning pose more of
a problem than be an asset. Often groups
"isolate" unproductive members by giving
them tasks which do not have a lot of
impact on the group's success, thus
pushing the member to the periphery.
This avoids the extra teaching and
communication effort and reduces the risk
for the rest of the team. It does not
motivate the junior person a v/hole lot
though (low task significance). A better
idea is to have a mentor for the trainee
or convince the group that besides
developing software they ALSO have the
goal of educating the junior member and
making this task just as much a team
objective as software development itself.
To achieve this there must be a clear
incentive (rev;ard) for the team, e.g. a

mentor reward (competition) and/or a

monetary incentive for the group, based
on the relative learning achievement of
the trainee. Teaching may be done by
rotating mentorship, so that everybody
gets a chance to be the teacher.

In conclusion, the egoless programming
team has some advantages over the other
teams in terms of autonomy for the
members, but due to its poor management
controls and high need for interaction
and com.munication, it should only be used
for very small teams where the people
involved relate well to each other. This
obviously limits the size of the. project
which can be done considerably. It is a

disastrous idea to use this concept v;ith

people who need close supervision or are
not able to set realistic goals for
th em selves.

VII. Conclusion

This paper attempted to shov; how the most
commonly advocated team structures can be
used, what their characteristics are,
v;here their advantages and disadvantages
lie and how to select a proper team
structure based on work and people
characteristics. Some of the answers
this paper tried to provide have been
adapted from methods for task design (a

good textbook is /GRIF82/). Because of
space limitations, the problem of task
and eraplo ' evaluation was dealt v/ith in
a general v;ay. However, there are job

159

analysis questionnaires and core job
dimension analysis tools available (see
-ehapter 5 in /GP1IF82/) as v;ell as methods
for measuring motivation levels in the
areas of task, relationship and
influence/direction. Specific evaluation
instruments for members of a softi^are
development team are basically
nonexistent. However, the more general
instruments are quite suitable for this
purpose if one is willing to accept that
it vjill require somewhat more effort to
use it than if one ahd a more specialized
evaluation instrument. At this time no
experimental results are known to the
author which evaluate projects, their
strenghts and v/eakn esses as a function of
team structure and team mem.ber
characteristics and provide a statistical
basis for choosing team structures. It
is hoped that through joint efforts with
industry a data base like this can be
developed which can further broaden our
understanding of softvjare development as
a team effort.

References

/BABB32/ Babbage, C, "On the Economy of
liachinery and Manufactures", Charles
Knight, London, 1832.

/EAKE72/ Baker, Mills, H., "Chief
Programmer Teams", IBM Systems
Journal 11, (1), 1972, p. 56-73.

/BR0075/ Brooks, F. "The Mythical Han
Month", Addison-Uesley , 1975.

/COUG78/ Couger, J.D., Zawacki, R.A.,
"Uhat Motivates DP Professionals?",
Datamation, Sept. 1978, p.
116-123.

/DEMA83/ DeMarco, T. , "Controlling
Software Projects - Management,
Measurement and Estimation", Yourdon
Press, 1983.

/FITZ78/ Fitz-enz, J., "Uho is the DP
Professional?", Datamation, Sept.
1 978, p. 1 25-128.

/FOY76/ Foy, N. , Gadon, H. , "Worker
Participation: Contrasts in Three
Countries", Harvard Business Review,
May-June 1976, p. 71-83.

/GRIF82/ Griffin, R.U., "Task Design -

An Integrative Approach", Scott
Foresman, 1982.

/GYLL77/ Gyllenhammar
, P.G., "People at

Work", Addi son-V/esl ey , 1 977.
Addi son-V,'esl ey , 1 975.

/HACK76/ Hackman, J.R., Oldham, G.R,,
"Motivation through the Design of
Work", Organizational Behavior and
Human Performance 16, 1976, p.
250-279.

/HACK80/ Hackman, J.R., Oldham, G.R.,
"VJork Redesign", Addi son-VJesl ey

,

1 980.

/MCCL/ McClure, C, "Managing Software
Development and Maintenance", Van
Nostrand Reinhold, 1 981

.

/MILL83/ Mills, H.,
Productivity", Little,
1 983 .

"Software
Brown & CO.,

/MYER76/ Myers, G. "Software
Reliability: Principles and
Practices", Wiley, 1976.

/SMIT76/ Smith, A., "An Inquiry into the
Nature and Causes of the Wealth of
Nations", Modern Library, New York,
1936. Originally published in 1776.

/STEV77/ Stevens, H.P., Krochmal,
"Engineering Motivators

377
Electronics

, _ , J. J.
,

"Engineering Motivators and
Demotivators", IEEE 1977 Natl.
Aerospace and
Conference, p. 162-168.

/TAYL11/ Taylor, F.W., "The Principles
of Scientific Management", Harper
and Row, 1911.

/THAY82/ Thayer, R.H.,
"Validating Solutions
Problems in Software
Project Management",
August 1982, p. 65-77.

et al .

,

to Major
Engineering

Computer

,

/WEIN71/ Weinberg, G.M., "The Psychology
of Computer Programming", Van
Nostrand Reinhold, 1971.

/Z0Ln82/ Zolnowski, J.C., Ting, P.D.,
"An Insider's Survey on Software
Development", 6th Intl. Conf. on
Software Engineering, Tokyo, Japan,
Sept. 14-16, 1982.

160

SESSION OVERVIEW

MANAGING END USER COMPUTING

Thomas N. Pyke, Jr.

National Bureau of Standards

Washington, D. C. 20234

We are now in an environment in which we observe the proliferation of small

computers due to their rapidly decreasing cost along with continually increasing

capabilities. Fueled by vendor and media promises, direct access to computing

resources by end users, including use of micros, is becoming widespread. Many

end users are requesting or even demanding increased and improved access and

relevant support from management. Many in management are encouraged by these

developments and would like to further them, but are increasingly aware that

there is a growing need to impose appropriate organizational constraints.

The objective of this session is to explore and summarize the issues and

motivations in implementing an integrated approach to supporting end user direct

access to computing resources. This is done by providing views from three

perspectives: historical, user, and management.

The first talk will present a historical view of the evolving information

resource center (IRC) concept, provide a set of working definitions, and give

focus to the central themes involved. It will explore the objectives that may

be achieved by means of an IRC program and identify those who are likely to be

the driving forces behind and advocates of such efforts. The talk distinguishes

between various types of support, including handholding of end users of main-

frame services and establishing microcomputer support centers. It reports on

activities underway to integrate such support and implement the various components

of such an IRC program. It will also distinguish between the "helping" vs

"controlling" nature associated with an IRC.

161

The second presentation, "Information Center - The User's Answer to the .

Computer Room," will look at support structures from a user's point of view.

As the end users sense the potential of the new technology in improving their

individual performance and productivity, what types of help in realizing this

potential are they seeking? What kinds of computing resources do they need?

What help do they need in identifying and evaluating the information

alternatives available to them? These and other questions will be explored.

The final presentation "Support Structures: A Management Tool," will advance a

management perspective on support structures. The view of these structures as a

vehicle by which management can foster individual productivity on an incentive

basis and at the same time influence the direction of their use will be examined.

The role of support structures to ensure adherence to organizational constraints

(which address such considerations as data integrity, auditability, and security)

will also be explored.

162

INFORMATION CENTERS: THE USER'S ANSWER TO THE COMPUTER ROOM

Esther P. GeorgatOb

Veterans Administration
Office of Data Management and Telecommunications

Washington, D.C. 20420

ABSTRACT: New "Information Centers," which utilize and promote personal com-
puter use, have gained popularity in many large businesses and are now finding
their way into the Federal Government. Their most interesting feature is that
the users operate the equipment themselves. While the Centers aren't capable
of doing the large jobs currently handled by the typical DP department, they
are introducing the user to personal computing and to more advanced data pro-
cessing theories. This paper briefly describes the Information Center concept
and discusses the establishment of a Center at the Veterans Administration in

Washington, D.C.

KEY WORDS: Information Center, DP department, personal computers, users, data
bases, user needs, Implementation Plan, work environment. Information Technol-
ogy Center (ITC), staffing, publicity, stand-alone, data manipulation, net-
working, testing, modifications, office automation

1. Introduction

About a year ago, COMPUTERWORLD ran a car-
toon which illustrated how the role of the user

has evolved through the sixties, seventies, and
eighties. It depicted the DP department in the

sixties as monarch over the entire computer
environment. The user was little more than a

faithful subject. But in the eighties, or so

the cartoon predicts, the user will be the one

holding the keys to the computer room—and the

DP department will be pretty much left out in

the cold.

Whether this prediction ever comes to pass
is arguable at best. But without question, the

user's growing involvement in his or her com-
puter needs is a trend that is here to stay.

In fact, the smart DP departments have already
begun abdicating their absolute authority in

favor of more democratic arrangements.

One of the most successful of these

arrangements involves the operation of a self-

contained unit called an "Information Center."
While its introduction can't be heralded as the

final solution, it does seem to be an idea
whose time has come.

2. The Concept

An Information Center is an independent
organization that uses the personal computer as

its primary tool. While it normally operates
within the DP department, many users are estab-
lishing Centers within their own organizations—
especially when the DP department has been slow
to act.

The Center's main purpose is to provide the

user with a means to accomplish smaller jobs not

easily handled by the organization's huge com-

puter systems. Its strength lies in its ability
to produce a product quickly and easily, and to

deliver results that almost guarantee user sat-
isfaction. This third seemingly impossible task

can be accomplished because the Information Cen-

ter is unique in one important way: The actual
work is done by the users themselves.

A second important purpose of the Informa-

tion Center is to provide a systematic approach
to the growing arena of personal computing. The

very nature of the Information Center's imposed
structure allows users to purchase their own

equipment, but at the same time keeps them
within a prescribed structure. This allows for

163

networking capabilities and consistency when
outside services are used or new applications
are added. In essence, it puts the DP depart-
ment in a guidance role rather than an oper-
ating one.

Finally,, so as not to forget the user's
current needs, the concept still leaves the DP
department with its large global systems,

entities that meet needs not possible with
personal computers.

3. The Approach

While the concept of the Information Cen-

ter is relatively new to the government, it is

not new to business or academia. Corporations
have used the concept for several years to bol-
ster productivity and reduce applications back-
logs. Colleges and universities have employed
the concept even longer, having begun making
their data processing resources available to

students back in the sixties. '-

The success these organizations have
achieved has not only verified the validity
of the concept, it has also helped define the

approaches Centers are likely to follow.

Generally speaking. Information Centers
fall into two basic categories: The first kind

provides users with access to the organization's
data bases; the second uses several types of

personal computers as stand-alone units. Both,

however, have the same responsibilities:

o Establishing the user-friendly environment
required of the concept

o Selecting whatever software tools are
appropriate

o Ensuring that the proper data is acces-
sible and secure

o Acting as consultants to the user com-
munity on an as-needed basis^

In addition to these responsibilities, most
Information Centers have taken on the task of

training the users. This is not only something
of a necessity, it is a good way of establishing
good rapport between the DP department and the

user.

Most Centers also operate a library of

trade publications, software packages, and
vendor literature. Others provide space and
plug-ins for users who want hands-on access to

vendor systems they are evaluating for procure-
ment. Still others provide areas where vendors
can display and demonstrate their products.

1 "The New Info Centers," DATAMATION
(August 1983), p. 30

2 "System Development Mythology,"
DATAMATION (August 1983), p. 276

4. The Implementation

As a means of discussing how a Federal
agency might go about implementing an Informa-
tion Center, it was suggested that we describe
our own experiences in establishing a Center at

the Veterans Administration in Washington, D.C.

Since there are only a few examples of an

agency setting up an Information Center without
the help of outside consultants, we hope this

documentation will prove useful to our Federal
associates who are considering a Center of

their own.

4.1 Inception

The decision to establish a VA Information
Center was made initially in February 1982. It

was decided that it should be located within
the DP department, in this case, the Office of

Data Management and Telecommunications. The

physical location of the Center was to be the

VA's Central Office in downtown Washington.

4.2 User Needs

Regardless of the agency function, every
Information Center must lay the user's needs as

its functional cornerstone. These needs deter-
mine how the Center should be constructed, in

terms of both equipment and size.

The needs of our users called for a combin
ation of the two types of Centers discussed in

Section 3. That is, access to agency data base
was required, in addition to the services only
stand-alone systems could provide. Equipment

was thus procured that provided for data base
access, computer graphics and statistical model
ling, the display of plotted information, and
interactive processing of data.

As for size, the Center not only had to

house the equipment, it also had to be large

enough to meet other user needs, e.g., vendor
demonstrations, the training of user personnel,

and the operation of a personal computing li-
brary.

4.3 Implementation Plan

After we had defined the user's require-
ments, we began translating them into an Imple-

mentation Plan, with the Intention of meeting
the user's highest priority needs first. How-

ever, we soon ran into several stumbling blocks
which made a specific, highly detailed plan

difficult to formulate.

For instance, all electrical work and car-

pentry had to be handled by GSA, the lessor of

the VA building. That meant our renovations
were completed according to their schedule, not

164

ours. Consequently, the plan couldn't be struc-
tured towards the Center's opening, since that

date was not known. Even the staff could not

be brought together, since the area it was to

share was still occupied by other employees.

But in spite of these difficulties, the
Implementation Plan still proved useful. It

was the rallying point of all efforts and the

means by which schedules and deadlines were
kept track of. Even when delays occurred, we
knew where we were going—if not necessarily
when we would get there.

4.4 Work Environment

Naturally, the physical shape of the Center
had to adhere to the room in which it was to be
placed. As can be seen by the floor plan (see
Figure 1.), our room was large enough, but it

was rather oddly-shaped. In addition, it was
poorly lit and in a state of disrepair. Our
first priority, then, was to determine how best
to transform this space into a pleasant, prac-
tical working environment.

We decided that the Information Technology
Center (as it was formally named) could be
divided into seven distinct functional areas,
grouped by use. These included the following:

o Office automation
o Computer graphics
o Library
o Reception area
o Time sharing
o Personal computing
o Plotting

The room's odd shape lent itself very well
to this concept, as we were able to place the
equipment in separate areas and still have room
left for the library and reception area. In

addition, the middle could be left for demon-
strations, seminars, and training. We also had
space available for future needs.

After the floor plan was conceived, atten-
tion was turned to more practical items. To

begin with, the existing chilled air cooling of

the room was not adequate, considering the

space we had (1000 sq. ft.) and the amount of

equipment we would be operating. Consequently,
new air conditioning ducts were added. A new
ceiling was also hung, to accommodate additional
light fixtures. A separate power supply was
set up to eliminate voltage deviations in the

laser printer.

After these matters were taken care of,

attention was turned to the overall tone of the

work environment . We wanted to make the room
light, airy, and as esthetically pleasing as

possible. Furniture was chosen to re-enforce
this theme, although comfort and practicality
were the final determining factors. In addi-

tion, the room was ringed with an electrical

cable raceway, to conceal wires and to keep
them from under foot.

The resulting effect was one of freedom

and open space, perfect for creating a helpful
atmosphere and for enhancing user confidence
and access.

Figure 1. Floor Plan of the VA Information
Technology Center (ITC)

4.5 Staffing

The most critical part of our implementa-
tion was the hiring of the staff. Again, our

user's needs were the standards by which per-
sonnel were chosen. Since the ITC is geared
more toward technical consulting than training,

a staff was selected to reflect expertise in

technical areas, including programming, systems
and statistical analysis, modelling, and tele-
communications .

Placing the emphasis on the technical side
will also allow us to more easily keep abreast
of the new technologies constantly being evalu-
ated, modified, and developed by the Center.

It has also proved useful in setting up and

maintaining new equipment.

4.6 Publicity

It has been said that word-of-mouth adver-
tising is the best way to publicize a product

or service, since it offers the advantage of

instant credibility. But in order for it to be

effective, you must have a lot of satisfied
customers. Fortunately, in the few months we
operated before renovations began, the ITC was

in constant use, and most importantly, users
were excited about the concept. From the begin-
ning, we emphasized that the Center existed for
their use, and we still try to get our users as

Involved with its success as possible.

165

However, we also decided it was important

to use a more expansive publicity program, one
that would blanket all of the user organizations
and locations. To this end, a brochure was
written that outlined the ITC's purpose, ser-

vices, location, and use. We also instituted a

bi-monthly newsletter, providing the user with
information on new techniques, new systems, new
services, and possible problem areas. Finally,

we wrote articles in various VA publications,
describing the services offered and the concept

in general.

All in all, we have been able to cultivate
some positive opinions about the ITC, which in

turn has kept us encouraged and especially alert

for ways to improve our services.

4.7 Current Status

In less than nine months, the ITC has been
staffed and trained, renovations have been com-
pleted, and host connections are in place. Most
of the equipment is already in use, and the rest
is on order. While we're not yet totally oper-
ational, users have already begun signing up for

demonstrations and training. The ribbon-cutting
is scheduled for November of this year.

4.8 Future Plans

While most of our efforts have centered on

immediate needs, we have not lost sight of our

responsibility to accommodate the growth and
sophistication of the user. A good foundation
has been laid, and we are looking forward to

some exciting possibilities.

To begin with, our users will soon be using
existing stand-alone units as part of an inter-
connected network. This will enable them to

supply their own data and then to create a

variety of ways to display it. The next stage
will find the user accessing data bases through
telecommunications and preparing graphs and
other data on-line.

As for the potential of microcomputers,
users are already employing software packages
to manipulate data. Next will come provisions
for the user to access a data base, make an
extraction, manipulate the data using one of

the packages on the micro, and send the data
points either to the graphics system, the

plotter, or the micro's graphics capabilities.

As our users begin buying personal com-
puters for their own organizations, our staff
can assist them in configuring their systems,
selecting software, and helping them with
problems they might encounter. As the number
of these users grows, the ITC will sponsor
user's groups and a bulletin board service,
which will interconnect users in Washington
with those in field stations.

We also intend to evaluate, test, and modi-
fy equipment and software coming on the market.
One of our first efforts will involve creating
a local area network by linking our microcom-
puters. This is what we'll use to run our
office automation system. It is a brand new
concept and will take a lot of testing and modi-
fication to make it work.

Research will also begin on the design and
implementation of a multi-user microcomputer.
This project will use products from a variety
of different vendors and will require the staff
to find a way to link the products into a

workable system. However, it is an important
concept, since the result will give us a very
versatile system, and one that can use existing
equipment

.

5. Conclusions

As we previously mentioned, very little
documentation exists for setting up an Informa-
tion Center in the Federal government. While
this paper is not sufficiently detailed to

provide that documentation, there are a few
lessons we learned that might help interested
organizations sidestep some problems. These
are as follows

:

o Be User Oriented - Establish the services
you are to offer in line with the func-
tions of your agency and your user's needs.
Once this is determined, be single-minded
in getting the staff, equipment, software,
and facilities to support your services.
Also, realize that everything should be
planned or done in response to an existing
or anticipated user requirement. Keep in

mind that the Center exists to meet the

needs of the user.

o Define and Restrict Your Services - Unless
there is an unlimited staff, restrict the

use of the Center to the services you are
providing. Stay away from complicated
projects that are part of the normal data
processing function.

o Train the User Well - Be prepared to deet
the needs of the user from an educational
standpoint. Users will require a lot of

technical support , especially in the begin-
ning. No package has instructions so well
written that an untutored user can learn
without aid. It is also a good idea to

have initial user instructions taped near
each piece of equipment.

o Prepare an Implementation Plan - Time spent
preparing an Implementation Plan, however
difficult it might be to follow, is well
worth the effort. Resist the temptation
to stray from it. In order to be success-
ful, all the details must be accounted
for. In addition, don't forget about the

166

descriptions of services, policies, proce-
dures, and standards you'll need before
going operational.

For those of you who are already convinced
of the advantages offered by an Information
Center, we hope we have expanded your under-
standing of the concept and perhaps opened your
eyes to some of the exciting possibilities it

can offer.

On the other hand, for those managers in

today's DP departments who still think of

personal computers as over-sized video games,

you'd better reconsider. Yours may be the

monarchy left out in the cold.

We are especially grateful to Mr. Jack Sharkey,

Director of the Office of Data Management and
Telecommunications. Without his support and
belief in the Information Center concept, the

ITC could not have proven so successful.

SESSION OVERVIEW
MICROS AND THE NEW CPE ENVIRONMENT

Dennis M. Gilbert

National Bureau of Standards
Washington, DC 20234

Over the past decade we have seen the field of computer
performance evaluation (CPE) parallel the maturity and changes
taking place in the computer industry. We have seen the CPE
activity expand beyond the more parochial interest in and
concentration on "tools" and hardware. Attention has broadened
to include concerns about selection and management of information
resources, human interfaces, individual and unit productivity.
The weight of attention is shifting from component efficiency to
organizational effectiveness.

The pace of change in the computer industry has begun to
accelerate within the past two years. Rapid advances in the
technology, significant improvements in cost/performance,
dramatic proliferation, and growing market place and user
maturity has made microcomputer-based systems major resources
that must be considered as organizations seek to satisfy their
information requirements.

In this session we will identify some of the changes the CPE
community is and will be facing, look at the likely implications
of these changes for us, and explore how we might best position
ourselves so as to creatively use change rather than be left
behind by it.

The first speaker will offer an organizational view of the
infusion of the new technology and present a framework for a new
approach to thinking about such issues. The second speaker will
address the growing sophistication of users in stating their,
requirements and explore such developments as integrated
environments and interfacing workstations with mainframes. The
last speaker will look at some of the new technologies and market
developments (eg, videotex, video disc, smart phones, etc) and
explore how the convergence of these and others with those of
microcomputers may impact the way we do business internally and
deliver products and services.

168

AN CRGANIZATION MODEL AND CASE STUDY
FOR MICROCOMPUTER CPE

Malcolm Campbell

State of Missouri
Division of EDP Coordination
P.O Box 809, Capitol Building
Jefferson City, Missouri 65102

In this paper, computer performance evaluation is viewed from the
perspective of assimilating the microcomputer into the organization.

It presents a way of thinking about problems and answers. It does
this by presenting a model and some sample components of the model.

The approach is an attempt to fit some microcomputer issues into the
framework of organization development styles.

Key words: End user; microcomputer; microcomputer laboratory; model;

objective oriented management; organization development; organizational
tensions; productivity; reference system; team work; technology.

OUTLINE

1. Introduction

The Challenge of Micro Infusion into the

Organization

2. Tensions in the Organization

2.1 Tensions encouraging Micro Infusion
2.2 Tensions resulting from Micro Infusion

3. The Dialectical Organization Model

4. Examples of Integration

4 . 1 Management Methods
U.2 Computer Literacy
4.3 The Pro-user
4.4 Re-defining Information

5. Examples of Constructs

5.1 The Micro Lab
5.2 TEAM Development of Organizational

Information Management Services

6. Wrap-up

1 . The Challenge of Micro Infusion
Into the Organization

This paper assumes that the micro infusion
is not an open and shut case. There seems to be
agreement that micros are being placed in

organizations at a dazzling pace. However, there
seem to be valid considerations both supporting
and opposing aspects of what is happening. And
there are many differing conditions impacting
what should be done next. These involve cost,

system reliability and the self-determination of
the end-user.

This paper explores a way of thinking about
infusion questions. A suggested rationale is

expressed in terms of a model, application of the
model, and case study descriptions for applying
parts of the model.

Before getting to the model, what are the

kinds of issues we need to look at? Where the

micro is a blessing and where it is a curse
relates to organization objectives in both
tactical and strategic areas. Tactically,
acquisition and application to specific tasks
raise questions of product choices, system

169

planning, and expenditure of resources.
Strategically, the question is how the micro is

conceived as a tool and how it fits into

organization dynamics.

It is often expressed that white collar
productivity has yet to be impacted substantially
by technology. Equipment expenditures per white
collar employee are only a fraction of that per

blue collar employee. However, is expenditure
alone enough? Must not application of technology
deal effectively with the success of the

organization and with the factors of integration
and of tension?

How do we pursue integration while
encouraging tools which foster tension?
Assimilation of microcomputers into the

organization relieves some tensions and
stimulates other tensions. Let's try, in a

moment, to think of some examples of tension.
Management of such tensions should direct
expenditure of resources toward the goals of the

organization. Micros must be assimilated with
goals like the following in mind:

1 . Maximization of productivity
2. Avoidance of waste

3. Maximization of profitability
4. Maintenance of data integrity

You probably think of some other goals.

To achieve the goals of the organization,
integration of the elements of technology, human
factors, and management action is necessary.
What kinds of models can be used for this? What
kind of thinking is needed?

This paper suggests the following:

1. An organizational model
2. Examples of integration; illustrations of the

dynamics involved.
3. Two case studies illustrating constructs of

the model. We'll discuss "constructs" later;

for now, they are "organizational tools", or
"frames of reference."

2. Tensions in the Organization

Can the model we develop accomodate
tensions, integration and goal-seeking? My
examples and constructs are an attempt to

apply the model to micro infusion.

Before describing the model, what are some
tensions in the organization? First, tensions
which have led to microcomputer infusion and
second, what are tensions which have resulted?
Are there models to suggest how to view these
tensions in a constructive way?

2. 1 Tensions Encouraging Micro Infusion

Micro
Pressures Promises

Appeal of computer power

Availability
Application backlog

Need for end user involvement

Technology skill requirements
User-friendliness

Knowledge end-user has of his
own business

Knowledge of ADP as an
autonomous discipline

Application packages

End-user need to control schedules
and resources by his own priorities

ADP Operation need to control
schedules and resources

Control of resources
and schedules in

the user area

170

2.2 Tensions Resulting From Micro Infusion

Accessibility of the Application for
I mplementation

Need for thorough system planning
and preparation

Need (A need will
(exist because
of the tension)

Availability of numerous
application system tools

Need

Unclear appraisal of quality

Promise of ease of implementation

Need
Training needed for quality

installations

Advantages of standardization,
integration and some uniformity
throughout the organization

Need
Advantages of individual end-user

optimization

Need to maintain adequate data
communication links

Need
Need to avoid time sharing costs

Advantages of integrated
application software

Need
Advantages of containing the

magnitude of the configuration

Variety of devices on the market

Need
Maintenance of compatibility

These needs require work. For example,
consider the evaluation of integrated, multi-
task, executive productivity packages.

One study asserts that to be able to

distinquish the important differences between
"MBA" (from Context Management Systems) and "1-2-

3" (from Lotus Development Corporation) requires
weeks of concentrated study even by a computer-
literate manager. That kind of effort is costly,

but isn't it also good for the organization?

Tensions in the work-life can give energy to

the enterprise. Contradictions, cross-purposes,
disparities, paradoxes, and exceptional
observations provide sparks that may lead to

discovery. Such tensions may suggest that we are
looking at something the wrong way. It is by
this route that innovation becomes a tool for
problem solving. Sometimes undoing faulty
integrations may be half the game. A pre-
requisite for originality is the art of

forgetting, at the right time, what we

already "know."

171

So tensions can be used constructively.

Now how does the model relate to this?

Modeling is a way of looking at things. It is a

way of turning noise into information. It
provides the rationale for action in a mixed and
changing environment.

Is not how you look at things important?
Poincare was Einstein's senior by 25 years.
Poincare had the essential facts for the general
theory of relativity before Einstein did.

Einstein made the discovery because he had the

way of looking at things.

So we need a way of looking at things which
accounts for tensions, goals, and frames of
reference. A model, I suggest, is the

"Dialectical Organization Model."

The Dialectical Organization Model provides
a way of looking at the tensions of micro
infusion and fitting them into organization
development.

In practice, application of the model
follows a cycle like the following.

3. The Dialectical Organization Model

3.1.1 Recognize the "Squeaky Wheel" A person with power to have
results , becomes aware of

conditions needing attention.

TENSIONS

3.1.2 Review Goals In order to diagnose the

degree, nature, location and
scope of need.

GOALS

3.1.3 Diagnose tensions or inactivity Determine whether the squeak
was from tension or from
inactivity (equilibrium).

DIACMOSIS

3.1.4 Zoom to bring territory
into focus

Select object area. If in- ZOOMING
activity, zoom to expose. If INTEGRATION
tensions, zoom to integrate.
Aim is to prepare opportunity EXPOSURE
to achieve growth toward goals.

3.1.5 Apply constructs for

interpretation and action
Reference systems, beliefs,
laws, principles, perspectives,
criteria, environmental
frameworks, pictures, models.

CONSTRUCTS

3.1.6 Experience and monitor results Progress toward goals (ffiOWIH

organizational learning,
growth, integration, new
tensions.

3.1.7 Go to 3.1.2

Above is the operational sequence of the

model. I'm sure you have experienced the
processes

.

Tensions provide the driving forces.

Goals provide the sense of direction.

Zooming focuses, as with a camera.

Constructs provide the rationale.

Integration is sometimes the productivity
result, and sometimes new tensions are.

You may visualize a number of ways these
processes fit the micro world.

4. Examples of Integrations

One of the noticeable outcomes that can
result from applying constructs to the tension
resolution cycle is integration. You've seen
micro situations where integration is

appropriate. Here are examples of organizational
integration emerging from out of the micro
context.

The four examples I have picked are:

Growth is where value is achieved.

The dialectical sense of the process is

made meaningful by the goals and constructs.

1 . Fact-based management
2. Manager computer literacy
3. The pro-user
U. Re-defined information

172

U.I Management Methods

Contribution of Micros to Fact-based
Objective Oriented Management

Perhaps you have observed ways in which
micros impact management approaches. With
spreadsheet manipulation and graphics, it is
possible to have more immediate interpretive
access to factual information by decision-
makers .

This is an example of the way in which a
technological development fits with a management
style. Accordingly, it becomes integrated into

the behavior of the organization.

As other territory is brought into focus,

constructs such as Decision Support Systems,
Matrix Organization, and Zero-Based Budgeting may
use the micro as a vehicle. In each case,

integration occurs.

Each individual who proposes alternatives
will be supporting them with readily available
data. The spreadsheet and graphics, then are a

fit for other non-technology dynamics that are

occurring in the organization.

The idea that there is a fit does not mean
unchallenged harmony. Integration is not

tranquility, but is growth errupting out of
foment that makes sense by the rationale of the

model.

Likewise, there will be such problems as

reliability of statistics from remote files down-
loaded from a data base. But the point here is

that the support that is marshalled for an

alternative is based upon prototyping that an

individual has done at a keyboard with a

financial model.

4.2 A Cost Incentive for the Natural
Cultivation of a New Generation of

Computer-literate Middle Managers

Another illustration of integration may be

management computer literacy. For years
automation proponents have looked for the day

when end-users would be qualified to see systems

from the perspective of ADP components. To some
this did not seem to be imminent until a

generation of managers is replaced by a

generation of graduates who studied business
courses which included ADP. Even if suitable on-

the-job training were available, how could that

much training occur for an entire generation of

managers?

I t now appears that such will happen as a

grass roots process.

Where economics spurs the acquisition of
micros, users will be prompted to become
technically functional with them. Whether they
will universally be exposed to good system
development procedures or not, they will at least
achieve a conversant level of functionality.
Individual training will be demanded.

Hence a compatible goal will be achieved
almost as a spin-off, or as an itch that gets
scratched

.

4 . 3 Emergence of the "pro-user"

Dissipation of the Wedge Which

had been Driven Between the
ADP Technician and the End-user

Ever since the ADP professional became aware
that users exist and began to call them "end-
users" there has been a polarization between
them. It may be time for this distinction to

evaporate. Would this not be an example of

integration? Similarly as Alvin Toffler sees the
roles of the consumer and producer merging into
the "pro-sumer", perhaps we also are seeing the
emergence of the "pro-user."

A "pro-user" may be anyone who uses computer
products to process and access the information he
wants

.

The previously labeled "end-user" may become
more skilled with his new tools than is the ADP
professional. Intensity of computer related
skills may no longer be a role distinction
between these groups.

Everyone will be managing information for

organization goals. And everyone will have to

play keep-up with the technology, regardless of

whose turf he is functioning in.

This can be a new treatment for
provincialism in the organization and a case of
integration.

4.4 Re-defining Information

In response to the question, "What is

information?" I'm sure you are developing some

new answers. How we are enriching our view of

what information is speaks clearly of

integration. At one level it emphasizes the

global scope of concerns. At another level it

speaks of the character of the organization which
is defined by its information.

Far from the early ADP view of data as

transactions only, information now comes from

the PC, the terminal, the word processor, the
mailbox and the office cluster.

173

Information can be as follows:

Corporate data
Local ADP data
Research data
Processed data
Extracted data
Administrative data
Decision Support data
Word Processing data
Operant data

The data may not be different. Its usage
is different and has meaning throughout the

organization—and when one makes interpretations
that run throughout the organization, that
suggests integration.

This may sound like the archaic M.I.S.
promises. The difference is that M.I.S. presumed
that one could define in one mega-plan a super
definition of all data in the organization. The
dialectical/construct model does not assume that
static view. It works with process. The micro
allows us to re-define information. Such re-
definition can be at the service of the

organization. Accordingly, integration comes by

applying new constructs to old data. Thus,
integration is based upon flux; not upon static
definition. The process of zooming, construct
application, and goal orientation encourage that
flux to support the organization's productivity
and profitability.

In addition to its global nature, the new
information reflects the character of the
organization. All of industry, government,
economics, civilization and culture depend upon
the symbols of information. What makes the

differences among the Super Bowl, the Mardi Gras,

a high school commencement, the Miss America
Pageant and the Democratic National Convention?
Isn't a lot of it, what data is taken to mean and
how it is processed?

As more job functions in the organization
become knowledge-defined, and information-
constituted, the character of the organization
becomes more and more dependent upon those
information functions.

Similarly as the DNA code is a constituent
component of the make-up of an organism,
information is a constituent component of the

organization. In that sense, the organization
is information.

So, the way in which information is

manipulated by the many end-users impacts
integration of the organization. This
manipulation is supportive for the organization
insofar as it is directed by the dialectical
model dynamics.

We have noted that the dialectic can employ
integration in the example areas of management
methods, literacy, the pro-user and re-definition

of information.

The tools used for accomplishing those
integrating processes are the "constructs." I am
now going to discuss two examples of constructs
from current organization experience.

5. Examples of Constructs

I have mentioned that constructs can be
reference systems, beliefs, laws, principles,
perspectives, criteria, environmental frameworks,
pictures and models.

The two case study examples have all these
elements, but can most clearly be considered
environmental frameworks with reference system
under-pinnings

.

The construct serves as a tool for the
dialectic modeling process. The construct
provides the ground rules so that participants
know what game they are playing, so that actions
have continuity, and so that inappropriate
actions are not taken.

5.1 The Micro-lab

A construct I would like to suggest as a
case study is the use of a microcomputer
laboratory. Sometimes a construct is a stated
philosophy. In this case, the lab is not a
philosophy, but it represents a philosophy.
Basically it is the philosophy which treats the
end-user like an adolescent who is going to

college. Rather than controlling him, you give
him some new tools and trust his background to
carry him on from there. The lab itself is an
"environmental framework" in the sense that it is

an organizational entity. Its existence
contributes to the execution of the dialectic
model. At the present time, at the State of
Missouri, we are in the first months of
establishing such a laboratory.

The context for the lab is an environment in

which numerous divisions will be considering
acquisition and application of microcomputers.
The division sponsoring the lab offers to be of

service to the many user divisions. The sponsor
division also is interested in the overall health
of ADP enterprises in the user divisions. As far
as authority is concerned, the user divisions are
essentially autonomous with regard to

microcomputers

.

Micro proliferation is seen as both an
opportunity and a possible danger. Its main
strengths are its weaknesses. Its rapid payback,
responsiveness, accessibility to "non-
professionals", freedom from constraints, and
piece-meal decision items suggest to many
observers the need for coherent multi-division
leadership and planning mechanisms.

The dialectical construct model suggests the

micro laboratory as an approach.

174

First of all, the model suggests that we ask
the right question. Some might be tempted to
have asked, "Who is right, who is wrong?" or "How
does an organization control an elusively
acquired resource?" or "What resource type is
cost beneficial?"

Rather than those kinds of questions, the
model would suggest the question, '^iow do we
contribute to organizational growth by addressing
integration and tension factors?" The lab
encourages access to the tools needed to
accomplish integration like the four forms of
integration that we discussed in the last
section (M.I - 4.4)

.

This is done by giving end-users an
opportunity for hands-on experience, education,
assistance, prototyping, comparing, project
magnitude assessment, demonstration and
experimentation

.

The primary service is access to operational
resources, both hardware and software. The
posture of the lab is to adapt to user
functions. What one user cultivates is to be
shared with others. So, the climate arises out
of practice. Likewise, skills that are found to

be needed are cultivated and addressed with
training aids. A variety of hardware and
software is maintained to offer the user the

primary options that others in the organization
are finding helpful.

It is intended that divisions will benefit
in their own system development projects,
planning and acquisition of products.

Exposure to the lab may or may not lead to

uniformity of some kind across the multiple
divisions. The philosophy is that users are self-
directing, but should have advantage of the

experience of others and exposure of major
resources that others are finding useful.

How was the micro lab suggested by the

dialectical construct model?

On the surface it may have seemed that we
had a technological or an economic issue. In
fact, it was an issue of organization dynamics
and the solution is an organization development
solution.

The lab reflects the service posture of the

sponsor division. This is part of the

environmental framework and reflects an organi-
zational viewpoint.

It is not a territorial power kind of move.

It is a contribution to a global learning
situation

.

The lab will be used where the need arises.

Thus, in response to tension, its use becomes a

part of the dialectical cycle.

175

Organizational learning is the result. And
organizational learning is an experience of
people and agencies who modify their approaches
as they discover new results.

5.2 TEAM Development of Organizational
Information Management Services

Another construct example comes from an
experiment with "teamwork."

The context for this construct has been the
need for definition of organizational functions,
services and projects. Its most major use was
during a time of reorganization transition.
Further use will be primarily for brainstorming
and joint planning in new project areas.

Pre-conditions

The reorganization transition was a phase
during which several staff members were in new
positions, the division director was new, and
partial reorganization was around the corner.
The "Team" involved eight (8) people in a
planning and coordinating section. This section
is part of a division of 140 employees. The
division, in turn, performs services for
departments with several thousand employees. The
scope of the Team effort was primarily within its
own area of responsibility. The nature of that,
however, extended concern into matters of
division level functions.

The Team's section had responsibility areas
which were relatively easy to adjust by

management discretion. The new director had
conceptual interests and skill which were
adaptable to the organizational dialogue which
was emerging. The staff was vocal. The director
was ready to hear and to interact.

The staff had interest in discussion about
goals and approaches. The new director had
interest in reviewing current practice and

forging new directions.

Approach

A staff member suggested a one-day
brainstorming session at a remote site in a

retreat setting. The suggestion was accepted and
eight (8) people met spanning three (3) levels of
supervision.

The agenda included presentations and
dialogue about what was being done and what was

recommended

.

Near the conclusion the director delivered
the gauntlet, saying in effect, "You are a team,
carry on from here in your own way—and there is

something I want as output. I want your
recommendation as to the criteria for the

services this division should be offering."

This was, in effect, an invitation to start
at ground-zero for what the section should be
doing.

The Team began weekly meetings with rotating
chairmanship. Throughout its functioning there
were expressions from some indicating desire to
be told more about what was expected. Others
encouraged moving ahead. The director insisted
on keeping hands-off.

Results

The weekly meetings were held for four
months, with substantial individual and
subcommittee work being done between meetings.
Formal documentation was developed.
Recommendations were made of functions the
division should be performing. Reorganization
occurred. New major directions were
established

.

Under the reorganized structure some members
were uncomfortable with continuing Team
activity. Other members wanted to continue.

Management decision was to comprise a
continuing Team of the new supervisors. The
total staff would function as a team on an "as
needed" basis.

Relationship to the Model

The dialectic application of constructs was
experienced throughout the Team experience.
There were repeated cycles of zooming for tension
and for integration. An interesting thing about
that is that what the director was wanting to see

was process. He wanted to see those three levels
of folks hammering out ideas in dialogue. And
that is a natural for the dialectical model.

I will mention here some tensions leading
to the Team idea, some tensions resulting and
what the contribution was to the division.

Tensions Leading to use of the Construct

A. Lack of sense of identity by individuals with
any stated objective of the division.

B. A variety of unstructured and undefined
viewpoints about what the division was doing
or should be doing.

C. Uncertainty about roles, expectations,
and responsibilities.

Tensions Resulting from Use of the Construct

A. Where expectations of some members of the

Team (depending upon their perception of
objectives) became fixed, they felt a lack of
follow-through

.

B. Where the Team idea reflected a participative
management style, sometimes staff liked being
included; sometimes staff did not like the
responsibility, the loss of targets for
complaints and the fear of being penalized
for expressing views disfavored by
supervisors present.

C. Where authoritarian management style
moves re-asserted themselves; sometimes staff
were relieved at being led again and at
having problems solved by someone else;
sometimes disliked being told what to do when
left out of the decision process.

Contribution of the Experience to the Division

The team experience has been an example of
the state of flux that often characterizes the
dialectical process. There has been a lot of
give and take; a lot of ambiguity; and some solid
ideas that benefitted from the scrutiny they had
received. And the team approach exhibits the
thematic, methodological traits of a construct.
There has been organizational learning and growth
in the sense of staff working together in a new
context. Clarity of work has been evolving.

There has been progress toward goals.
Emerging out of the teamwork, management has made
thematic and procedural moves toward re-
definition of what the division does.

The idea of the Micro-lab came out of the
Team process.

The microcomputer laboratory and the team
process provide interpretive frameworks in a

fluid situation. They contribute structure that
is not static. Such is necessary for constructs
in the dialectical process.

6. Wrap-up

As microcomputers are infused into the
organization, parochial interests run head-on
into global concerns.

The microcomputer has appeal as it is made
responsive to organizational tensions. Its
infusion results in new tensions. Application of

constructs may bring integration or may surface
new tensions if equilibrium needs attention.
Constructs like the lab and the team can work
with the tension cycle for growth and learning in

the organization. Results like fact-based
management, computer literacy, and the pro-user
may reflect integration within the cycle.

The model advocates fluid processes. It
depends upon change. Likewise it should be

applied to embrionic areas such as integrated
application packages on the micro and to end-user
application development.

175

SESSION OVERVIEW
FEDERAL MICROCOMPUTER ACTIVITIES

Alien L. Hankinson

National Bureau of Standards
Washington, D.C. 20234

M i c ro compute r - based systems represent a new frontier in
information technology. These systems offer the potential for
Federal agencies and other information intensive organizations to
improve substantively the productivity of the workforce as well
as the quality of the services being provided.

These organizations face a stiff challenge to realize the
potential offered by this new technology. A major problem is that
the technology is movihg so fast that it is difficult to get a

handle on it's effective management and use.

Some of the critical issues that must be addressed include:

• when should these systems be considered as
alternatives and/or adjuncts to central facilities;

• what are the key steps in the process that should be
used in the selection of these systems;

• how should these systems be configured to enhance
the sharing of data and the sharing of expensive
peripherals;

• how should applications software be acquired in

order to minimize development and maintenance costs;

• how should this technology be "packaged" to meet the
needs of nontechnical end-users.

In this session. Federal microcomputer activities that
involve these and other issues will be explored from three
different perspectives:

• from the perspective of an organization which
develops Government-wide acquisition programs;

• from the perspective of an organization which
develops Government-wide technical standards and
guidelines;

• from the perspective of an organization which has
already taken some innovative steps to deal with
these issues within a Federal agency.

177

DATA PROCESSING USER SERVICE - A PROBLEM; A PROPOSED SOLUTION

Thomas H. Acklen

Veterans Administration Data Processing Center
1615 East Woodward Street

Austin, Texas 78772

While data processing technology continues to progress at an ever
increasing pace, techniques employed by data processing organizations to

extend these technological benefits to users remains basically static. Users
are buffered by analysts and programmers from the equipment's capabilities.
Maintenance of existing systems places a growing burden on the data processing
organization, and the development of new applications is people-intensive and
protracted. Users are becoming more dissatisfied with the data processing
organization's inability to respond to their demands. As a result, users are

in many instances, trying to use microcomputers to fulfill their own needs.
Such maverick efforts, although potentially beneficial to a particular user,
could introduce disarray into an organization's efforts to establish
integrated information systems.

This paper proposes a series of actions which should improve the data
processing organization's ability to serve the user community. The underlying
strategy of these actions is to enable users, within the context of an overall
data processing plan, to provide for many of their own needs thus permitting
the data processing organization to concentrate on the more complex tasks.
The overall objective is to insure more responsive and less costly data
processing support.

Key words: Communications networks; data manipulation capabilities; data
repositories; programming productivity aids; responsiveness; software
improvement plan; systems development methodology.

1. Introduction

During the late 1830's and early 1840's
artist/inventor, Samuel Morse, perfected the
telegraph and devised a standard code for

transmitting messages electronically. And thus
began the communication revolution and the modern
day need to improve user service.

The user that wished to send a telegraph
message had two available options. Under the

first option, he relayed his message to a

telegraph operator and requested that he code and
send the message to the desired destination. The
operator at the receiving station decoded the
message and relayed it to the specified
individual. If all worked well, the telegraph
operator(s)

:

(1) understood the user's message,

(2) properly coded it.

(3) routed it to the proper destination,

(4) correctly decoded it, and

(5) delivered it to the intended person.

Under the second option, the user could master
this technological wizardry that required him to

speak in dots and dashes, find an operator that
would allow him access to a telegraph key and

send his own message. Neither approach could be

candidly described as "user friendly".

With the invention of the telephone,
Alexander Graham Bell radically altered the

electronic communication user interface and the

method and type of support provided the user.

The user became the direct conveyor of the
message. Nevertheless, in the early days of the

telephone, responsibility for routing of the

message still rested with the equipment
operator. Today, the user of a modern telephone
system both routes and conveys the message.

178

Although there are exceptions in today's
data processing world, user support is about
equivalent to that which existed in the early
days of the telegraph. In order to benefit from
the computer's capabilities, the user must either
depend upon data processing technicians or become
a data processing technician. Inherent in such
an environment are costly delays, poor service,
and dissatisfied users.

The challenge for today's data processing
manager is to place the analogous telephone in

the user's hand. First, he must through a

combination of tools, techniques, training and
trust, eliminate when possible the analysts and
programmers that buffer the user from the
computer's capabilities, thereby allowing the
user to directly utilize this technology.
Second, he must strive to improve the traditional
user/analyst relationship and the support
provided the user through this interface. This
paper proposes a series of actions designed to
assist the data processing manager in meeting
both objectives.

2. The Problem

Our industries and government institutions
can ill afford the inefficiencies associated with
today's multi layered , people-intense methods of
data processing systems development and
maintenance. As the unit cost for computer
hardware has plunged, the labor cost associated
with application software development and main-
tenance has skyrocketed to the point where it

accounts for the vast majority of an organiza-
tion's data processing budget. Even if these
institutions were willing to commit the requisite
dollars, our labor market would be hard-pressed
to provide the number of analysts and programmers
required to meet rapidly expanding data
processing demands. The U.S. Department of Labor

forecasts that between 1980 and 1990 the need for
programmers will increase by about 40% while the
demand for systems analysts will climb by 50%.
It holds that such rapid increases in the demand
curve will cause a continued increase in labor

costs and an overall decline in the availability
of data processing talent and skills.

Our institutions face the additional threat
that frustrated users, aided by the ubiquitous
microcomputer, will reinject into the data
processing environment (1) nonstandardized design
techniques, (2) duplicative development efforts,
and (3) parochial attitudes regarding the

gathering and sharing of information. These are

reminiscent of the vices that the data processing
world has struggled to free itself from for the

past ten years. This is not to imply that such

unilateral efforts may not benefit the particular
user. However, the nonstandardized and

undisciplined methods of these "computer
illiterates" may, in many ways, do our

institutions a disservice. Our ability to

effectively plan and integrate data processing
services for our organizations, and to devise and

implement systems that share corporate data, will

be impeded by these maverick systems.

3. The Traditional Solution

Reasons for change in our current approach
to users support are readily apparent; however,
the avenues to such change are far less clear.
In selecting an avenue, it is extremely important
to understand the particulars of the service
provided and the specific problems which a user
has with that service. An often-voiced problem
with today's data processing service is lack of
responsiveness. Changes needed by the user
yesterday cannot be provided for six months or

longer if, because of other requirements with
higher priority, they can be provided at all.

Another frequent complaint is that the changes,
once finally made, are not what the user really
wanted or needed in the first place.

Traditionally, we as data processing
professionals have attempted to address these
problems by using the approach which we best
understand, "Give me more—more analysts to

better evaluate what the user needs and more
programmers to more quickly code programs that
meet these needs." We work more closely with the

user in the early systems design stages to better
understand the changes that he desires. But this
technique has yielded basically unsatisfactory
results because its underlying premise is that
the user knows what he needs to better do his job
when in many cases he does not. We reason that
by establishing larger programmer staffs we may
(1) more rapidly maintain aged and often poorly
documented systems and (2) write more programs to

meet the new demands. However, constant
maintenance of old code becomes increasingly
difficult and the results less acceptable to the
user and the demand for new code outstrips our
ability to write it. In summary, we use more
resources to do more of those things which have
proved marginally successful at best.

4. A Possible Alternative

Given that the traditional approach to user
support has proved inadequate, another which is

more responsive to and more supportive of the

user must be formulated. Such an approach should
embrace all phases of the application systems
life cycle from identification of a need through
the design, implementation, maintenance, and

finally redesign of a system that fulfills that
need. This approach should:

1. Stress the maintenance of corporate data
repositories which are readily
accessible to authorized users.

2. Feature a data communications network
which allows for the effective gathering
and dissemination of corporate data.

This network should be organization/
function oriented rather than applica-
tion oriented.

3. Afford the user simplified yet powerful

data manipulation capabilities.

179

4. Emphasize the self-service approach to

data processing. It should assist and

guide the user so that he may fulfill
many of his own data processing
requirements within the context of a

company-wide data processing system.

5. Recognize those tasks which are best
performed by the data processing shop,

and in those cases, use analytical tools
such as demonstration screens and simple
data manipulation capabilities to help
both the data processing shop and the
user in better understanding what the

user requires.

S. Feature a "minute man" team of top-notch
technicians that can rapidly respond to

unforeseen, priority user needs.

7. Employ the latest programming productiv-
ity aids to make that application
programming which is done by the data
processing organization less costly and

less time-consuming.

8. Incorporate a master software
improvement plan designed to gradually
free the data processing organization
from the costly and time-consuming
burden of maintaining poorly documented
and obsolete application programs.

9. Utilize a highly disciplined system
development methodology for all new
applications to insure that they are
more standardized, maintainable, and

responsive to the user.

The philosophy underlying this approach is a

recognition that the data processing organization
cannot effectively or efficiently respond to all

user demands. Its objectives are to (1) maintain
an integrated data processing and information
sharing capability within the organization, (2)

allow the users to assume responsibility for some
of their data processing requirements, and (3)

permit the data processing professional to more
effectively accomplish those tasks which cannot
be readily assumed by the user.

The approach de-emphasizes application
programming by the data processing profes-
sional. It is well to note that at the state-of-
the-art will not allow the elimination of this
fundamental task. As we progress beyond some-
what primitive, natural language programming
capabilities toward artificial intelligence and

voice recongition capabilities, the need for
data processing professionals to create
application programs will diminish. However,
this approach concentrates on that which is

achievable today. A more detailed examination of
each component of the approach may provide
insight as to how it may be adapted to your
organization's particular needs.

4.1 Provide Ready Access to Corporate Data

Data, regardless of why or by whom it was
initially gathered, is potentially valuable to

other organizational elements. Within the
context of data processing, information has
traditionally been viewed as the property of the
gatherer and stored and accessed in a manner that
primarily benefited that individual or
organizational element. The owner (gatherer) of
that data often resisted its use by other
organizational elements.

This perception must change. The concept
that data is a corporate resource to be made
available to all authorized users for the overall
benefit of the organization is fundamental to
effective information management. This concept
can best be achieved by creating a data
administration function which reports to upper
management, preferably the executive officer of
the organization. In the area of information
management, both the data processing shop and the
organization's business elements, should be
subordinate to the data administrator. This will
insure that al

1

users are better served.

The data administrator function can only
remove the organizational impediments to data
access. The technical impediments can best be
addressed by designing application functions
around a database management system. A modern
commercial database management system will permit
your organization to share data and manage
information. Such packages afford far greater
flexibility in the storage, sharing, and
maintenance of data than was possible under the
flat file concept of data storage. Organization
standards and policies will be required to insure
that data is stored in such a manner that it can
be easily retrieved and manipulated by authorized
users. Without such standards your database
management system will be only a sophisticated
data storage and retrieval tool. By estab-
lishing and enforcing standards the data
processing shop will ensure the existence of an

information repository capable of serving many
corporate users.

4.2 Implement an Information Communications
Network

To be useful data must be gathered,
manipulated, and/or disseminated. Traditionally,
we have designed gathering and dissemination
capabilities each time we developed the data
manipulation capabilities of a particular
application. However, in order to be responsive
to users, it is far more effective to establish a

common data communication network between the
data processing shop and those remote locations
where data originates or is disseminated. Do not

expend resources developing a network for payroll
data or sales data or inventory management.
Instead develop an information communications
network. Use a modular design that allows for

180

expansion. Select a widely used network protocol
that can support various types of terminals and
processors. Such a common data link will

facilitate rapid development of more effective
user applications.

We, as data processing technicians, often
look at an information system and compare the
merits of centralized versus distributed
processing. We must also begin to think in terms
of centralized versus distributed development.
We must not forget that a well -planned
information communications network facilitates
both.

4.3 Provide Users Simplified Data
Manipulation Capabilities

Under this approach users must be provided
software packages which allow them to easily and

economically retrieve and manipulate data. Most
commercial database packages afford such

capabilities. Software packages such as SAS, SAS

GRAPHICS, DYL-280, SPSS, are also designed to be

used by the data processing novice. Furthermore,
new product offerings of this nature are being

introduced almost daily. Consequently, it is

neither prudent nor economical to have your
systems analysts attempt to understand and plan
an application for those tasks that users, if

given the proper tools, can provide for

themselves.

4.4 Support the Concept of Self-Service

Simply acquiring such capabilities will not

insure a more satisfied user community. Your
center's capabilities must be marketed to the

users. Additionally, key people within your
organization must be convinced that allowing
users to provide for their own needs is sound

data processing management.

Establishment of an Information Technology
Center to introduce users to (1) your center's

capabilities, (2) equipment which can be used to

access your center, and (3) the basic skills
required to benefit from the support your center
offers is an effective mechanism for marketing
the center's capabilities. Demonstrating the

capabilities of microcomputers in accomplishing
small tasks will aid in familiarizing users with

data processing. Also demonstrating the short-

comings of small computers in rapidly accessing
and manipulating large volumes of data is

important in marketing the concept of fully
integrated systems. Teaching users how, if

certain standards and conventions are followed,

microcomputers can work in unison with your
center is mandatory if the concept is to be

achieved.

Once users are sold on the idea of self-

service, your organization must be prepared to

offer ongoing support if they are to be

satisfied. A mobile team of skilled technicians
that can, upon request, visit a users shop to aid

them in their tasks will be required. Your shop

will have to guarantee prompt and reliable
service during the hours users require it, i.e.,

guaranteed service levels.

Gaining user interest may be easier than
gaining key data processing personnel support for
the self-service approach. Because of legitimate
concerns for the service provided and a lingering
concern for job security, many managers within
the data processing shop may oppose allowing
users access to data and data manipulation
capabilities. Their opinions must either be

changed or nullified; the former being preferable
to the latter. Through example and exposure
these managers must learn that (1) users can

effectively master basic automatic data
processing skills and accomplish data processing
tasks on their own, and (2) just as eliminating
the need for a telegraph key operator did not
eliminate jobs in the communications industry, so

will allowing the users to aid themselves not

threaten the job security of the data processing
professional

.

4.5 Employ Progressive Analytical
Techniques

Although extending computing capabilities to

the users will do much to satisfy their data
processing demands, it will by no means replace
the requirement that your organization develop
the more complex automated systems that support
your organization. In effectively performing
this function, it is critical that the data
processing professional understand what the user
wants and needs; that is, ensure that the system
designed and implemented is the system that will

meet the organization's needs. As previously
discussed, this can be a very illusive goal since

users generally are not fully aware of their
needs nor of how such needs can best be fulfilled
through the use of computers.

Computer applications contain three basic
functions (1) data gathering, (2) data manip-
ulation, and (3) information dissemination.
Failure of the latter function equates to failure
of the system in fulfilling a particular business
requirement. Thorough understanding of user
requirements with regard to the latter function

will dictate an effective system design. Systems
analysts using terminals, sample data, and

variable screen formats can learn, along with

users, what information is needed to fulfill each

business function. This approach allows the user
to see how the application output will look,

evaluate whether it meets the organization's
needs, and if not, suggest and shortly thereafter
review proposed changes to the output. This
approach will avoid much retrofitting often
required in the latter stages of a system
design. It will also more effectively guide the

analysts in determining what data must be

gathered and how must it be compiled and

manipulated. The final result will be a system
which satisfies organizational requirements.

181

4.6 "Minute Man" Response for
Unanticipated Tasks

Proper planning is critical in order to

provide effective service to data processing
users. However, data processing tasks will arise
which were simply unanticipated. Such unantic-
ipated tasks may be time sensitive and critical
to the successful functioning of your organiza-
tion. Forcing such tasks into the routine
program development/maintenance workflow is

disruptive and often counterproductive.

If an unanticipated task is both time
sensitive and critical to the organization's
function, it should be referred to a "minute man"
team for execution and implementation. Even

though it represents a substantive investment,
the team nucleus, composed of an aggressive
manager and two or three top-rated technicians,
should be a permanent organizational element.
Depending on the nature of the task, this team
should be able to draw selected talent from other
organizational elements. Upon completion of a

particular task, maintenance of the resulting
system should become the responsibility of the

cognizant line organization, borrowed talent
should return to their respective organizations,
and the team nucleus should begin preparing for

the next task.

Benefits of this approach are:

(1) the assembled team will appreciate the

urgency of the task,

(2) the talents applied to the project are

those required to rapidly accomplish it,

(3) disruptions to other projects are

minimized, and

(4) the needs of the organization are more
rapidly served.

But remember the task assigned to such a team
should be unanticipated , time sensitive , and
critical . Use of the team must be the exception,
not the rule.

4.7 Rely on Productivity Enhancing Tools

Productivity aids can be used to reduce the

time and cost of developing and documenting
systems. Such tools range from natural language
programming packages to programmer work stations
that support interactive compiling, editing and
debugging. Use of these tools can, given the

particular task, more than double programmer
productivity.

A clearing house function should be

established within your shop to review all user
requests that require programming to determine
whether code-generating tools can simplify the
task. Once such a determination is made the task
should be assigned to the cognizant project
manager. The clearing house function removes

this decision from the project manager who,
because of familiarity, may elect standard coding
techniques over a more advantageous code-
generating package. Whenever possible,
management's objective in this area should be to

supplant people-produced code with that generated
by machine.

4.8 Aggressively Pursue A Software
Improvement Plan

If your data processing shop is

representative of the industry norm, 70 to 80

percent of your programmers' and analysts' time
is spent maintaining existing code, consequently
leaving few resources for new efforts.
Furthermore, your organization can afford neither
the dollars nor the time required to completely
redesign/replace those systems that require such
heavy maintenance. Because of large capital
investments in old application code, your
organization is in a "darned if you do; darned if

you don't" dilemma.

A well thought-out software improvement plan
will allow you to salvage a large portion of your
capital investment while reducing overall
maintenance costs. Application code can be
improved without a complete system redesign. In

order to accomplish this, each application must
be analyzed to determine what modules account for
the greatest portion of maintenance costs. These
modules should be targeted for major modification
or replacement. Care should be taken in avoiding
the logic that machine language code is costly to
maintain. If such code is basically static, it

costs little or nothing to maintain. The
governing rule should be rework those modules/
programs that require frequent and time consuming
maintenance. And during each effort, exercise
care not to produce more code which will be

difficult to maintain.

The point is not to suggest how to improve
your particular software. The point is to

suggest that it can be--that it must be improved

through an evolutionary process. The first step
is most difficult; establishing a software
improvement project, and committing the

organization to specific software improvement
goals. Management must insist that all system
changes be accomplished within the context of

this plan. Long-term objectives accompanied by

discipline, perseverance, and accountability will

result in more maintainable software, more
efficient code, less dependence on a particular
individual's knowledge, and more rapid response
to user needs.

4.9 Utilize a Highly Disciplined Systems
Design Methodology

The problems of poorly documented, aged, and

patched programs that require more effort to

maintain and modify than was required to

initially develop, are not the result of a

devious conspiracy by previous managers to

undermine the data processing operation. To the

182

contrary, these problems have resulted because
dedicated managers and technicians, in the name
of expediency and user support, employed
unorthodox techniques and shortcuts. In the
development phase, they did more with less, so
today we do less with more.

In recognition of the problem, companies
have developed and now market highly structured
approaches to govern and guide development
efforts. Although these approaches differ in

specifics and degree of automation, they are
common in the following aspects:

a. A life cycle step-by-step approach to
systems development is prescribed.

b. User responsibi 1 ity/participation in the
requirement definitions, design alter-
natives, and functional specifications
is mandated.

c. Form and content of the technical
specifications are defined.

d. User and data processing management
review and concurrence at predefined
intervals are specified.

e. Documentation standards are precise and
unyielding

.

These approaches provide a simple but rigid
skeleton which if built upon will support the
muscles and organs of a complex system. Systems
developed using these approaches are better
documented and less complex than those designed
using less structured techniques. Consequently,
these systems should be less costly to maintain
and modify.

New systems development projects that are

the responsibility of the data processing
organization should be accomplished within the

confines of one of these structured approaches.
The organization selecting a highly disciplined
system design methodology, committing to the
overhead associated with its use, and holding
managers accountable for enforcing its

provisions, will not have to spend its tomorrows
trying to undo yesterday's expediencies.

5. The Costs of Change

Adaptation and implementation of this

approach to user support may require numerous
policy, organizational, and staffing changes.

Resources typically devoted to the programmer and

analysts functions will have to be diverted to

communications network support, database design
and maintenance, marketing and training and one

other topic not yet discussed--capacity
management and resource acquisition. The latter

is mentioned because this approach will require

substantial amounts of computer hardware and

software. The approach requires the application

of confputer power to data processing tasks in

order to make them more efficient. Data

processing managers thought little of using
computer capacity to automate payroll or
inventory management functions. They must be

equally bold in automating their own efforts.
The result will be a more satisfied and better
served user, a more effective organization, and a

more efficient data processing shop. Remember,
there is more to data management and
communication than tapping a telegraph key.

183

STANDARD COSTING FOR ADP SERVICES

David R. Vincent

Institute for Software Engineering
510 Oakmead Parkway

Sunnyvale, CA 94086

This paper is an initial exploration into the area of standard costing for
ADP services. Historically, data processing expenses have been regarded as var-
iable, depending on hardware and software procurement and usage. This paper takes
the position that infomation systems expenses are relatively fixed, and that in-
formation is the resource to be managed, as opposed to hardware and/or software.

Key words: Accounting methodologies; ADP services; data processing; data transfer;
information resource characteristics; management of the database; standard costing;
storage of the information asset.

The information systems community has pro-
liferated numerous "accounting" methodologies,
techniques and even packaged software products
that have been designed to calculate and report
the "true" ADP/EDP/IS unit, standard, and/or
chargeback basis for the costs of operations.
The sad fact is that none of these methodologies,
techniques, or methodologies reflects the real
nature of information systems costs the way that
they exist in today's environment, and, more
importantly, the way in which we will view in-
formation systems costs when we begin to con-
sider that it is information that is the resource
as opposed to just the hardware and software
used to make that information available to the
user

.

Moreover, l/S expenses tend to be rela-
tively fixed when we consider them from a month-
to-month basis. This is the way in which top
management tends to view the l/S investment,
and it is one that they wish to minimize in

order to live within the fiscal limitations im-
posed by the annual funding cycle. The irony
comes with cost reports that show unit costs
and chargeback amounts in government environ-
ments where they must "charge users with the
cost of their usage." With these kinds of

reports and "MIS-information" comes the lower
organization concept that information systems
costs are variable . Armed with this often
dangerous information, users will tend to mini-
mize their use of the "EDP resource," many times
by taking their work to outside service bureaus,
which causes the l/S costs to the rest of the

users (and to the organization as a whole) to
go up! Certainly, the people who drafted 0MB

Circular A-I21 didn't have this in mind when it

was formulated.

Traditional standard costing principles were
developed in the manufacturing environment to

account for variable material, labor, and over-
head on a unit of manufacture basis. In the

factory situation, material is not used unless
there are units to produce, and labor is not
called in or kept on the job unless there are
units to produce. Most of the overhead goes on,

so there may be an overhead absorption problem,
but variable costs may be inventoried or avoided
simply by not purchasing. Similarly, tradition-
al governmental accounting has always been aimed
at a somewhat variable personnel and materials
expense budget

.

In the information systems environment, the
truly variable costs are few, such as paper,
reels of tape, electricity, and any temporary
portion of labor. All the rest of the costs are
relatively fixed such as hardware, software, de-
velopment, staff, facilities, and management.
Even with all the good intentions of GSA, an
increasing fixed investment in software will not
allow the hardware expenditures to become vari-
able .

The only real variable involved is the work
that can be processed by these relatively fixed

costs, which is analogous to distribution of man-
ufacturing overheads. A more appropriate method
for understanding and analyzing information sys-
tems costs is, therefore, greatly needed. We
also need to redefine what we are trying to

analyze as the information systems environment
changes from focusing on a centralized, fixed-

184

cost/overhead, support function to analyzing the
investment, cost of creating, and cost of maintain-
ing the organizational resource information .

The first step toward resolving this issue
lies in understanding that information systems
is only a small component of a much larger in-
formation resource. The primary sorts of infor-
mation resource activity that will fall under the
aegis of what is currently called the Director
of ADP (and is likely to be called the Chief
Information Officer in the future) may be de-
scribed by the following four major areas:

• Storage of the information asset

• Management of the database

• Data processing

• Data transfer

1 . Storage of the Information Asset

With the growth of the organizational in-
formation asset, the storage of that resource
takes on new significance. It is the author's
opinion that by the end of this decade, the
accounting community will insist on reporting
the information asset as a fixed asset of the
organization just like any other asset (e.g.,
cash, equipment, buildings, inventory) and that
this asset will represent the single largest
asset for most governmental organizations. This,
coupled with the advent of fixed disks on direct
access storage devices that consume more and
more physical space, causes this asset to re-
present a larger and larger investment to the
organization. Other types of information storage
exist such as tape and mass storage devices, but
with the increasing use of information on a real-
time basis, their appropriateness will diminish
(one possible exception is an emerging technology
involving the use of optical discs that may be
removable, storable, and shippable, and are
rumored to cost less than tape) . The appropriate-
ness of data to be stored at all, as well as the
decision as to which method of storage is appro-
priate, will be resolved only by analyzing the
costs of storing information as well as the costs

of database management for the organization re-
quiring information storage.

THIS PAPER ASSUMES THAT TOP MANAGEMENT AND THE
USERS OF INFORMATION ARE THE ONLY GROUP THAT CAN

ASSIGN VALUE TO THE INFORMATION RESOURCE. IT IS

UP TO INFORMATION SYSTEMS MANAGEMENT TO PROVIDE
THE USERS AND TOP MANAGEMENT WITH SUFFICIENT
COST INFORMATION TO ENSURE THAT THEY WILL BE ABLE
TO MAKE INFORMED COST AND INVESTMENT DECISIONS ,

ESPECIALLY THOSE REGARDING TRADITIONAL EDP RE-

SOURCES SUCH AS CPUSAND THE LIKE (this was the

real intention of 0MB Circular A-21)

.

2 . Management of the Database

Database management includes all the hard-
ware and software necessary to make that infor-
mation available for retrieval. The security of
the data and data integrity are ensured by the

adequate management of the information. This
will be the most difficult area to manage in the
future. Visionaries in this area such as James
Martin, Bill Synnott, and Bill Inmon, for example,
spend most of their time trying to develop long-
range thinking regarding these demands. For
those of you concerned with sub-second response
time, this area will provide the greatest chal-
lenge. What is seen today with systems such as
IMS, IDMS , etc. can only provide an inkling of
what is to come. We are already hearing much
about relational and distributed vs. centralized
databases

.

3. Data Processing

Users have traditionally used the central
processing facility for their processing needs.
With the advent of minicomputers, some began to

establish their own processing resource, while
continuing to utilize the central processor as
well. With the increasing proliferation of per-
sonal computers, it will become even more popular
to process one's own information locally, es-
pecially with the heightened requirement of
response time. Therefore, it will be necessary
to assist the users in the tradeoff decision as
to whether they will use centralized or distri-
buted processing resources by providing them with
central processing cost data. This can be com-
pared with their local processing costs as well
as the advantages of sub-second response time.

However, there may still be costs for information
storage and management from a central facility.
These costs should be analyzed from the trade-
offs concerning local versus remote storage
(and what the corporate policy is regarding this)

as well as the costs to ship the information
where it will be used, whether that be over a

telecommunications network, by express or reg-
ular mail, or whatever. This cost category is

covered in the next segment regarding the trans-
fer of data.

4. Data Transfer

In the case of a centralized data base, or

even in the case of distributed data bases, there
is the need for data transfer when there are
distributed terminals or processors. This cost
is essentially a communications cost and will
become extremely important as file transfer be-
comes more popular due to the use of personal
computers to do local processing. The author
feels that this will be the major information
cost of the future (even though the advent of

optical discs may provide some temporary relief)

.

The characteristic behavior of the above
areas of information is unique. The methods of

measuring, costing, and analyzing each area will
require separate considerations such as local

185

versus remote processing as well as information
storage, data management and relevant communica-
tions (data transfer) trade-offs. Table 1 sets
forth the salient characteristics for each area
to be used as a guideline. A metric for each is

stated, but this does not mean that the measure-
ments from the four different areas of activity
may be added to express an overall measure of

capacity as has been expressed by such concepts
as software physics, computer resource units,

MVS service units, and the like. Adding the
four areas together would obfuscate the unique
characteristics of each. Even though clever
people can think up some kinds of algorithms to

explain system behavior with combined statistics,
top management and the users of information will
not be able to understand the algorithms or be
able to make easily the important trade-off de-
cisions re the l/S investment. This kind of

reporting would be analagous to the utilization
reports put out by many l/S departments showing
such things as CPU utilization in percentages.
What kinds of decisions in today's environment
can be made on that kind of information?

In summary, the use of this kind of revised
analytical approach to management and costing will
enhance the effort by making it understandable to
both users and management. It also makes it pos-
sible to relate the costs to the burgeoning
organizational resource known as information and
the trade-offs that exist in the procurement
of ADP resources.

Table 1 . Information resource characteristics

Metric Storage Management Processing Transfer

Basic space

Alt-
ernate

Other

bytes

media

time

bytes

system

time

bytes

peak/
time

, .time/distance

J .bytes/distance

peak/
time

The costs for storage of information will
be associated with the type of media used and

the space occupied. The alternate metric of

bytes may be the way that space is defined as

opposed to tracks, tapes, etc. For the purposes
of this discussion, it really doesn't matter.
What does matter is how to relate the investment
made in storage to how it is used to satisfy
users' information needs.

Database management costs should include
all the l/S resources needed to get information
into and out of storage. The kinds of resources
used will include CPUs, disk and tape devices,
controllers, and various software and operating
subsystems. The important thing is that the
database management costs will be associated with
the time that an I/O system is used, the amount
of time that a device is used, or — with the
advent of cache memory devices — the time that
cache is used. This would also apply to any
other media such as mass storage or tape devices.
These costs (not to be confused with storage
costs) are for the retrieval of information as

opposed to the cost of storing the data.

The data processing cost, as mentioned
before, is directly associated with the central
processor and its operating systems, personnel,
and other overheads. It may also be associated
with the distributed processors, which are very
easy to cost since they are fully located in

user departments. This is especially true in

governmental organizations, whose procurement
policy makes it much easier to purchase micro -

or minicomputers within an organization.

The transfer costs are comparable to tele-
phone costs and must represent the amount of time
that a communication link is used. This link
should also include the distance characteristic,
because communications costs go up proportionately
with distance.

186

AUTOMATING CONFIGURATION MANAGEMENT

Enrique G. DeJesus, ILt USAF
Craig J. Riesberg, ILt USAF

HQ MAC/ADCI
Scott AFB, 111. 62225

The ability to manage Software and Hardware Changes at remote sites is one
of the most critical components in any computer network. Four major elements of
configuration management are addressed: Change Control, Validation Testing,
Inventory Management and Software Distribution.

The first element. Change Control, provides a complete audit trail
(document tracking) of change requests from conception to implementation,
regardless of origin (self or user initiated). The control includes, but is not
limited to, automatic numbering, cataloging incomplete requests and journalizing
historical data upon completion.

The second element, Validation Testing, provides for internal software
driven flexible benchmark type testing; or an external remote terminal emulator
which again uses the flexible benchmark concept but adds stress testing
capability.

The third element. Inventory Management, deals with the particular
applicability of the change to the site taking into consideration the hardware
configuration.

The fourth element, Software Distribution, handles automatic shipment of
bundled software to sites configured on line. Further, it provides automatic
preparation for shipment via the most expeditious means available to sites not
accessable through the computer network.

Key-words: Change control; inventory management; software
distribution; validation testing.

1. Introduction

Most federal agencies and civilian
organizations rely heavily on their computer
networks to accomplish daily operations. With
the current impetus toward distributed
processing, changing bundled software at remote
sites becomes an ever increasing problem. Not
only is it necessary to transfer new software to

the geographically separated locations, it is of

utmost importance that the software perform as

expected. In today's rapid-paced data
processing environment, operational systems rely
on timely and adequately tested software. This

paper discusses a system which: 1. allows
users to request changes and enhancements
and at the same time provides the host
organization the means to control those
requests (change control), 2. tests the

newly-created software prior to field
implementation (validation testing),

3. allows the host organization to control
the software and hardware inventory in the
field (configuration management) and
H. provides various means for the
distribution of bundled software (software
distribution). The system is modularized
so that any organization can implement any
module independent of any other.

187

2. System Overview

The entire process of changing software at

remote sites can generally be broken down into

eleven distinct and separate steps (see

figure 1). In order to provide reliable
software these steps must be followed in precise
order. While several of the operations are

outside the scope of the automated distribution
system the operations are enumerated to give
the total view. Each step is listed along with
its place in our system.

1. Identification of Requirements
Performed by the user or system builder who
identifies a new requirement or the need
for an enhancement (outside of system).

2. Control of Requested Changes
Performed by the software control agency,
possibly with their order of importance
(change control).

3. Evaluation of Request - Must be an

independent organization or individual to

remain objective as to cost versus expected
gain (outside of system).

4. Analyzing and Coding New Software -

Performed by host organization personnel or

contracted to a software agency (outside
of system).

5. Development Testing - Conducted by a

group supporting the writers. May only
test the new software in a stand-alone mode
without testing its interaction with other
systems (outside of system).

6. Documentation of New Software
Performed by writers (outside of system).

7. Verification of Documentation
Performed by the software control agency.
Determines if new software changes are

supported in the user' s/operator' s manual
(outside of system).

8. Software Bundling - Performed by the

software control agency. Will use source
programs to provide bundled software for

various types of machines (inventory
management)

.

9. Release Testing - Performed by the

software control agency. Will test the
interaction of new software with other
systems by a benchmark or through the use
of a remote terminal emulator (validation
testing)

.

10. Distribution - Performed by the

software control agency. Forwards the

bundled software to the sites via available
and reasonable means (software
distribution)

.

1 1 . Historical Documentation - Performed
by system maintainer. Shows new changes
and modifications to the existing system.
A continuation of item number 2 (change
control)

.

3. Change Control

Software changes can be triggered by new
user's requirements or problems encountered
during normal logic execution. In either case,
it is one of the forces that can affect the
operational integrity of any computer system.
These changes are usually organized in documents
which serve as the official voice of the new
requirements or modifications needed. These
enhancements must be approved by the software
control agency before they can be passed to the
appropriate working agencies.

It is extremely critical that the software
control agency maintain an audit trail of the
software enhancements being worked or already
worked within the system or systems under its
control. By the tracking of these documents,
the software developer is kept informed of
enhancements or changes that need to be

accomplished in order to meet the user's
corporate requirements. On the other hand, the

document originator receives two levels of
acknowledgement. First, the software control
agency approves the request and passes it to the
software developer. Second, after the
requirement or fix has been satisfied by the
developer, the result is a software release to

the controlling agency with the appropriate
documentation. This release is then passed back
to the document originator. The change control
module of our system will allow for: 1. the

automatic numbering of documents,
2. transmission and acknowledgement, and

3. historical data management (see figure 2).

Once a software enhancement has been
identified the user will have the capability to

perform an online software change request. The
automatic numbering module will accept the

change request assigning a unique number. By
this number the system will be able to determine
the document originator, system or subsystem
affected, software developer, priority and the
agency which will receive the new release. As
soon as the document is accepted it will be
passed to the transmission and acknowledgement
module. This module is responsible for the

electronic transfer of all active change
requests to the respective software developer's
working agencies. In addition, upon arrival of

the software release package from the software
developer, this module will update the change
request database in accordance with the

documentation provided in that package. The

historical data management module will provide
housekeeping reports of change requests overdue
or outstanding for any period of time.

Furthermore, it can supply the administration

188

ELEVEN STEPS IN SOFTWARE CHANGE

IDENTIFICATION OF

REQUIREMENTS
HISTORICAL

DOCUMENTATION

CONTROL OF
REQUESTED CHANGES

DISTRHil TKjN

EVALUATION OF
REQUEST

RELEASE TESTING

ANALYSIS AND
CODING

DEVELOPMENT TESTING V ERIFICATION OF
DOCUMENTATION

DOCUMENTATION

Figure 1. Steps in Software Change

189

CHANGE CONTROL FUNCTION

REQUIREMENT
IDENTIFICATION

OF SOFTWARE
PROBLEM

OUTSIDE
DISTRIBUTION

SYSTEM

OUTSIDE

DISTRIBUTION

SYSTEM

DEVELOPER
RECEIPT

CONTROL

DEVELOPER
SOFTWARE

RELEASE DOC

DISTRIBUTION SYSTEM

AUTOMATIC

NUMBERING

TRANSMISSION

OF DOCUMENT
TO DEVELOPER

DATABASE

SOFTWARE
RELEASE

ACK FUNCTION

HISTORICAL

DATA
MANAGEMENT

MAN HOURS
COST ON

COMPLETION

CHANGE CONTROL

'ON-LINE RECEIPT

CONTROL)

SUBSYSTEM

INVOLVED

(STATUS)

J

Figure 2. Change Control

190

with total or partial cost of software
enhancement or system development.

H. Validation Testing

The Validation Testing module of our
distribution system is designed to exercise and
verify the newly created software against the
system or systems affected.

Exhaustive testing of the software to be
released is the key item for a successful
implementation on the computer network. Our
proposed system will: 1. build and maintain
test scenario files for all systems specified,
2. perform external or internal system tests,

3. report to the test director using
online/report (hard copy) modes of the test
findings and 4. evaluate the performance of the
software during the preceding test (see
figure 3).

In order to effectively test a software
release, we need to organize a baseline of all

the transactions allowed in the system or
systems in question. This baseline must
identify the transactions in three major areas:
software function performed, input data and
expected output. The first function on the
validation testing module allows the creation of
a transaction driven test scenario with the
capabilities of performing online additions,
modifications or deletions of transactions
already established. The accuracy of the
contents of such scenarios will be the critical
factor for a valid test evaluation and a

successful implementation of the released
software on the network.

Another element that needs to be taken into
consideration when building the scenario file(s)

is the system test database(s). Cost versus
reliability might be a factor when determining
the size and contents of the test database.

Once the scenarios are built, they are

executed in the second function of the

validation testing module. The execution of the

test scenarios might be external or internal to

the system(s) under test depending upon the host
organization resources. The external driven
test will use a Remote Terminal Emulator (RTE)

as the test driver. The RTE will be loaded on

hardware outside the system(s) under test

environment, eliminating the competition for

system resources once the test has been started.

Some advantages in using the external test mode

are the network operational simulation of inputs

through the physical communication lines allowed
in the 3ystem(s) under test and the ability to

perform stress test not only on the system under

test but on the network itself. A disadvantage
might be the cost of the additional hardware

used by the RTE to drive the system(s) under

test.

The internal driven test uses a software
test driver to validate the release. The
software driver shares the system(s) under test
resources and passes the transactions specified
on the test scenario file(s) in a single
threaded mode to the appropriate application's
software.

Both testing methods mentioned above,
external and internal, will validate each and
every output received from the system(s) under
test against the baseline output specified by
the test controlling agency in the system test
scenario file(s). Any mismatches are reported
to the online test director's device established
at the beginning of the test. This is the
primary role of the third function of the
validation testing module. The test director
will have to make a decision concerning the
test. Possible alternatives are: 1. continue
the test, 2. retry the transaction that caused
the mismatch, and 3. restart or stop the entire
system test. Particular attention should be
given to the system under test's database(s)
when deciding further actions after a

transaction mismatch is detected.

The successful execution of the system(s)
test scenario will provide high confidence in

the operational reliability of the released
software once loaded on the network.
Furthermore, after the test of the operational
capability, our validation testing module will
spawn a Computer Performance Evaluation (CPE)

package as the last validation function. During
the execution of the system(s) scenario test
file, CPE data can be collected and stored in
different medias (e.g. tape or disk) so that
elapsed times for different functions
(transactions) can be analyzed and compared with
previous CPE results. Service times (the time it

takes application software to work a requested
function) as well as Response times (total
elapsed time from user's terminal to

application's software and return) can be
analyzed so that unexpected results can be
evaluated prior to release.

Other levels of validation might be
performed in addition to the four functions
described. One such validation might be
performed on the documentation provided by the
software developer in the software release
package. For example: the system operator's
manual can be inspected to insure that new error
messages or system commands are included in the
package.

5. Inventory Management

One of the largest problems in business
management is knowing what goes where and who
gets what. Management of computer resources is

no exception. The Inventory Management section
of our system is designed to provide a complete
inventory, both hardware and software, of each

191

VALIDATION TESTING

SOFTWARE
RELEASE
PACKAGE

DISTRIBUTION SYSTEM BUILDAJPDATE

SCENARIO(S)

FUNCTION

SCENARIO

DATABASE/

(OUTSIDE THE SUTs
ENVIRONMENT)

EXTERNAL
(STRESS)

SCENARIO 1^
DATABASE/

T
REMOTE TERMINAL

EMULATOR

VALIDATION TESTING

INTERNAL
(SINGLE

THREAD)

(INSIDE THE SUrs
ENVIRONMENT)

^ r

SCENARIO
DRIVER

SYSTEM(S)

UNDER
TEST

(SUT)

"M SCENARIO

DATABASE/

A

T
CPE

EVALUATION

DOCUMENTATION
PACKAGE

VAUDATION

Figure 3. Validation Testing

192

individual remote site. By utilizing the
information gathered and stored by the inventory
management module, the system is able to
determine compiling and bundling requirements
for various types of machines. This information
is also shared with the distribution module
during the shipping phase of a software release.
Since it is information which is shared, the
inventory management module allows for the
storage of information to be used by other
modules (e.g. site addresses for the
distribution module which will be used to
prepare mailing labels). The inventory is

broken into two distinct divisions; hardware and
software (see figure 4).

Effective hardware inventory management can
provide help in at least three different areas.
These three areas; system documentation, cost
analysis and capacity or upgrade planning are
intricately interwoven in the inventory manage-
ment module. Each area can be developed as
needed beginning with system documentation.
System documentation provides the basic
information needed about any remote site. It
provides a list of what is currently available
at the site in regards to CPU, memory, work
stations and peripherals connected. By
combining system documentation along with
purchase, lease and maintenance contract costs
the inventory management module can provide cost
analysis data for any given site in any given
configuration. After including more information
concerning the given systems maximum capacities
regarding memory and peripherals, it can provide
a type of capacity planning as well as cost
factors to support an upgrade to a higher
capacity.

Software inventory management, while
providing report generation capabilities, is

used primarily by other modules of the

distribution system. The validation testing
module uses the software inventory to determine
which configurations need to be tested when new
software is released. By maintaining a list of

bundled software for each site, only those
configurations vrtiich will ultimately receive the

new software v;ill be tested. It is also through
this module that the releasing organization can

accurately estimate the amount of time necessary
to bundle, test and distribute new software.

The software distribution module utilizes
the software inventory in conjunction with the

hardware inventory to determine which sites will
receive the new software releases after it is

successfully tested. As stated earlier, it not

only determines which software is to be released

but which mode of transmission will be used to

transport the software. The inventory

management module maintains site addresses for

postal and electronic mail.

By examining hardware and software

inventory at sites containing more than one

machine of the same make, it may be possible to

reconfigure one of those machines so that two

different systems could be run on it in a
degraded mode. This hybrid backup system would
be extremely useful in keeping an essential
system operational during a period of machine
failure. It could also be used to provide
service during the relocation of a system.

6. Software Distribution

The software distribution module of our
system is responsible for the automatic shipment
of all new software after it has been bundled
and tested. It insures that all remote sites in
the network receive the version of the new
software that is compatible with their hardware.
The actual distribution of the software lends
itself well to automation because it is

generally repetitive work. Unique features of
the distribution module include the following
capabilities: 1. distribution to an operational
test site prior to general distribution, 2. use
of different modes of distribution based on the
urgency and size of the released software,

3. inclusion of instructions on how to load and
operate the new software and 4. automatic
acknowledgement (see figure 5).

The first feature, the ability to

distribute to an operational test site, is

almost an extension of the validation testing
module. In the validation testing module the

new software has been rigorously validated
against a test scenario. However, certain
aspects of the new software, such as overflowing
storage tables and indexes can only be exercised
in an operational mode. Distributing the new
software to an operational test site provides
this additional mode of testing prior to its-

general release. If different sites execute
different portions of the software, multiple
sites can be chosen and controlled by the
distribution module. After a specified period
of time, such as 30 days, if there are no
problems with the software it will be

automatically released to all applicable sites
in the network. An additional benefit of the

operational test site is that it allows for the

validation of loading instructions and
user's/operator's manual by field personnel
prior to general release.

The second feature is the capability to use

different modes of distribution based on the

urgency or size of the release. Determining the

mode of distribution will generally require an
analysis of need versus cost. Generally, the

fastest method of distribution will be the most
costly. Available means of distribution include

but are not limited to; physical distribution of
tapes or disks and distribution via electronic
mail or direct communication links.

Most releases will be of a routine nature
and can be accommodated by a relatively simple
distribution system. In its most elementary
state the system will copy the new software to a

193

INVENTORY MANAGEMENT FUNCTION

SOFTWARE
RELEASE
PACKAGE

DISTRIBUTION SYSTEM INVENTORY MOT

INVENTORY
DATABASE

MOT

HARDWARE
INVENTORY

HARDWARE
CONFIG"

LIST

COST
ANALYSIS

DATABASE SOFTWARE
INVENTORY

SOFTWARE
CONFIG
LIST

SITES

CONFIG
TABLE

CAPACITY
PLANNING

BACKUP
CONFIG
TABLE

Figure 4. Inventory Management

194

SOFTWARE DISTRIBUTION FUNCTION

SOFTWARE
RELEASE
PACKAGE

.SUFTWAKE

RETURNED
TO

DEVELOPER

DISTRIBUTION SYSTEM
OPERATIONAL
TEST SITE

VALIDATION

SOFTWARE DISTRIBUTION

BAD

Figure 5. Software Distribution

195

I

magnetic tape or disk, providing one copy for

each site that is to be a recipient of the new
software. It will then print a mailing label

and a set of loading instructions for each site.

The main advantage of this method is that it can

handle the largest releases, including
completely new operating systems. Additional
advantages are that it minimizes shipping costs

and the updated user's/operator's manual can

accompany the software release package. The

main disadvantage is that it is slow in moving
software to the remote sites. Part of this can

be attributed to the need to generate one copy
for each site, and partly to the available means
of transportation to remote sites, especially
outside the continental United States. The copy
and forward method can also be used to transfer
hybrid backup systems (see inventory management)

to be used during system failure.

The second type of distribution is for time

critical emergency releases. This type of
distribution utilizes the existing communication
links of the system or some special link to

quickly transfer the new software to a

particular site. Other factors to be considered
when selecting this method include the size of

the release, the number of sites which must

receive it and the availability of the

communciation link for an extended period of

time. The main advantage of this method is its

speed. Emergency patches to software can be

quickly transfered along with the loading

instructions. Another advantage is the use of

the networks own communication system to

transmit a single copy to all remote sites

concurrently. The main disadvantage is the high

cost to transfer over long distances to numerous
sites. Other disadvantages are that the network
itself must be operational and that a large

release could tie up the communications link for

an extended period of time.

The next feature is the software

distribution module's capability to incorporate
instructions into the release package. While

the receiving site may have the knowledge to

load its own software, this seemingly
insignificant capability allows the sender to

furnish specific instructions for each site.

The loading instructions can have a significant
impact on the software's usefulness. For
example, new software might be time sensative -

simultaneous loading of new communication
software may be required at all sites - loading

at any other time may cause edit errors and

incorrect updates.

The final feature to be discussed is

automatic acknowledgement. Two types of return
acknowledgement should be built into any system.

The first is acknowledge-ment of receipt of the

new software. If the distribution was through

the network's communication links this can be

automatic; otherwise, the receiving site must
manually trigger a return message stating when
the new software was received. It is important
for the releasing agency to have a historical

record of when and how each release was received
j

by the remote sites. The second acknowledgement
is generated by the remote site. It is an
informational message telling the distributing
office that the remote site has complied with
the instructions and is or is not currently
using the new software. If the remote site
encountered any problems in loading or operating
the new release they may also include narrative
description of the problem in this message.
This return information is stored by the
software distribution module for a specified
period of time.

I

7. Concluding Remarks

Any large organization deeply involved in

distributed processing would benefit from an
automated configuration management system.
After determining the need, but realizing that
the resources are limited, the next question is
logically "Where should we start?". Because
operational sites are so dependent upon the host
for valid software and because the organization
itself may not survive without online data
processing, the validation testing section is

our choice for initial development. It assures
the distribution system that the software being
released is worth the effort; however, it is

hard to distribute the software without knowing
who needs it. For this reason we chose the

inventory management module as the second step.

The inventory management information must be in

a format readily available for software
distribution; therefore, it is natural for

these two units to be developed concurrently,
leaving change • control as our last effort. ,

Regardless of order of development, each module
should be as independent as possible to allow
for future enhancement and redesign.

196

The Terminal Probe Method Revisited.
Some Statistical Considerations.

Luis Felipe Cabrera

Departaraento de Ciencia de la Computacion
Escuela de Ingenieria

Pontificia Universidad Catolica de Cnile
Casilia 114-D

Santiago, Chile

Abstract

The Terminal Probe method has recently been used to compare
selected performance indices of different interactive computer
installations. Since these comparisons nave been done under the
"natural" work load of the systems several validity questions
arise.

In this paper we present results which summarize our
experience in It) systems with more than 11.000 measurements made
over a span of two years. We analyze the empirical behavior of
response time and find system independent statistical properties
which enable us to attain predetermined confidence intervals for
our values. Moreover, we have found a family of statistical
models which fit our data in a comprehensive way: not only the
mean and variance of our response time distributions are well
approximated but the modelled distributions fit the observed
ones. Thus, ordered statistics can also be obtained.

We may now control the data gathering period better, and,
what is more, we have a predetermined statistical confidence in
our curves. Thus, the robustness of the method is justified for
compar isons

.

Key words: Benchmarking; generalized linear models,
installation comparisons; linear predictor; performance;
performance indices; terminal probe; UNIX operating system;
work load estimators.

1.0 INTRODUCTION

This research was supported in part by
the National Science Foundation grant
MCS-8012900 and by a Pontificia Univer-
sidad Catolica de Chile research grant
DIUC 47/82.

Over the years the so called
Terminal Probe Method has been utilized
in a variety of contexts. Indeed, not
only it has been used to assess a

197

specific configuration under a
controlled work load, but there have
also been studies which use it as a tool
for comparing different installations
operating under their "natural" work
loads. Thus, questions regarding
representativity and validity of these
comparisons have been posed. These
questions have remained unanswered.

In this paper we will present a
study which shows that there exist
system independent statistical
properties of performance data, gathered
using the Terminal Probe method, which
enable us to draw firm conclusions from
studies based on approximate work load
estimators. Moreover, the study also
shows how one can limit the data
gathering period and how one may select
some predetermined values of the work
load estimators as sole objects of
measurement, thus reducing the method's
overhead even more.

Our results are based on 11,813
measuremnts taken on 10 systems over a

span of two years. All of the systems
were presented with the same portable
benchmark which runs on any UNIX system.
Even though our benchmark gave us three
"time" measurements; user, system and
response time, we have limited our
discussion to response time.

Section 2 briefly explains the data
gathering method and the systems
studied. Section 3 gives a study of the
correlations observed between our work
load estimators. Section 4 summarizes
our study of the response time
distributions, as functions of our work
load estimators. Section 5 introduces
our main statistical tool, the
generalized linear models, and presents
the approximations obtained with GLIM.
Finally, we present our conclusions in
Section 6.

2.0 THE DATA GATHERING METHOD AND THE
SYSTEMS MEASURED

All of the installations used for
our measurements run versions of UNIX
operating systems. UNIX is a trademark
for a family of operating systems
developed at Bell Laboratories over the
last 14 years [11,14]. In 1969 a first
version was implemented on a PDP-7, and
since then they were ported to PDP-lls,
VAXes, IBMs, Amdahls, Interdatas, NCRs
and others. In 1979, a group at the
University of California at Berkeley
implemented a paged virtual memory

extension to UNIX for the VAX [1], which
is now part of what is known as
"Berkeley UNIX". Most of our
measurements were done in this last type
of system.

On logging in in a UNIX system each
user is assigned a special process
containing a command interpreter, known
as the "shell" [3], which listens to the
terminal. The shell parses the input
line and decodes the command requested
along with its flags and arguments.
Then it execs the command. Shells may
also read commands from files. Thus
users may define sequences of shell
commands, known as shell scripts, and
store them in files for later
invocation. The versatility of these
scripts is greatly enhanced by the fact
that the shell language also contains
control-flow primitives, string-valued
variables and arithmetic facilities.
Since UNIX automatically handles all
file allocation decisions, the
portability of these scripts is greatly
facilitated

.

The strategy for monitoring
responsiveness of each system was the
same as that used in [41. It consists
of running a script which has a set of
predefined benchmarks together with
commands which gather statistics about
the work load and measure the time it

takes the benchmark to terminate. The
script runs periodically in a totally
automatic way. Each time the script
cycles through its commands, it executes
a "sleep" command that suspends its

execution and then wakes it up after a

predetermined number of seconds. We
decided to use the time command because
of our commitment to use standard UNIX
tools. Time has a rather low resolution
and truncates, it does not round off.

More details can be found in [5,6].

This data gathering method can be

categorized as a time-sampling method

[9] and is in fact very similar to

Karush's terminal probe method [10]. By
using it with a system in normal
operation one evaluates the performance
of an installation.

Table 1 presents a summary of the

number of measurements for the various
systems. Hardware changes were made to

an installation in some cases. For

statistical reasons we had to consider
the systems which existed before and
after the change as being different.
(For example, in Table 1 VAA and VAB
correspond to two such systems. This
change, a fairly trivial one, was the

addition of some ports to the

installation.) The most important

198

System : No. of Measurements

VI 3427
P7A 3206
VM 1467
P7B 1016
VAA 844
Vv, i

VB : 435
P4A : 301
P4B : 235
VAB : 91

Total : 11,813

Table 1: Systems measured and
the number of observations.

mnemonic element in the names is given
by the first letter. Those names which
begin with a P are PDP-11 systems.
Those with a V are VAX systems. All
VAXes are 11/780, [7]. If a 7 appears
it means 11/70 and a 4 means 11/40.

There were a total of four
different installations, three at the
University of California, Berkeley, and
one at Purdue University. Those
measurements labeled VC come from
Purdue, where the VAX 11/780 had, at
that time, a configuration with 3M bytes
of main memory, 56 ports, three RM03
disk drives on Massbus 0 and one TE 16
tape drive on Massbus 1. Measurements
from P4A and P4B came from a PDP 11/40
which had 200K bytes of main memory, one
DIVA disk controller and three DIVA disk
drives with 50M bytes disks. This
installation had 23 ports and no
floating point arithmetic unit. The P4B
measurements were made on the
installation without a cache memory, and
the P4A with a 2K cache memory. The P7B
measurements were made on a PDP 11/70
with 1.3M bytes of main memory, 2K cache
memory, one DIVA disk controller with
four DIVA disk drives and an RS04 fixed
head disk used as swapping device. This
installation had 81 ports. The P7A
measurements were made on the same
installation with 2M bytes of main
memory and where the drum was used for
storing temporary files instead of as a

swapping device.

All of the other measurements were
made at the same installation which went
through sucessive changes. VB was an

11/780 with 512K of main memory, two
RP06 disk drives, one TE 16 tape drive
and 16 ports. This was a "swapping"
UNIX system. VAB was the same
installation but running a paging
version of UNIX. VAA was VAB with 8

more ports installed. VM had 2M bytes
of main memory, 2 RP06 disk drives, two
CDC 300M byte disk drives and 32 ports.
VI had 4M bytes of main memory, 4 RP06
disk drives, two CDC 300M byte disk
drives and 72 ports.

3.0 CORRELATIONS AMONG WORK LOAD
ESTIMATORS

Throughout our data gathering
period we ran a script which contained
three basic tasks: a C compilation, a

CPU bound job and a text formating job.
We also measured three work load
estimators: the number of users logged
in (nu) , the number of processes in the
process table (np) , and the number of
active users (nau) . Nau was obtained by
counting the number of ports which had
more than one process associated with
them. This generated a bias in systems
where there were several deamons
running, but no correction was made
because the same number existed during
the entire data gathering period. We
also measured the global response time
of this mix, which we called script.

At a latter stage, and only for the
systems VI and P7A, we appended two new
tasks to exercise aspects of the systems
which were found not to be well
individualized. These tasks did not
alter the measurements taken of the
initial mix. They were a copy of a 60K
byte file within the same disk, and an
editing session involving a series of
commands made to a 60K byte file.

The choice of these portable work
load estimators has been documented
[4,5,6]. Nevertheless, their
correlations were now studied. As they
are related to each other, it was of

interest to decide if we could explain
the same phenomena with just a subset of
them. Table 2 presents the results
obtained for the correlation
coefficients corresponding to all the
measurements in each system.

From Table 2 we observe that there
exists substantial correlation between
the different pairs of estimators.
These coefficients are certainly larger
than those observed in the social
sciences, which are on the order of .4,

199

System ! Correlation Coefficients

— . nu vs nau
. — ! nau vs np

•

! nu vs np

VI : .899 : .799

. .

: .689
P7A : .917 : .849 : .791
VM : .880 : .854 : .783
P7B : .946 : .903 i .884
VAA : .852 .838 ! .746
VC ! .881 : .769 : .686
VB .842 : .855 .771
P4A .677 .828 . .660

.410 .345 .470
VAB i .492 .906 : .606

Table 2: Correlation coefficients between work
load estimators for the different systems.

and smaller than those obtained in
economics, which are on the order of
.95. Moreover, we also see that the
pair which tends to be less correlated
is nu vs np, which suggests that these
two estimators measure different aspects
of the work load. We also observe that
for P4A and VAB, nau and np are much
more highly correlated than the other
two pairs. In Section 5 we shall see
that for most systems and tasks, nau
adds no significant additional
information to that given by nu and np.

Using the SPSS facility called
SCATTERGRAM [13], we were able to plot
response time for our different tasks as
an individual function of each of our
work load estimators. Moreover,
scattergrara also gives us an idea as to
how each cross section distribution
looks. It is unfortunate that it prints
values only through the digit 9, but
further analysis enabled us to plot the
exact histogram, and hence the observed
shape of each distribution. We shall
discuss this in Section 4.

Sc'ttergrai'i ot

235,00

(<)0*n) PES?
3.50 6.50 9.50 13.50 15.50 id. 50 31.50 24.50 27.50 30.50

312.30 *

I
I

1»9,40

I
I

166.60 *

I
143,80 *

I
I

131,00 *

1
9S.20 *

39. «0

7,00

75,40

S2.60 *
I
I
I
I

I

I
I
I
J

00 5.00

9 9
9 9
9 9
9 9
9 9

'e.oo'

) 9
J 9
S 9
} 9
9 9
) 9 5

'11, oo'

: I

2 I

3 2

?7 ?!' ?8?

3 3

3 3

14,00 17,00 20,00 33,00 36.00 39.00 33.00

Figure 1: System VI. Scattergram of the task man man.
Nau (AUSER) versus rt (REvSP)

.

200

Sc«ttct9r«ni oi

395,00 *

I
I
I

212.20 *

(tfonnj FESP
2.00 o.OO 10.00 14.00 le.oo

(across) nusepS
.00 36.00]0.00 14.00 3S.00

I
I

189.40 *

\
I
I

166.60 *

1

143.(0

131.00

7.00

I
I
I

98.20 *

Z
I

7S.40

I
I

S3. 60
I
I

29.80 *

I
I
1»
*4

n
4 4
6 e
9 9

2 5
9 9
9 9
9 9
9 9

9
9 9
9 9
9 9
9 9

11
i ,
9 9
9 9
9 9
9 9
S i

2 •
• 4

5 7
5 4

• 2

2 •

• 2

2 •

2 •

3 6
3 <
4 6
4 •

II \l

3 3
2

4.00 e.oo 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00

Figure 2: System VI. Scattergram of the task man man,
Nu CNUSERS) versus rt (RESP)

.

In Figures 1, 2 and 3, we display
the scattergram of one task measured in
system VI, the text formating one called
MAN MAN. The over all shape observed

here was typical of each scattergram we
made. nau (AUSCRS) always tended to
produce more compact distributions and
np (PROCEC) had a larger range.

(e«ttcr9r«ir

335.00

Oi
.40 2.70 90.50 98.30 106.10

(•cross) FPCCEC
113.90 131.70 139.50 137.30 145.10

313.30

I
I

tl».40 *

Z
z
z

t66.60 *

14), 80 *

131.00

98.30

75.40

S3.60

39.80

7,00

• 3

3 •
2 5 22

3*
•2

•256 •44
•••35
721* 499

1 45 4^75 516
• •• 4 3295 9o09 9''9

• 275 496 6469 39T9 b'>3

22 'ZS 846 9999 9919 999
• 34 5996 999 9999 9999 909
4 499 9999 999 9999 «919 9'59

99 999 9999 999 9999 9999 935

78.80 86,60 94,40

2«

• 2

2 2
• 2< ••
••7 •••

5?32
6^b2
B542
2 332
936
9676
9999 796
9999 999
7499 996
9989
9999

• 22
•3«
•24

VI
23«
3««
6e6
456

2
2«

• *•
• 3

2334
•234 223
• 4 322

32*3
56 36
3442
5653
4452
4443 .

7555 .24
3552 734

598 5549 30
995 64»3 • 2

322
22
• •3
••3

254

223 ^2^

102.20

2 2

• •
2
2«
2»
22»

• ••
2 ••
2^
2«»^
23^2
3«»2 •2
2 4 •
2*22 •
323 ••

3»2« 222
2* • •
2334 2
4^2« •
•• 2

• 3«« •
• 2

2"
2 •

2
«

2«
«

3 •
•2

<22

IIo*oo' 117,80 125.60 133.40 141.20

•1«

149.00

Figure 3: System VI. Scattergram of the task man man.
Np (PROCEC) versus rt (RESP)

.

201

Two very important observations
should be made from these figures.
First, the variance of the response time
distributions increases as the work load
estimator increases. Second, the
distributions show a large degree of
skewness towards the larger values of
the work load estimators. This means
that large upper "tails" were observed.
These two statistical characteristics of
the behavior of response time applied
consistently to all systems and tasks in
scr ipt

.

Figure 4 has the scattergram of nu
(NUSERS) versus nau (AUSERS) observed in
system P7A. The most interesting
statistical feature of it is the
existence of two clouds. The principal
one, (i.e., the one in diagonal), was
typical of all of these scattergrams

.

It graphically shows why the two
estimators have such a high correlation
coefficient. The secondary cloud, that
parallel to the horizontal axis, is a

small cluster of points which depicts
the system with a large number of users
logged in but very few doing work. It
must be said that this did not occur
often, because there are only 30 such
measurements out of the 3206 we had for
P7A. Most systems did not exhibit such
a distinguishable secondary cloud.

3.1 Robustness Of Our Correlation
Coefficients

The correlation between work load
estimators is a function of the working
habits of the installation's user
community. Table 3 presents the
correlation coefficients obtained from
random subsamples in all systems. The
size of the subsample and its percentage
of the whole sample are indicated.

By comparing Table 3 with Table 2

we see that there is indeed great
stability in these numbers. Another
remarkable fact is that all relative
orderings between coefficients are
preserved. In each system the ordering
of the correlations coincide. This
clearly indicates a high degree of
continuity in user habits. On the other
hand, some hardware changes do bring
different bahavior patterns as can be
seen with P4B and P4A, VAB and VAA.
From an overall analysis of the behavior
of each installation which underwent
hardware changes, we were able to detect
changes in the user habits only when the
hardware additions significantly altered
the responsiveness of the system at all
levels of the work load..

ecatttrsret of Jdo»n) *'JSfP„
j^^jj ,9.95 25,65 ^ .iinC!!,.h;°L.*..";"..*.'"J"--»«"-^-'"*l

SI. 00 t 1

«6.10

4t,20

36.30

31.40

3«.50

31.10

16,70

11. kO

11.40 17,10 22. 8C

Figure 4: System P7A. Scattergram of nu (NUSERS) versus
nau (AUSER)

.

202

No. of : % total : Correlation Coefficients
System , meas. : meas. ; IIOU Vw tl^ «

nn vs no

VI 1708 49.78 .896 ! .785 : .668
P7A 1471 49.71 ; .909 : .849 ; . 795
VM 740 50.04 .880 ; ,860 ! .789
P7B 515 50.06 . 948 .899 .885
VAA . 425 50.03 .842 .821 .740
VC i 398 50.31 .887 .776 .684
VB : 225 . 51.72 ! .836 .861 : .769
P4A ! 156 : 51.65 ! .705 : .834 . .698
P4B ! 114 i 48.30 : .384 ! .343 : .489
VAB : 39 : 42.85 ! .339 : .856 : .481

Table 3: Correlation coefficients of subsamples.

3.2 Data Of Two Systems Mixed Up

As a case in point for always doing
visual analysis of the data we present
Figures 5, 6 and 7. A small hardware
change, the addition of 8 ports to an
installation, had gone unnoticed. We
had labeled this system VA. Even though
this change may seem unimportant. Table
4 shows the effect it had in the
correlation coefficients. The
regression analysis was affected
accordingly. The two resulting systems
were labeled VAB and VAA.

When analyzing Figure 5 we noticed
and traced the hardware change. In the
data for VAB and VAA we saw that most
correlations improved. Moreover, the
pair nau and np showed such a large
increase that we chose it for display.
Figure 6 has the scattergram for VAB and
Figure 7 that for VAA. The new
correlation values obtained for the two
systems were in greater harmony with the
other VAX measurements. The low value
obtained for nu versus nau in VAB may be
attributed to the use of software that
began running in that system at the time
[6,8] .

•eatttrorac at (<so»n) P?OCEC„
^ . _ , (aerofi) AUSEP

I * 2

7,50
I

44.00 *

37.00 1

36, JO «
I

SI, 00 *

1*,90
'

3

i \

\ \ \ \ %
4C,S0 «

!
• ' I f i j I i

1
•

*

13,S0 4

j
, ^ I

10,00 * % \ \ I

I

j • 2

1 I \III?

; ; 1

1
4 ;

j
It, 00 * ' *

1. 00
* "a. 40** * '5.80 * 5.30 " 6,60 1.00

' 9.40 * "lO.Jo" THjo'* '
13.

60** '*tS,6o

Figure S: System VA. Scattergram of nau (AUSER) versus
np CPROCEC") .

203

Sc«tt«r<3rair of ceo^n) FKlcfc (aeros) AUSEr
1 .55 2.b5 3.75 4.85 5.95 7.05 8.J5 9.25 - 10.35 . 11, «S

44.00
"**' "' '"" " """ • • •••• ••••

I

\

'

41. ao

I
J*,40 *

\ •

I « 2
19,60 *

I

92.i0 I

I 2

30.00 *

27.20 S 5

I « •
I
I •42

34.40 *
I • •
I 2

I 3 3 4

} S 2

I 3 •

18.80
I ^ 5
I
I S 4

i

I
16.00

^ *
f.oo" ""i.lo" '"3.20" "'4.30" ** 8.40** * *6.50*' '"7,60*" '"8.70" '"V.io" "totSo" "I2.S0

Figure 6: System VAB. Scattergram of nau (AUSER) versus
np (PROCEC)

.

Sc«tt«r«r.^ Of :^^ojn) PPC^EC^
^^^^ j^,^ ,^3, ^?7S'"'.*0.J0^

..ii-ll.,
30

51.00 *
I

48.80 *

I
I

46,60 *

44,40
I
I
I
I

43.20 t

I
I

40.00 *

I
I

17.80

35.60

I
I
I

33.40

3>.20 *

29.00 *

i.OO 2.40

9

"3. 80 5.20 6.60 8.00 9.40 10.80 12.20 13.

e

Figure 7: System VAA. Scattergram of nau (AUSER) versus

np (PROCEC)

.

204

Correlation Coefficients
System ; nu vs nau ! nau vs np nu vs np

VA .758 .759 .443
VAB .492 .906 .606
VAA .852 .838 .746

Table 4: Correlation Coefficients for mixed
up systems.

4.0 ANALYSIS OF Tti"^ RESPONSE TIME
DISTRIBUTIONS

In Section 3 we mentioned that the
scattergrams of the different tasks in
the different systems consistently
showed that the distributions for
response time had larger variances and
larger degrees of skewness for higher
values of the work load estimator.

Figures 8 and 9 are histograms,
obtained using minitab [16], of the
cpu-bound task in VI and the P7A systems
respectively. They correspond to the
measurements made when each of these
systems had 10 users logged in. When
done on a larger scale, with
consequently less clustering, they show
even larger tails. Inspection of these
histograms clearly shows that response
time does not follow a normal
distr ibution.

EACH * REPRESENTS 2 OBSERVATIONS

MIDDLE OF NUMBER OF

INTERVAL OBSERVATIONS
4. 0

g 53 *#****»***#*«#*****«*******

^2 28 ««#*********«*

is! 8 ****

g Q Q 'fr

24*. 4 **

28. 6 ***

32. 4 **

36. 4 **

40. 1
*

Figure 8: System VI. Clustered histogram of response
time. Task cpu-bound. 10 users logged in.

MIDDLE OF
INTERVAL

5.

10.
15.
20.
25.
30.
35.
40 .

45.
50.
55.
60.

NUMBER OF
OBSERVATIONS

2

44
19
1 0

6

1 2

5

5

1

2

2

1

**

**
**

Figure 9: System P7A. Clustered histogram o£ response
time. Task cpu-bound. 10 users logged in.

205

The ideal work load estimator is
that which exactly determines the
activities in a system. Response time
measured against an ideal estimator will
behave as a function; i.e., the
variance of the measurements is zero or,
in other words we always obtain the same
value. It is clear that our estimators
are fairly rough. Their main advantages
and interest arise from their easy
definition, their portability and the
low overhead involved in their
measurement. The problem then is to
find suitable statistical distributions
to fit our data from which we may obtain
estimations of our desired performance
parameters

.

A thorough analysis of our
measurements indicated that response
time may always be accurately
approximated by a Gamma distribution.
This distribution offers the appropriate
flexibility to adequately fit our data.
Our problems are then reduced to
characterize the distribution's
parameters. The problem is that we need
to fit one distribution for each value
of the work load estimator. We also
know that the variances are different.
In full generality this requires finding
too many parameters.

We then looked for possible
relationships between the first and
second moments of the observed
distributions. Much to our surprise we
found that there was a high correlation
between the mean and the variance.

Figures 10 and 11 depict the VAriance
plotted against the Average for the
systems VI and P7A (N7) . The
measurements were taken from the
cpu-bound task using nau (AC) as work
load estimator. The associated
regression analysis showed that in VI
92% of the variation in the variance
could be explained in terms of the
variation in the mean. This was 68% for
P7A. Other tasks and systems had the
same behavior and their values were
always above 60%. This empirical
relationship provided the final
complexity reduction needed to
appropriately fit a Generalised Linear
Model [12].

5.0 MODELLING DATA WITH GLIM IN FIVE
SYSTEMS

GLIM is an interactive package for
modelling data through generalised
linear models [2,12]. Its utilization
allows fitting different parameter
combinations to the data in brief time.
The theory behind the models is
presented in Section 5.1. From the
user's point of view, one defines a
dependent variable, yvar, which for us
corresponds to response time, and fits
its expected value in terms of other
observed variables. Whenever more than
one such observed variable exists, as in
our case where we have nu, np and nau.

VA VI
1 800.+

1 200.

+

600.

+

* * *

0.+ 4*2
+ +-
0. 20. 40. 60.

-+AV VI
80.

Figure 10: System VI. Mean versus variance . Taslc cpu-bound.
Work load estimator: nau.

206

VA N7
1 8000.

+

1 2000 .+

6000 .+

_ ««««««
_ « « «-36** *

0 . + 3 43 *

+ + + + +AV N7

0. 60. 1 20. 1 80. 240.

Figure 11: System P7A. Mean versus variance. Task cpu-bound.
Work load estimator: nau.

linear combinations o£ them can also be
fitted as in ordinary regression
analysis

.

Moreover, GLIM also permits
choosing the underlying error
distributions, and has different
modelling assumptions for each such
class. For example, normal errors are
assumed to have the same variance. This
is not the case for Gamma errors, where
the variance is assumed to be a fixed
multiple of the mean. The analysis
presented in Section 4 supports this

last hypothesis. Since we had observed
that the distibutions had gamma shapes,
and that the variances were directly
proportional to the means, we assumed
that GLIM errors were gamma.

The other degree of choice which
GLIM offers is the relationship, or
link, existing between the expected
value of yvar and the estimating
variables. Possibilities include the
identity relation, the inverse, square
root, and logarithm among others. If,

for example, one chooses the logarithm
relationship, then it means that the
values of the fitting model and yvar are
linked through the logarithm; i.e., the
expected value of yvar is the

exponentiation of the value given by the

fitting model.

It is well known that response time
as a function of work load estimators
behaves exponentially [4,5]. Thus the

logarithm link was used. As a criterion
for evaluating alternative fitting
models, we not only considered the

deviance given by GLIM, which is the

maximized likelihood, but also looked at
the sums of squares of the differences
between our estimation and the
observations. GLIM minimizes this in
the presence of normally distributed
errors

.

5.1 The Generalized Linear Models

Underlying the concept of a

statistical model for a random variable
is the idea that the variable under
investigation has a definite structure
which will explain the values actually
obtained as well as predict future
values. The structure is in fact a
description of the population and will
be mirrored in whatever sample we
obtain. It postulates that the variable
can be expressed in terms of other more
basic variables: the components of the
structure. If these latter variables
have fixed (though possibly unknown)
values they are termed systematic
components whereas if they too are
random variables they are termed random
components

.

Definition of a Generalized Linear
Model

Even though one may consider any
random variable Y, where y[i] denotes
its ith sample value, to be
representable by any combination of any
number of components, for most practical
purposes simple structures suffice. A
Generalised Linear Model (GLM) is

207

determined as follows. Let a set of
independent random variables Y[i] (i =

1, ... r n) have means u[i], so that

Y[i] = u[i] + e[i] .

Then there are three basic properties
which define a GLM:

The Error Structure

The probability density function of
Y(i] is given by p (Y [i]) »exp{ (Y [i] Q [i] -

b(Q[i]))/a[i] (F) + c{Y[i],F)} for
suitable choice of a[il, b and c. (Note
that F, termed the scale parameter, is
constant for all i.) The mean and the
variance of Y[i] can then be expressed
in terms of Q[il and F:

E(Y[i]) = b' (Q[i])

var(Y[il) = b"(Q[i]) * ati] (F)

where primes denote differentiation with
respect to Q.

For example the Normal distribution
is obtained by setting a[i](Q) » Q,
b(Q[i]) « 1/2 * Q[i]**2 and c(Yti],Q) =

-1/2 * {log(2TQ) + Y[i]**2/F], where F
would usually be denoted by sigma
squared

.

It is convenient to write b''(Q[i])
= t[i]**2, the variance function, which
is a function of u[i] only, so var(Y[i])
= a[i](Q) * t[i]**2 =» Q * t[i]**2 / w[i]
where the w[i] are called the prior
weights, and the functions a[i](Q) have
the form F/w[i]

.

The Linear Predictor

The role played by the remaining
variables in the structure of each
observation is expressed as a linear sum
of their effects for the observation,
called the linear predictor, n[i],

n[il = sum{j=l to p}x[i,j] * b[j]

where the x[i,j] are known and the b[j]
are (usually unknown) parameters. The
matrix X, of order n x p, is called the
design matrix. The righthand side of
the equation is called the linear
structure. If an x[i,j] represents the
presence or absence of a level of a

factor then b[j] is the effect of that
level; if x[i,jl is the value of a

quantitative covariable then b[j] scales
xti,jl to give its effect on n[i].

The Link Function

The relationship between the mean
of the ith observation and its linear

predictor is given by the link function
g[i] :

n[i] = g[i] (uti]

)

where the g[i] are assumed monotonic and
dif ferentiable. We define h[il where

u[i] = h[i] (n[i]

)

as the inverse of the link function.
Although each observation could in
theory have a different link function,
this is rare in practice and so the
subscript is dropped.

In summary, a particular GLM can be
identified by specifying the error
distribution of the random component,
the make-up of the linear predictor and
the function linking the means to the
linear predictors. All error
distributions must belong to the
exponential family.

5.2 Summary Of The Analysis Of Five
Systems

In this section we present the
results obtained using GLIM on the data
of five systems. We have chosen the
modelling of response time for the C
compilation task (cc) for display,
because of the relevance that the C
programming language has in all UNIX
systems [11,15). We display seven
linear models based in the three work
load estimators np, nu and nau.

Table 5 summarizes the deviances
and sums of squares of the differences
between the fitted points and the
observed ones. The values given by GLIM
have been divided by the degrees of
freedom of the corresponding samples to
take into account the size of the
sample. We have named these quotients
the normalized deviance and the
normalized sum of squares.

With the exception of P7A, we see
in Table 5 that in all systems the best
single estimator was np. In P7A it
turned out to be nau. We can also see
that the best estimator pair was np+nu.
Again P7A was anomalous in this respect.
The scattergrams for rt versus each of
our three work load estimators for P7A
show that there is a large degree of
variability. This system did not have
the kind of behavior observed in the
others which was akin to Figures 1, 2
and 3. Nau does group the measurements
much better in this case. The model is
correct when it gives nau as a better
fit than np.

208

System np
Linear Estimators

nu : nau : np+nu : np+nau : nu+nau : np+nu+nau

Normalized
deviance .1641 1719 .1914 .1483 .1587 .1783 .1484

VI
Normal ized
sum of sqr 24.47 25.66 26.79 22.22 23.26 26.68 22.22

Normal ized
deviance .4654 .3237 .3611 .3167 .333 .3135

P7A
.3085

Normal i zed
sum of sqr 910.9 360.3 347.5 357.5 347.5 347.7 341.53

Normalized
deviance .175 .1875 .1977 .1609 .1732 .1854 .15636

VM
Normal i zed
sum of sqr

Normal ized
deviance

179.8

.2408

207.0

.2566

209.5

.2887

179.3

.2334

181.0

.2410

203.9

.2546

178.8

.2157
P7B

Normal ized
sum of sqr 491.6 540.9 574.9 490.6 490.9 537.1 447.79

Normal ized
deviance .1132 .1463 .1656 .1091 .1125 .1402 .1069

P4A
Normal ized
sum of sqr 210.2 237.2 245.7 210.1 209.3 236.8 208.0

Table 5: Normalized deviance and normalized suras of squares for the
different systems and linear estimators. Task: C compilation.

The failure of np to be the best
single estimator indicates that the
users in this system must have a
peculiarity not present in other
systems. This may be due to the fact
that it is heavily used for
instructional purposes. Since many
users may be concurrently executing the
same code, such as a toy operating
system for example, severe distortions
from the np estimator point of view may
exist. For example, the memory
utilization of several users executing
the same shared piece of code is much
less than it would be if each had his
own copy. Thus the load on the
resources of the machine is less than
that suggested by the number of
processes. This load is clearly more
faithful to the number of active users.

Tables 6.1 and 6.2 have all the
parameters given by GLIM in the analysis
of the task cc. In Section 5.1 we saw
how to obtain analytic formulae to
represent the expected value of rt in
terms of these parameters.

It is interesting to notice from
Tables 6.1 and 6.2 that in several
systems the addition of nau to the
estimator np+nu does not increase the
accuracy of the model. Moreover, there
are other systems where the normalized
deviance and the normalized sum of
squares do improve but the coefficient
associated when nau has a standard error
which renders it not significant. These
observations lead us to conclude that
for most systems nau does not add
significant modelling information in the
presence of np and nu. In the case of a
long data gathering period, after an
exploratory period one could assess
whether nau is indeed needed and if not
omit gathering statistics about it.
This will reduce the overhead of the
method and its total cost, while
preserving its modelling accuracy.

209

: Parameters

.

: %GM :

: np

c

V I

Estimate : Std . Error

-0.8103 :.5845E-1
.3029E-1: .6104E-3

i Y S
P

'

Estimate

:-1.010
. .3135E-1

[•EMS
1 A
•Std. Error

. .7959E-1
.6388E-3

: V
: Estimate

! .5254
: .5679E-1

M :

!Std. Error

:

: .1008 :

.2155E-2 :

: scale

: %GM
: nu :

.1(

1.533
.3962E-1

S42
»

. .1329E-1

. .8237E-3 .

.4(

1.736
.5547E-1

556

.1980E-1

.8986E-3

: .1750 :

: 2.748 :.1933E-1 :

: .8015E-1 : .2968E-2 :

: scale

: %GM ;

: nau

.1'

.1721

.5028

719

! .1150E-1
.1213E-1

.3:

1 .747
. .6462E-1

>37

t

.2234E-1

.1200E-2

: .1{

. 2.467
: .1047

J75 :

.3164E-1 :

..4341E-2 :

: scale

: %GM
: np
: nu

.1914

-.314E-2: .6737E-1
.1865E-2: .8011E-3
.2136E-1: .1057E-2

.3£

. 1.143
.5721E-2
.4937E-1

511

. .7197E-1
.6688E-3
.1128E-2

! .IS

•

! 1.104
. .3961E-1
: .4032E-1

)77 :

» •

.1282 :

.3075E-2 :

.4090E-2 :

: scale

: %GM
: np
: nau

.1^

-0.2587
.2310E-1

. .1800

184

: .7452E-1
, .8622E-3
, .1587E-1

.3]

.6764
.1001E-1
.5380E-1

L66

.7219E-1

.6731E-3

.1435E-2

: .le

: .8455
. .4586E-1
. .2758E-1

509 :

. .1446 :

.3966E-2 :

.7516E-2 :

: scale

: %GM
: nu
: nau

.11

1.544
.2973E-1

. .1696

>87

: .1319E-1
: .1349E-2
. .1882E-1

.3:

. 1.666
.3582E-1.
.2672E-1:

}30

.2082E-1

.2208E-2

.2791E-2

.1732 :

. 2.628 :.3608E-1 :

.5818E-1 : .6053E-2 :

.3467E-1: .8623E-2 :

: scale

: %GM
: np
: nu
: nau

.1679

.1097E-1: .7326E-1

.1849E-1: .8680E-3

.2098E-1: .1320E-2
. .9277E-2: .1917E-1

.3135

1.174 :.7104E-1
.4811E-2: .6636E-3
.3161E-1: .2243E-2 .

.2527E-1: .2783E-2

.1855 :

.7469 : .1389 :

.5351E-1: .3770E-2 :

.6612E-1: .5550E-2 :

-.631E-1: .9850E-2 :

: scale .1484 .3085 .1564 :

Table 6.1: GLM parameters for three systems and seven linear
estimators. Task: C compilation.

210

: Parameters
• <

: P
'

i Estimate

5 Y S T
1 B
: Std .Error

EMS
: P i

. Estimate
} A : :

:Std. Error

:

: %GM
: np

-1.229
. .3951E-1

.1529
.1401E-2

: .6347
! .7122E-1

: .1491 :

:.4629E-2 :

: scale .2408 .1133 :

; %GM
: nu

. 2.060
.4390E-1"

.4108E-1

.1626E-2
. 2.465

.1509
:.4433E-1 :

. .1258E-1 :

: scale .2566 ! .1463 :

: %GM
: nau

* •

2.030 :.4724E-1
.5319E-1: .2201E-2

2.162
.1395

:.8456E-1 :

.1466E-1 :

: scale .2888 .1657 :

: %GM
: np
: nu

•

-.1511 : .2514
.2589E-1 : ..2892E-2
.1728E-1: .3250E-2

,9139
.5752E-1

! .5109E-1

» •

. .1685 :

:.6052E-2 :

. .1448E-1 :

: scale .2334 .1091 :

: %GM
: np
: nau

•

-1.381 : .2799
.4150E-1: .3342E-2
-.321E-2: .4794E-2

. .5103
.8106E-1
-.344E-1

» •

. .1673 :

. .7384E-2 :

. .1934E-1 :

: scale .2410 .1125 :

: %GM
: nu :

: nau :

•

2.112 :.4508E-1
.5862E-1: .5897E-2 .

-.198E-1: .7526E-2

t

. 2.212
.1140

.6519E-1

» •

.7903E-1 :

. .1604E-1 :

.1757E-1 :

: scale .2546 .1402 :

: %GM ;

: np !

: nu
: nau

•

-0.9839 : .2656
.3762E-1: .3166E-2
.5266E-1: .5435E-2
-.637E-1: .7889E-2

• •

.7749 : .1755
.7059E-1: .7633E-2 :

.6126E-1: .1486E-1 :

.-.560E-1 .1955E-1 :

: scale .2157 .1068 :

Table 6.2: GLM parameters for two systems and
seven linear estimators. Task: C compilation.

5.3 Robustness Of The Results In Three
Systems

In Tables 7, 8 and 9 we present the
parameters given by GLIM when ramdom
subsamples of different sizes of the

same distribution were analyzed. We
considered the same task as in Section
5.2: the C compilation. These
subsamples were made from the total

sample by a program which selected
random entries with a fixed probability
for membership. We created three files

with membership probabilities of .5, .25

and .125, to check the robustness of the
modelling technique.

From the appropriate entries in
Tables 6.1 and 6.2 we may see that the
coefficients found in Tables 1, 8 and 9
are very robust. In almost all of the
cases (the exception being the 170-point
subsample in System VM) the estimators
for the smaller samples were within
their standard error from those found in
the larger samples.

211

: Parameter
Sample S:

Estimator
Lze 1497
Std. Error

; Sample S:

; Estimator
Lze 729
Std. Error

, Sample S:

Estimator
Lze 376 :

:Std. Error

:

: %GM
: np
: nau

.5640

.112E-1

.5146E-1

.1021
. .9473E-3
.202E-2

: .6707
. .9783E-2
! .5608E-1

.1404
: .1304E-2

.2785E-2.

. .6130
: .1069E-1
.5173E-1

. .1906 :

: .1755E-2:
. .4124E-2:

: scale .3393 .3146 .3395 :

Table 7: System P7B. Robustness of the selected linear estimator.
Task: C compilation.

: Parameter
Sample S]

Estimator
Lze 1722
Std. Error

Sample S:

Estimator
Lze 851 •

Std. Error
Sample S:

Estimator
Lze 428 :

Std .Error

:

: %GM
: np
: nu

. -.1275
! .2020E-1
. .2008E-1

. .9481E-2
! .1128E-2
. .1502E-2

-.6774E-2
.1893E-1.
.2032E-1

.1405 .

.1652E-2

.2060E-2

.6659E-1

.1765E-1

.2341E-1

.1886 :

.2264E-2:

.2955E-2:

: scale ! .1506 : .1422 .1309 :

Table 8: System VI. Robustness of the selected linear estimator.
Task: C compilation.

: Parameter
: Sample S.

; Estimator
Lze 739
iStd. Error

. Sample S:

Estimator
Lze 365
Std. Error

. Sample Sj

. Estimator
ize 170 :

.Std. Error

:

: %GM
: np
: nu

. 1.348
.3401E-1

: .4529E-1

.1828
! .4387E-1
.5835E-2:

1.428
.3209E-1
.4458E-1!

.2424
.5783E-2
.7294E-2.

-.5394E-1
. .6752E-1
-.1081E-2

.3657 :

! .8716E-2:
.1062E-1:

: scale .1742 .1553 .1186 :

Table 9: System VM. Robustness of the selected linear estimator.
Task: C compilation.

However, the price paid for fewer
data points was much larger standard
errors of the fitting estimators. Given
that each smaller sample was roughly
half of the larger one, we see that
standard errors diminished approximately
25% when the size of the sample doubled.
This rule can be a guide in deciding the
duration of the data gathering period as
a function of the desired accuracy.

We also appreciated that for the
best linear estimators in each system,
those found from samples which had more
than 300 points showed high levels of
significance, i.e., the standard error
of the estimators were small. This
gives us an empirical global bound on
the minimum number of data points one
should gather in a system.

212

6.0 CONCLUSIONS
7.0 REFERENCES

We have found that response time
has a statistical behavior which is
consistent enough to permit the
utilization of generalized linear models
(GLMs) to describe and predict its
values. This, in turn, has validated
the utilization of rather imprecise work
load estimators, such as response time
(rp) , number of users (nu) and number of
active users (nau) , as basis for
estimating selected performance indices
in a computer installation.

Moreover, the robustness of the
models also permit comparisons of
different computer installations using
the terminal probe method as data
gathering technique while the systems
are executing their natural work loads.
We have also seen that a minimum of 300
points per installation appears to be
necessary for obtaining a minimum of
accuracy, and that doubling the size of
the sample will reduce by 25% the
standard error of the parameters
estimated by the model. We may then
assess the cost of achieving a

predetermined error bound much better.

When measured against our work load
estimators np, nu and nau, response time
appears to have Gamma distributed
values. What is more, we have
empirically observed that the means and
variances of these distributions are
highly correlated as functions of each
of our work load estimators. Their
ratio is almost directly proportional to
the values of the work load estimator.
This behavior is essential when using a

GLM with Gamma error, and gives us a

better understanding of the behavior of
response time.

We could also observe that for most
systems and tasks, nau adds no
significant additional information to

that given by np and nu. This fact can
be used to reduce the data gathering
cost and the overhead of the terminal
probe method.

ACKNOWLEDGEMENTS

I am very grateful to my colleage
Dr. German Rodriguez who introduced me
to GLIM, Minitab and several other tools
and techniques. Without his patience
and knowledge this work would have been
considerably less thorough.

1. Babaoglu, 0., W. Joy and J.

Porcar,
'

'Design and Implementation
of the Berkeley Virtual Memory
Extension to the UNIX Operating
System,'' Department of
EECS—Computer Science Division,
University of California, Berkeley,
(1979).

2. Baker, R. J., and Nelder, J. A.,
'*The GLIM System Manual, Release
3,'' Numerical Algorithms Group, NAG
Central Office, Mayfield House, 256
Banbury Road, Oxford 0X2 7DE, 1978.

3. Bourne, S. R. , ''The UNIX Shell,''
The Bell System Technical J. 57, 6
Part 2 (Jul. -Aug. 1978), 1971-1990.

4. Cabrera, L. F. , ''A Performance
Analysis Study of UNIX,''
Proceedings of the Computer
Performance Evaluation Users Group
16th Meeting, CPEUG 80, NBS Special
Publication 500-65, Orlando,
Florida, October 1980, pp. 233-243.

5. Cabrera, L. F., "'Benchmarking
UNIX: A Comparative Study,'' in
Experimental Computer Performance
Evaluation (D. Ferrari and M.
Spadoni eds.) North-Holland,
Amsterdam, Netherlands, pp 205-215.

6. Cabrera, L. F., Paris, J.-F.,
''Comparing User Response Times on
Paged and Swapped UNIX by the
Terminal Probe Method'', Proceedings
of the Computer Performance
Evaluation Users Group 17th Meeting,
CPEUG 81, NBS Special Publication
500-83, San Antonio, Texas, November
1981, pp. 157-168.

7. Digital Equipment Corporation, VAX
11/780 Technical Summary. Maynard,
Mass., 1978.

8. Fateman, R. J., ''Addendum to the
Mathlab/MIT MACSYMA Reference Manual
for VAX/UNIX VAXIMA,'' Department of
EECS—Computer Science Division,
University of California, Berkeley
(Dec. 1979).

9. Ferrari, D. ''Computer Systems
Performance Evaluation,''
Prentice-Hall, Englewood Cliffs, NJ

,

1978.

213

10. Karush, A. D.,
^

* The Benchmarking
Method Applied to Time-Sharing
Systems,'' Rept. SP-3347, System's
Development Corporation, Santa
Monica, CA, August 1969.

11. Kernighan, B. W. and J. R.
Mashey, **The UNIX Programming
Environment,'* Computer 14, 4 (Apr.
1981) , 12-24.

12. Nelder, J. A. and Wedderburn
R.W.M., *"General ized Linear
Models,'' Journal of the Royal
Statistical Society, A, 135, pp
370-384, 1972.

13. Nie, N. H. et al, '*SPSS,
Statistical Package for the Social
Sciences,'* Second Edition,
McGraw-Hill, 1975.

14. Ritchie, D. M. and K. L.
Thompson, ''The UNIX Time-Sharing
System,'* Comm. ACM 17, 7 (Jul.
1974) , 365-375. A revised version
appeared in The Bell System
Technical J. 57, 6 Part 2

(Jul. -Aug. 1978), 1295-1990.

15. Ritchie, D. M. , S. C. Johnson,
M.E. Lesk and B. W. Kernighan,
**The C Programming Language,'* The
Bell System Technical J. 57, 6 Part
2 (Jul. -Aug. 1978), 1991-2019.

16. Ryan, T.A., Joiner, B. L. and Ryan
B. F., ''MINITAB Reference
Manual,'* Minitab Project,
Statistics Department, 215 Pond
Laboratory, Pennsylvania State
University, University Park, PA
16802, November 1982.

214

SOME ELEMENTS OF SOFTWARE FUNCTION
AND COST ANALYSIS AS RELATED

TO PERFORMANCE

James E. Gaffney, Jr

Federal Systems Division
Gaithersburg, MD 20017

This paper provides some elements of modern software function and cost
analysis. Proper emphasis on the software process is basic to ensuring that the
software will perform as specified. Subjects covered are: the establishment of
requirements, life cycle management and costing. They are all attributes of the
software management process.

Keywords: Costing, life cycle management, requirements, and software management.

1. Requirements

Good communications between the software
producer and the user is central to the

realization of the software performance goals
derived by the user. This means establishing
what functions are to be provided and agreeing
to cost, schedule, and quality objectives, and
appropriate measures of them.

"Good management of software involves both
producer and user, and starts with a clear
statement of the functions that the

software is to provide and continues with a

methodology that provides the technical
controls and resource management to produce
high quality software within acceptable
funding and time limits."

The software implementation process may be said

to consist of four stages; the development of

requirements, the creation of a system

description, the creation of a design, and

finally the writing of the code that will

effect the portion of the requirements

addressed by the software (others may be

addressed by hardware per se) . Each of these

stages is increasingly specific in expressing

desired functionality. The first three address

people; only the last addresses the computer

itself. The program implementation at each

stage is a vehicle for communication of

function. Each stage is an elaboration and

implementation of the previous stage. Ideally,

the progression from requirements to code is

linear; actually, there is often feedback among

the stages.

The establishment of requirements is often a

very difficult task. Requirements include
statements about the functionality to be
provided, and also designation of the spatial
and temporal performance objectives that the

software is to satisfy. Proper attention to

requirements is important because quality m^y

be defined as "conformance to requirements."
Most generally, such "conformance" means that

the product meets the needs of the user and
satisfies stated performance criteria. Some

specific measures of software quality that have
been employed are:

° latent error content - defects present
at time of delivery (estimated)

° mean time between failure

° number of defects found during some test

period.

It can be said that "quality" is an aspect of

"product integrity" which includes, among other
aspects of the software development process,
adherence to schedule and cost objectives.

2. Life Cycle Management

The basic objective of software development

management is to produce a desired amount of

function at a specified quality level, within a

given cost and schedule envelope. Appropriate

quantitative and qualitative management

techniques should be applied to identify and

control the stages of the software development

215

process and assure the quality of the resultant
product. A quantitative management support
system is suggested as an aid to the life cycle
management process. Prior to the initiation of
the development process, basic parameters of
the software process and product including:
amount of function (indicated by number of

source lines of code or other appropriate
measure), intended cost, and schedule should be
estimated. During the development and
maintenance/operations portions of the life
cycle, parameters of the process and product
can be monitored for adherence to objectives or
requirements established earlier and
corrections to the produce and product may be
made as appropriate. At various stages of the
life cycle, data about both the process and the
product can be collected. This information can
be used to make corrections to the
estimation/prediction models, and more
generally, to support the objective of learning
from experience in a structured manner so that
"it can be done better the next time." A key
element of the software process is that there
be a continuing interchange of data between the
management support system and the (software)
life cycle process.

3. Costing

The cost of software, both development and
maintenance/operations, may be computed from
the general relationship:

labor (man months) = function to be
developed x development rate

There are a number of measures of function
'size' available. Probably, the most commonly
used is 'source lines of code' (SLOC) . There
are alternatives to this measure, such |.^s

'function points' developed by Albrecht.
This measure relates the amount of "function"
the software is to provide to the data it is to

use (absorb) and to generate (produce).

'Function points' are relatable to SLOC.t^,
Also, Britcher and Gaffney have suggested,
based on the state machine model of a software
system, another way of measuring the amount
of function to be provided by a software
system. They observe that any software system
should have the same number of 'levels' of

elaboration of function. Hence, one should be
able to produce an estimate based on the number
of "boxes" at a certain functional level in
recognition that, on the average, about the

same amount of function should be resident in a

"box" at a given level in the specification
hierarchy. The amount of function (say
represented by SLOC) is a key parameter to be
used by the performance analyst, even before

the code has been written. Indeed, as Smith
has described, "... a static analysis [can be

used] to derive the mean, best case, and worst
case response times. The static analysis is

based on the optimistic assumption that there

are no other jobs in the.lipst configuration
£ "LOJ TU-! ^ ^„

as been termedanalysis deals with what j.^^

monoprogramming performance.

The 'development rate' specifies the rate (say

in man months per thousand SLOC or per function

point) at which the function is to be

developed. The 'development rate' should be

taken as the sum of the rates for each of the

relevant activities or work components that

constitute ,a particular software development

process. These components are the b^^j^

for a software engineering management model

used by the Federal Systems Division of IBM.

Sixteen work components have been identified

from which the software organization or the

engineering organization involved in a software

development project can structure its

particular activities. They are:

° software requirements definition
° software system description
" software development planning
° engineering change analysis
° functional design
° program design
° test design
° software tools
° design evaluation
° module development
° development testing
° problem analysis and error correction
° software system test procedures
° software integration and test
° system test support
° acceptance test support

Thus, a cost estimate can be made by

considering the nature of the particular

software development job and the work

components (such as program design, coding,

etc.) that constitute it. Then, the labor (man

months) for each component is estimated. The

sum of these man month figures is the amount

required for the given job. Considering the

development process in terms of its

constituents enables the estimator to achieve a

greater degree of intellectual control that if

he were to evaluate the process overall. For

example, it may not be clear how the

availability of a new process that facilitates

unit testing would impact development

productivity. However, its effect on the work

component that coVjai^ unit test would be much

easier to discern.

The parameters of the model for estimating

software development described above would be

expected to be modified, based on the actual

experience of the development organization for

the type(s) of code concerned, as suggested in

the section on life cycle management. This

competing for resources. This type of

216

same model can support the management of

maintenance and enhancement activities,

treating them as a sequence of "development

efforts." Depending upon the amount of change

relative to the baseline system, then, the

maintenance and operation's effort can be

handled as a new project (albeit with a lot of

retained, code) rather than as a continuation of

the old.^ ^

4. Conclusions

Both the developers and users of software are

concerned with issues of performance.

Obtaining good software begins with the

establishment of a proper set of requirements

and continues with management that focuses on

the development of the desired software

functionality to be provided at a level of

quality within an agreed upon cost and schedule

envelope. There are tools and techniques

available to support software management with

quantitative assessments of the software

process. They can contribute significantly to

the software exhibiting the level of

performance intended for it.

References

[1] NBS Special Publication 500-11 . Computer

Software Management, A Primer For Project

Management and Quality Control, issued,

July, 1977 (by Dennis W. Fife).

[2] Gaffney, J. E. , Jr., Metrics In Software

Quality Assurance, ACM '81
, Los Angeles,

November, 1981; pg. 3-31 (proceeding).

[3] Bersoff, E. , Henderson, U. , and Siegel,

S. Software Configuration Management, An

Investment In Product Integrity ,

Prentice-Hall, 1980.

[4] Albrecht, A. J., Measuring Application

Development Productivity, Proceedings IBM

Applications Development Symposium ,

Monterey, California; October, 1979;

GUIDE International and SHARE, Inc., IBM

Corporation, pg. 83.

Software Engineering, IEEE COMSAC ,

Chicago, Fall, 1977.

[8] Smith, C. U. Increasing Information
Systems Productivity Buy Software
Performance Engineering, Proceeding of

the 1981 Computer Measurement Group
International Conference pg 5-14; New
Orleans, December 1981.

[9] Dujmovic, J. J., Computer Selection and

Criteria for Computer Performance
Evaluation, International Journal of

Computer and Information Sciences , Vol,

9; No. 6, 1980; pg. 435.

[10] Cruickshank, R. D. , and Lesser, M. , An

Approach To Estimating and Controlling
Software Development Costs in The

Economics of Information Processing , R.

Goldberg and H. Lorin (eds) ;
Wiley, 1981.

[11] Quinnan, R. E., The Management of

Software Engineering, Part V, IBM Systems

Journal , Volume 19, No. 4, 1980.

[12] Gaffney, D. E. , Jr. and Judge, R. W. , The

Quantitiative Impact of Four Factors on

Work Rates Experienced During Software
Development ; Sixth Annual Software
Engineering Workshop, NASA, Goddard Space
Flight Center, Greenbelt, MD, Dec. 1981.

[13] Gaffney, J. E. , Jr., A Macroanalysis
Methodology for Assessment of Software
Development Costs; in The Economics of

Information Processing , Volume 2 (edited by

R. Goldberg and H. Lorin), John Wiley and

Sons, Inc., 1982.

[5] Albrecht, A.J., and Gaffney, J. E. , Jr.,

Software Function, Source Lines of Code,

and Development Effort Prediction - A

Software Science Validation; to be

published in the IEEE Transactions on

Software Engineering ; November, 1983.

[6] Britcher, R. M. , and Gaffney, J. E.

,

Estimates of Software Size From State

Machine Designs ;
presented at Seventh

Annual Software Engineering Workshop;

NASA Goddard Space Flight Center;

Greenbelt, MD; December, 1982.

[7] Ferrantino, A. B., and Mills, H. D.

,

State Machines and Their Semantics in

217

BENCHMARK AND CONVERSION TOOL:
TEST DATA REDUCTION PROGRAM

Frances A. Kazlauski

Naval Data Automation Command
Washington, D.C.

The Test Data Reduction Program (TDRP) is a software tool for use as a COBOL
program conversion aid or benchmark testing aid. It ensures that newly developed,
enhanced or converted COBOL programs are tested as thoroughly as required by
employing existing production data files and utilizing fewer computer resources.
It is used to extract appropriate data records from the production data file and
create a reduced data file. The reduced data file will achieve the same level of
testing coverage as the original production file and may be used for future
program testing.

Key words: Benchmark; COBOL; conversion; coverage; extract; reduced.

1. Purpose

The purpose of this paper is to explain the
capability and use of the Test Data Reduction
Program (TDRP) . TDRP is a software tool for the
UNIVAC 1100 series and IBM compatible computers.
It provides data reduction capability for

sequential or indexed-sequential files.

2. Background

There are two common approaches to the pre-
paration of test data: the generation of test

data sets and the selection of a subset of

records from an existing data file. The latter
approach is more cost-effective for benchmarks
or conversion projects. A method is needed
which will extract a minimally required data set

from an existing data file for thorough program
testing. To assure that the extracted records
perform the same coverage of testing as the
original data file, program execution must be
monitored through the insertion of probes. The
implementation of such a capability provides a

cost-effective vehicle for thoroughly testing
benchmarks or converted software since testing
can be done using smaller data files and less

machine time. In addition, it also improves the
reliability and validity of the tested software.
The requirement for this capability led to the
development of the Test Data Reduction Program
(TDRP) in May 1980 at the Navy Regional Data
Automation Center, Washington, D.C. The project
sponsor is the Naval Data Automation Command
(NAVDAC) Code 40.

3. Objectives

The basic objectives of TDRP are:

o Extract records from an existing
data file for program testing

o Ensure the same coverage of program
testing is achieved for the ex-
tracted data as for the original
data

o Achieve a "minimally-thorough-test"
criterion

The "minimally-thorough-test" criterion ensures

that each statement in a program be executed at

least once. An additional feature of TDRP 'may be

the development of more comprehensive test data
for acceptance testing since the TDRP output
report shows all untested code in the program.

4. Processing

TDRP is a test data extractor, not a test

data generator. The program operates on a pro-
duction system for which a data file already
exists. It extracts records from this existing
data file and creates a new test file based upon

program logic and a user specified reduction
factor. When a new logic path is taken, the

current record is saved in the reduced file.

Additional records may be saved to obtain the

proper file size specified by the user.

218

TDRP sequential file processing consists of
four phases: reformatting, instrumenting,
executing and reporting. For indexed-sequential
files which are randomly-accessed, an additional
sort phase is required to eliminate duplicate
records

.

In the reformatting phase, the COBOL source
program is put into the form required by the
instrumentation phase. The reformatted program
created in this phase contains one COBOL verb
per line of code. A table of verb frequencies
is also displayed at the end of the reformatted
program. A portion of a reformatted COBOL
source program is shown in Figure 1.

The instrumentation phase uses the reformat-
ted COBOL source program and in addition reads
the user parameter card file. The mandatory
parameter card which specifies the data file to

be reduced contains the following information;

o Maximum record length

o File name

o Record name

o Starting position for indexed key

o Key length for indexed files

o File type

o Blocking factor

o Percentage reduction factor (number
between 0 and 50 where 0 indicates
the minimally-thorough-test)

The user may provide optional parameter cards

containing COBOL SELECT, FD and RECORD descrip-
tion clauses to describe the file to be reduced
in the ENVIRONMENT and DATA divisions. If the

SELECT card is present, the FD and RECORD clause
cards must be coded. Once the parameter card
file and reformatted source program are read in

by the instrumentation phase, code is inserted

in the reformatted program. This code enables

the instrumented program to communicate with a

data collection routine which collects execution
statistics and monitors data record selection
during execution. A portion of the instrumented

code for the reformatted program in the previous

figure in shown in Figure 2.

For randomly-accessed indexed sequential

file processing, a skeleton COBOL program is

read, modified and written to a file. This

program will be executed later to sort the

extracted data records.

In the execution phase, the instrumented

COBOL program is compiled, mapped or linked, and

executed. The TDRP subroutine for statistical

data collection and data record extraction must

be included in the collection process. During

execution, the appropriate data records are

written to the reduced file. In addition,
execution statement counters are incremented and
written to the statistical data collection file.

The reporting phase uses the reformatted
COBOL source code and the statistical data file.
The report lists the reformatted source code and
the execution count for each statement. In
addition, for conditional statements, the
execution counts are also given for the "true"
and "false" paths. This report may help in two
ways

:

o To evaluate the validity of the data
file as a baseline to produce the
reduced file

o To facilitate the creation of
additional data records to assure
completeness of program testing

A summary of program testing coverage is also
included and consists of the following:

o Number of COBOL source statements

o Number of unexecuted statements

o Number of conditional statements

o Number of unexecuted conditional
statements

o Percentage of unexecuted statements

o Percentage of unexecuted conditional
statements

No provision is made to determine if the
program logic is correct, however the report does
show the statements executed utilizing the user
data file. The correctness of the logic is

difficult to check since recent studies show that
most of the serious program errors are errors of
omission due to incorrect or misinterpreted

^
functional specifications or requirements (1) .

An example of a portion of a TDRP output
report is illustrated in Figure 3.

5. Considerations

The potential savings in machine time and
storage requirements can justify the cost of CPU

time overhead, additional core requirements and

the number of TDRP runs.

The CPU time overhead for compilation and

execution is the result of the number of COBOL

statements and subroutine calls inserted. The

total number of inserted statements will be
proportional to the number of paragraphs and

conditional statements in the original program.

Figures in parentheses indicate the

literate references at the end of this paper.

219

CK-MSTR.
IF IM-JOB EQUALS HOLD-JOB
GO TO EVEN-MAT.
IF IM-JOB IS GREATER THAN HOLD-JOB
MOVE 1 TO CK-CD
GO TO
UNEVEN

.

MOVE IN-MSTR TO OT-MSTR.
IF OM-3 EQUALS 5 AND OM-4 IS LESS THAN TODAYS-DT
MOVE 3 TO

OM-3
PERFORM PR-PUN.
IF OM-3 EQUALS 5 AND OM-5 IS LESS THAN TODAYS-DT
MOVE 4 TO
OM-3
PERFORM PR-PUN,
IF OM-6 EQUALS 8 AND OM-7 IS LESS THAN TODAYS-DT
MOVE 7 TO
OM-6
PERFORM PR-PUN.
IF OM-6 EQUALS 8 AND OM-8 IS LESS THAN TODAYS-DT
MOVE 9 TO
OM-6
PERFORM PR-PUN.
IF OM-JOB IS UNEQUAL TO SPACES
WRITE OT-MSTR
ADD 1 TO MSTR-llOO-CT.
GO TO CK-WHIP.

EVEN-MAT

.

MOVE IN-MSTR TO OT-MSTR.
MOVE 3 TO CK-CD.

UNEVEN

.

IF H-ONE IS UNEQUAL TO SPACES
PERFORM MOV-Hl.
IF H-TWO IS UNEQUAL TO SPACES
PERFORM M0V-H2.
IF H-THREE IS UNEQUAL TO SPACES
PERFORM M0V-H3 THRU EX-1.

IF H-FOUR IS UNEQUAL TO SPACES
PERFORM M0V-H4 THRU EX-1.
IF OM-JOB IS UNEQUAL TO SPACES
PERFORM PR-PUN.
IF 0M~J1B EQUALS 3

MOVE OM-JIC TO OM-36A
MOVE OM-JIA TO
OM-36B
ELSE
MOVE OM-JOB TO OM-36.
MOVE SPACES TO H-ONE H-TWO H-THREE H-FOUR.
IF OM-JOB IS UNEQUAL TO SPACES
WRITE OT-MSTR
ADD 1 TO MSTR-llOO-CT.

CK-WHIP.
IF OM-JOB EQUALS HOLD-W-JOB
GO TO MAT-WHIP.
IF HOLD-W-JOB IS LESS THAN OM-JOB
GO TO LO-WHIP.
MOVE SPACES TO OT-MSTR.
IF CK-CD EQUALS 1

GO TO MOVl.
IF CK-CD EQUALS 3

ALTER 1-SW
TO PROCEED TO MOV

I

ELSE
ALTER I-SW

Figure 1. Reformatted COBOL Source Program

220

TO PROCEED TO CK-MSTR.
MOVE 0 TO CK-CD.
GO TO READ-M.

MAT-WHIP

.

MOVE SPACES TO OT-MSTR.
IF CK-CD EQUALS 1

ALTER 2-SW
TO PROCEED TO MOVl *

GO TO
WHIP-MOV.
IF CK-CD EQUALS 3

ALTER 2-SW
TO PROCEED TO MOVl
ELSE
ALTER 2-SW
TO PROCEED TO CK-MSTR.
ALTER 1-SW

TO PROCEED TO WHIP-MOV.
MOVE ZERO TO CK-CD.
GO TO READ-M.

LO-WHIP.
IF TBLE-CTR IS LESS THAN 999
ADD 001 TO TBLE-CTR.
MOVE HOLD-W-JOB TO TAB-JOB (TBLE-CTR)

.

LO-W-RTN.
ALTER 2-SW
TO PROCEED TO CK-WHIP.
GO TO WHIP-MOV.

CLOS-MSTR.
IF S-REC EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
GO
TO FIN-CL.
MOVE HIGH-VALUES TO IN-MSTR.
GO TO 1-SW.

CLOS-WHIP.
IF S-REC EQUALS HIGH-VALUES AND IN-MSTR EQUALS HIGH-VALUES
GO TO FIN-CL.
MOVE HIGH-VALUES TO CR-IN.

GO TO lA-SW.

CLOS-DET.
IF IN-MSTR EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
GO TO FIN-CL-DET.
MOVE HIGH-VALUES TO S-REC.

GO TO 3-SW.

FIN-CL-DET.
IF H-ONE EQUALS SPACES AND H-TWO EQUALS SPACES AND H-THREE
EQUALS SPACES AND H-FOUR EQUALS SPACES
GO TO FIN-CL.

IF H-ONE EQUALS HIGH-VALUES
GO TO FIN-CL.
PERFORM UNEVEN.

FIN-CL.
CLOSE MSTR-IN CR-FILE MSTR-OT PUNCH-OT
DISPLAY '1100 MASTER RODS ' MSTR-UOO-CT UPON PRINTER.

MOVE 99 TO LIN-CTR.
MOVE ZEROES TO PG-CTR.

WR-WHIP

.

IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
IF LIN-CTR IS GREATER THAN 50

PERFORM WHIP-HD.
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-JOBl.

IF CTR-1 EQUALS TBLE-CTR

Figure 1. Reformatted COBOL Source Program
(Continued)

221

GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B2

.

IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B3.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B4

.

IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B5.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B6.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B7.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B8.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B9.
WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.

ADD 02 TO LIN-CTR.
GO TO WR-WHIP.

LAST-CLOS

.

WRITE P-REC BEFORE 01.

CLOSE P-FILE.
STOP RUN.

WHIP-HD.
MOVE SPACES TO P-REC.
WRITE P-REC BEFORE ADVANCING NEXT-PG.
ADD 0001 TO PG-CTR.
MOVE 'LISTING OF JOBS ON LINK NO/JOB ORDER FILE BUT NOT ON
'MAST' TO P-HD2-W.
MOVE 'ER JOB ORDER FILE FOR ' TO P-HD2A-W.
MOVE TODAYS-DT TO P-DT-W.
MOVE 'PAGE ' TO P-W-PG.
MOVE PG-CTR TO P-W-ID.
WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.
MOVE ' JOB-NO JOB-NO JOB-NO JOB-NO J

'OB ' TO P-HD2.
MOVE '-NO JOB-NO JOB-NO JOB-NO JOB-NO
' ' TO P-HD2A.
WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.
MOVE 04 TO LIN-CTR.

*** REFORMAT PROGRAM ENDED ***

Figure 1. Reformatted COBOL Source Program
(Continued)

222

TABLE OF VERB FREQUENCIES

VERB COUNT

ADD 19

ALTER 9

CLOSE 5

DISPLAY 2

ELSE 17

END 6

EXAMINE 2

EXIT 2

GO 78

IF 105

INPUT 4

MOVE 175

NEXT 14

ON 1

OPEN 5

OUTPUT 3

PERFORM 14

READ 5

RELEASE 2

RETURN 1

SORT 1

STOP 2

TALLYING 2

WRITE 17

Figure 1. Reformatted COBOL Source Program
(Continued)

CK-MSTR.
MOVE 119 TO CURR-INDEX, CALL 'TDRP20',
MOVE 120 TO CURR- INDEX, CALL 'TDRP20'
IF IM-JOB EQUALS HOLD-JOB
MOVE 120 TO CURR- INDEX, CALL 'TDRPSO'
GO TO EVEN-MAT.
MOVE 121 TO CURR-INDEX, CALL 'TDRP20'.
IF IM-JOB IS GREATER THAN HOLD-JOB
MOVE 121 TO CURR- INDEX, CALL 'TDRP30'
MOVE 1 TO CK-CD
GO TO
UNEVEN.
MOVE CALL 'TDRP20'

CALL 'TDRP20'

IS LESS THAN TODAY S-DT
CALL 'TDRP30'

CALL 'TDRP20'.
IS LESS THAN TODAYS-DT
CALL 'TDRP30'

122 TO CURR- INDEX,
MOVE IN-MSTR TO OT-MSTR.
MOVE 12 3 TO CURR- INDEX,
IF OM-3 EQUALS 5 AND OM-4
MOVE 12 3 TO CURR- INDEX,
MOVE 3 TO
OM-3
PERFORM PR-PUN.
MOVE 124 TO CURR-INDEX,
IF OM-3 EQUALS 5 AND OM-5
MOVE 124 TO CURR- INDEX,
MOVE 4 TO
OM-3
PERFORM PR-PUN.
MOVE 125 TO CURR-INDEX, CALL 'TDRP20'.
IF OM-6 EQUALS 8 AND OM-7 IS LESS THAN TODAYS-DT
MOVE 125 TO CURR-INDEX, CALL 'TDRP30'
MOVE 7 TO
OM-6
PERFORM PR-PUN.
MOVE 126 TO CURR-INDEX, CALL 'TDRP20'.
IF OM-6 EQUALS 8 AND OM-8 IS LESS THAN TODAYS-DT
MOVE 12 6 TO CURR-INDEX, CALL 'TDRP30'
MOVE 9 TO
OM-6
PERFORM PR-PUN.
MOVE 12 7 TO CURR-INDEX, CALL 'TDRP20'.
IF OM-JOB IS UNEQUAL TO SPACES
MOVE 12 7 TO CURR-INDEX, CALL 'TDRPSO'
WRITE OT-MSTR
ADD 1 TO MSTR-llOO-CT.
MOVE 128 TO CURR-INDEX, CALL 'TDRP20'.

GO TO CK-WHIP.
EVEN-MAT

.

MOVE 129 TO CURR-INDEX, CALL 'TDRP20'.
MOVE IN-MSTR TO OT-MSTR.
MOVE

UNEVEN.
MOVE
MOVE

3 TO CK-CD.

130 TO CURR-INDEX, CALL 'TDRP20'
131 TO CURR-INDEX, CALL 'TDRP20'

IF H-ONE IS UNEQUAL TO SPACES
MOVE 131 TO CURR-INDEX, CALL 'TDRP30'

PERFORM MOV-Hl.
MOVE 132 TO CURR-INDEX, CALL 'TDRP20'

IF H-TWO IS UNEQUAL TO SPACES
MOVE 132 TO CURR-INDEX, CALL 'TDRP3G'
PERFORM M0V-H2.
MOVE 133 TO CURR-INDEX, CALL 'TDRP20'

IF H-THREE IS UNEQUAL TO SPACES
MOVE 133 TO CURR-INDEX, CALL 'TDRP30'
PERFORM M0V-H3 THRU EX-1.

MOVE 134 TO CURR-INDEX, CALL 'TDRP20'

IF H-FOUR IS UNEQUAL TO SPACES
MOVE 134 TO CURR-INDEX, CALL 'TDRP30'

Figure 2. Instrumented COBOL Source Program

224

PERFORM M0V-H4 THRU EX-1.
MOVE 135 TO CURR- INDEX, CALL 'TDRP20'.
IF OM-JOB IS UNEQUAL TO SPACES
MOVE 135 TO CURR- INDEX, CALL 'TDRP30'
PERFORM PR-PUN.
MOVE 136 TO CURR- INDEX, CALL 'TDRP20'.
IF OM-JIB EQUALS 3

MOVE 136 TO CURR- INDEX, CALL 'TDRP30'
MOVE OM-JIC TO OM-36A
MOVE OM-JIA TO
OM-36B
ELSE
MOVE 137 TO CURR-INDEX, CALL 'TDRP20'
MOVE OM-JOB TO OM-36.
MOVE 138 TO CURR- INDEX, CALL 'TDRP20'.
MOVE SPACES TO H-ONE H-TWO H-THREE H-FOUR.
MOVE 139 TO CURR-INDEX, CALL 'TDRP20'
IF OM-JOB IS UNEQUAL TO SPACES
MOVE 139 TO CURR-INDEX, CALL 'TDRP30'
WRITE OT-MSTR
ADD 1 TO MSTR-UOO-CT.

CK-WHIP

.

MOVE
MOVE

140 TO CURR-INDEX, CALL 'TDRP20',

141 TO CURR-INDEX, CALL 'TDRP20'
IF OM-JOB EQUALS HOLD-W-JOB
MOVE 141 TO CURR-INDEX, CALL 'TDRP30'
GO TO MAT-WHIP.
MOVE 142 TO CURR-INDEX, CALL 'TDRP20',

IF HOLD-W-JOB IS LESS THAN OM-JOB
MOVE 142 TO CURR-INDEX, CALL 'TDRP30'

GO TO LO-WHIP.
MOVE 143 TO CURR-INDEX, CALL 'TDRP20',

MOVE SPACES TO OT-MSTR.
MOVE 144 TO CURR-INDEX, CALL 'TDRP20'

IF CK-CD EQUALS 1

MOVE 144 TO CURR-INDEX, CALL 'TDRP30'

GO TO MOVl.

MOVE 145 TO CURR-INDEX, CALL 'TDRP20',

IF CK-CD EQUALS 3

MOVE 145 TO CURR-INDEX, CALL 'TDRP30'

ALTER 1-SWXXX
TO PROCEED TO MOVl

ELSE
MOVE 146 TO CURR-INDEX, CALL 'TDRP20'

ALTER 1-SWXXX
TO PROCEED TO CK-MSTR.

MOVE 147 TO CURR-INDEX, CALL ''tDRP20'

MOVE 0 TO CK-CD.

GO TO READ-M.
MAT-WHIP

.

MOVE 148 TO CURR-INDEX, CALL 'TDRP20'

MOVE SPACES TO OT-MSTR.

MOVE 149 TO CURR-INDEX, CALL 'TDRP20'

IF CK-CD EQUALS 1

MOVE 149 TO CURR-INDEX, CALL 'TDRP30'

ALTER 2-SWXXX
TO PROCEED TO MOVl

GO TO
WHIP-MOV.
MOVE 150 TO CURR-INDEX, CALL 'TDRP20'

IF CK-CD EQUALS 3

MOVE 150 TO CURR-INDEX, CALL 'TDRP30'

ALTER 2-SWXXX
TO PROCEED TO MOVl

Figure 2. Instrumented COBOL Source Program
(Continued)

225

CALL 'TDRP20'

ELSE
MOVE 151 TO CURR-INDEX,
ALTER 2-SWXXX
TO PROCEED TO CK-MSTR.
MOVE 152 TO CURR-INDEX, CALL 'TDRP20'.
ALTER 1-SWXXX
TO PROCEED TO WHIP-MOV.
MOVE ZERO TO CK-CD.
GO TO READ-M,

LO-WHIP.
MOVE 153 TO CURR-INDEX,
MOVE 154 TO CURR-INDEX,
IF TBLE-CTR IS LESS THAN 999
MOVE 154 TO CURR-INDEX, CALL
ADD 001 TO TBLE-CTR,
MOVE 155 TO CURR-INDEX, CALL
MOVE HOLD-W-JOB TO TAB-JOB (TBLE-CTR)

LO-W-RTN.
MOVE 156 TO CURR-INDEX,
ALTER 2-SWXXX
TO PROCEED TO CK-WHIP.

GO TO WHIP-MOV.
CLOS-MSTR.

MOVE 157 TO CURR-INDEX,
MOVE 158 TO CURR-INDEX,

CALL 'TDRP20'
CALL •TDRP20'

'TDRP30'

'TDRP20'

.E-CTR) .

CALL 'TDRP20'

'TDRP20'

.

'TDRP20'

CALL
CALL

IF S-REC EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
MOVE 158 TO CURR-INDEX, CALL 'TDRP30'

GO
TO FIN-CL.
MOVE 159 TO CURR-INDEX, CALL 'TDRP20'

.

MOVE HIGH-VALUES TO IN-MSTR.

GO TO 1-SW.

CLOS-WHIP.
MOVE 160 TO CURR-INDEX, CALL
MOVE 161 TO CURR-INDEX, CALL
IF S-REC EQUALS HIGH-VALUES AND IN-MSTR EQUALS HIGH-VALUES
MOVE 161 TO CURR-INDEX, CALL 'TDRP30'

GO TO FIN-CL.
MOVE 162 TO CURR-INDEX, CALL 'TDRP20'.
MOVE HIGH-VALUES TO CR-IN.
GO TO lA-SW.

CLOS-DET.
MOVE 163 TO CURR-INDEX,
MOVE 164 TO CURR-INDEX,

'TDRP20'

'TDRP20'

CALL 'TDRP20'
CALL 'TDRP20'

IF IN-MSTR EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
MOVE 164 TO CURR-INDEX, CALL 'TDRP30'

GO TO FIN-CL-DET.
MOVE 165 TO CURR-INDEX, CALL 'TDRP20'.
MOVE HIGH-VALUES TO S-REC.
GO TO 3-SW.

FIN-CL-DET.
MOVE 166 TO CURR-INDEX, CALL 'TDRP20'.

MOVE 167 TO CURR-INDEX, CALL 'TDRP20'

IF H-ONE EQUALS SPACES AND H-TWO EQUALS SPACES AND H-THREE
EQUALS SPACES AND H-FOUR EQUALS SPACES
MOVE 167 TO CURR-INDEX, CALL 'TDRP30'

GO TO FIN-CL.
MOVE 168 TO CURR-INDEX, CALL 'TDRP20'.

IF H-ONE EQUALS HIGH-VALUES
MOVE 168 TO CURR-INDEX, CALL 'TDRP30'

GO TO FIN-CL.
MOVE 169 TO CURR-INDEX, CALL 'TDRP20'.
PERFORM UNEVEN.

Figure 2. Instrumented COBOL Source Program
(Continued)

226

FIN-CL.
MOVE 170 TO CURR- INDEX, CALL 'TDRP20'.
CLOSE MSTR-IN CR-FILE MSTR-OT PUNCH-OT.

MOVE
WR-WHIP

.

MOVE
MOVE

DISPLAY ' 1 100 MASTER RODS
MOVE 99 TO LIN-CTR.

ZEROES TO PG-CTR.

MSTR-UOO-CT UPON PRINTER.

171 TO CURR- INDEX, CALL
172 TO CURR-INDEX, CALL

IF CTR-1 EQUALS TBLE-CTR
MOVE 172 TO CURR-INDEX, CALL
GO TO LAST-CLOS.
MOVE 173 TO CURR-INDEX, CALL
IF LIN-CTR IS GREATER THAN 50
MOVE 173 TO CURR-INDEX, CALL
PERFORM WHIP-HD.
MOVE 174 TO CURR-INDEX, CALL
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-JOBl
MOVE 175 TO CURR-INDEX, CALL
IF CTR-1 EQUALS TBLE-CTR
MOVE 175 TO CURR-INDEX, CALL
GO TO LAST-CLOS.
MOVE 176 TO CURR-INDEX, CALL
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B2
MOVE 177 TO CURR-INDEX, CALL
IF CTR-1 EQUALS TBLE-CTR
MOVE 177 TO CURR-INDEX, CALL
GO TO LAST-CLOS.
MOVE 178 TO CURR-INDEX, CALL
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B3
MOVE 179 TO CURR-INDEX, CALL
IF CTR-1 EQUALS TBLE-CTR
MOVE 179 TO CURR-INDEX, CALL

GO TO LAST-CLOS,
MOVE 180 TO CURR-INDEX, CALL
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B4
MOVE 181 TO CURR-INDEX, CALL

IF CTR-1 EQUALS TBLE-CTR
MOVE 181 TO CURR-INDEX, CALL

GO TO LAST-CLOS.
MOVE 182 TO CURR-INDEX, CALL

ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B5
MOVE 183 TO CURR-INDEX, CALL

IF CTR-1 EQUALS TBLE-CTR
MOVE 183 TO CURR-INDEX, CALL

GO TO LAST-CLOS.
MOVE 184 TO CURR-INDEX, CALL

ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B6

MOVE 185 TO CURR-INDEX, CALL

IF CTR-1 EQUALS TBLE-CTR
MOVE 185 TO CURR-INDEX, CALL

GO TO LAST-CLOS.
MOVE 186 TO CURR-INDEX, CALL

ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B7

MOVE 187 TO CURR-INDEX, CALL

IF CTR-1 EQUALS TBLE-CTR
MOVE 187 TO CURR-INDEX, CALL

TDRP20'

.

TDRP20'

TDRP30

'

TDRP20'

.

TDRP30'

TDRP20'

.

TDRP20

'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

TDRP20'

.

TDRP20'

TDRP30'

Figure 2. Instrumented COBOL Source Program
(Continued)

227

GO TO LAST-CLOS.
MOVE 188 TO CURR-INDEX, CALL 'TDRP20'.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B8.
MOVE 189 TO CURR-INDEX, CALL 'TDRP20'

IF CTR-1 EQUALS TBLE-CTR
MOVE 189 TO CURR-INDEX, CALL 'TDRP30'
GO TO LAST-CLOS.
MOVE 190 TO CURR-INDEX, CALL 'TDRP20',
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) to PW-J0B9.
WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.

ADD 02 TO LIN-CTR.
GO TO WR-WHIP.

LAST-CLOS.
MOVE 191 TO CURR-INDEX, CALL 'TDRP20'.
WRITE P-REC BEFORE 01.

CLOSE P-FILE.
MOVE +1000 TO REC-CNT
GO TO WRITE-TDRP-FILE.

WHIP-HD.
MOVE 192 TO CURR-INDEX, CALL 'TDRP20'.
MOVE SPACES TO P-REC.
WRITE P-REC BEFORE ADVANCING NEXT-PG.
ADD 0001 TO PG-CTR.
MOVE 'LISTING OF JOBS ON LINK NO/ JOB ORDER FILE BUT NOT ON
'MAST' TO P-HD2-W.
MOVE 'ER JOB ORDER FILE FOR ' TO P-HD2A-W.
MOVE TODAYS-DT TO P-DT-W.
MOVE 'PAGE ' TO P-W-PG.
MOVE PG-CTR TO P-W-ID.
WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.
MOVE ' JOB-NO JOB-NO JOB-NO JOB-NO J

'OB 'TO P-HD2.
MOVE '-NO JOB-NO JOB-NO JOB-NO JOB-NO
' ' TO P-HD2A.
WRITE P-REC BEFORE ADVANCING 2 LINES.

MOVE SPACES TO P-REC.
MOVE 04 TO LIN-CTR.

Figure 2

.

Instrumented COBOL Source Program
(Continued)

228

** TDRP REFORMATTED REPORT PROGRAM **

CK-MSTR.
IF IM-JOB EQUALS HOLD-JOB
GO TO EVEN-MAT.
IF IM-JOB IS GREATER THAN HOLD-JOB
MOVE 1 TO CK-CD
GO TO
UNEVEN.
MOVE IN-MSTR TO OT-MSTR.
IF OM-3 EQUALS 5 AND OM-4 IS LESS THAN TODAYS-DT
MOVE 3 TO
OM-3
PERFORM PR-PUN.
IF OM-3 EQUALS 5 AND OM-5 IS LESS THAN TODAYS-DT
MOVE 4 TO
OM-3
PERFORM PR-PUN.
IF OM-6 EQUALS 8 AND OM-7 IS LESS THAN TODAYS-DT
MOVE 7 TO
OM-6
PERFORM PR-PUN.
IF OM-6 EQUALS 8 AND OM-8 IS LESS THAN TODAYS-DT
MOVE 9 TO
OM-6
PERFORM PR-PUN.

IF OM-JOB IS UNEQUAL TO SPACES
WRITE OT-MSTR
ADD 1 TO MSTR-llOO-CT.
GO TO CK-WHIP.

EVEN-MAT

.

MOVE IN-MSTR TO OT-MSTR.
MOVE 3 TO CK-CD.

UNEVEN

.

IF H-ONE IS UNEQUAL TO SPACES
PERFORM MOV-Hl.
IF H-TWO IS UNEQUAL TO SPACES
PERFORM M0V-H2.

IF H-THREE IS UNEQUAL TO SPACES
PERFORM M0V-H3 THRU EX-1.

IF H-FOUR IS UNEQUAL TO SPACES

PERFORM M0V-H4 THRU EX-1.

IF OM-JOB IS UNEQUAL TO SPACES

PERFORM PR-PUN.

IF OM-JIB EQUALS 3

MOVE OM-JIC TO OM-36A
MOVE OM-JIA TO
OM-36B
ELSE
MOVE OM-JOB TO OM-36.

MOVE SPACES TO H-ONE H-TWO H-THREE H-FOUR.

IF OM-JOB IS UNEQUAL TO SPACES
WRITE OT-MSTR
ADD 1 TO MSTR-IIOO-CT.

CK-WHIP.
IF OM-JOB EQUALS HOLD-W-JOB
GO TO MAT-WHIP.
IF HOLD-W-JOB IS LESS THAN OM-JOB
GO TO LO-WHIP.
MOVE SPACES TO OT-MSTR.

IF CK-CD EQUALS 1

GO TO MOVl.

IF CK-CD EQUALS 3

ALTER 1-SW

TO PROCEED TO MOVl

EXECUTION

COUNT

57983
1485

56498
81

81

56417
56417

0

0

56417
0

0

56417
0

0

56417
0

0

56417
56417
56417
56417

1485

1485

1566

495
1566

516
1566

115

1566

497
1566

1566

1566

564
564

1002

1566

1566

1566

1566

62018
15166
46852
4035

42817
42817

0

42817
661

TRUE
PATH

1485

81

56417

495

516

115

497

1566

564

1566

15166

4035

0

661

FALSE
PATH

56498

56417

56417

56417

56417

56417

1071

1050

1451

1069

0

1002

46852

42817

42817

42156

Figure 3. TDRP Output Report

229

** TDRP REFORMATTED REPORT PROGRAM ** EXECUTION
COUNT

TRUE
PATH

FALSE
PATH

ELSE
ALTER 1-SW
TO PROCEED TO CK-MSTR.
MOVE 0 TO CK-CD,

GO TO READ-M.
MAT-WHIP

.

MOVE SPACES TO OT-MSTR.
IF CK-CD EQUALS 1

ALTER 2-SW
TO PROCEED TO MOVl
GO TO
WHIP-MOV.
IF CK-CD EQUALS 3

ALTER 2-SW
TO PROCEED TO MOVl
ELSE
ALTER 2-SW
TO PROCEED TO CK-MSTR,
ALTER 1-SW

TO PROCEED TO WHIP-MOV.
MOVE ZERO TO CK-CD.
GO TO READ-M.

LO-WHIP

.

IF TBLE-CTR IS LESS THAN 999
ADD 001 TO TBLE-CTR.
MOVE HOLD-W-JOB TO TAB-JOB (TBLE-CTR).

LO-W-RTN.
ALTER 2-SW
TO PROCEED TO CK-WHIP.
GO TO WHIP-MOV.

CLOS-MSTR.
IF S-REC EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
GO
TO FIN-CL.
MOVE HIGH-VALUES TO IN-MSTR.
GO TO 1-SW.

CLOS-WHIP.
IF S-REC EQUALS HIGH-VALUES AND IN-MSTR EQUALS HIGH-VALUES
GO TO FIN-CL.
MOVE HIGH-VALUES TO CR-IN.
GO TO lA-SW.

CLOS-DET.
IF IN-MSTR EQUALS HIGH-VALUES AND CR-IN EQUALS HIGH-VALUES
GO TO FIN-CL-DET.
MOVE HIGH-VALUES TO S-REC.

GO TO 3-SW.

FIN-CL-DET.
IF H-ONE EQUALS SPACES AND H-TWO EQUALS SPACES AND H-THREE
EQUALS SPACES AND H-FOUR EQUALS SPACES
GO TO FIN-CL.
IF H-ONE EQUALS HIGH-VALUES
GO TO FIN-CL.
PERFORM UNEVEN.

FIN-CL.
CLOSE MSTR-IN CR-FILE MSTR-OT PUNCH-OT.
DISPLAY '1100 MASTER RCDS ' MSTR-llOO-CT UPON PRINTER.
MOVE 99 TO LIN-CTR.
MOVE ZEROES TO PG-CTR.

WR-WHIP.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.

42156

42817
42817

15166
15166

81

81

15085
824

14261

15085

15085

15085

4035
999

4035

4035

4035

1

1

0

0

1

0

1

1

I

0

1

1

0

0

0

0

1

1

1

1

112

1

81

824

15085

14261

999 3036

111

Figure 3. TDRP Output Report
(Continued)

230

** TDRP REFORMATTED REPORT PROGRAM **

IF LIN-CTR IS GREATER THAN 50
PERFORM WHIP-HD.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-JOBl.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B2

.

IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B3.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B4

.

IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B5.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1,
MOVE TAB-JOB (CTR-1) TO PW-J0B6.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B7.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.
MOVE TAB-JOB (CTR-1) TO PW-J0B8.
IF CTR-1 EQUALS TBLE-CTR
GO TO LAST-CLOS.
ADD 001 TO CTR-1.

MOVE TAB-JOB (CTR-1) TO PW-J0B9

.

WRITE P-REC BEFORE ADVANCING 2 LINES.
MOVE SPACES TO P-REC.
ADD 02 TO LIN-CTR.
GO TO WR-WHIP.

LAST-CLOS.
WRITE P-REC BEFORE 01.

CLOSE P-FILE.
STOP RUN.

WHIP-HD.
MOVE SPACES TO P-REC.
WRITE P-REC BEFORE ADVANCING NEXT-PG.
ADD 0001 TO PG-CTR.
MOVE 'LISTING OF JOBS ON LINK NO/ JOB ORDER FILE BUT NOT ON

'MAST' TO P-HD2-W.

MOVE 'ER JOB ORDER FILE FOR ' TO P-HD2A-W.
MOVE TODAYS-DT TO P-DT-W.

MOVE 'PAGE ' TO P-W-PG.
MOVE PG-CTR TO P-W-ID.
WRITF P-REC BEFORE ADVANCING 2 LINES.

MOVE SPACES TO P-REC.

MOVE ' JOB-NO JOB-NO JOB-NO JOB-NO J

'OB 'TO P-HD2.
MOVE '-NO JOB-NO JOB-NO JOB-NO JOB-NO
' ' TO P-HD2A.
WRITE P-REC BEFORE ADVANCING 2 LINES.

MOVE SPACE TO P-REC.
MOVE 04 TO LIN-CTR.

Figure 3. TDRP Output Report
(Continued)

231

Compile and execution times will be affected by
the code insertions. The increase in compile and
execution times for three sample test cases are
evident in Figure 4

.

COMPILE TIMES IN SECONDS

BEFORE AFTER % INCREASE

TEST 1

TEST 2

TEST 3

18.74
27.71
33.41

26.7
39.4
40.4

42

42

21

EXECUTION TIMES IN SECONDS

BEFORE AFTER % INCREASE

TEST 1

TEST 2

TEST 3

1998.4
292.2
824.9

3010.3
393.7
993.9

51

34

20

Figure 4. Sample compile and
execution times

The additional memory requirement for

execution is less than 2K words which include
object modules and data buffers, but not inser-
ted COBOL statements.

Lastly, only one data file may be reduced
per TDRP run. All original files must be used in

a TDRP run even though reduced files may exist to

ensure that all logic paths executed for the
original data file are exercised. In addition,
if a reduced file is run through TDRP to be

reduced a second time, tests have shown testing
coverage is affected. It should be noted that

the same level of testing coverage is uncertain
when several reduced files are used in testing
since the original intention of TDRP was to

reduce a single master file to conserve computer
resources over multiple runs (2)

.

6. Examples

The following procedure was used as a

guideline for each test case run. Initially,

the program was run with the original data base.

Then the TDRP run was made producing the reduced
data base. A ninety percent reduction in the

original data base was user-specified. Lastly,

the program was run with the reduced data base
to ascertain the savings in CPU time.

In the first test (Figure 5) , two master
files were reduced. The savings in storage and

CPU time become quite apparent when both reduced
files are used to run a test.

TEST 1

PA-MSTR FILE

ORIGINAL AFTER PERCENTAGE
DATA FILE REDUCTION SAVINGS

NUMBER OF
RECORDS
(STORAGE)
CPU TIME
(SECONDS)

45450

757.71

4548

670,72

DU-MSTR FILE

ORIGINAL AFTER
DATA FILE REDUCTION

89.99

11.48

PERCENTAGE
SAVINGS

NUMBER OF
RECORDS
(STORAGE)
CPU TIME
(SECONDS)

28670

757.71

2868

245. 16

90.00

67.64

COMBINED PA-MSTR AND DU-MSTR FILES

ORIGINAL AFTER PERCENTAGE
DATA FILES REDUCTION SAVINGS

TOTAL NO.

OF RECORDS 74120 7416 89.99
(STORAGE)
CPU TIME 757.71 157.49 79.22
(SECONDS)

Figure 5. Results from Test 1

In tests 2 and 3 (Figure 6) , only one master file
was being processed. In both test cases, the

savings in CPU time are considerate.

TEST 2

PW115M01-IN

ORIGINAL AFTER PERCENTAGE
DATA FILE REDUCTION SAVINGS

NUMBER OF
RECORDS
(STORAGE)
CPU TIME
(SECONDS)

13021

98.29

1314

16.04

89.91

83.68

TEST 3

PWJ43D01-IN

ORIGINAL AFTER PERCENTAGE
DATA FILE REDUCTION SAVINGS

NUMBER OF
RECORDS
(STORAGE)
CPU TIME
(SECONDS)

13829

257.86

1386

54.08

89.98

79.03

Figure 6. Results from Tests 2 and 3

232

7. Constraints

TDRP currently handles up to 1000 condi-
tional statements but may easily be modified to
handle more. Files for reduction should not be
used in a COBOL sort since the program needs to

instrument the "read" statement for a file in
order to extract the records. Lastly, at

present, data files with control or dependent
records will yield unpredictable results after
reduction. This control record problem has been
analyzed and modifications are currently being
unit tested.

References

(1) Basili, V. and Perricone, B., "Software
Errors and Complexity: An Empirical
Investigation", Proceedings of the Seventh
Annual Software Engineering Workshop,
December, 1982, pp. 1-49.

(2) Navy Regional Data Automation Center
(NARDAC) Washington, D.C., "Test Data
Reduction Program (TDRP) for UNIVAC 1100

Series Computers Users Manual," NARDAC
Washington, DC Document No. UK50026S, UM-02

,

May 1982.

233

NBS-n4A iREv. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions;

1. PUBLICATION feR
REPORT NO.

NBS SP 500-104

2. Performing Orgam. Report No 3. Publication Date

October 1983

4. TITLE AND SUBTITLE
Conputer Science and Technology:

Proceedings of the Nineteenth Meeting of the Computer Performance Evaluation
Users Group (CPEUG)

5. AUTHOR(S)

Deborah Mobray, Editor

6. PERFORMING ORGANIZATION (If joint or other thart NBS, see in struct/on s)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
VtfASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as No. 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 83-600594

I

I Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sumrr\ar/ of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

These Proceedings record the papers that were presented at the Nineteenth Meeting of

the Computer Performance Evaluation Users Group (CPEUG 83) held October 25-28, 1983

in San Francisco, CA. CPEUG 83 recognized the rapid introduction of sophisticated

end-user technology into the information processing environment and addressed the

challenges posed to the CPE community. CPEUG 83 offered topics ranging from

microcomputers to supercomputers. The increasingly complex area of data com-

munications was presented as well as topics in office automation, software

improvement and engineering, capacity planning, and quality assurance. The

program was divided into three parallel sessions and included technical papers,

case studies, tutorials, and panels. Technical papers are presented in the

Proceedings in their entirety.

12. KEY WORDS (S/x to twelve entries; alphabetical order, capitalize only proper names; and separate key word": semicolons)

acquisition; benchmarking; capacity planning; cost accounting and chargeback; data

communications; end-user computing; local area networks; microcomputers; modeling

. techniques; office automation; software engineering.
13, AVAILABILITY

1 X 1
Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

fx~l Order From Superintendent of Documents. U.S. Government Printing Office, Washington, D.C.
20402.

1331 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

235

15. Price

$6.50

/ uSCOMM-OC «043-P^C

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name ——-

—

Company

Address

City State Zip Code

(Noliricalion kty N-503)

us. GOVERNMENT PRINHNG OFFICE : 1983 O—380-997 (5207)

I

)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription; domestic

$18; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on
various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AlP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St..

NW, Washington, DC 20056.

Building Science Series—Disseminates technical i'-^'ormation

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10. Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on
NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-
ments, Government Printing Office. Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Service. Springfield. VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS'pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor: public distribution is by the

National Technical Information Service
, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234

Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID

U S DEPARTMENT OF COMMERCE
COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

