NITROGEN OXYCHLORIDES:
A Bibliography on Data for Physical and Chemical Properties of ClNO, ClNO₂, and ClNO₃
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of available technology; cooperates with public and private organizations in developing technological standards, codes, and test methods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of the following divisions and centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process to facilitate technological change in the private sector by examining and experimenting with Government policies and practices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Located at Boulder, Colorado 80302.
NITROGEN OXYCHLORIDES:

A Bibliography on Data for Physical and Chemical Properties of ClNO, ClNO₂, and ClNO₃

Francis Westley

Institute for Materials Research
National Bureau of Standards
Washington, D.C. 20234

Sponsored by:
Office of Standard Reference Data
National Bureau of Standards
Washington, D.C. 20234

Office of Air and Water Measurement
National Bureau of Standards
Washington, D.C. 20234

Department of Transportation
Federal Aviation Administration
Washington, D.C. 20591

National Aeronautics and Space Administration
Washington, D.C. 20546

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Dr. Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued August 1977
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Guidelines for the User</td>
<td>2</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>Nitrosyl Chlorine - ClNO</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry and Chemical Kinetics</td>
<td>6</td>
</tr>
<tr>
<td>Molecular Properties</td>
<td>11</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>12</td>
</tr>
<tr>
<td>Spectral Properties</td>
<td>13</td>
</tr>
<tr>
<td>Thermodynamic Properties</td>
<td>15</td>
</tr>
<tr>
<td>Nitryl Chloride - ClNO₂</td>
<td>16</td>
</tr>
<tr>
<td>Chemistry and Chemical Kinetics</td>
<td>16</td>
</tr>
<tr>
<td>Molecular Properties</td>
<td>18</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>19</td>
</tr>
<tr>
<td>Spectral Properties</td>
<td>19</td>
</tr>
<tr>
<td>Thermodynamic Properties</td>
<td>20</td>
</tr>
<tr>
<td>Chlorine Nitrate - ClNO₃</td>
<td>21</td>
</tr>
<tr>
<td>Chemistry and Chemical Kinetics</td>
<td>21</td>
</tr>
<tr>
<td>Molecular Properties</td>
<td>22</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>22</td>
</tr>
<tr>
<td>Spectral Properties</td>
<td>22</td>
</tr>
<tr>
<td>Thermodynamic Properties</td>
<td>23</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>47</td>
</tr>
</tbody>
</table>
NITROGEN OXYCHLORIDES

[A Bibliography on Data for Physical and Chemical Properties of ClN0, ClN02, and ClN03]

FRANCIS WESTLEY

A data oriented list of references is provided for published papers and reports containing measured or calculated data for the physical and chemical properties of nitrosoyl chloride, nitryl chloride, and chlorine nitrate with particular emphasis on the chemistry and chemical kinetics of these compounds. More than 387 papers are listed. The period covered extends from 1874 through 1977.

Keywords: Bibliography; chemical kinetics; chemistry; chlorine nitrate; molecular properties; nitrosoyl chloride; nitryl chloride; physical properties; spectral properties; thermodynamic properties.

INTRODUCTION

This bibliography lists papers and reports containing data for the chemical, molecular, physical, and thermodynamic properties of nitrosoyl chloride, ClN0, nitryl chloride, ClN02, and chlorine nitrate, ClN03, with particular emphasis on the chemical kinetics of these compounds. Among these, nitryl chloride has been recently found to exist in two isomeric forms by Molina who in 1977 identified by UV spectrometry the existence of nitryl chloride, ClN02, and its isomer ClN02. The later one was named by Molina: "chlorine nitrite" (by analogy with chlorine nitrate, whose structural formula is: ClO-N=O and which as also been referred to as: nitryl oxychloride).

The articles have been selected from the files of the Chemical Kinetics Information Center and the Chemical Abstracts (1874-1977). The particular properties for which data are published are indicated by flags. The abbreviations for data flagging are based on the Fourth Interim IUPAC List (C0DATA Bulletin 19, 20 (1976)). The list of IUPAC flags is completed by a short number of abbreviations for descriptive terms (e.g.: calculation, decomposition, etc.). These descriptive abbreviations apply mostly to Chemical Kinetics.

ClN0, ClN02, and ClN03 are potentially important in pollution and atmospheric chemistry. In particular, the chlorine nitrate formation in atmosphere seems to produce a decrease in the projected ozone reduction. For that reason, the physical and chemical properties of ClN03 have been the object of a number of recent studies.

It is believed that this bibliography provides extensive coverage of the available data for the physical and chemical properties of ClN0, ClN02, and ClN03. The more than 387 references indexed here span all physical and chemical properties of ClN0, ClN02, and ClN03. No claim is made that this bibliography is all-inclusive. Our past experience in the preparation of bibliographies has taught us that it is virtually impossible to identify and obtain every paper or to flag correctly every paper that has been retrieved. The author will welcome suggestions for additions and corrections or errors and thanks the contributors in advance.

This bibliography is not the result of the effort of a single person, but of the whole staff of Chemical Kinetics Information Center. My thanks to all of them.

In particular, I wish to thank Dr. David Garvin, Section Chief and Dr. Robert Hampson, Jr., Director of the Center, for their more than helpful suggestions and constant guidance; Dr. William R. Evans for his thorough editing and proofreading of the manuscript; Mr. James Koch, Supervisor, for tracking down and obtaining papers and reports, otherwise very difficult to obtain; Mrs. Geraldine Zumwalt and Miss Sheri Schroyer, for typing a difficult manuscript with particular care.
GUIDELINES FOR THE USER

Arrangement of the Report.

This bibliography is in four parts:
Part I. Nitrosyl Chloride - ClN\text{O}
Part II. Nitryl Chloride - ClN\text{O}_2
Part III. Chlorine Nitrate - ClN\text{O}_3
Part IV. The combined bibliographies for Parts I to III arranged chronologically by years and - within each year - alphabetically by authors. The complete reference for each article mentioned is given here: occasionally explanatory notes are appended. These establish the "bibliographic chain" for closely related papers by the same authors.

Each of the Parts I to III is subdivided into five parts:

- Chemistry and Chemical Kinetics
- Molecular Properties
- Physical Properties
- Spectral Properties
- Thermodynamic Properties

Each entry in parts I to III consists of an identification of the paper or report and a set of abbreviations that specify the types of data reported therein. These two features are explained below.

Reference Codes

Each paper or report included in Parts I to III is indicated by a reference code formed by a string of characters showing:
1.) Year (last two digits)
2.) Author or first two authors, using the first three letters of each last name (patronymic). When two names are present they are separated by a slash.
3.) If necessary a digit is added to distinguish among papers that would have the same codes according to rules (1) and (2).

Examples:
40 ASM
41 ATW/RG
53 ASH/CHA
53 ASB/CHA

The total length of the string, including the digit, may be no longer than 11 characters. A code without digit has, implicitly, the digit 1 associated with it.

Properties Codes

Following the year and author code, at five spaces distance, are the abbreviations for data flagging. These flags are taken from the Fourth Interim IUPAC Lists and their use is an experiment--testing the usefulness and completeness of the technique on a body of related data--and an attempt to achieve a substantial compression of information.

Although the IUPAC List includes 113 flags, this bibliography uses only 33 of them as listed below. The 80 flags not included indicate properties which have not yet been investigated for ClN\text{O}, ClN\text{O}_2, and ClN\text{O}_3. The flags for spectra are indicated by three capital initials, all other only by two initials.

Under the subheading "molecular properties" the year and author codes are followed by flags indicating only molecular properties. The same rule applies for the remaining four subheadings. The IUPAC List of Flags is supplemented by 11 codes for descriptive terms (e.g.: Clc - calculation; for from; formation from; Rev - Review; etc.). These descriptive codes include three letters the first being a capital. Only two descriptive codes have 7
The code "Rlp" means Related Paper and indicates that a paper does not report rate data, or quantum yields, or mechanisms, but may describe the synthesis of compound.

The flags for data appear first in alphabetical order, followed by the descriptive terms.

Examples:

CIN6

Chemistry and Chemical Kinetics

61 ASM/BUR Fr, Dec, Mec, Rxn with: Cl, N6, N62

which indicates that the paper by Ashmore and Burnett (1961) reports reaction rate data on the CIN6 decomposition, a mechanism of the reaction and some information on the reaction of CIN6 with Chlorine atoms, N6 and N62.

CIN6

Spectral Properties

74 BAL/ARM UVS, VIS

which indicates that the paper by Ballash and Armstrong (1974) reports studies on the CIN6 ultraviolet and visible spectra.

To find the complete references for the above examples (61 ASM/BUR and 74 BAL/ARM) the reader should look in Part IV under the subheadings 1961 and 1974, where the papers by Ashmore and Burnett (1961) and Ballash and Armstrong (1974) are listed alphabetically within the same year.

For easy location, each reference listed in Part IV is preceded by the year and author code.

The Properties Codes (including the IUPAC list for Data Flagging Abbreviations and--separately--the list for Descriptive Terms) follow below. For the convenience of the reader, these two lists are repeated in the last page of this bibliography, after the References.

*The complete IUPAC list is published in: C*DATA (Committee on the Data for Science and Technology) Bulletin No. 12, "Flagging and Tagging Data," P. 20 ff. (June 1976, Paris, France)
LIST OF ABBREVIATIONS

Abbreviations for Data Flagging
Fourth Interim IUPAC List

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Absorption Cross Section</td>
</tr>
<tr>
<td>BE</td>
<td>Bond Energy, Atomization Energy, Dissociation Energy</td>
</tr>
<tr>
<td>BA</td>
<td>Bond Angle, Bond Length</td>
</tr>
<tr>
<td>BT</td>
<td>Boiling Temperature (Boiling Point)</td>
</tr>
<tr>
<td>CD</td>
<td>Critical State Data (Critical Density, Critical Temperature, Critical Pressure)</td>
</tr>
<tr>
<td>DC</td>
<td>Dielectric Constant</td>
</tr>
<tr>
<td>DM</td>
<td>Dielectric Properties (Electric Dipole Moment, Molecular Polarization Quadrupole Coupling Constant)</td>
</tr>
<tr>
<td>DN</td>
<td>Density Data (Density, Specific Density)</td>
</tr>
<tr>
<td>EN</td>
<td>Entropy</td>
</tr>
<tr>
<td>EQ</td>
<td>Equilibrium Data (Equilibrium Constant)</td>
</tr>
<tr>
<td>ET</td>
<td>Enthalpy (Heat of Vaporization, Heat of Sublimation, Heat of Reaction)</td>
</tr>
<tr>
<td>HC</td>
<td>Heat Capacity</td>
</tr>
<tr>
<td>IP</td>
<td>Ionization Potential, Electron Affinity</td>
</tr>
<tr>
<td>IRS</td>
<td>Infrared Spectrum</td>
</tr>
<tr>
<td>MG</td>
<td>Magnetic Data, (Magnetic Dipole (and Higher) Moments, Magnetic Susceptibility)</td>
</tr>
<tr>
<td>ML</td>
<td>Molecular Energy Level, Rotational and Vibrational Constants, Force Constant, Moment of Inertia</td>
</tr>
<tr>
<td>MSS</td>
<td>Mass Spectrum</td>
</tr>
<tr>
<td>MT</td>
<td>Melting Temperature (Melting Point)</td>
</tr>
<tr>
<td>MWS</td>
<td>Microwave Spectrum</td>
</tr>
<tr>
<td>NMS</td>
<td>Nuclear Magnetic Resonance Spectrum</td>
</tr>
<tr>
<td>QY</td>
<td>Quantum Yield (and Quantum Efficiency)</td>
</tr>
<tr>
<td>RAS</td>
<td>Raman Spectrum</td>
</tr>
<tr>
<td>RD</td>
<td>Radii (Atomic, Ionic, Molecular, Molecular Volume, Molecular Diameter, Molecular Cross Section)</td>
</tr>
<tr>
<td>RR</td>
<td>Reaction Rate Data (Rate Constant, Relaxation Time, Half-life)</td>
</tr>
<tr>
<td>ST</td>
<td>Surface Tension</td>
</tr>
<tr>
<td>TC</td>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td>TE</td>
<td>Thermodynamic Energy Data (Gibbs Free Energy, Helmholtz Energy, Thermodynamic energy functions)</td>
</tr>
<tr>
<td>UVS</td>
<td>Ultraviolet Spectrum</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible Spectrum</td>
</tr>
<tr>
<td>VP</td>
<td>Vapor Pressure (Sublimation Pressure)</td>
</tr>
<tr>
<td>VS</td>
<td>Viscosity Data</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectrum</td>
</tr>
<tr>
<td>XRS</td>
<td>X-ray Spectrum</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Clc</td>
<td>Calculation</td>
</tr>
<tr>
<td>Dec</td>
<td>Decomposition</td>
</tr>
<tr>
<td>For from:</td>
<td>Formation from another compound</td>
</tr>
<tr>
<td>Mec</td>
<td>Mechanism</td>
</tr>
<tr>
<td>Phl</td>
<td>Photolysis</td>
</tr>
<tr>
<td>Rad</td>
<td>Radiation</td>
</tr>
<tr>
<td>Rev</td>
<td>Review</td>
</tr>
<tr>
<td>Rlp</td>
<td>Related Paper</td>
</tr>
<tr>
<td>Rxn with:</td>
<td>Reaction with other compounds</td>
</tr>
<tr>
<td>Syn</td>
<td>Synthesis (preparative methods)</td>
</tr>
<tr>
<td>Thp</td>
<td>Theoretical Paper</td>
</tr>
</tbody>
</table>
PART I

NITROSYL CHLORIDE

Chemistry and Chemical Kinetics

74 TIL Rlp, Rxn with: Au and Pt, Syn
91 SUD Rlp, Rxn with: metals
12 BRI/PYI Rlp, Syn
14 TRA RR, For from: N\textsubscript{6} and Cl\textsubscript{2}
15 TRA/HIN Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}, Rlp
16 BRI For from: HN\textsubscript{o}{3} and HCl, Mec, Rlp, Rxn with: Cl\textsubscript{2} and H\textsubscript{2}O
16 TRA/HIN Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}, Rlp
16 TRA/WAC Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}
23 CUT/TAR Rlp, Rxn with: Cu\textsubscript{6} and Tl\textsubscript{2}O\textsubscript{6}, Syn
23 KIS RR, Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}, Mec, Phl
24 KIS RR, For from: ClN\textsubscript{6}{2} and N\textsubscript{6}, Mec
24 TRA/GER Rlp, Syn
24 TRA/SCH RR, For from: N\textsubscript{6} and Cl\textsubscript{2}, Mec
25 BWO/SWA QY, Phl
27 GAL/MEN Rlp, Rxn with: MCl\textsubscript{n} (M = metal, n = 1 to 5), Syn
27 TAY/DEN RR, Dec
28 N\textsubscript{6}OY For from: NCl\textsubscript{3}, Rlp, Rxn with: NCl\textsubscript{3}
25 SCH/SPR1 Rlp, Rxn with: \textsubscript{6}{3}
25 SCH/SPR3 Rlp, Rxn with: \textsubscript{6}{3}
30 KIS QY, Dec, Mec, Phl, Rxn with: Cl
30 N\textsubscript{6}OY For from: NCl\textsubscript{3} and N\textsubscript{6}{1}, Mec
31 WHY/LUN Rlp, Rxn with: NaClH, Syn
34 TRA/FRE Dec, Rlp
35 WAD/TWL RR, Dec
37 KRA/SAR RR, For from: N\textsubscript{6} and Cl\textsubscript{2}
38 SCH RR, Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}, Rev
38 WEL/TAY RR, Dec, For from: N\textsubscript{6} and Cl\textsubscript{2}
39 C6L/LIL Rlp, Syn
39 G66/KRA Rlp, Dec
39 NAT QY, RR, Mec, Phl
ASM Rlp, Rxn with: MClₙ (M = metal, n = 1 to 5)
NAT FR, Cle, Dec, Thp
ATW/RGL QY, Phl
SCH Rlp, Rxn with: 3
PAR/WHY Rlp, Rxn with: M and MClₙ (M = metal, n = 1 to 5)
ADD/THGI Rlp, Rxn with: N₂S₄, CCl₄, metals
DRG/ALL RR, for from: HN₃, Rxn with: 3
PAR/WHYL Rlp, Rxn with: M, MCl₃ and M(N₃)ₙ (M = metal, n = 1 to 4)
GG/WIL Dec, For from: ClN₃₂, Rlp, Rxn with: N₂S₃ and S
BUR/MCK Rlp, Rxn with: FeCl₃
BUR/DAI2 RR, Rxn with: Cl, C₆Cl
CHA/ASH RR, Dec
FRE/JMH RR, For from: ClN₃₂ and N₃
ASH/CHA1 RR, Dec, For from: Cl₂, Mec, Rxn with: Cl, M
ASH/CHA2 RR, Dec, Mec, Rxn with: Cl
ASH/CHA3 RR, Cle, For from: Cl₂
J6H/LEI RR, Mec, Rxn with: S₃ and N₃
FRE For from: Cl₂ and N₃, Mec, Thp
LEI RR, Mec, Rxn with: S₃ and N₃
EPS/NIK RR For from: HN₃ and NaCl or KCl
MAR/KOH RR, Rxn with: Cl₆₂
RAY RR, Mec, Rxn with: NO₂
PIT/POW RR, Cle, Dec, For from: ClN₃₂ NO and Cl₂, Rxn with: Cl, Thp
ASH/LEV Dec, Rlp
RAY/MGG RR, Mec, Rxn with: NO₂
SCH/GIN Rlp, Rxn with: ClN₃
ART/STR For from: NO, Phl, Rxn with: C₆H₆, Cl
GL/GIN For from: ClN₃₂ and H₂O or HCl, Rlp
GIN/GOD RR, For from: ClN₃₂, H₂O, HN₃, Rxn with: Mesitylene
MAR For from: Cl₂O and NO, Rxn with: N₂O₅
MAR/KOH RR, Mec, Rxn with: Cl₂O, 6Cl, NO₂, NO₃
DUX/BAU RR, Dec, For from: Cl₂, Phl, Rxn with: Cl
<table>
<thead>
<tr>
<th>Year</th>
<th>Source</th>
<th>Reaction Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 MAR/SPE</td>
<td>RR, Dec, For from: Cl<sub>2</sub>, Mec, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>59 NEU</td>
<td>QY, Phl</td>
<td></td>
</tr>
<tr>
<td>59 TAL/THØ</td>
<td>RR, For from: HCl and NO<sub>2</sub>, Mec</td>
<td></td>
</tr>
<tr>
<td>60 FIN/LEE</td>
<td>QY, For from: Cl and NO, Phl, Rxn with: AlCl<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>60 GEØ</td>
<td>Rlp, Rev, Rxn with: Inorg. Salts, Syn</td>
<td></td>
</tr>
<tr>
<td>60 MAR/WØH</td>
<td>RR, Dec, Mec, Phl, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>60 MCK/FIN</td>
<td>Qy, For from: NO and Cl<sub>2</sub>, Phl</td>
<td></td>
</tr>
<tr>
<td>61 ASH/BUR</td>
<td>RR, Dec, Mec, Rxn with: Cl, NO<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>61 BAS/NOR</td>
<td>Phl</td>
<td></td>
</tr>
<tr>
<td>61 CAS/POL</td>
<td>RR, Rxn with: H</td>
<td></td>
</tr>
<tr>
<td>61 DEK</td>
<td>RR, Dec, Mec, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>61 MAR/WØH1</td>
<td>QY, RR, Dec, For from: NO and Cl<sub>2</sub>, Mec, Rev, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>61 MAR/WØH2</td>
<td>QY, RR, Dec, For from: NO and Cl<sub>2</sub>, Phl</td>
<td></td>
</tr>
<tr>
<td>61 RIC</td>
<td>RR, Mec, Rxn with: N<sub>2</sub>O<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>61 WAR</td>
<td>Rlp, Rxn with: H<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>62 ASH/BUR</td>
<td>RR, Dec, Mec</td>
<td></td>
</tr>
<tr>
<td>62 BAS</td>
<td>Mec, Phl, Rxn with: Cl, NO</td>
<td></td>
</tr>
<tr>
<td>62 BAS/NOR</td>
<td>Mec, Phl</td>
<td></td>
</tr>
<tr>
<td>62 CHA/KHA</td>
<td>Rxn with: H</td>
<td></td>
</tr>
<tr>
<td>62 DEK/PAL</td>
<td>RR, Dec, Mec, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>62 MAR/CHU</td>
<td>QY, Phl</td>
<td></td>
</tr>
<tr>
<td>63 MER</td>
<td>Rlp, For from: NO and Cl<sub>2</sub>, Phl</td>
<td></td>
</tr>
<tr>
<td>63 WEI</td>
<td>Rlp, Rxn with: H<sub>2</sub>O and SO<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>63 WØL/ECK</td>
<td>Rlp, Rxn with: Cl<sub>2</sub> and N<sub>2</sub>O<sub>4</sub></td>
<td></td>
</tr>
<tr>
<td>64 ASH/HER</td>
<td>RR, Dec</td>
<td></td>
</tr>
<tr>
<td>64 WAY</td>
<td>QY, Phl</td>
<td></td>
</tr>
<tr>
<td>65 ASH/WES</td>
<td>RR, Dec, Mec, Rxn with: Cl, H</td>
<td></td>
</tr>
<tr>
<td>65 VAN/HEU</td>
<td>Rlp, Rxn with: SO<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>65 ZEV</td>
<td>RR, Rxn with: N<sub>2</sub>O<sub>5</sub> and NO<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>66 CLY/STE</td>
<td>RR, Rxn with: H</td>
<td></td>
</tr>
<tr>
<td>66 DEU</td>
<td>Dec, Rlp</td>
<td></td>
</tr>
<tr>
<td>66 MAR</td>
<td>RR, Mec, Rxn with: Cl<sub>2</sub>, OCl, NO<sub>2</sub>, NO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>66 NIE/WAG</td>
<td>Rad, Rlp</td>
<td></td>
</tr>
<tr>
<td>66 PAP</td>
<td>QY, Mec, Phl, Rxn with: Alkanes</td>
<td></td>
</tr>
<tr>
<td>66 PØL</td>
<td>Dec, Phl, Rxn with: Cl</td>
<td></td>
</tr>
<tr>
<td>66 STØ/GRØ</td>
<td>Rlp, For from: ClNO<sub>2</sub> and SO<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>66 WEL</td>
<td>Dec, Phl</td>
<td></td>
</tr>
<tr>
<td>67 CAL/PIT</td>
<td>QY, Mec, Phl, Rev</td>
<td></td>
</tr>
</tbody>
</table>
67 DEJ/LEG For from: NaS\textsubscript{2}Cl, Rlp
67 KUH Rlp, Rxn with: HF and Lewis acid fluorides
67 MIT/SIM Rlp, Phl, Thp
67 VAN Rlp, Rxn with: S\textsubscript{6}
68 AMI/KEF RR, Mec, Rxn with: \textit{d} \textsubscript{2}
68 GRI/C\textsubscript{6}S RR, Rxn with: Cs and Rb
68 LEN/\textit{\phi}KA QY, Dec, Phl
69 Bi\textit{\theta} Mec, Rxn with: Cl, N
69 HAT/HUS RR, Rxn with: I
69 TIM/DAR QY, RR, Dec, For from: Cl and N\theta, Mec, Phl, Rxn with: Cl
70 ANL Rxn with: H
70 FOR/SAI RR, Clc, Dec, Thp
70 G\text{\&}O/GRA Dec, k
71 DUN/FRE\textsubscript{1} RR, Mec, Rxn with: N
71 DUN/FRE\textsubscript{2} RR, Rxn with: \textit{d}
71 DUN/SUT RR, Rxn with: H
71 YAG/AMI Rlp, Rxn with: C and \textit{d} \textsubscript{2}
72 BEL/PER Rlp, Rxn with: \textit{\phi}lefins
72 BUS/W1L RR, Phl
72 C\text{\&}L/PER Rlp, Rxn with: H\textsubscript{2}\textit{d}
72 CLY/C\textsubscript{4}U1 RR, Rxn with: Br, Cl
72 CLY/C\textsubscript{4}U2 RR, Rxn with: Br, Cl
72 DEA/HUS RR, Rxn with: I
72 DIJ/SCH Dec, For from: N\theta\textsubscript{2} and HCl, Rlp, Rxn with: N\theta\textsubscript{2}
72 DUB/DEV Rlp, Syn
72 ENG/GAR Dec, Rlp
72 FOR/LIN QY, RR, Dec, For from: N\theta and Cl, Mec, Phl, Rxn with: Cl
72 MAL RR, Dec, Rxn with: Cl
72 MAR/R\text{\&}B RR, Mec, Rxn with: Cl\textsubscript{2}\textit{d}, \textit{\phi}Cl, N\theta\textsubscript{2}
72 MEN/MEN RR, Rxn with: H\textsubscript{2}
72 SER/L6B Rlp, Rxn with: Be or BeCl\textsubscript{2} and N\textsubscript{2}\textsubscript{\&}4
73 BRA/W\textit{\phi}Y RR, Rxn
73 FCK/EDE Rxn with: Ba, Ca, Mg, Sr
73 GAV Phl, Rlp, \textit{\ddbl}Rxn with: cyclohexane
73 JAN/ENG RR, Dec, For from: HCl, NN\theta\textsubscript{3}, Rev, Rxn with: Cl and Inorg. Comp., Syn
73 MAL/PAL RR, Dec
73 M\text{\&}V/KYA Rlp, Rxn with: Cyclic ethers
73 PRA/KAR QY, RR, Mec, Phl, Rxn with: I and R* (R* = alkyl)
73 SAV/LAC RR, Dec
<table>
<thead>
<tr>
<th>Reaction Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYR/GIL</td>
<td>Rlp, Rxn with: e^-</td>
</tr>
<tr>
<td>VIA/AMA</td>
<td>Rlp, Rxn with: Ti6Cl2</td>
</tr>
<tr>
<td>WU</td>
<td>Dec, For from: Cl and N6, Mec, Phl, Rxn with: Cl</td>
</tr>
<tr>
<td>BAL/BOL</td>
<td>Mec, Phl</td>
</tr>
<tr>
<td>DEJ/HEU</td>
<td>Rlp, Rxn with: SO3</td>
</tr>
<tr>
<td>ECK/EDE</td>
<td>Rxn with: Ba, Ca, Mg, Sr</td>
</tr>
<tr>
<td>KAR/PRA1</td>
<td>QY, Phl, Rxn, k, Mec</td>
</tr>
<tr>
<td>KAR/PRA2</td>
<td>QY, RR, Mec, Phl, Rxn with: I and C3H7I</td>
</tr>
<tr>
<td>KNA/MAR</td>
<td>For from: ClN62, Mec, Rxn with: N62 and ClN63</td>
</tr>
<tr>
<td>NAZ/PH6L</td>
<td>RR, Rxn with: H</td>
</tr>
<tr>
<td>PH6/KEF</td>
<td>Rlp, Rxn with: Cl2</td>
</tr>
<tr>
<td>SCH/DR61</td>
<td>Rlp, Rxn with: HN63</td>
</tr>
<tr>
<td>SCH/UR6</td>
<td>For from: NaCl and N62, Rlp</td>
</tr>
<tr>
<td>TSE/DR62</td>
<td>Rlp, Rxn with: HN63</td>
</tr>
<tr>
<td>WIL</td>
<td>RR, For from: N6 and ClN62, Rxn with: N2S5 and HN63</td>
</tr>
<tr>
<td>WIL/D66D</td>
<td>RR, For from: N6 and ClN62</td>
</tr>
<tr>
<td>BEC/FIC</td>
<td>For from: VCl4, Rlp, Rxn with: V(C6)6</td>
</tr>
<tr>
<td>BRA/TIC</td>
<td>Rlp, Rxn with: enamines</td>
</tr>
<tr>
<td>DEG/KAC</td>
<td>QY, RR, Mec, Phl, Rxn with: polyethylene</td>
</tr>
<tr>
<td>D6R/SCH</td>
<td>RR, Dec</td>
</tr>
<tr>
<td>DUB/AMA</td>
<td>Rlp, Rxn with: TiCl3(RO)2, R = alkyl</td>
</tr>
<tr>
<td>GAL/OST</td>
<td>Dec, For from: N6 and Cl2, Rlp, Rxn with: NaAlCl4</td>
</tr>
<tr>
<td>HAB/SCH</td>
<td>Rxn with: H and D</td>
</tr>
<tr>
<td>KIR/SPR</td>
<td>Rlp, Rxn with: (CF2NCl)3</td>
</tr>
<tr>
<td>LAZ/GAV</td>
<td>QY, Phl, Rxn with: Cycloalkanes</td>
</tr>
<tr>
<td>LEZ/MAL</td>
<td>Rlp, Rxn with: carbonyl complexes</td>
</tr>
<tr>
<td>MAL/KAT</td>
<td>Rlp, Rxn with: AsBr3, PBr3, Ph3l, Ph3As</td>
</tr>
<tr>
<td>MAR1</td>
<td>Rlp, Rxn with: Pinene</td>
</tr>
<tr>
<td>MAR2</td>
<td>Rlp, Rxn with: C6H5MgBr</td>
</tr>
<tr>
<td>MEH/PAN</td>
<td>Rlp, Rxn with: Polycyclic Hydroc.</td>
</tr>
<tr>
<td>RO6/DEM</td>
<td>Mec, Rxn with: Cyclohexene</td>
</tr>
<tr>
<td>R6G/VIT</td>
<td>Mec, Rxn with: Cyclic ketones</td>
</tr>
<tr>
<td>SCH/CHR</td>
<td>RR, Rxn with: e^-</td>
</tr>
<tr>
<td>VOL/SCH</td>
<td>Rlp, Rxn with: RN3 (R = alkyl)</td>
</tr>
<tr>
<td>WAT/MAR1</td>
<td>Mec, Rxn with: C6H5MgBr</td>
</tr>
<tr>
<td>WAT/MAR2</td>
<td>Mec, Rxn with: C6H5MgBr</td>
</tr>
<tr>
<td>WIL</td>
<td>RR, Mec, Rxn with: amines</td>
</tr>
<tr>
<td>YAR/NO6F</td>
<td>Rlp, Rxn with: CF3SO3H</td>
</tr>
<tr>
<td>76 AMI/KEF</td>
<td>For from: Cl₂ and N₂H₄, Rlp</td>
</tr>
<tr>
<td>76 AUS/RAK</td>
<td>Rlp, Rxn with: C₆H₁₃NH₂, (CH₃CH₂)₃N</td>
</tr>
<tr>
<td>76 HIP/TRG</td>
<td>RR, For from: Cl and NO, Rxn with: Cl</td>
</tr>
<tr>
<td>76 YSA/GAS</td>
<td>QY, RR, Phl</td>
</tr>
<tr>
<td>76 KYU/CLA</td>
<td>Mec, Rxn with: Oximes</td>
</tr>
<tr>
<td>76 MIR/P6V</td>
<td>Rlp, Rxn with: Polycyclic Hydro.</td>
</tr>
<tr>
<td>76 SCH</td>
<td>Rlp, Rxn with: Hydroxy polymers</td>
</tr>
<tr>
<td>76 SER/LEE</td>
<td>RR, Rxn with: Epoxides</td>
</tr>
<tr>
<td>76 V0S</td>
<td>Rlp, Rxn with: K₂(MO₃Cl₆)</td>
</tr>
<tr>
<td>77 MOL/MOL</td>
<td>AB, UVS (for Cl₃NO, Chlorine Nitrite Isomer)</td>
</tr>
</tbody>
</table>

ClNO

Molecular Properties

<p>| 37 KET/PAL | B0, RD |
| 38 KET | BE, B0, ML |
| 39 BEE/Y0S1 | B0, ML |
| 43 KET | B0, DC, DM |
| 50 BER | B0, ML |
| 50 BUR/BER | B0, ML |
| 51 BEC/FES | B0, RD, Rev |
| 51 PUL/WAL | ML |
| 51 ROG/PIE | MG, ML |
| 52 BUR/MCK | DC |
| 52 EBE/BUR | ML |
| 54 SIE | ML, Clc |
| 55 KAP/SIM | B0, ML |
| 56 PIT/POW | EQ, ML |
| 57 TAN | B0 |
| 58 SUT | B0, Clc |
| 60 ERR | BE |
| 60 GEN | B0, DM, Rev |
| 60 LAN/FLE | ML |
| 61 LIN | B0 |
| 61 LUM | DM |
| 61 MAR/WH2 | B0, DC, DM, IP, MG, ML, RD, Rev |
| 61 MIL/PAN | B0, DM, ML |
| 61 ROG/WIL | B0 |
| 62 BEN | RD |
| 62 KHA | B0, ML |
| 62 MIR/FAV | ML |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>DUR/LOR</td>
</tr>
<tr>
<td>64</td>
<td>RAY</td>
</tr>
<tr>
<td>65</td>
<td>GUA/FAY</td>
</tr>
<tr>
<td>65</td>
<td>VEN/MAR1</td>
</tr>
<tr>
<td>65</td>
<td>VEN/MAR2</td>
</tr>
<tr>
<td>66</td>
<td>GER/RGH</td>
</tr>
<tr>
<td>66</td>
<td>LIF/NAG</td>
</tr>
<tr>
<td>66</td>
<td>MIR/MAZ</td>
</tr>
<tr>
<td>66</td>
<td>MGR</td>
</tr>
<tr>
<td>66</td>
<td>NAG</td>
</tr>
<tr>
<td>66</td>
<td>TAN/TAN</td>
</tr>
<tr>
<td>67</td>
<td>NEL/LID</td>
</tr>
<tr>
<td>68</td>
<td>JON/RYA</td>
</tr>
<tr>
<td>68</td>
<td>LEN/6KA</td>
</tr>
<tr>
<td>70</td>
<td>FOR/SAI</td>
</tr>
<tr>
<td>71</td>
<td>RAJ/POU</td>
</tr>
<tr>
<td>71</td>
<td>RAM/NAM</td>
</tr>
<tr>
<td>71</td>
<td>STU/PR0</td>
</tr>
<tr>
<td>72</td>
<td>CMT/WIL</td>
</tr>
<tr>
<td>72</td>
<td>NAT/RAM</td>
</tr>
<tr>
<td>72</td>
<td>SHI</td>
</tr>
<tr>
<td>73</td>
<td>JAN/ENG</td>
</tr>
<tr>
<td>73</td>
<td>RAG</td>
</tr>
<tr>
<td>75</td>
<td>BER/BGC</td>
</tr>
<tr>
<td>75</td>
<td>CHA/CUR</td>
</tr>
<tr>
<td>75</td>
<td>FR6/LEE</td>
</tr>
<tr>
<td>75</td>
<td>SPI/SPE</td>
</tr>
<tr>
<td>76</td>
<td>ABB/DYK</td>
</tr>
<tr>
<td>76</td>
<td>GIL/SCH</td>
</tr>
<tr>
<td>76</td>
<td>ST6</td>
</tr>
</tbody>
</table>

C11N6

Physical Properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>BRI/PYL</td>
</tr>
<tr>
<td>24</td>
<td>TRA/GER</td>
</tr>
<tr>
<td>27</td>
<td>GAL/MEN</td>
</tr>
<tr>
<td>34</td>
<td>TRA/FRE</td>
</tr>
<tr>
<td>39</td>
<td>CEL/LIL</td>
</tr>
<tr>
<td>40</td>
<td>ASM</td>
</tr>
<tr>
<td>48</td>
<td>MCG</td>
</tr>
<tr>
<td>48</td>
<td>S6L</td>
</tr>
</tbody>
</table>
49 ADD/THO2 MT
49 PAR/WHY1 MT
49 PAR/WHY2 VP
51 BEC/FES BT, DN, MT, ST, Rev
51 EPS/NIK BT, VP
52 BUR/DAII MT, VP
52 BUR/MCK VP
50 GEN BT, DN, MT, Rev
51 DEV/HIS BF, ML, Clc
51 MAR/WGII BT, CD, DN, ML, ST, VP, VS, Rev
52 BEN CD, DN
52 SVE TC, VS
63 WEL/ECK VP
68 KUZ/EGE CD
69 PAN/RIP BT, CD
72 CET/WIL BT, MT
72 DUB/DEV MT
73 JAN/ENG MT, VP, Rev
73 RAG BT, CD, DN, MT, Rev
74 KRO/ROZ VP
75 KRO/ROZ VP
76 AMI/KEF VP

ClNC

Spectral Properties

30 KIS UVS, VIS
32 LEE/RAM VIS
34 BAI/CAS IRS
39 GGE/KAT UVS, VIS
39 NAT VIS
41 PRI-SIM UVS
50 BER NWS
50 BUR/BER IRS
50 PIE/RG1 NWS
50 PIE/RG2 NWS
50 WIS/ELM IRS
51 BEC/FES IRS, UVS, VIS
51 PUL/WAL IRS
51 RG/PIE NWS
52 EBE/BUR IRS
52 WGL/JON IRS
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>WAL</td>
<td>UVS, VIS, Rev</td>
</tr>
<tr>
<td>54</td>
<td>Has/Jan</td>
<td>IRS</td>
</tr>
<tr>
<td>55</td>
<td>Kaw/Sim</td>
<td>IRS</td>
</tr>
<tr>
<td>56</td>
<td>Bay/Wat</td>
<td>UVS</td>
</tr>
<tr>
<td>56</td>
<td>Gen/Fin</td>
<td>UVS, VIS</td>
</tr>
<tr>
<td>56</td>
<td>Mar/Gar</td>
<td>UVS</td>
</tr>
<tr>
<td>56</td>
<td>Pie/Fle</td>
<td>IRS</td>
</tr>
<tr>
<td>57</td>
<td>Bel/Wil</td>
<td>IRS</td>
</tr>
<tr>
<td>57</td>
<td>Tan</td>
<td>UVS</td>
</tr>
<tr>
<td>58</td>
<td>Col/Gin</td>
<td>IRS, UVS</td>
</tr>
<tr>
<td>59</td>
<td>Ray/Ogg</td>
<td>IRS</td>
</tr>
<tr>
<td>60</td>
<td>Bri</td>
<td>UVS</td>
</tr>
<tr>
<td>60</td>
<td>Lan/Fle</td>
<td>IRS</td>
</tr>
<tr>
<td>61</td>
<td>Cas/Pol</td>
<td>IRS</td>
</tr>
<tr>
<td>61</td>
<td>Mil/Pan</td>
<td>MWS</td>
</tr>
<tr>
<td>62</td>
<td>Mir/FAV</td>
<td>MWS</td>
</tr>
<tr>
<td>63</td>
<td>Dur/Lør</td>
<td>IRS</td>
</tr>
<tr>
<td>63</td>
<td>Gøl</td>
<td>IRS</td>
</tr>
<tr>
<td>63</td>
<td>His/Mil</td>
<td>IRS</td>
</tr>
<tr>
<td>63</td>
<td>Len/Gka</td>
<td>UVS</td>
</tr>
<tr>
<td>65</td>
<td>Gua/FAV</td>
<td>MWS</td>
</tr>
<tr>
<td>66</td>
<td>Mir/Maz</td>
<td>MWS</td>
</tr>
<tr>
<td>66</td>
<td>Tan/Tan</td>
<td>UVS</td>
</tr>
<tr>
<td>68</td>
<td>Jon/Rya</td>
<td>IRS</td>
</tr>
<tr>
<td>68</td>
<td>Len/Gka</td>
<td>UVS</td>
</tr>
<tr>
<td>70</td>
<td>And/Mas</td>
<td>NMS</td>
</tr>
<tr>
<td>71</td>
<td>Dun/Sut</td>
<td>MSS</td>
</tr>
<tr>
<td>72</td>
<td>Før/Lin</td>
<td>MSS</td>
</tr>
<tr>
<td>72</td>
<td>Mac/Dev</td>
<td>IRS, RAS</td>
</tr>
<tr>
<td>73</td>
<td>Jan/Eng</td>
<td>IRS, Rev</td>
</tr>
<tr>
<td>74</td>
<td>Bal/Arm</td>
<td>UVS, VIS</td>
</tr>
<tr>
<td>74</td>
<td>DUB/CAB</td>
<td>XRS</td>
</tr>
<tr>
<td>74</td>
<td>Roe/Wad</td>
<td>AB, RAS</td>
</tr>
<tr>
<td>75</td>
<td>Ber/BøC</td>
<td>XPS</td>
</tr>
<tr>
<td>75</td>
<td>CAZ/Cer</td>
<td>IRS, MWS</td>
</tr>
<tr>
<td>75</td>
<td>FR6/Lee</td>
<td>XPS</td>
</tr>
<tr>
<td>75</td>
<td>ST6</td>
<td>XRS</td>
</tr>
<tr>
<td>76</td>
<td>ABB/Dyk</td>
<td>XPS</td>
</tr>
<tr>
<td>76</td>
<td>Gil/Sch</td>
<td>XPS</td>
</tr>
<tr>
<td>76</td>
<td>ILL/Tak</td>
<td>AB, UVS</td>
</tr>
<tr>
<td>76</td>
<td>Sav/Bes</td>
<td>MSS</td>
</tr>
<tr>
<td>77</td>
<td>Møl</td>
<td>AB, UVS</td>
</tr>
</tbody>
</table>
Thermodynamic Properties

12 BRI/PYL ET
15 TRA/HIN EQ
16 BRI ET
16 TRA/HIN EQ
16 TRA/WAC EQ
24 TRA/SCH EQ
27 GAL/MEN VP
31 DIX EN, EQ, ET
31 WHI/LUN ET, TE
32 LEE/RAM EN, EQ, ET, TE, Clc
36 BIC/RGS ET
38 JAH EN, EQ, ET, TE, Clc
39 BEE/YQS1 EN, EQ, ET, RC, TE
39 BEE/YQS2 EQ
40 ASM ET
41 PRI/SIM ET
41 SCH/MAS EQ, TE
46 DRG/GAL TE
49 PAR/WHY2 ET
50 BUR/BER EN, RC, TE
51 BEC/FES EN, EQ, ET, RC, Rev
51 PUI/WAL EN
57 RAY/GGG EQ
58 MAR/KGH ET
59 RAY/GGG EN, ET
60 GEO ET, Rev
61 MAR/WGH2 EN, EQ, ET, RC, TE, Rev
61 WAR EN, ET, TE
62 GOR EN, ET, RC, TE
62 SVE HC
65 CAL/GLA ET
65 VEN/MAR2 EN, RC, TE
66 NAG EN, RC, TE
68 GLU EN, ET, RC, TE
68 KUZ/EGG ET
68 LEN/OKA ET
68 WAG/EVA EN, ET, RC, TE
69 PAN/RIP ET
70 GGG/GRA ET
PART II

NITRYL CHLORIDE
ClNÖ₂

Chemistry and Chemical Kinetics

24 KIS
RR, For from: Cl and NÖ₂, Mec, Rxn with: NÖ

29 SCH/SPR1
Rlp, Syn

29 SCH/SPR2
RR, Dec

29 SCH/SPR3
RR, Dec, For from: ClNÖ and Ö₃, Mec

31 SCH/SPR
RR, Dec

47 SCH
Dec, For from: ClNÖ and Ö₃, Rxn with: NH₃, NaOH, AgNÖ₂, AgNÖ₃, Syn

48 PET
Rlp, Rxn with: NaOH, NH₃, Syn

50 GGG/WIL
For from: Cl₂, N₂Ö₄, N₂Ö₅, ClNÖ, Ö₂

52 BAT/SIS
Rlp, Rxn with: NH₃, metals, Inorg. oxides and salts

52 FRE/JOH
RR, Rxn with: NÖ

52 SEE/NÖG
Dec, Rlp, Rxn with: H₂L, N₃⁻, Syn

53 JOH/LEI
RR, For from: ClNÖ and NÖ₃

54 COR
RR, Dec

54 COR/JOH
RR, Dec, Mec, Rxn with: Cl

54 LEI
RR, For from: ClNÖ and Ö₃

55 MAR/KÖH
RR, For from: ClÖ₃ and ClNÖ

55 RAY
For from: Cl₂, ClNÖ, NÖ₂, Mec

55 SCH
Rlp, Rxn with: Cl₂Ö₆, H₂Ö₂, NaOH, NH₃, N₃⁻, Syn

56 HER/JOH
RR, Clc, Rxn with: NÖ, Thp

56 VOL/JOH
RR, Dec, Mec, Rxn with: Cl, H, NÖ

57 CAS
RR, Dec
57 RAY/SGG RR, For from: ClN6 and N62
57 SCH/FIN Rlp, Rxn with: ClN63
58 C61/GIN Rlp, Dec, Rxn with: C2H5, C2H5, HCl, H2S64, Syn
58 GIN/G6D RR, Rxn with: Alkylbenzenes, H26, HN62
58 MAR RR, For from: Cl6, N62, N265
58 MAR/KQH RR, Dec, For from: Cl6, N62, N63, ClN6, Mec
59 MAR/MEI RR, For from: Cl6, N265
55 NIK RR, Dec, Clc
59 TAL/TH6 For from: HCl and N264, Mec, Rxn with: N6
60 MAR/MEI RR, For from: Cl6, N62, N264, ClN6, Rxn with ClN63
61 ASH/BUR RR, Dec, Mec, Rxn with: N6 and ClN6
61 D6/H/WIL RR, Dec, Phl, Rxn with: Cl
61 HEU Rlp, Syn
62 ASH/BUR RR, Dec, Mec
62 HIR/MAR RR, Dec, Rxn with: 62
62 WIE/MAR RR, Clc, Dec, Thp
63 SIN RR, Clc, Dec, Rxn with: Cl, Thp
63 WEI Rlp, Rxn with: H26 and S63
65 VAN/HEU Rlp, For from: Inorg. Nitro Comp., Rxn with: S63
66 DRE Dec
66 MAR RR, For from: Cl6, Cl6, N62, N63, N265, ClN6, Mec
66 MIL Rlp, Syn
66 TAR/RAB Clc, Dec, Thp
67 BEG Rlp, Rxn with: 6lefins
67 DEJ/LEG For from: N6S6Cl and N264, Rlp
67 KUH Rlp, Rxn with: HF and Lewis acid fluorides
67 VAN For from: Inorg Nitro comp., Rlp
68 TAR/RAB Clc, Dec, Thp
69 PAU/SIN Rlp, Rxn with: H2S67, H2S64, SbCl5, BCl3
70 BEN/66N RR, Dec, For from: N62 and Cl, Mec, Rev, Rxn with: Cl
70 CAI RR, Dec
71 HIR Rlp, Rxn with: Lin(CH3)2, Syn
72 DUT RR, Dec
72 DUT/BUN RR, Dec
72 MAR/ROB RR, For from: Cl6, ClN6
72 PAU/AR6 Rlp, Rxn with: S63
73 JAN/ENG Dec, Rev, Rxn with: Inorg. subst., Syn
73 TR6 Dec, Thp
<table>
<thead>
<tr>
<th>Page</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>TSA</td>
</tr>
<tr>
<td>74</td>
<td>KNA/MAR</td>
</tr>
<tr>
<td>74</td>
<td>VGR/ENG</td>
</tr>
<tr>
<td>74</td>
<td>WIL</td>
</tr>
<tr>
<td>74</td>
<td>WIL/DØD</td>
</tr>
<tr>
<td>76</td>
<td>AMI/KEF</td>
</tr>
<tr>
<td>76</td>
<td>BIR/JES</td>
</tr>
<tr>
<td>77</td>
<td>MØL/MØL</td>
</tr>
</tbody>
</table>

RR, Dec, Rev, Rxn with: Cl

RR, For from: N₂O₂, ClNO₂, ClNO, Cl₂O, Mec, Rxn with: N₂O

Dec, Rlp, Rxn with: SF₅

RR, For from: N₂O and ClNO, Rxn with: N₂O

RR, Mec, Rxn with: N₂O

For from: Cl₂ and N₂O₄, Rlp

RR, Phl

RR, For from: ClNO₂, ClNO, and ClNO₂, Mec, Phl (for ClNO₂, Chlorine Nitrite Isomer)

ClNO₂

Molecular Properties

<table>
<thead>
<tr>
<th>Page</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>LUC</td>
</tr>
<tr>
<td>50</td>
<td>ØGG/WIL</td>
</tr>
<tr>
<td>54</td>
<td>RYA/WIL</td>
</tr>
<tr>
<td>55</td>
<td>MIL/SIN</td>
</tr>
<tr>
<td>56</td>
<td>CLA/WIL</td>
</tr>
<tr>
<td>56</td>
<td>HER/JØH</td>
</tr>
<tr>
<td>57</td>
<td>GØI/RÅT</td>
</tr>
<tr>
<td>58</td>
<td>HAR</td>
</tr>
<tr>
<td>58</td>
<td>MIL/SIN</td>
</tr>
<tr>
<td>58</td>
<td>SUT</td>
</tr>
<tr>
<td>59</td>
<td>CLA/WIL</td>
</tr>
<tr>
<td>60</td>
<td>GØØ</td>
</tr>
<tr>
<td>61</td>
<td>DEV/HIS</td>
</tr>
<tr>
<td>61</td>
<td>LIN</td>
</tr>
<tr>
<td>61</td>
<td>LUM</td>
</tr>
<tr>
<td>61</td>
<td>KRI</td>
</tr>
<tr>
<td>61</td>
<td>PUR/RAØ</td>
</tr>
<tr>
<td>61</td>
<td>VEN/THI</td>
</tr>
<tr>
<td>62</td>
<td>BEN</td>
</tr>
<tr>
<td>62</td>
<td>KHA</td>
</tr>
<tr>
<td>62</td>
<td>VEN/RAJ</td>
</tr>
<tr>
<td>63</td>
<td>ØKA/MØR</td>
</tr>
<tr>
<td>64</td>
<td>RAY</td>
</tr>
<tr>
<td>65</td>
<td>MØR/TAN</td>
</tr>
<tr>
<td>65</td>
<td>PUR/RAØ</td>
</tr>
<tr>
<td>65</td>
<td>SUT</td>
</tr>
<tr>
<td>66</td>
<td>EAG/WEA</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
66 MOR BE, Clc
67 BER/MIL ML
67 MUL/NAG BC, Clc
67 NEL/LID DM
67 NEM1 ML, Clc
67 NEM2 ML, Clc
68 MUL/KRE ML, Clc
68 NEM ML, Clc
69 FRE ML, Clc
69 RAO DM, ML
71 STU/PR6 BC, ML
72 COT/WIL BC
72 SHI ML
73 JAN/ENG DM, Rev
75 FR6/LEE IP

ClN\(_2\)

Physical Properties

29 SCH/SPR1 BT, DN, MT, VP
37 LUC VS
48 PET BT, DN, MT
57 GEI/RAT EN, EQ, HC, TE
58 C6L/GIN BT, MT
61 HEU BT, MT, DN
62 BEN CD, DN
66 DRE TC
68 KUZ/EG6 CD
69 PAN/RIP BT, CD
65 PAU/SIN FP
72 COT/WIL BT, MT
73 JAN/ENG VP, Rev

ClN\(_2\)

Spectral Properties

50 CGG/WIL IRS
54 RYA/WIL IRS, RAS
55 MIL/SIN MWS
56 CLA/WIL MWS
56 MAR/GAR UVS
58 COL/GIN IRS, UVS
58 MIL/SIN WMS
59 CLA/WIL WMS
59 RAY/EGG IRS
63 OGA/WGR WMS
65 WGR/TAN WMS
66 EAG/WEA WMS
66 MIL IRS
67 BER/MIL IRS
69 PAU/SIN IRS, RAS
70 MAS/BRO NMS
71 BAR/VAS IRS
71 HIR IRS
73 JAN/ENG IRS, Rev
74 CHR/SCH IRS, RAS
75 FRG/LFE XPS
75 FIL/GER WMS
76 BIR/JES AB, UVS
76 ILL/TAK AB, UVS
77 MEL AB, UVS (for both isomers: Cl*N2, Nitryl Chloride, and Cl*NO, Chlorine Nitrite)
77 MEL/MEL AB, UVS (for Cl*NO, Chlorine Nitrite Isomer)

\textbf{Cl*N2}

\textbf{Thermodynamic Properties}

29 SCH/SPRI ET
55 RAY EN, EQ, ET
57 GEI/RAT EN, EQ, HC, TE
57 RAY/EGG EQ
56 MAR/KCH ET
59 RAY/EGG EN, ET
60 GEO ET, Rev
61 KRI EN, HC, TE, Clc
61 LAR/MAR EN, HC, TE
61 PIL EN, HC
61 PUR/RAG EN, HC, TE
66 MIL EN, ET, HC, TE
67 BER/MIL EN, ET, HC, TE
68 GLU EN, ET, HC, TE
68 KUZ/EGG ET
68 WAG/EVA EN, ET, MC, TE
69 PAN/RIP ET
PART III

CHLORINE NITRATE
ClO$_3$

Chemistry and Chemical Kinetics

35 USH/CHI Rlp, Rxn with: 6lefins
36 USH/CHI Rlp, Syn
37 USH/CHI Rlp, Syn
55 MAR/JAC RR, For from: ClO, ClO$_2$, N$_2$O, Mec
56 MAR/GAR RR, For from: ClO$_2$, N$_2$O, Mec
57 SCH/BRÅ Rlp, Rxn with: ICl$_3$, S$_3$Cl$_4$, TiCl$_4$
57 SCH/FIN For from: ClO$_2$, ClO$_2$, ClOAsG$_5$, N$_2$O, N$_2$O$_5$, Rlp, Rxn with: HCl, N$_2$O, ClN$_2$, ClN$_2$O, Syn
58 MAR RR, For from: ClO$_6$, ClO$_2$, N$_2$O, N$_2$O$_5$, Mec
58 SKI/CAD Rlp
59 MAR/MEI RR, For from: ClO$_2$, N$_2$O, N$_2$O$_5$
60 MAR/MEI RR, For from: ClO$_2$, 6Cl, N$_2$O$_2$
61 CAF RR, Dec
61 CAF/SIC RR, Dec
61 FIN1 Rlp, Rxn with: 6lefins
61 FIN2 Rlp, Rxn with: 6lefins
61 SCH/BRÅ For from: ClO$_2$, N$_2$O, N$_2$O$_5$, Rxn with: Inorg. Solvent, Syn
66 MAR RR, For from: ClO$_2$, ClO$_2$, N$_2$O, N$_2$O$_5$, ClN$_2$, Mec
66 MIL Rlp, Syn
67 SCH1 Rlp, Syn
67 SCH2 Rlp, Syn
68 MUL/DEH Rlp, Rxn with: SbF$_3$Cl$_2$
70 BEN/8'N RR, Dec, Rxn with: N$_2$O, 6Cl, 6$_2$, Cl$_2$, Mec, Rev, Rxn with: 6Cl
74 KNA/MAR RR, Dec, Mec, Rxn with: Cl and N$_2$O
74 SCH/CHR Rlp, Rxn with: 6$_3$
75 C60/PRI RR, Rxn with: HCl
76 ROW/SPEI For from: ClO and N$_2$O, Phl, Rlp, Rxn with: 6
For from: Cl\(_6\) and N\(_6\)_2, Phl, Rxn with: 6

For from: Cl\(_6\) and N\(_6\)_2, Phl, Rlp, Rxn with: 6

For from: Cl\(_6\) and N\(_6\)_2, Phl, Rxn with: 6

For from: Cl\(_6\) and N\(_6\)_2, Phl, Rxn with: 6

RR, Rxn with: Cl

RR, Rxn with: 6, Syn

RR, Rxn with: 6, 6H

OY, Phl

C\(_{11}\)N\(_6\)_3

Molecular Properties

B6, Rlp

ML

ML

ML

BE, B6, ML

ML

C\(_{11}\)N\(_6\)_3

Physical Properties

BT, MT

BT, MT, VP

BT, MT, Rev

BT, MT

BT, VP

BT, MT

C\(_{11}\)N\(_6\)_3

Spectral Properties

UVS

IRS

IRS

IRS

IRS

IRS
74 CHR/SCH IRS, RAS
74 SHA/SEL RAS
75 AMO/FLE RAS
76 BIR/JES AB, UVS
76 ROW/SEP UVS
76 SUE/JOH MWS
77 BIR/JES RR, Phl
77 GRA/TUA AB, IRS
77 SMI/CHO GY, PHL
77 KUR/MAH RR, Rxn with: 0, 0H
77 RAV/DAV RR, Rxn with: 0, 0H
77 MOL AB, UVS

\[\text{CLNG}_3 \]

Thermodynamic Properties:

60 GEN ET, Rev
61 SCH/BRA ET
67 MIL/BER EN, ET, HC, TE
67 SCHI ET
68 GLU EN, ET, HC, TE
70 BEN/0'N EN, ET, HC
74 KNA/MAR ET
PART IV

References

1874

1891

1912

1914

1915

1916

1923

1931

1932

1934

1935

1936

1937

1938

1939

39 COL/LIL Coleman, G. H., Lillis, G. A., and Goheen, G. E., "Nitrosyl Chloride. \(\text{SO}_2 \cdot \text{HNO}_2 \rightarrow \text{H}_2\text{SO}_2\cdot\text{O}_2\text{N}, \text{H}_2\text{SO}_2\cdot\text{O}_2\text{N} + \text{HCl} \rightarrow \text{NOCl} + \text{H}_2\text{SO}_4 \)" Inorg. Synth. 1, 55 (1939)

1940

1941

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
</tr>
</thead>
</table>

50 PIE/RGG1 Pietenpol, W. J., Rogers, J. D., and Williams, D., "Microwave Spectra of Asymmetric Top Molecules," Phys. Rev. 72, 480 (1950)

1951

1952

1953

53 ASH/CHA

53 J6H/LEI

53 WAL

1954

54 C6R

54 C6R/J6R

54 FRE

54 HAS/JAN

54 LEI

54 RYA/WIL

54 SIE

1955

55 EPS/NIK

55 KAW/SIM

55 MAR/JAC

55 MAR/KOH

55 MIL/SIN

55 RAY

55 SCH
Schmeisser, W., "Die Chemie der anorganischen Acylnitrate (ein Problem des Nitrylchlorids) und Acylnitrate (ein Problem des Dichlohexoxyds)," Angew. Chem. 67, 493 (1955)
1956

1957

57 SCH/BRÅ Schmeisser, M., and Brändle, K., "ClN₄ as Ausgangsmaterial fur Acylnitrate. Über Acylnitrate und Acylperchlorate (IV.)," Angew. Chem. 69, 781 (1957)

57 SCH/FIN Schmeisser, M., Fink, W., and Brändle, K., "Darstellung und Reaktionen des Acylnitrates. Über Acylnitrate und Acylperchlorate (III.)," Angew. Chem. 69, 780 (1957)

1958

58 MAR Martin, R., "Bildungsreaktionen des Nitroxychlorids," Angew. Chem. 70, 97 (1958)

1959

59 MAR/MEI Martin, R., and Meise, W., "Die Kinetik der Reaktionen des Dihclormonoxyds mit N\textsubscript{2} und mit N\textsubscript{2}O\textsubscript{5} in der Losungspahse," Z. Elektrochem. 63, 162 (1959)

1960

60 BRA/SCH Brandle, K., Schweisser, M., and Lutke, W., "Infrarot-Spektrum und Struktur des N\textsubscript{2}Cl\textsubscript{3}," Chem. Ber. 93, 2300 (1960)

60 BRI Brim, W. W., "Low Frequency Vibration Rotation Bands of ND\textsubscript{3}, N\textsubscript{2}Cl, and CH\textsubscript{3}CCH\textsubscript{3}," Diss. Abstr. 21, 769 (1960)

1961

Fink, W., "Reaktion von C1NO3 mit Vinyl-Metall-Verbindungen," Angew. Chem. 73, 532 (1961)

Fink, W., "Umsetzung von C1NO3 mit Olefinen," Angew. Chem. 73, 466 (1961)

1962

1963

63 LEN/OKA Lenzi, M., and Ōkabe, R., "Photodissociation of N\textsubscript{2}Cl and N\textsubscript{2}O in the Vacuum Ultraviolet," Ber. Bunsenges. Phys. Chem. 72, 168 (1963)

1964

64 ASH/HER Ashmore, P. G., and Herli, W., "Decomposition of Nitrosyl Chloride on Glass and Quartz Surfaces," J. Catal. 3, 436 (1964)

1965

1966

1967

67 BEG

67 BER/MIL

67 CAL/PIT

67 DEJ/LEG

67 EUN

67 MIL/BER

67 MIT/SIM

67 MUL/NAG

67 NEL/LID

67 NEM1

67 NEM2

67 PAP

67 SCH1

67 SCH2

67 VAN

1968

68 AMI/KEF

68 GLU

68 GRI/CDS

68 JON/KYA

1969

1970

1970

70 CAI

70 FER/SAI

70 GEC/GEA

70 MAS/BRG

1971

71 BAR/VAS

71 DUN/FRE1

71 DUN/FRE2

71 DUN/SUT

71 HIR

71 RAM/NAM

71 RAJ/PGU

71 STU/PRG

71 YAG/AMI

1972

72 BEL/PER

72 BUS/WIL

72 CLY/CRU1

72 CLY/CRU2

72 CUL/PER

Deakin, J. J., and Husain, D., "Electronically Excited Iodine Atoms, \(\text{I} \left(5p^6 \, 2p_3^2 / 2 \right) \): A Kinetic Study of Some Chemical Reactions by Atomic Absorption Spectroscopy Using Time-Resolved Attenuation of Resonance Radiation at \(\lambda = 206.23 \text{nm} \) \(\left[\text{I} \left(5p^6 \, 6s \left(^2p_3 / 2 \right) \right) \right] \)," J. Photochem. 1, 353 (1972/73)

MacCordick, J., Devin, C., Perrot, R., and Rohmer, R., "Etude des Complexe's du Type \(\text{M}IV \text{Cl}_4^2 \), 2 \(\text{NO} \text{Cl} \) \(\text{M} = \text{Zr}, \text{Hf}, \text{Th} \) par Spectroscopie Infrarouge et Raman," C. R. Acad. Sci. (Paris) C 274, 278 (1972)

1973

73 GAV Gavrilkin, G. N., "Radiation Sources for Preparation of Iactams by Phantomitrosation," Svetotekhnika 8, 4 (1973); Chem. Abstr. 86, 19142u (1975)

73 PRA/KAR Pravilov, A. M., Karpov, L. G., Smirnova, L. G., and Vilesov, F. I., "The Reaction \(\text{I}^{(2)} \text{P}_{1/2} \) + \(\text{NOCl} \) \text{I}. Measurement of Quantum Yields for the Formation of \(\text{I}^{(2)} \text{P}_{1/2} \) by Photolysis of \(\text{CH}_3\text{I} \) and \(\text{CF}_3\text{I} \) and Ratios of Rate Constants for its Reactions,\" High Energy Chem. 2, 294 (1973); tr. Khim. Vys. Energ. 2, 335 (1973)

1974

74 DEJ/HEU
De Jaeger, R. D., and Heubel, J., "Etude Conductimétrique de la Reaction de NOCl sur S\textsubscript{2} dans S\textsubscript{2} \textsubscript{O} Liquide a -20°C," J. R. Neth. Chem. Soc. 23, 63 (1974)

74 DUB/CAB

74 ECK/EDF

74 GUR/KAR

74 HOE/WAD

74 KAR/PRA1
Karpov, L. G., Pravilov, A. M., and Vilesov, F. I., "The Reactions I(2P\textsubscript{1}/2) + NOCl \textsubscript{II}. Capture of CF\textsubscript{3} Radicals and Deactivation of I(2P\textsubscript{1}/2) by Nitric Oxide in the Photolysis of CF\textsubscript{3}I + NO + NOCl + M," High Energy Chem. 8, 415 (1974); tr. of Khim. Vys. Energ. 8, 483 (1974)

74 KAR/PRA2

74 KH6/KEZ

74 KNA/MAR

74 NAZ/POL

74 POU/KEF
Poiolov, Y. Z., Reber, R. G., and Yagud, R. Y., "Calculation of the Equilibrium of Nitrogen Dioxide (NO\textsubscript{2})-Chlorine (NO\textsubscript{2}(N\textsubscript{2}0\textsubscript{5})) - Chloride (NO\textsubscript{3}Cl) and Nitrosyl Chloride-Chloride (NO\textsubscript{3}Cl-Cl\textsubscript{2}) Binary Systems on HE-Elronite," Sb. Nauch. Tr. Perm. Politekh. In-T 154, 94 (1974); Chem. Abstr. 83:18179v (1975)

74 SCH/CHR

74 SCH/URG

74 SHA/YEL
Shamir, J., Yellin, D., and Claassen, H. H., "Laser Raman Spectra and Structure of Halogen Nitrates (FNO\textsubscript{2} and Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{5})," Israel J. Chem. 12, 1015 (1974)

74 TSE/DR61

74 TSE/DR62

74 VOR/FIL

74 WIL

1975

Cazzoli, G., Cervellati, R., and Mirri, A. M., "Rotational Spectrum of 6CN in the (0,0,1) and (0,1,0) Vibrational States and "b" Type Spectrum in the Ground State. Comparison of Force Field Obtained by Different Combinations of Experimental Data," J. Mol. Spectroscopy 60, 422 (1975)

Markovicz, S. W., "Determination of Structure of 'By'-Product in the Reaction of 2-Pinene with Nitrosyl Chloride, Rocz. Chem. 42, 2117 (1975)

1976

1977

LIST OF ABBREVIATIONS

Abbreviations for Data Flagging
Fourth Interim IUPAC List

AB Absorption Cross Section
BE Bond Energy, Atomization Energy, Dissociation Energy
BO Bond Angle, Bond Length
BT Boiling Temperature (Boiling Point)
CD Critical State Data (Critical Density, Critical Temperature, Critical Pressure)
DC Dielectric Constant
DM Dielectric Properties (Electric Dipole Moment, Molecular Polarization Quadrupole Coupling Constant)
DN Density Data (Density, Specific Density)
EN Entropy
EQ Equilibrium Data (Equilibrium Constant)
FT Enthalpy (Heat of Vaporization, Heat of Sublimation, Heat of Reaction)
HC Heat Capacity
IP Ionization Potential, Electron Affinity
IRS Infrared Spectrum
MG Magnetic Data, (Magnetic Dipole (and Higher) Moments, Magnetic Susceptibility)
ML Molecular Energy Level, Rotational and Vibrational Constants, Force Constant, Moment of Inertia
MSS Mass Spectrum
MT Melting Temperature (Melting Point)
MWS Microwave Spectrum
NMS Nuclear Magnetic Resonance Spectrum
QY Quantum Yield (and Quantum Efficiency)
RAS Raman Spectrum
RD Radii (Atomic, Ionic, Molecular, Molecular Volume, Molecular Diameter, Molecular Cross Section)
RR Reaction Rate Data (Rate Constant, Relaxation Time, Half-life)
ST Surface Tension
TC Thermal Conductivity
TE Thermodynamic Energy Data (Gibbs Free Energy, Helmholtz Energy, Thermodynamic energy functions)
UVS Ultraviolet Spectrum
VIS Visible Spectrum
VP Vapor Pressure (Sublimation Pressure)
VS Viscosity Data
XPS X-ray Photoelectron Spectrum
XRS X-ray Spectrum
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clc</td>
<td>Calculation</td>
</tr>
<tr>
<td>Dec</td>
<td>Decomposition</td>
</tr>
<tr>
<td>For from</td>
<td>Formation from another compound</td>
</tr>
<tr>
<td>Mec</td>
<td>Mechanism</td>
</tr>
<tr>
<td>Phl</td>
<td>Photolysis</td>
</tr>
<tr>
<td>Rad</td>
<td>Radiation</td>
</tr>
<tr>
<td>Rev</td>
<td>Review</td>
</tr>
<tr>
<td>Rlp</td>
<td>Related Paper</td>
</tr>
<tr>
<td>Rxn with</td>
<td>Reaction with other compounds</td>
</tr>
<tr>
<td>Syn</td>
<td>Synthesis (preparative methods)</td>
</tr>
<tr>
<td>Thp</td>
<td>Theoretical Paper</td>
</tr>
</tbody>
</table>
NOTE ADDED IN PROOF

Part III

Chlorine Nitrate
\(\text{ClNO}_3 \)

Chemistry and Chemical Kinetics

77 BIR/SHO RR, For from: \(\text{ClO} \) and \(\text{NO}_2 \), Rxn with: \(\text{HCl}, \text{NO}, \text{NO}_2, \text{O}_2 \)
77 LEU/LIN RR, For from: \(\text{ClO} \) and \(\text{NO}_2 \)
77 ZAH/CHA RR, For from: \(\text{ClO} \) and \(\text{NO}_2 \), Rxn with: \(\text{OH} \)

Part IV

References

1977

77 LEU/LIN Leu, M. T., Lin, C. L., and DeMoore, W. B., "Rate Constant for Formation of Chlorine Nitrate and by the Reaction \(\text{ClO} + \text{NO}_2 + \text{M} \)," J. Phys. Chem. 81, 190 (1977)

BIBLIOGRAPHIC DATA SHEET

1. **PUBLICATION OR REPORT NO.**
 NBS SP 478

2. **Gov't Accession No.**

3. **Recipient's Accession No.**

4. **TITLE AND SUBTITLE**
 NITROGEN OXYCHLORIDES:
 A Bibliography on Data for Physical and Chemical Properties of ClNO, ClNO₂, and ClNO₃

5. **Publication Date**
 August 1977

6. **Performing Organization Code**

7. **AUTHOR(S)**
 Francis Westley

8. **Performing Organ. Report No.**

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 NATIONAL BUREAU OF STANDARDS
 DEPARTMENT OF COMMERCE
 WASHINGTON, D.C. 20234

10. **Project/Task/Work Unit No.**

11. **Contract/Grant No.**

12. **Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)**
 Office of Standard Reference Data, NBS, Washington, D.C. 20234
 Office of Air and Water Measurement, NBS, Washington, D.C. 20234
 Department of Transportation, FAA, Washington, D.C. 20591
 National Aeronautics and Space Admin., Washington, D.C. 20546

13. **Type of Report & Period Covered**
 SP 1874 - 1977

14. **Sponsoring Agency Code**

15. **SUPPLEMENTARY NOTES**
 Library of Congress Catalog Card Number: 77-2757

16. **ABSTRACT**
 (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

 A data oriented list of references is provided for published papers and reports containing measured or calculated data for the physical and chemical properties of nitrosyl chloride, nitril chloride, and chlorine nitrate with particular emphasis on the chemistry and chemical kinetics of these compounds. More than 387 papers are listed. The period covered extends from 1874 through 1977.

17. **KEY WORDS**
 (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

 Bibliography; chemical kinetics; chemistry; chlorine nitrate; molecular properties; nitrosyl chloride; nitril chloride; physical properties; spectral properties; thermodynamic properties

18. **AVAILABILITY**
 - Unlimited
 - For Official Distribution. Do Not Release to NTIS
 - Order From Sup. of Doc., U.S. Government Printing Office
 Washington, D.C. 20402, SD Cat. No. E13.10478
 - Order From National Technical Information Service (NTIS)
 Springfield, Virginia 22151

19. **SECURITY CLASS (THIS REPORT)**
 UNCLASSIFIED

20. **SECURITY CLASS (THIS PAGE)**
 UNCLASSIFIED

21. **NO. OF PAGES**
 54

22. **Price**
 $2.00
Where can you find all the reference data you need?

Right in the Journal of Physical and Chemical Reference Data!

Now in its sixth year, this valuable publication has proved that it fills the important gaps for you in the literature of the physical sciences. Published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards, this quarterly gives you quantitative numerical data, with recommended values and uncertainty limits chosen by experts in the field.

Critical commentary on methods of measurement and sources of error, as well as full references to the original literature, is an integral part of each of your four issues a year.

Can you afford to be without this prime source of reliable data on physical and chemical properties? To start receiving your copies, just fill in the order form and drop into the mail. If you do use a purchase order, please attach the printed form as this will help us to expedite your order. Send for complete list of reprints!

Journal of Physical and Chemical Reference Data
American Chemical Society
155 Sixteenth Street, N.W., Washington, D.C. 20036

Yes, I would like to receive the JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA at the one-year rate checked below:

Name ____________________________ □ Home □ Business □ Bill company or school
Street ____________________________
City ____________________________ State ______ Zip ______

I'll me □ Payment enclosed □

Members Nonmembers
U.S., Canada, Mexico □ $25.00 □ $90.00
Other Countries □ $29.00 □ $94.00

Please Attach This Order Form To Purchase Order.
PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

- Physics and Chemistry (Section A)
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with emphasis on standards of physical measures, fundamental constants, and properties of matter issued six times a year. Annual subscription: Domestic, $17.00; Foreign, $21.25.
- Mathematical Sciences (Section B)
 Studies and commercial reports designed mainly for the mathematician and practical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design, programming of computers and computer systems, and numerical tables. Issued quarterly. Annual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulletin)—This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: Domestic, $12.50; Foreign, $15.65.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, culled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash. D. C. 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.