
NBS SPECIAL PUBLICATION 406

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards'

Computer Performance Evaluation:

Report of the 1973

NBS/ACM Workshop



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences" — Applied Radiation " — Quantum Electronics '' — Electromagnetics" — Time
and Frequency " — Laboratory Astrophysics " — Cryogenics

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety* — Building

Environment ' — Technical Evaluation and Application * — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

" Part of the Center for Radiation Research.
3 Located at Boulder. Colorado 80302.
* Part of the Center for Building Technology.



Computer Performance Evaluation:

Report of the 1973 NBS/ACM Workshop

Edited by:

Thomas E. Bell and Barry W. Boehm

TRW Systems

Redondo Beach, California 90278

and

S. Jeffery

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington. D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Rogers C. B. Morton, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued September 1975



Library of Congress Cataloging in Publication Data
Main entry under title:

Computer Performance Evaluation.

(NBS Special Publication; 406)
Supt. of Docs. No.: C13.10:405
1. Electronic Digital Computers—Evaluation. I. Bell, Thomas

E. II. Boehm, Barry W. III. Jeflery, Seymour, 1922- . IV.

United States. National Bureau of Standards. V. Association for

Computing Machinery. VI. Series: United States. National Bureau
of Standards. Special Publication ; 406.

QC100.U57 No. 406 [QA76.51 389'.08s [621.3819'58'21

75-619080

National Bureau of Standards Special Publication 406

Nat. Bur. Stand. (U.S.), Spec. Publ. 406, 180 pages (Sept. 1975)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1975

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 • Price $2.45 (paper cover)

Stock Number 003-003-01.393 (Order by SD Catalog No. C13.10:406).



Abstract

An ACM/NBS Workshop on Computer Performance Evaluation (CPE) was held in San Diego,

Calif, in March 1973. The papers, workshop discussions, conclusions and recommendations presented

in this volume address specific problems in making computer performance evaluation a common-

place and productive practice.

While several of the conclusions indicate that improvements are needed in performance analysis

tools, another suggests that improved application of CPE could be achieved by better documentation

of analysis field to develop its full potential. Particapants noted that the common emphasis on data

collection or modeling, to the exclusion of considering objectives, often seriously degrades the

value of performance analysis.

Key words: Computer architecture; computer performance evaluation; installation management;

measurement; modeling: monitoring; operating systems; performance objectives.
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Foreword

The Institute for Computer Sciences and Technology at the National Bureau of Standards,

U.S. Department of Commerce, and the Association for Computing Machinery, the nation's largest

technical society for computing professionals, have been jointly sponsoring a series of workshops

and action conferences on national issues. These workshops were designed to bring together the

best talents in the country in their respective areas to establish a consensus on (1) current state

of the art, (2) additional action required, and (3) where the responsibility for such action lies.

Computer Performance Evaluation (CPE) was selected as a subject of an ACM/NBS Workshop*

because of the significant leverage CPE activities can have on computer usage. Under the right

conditions, CPE can be a major force for improving the efficiency and effectiveness of computer

and related human operations.

However, it is important to beware of opportunities to misuse CPE techniques. Collecting

vast amounts of data does not guarantee system improvement. Even when one can make an improve-

ment to one system parameter, this may have a degrading effect on another parameter. Another

serious problem arises when the results of modeling a system are impossible to validate.

It is hoped that the publication of these proceedings will be of value to specialized investigators

in the particular area discussed, as well as those actively engaged in attacking the broad problem

of bringing CPE techniques into productive practice.

Thomas E. Bell

TRW Systems Group

Barry W. Boehm
TRW Systems Group

S. Jeffrey

National Bureau of Standards

• The initial planning was supported by a grant from the National Science Foundation.
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EXECUTIVE SUMMARY

Performance Evaluation Workshop

Computer Performance Evaluation (CPE) was

selected as a subject of an ACM/NBS Workshop

because of the significant leverage CPE activities can

have on computer usage. Under the right conditions,

CPE can be a major force for improving the efficiency

and effectiveness of computer and related human

operations.

In addition to the potential savings, there are also

significant opportunities to misuse CPE techniques.

Several Workshop participants were familiar with

situations in which the only result of a S100,000-range

CPE effort was a stack of unanalyzable data tapes.

Other large efforts have foundered on impossible-to-

validate model results. Others have been successful

in achieving hardware efficiencies, but have thereby

introduced more damaging inefficiencies in the organi-

zation's overall productivity because of effects like

increased job turnaround times, frequent changes in

procedures and user interfaces, and reduced flexibility

to cope with emergencies.

Gains in efficiency and overall productivity will not

occur if knowledge remains concentrated in a few

segments of the industry, each with a slightly different

approach and nomenclature. The workshop was

organized to expose these differences, to reconcile

them if possible, and to achieve a consensus of the

state of the art and its future.

A number of conclusions regarding the state of

the art can be drawn from the discussions described

in this report. Some of these conclusions were explic-

itly discussed but others were implicit in the attendees'

statements throughout the workshop. The primary

conclusions determined at the workshop are given

below, with references to Chapter I of the text, which

serves as a workshop summary. (In turn, Chapter I

contains references to the more detailed material in

subsequent chapters which was prepared for the work-

shop by the participants.)

1. Productivity increases averaging 15 percent to

30 percent are generally achievable on third gener-

ation computer equipment. However, only increases

resulting in improved value or decreased cost have

utility to the organization. (Sections I.A.I and I.A.6.)

2. The current state of the art could support far

more productivity increases than are realized, but

inadequate motivation and insufficient education

limit its application. This situation is aggravated by

the lack of a handbook to apply the current know-

ledge. (Sections I.D.7, I.E.6 and I.E.7.)

3. Improvements in application programs and direct

user provisions offer the most potential for produc-

tivity gains within the next three years as well as

over the long term. Overcentralization of cost-benefit

evaluation (e.g., setting priorities or determining

maximum allowable core requirements) can adversely

affect users' motivations and abilities to achieve these

gains. (Sections LB.3 and I.B.4.

)

4. Measurement does not constitute performance

evaluation. Evaluation takes place with respect to the

objectives and goals of an organization and usually

includes some measurement. (Section I.B.5.)

5. Employing appropriate methodological techniques

is critical if performance measurement or modeling

is to be successful. Picking a measurement tool, col-

lecting some data, and then attempting an analysis will

seldom suffice as an evaluation procedure. Guidelines

for organizing the process are available. (Sections

I.D.2 and I.D.4.)

6. Current data collection tools make possible the

collection of a wide variety of performance data, but

the data are often not the most effective types and

frequently cause human and machine inefficiencies.

For example, computer accounting data can be effici-

ently used, but accounting systems are frequently so

unwieldy that analysts refrain from using the data.

Improved accounting systems and associated analysis

software are a major national CPE need. (Sections

I.D.3 and I.E.2.)

7. Similarly, hardware monitors are somewhat diffi-

cult to employ because probe points are located deep

in computer circuitry rather than being immediately

available at a standard connector. Improved hard-

ware monitor interfaces constitute another major CPE

need. (Section I.E.2 and I.E.3.)

8. A multitude of important variables (arising from

either measurement or modeling) must be examined

in evaluating performance. Representation schemes

such as Kiviat Graphs or simple models often aid

analysts. (Sections I.B.I and I.C.5.)

9. Models of computer performance frequently are

X



developed and applied without reference to empirical

data, and data collection is usually performed without

using any model to aid in experimental design. Model-

ing and measurement should be combined in both

research and application efforts. For example, work-

load characterization schemes are needed that are

based on good models and collectable data. (Sections

I.D.5, I.E.4, I.E.5, and I.E.6.)

10. The objective of a performance analysis

(whether emphasizing measurement or modeling)

should not be to achieve the highest possible com-

ponent utilization: in fact, higher utilization often

implies reduced computing effectiveness. The objective

of such an effort should recognize both the costs of

a computer installation and the needs of users for

service in a stable environment. (Sections I.A. 2, I.B.I,

I.B.2, and I.C.4.)

11. Difficulties in setting objectives for computer

performance analysis are aggravated by the inconsist-

encies in objectives that already exist in large organiz-

ations; the existence of these inconsistencies must be

recognized since determining a computerized systems

performance is dependent on the choice of objectives.

(Sections I.C.2 and I.C.3.)

12. The most attractive directions indicated for

R&D efforts in the CPE area were toward developing

and validating the underlying theoretical base for

CPE; determining appropriate CPE measures and

criteria; developing, validating, and refining CPE
performance models; and improving workload charac-

terizations. (Section I.E. 6.)

13. Most CPE benefits could be realized with current

technology. If this is to occur, an essential step is

the development of a definite CPE reference work

which provides clear definitions of CPE terminology,

reliable information on the capabilities and limitations

of CPE tools and techniques, and useful guidelines

on how to apply CPE capabilities in different situa-

tions. One objective of this Report is to provide at

least a stopgap candidate for such a reference work.

But much more is needed. Two of the top-priority

Workshop recommendations were that a group be set

up to develop authoritative definitions for CPE terms,

and that a definitive CPE Handbook be developed and

published. (Sections I.D.7 and I.E. 2.)
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KEYNOTE ADDRESS TO THE NBS/ACM WORKSHOP
ON PERFORMANCE EVALUATION

S. Jeffery

National Bureau of Standards, Washington, D.C. 20234

Everyone here has done a great deal of work and

planning for this meeting. I wish to thank the ACM
who joined with NBS in presenting this Workshop.

We are also grateful to the National Science Founda-

tion's Office of Computing Activities for their support

in the planning phases and are very pleased that Dr.

John Pasta of the National Science Foundation could

join us.

You as a group, the leading advocates and authori-

ties in the field of performance evaluation, have been

selected to participate in this Workshop to address

specific problems and formulate recommendations for

making performance measurement and evaluation a

commonplace and productive practice.

The sessions on performance factors, complementary

pursuits, state of the art, and theory will address the

range of performance measurement technology devel-

opment. In your discussions, each of you should

have in mind how the results of this Workshop can

give impetus to the development of management

understanding of the spectrum of application of per-

formance evaluation.

Much attention has recently been focused on tech-

niques and practices of performance evaluation in the

technical literature and at various conferences and

symposia. Notwithstanding, the uninitiated user has

almost come to believe that mere procurement of a

monitor will improve his system's performance (what-

ever that is). The participants at this Workshop

should have as one goal the preparation of a guide for

computer installation management which will explore

the capabilities, limitations, and effective use of per-

formance evaluation devices and techniques.

Your energies should be devoted to defining and

recommending what is required to improve the state

of performance measurement and analysis through

standardization, education and training, and further

research and development. In particular, we are look-

ing forward to your recommendations for actions on

specific areas in performance evaluation.

Some frequently-asked questions include:

• What are meaningful measurements?

• When is the appropriate time to measure?

• What are the criteria for the selection of these

tools?

• Are there problem-specific tools?

• Can performance measurement lead to im-

proved reliability or to a productivity index for

management?

You are giving your valuable time here; I'm sure

your objectives include the development of definitive

statements answering specific technical and managerial

questions about performance measurement. In the

many instances where there are as yet no solutions

to specific problems, the technical approaches to find-

ing the solutions can provide the impetus for the

necessary work.

I would like to bring to the attention of this group

that with all the rhetoric about performance evalua-

tion, there are actually fewer than 200 hardware

monitors. These have been used by some estimated

1000 installations. A good many of these same instal-

lations are also users of the estimated 1500 software

monitors being used. Thus, it would still seem that

less than 10 percent of our medium and large scale

system installations are attempting to apply software

or hardware monitors to improve performance.

Perhaps it is a lack of knowledge about the proper

use and role of performance measurement, and for

that matter, about the devices and techniques, which

has made management reluctant to apply these aids

to better utilization. I have little information on the

effective use of accounting data in performance mea-

surement and would suggest this as an important

task to be addressed.

I know this Workshop will provide the direction,

framework, and thrust needed to achieve the cost effec-

tive utilization of our significant computer resources.

xii
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CHAPTER I

Workshop Summary

Barry W. Boehm, Thomas E. Bell

TRW Systems Group, Redondo Beach, Calif. 90278

A. INTRODUCTION: WHY BE
CONCERNED ABOUT

PERFORMANCE ANALYSIS?

1. Potential Benefits

Computer Performance Evaluation (CPE) was

selected as a subject of an ACM/NBS Workshop

because of the significant leverage CPE activities can

have on computer usage. Under the right conditions,

CPE can be a major force for improving the efficiency

and effectiveness of computer and related human
operations. For example, the recent report by the

General Accounting Office [1] ^ provides some good

examples of the productivity improvements possible

via CPE techniques from its study of their use at

NASA's Goddard Spaceflight Center:

—The number of jobs processed by one computer

was increased by 50 percent without increasing

the number of hours the computer was used.

—The number of jobs processed by another com-

puter was increased by 25 percent with a 10-

percent increase in hours of usage and a 7-per-

cent increase in the utilization of the central

processing unit.

—Computer time worth S433,000 annually was

saved through the use of these techniques and the

acquisition of a more efficient compiler (a pro-

gram that translates language used by the pro-

grammers into machine language). The one-time

cost of making the changes was estimated at

$60,000.

^ Figures in brackets indicate the literature references at the end of the paper

This report, and others on the subject [2-5] indicate

that CPE techniques can lead to similar productivity

gains, often estimated at 15—30 percent, on virtually

all large general-purpose computers, most medium

ones, and many small-scale ones. How appreciable a

potential benefit this is can be seen by relating it

to the recent AFIPS estimates [6] of a S26.5 billion

installed base of general-purpose computer systems

in the United States, growing to $33-48 billion by

1976. Currently, 74 percent of this value is in large

and very large systems, 22 percent in medium systems

and 4 percent in small systems. Using an amortization

period of 4 years yields an annual expenditure of

$6-7 billion on general-purpose computer hardware,

and thus a potential national savings of over $1 billion

per year.

2. Potential Difficulties

Leverage works both ways. There are also significant

opportunities to misuse CPE techniques. Several Work-

shop participants were famihar with situations in

which the only result of a $100,000-range CPE effort

was a stack of unanalyzable data tapes. Other large

efforts have foundered on impossible-to-validate model

results. Others have been successful in achieving hard-

ware efficiencies, but have thereby introduced more

damaging inefficiencies in the organization's overall

productivity because of increased job turnaround

times, frequent changes in procedures and user inter-

faces, reduced flexibility to cope with emergencies,

and the like. One participant indicated that he had

initially tuned his computer system to a Central

1



Processing Unit (CPU) utilization of 90 percent, but

found that users were extremely dissatisfied with the

system's lack of responsiveness and its effect on their

work. When he readjusted it to a CPU utilization of

65 percent, charging higher rates but providing more

helpful and responsive service, users were almost

universally satisfied.

3. Sources of Leverage

Potential savings and difficulties such as those cited

above are possible primarily because of the way cur-

rent (third-generation) computer systems are orga-

nized. These systems consist of a number of data

processing, transmission, and storage access units

which in theory can all be doing useful work at the

same time.^ In general practice, however, many valu-

able resources remain idle because of imperfectly

organized resource management algorithms in the

computer's operating system, imperfectly organized

applications programs, incompatibilities between con-

currently running programs, imperfectly organized

human computer operator activities, and the like. By

using CPE tools and methods, one can quite often

pinpoint the resulting bottlenecks and formulate

improvements which achieve significant increases in

computer hardware efficiency. Often, though, the com-

plexity of the computer system's interactions and the

sensitivity to system changes of such services charac-

teristics as response time lead to difficulties and dis-

benefits instead.

4. Objectives of the Workshop Report

These complexities and sensitivities are the reason

that many of today's CPE activities encounter difficul-

ties instead of payoffs. CPE practitioners, computer

center managers, users, plant managers, auditors, gov-

ernment agencies, and others concerned must try to

sort out a bewildering flurry of conflicting claims about

CPE tools, conflicting definitions of CPE terms, and

conflicting statements about CPE objectives, in the

process of formulating their individual or mutual CPE
plans. In the future, such CPE problems could become

even more critical as computer architectures become

more sophisticated, CPE products proliferate, and

2 In earlier first-generation computer systems, only one component could be
active at any one time. In second-generation computers, only a very limited
amount of parallel resource usage was possible. These trends are elaborated by
Warner in Section III.A.l.

organizations become ever more dependent on reliably

efficient computer performance.

There is thus a strong need for a readily available,

definitive CPE reference work which provides clear

definitions of CPE terminology, reliable information

on the capabilities and limitations of CPE tools and

techniques, and useful guidelines on how to apply

CPE capabilities in different situations. One objective

of this report is to provide at least a stopgap candidate

for such a reference work. The Workshop participants

recognize that this is the best that can be expected

from their one-shot, volunteer effort; two of the top-

priority Workshop recommendations were that a group

be set up to develop authoritative definitions for CPE
terms, and that a definitive CPE Handbook be devel-

oped and published—both of which would render most

of this report obsolete.

5. Scope of the Workshop Report

The Workshop Report basically follows the structure

of the Workshop sessions, which were organized

around the following topics:

I. Performance Factors

A. As Seen by User Groups: Commercial (Bank-

ing), Airlines, Government, Industry (Auto-

motive) , and Universities.

B. As Seen by Level of Responsibility: Computer

Subsystem, Computer System, End-User Sub-

system Performance, End-User System Per-

formance.

II. Complementary Pursuits: Validation, Reliability,

Security and Privacy, Computer Design.

III. State of Art: Application Domains, Experimental

Design/Data Analysis, Measurement Tools, Per-

formance Variability.

IV. Theory.

V. Recommendations: Standards, Education and

Training.

The "Workshop Summary" chapter continues with

Section I.B discussing definitions and critical distinc-

tions in the CPE area. Section I.C follows with a dis-

cussion of objectives and criteria by which to evaluate

computer-based systems, followed by a summary eval-

uation of CPE tools and techniques in Section I.D.

The summary chapter then concludes with Section

I.E., stating the key issues identified during the Work-

shop and the resulting action recommendations.

2



The subsequent chapters introduce and present the

papers contributed by the Workshop participants in

the areas of objectives and criteria (Chapter II) and

tools and techniques (Chapter III). Chapter IV ela-

borates on the key issues and recommendations,

including the background papers and excerpts from

the Workshop discussions of proposed recommenda-

tions.

6. A Final Introductory Comment

On encountering statements such as the above-men-

tioned "productivity gains of 15—30 percent" or "poten-

tial national savings of over $1 billion a year" due

to CPE, the reader should heed this note of caution.

The only savings that really count are the ones which

appear on the bottom line of the balance sheet. Sup-

pose, for example, that the "computer time worth

$433,000 annually" saved by CPE techniques at

NASA-Goddard were not used for some productive

purpose. Then the Government has not saved any real

money. In fact, it would be the loser by the $60,000

in real dollars spent on the CPE effort.

Thus, by themselves, CPE techniques serve only to

make existing resources more available. Additional

management actions are necessary to convert these into

real dollar savings by deferring or cancelling planned

computer acquisition or by returning or selling extra

resources. Otherwise, unless the resources are used to

run additional jobs which add comparable value to

the organization, all of the impressive-looking CPE
savings are illusory.

B DEFINITIONS AND CRITICAL
DISTINCTIONS

1. Introduction

A good many well-meaning CPE activities founder

because of a fundamental confusion between such

terms as measurement and evaluation, capacity and

activity, processor utilization and throughput, and

others.^ This section attempts to make those distinc-

tions as clearly as it can, and to point out some of the

more common pitfalls which may accompany improper

3 Also, a good deal of time was consumed at the Workshop, as elsewhere,
in determining or discovering how other people defined various key terms.

distinctions. Much discussion of the Workshop was

devoted to these distinctions and views often converged

only after extensive discussion. Figure 1 presents a

framework which tries to capture the essence of these

discussions by employing a framework developed sub-

sequent to the Workshop.

The major distinctions to be observed in Figure 1

are:

• The distinction between properties of applications

systems (priorities, throughput, information

value) and properties of computer systems (mem-

ory costs, channel capacities, CPU utilization).

• The distinction between the domain of values

(profit, good will, manpower opportunity costs,

evaluation) and the domain of activities (through-

put, channel capacities, CPU utilization, mea-

surement) .

2. Components and Connections

Why do organizations develop and use computer

systems? The process begins with a hypothesis that,

for some application system (s), the relative value of

computer-processed information to the applications

system favorably compares with the costs of computer

processing. This leads to a commitment of expendi-

tures (in dollars and in opportunity costs for scarce

personnel, floor space, etc.) to procure a computer

system capable of processing the necessary informa-

tion.*

In fact, however, several separate items are ac-

quired :

• A potential hardware capacity for each device

and other resource in the computer system (e.g.,

a CPU rate of a million additions per second).

• A hardware architecture which yields an effective

hardware capacity which may not be the sum of

the individual capacities in the system (e.g., chan-

nel activity may degrade the CPU rate by 5

percent)

.

• An availability assurance activity which, via

scheduled maintenance, hardware and software

reliability and recoverability efforts, attempts to

make computer resource availability as high and

as predictable as possible (e.g., scheduled hard-

i For simplicity, the activity (and related costs) of application software

development is considered as another application system activity— which it 15,

of course, when one considers its interaction with computer system perfor-

mance in such areas as debugging run response time.
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Figure I. Computer performance analysis domains

ware maintenance preempts other computer activi-

ties between 7 and 8 a.m.)-

• An operating system which works with the com-

puter resources available and the sequence of

resource demands, priorities, and deadlines em-

bodied in the applications workload to produce

a throughput of processed jobs or transactions,

each with its own response time from submission

to completion. The operating system consumes

some (often difficult-to-determine) portion of the

available resources as overhead, some portion is

devoted to applications job processing, and the

remainder is idle time for resource.

At the Workshop, Hughes advanced a scheme for

tying some of these ideas together from the viewpoint

of the computer. He suggested that an analyst should

consider a multiprogrammed computer with adequately

large core to sustain a complement of peripheral

devices capable of a large (but finite) number of

transfers per second. This situation is represented in

Figures 2a through 2g.

Figure 2a shows a two-dimensional space in which

we may plot executed instructions per sec and I/O

transfers per second. Clearly, as shown in Figure 2b,

this space is bounded by some potential resource capac-

ity (Cm,Tm) for the specific configuration. As we use

the system and execute programs there will be some

mean free path, say m instructions, at which interval

an I/O transfer will be initiated. This is modelled

(Figure 2c) by the user load line OP such that the

slope m

Tm—Ta

Actual Instructions/sec Ca „ ,—T——Hr f

—

1 ~
T^- Furthermore,

Actual Iranster/sec la

potentially available but unused I/O trans-

fers; Cm—Ca = CPU instructions available but not

utilized by the user program(s).

This difference Cm-Ca may be further sub-divided

as in Figure 2d. Cm-Cs represents a CPU operating

system standing overhead; Cs-Ci represents a CPU

4
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operating system dynamic overhead which is some

function of (multiple) user program activity. In gen-

eral, it will be proportional to I/O activity but will in

practice include the performance of other services

initiated by users. Observation of such a system shows

that the line CsQTm', though linear for low values of

T, sags markedly as T increases. This is due to the

increased burden of longer table and queue searches,

more flags to set and unset, more file opening/closing,

more I/O contention for core memory etc.

Thus the operating system-imposed upper bound on

I/O (Tm') may well be less than the theoretical Tm,

and for a given user program, the upper bound will

be Tm" (less than Tm').

Direct measurement of workloads will also show

that real user load lines tend to fall into two distinct

classes: scientific and commercial. Figure 2e shows

this: FORTRAN executions and assembly language

coded scientific problems generally have a slope which

is a factor of five to ten greater than that of com-

mercial programs, which include not only COBOL
executions but also compilations and assemblies.
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Cma

Csa

Tma" Tma'

Computer A

Figure 2f.

Having established this simple model, now consider

two computer systems A (Figure 2f) and B (Figure

2g), and for argument's sake suppose them to have

the same user instruction repertoire and peripheral

configuration but different sets of privileged instruc-

tions, different I/O and priority interrupt structures

and different system programs and operating systems.

As shown. Computer A is approaching saturation

for commercial programs with little reserve of CPU
idle time; for scientific programs, it has hit a ceiling

(the monitor load line) and has no idle time. Despite

Cmb

Csb

Tmb"

Computer B

Figure 2g.

having (say 20 percent) less raw CPU power, Com-

puter B can process commercial work as fast as A,

has more idle time, less operating system overhead,

and can process scientific programs say 10 percent

faster before saturating. Also, on reconfiguration.

Computer B could support a practical I/O transfer

load Tmb" some 30 percent greater than Tma".

This graphical model warns us not to look in isola-

tion at one or another aspect of a computer system's

performance; the tortoise may be outperforming

the hare.
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3. Performance Improvement Avenues

These structures can be employed in a variety of

practical problems, including the most popular one of

improving the performance of an existing system. It

is evident that there are a number of avenues toward

computer system performance improvement, in terms

of achieving a more favorable balance of value added

by processing information to computer system expen-

ditures. These avenues are enumerated below.

1. Within the "computer system performance" area

of Figure 1, one can improve the operating sys-

tem's scheduling rules so that concurrent jobs

compete less often for the same resources, one

can ensure that the most frequently used pro-

grams are in the most rapid-access storage device,

one can reduce operating system overhead. To

make such improvements effectively requires in-

formation on the performance characteristics of

the applications and the components of the com-

puter system; measurement can involve obtaining

such information via electronic devices called

hardware monitors or via special computer pro-

grams called software monitors.

2. Within the computer system domain, one can

monitor resource utilization and replace under-

utilized resources with cheaper ones. One can

increase resource availability through better com-

puter operator procedures, reliability and main-

tainability provisions, etc. One can also provide

more system capacity via architectural changes.

These fall in the category of computer center

actions.

3. Within the applications domain, one can reor-

ganize application programs to achieve the same

objectives via more efficient sequences of resource

demands. This process, here termed application

program improvement, is often aided by hard-

ware monitors or special software monitors.

Other improvements in classes of applications

programs can be obtained via standards and

procedures (e.g., for program and data orga-

nization and storage) promoting more efficient

or compatible resource sharing; these are termed

direct-user provisions. Finally, one may provide

additional opportunities to end users to balance

the cost and value of their processed information

via such economic measures as direct charging

for computing time or computer-generated man-

agement reports, variable pricing for quick turn-

around, idle time, elc; these are called end-user

provisions.

One of the activities at the Workshop was to have

participants estimate the savings achievable by these

and such other CPE activities as modeling, self-

monitoring, and standards, both in terms of long-term

potential and in terms of savings achievable within

the next 3 years, measured in terms of the percentage

of current hardware expenditures which might be

saved.^ (Overall, in the United States, current hard-

ware expenditures total about $6-7 billion per year.)

These estimates, summarized in Table 1, indicate

primarily that user and application program pro-

visions have the greatest improvement potential, but

also show that most CPE activities exceed the pace of

computer-hardware technology as a source of future

savings.

Table 1.

—

Results of workshop poll on relative potential of

various CPE activities.

(Medians of participants' very rough estimates of savings

realizable, as a percentage of current computer-harduare

expenditure)

Realizable

Within Next 3 Years Long-Term Potential

VERY LARGE (30%*) VERY LARGE (40-60%*)

Applications Programs Applications Programs

LARGE (15-20%) Direct User Provisions

Software Measurement LARGE (30^0%)
MEDIUM (10-15%) Software Measurement

Self-Monitoring End User Provisions

Direct User Provisions MEDIUM (20-30%)

Hardware Measurement Hardware Measurement

Computer Center Activities Computer Center Activities

Pace of Technology Self-Monitoring

NOMINAL (5-10%) NOMINAL (10-20%)

End User Provisions Pace of Technology

Modeling Modeling

Standards Standards

*The estimated savings might come from sources in addition

to the computer-hardware budget. The figures are not additive

because each category's saving was estimated under the assump-

tion that no other category of CPE activity was performed.

4. Operational Significance of

Distinctions

If the above categories and distinctions are carefully

kept in mind, a number of troublesome conceptual

5 The estimated savings might come from other sources than just the computer-

hardware budget. Each activity was considered independently in estimating sav-

ings; thus, the savings are not additive. Such projections were, of course, merely

guesses; however, they give some indication of how participants ranked items

in importance.
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pitfalls and their corresponding operational penalties

can be avoided. These include:

1. Incomplete consideration of improvement alter-

natives. One Air Force business data processing

situation was presented as an example of the

need for considering a variety of alternatives.

The effect of monitoring activities was positive

and appreciable, but for some activities, greater

gains were made via the direct user provision of

relaxing core residence limits from their previous

20K bytes. When this was done, one common
job which previously ran in about 220 minutes

elapsed time with 3057 overlay loads of 19K

bytes each was reorganized to run in about 11

minutes elapsed time with overlay loads of

21.5K bytes each.

2. Overcentralizing cost-benefit evaluation decisions.

It is difficult for top-level computer system man-

agers and application system managers to estab-

lish priorities, standards, and procedures which

can closely track the time-varying utilities of

many users. Often, for example, a user would

be more than willing to pay for priorities or

special arrangements if only the rulebook would

let him. The more the cost-benefit evaluation

function can be distributed among individual

users (within compatibility guidelines) via pric-

ing and other economic provisions, the more the

individual user can feel responsible, accountable,

and motivated to improve his applications' over-

all performance.

3. Confusion between capability to process data

(capacity) and amount of processing (by re-

source: utilization; by job: throughput). One

common manifestation is to assume, for exam-

ple, that buying twice as much processing capac-

ity will produce twice as much throughput. As

the additional capacities are connected via the

the complexities of operating systems and work-

load sequencing, this assumption always turns

out to be invalid. So, generally, are other assump-

tions resulting from considering capacity and

throughput to be indistinguishable.

5. A Critical Distinction

There is one distinction which is more important

to make than all the others. Far too many performance

improvement efforts have failed to appreciate the dis-

tinction, and have therefore led themselves into well-

intentioned but highly unsatisfactory outcomes. This

critical distinction is that:

Determining component utilization is measurement,

not evaluation. Evaluation takes place with respect to

the objectives and goals of the organization and usually

includes some measurement. A high CPU utilization

in itself is not necessarily the best thing for an orga-

nization. In many situations, organizations have

achieved higher CPU utilization and improved the

organization. However, in many others, organizations

have sought and achieved higher CPU utilizations,

but in the process have degraded turn-around time,

peak-load capacity, staff morale, or other factors which

contributed more to the organization's goals than high

utilization of the CPU—or of any other computer

center resource.

C. OBJECTIVES AND CRITERIA

1. Introduction

The difficulty of relating computer system activity

measurements to applications system performance

(and therefore the computer's utility) can perhaps

best be illustrated by citing an extreme case. In this

example, computer-system efficiency, reliability and

throughput were near zero, but the system still ranks

as one of the most successful computer applications

to date.

Several years ago, the income tax agency of a large

developing nation acquired a huge computer system

to process tax returns. Unfortunately, since software,

personnel, and other operational considerations had

not been thoroughly planned for in advance, the sys-

tem was hardly ever available to process the first

year's tax returns, and its performance on those was

extremely inefficient.

However, the astute tax officials proceeded to feature

the new tax computer center in a barrage of television,

radio, newspaper and magazine features, which por-

trayed the computer as ready to catch anyone who

understated his income or tax liability. The results in

the applications arena? An increase in tax revenues

of over 400 percent.

In this situation, virtually nothing that could be

obtained with a hardware or software monitor would

8



contribute significantly to the evaluation of the com-

puter system's effectiveness in producing an excess of

revenue over expenditures. Again, however, this is an

extreme case, and even here the situation has evolved

to a point that revenues have stabilized, and efficiency

in processing returns has become a key determinant

of net income, in which case computer resource utiliza-

tion improvement and associated monitoring activities

become quite important.

2. Consumer Concerns

The above example is particularly valuable in point-

ing out that computer hardware cost reduction is not

necessarily the sole or primary objective of CPE
efforts. A related consideration is that a great deal of

attention must be paid to the effect on other com-

ponents of computer system performance when per-

forming a computer system tuning activity. To get an

idea of the nature and relative importance of these

other performance components, workshop participants

were asked to complete the following statement:

I'm a consumer of computing services. I don't

mind if you tune the system, as long as you don't

degrade my

The summary results from the 17 respondents are

given in Table 2.

Table 2.

—

Results of consumer concerns poll

"I'm a consumer of computing services. I don't mind if

you tune the system, as long as you don't degrade my

Consumer interest

Personal job performance

(productivity, ability to do job)

Ease, ability to use system (test, debug

aids, relearning, ability to run old jobs)

Cost for my type of service

(even though average cost decreased)—.

Response (turnaround) time

Profit

Reliability

Service

Service variability

Major customer's job completion

Throughput

Cost variability

File security

Priority

Empire

Number of Responses

tiesides these concerns. Workshop participants iden-

tified other important considerations not so closely

linked with system tuning. Four of these considera-

tions are discussed by papers in Section II—C. The
paper by Wilner points out some of the major CPE
considerations during system design, particularly in

detremining hardware / firmware / software tradeoffs.

The paper by Rubey indicates some of the tradeoffs

between system performance and program validability,

often a more overriding concern, particularly in "man-

rated" computer systems such as are used to support

the manned space flight program. The paper by Hughes

furnishes more detail on the complementarities between

performance monitoring and reliability activities. The

paper by Chastain discusses the considerations rele-

vant in balancing system performance and monitoring

ability with data security assurance—concluding, for

example, that it is not likely that performance monitors

would unintentionally compromise sensitive informa-

tion from secure computer systems, but that it is pos-

sible in many situations for performance monitors to

intentionally obtain sensitive information.

In this regard, the computer's relation to the orga-

nizational goals is no different than that of the tele-

phone, elevator, warehouse, or other facilities operated

by the organization: its efficient utilization is not an

end in itself, but one of a number of means toward

improving performance with respect to overall orga-

nizational objectives and criteria. These, and their

relation to computer systems, are discussed in the

next section.

3. Relating Measurement to Evaluation:

General Considerations

Perhaps the most important thing that could be

done in the CPE area would be to determine a set of

functional forms for relating computer measurements

to an evaluation of the computer system's contribution

to its application systems. However, this is extremely

dfficult in general, because measurements are usually

made on the performance of computer subsystems

(CPU, memory, channels, etc.) and these are related

in complex ways to the performance characteristics

of the computer system as a whole. These in turn

relate in complex ways to end-user subsystems such

as point-of-sale terminal operations, which in turn are

related in complex ways to end-user system criteria

such as profit, good will, etc. Performance analysis
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considerations at these four levels are discussed in

detail in Section II—B in the papers by Carlson (com-

puter subsystem), Morrison (computer system), Kiviat

(end-user subsystem), and Nielsen (end-user system).

A particular difficulty is that often what looks like a

performance improvement at one level actually de-

grades performance at higher levels. For example,

in Kiviat's point-of-sale terminal example, one can

create a situation in which better end-user subsystem

performance (zero bad debt rate via on-line credit

checking) can correspond to poorer end-user system

performance if the credit checking delays cause cus-

tomers to stop shopping at the store. Similarly, cus-

tomer delays at the end-user subsystem level could be

caused by overconcentrating on performance at the

computer system level. One typical way would be to

increase computer system efficiency by requiring clerks

to batch their inputs in a way that simplified computer

transaction processing but made it much harder for

the clerk to correct data entry errors. And, as Carlson

points out, running programs out of low-speed core

can produce very high values for CPU utilization

(computer subsystem performance) while degrading

computer system performance.

4. Relating Measurement to Evaluation:

Some Specifics

However, there are some situations in which a fairly

straightforward functional form relates computer per-

formance to application system performance. By far

the most common is the situation in which most of

the workload consists of periodic equal-priority status

reports or numerical calculations for which there is

very little time-criticality for the results. In this situa-

tion, computer system performance and applications

system performance are identical: reports or jobs

processed (throughput) per dollar spent on the com-

puter system.

This situation can thus be characterized in terms

of a relationship between the value of processed infor-

mation and the time it takes to complete processing it.

At least three other common situations may be char-

acterized by a relationship of this form. In each case,

the value-versus-time curve provides a key for relating

computer system performance to application system

performance. Figure 3 illustrates the four common
types of value-versus-time relationships, which we

describe in more detail below:

Type A: Accumulated Batch: Low Priority.

Slight, uniform decrease in information

value. This is the situation discussed

above. Scheduling decisions are made
only with respect to load-balancing for

throughput.

Type B. Batch: High Priority.

Larger, but still uniform (linear) de-

crease in information value. This decay

curve is typical of software development

situations, where the time lag is turn-

around time on debugging runs. Here,

the appropriate criterion is some mixture

of throughput and turnaround time per

dollar. Scheduling decisions consider

throughput, but priority is also given to

short jobs over long jobs.

Type C: Conversational.

Non-linear decrease in information value.

The decay curve shown is typical of some

interactive systems, where human-factors

data (e.g., Reference 7) indicate fallofis

in sustained concentration when delay

times begin to exceed 2—3 seconds and,

at another level, 15—25 seconds. Here an

appropriate criterion is "responsiveness"

per dollar with respect to the decay curve;

an example of a scheduling system built

to accommodate it is given in Reference 8.

Type D: Deadline-driven.

Step-function decrease in information

value. This is typical of various "real-

time" applications such as spacecraft mis-

sion control, industrial process control,

or banking situations in which missed

deadlines can mean large losses of float,

or interest dollars on the transactions

processed. Here other criteria inconsistent

with throughput per dollar such as extreme

reliability and reserve capacity to meet

peak load situations become important;

References 9 and 10 give thorough treat-

ments of the additional considerations

here.

Of course, no installation is a pure example of any

of the curves in Figure 3. Installations with many

routine file updates or low-priority scientific data

reduction jobs generally have a Type A workload but

not completely. Many others, including some of the
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Figure 3. Some Characteristic Relations Between Computer
Processing Time and Information Value

General Motors systems discussed by Seals in Section

II.A.2 of the report, approximate Type B during the

day and Type A at night. Others discussed in Section

II.A of the report include Browne's discussion of

University computing, often a mix of Types A, B,

and C, and DiNardo's discussion of bank data proces-

sing, which can be a mix of Types A, B, C, and D.

Also, any CPE effort must include not only time-

oriented criteria but also the additional consumer

considerations enumerated at the beginning of this

Section. Thus, at this point the types above provide

only a conceptual aid to CPE efforts, but they could

become more. One of the desirable efforts discussed

at the Workshop was a project to achieve more

definitive characterizations of the value aspects of

common types of workload, including not only time

dependencies but also other typical functional rela-

tionships.

One particularly important relationship to illuminate

is the tradeoff between hardware and software devel-

opment and maintenance efficiency since, for many

organizations, software costs are two to three times

higher than hardware costs. Figure 4 [11, 12] shows

the results of a data-collection effort for airborne

computer software, indicating that extremely high

hardware utilization figures correlate with highly esca-

lating software costs. Similar experiences with ground-

based installations in government and industry indicate

that this type of curve also characterizes other soft-

ware development and maintenance activities. How-

ever, particularly when a computer system is sized and

tuned for production, it is often done as if the "folk-

lore" curve were true, leaving hardly any excess

capacity for software development aids, test packages,

or orderly expansion of applications software. Thus

the gains in hardware savings can be more than eaten

up by escalating software costs.
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5. Multivariate Performance Criteria
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Another difficult problem discussed at the Work-

shop was that of balancing performance in a number

of dimensions. Even in banking, dollars are not a

"universal solvent" with which the value of all the

other criteria can be expressed.

Various schemes were advanced for making multi-

variate performance data easier to assimilate by

decisionmakers, including various types of bar charts,

and shaded or multicolored score cards. The most

attractive and novel scheme was one advanced by

Kiviat, in which a number of variables are each dis-

played radially. Kiviat indicated that he had seen the

technique used in the medical field to display multi-

parameter information about patients (see for example

Reference 13). Since the Workshop, a great deal of

activity [14, 15, 16] has been devoted to determining

appropriate sets of axes for such charts, now called

"Kiviat graphs". Figure 5a shows an example with a

particularly good choice of 8 axes, in which the

desired system performance takes the shape of a star.

stage 5 Stage 6

Figure 5b
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Figure 5b shows the results of a six-Stage CPE effort

illustrated via Kiviat graphs; [17] the intuitive impact

of the technique is striking, particularly when com-

pared with the same data presented tabularly in

Table 3.

Table 3.

—

Tabular data from Kiviat graph

Axis Percentage Measure Measuring Stage

1 2 3 4 5 6

1 CPU active 40 46 49 52 56 75

2 CPU only 13 17 18 22 17 28

3 CPU/channel overlap 27 28 32 31 40 47

4 Channel only 38 35 31 26 25 15

5 Any channel busy 74 70 69 61 65 62

6 CPU wait 60 54 51 48 44 25

7 Problem program state 35 37 41 47 49 66

8 Supervisor state 4 6 6 4 6 8

Often, though, some of the important performance

considerations are, as Nielsen explains in detail in

Section II.B.4.

* * * difficult to measure or judge, or simply

too fuzzy * * * it may be very difficult to obtain

a user's indifference curve between lower prob-

abilities of service disruption on the one hand and

higher cost with greater customer satisfaction and

greater staff efficiency on the other.

Given such difficulties, often the best that can be done

is to make cost comparisons for some informally-

defined level of performance. In such situations, one

can often use measurement and analysis tools to reduce

costs while keeping performance roughly equivalent.

The next section discusses the types of CPE tools and

techniques and their relative capabilities and limita-

tions in performing this function.

D. TOOLS AND TECHNIQUES

1. Introduction

A large complement of tools and techniques is

available to aid in CPE efforts. Each has its own
range of potential insights into performance improve-

ment, and its own resource requirements in terms of

added computer overhead, required personnel time

and expertise, lease or purchase cost, etc. One of the

major CPE problems is that of deciding which

sequence of activities will produce the most cost-

effective set of insights into performance improvement.

Therefore, this section will begin by outlining some

of the methodological tools available for charting one's

course through a CPE effort, followed by summaries

of the capabilities available for data collection (moni-

tors, accounting systems), data analysis (statistics,

data representation), modeling (analytic, simulation),

and management (standards, economics). The section

ends with a discussion of priorities for research and

development of improved computer performance anal-

ysis tools.

2. Methodological Tools and Techniques

These techniques provide guidelines for organizing

a CPE effort so that it is guided by objectives and

criteria rather than by data considerations, and so

that efforts are not begun which could have been

predicted in advance not to provide much illumination.

Often, though, the opposite is the case: [18]

After an installation decides that it should be

concerned with performance improvement, the most

common step is to examine available software and

hardware monitors. Salesmen present their products,

and one is selected. It is procured and personnel are

assigned to begin measuring the system with the

unfamiliar tool. This is very expensive; monitors

tend to be costly, and personnel must be diverted

from other work to the new activity. To make mat-

ters worse, the measuring process usually severely

disrupts machine operation. The payoff for the

expense is expected to come from improved per-

formances resulting from the implementation of a

system modification. Unfortunately, this reward is

seldom realized. Instead, the procedure resembles

the flow-chart below:

Choose a

tool

Co 1 1 ect 1 ots
of data

Wonder what to

do w i th all

those data

In has almost become a rule of thumb if a CPE

effort is begun with the question "Shall I get a hard-

ware or a software monitor?", that the effort will fail.

Below are sketched two methodological tools which

provide more assurance of success in improving an

existing system's performance. They are the "systems

analysis" approach and the "scientific method"

approach.
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The "Systems Analysis" Approach

This approach provides a set of general guidelines

for avoiding pitfalls in the analysis of complex sys-

tems. It involves a multi-step, iterative approach,

emphasizing the explicit formulation of objectives,

criteria, assumptions, and alternatives before proceed-

ing with detailed data collection and analysis. Figure

6 illustrates the usual sequence of steps, generally

beginning with "Formulating the Problem." The

approach is described in more detail in Reference 19.

Figure 5. Activities in Analysis

An important point on these or other similar

approaches is that they cannot be formulated in

enough detail to show an inexperienced analyst pre-

cisely how to formulate incisive hypotheses, structure

efficient data collection procedures, or assess the rela-

tive value of several performance variables with

respect to the organization objectives. At the Workshop

there was some discussion on the amount of practical

experience that was necessary to properly run a CPE
effort. The consensus was that the learning period for

a recent B.A. or B.S. in computer science would be

about two years. This topic will be discussed further

in the Education and Training portion of Section V.

The "Scientific Method" Approach

This approach is based on the time-honored se-

quence of observation; hypothesis formulation; hypo-

thesis-oriented experimentation, data collection and

analysis; and iteration as embodied in the scientific

method and illustrated in Figure 7. A short explana-

tion of each phase follows; more details can be found

in Reference 18. A similar approach is advocated in

Reference 20.

Understand the System (Phase 1)

The first phase of a performance improvement

effort involves understanding the particular computer

system in terms of management organization of the

installation, characteristics of the workloads processed

by the computer system, descriptions of the hardware

configurations and software programs in use, and

information as to what computer-usage data are

collected.

Analyze Operations (Phase 2)

The second phase involves the collection ot more

detailed data to analyze operations. These data, more

quantitative than the data collected in the initial phase,

provide an analyst with sufficient information to

analyze and evaluate the performance at most computer

installations. In addition to analyzing operations, data

collected in this phase can be useful in reviewing the

operational objectives of the installation. Such objec-

tives may include rapid on-line response, low costs,

flexibility, easy-to-use software, and good batch

turnaround.

Formulate Performance Improvement
Hypotheses (Phase 3)

Based on system inefficiencies and/or bottlenecks

identified in the analysis of operations (phase 2),

hypotheses about probable problems and possible

cures can be formulated. These should be specific and

performance oriented.

Analyze Prohable Cost-Effectiveness of

Improvement Modifications (Phase 4)

Before hastily gathering data to test a hypothesis,

it is important to analyze whether the resulting per-

formance improvement would be worth the invest-

ment. For example, consider the possible hypothesis:
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Figure 7. Suggested Performance Improvement Procedure

"If we add another $60,000 worth of communica-

tions equipment, we can probably reduce response

time from 2 seconds to 0.1 second on our job-query

terminals."

Since in most situations a 2-second response is accept-

able to practically all terminal users, it would be dif-

ficult to justify the cost-effectiveness of such a

modification.

Test Specific Hypotheses (Phase 5)

Although short studies (two or three days) usually

devote little time to testing specific hypotheses, the

bulk of an extensive performance improvement effort

is devoted to this phase. The discussions later in this

section on Data Collection and Data Analysis expand

on these considerations.

Implement Appropriate Combinations of

Modifications (Phase 6)

Several modifications are often simultaneously im-

plemented because the effort required may be about

the same as the effort for only one. Care must be

taken that an installation can stand multiple changes

without undue impact on production. Also, additional

care must be exercised so that modifications do not

cancel each other.

Test Effectiveness of Modifications (Phase 7)

Utilizing the measurement tools, data-collection

techniques, and test designs used to test specific hypo-

theses (phase 5), the effects of modifications on per-

formance must then be tested. Modifications may result

in satisfactory improvements in performance, but

often further modifications are necessary to achieve

the desired effect. A recycling through the process

(starting in phase 3, the formulation of performance

improvement hypotheses) will be required.

3. Data Analysis Tools and Techniques

At one time simply collecting any performance data

presented a legitimate problem. Early techniques in-

cluded using devices that were little more than con-
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ventional counters with some minor logic. Such

monitors were not easy to use. Early software monitors

were limited to collecting a few seconds or minutes

of data because of the overwhelming costs of data

reduction; one monitor required up to 71/2 hours to

reduce Sl^ minutes of trace data to usable infor-

mation.

Since the early devices, dramatic improvements

have been made. The tools have been made easier to

use, and some monitors now possess both hardware

and software capabilities. These monitors have been

used to collect data on a variety of systems, and some

generalizations about results are now possible.

One of the difficulties confronting newcomers to the

performance analysis field is a dearth of information

on typical performance of the computer system com-

ponents. A most useful contribution in this regard for

IBM 360 series computers is presented in the paper by

Gary Carlson in Section II.B. Table 4 shows the basic

results of his study.

The latest hardware monitors often use minicom-

puters to reduce data during collection. On the other

end of the price spectrum is a monitor employing a

CRT to display dynamically the utilization of 8 or 16

logical resources. The future will probably see moni-

tors integrated into, or communicating intimately

with, the host computer. Warner in his paper in Sec-

tion III.A, suggests that continuous data interpretation

will become a reality ® rather than the current occa-

sional measurements.

Accounting systems, of course, can provide con-

tinuous data on performance. Since workload char-

acteristics are critically important in performance

analysis, the resultant data should be extensively used

for workload analysis in addition to determining

resource utilization. However, several problems limit

the data's usefulness.

First, accounting systems are designed for accoun-

tancy. Therefore, they aggregate data in ways that

aid billing but impair performance analysis. Often,

for example, system overhead charges are spread in

arbitrary ways across all jobs without indicating the

resources used by each job itself.

6 Subsequent papers have shown this to have become a reality already, e.g.

Reference 16.

Table 4.

—

Typical range of hardware monitor measurements as % of wall clock time

Gary Carlson, Brigham Young University

360/30 360/40 360/44 360/50 360/65

System Meter 21-80 56-100 83-88 93-100 90-98

CPU Busy 16-51 17-52 32-48 44-85 32-93

CPU Only Busy . 16-34 15-43 21-42

Protect Key 0 19-24 18-27 38-62

Supervisor State 20-32 22-67 30-53 25-32

Problem State 20-47 2.5-4.5 33-40

CPU Wait On Printer 8-10 6-17 5-26

CPU Wait On Disk Seek 3-9 2-52 3-11 1.1-13.8

Multiplexor Busy 0.8-2.1 0.5-1.2 1.0 0.8-1.4 1.9-3.1

Multiplexor Meter In 10-26 61 40-100

Selector Channel (tape & disk) 16-27 21-35 31-49 13-44

Selector Channel (tape) 3-15 2-23 9-13

Selector Channel (disk) 5-19 11-18 25-39 11-48

Selector Channel (teleprocessing) 8-57

Printer Busy 8-22 7-36 18-27 29-53

Reader Busy 3-16 5-16 11-21

Cards per Minute 919-1033

Lines per Minute Rated 1100 813-1077 936-1074 959 975-1140

Lines per Minute Rated 600 570-683

Emulate Mode 0-6 21-34 6-36

LCS Inhibit 16-30
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Second, accounting systems appear to be rather low

on the list of items that vendors feel are important. A
number of idiosyncrasies and plain errors are common
in most systems.

Third, accounting systems use inconsistent metrics

—both between systems and within the systems them-

selves. For example, one system reports processor time

for its batch system, but it only reports processor

time multiplied by memory size for its time sharing

system.

These problems tend to make analysis difficult, and

limit the applicability of analysis techniques across

systems.

4. Data Analysis Tools and Techniques

Computer performance results from the interaction

of a number of randomly presented demands which

are satisfied by asynchronously operating resources.

The result is that, even if the same job is run repeat-

edly in an idle system, the elapsed time to run a job

varies by one or two percent. In more complex situa-

tions—with multiple jobs, on-line activities, and time-

sharing systems—the variability can be overwhelming.

Even reported processor time has been observed to

vary by 100 percent (a doubled time) in two separate

runs in the same multiprogrammed system. Conclu-

sions based on a few samples of data are often incorrect

because the data are not representative of the entire

population. Careful experimental design and data

analysis are required to avoid the problems caused by

variability and complexity.

Experimental design is often ignored by analysts

eager to collect data and show results. Unless objec-

tives are carefully defined, irrelevant data can be

collected amazingly rapidly (a reel with 1200 feet

of tape is often filled in 20 minutes), and they may
be collected on an unknown workload. This huge

mass of data reports on events happening at very

detailed levels. Relating these detailed data to decisions

management must make is often difficult and some-

times impossible. For example, management's problem

may be at rather a high level of aggregation like:

"How much will next year's added on-line workload

strain our capacity?" Detailed data on current pro-

gram activity may be of little aid in answering this

question.

Schwetman (in his paper in Section III.A) suggests

that analysis techniques are not advancing rapidly for

at least four reasons:

1. A lack of recognition of performance variability.

2. A lack of techniques and experience upon which

to build.

3. A missing link between microscopic measure-

ments and macroscopic questions.

4. A lack of load characterization methods.

5. Modeling Tools and Techniques

The two types of models primarily discussed at the

Workshop were probabilistic and information-theore-

tic. Participants also discussed the recent increase of

interest in simulation models. The upsurge of interest

in both simulative and analytical modeling is partly

due to a recognition that predictive capabilities need

to be improved so that performance analysis can be

included earlier in the computer system design process

(for both hardware and software system).

Workshop participants agreed that modeling usually

needs to be employed early in any phase of a system's

life cycle where it will be applied. The current state

of the art does not enable analysts to quickly interface

an appropriate model to whatever data happens to be

available, or to quickly solve very difficult problems

resulting from decisions taken without the aid of per-

formance analysis. In addition, very few models are

general enough and have application techniques and

caveats well enough specified that a novice can use

them successfully unless he has aid from the model's

developer. Some published models are currently in

formulative stages where immediate application to

real problems is not feasible; blind attempts to apply

them are almost sure to be unsuccessful.

Several participants pointed to the limited valida-

tion work that has been done on models. Increased

cooperation between people' interested in measurement

and those interested in modeling appears needed to

improve the situation. Two of the participants indi-

cated that they had already begun such a cooperative

effort, but that far more effort in this vein is required.

6. Management

Technical personnel often feel that their manage-

ment is not concerned with costs because inadequate

power is given the technicians to apply their per-
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formance analysis tools. In addition, they fail to

demand that programmers honor standards that might

dramatically improve machine performance (and often

human performance) at virtually no cost to flexibility.

They may fail to establish cost recovery (charging)

systems to limit computer usage to jobs that are

economically justifiable. They may allow vendors to

dictate to them (as customers) rather than vice versa.

However, the situation is seldom so simple as this.

Emphasis on computer performance may well re-

quire devotion of management effort and therefore a

diversion of effort from, for example, a firm's profit-

making business. To save a few hundreds of thousands,

a firm might lose the opportunity to make millions.

As Seals points out in his paper in Section II.A, a

lack of personnel with a proper education and the

necessary imagination aggravates the situation. Man-

agement has no assurance that the set of standards

and economic policies recommended by performance

analysts will actually lead to improved cost-per-

formance. The current state of the art is capable of

assuring positive results when employed by good

people, but performance analyses are often executed

inappropriately or in inappropriate situations. With-

out generally applicable standards and economic

policies, the domains of performance analysis' appli-

cability are limited.

7. Research and Development

Performance measurement tools and prediction

models are becoming increasingly sophisticated. Their

capabilities, when applied by the people expert in

using them are impressive. However, as noted above,

the tools are not easily applied by a large group of

potential practitioners.

Research and development is certainly required to

extend capabilities beyond their current limits. How-

ever, R&D must also be devoted to making currently

existing and potentially valuable tools applicable to

real problems by people without several years of

specialized training. JefFery's paper in Section III.A

highlights a particularly important goal in this regard:

the enhancement of accounting systems and software

to support analysis of their outputs.

One of the strongest recommendations made at the

Workshop was to have a handbook written that could

summarize the techniques for applying the existing

tools. This idea was advanced at the Workshop by

Jeffery (see Section III.A). In the same vein, the set

of existing tools should be expanded through further

development of advanced, sophisticated tools with the

objective of making them useful to the vast set of

problems that are presently not subjected to per-

formance analysis. The next Section includes a more

detailed enumeration of R&D activities recommended

at the Workshop.

E. RECOMMENDATIONS

1 . Introduction

In preparation for the recommendations activities

at the Workshop, four position papers were prepared

for participants to digest in advance, in the areas of

Standards (by Bemer), Professional Activities (by

Hamming), Research and Development (by Burrows),

Education and Training (by Noe). At the Workshop,

participants divided into panels to formulate recom-

mendations which were then discussed among all par-

ticipants the next day with the objective (sometimes

achieved and sometimes not) of reaching a consensus

position. During the Workshop two more recommen-

dation areas were identified, and additional panels

formed on the subjects of Workload Characteristics

and Monitor-Register Standardization. This Section

summarizes the Workshop's recommendations in these

areas.

2. Standards Recommendations

Workshop participants were unanimously in favor

of the following recommendations:

A representative organization such as the National

Bureau of Standards (NBS), American National

Standards Institute (ANSI), or Computer and Busi-

ness Equipment Manufacturers Association

(CBEMA) must formulate guidelines for:

1. Terminology;

2. A Minimum Set of Accounting Data;

3. Intrinsic Monitoring Capabilities for Comput-

ing Systems.
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The word "guidelines" is a much weaker term than

"standards." It impHes a set of broadly disseminated

reference definitions which the community recognizes

as nominal and preferred usage, but which are not

universally binding. In some areas, such as the

Monitor-Register discussed below, attempts were made

at the Workshop to press toward advocating stan-

dards, but unanimity could not be achieved. In gen-

eral, the reluctance to advocate standards was based

on a feeling that the CPE field was not sufficiently

well understood yet. Standards developed at this time

might not be sufficiently easy to apply, might be dis-

criminatory, and might stifle innovation. Thus they

might not be a net benefit for the field. In some areas,

such as benchmark standardization, even guidelines

were felt to be too ambitious.

However, there was a very strong feeling at the

Workshop that significant performance losses result

from the current confusion with respect to definition

of such terms as CPU utilization, response time and

overhead, with respect to proliferation of incom-

patible sets of accounting data, and with respect to

definition of interfaces to monitoring tools. The rec-

ommended guidelines are needed as soon as possible.

At the very least, their formulation will serve as a

stimulus to improved communication in the CPE field,

and in some cases they might serve as successful

prototypes for an eventual standard.

3. Monitor Register

Connecting a hardware monitor to a computer

system sometimes creates problems. Probe point iden-

tifications are sometimes difficult to obtain, and some-

times they do not exist. Attachment to the wrong

point is easy, but detecting the problem from the

resultant data is difficult. Attached probes can load

circuits and cause temporary hardware malfunction-

ing; careless attachment can physically damage the

computer. Laying cables disrupts operations as floor

panels are lifted, and careful analysts often demand
that computing be halted while the actual connection

is performed. All this would be unnecessary if a stan-

dard attachment plug were provided.

Hardware monitors are capable of collecting data

cheaply that current software monitors cannot coflect

easily or at all. They facilitate measurements that are

independent of the host machine and therefore can

be used in situations where reliability is low. In addi-

tion, these monitors can be used on din"erent hardware

and software systems so that comparisons can be

made through time and across installations. Finally,

communication to the machine for purposes of on-line

performance enhancement is virtually impossible

without some special interfacing device. While mea-

surement through hardware is far from constituting

the entire realm of performance analysis, it is impor-

tant enough that mainframe vendors (and peripheral

manufacturers) should recognize the user's need in

this area.

The panel which met on this topic suggested that a

special register be implemented for monitoring. This

monitor register would be implemented differently for

different hardware, and a manufacturer might choose

to implement successively higher levels of the register

over the lowest, level one, register. The various levels

are as follows:

Level One: Lowest level register, designed to facili-

tate current techniques. It would consist of buf-

fered lines to show device activity status and

would have complete documentation on logical

and electrical characteristics.

Level Two: A register to enable software in the

host machine to communicate with the hardware

monitor. It would consist of a register one word

wide, loadable by the host machine's software,

with half loadable from a protected state and

half from an unprotected state.

Level Two (Extended) : Intended to ease monitor

design. It would save the unprotected half of the

above mentioned word so that bit status set by a

user could be maintained for that user.

Level Three: Full memory bus capability. This level

would bring out (buffered) instruction address

register (s), data address field(s), operation

code(s), comparator status, etc.

Level Four: Communication to host system. This

level would consist of a register readable (in both

protected and unprotected states) by the host

machine for input of special resource-allocation

messages from a monitor.

The monitor register suggestion generated much

discussion with some people maintaining that it

assumes the current situation as the long-term tech-

nological environment. For example, micro-program-

mable devices throughout a system might make

definition of words like "device active" impossible.

Therefore, future monitoring capabilities should be
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designed by manufacturers so as to provide a recom-

mended set of data, but with complete freedom of

choice as to the technology and architecture of those

capabilities. Other participants argued that the results

of past vendor designs for facilitating performance

analyses did not indicate that users should wait to

see what vendors might implement. Attempts to obtain

a definitive consensus on this issue by vote were

inconclusive, with many abstentions.

4. Workload Characterization

A recurrent topic during the Workshop was the

necessity for better means of workload characteriza-

tion, i.e., of determining meaningful categories of

workload types, and parametric forms for describing

a workload of a given type. Such a capability is im-

portant because it provides the necessary framework

for:

1. Verifying performance improvement hypotheses

by enabling an analyst to normalize performance

improvements during periods of changing work-

load;

2. Predicting trends in computer usage of various

types, and predicting the resulting resource

strains;

3. Providing functional forms and parametric data

to enhance analytic modeling;

4. Providing useful parameters for closed-loop

monitor-scheduler modules in advanced operat-

ing systems;

5. Improving the quality and comparability of

benchmarking activities.

A working group was convened at the Workshop to

try to develop a definitive workload characterization.

The group found it was not all that easy. As for

categorization, there are several classes of categories

which include at least the following:

1. Job or Transaction Characteristics

a. Value of job completion (function of time,

input data, state of application system, etc.)

b. Resource demands

1. By component

(a) hardware (CPU, core, disk, channel,

etc.)

(b) software (compiler, I/O, user code,

etc.)

2. By usage pattern (probability distributions

of resource demands)

(a) by timing

(b) by amount

2. Inter-job characteristics

a. Dependence of job completion value on com-

pletion of other jobs

b. Probability distributions of job interarrival

times

The process of determining workload types appears

to involve an intuitive cluster analysis with respect

to the above categories, in order to identify clusters

of jobs with similar characteristics such as student

jobs, accounting jobs, I/O-bound jobs, on-line trans-

actions, etc. Determining the appropriate parametric

forms for each type generally involves a similar, but

usually more quantitative analysis. Some guidelines

with respect to these determinations are given below.

1. The most useful form and level of detail of a

workload characterization depends on its appli-

cation. This implies that workload characteriza-

tion is generally an interactive, circular process.

2. A workload characterization is useful only to the

extent that the necessary parametric information

is easily gatherable. A good example is the two-

parameter job characterization (CPU seconds

of execution and kilobyte-minutes of core resi-

dence) sufficient to provide effective job schedul-

ing in the Air Force business data processing

system cited in Section I.B.4. A counter example

would be a 100x100 contingent probability table

of memory references in a complex Monte Carlo

simulation model.

3. Workload characterizations are often machine-

dependent. For example, initiator and terminator

activities are quite time consuming in IBM 360

machines, but usually negligible on CDC equip-

ment. This implies the need for extreme caution

when characterizing a workload to serve as a

reference for benchmark tests during the equip-

ment selection and procurement process. In some

cases, a workload characterization suitable for
^

benchmarking may be unachievable.
,

4. The primary needs in the workload characteriza-
^

tion area are for an increased level of empirical

information exchange on the utility and achiev-

ability of various characterizations, and further
j

complementary work toward an underlying theory
'

which is relevant and accurate both in explain-
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ing previous situations and in predicting future

situations.

5. Professional Society Activities:

Information Dissemination

Workshop participants voted 23 to 2 in favor of

the following recommendation:

The professional societies should treat this

field no differently than any other. The societies

should provide the usual channels of communi-

cation but should not themselves try to provide

or measure compliance to standards.

The dissenters pointed out that there exist some

professional societies which promote and monitor

standards, and that professional societies in the com-

puter field should exert more leadership in this

direction. The majority opinion was that other types

of organization (e.g., NBS, ANSI, CBEMA) were

better suited for standards roles, and further that the

major needs in the CPE field at this point were along

the traditional professional society lines of stimulating

and facilitating professional communication and in-

formation dissemination.

In the area of information dissemination, existing

publication channels were considered generally ade-

quate, as long as SHARE and ACM's Special Interest

Groups on Measurement and Evaluation (SIGMET-

RICS) and on Simulation (SIGSIM) continue their

trend toward publication of well-documented results

of CPE efforts. There was some concern that pro-

fessional journals in the computing field were overly

biased toward publishing theoretical rather than

empirical results.

One topic of particular concern was that of model

validation. Users of analytic or simulation models

of computer systems currently have no way of deter-

mining the extent to which the model has been

validated for their situation, often leading to lost time

and effort, to duplicative validation activities, and at

times to inappropriate management decisions. Work-

shop participants felt that much could be done, within

professional societies and elsewhere, to encourage

and communicate the results of model validation

activities. The initiatives at the February 1973 ACM
SIGMETRICS Conference were a valuable first step

in this direction.

6. Research and Development

Workshop participants were strongly divided on the

matter of R&D priorities in the CPE field. After some

discussion, it appeared that the most productive

approach would be to ask participants to list their

choices of the (roughly) three most important R&D
projects they would fund if in a position to do so. The

results, representing 23 responses, are given in Table

5 below.

Table 5.

—

Desired R&D projects

Theory (4 categories) 8"

Measures and criteria 7

Model validation and refinement 7

Workload characterization 6

National CPE laboratory 5

Closed-loop monitor-manager 5

Representation of systems and

information structures 5

Comparative measurements collection 4

Hardware-software monitor 2

Variability and predictability 2

Statistical methods 1

Programmer productivity determinates 1

^General theory, 3: Analytic models, 3; Queuing theory, 1;

Work-energy theory, 1.

Most of the entries are fairly self-explanatory, but

the National CPE laboratory deserves some added

explanation. It would involve the provision of a

computing center stocked with measurement and

evaluation tools available to theorists and experi-

menters wishing to test theories and hypotheses on

computer system performance.

Most of the discussion of this concept centered

on the problem of maintaining a representative real-

world workload on an experimental system. Many

users with deadlines would prefer not to use such a

system even if it were available free of charge. How-

ever, it would be most valuable for the facility to

run live production work, both by itself and in

concert with a set of representative parameterized

workload characterizations.

Other recommendations of the R&D panel drawing

more general support from the Workshop participants

were various information dissemination and consolida-

tion activities such as specialized workshops and con-

ferences on CPE theory, workload characterization,

etc., channels for review and evaluation of R&D work,

and reference books for the field. In this last area,

participants were polled for their opinions on the
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most valuable yet-unwritten document in the CPE
field. The results for the nine responses received are

given in Table 6 below:

Table 6.

—

Valuable documents: Unwritten

4—Measurement & Evaluation Handbook (when, how to use

accounting data, monitors, simulators, etc.)

1—Expose of the Unreliability of Every Known Comparative

Measure

1—Facilities Management for Small-to-Medium Computer Cen-

ters

1—Organizing and Managing Measurements and Evaluation

1—Applied Statistics for Computer Performance Analysts

1—Integration of Four Types of Performance Measurement into

a Single Tool (internal hardware monitors, external hard-

ware monitors, software monitor, "mini" software monitor)

7. Education and Training

The Workshop participants strongly endorsed the

recommendations of the Education and Training Panel

that a coordinated program of CPE education and

training should be established and supported by uni-

versities, funding agencies, large user organizations,

and professional societies. The program would have

two main focal points for educational leverage: educa-

tion for motivation to increase awareness of the

general potentials, pitfalls, and procedures of CPE;

and education for competence to increase the quality

and quantity of practitioners in the CPE field.

In the area of education for motivation, the main

targets are:

• Managers at the intersection of authority over

computing resources and computer users;

• Computer center managers;

• Lead systems programmers;

• Users

;

• Vendors—hardware and software.

The most promising mechanisms for attracting and

motivating the above individuals are:

• Seminars, tutorials, and workshops for focal

points of purchasing control (e.g., state agency

D.P. boards, professional organizations, such

as the American Bankers' Association, Ameri-

can Management Association, and Federal

agencies)
;

• Books and periodicals: case histories, etc.

In the education for competence area, the main

targets are:

• System programmers;

• Application programmers;

• System designers;

• Direct users;

• New professionals entering the field.

The most appropriate mechanisms for attracting and

motivating the above individuals are:

• University—regular students;

—continuing education;

• Co-op programs;

• Summer courses;

• Books, periodicals;

• Professional societies—ACM, IEEE, etc.

In addition more detailed recommendations for a

university CPE education program are formulated

by Noe in Section IV.F. Specifically, university edu-

cation in measurements and evaluation has the oppor-

tunity to do the following:

1. Spread a performance-oriented viewpoint among

those preparing for teaching and practice in the

field. This should orient problem solvers to

attack what is important, not just what is inter-

esting. When resources permit it, this can be

extended to professionals returning to the uni-

versity for "refresher" courses.

2. Stimulate research and development of means

for measurement of complex computer hard-

ware and software systems through dissemination

of understanding of the problems and possi-

bilities.

3. Influence other computer science courses so that

they include measurement and evaluation view-

points relevant to the particular topics, such as

compilers, operating systems, architecture, logi-

cal design and data structures.

Toward this end, the following recommendations

were developed in the university education area:

1. Measurements and evaluation viewpoints and

techniques should be taught at the university level

to spread consciousness of the importance of

the topics, and to encourage research and

development.

2. Initially this should be taught as a separate

topic, through formal courses and individual

studies and projects. The ultimate aim should be

toward inclusion in other courses where a mea-

surement and evaluation view is important, and
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the separate course work should be needed only

for advanced topics for students who specialize.

3. When taught as a separate course, measurement

and evaluation should be placed at an inter-

mediate level—after students are well aware of

the functions of hardware and software systems,

but before advanced courses on design of such

systems.

4. Familiarity with statistical methods should be

acquired through prerequisites and should only

have to be reviewed as part of the measurement

and evaluation course work.

5. Measurement and evaluation should be taught in

conjunction with course work on modeling of

computer systems.

6. The particular type of modeling (e.g., simulative

or analytical) emphasized is less important than

the viewpoint relating the modeling method to

measurements and evaluation. The models (be

they predictive or descriptive) should be used

for their ability to provide evaluative informa-

tion, and for their provision of a context for

communications about measurements and their

meaning.

7. Information should be exchanged on a continuing

basis concerning the concepts to be taught and

the most eflFective methods of conveying them.

The SIGCSE Bulletin of the ACM provides one

good forum for such exchange—probably better

than the Performance Evaluation Review which

is received by ACM SIGMETRICS members, who

are already convinced of the topic's importance.

8. The most important recommendation is for con-

tinued research attention to develop the principles

pertinent to measurement and evaluation of

computers. This is a joint responsibility of those

in industry, government and the universities.

In view of the general consensus at the Workshop

that a great deal of the improvement available through

CPE techniques could be achieved with present-day

technology, a high priority on educational activities

to unlock such a large savings potential appears well

justified.
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CHAPTER II

CPE Objectives and Criteria

A. SPECIFIC CPE CONSIDERATIONS:
SOME CASE STUDIES

The application of CPE techniques in an operational

environment generally exposes a number of unsolved

conflicts between management objectives and criteria

at the computer subsystem level (e.g., CPU utiliza-

tion), the computer system level (e.g., throughput),

the end-user subsystem level (e.g., terminal-operator

performance), and the end-user system level (e.g.,

customer satisfaction). For example, in an airline

reservation system the following conflicts in objectives

might occur:

• Creating a situation in which execution occurs

largely from low-speed core can produce high

values for CPU utilization but low throughput.

• Creating a situation in which on-line operators

(e.g., airline reservation clerks) must batch

their inputs can produce high values for through-

put but low operator performance.

• Creating a situation in which customer options

are automated (e.g., computerized seat selection

for airlines) can produce high values for oper-

ator efficiency but lower customer satisfaction.

The three papers in this section discuss how CPE
objectives and criteria at various levels are formu-

lated, iterated, and applied with respect to their par-

ticular end-user area. DiNardo's paper focuses on the

special problems encountered by large banks, where

the financial penalties of missing daily deadlines can

far outweigh the daily costs of computing. Seals dis-

cusses the evolution of CPE objectives and criteria at

General Motors, as an example of a large industrial

corporation with numerous autonomous divisions.

Browne discusses the difficult problem of developing

CPE objectives and criteria for a university computer

center, which has an enormous diversity of usage

patterns, priorities, and resource demand patterns with

which a single facility must cope.

!l
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Computer System Performance Factors at Mellon Bank

George P. DiNardo

Mellon Bank, Pittsburgh, Pa. 15230

Mellon Bank has acquired or developed a series ol soltware measurement tools which gather

statistics related to job production and system utilization. No one software tool meets all the bank's

needs and, on occasion, resort is made to a hardware probe. Of particular benefit have been data

reduction schemes, file managers, and query languages that facilitate rapid reduction, summariza-

tion, search, and calculation of the raw measurement data. A continuing aim has been to use the

same body of basic measurement data for job production statistics, system tuning data, and user

costing schemes. In spite of the use of benchmarks, etc., there is concern about a basic inability to

assess accurately total third generation computing capacity in a rapidly changing hardware and

software environment. The increasing need and the capability to make more accurate, timely,

usable, and meaningful data immediately available to the final user requires use of teleprocessing,

file management, and query systems that in a narrow and traditional sense are "wasteful" of system

resources on a massive scale.

Key words: Reduction of measurement data; software measurement tools; total computing capacity;

user satisfaction measurement.

This paper addresses computer system performance

factors as viewed by a commercial bank, Mellon Bank

of Pittsburgh. This institution is the fourteenth largest

bank in the nation with average daily transactions of

$1.3 billion and average daily check processing which

approaches one million items. In addition to providing

a range of batch and on-line EDP services by both

local and remote means, Mellon Bank provides auto-

mated bank services for over one hundred correspon-

dent banks. Additionally, it provides payroll and

other services for up to 250 commercial enterprises.

The computing power of the bank is concentrated in

an IBM Model 195, a Model 158 and a Model 65,

with all tape drives, disk drives, printers, etc., con-

j

nected in a shared or switchable mode. The monthly

j

rental equivalent (most of the gear is purchased)

' approaches $700,000 per month.

The necessity to provide a variety of teleprocessing

' services with high availability, to produce thousands of

batch reports with tight daily deadlines for the bank

and for the others, and to provide increasing facilities

for direct access of data by the final users, forces the

bank to concentrate on computer system performance

evaluation in terms of reliability, availability, and

recovery. In addition, there are the considerations

related to return item deadlines and loss of float. The

legal implications of missed deadlines to the Federal

Reserve could cause the bank to have to honor (pay)

an item which should be dishonored due to the loss

of the "Right of Return." The financial implications

of the loss of float through late or improper processing

in a bank of our size is staggering. The daily average

transit amounts to $300 million, with a possible loss

of $290.00 per day per million dollars worth of

checks that are not processed in a timely fashion.

Approximately one billion dollars in funds are trans-

ferred in and out of our bank daily, exposing us

to litigation for loss of float if the funds are late in

arriving at their destination. All this reinforces this

concentration on reliability, as opposed to resource

optimization.

The first several paragraphs describe the mechanics
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of the software measurement techniques now employed

by the bank.

IBM's System Management Facility (SMF) pro-

duces 47 records on job and step utilization of system

resources (core, device allocation, EXCP's). EXCP's

can be analyzed to produce utilization by device,

control, unit, and channel. Excluded under current

SMF records are data on system tasks and their utiliza-

tion of resources. This includes the basic control pro-

gram plus spooling programs such as IBM's HASP.
Thus, SMF is a good source of data for job production

and cost accounting. Additionally, such gross indica-

tions as IPL's, accesses to test libraries and various

utilities, bottleneck reports, etc., can be produced from

SMF. SMF is the primary tool for benchmark tests

which are based on job production. It is also useful

for data set activity analysis. SMF places an overhead

burden on the system of less than five percent. The

following additional software and hardware measure-

ment facilities are employed for analysis and improve-

ment of system tasks:

A. GTF traces all loads, attaches and links. Useful

for tuning for residency of SVC's, etc.

B. TFLOW is similar to GTF in that it captures all

interrupts. Good for detailed tuning, e.g., start

I/O loops on ITEL disk devices was a problem

which TFLOW helped to trace.

C. Above two are so voluminous that it is necessary

to use FORTRAN & AL programs to reduce

data on them, and to produce selective sum-

maries.

D. TSTRACE—A TSO driver oriented tracer.

Approximately 47 entry codes provide data on

swap loads, core occupancy, SVC fetch time,

number of swaps/terminal interaction, and over-

all system response time. TSOPAP is used to

reduce TSTRACE to cumulative percentages.

E. OSPTl—IBM program product fills the gaps

in SMF by highlighting system utilization of

channels, control units, devices, and core. Helps

in study of shared DASD problems and SVCLIB
utilization and cross-system contention.

F. LEAP—Time distribution of execution by mod-

ule, down to individual instruction. Pinpoints

I/O bound problems in applications.

G. System LEAP—^Similar to OSPTl but enables

analysis disk measurements such as cylinder

crossed, etc.

H. SUPERMON—Largely replaced by System

LEAP and OSPTl in our environment.

I. AMAP—A hard trace (not a sample) of system

workload which can be projected or interpolated

to show execution date on other theoretical

hardware configurations.

J. SMI—A hardware probe which when used as a

supplement to above software measurement

techniques, is particularly useful in measuring

cross device utilization or, in other words, for

recording waits by one system for device being

used by another system.

K. MAIL—Mellon All Inclusive Library—Used

primarily to store and release a large series

of jobs which simulates a live operating environ-

ment. Includes our live operational jobs and

test jobs. The mix can be adjusted to provide

desired ratios of compiles, sorts, etc.

L. Human Observation—Our operators are trained

to record observations of system slowdown and

provide extensive documentation of console

status and other indicators. They also invoke

such dumps as DYNADUMP for snapshot of a

running system and RESDUMP for a stopped

system (lockout or hard loop).

M. Console logs are valuable analytical tools and

produce a chronology of internal and externally

induced events which indicate system perfor-

mance or lack of it (DA's, DU's, DQ's, and

DSQA's are particularly useful).

N. The Analysis File in our Inquiry System is an

an example of an application which has a built-

in capability for recording events, transactions,

etc., which often are used in trouble and per-

formance analysis.

Many of the preceding produce voluminous data

which must be reduced by summarization of some

kind. GTF and TFLOW are examples. We have pre-

pared FORTRAN and Assembler reduction programs

which are used to key on particular events, devices,

tasks, etc., and then produce meaningful totals, ratios,

distributions, etc. Other measurement devices have a

capability of self-reduction. An example is LEAP
which decreases the sampling ratio as measurement

time increases.

IBM's Generalized Information System is an ex-

ample of a free form query, macro-level file manage-

ment system. It is used to additionally summarize,
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profile, and compute ratios on a total of all or selected

items, times, programs, etc. It is used to produce

periodic job production analysis, test job throughput,

device utilization, etc. It is very useful in special

studies to monitor long-term availability of particular

devices, e.g., it was used to pinpoint a particular tape

drive that, over an extended period, had a higher than

normal rate of failures.

GIS is also useful in experimenting with various

computer costing methods. A variety of computer

costing methodologies can be manipulated to determine

the effect on key production applications.

It is difficult to over emphasize the importance of

an ability for programmers and non-programmers to

have a file management/query language capability

for summarization and manipulation of production

and performance data. The ability to analyze iter-

atively relevant data on specific problems is of equal

importance to more comprehensive, complex formulae

which present overall indicators. That conclusion may

not be as true in a non-commercial environment. The

need here is for sufficient capacity to cope with

hourly deadlines; changing weekly, monthly and sea-

sonal workloads; vagaries of weather; hardware prob-

lems; communication difficulties; and power outages.

Added to above is the capability to invoke such

facilities in an on-line mode. The ability to input

queries via terminal and receive output is particularly

useful in critical production and performance prob-

lems. It also accelerates the iterative process described

above. In our installation, the capability is provided

by high speed remote job entry, by query capability

inherent in the on-line system, and by internal time

sharing. Interactive compilers supplement the time

sharing facility.

The widely appreciated phenomena of the difficulty

of assessing capacity in third generation equipment

is, of course, felt in this bank. It impacts planning for

new equipment, configuration of existing equipment,

creation of production schedules, benchmark com-

parisons of existing and proposed equipment, etc.

It becomes a particular problem in determining capac-

ity for use in any computer costing scheme and,

particularly, in a system based on full cost recovery.

We have found no completely scientific or even

reasonably precise approach to estimate a full capacity

base. The changing mix of jobs, job priorities, equip-

ment, and software all contribute to the difficulty.

Even if we were able to determine current capacity.

there is the difficulty of assessing capacity for a base

period such as a year.

An example will serve to highlight the difficulty.

An important element of a component costing scheme

is main memory. In an MVT system, there is great

difficulty in forecasting the effectiveness of the oper-

ating system in managing main storage for both

system and applications. Core fragmentation is a

continuing problem which changes in magnitude con-

tinually as job mixes and priorities vary. Further,

during any one year the economics of main storage

are changing.

Further, during 1972 any one application could

have run on IBM supplied Model 65 main storage, on

leased Model 65 main storage from two sources at two

different prices, on extended core from Ampex on a

Model 50 or on a Model 65 (at two different prices

and two different speeds), on a Model 50 in IBM
supplied main storage, or on a Model 195. Through-

out the year, the mix varied from month to month.

Much the same story could be told for processors,

tapes, disks, channels, etc.

We realize that, in spite of those difficulties, it

is theoretically possible, given sufficient expertise and

time, to arrive at a reasonably precise estimate of

capacity which represents the entire year. However,

the resources needed to accomplish that are consider-

able and there are invariably many other demands on

the talent required to accomplish such a total or,

more precisely, to continue accomplishing it at fre-

quent intervals. The dilemma is that without such

a base of comparison, precise and detailed actual

measurements of utilization are of limited value.

Thus we have convinced ourselves, or rationalized

if you prefer, that a more reasonable approach is one

based on brief historical measurements of production

and utilization, on manufacturer benchmarks and other

estimates, and on our own benchmark data. Such

consideration of relatively limited quantitative data

is mixed liberally with "educated" guesses of reason-

able capacity and, at times, supplemented with exami-

nation of astrological phenomena.

With the reintroduction of virtual storage and

virtual machines by IBM, we expect that our difficulties

in this regard will increase substantially. o recognize

that, initially, our system will be in a relatively

untuned state. Just as with our present software,

extensive resources will be devoted to tuning hard-

ware, control software, and applications. The tuning
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process will be a continuing one as hardware, releases,

measurement capability and tuning capability change.

The point is that as technology provides improved

performance and economics, there will not necessarily

be a concomitant increase in our capability to assess

capacity and measure performance accurately in very

large multi-programming and multi-processing instal-

lations. There are many indications that the opposite

is true from both a theoretical and a practical point

of view.

The resources devoted to system measurement and

tuning at Mellon Bank are estimated to be the

equivalent of two full-time personnel. However, it is

not the full-time task of any one individual. In an

effort to represent the interests of the many organiza-

tional elements concerned with performance priori-

ties, and to coordinate the many special skills involved,

a special tuning committee has been formed. It is

chaired by the head of the Systems Programming

Section and has membership from Data Processing

Operations and Teleprocessing Coordination Units and

from Application Programming on-line systems, func-

tional systems, and training sections. The group meets

weekly and based on specific management or self-

imposed projects, assigns measurement tasks to indi-

vidual members, analyzes results, and makes recom-

mendations for control software, application program,

and hardware changes.

On an almost daily basis, we are reminded that

there is another aspect of computer performance

evaluation which is implied or affected by quantified

performance evaluation only in the most indirect

sense. This is in the satisfaction of the end user.

At first glance, this appears to be too obvious to

mention. Yet we are discovering that user satisfaction

has an increasing number of facets which are taking

on ever more complex interrelationships.

It is obvious that unless the automated application

produces the required reports in the time required,

a basic user dissatisfaction will result. However, even

where the user needs are perfectly understood by the

analyst and programmers, some compromises are

almost certain to result in the form, timeliness,

accuracy, etc., of the final data. This underlying dis-

content has and will continue to lead to greatly

expanded memory, disk, line, and terminal facilities,

to more powerful and flexible processors, and to

greatly expanded control and application software.

Thus, we believe one of the most important con-

tributors to complexities in hardware and software

design, and, consequently, to its measurement has

been the pressure, real or imagined, by users upon

EDP practitioners and EDP designers for ever more
complex compilers, utilities, teleprocessing controllers,

data base managers, and query languages. As the

per execution and per byte costs have declined and

the human costs have risen, we have become more

and more willing to accept macros, modules, and even

larger elements of software which are far less efficient

and more generalized than lower level languages.

Those pressures, have, in turn, led to increasing

investments by EDP suppliers and independent soft-

ware houses in ever more effective and complex offer-

ings which frequently are even more voracious in

their consumption of system resources. This phenom-

enon is well recognized and needs no further elabo-

ration. What must be understood, however, is the

effect of pressure by top management and end users

alike for effective, useful, and available systems in

addition to pressures for economy in EDP costs. It

is our observation that in progressive and reasonably

successful enterprises, the former pressures are often

greater and more frequently expressed than the latter,

economic pressures.

Once an enterprise begins to depend on an on-line

system for its daily operations, the pressures that

develop when that system falters are far more con-

stant, powerful, and multi-directional than those from

the comptroller and top management. It is for those

reasons that we have given much more attention to

computer system performance evaluation that is

directed toward availability and effectiveness rather

than toward efficiency.

The creation and implementation of file manage-

ment, query languages, time sharing, data base man-

agement, data entry, and on-line file inquiry systems

have consumed a great deal of our software develop-

ment resources for many years. Today, those systems

and control system support of them consume more

main storage space and CPU cycles than do standard

batch application. Such systems, because they impact

final users so quickly and directly, are usually more

effective in producing user dissatisfaction and com-

plaint than batch systems where hardware and software

delays may be more recoverable.

In our view, the ability of inquiry, time sharing,

file management, query, and similar systems to make

data more directly available to final users is a key

to their justification of such systems. If, with little

training and experience, the final user can interatively
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retrieve, peruse, summarize, and calculate basic data

elements, then we can justify usage "wastage" of

system resources at a level which would have horrified

EDP practitioners a few years ago.

In recent years, we have frequently made that trade-

off in the interests of reduced system development

time, reduced human costs, increased final user par-

ticipation, and increased on-line and even real-time

capability. We recognize the difference between mak-

ing such a choice and being aware of the costs and

with making the choice with little appreciation of

the wastage that can result. We quickly admit to a

lack of precision in such matters. We have made

some attempts at quantifying the developmental and

operational costs of, for example, an application writ-

ten in COBOL versus the same one written in a high

level query language. We do attempt to determine

the costs of an application in batch versus on-line,

of data entry versus card batch, or remote job entry

versus local batch, etc. Nevertheless, we are not pre-

cisely aware in every case of the extra cost in system

usage of user-satisfying but costly facilities nor are

we always sure that such "advanced" developments

are using resources as efficiently as possible.

The point we are making is we believe that many

traditional schemes of computer system measurement

and evaluation may indeed be missing the point. Such

systems, we suspect, concentrate on the micro aspects

of measurement and miss the macro impact of the

effectiveness, satisfaction, and availability of the system

to the final user. Such approaches can lead to over

concentration on bits and bytes which results in

comparatively well-tuned systems that do not provide

the facilities and capabilities demanded by the firm's

competitive situation. Ideally, we should be both penny

wise and pound wise but, unfortunately, our cajjahili-

ties and tools to be pound wise in a precise fashion

are very limited.

In summary, Mellon Bank has acquired or developed

a series of software measurement tools which gather

statistics related to job production and system utiliza-

tion. We have found that no one software tool meets

all our needs and, in addition, resort to occasional use

of a hardware probe. Of particular benefit to us have

been the data reduction schemes, file managers, and

query languages that enable us to reduce, summarize,

search, and calculate the measurement data. Our con-

tinuing aim has been to use the same body of basic

measurement data for job production statistics, system

tuning data, and user costing schemes. We are con-

cerned about our basic inability to assess accurately

our total capacity in a rapidly changing hardware and

software environment. We attempt via benchmarks

and the like, to make such assessments, but freely

supplement such data with horseback guesses. We are

also mindful of the increasing need as well as the

capability to make more accurate, timely, usable,

and meaningful data immediately available to the

final user. Such need and capability, we suspect, is

increasingly our raison d'etre, yet we recognize that,

at least today, such systems in a traditional sense are

wasteful of system resources on a massive scale.

And, finally, we recognize how poor is our capability

and opportunity to measure the performance of these

splendid systems in which we take so much pride.
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The computer has grown in its ability to provide information processing support to the automo-

bile industry. The budget for computers and related items has also grown, both in magnitude and

as a percentage of the expense of sales. Computer Performance Evaluation (CPE) has begun

to offer help in increasing the productivity of EDP equipment. The auto industry has recognized

the need for CPE and engages in CPE programs with vigor. The general CPE consciousness

taking hold within the EDP community promises benefits to the auto industry, which currently

is involved with generating its own CPE talent and techniques.

This paper discusses the CPE needs of the automobile industry with specific references to

General Motors where the author was previously involved in CPE activities.

Key words: Computer performance evaluation (CPE); CPE policy; CPE education; CPE imagi-

nation; CPE instrumentation; EDP productivity.

1. Introduction

In 1972, General Motors produced 7,800,000 cars

and trucks worldwide. The company has significant

computer hardware at 38 locations. Its related com-

puter hardware costs have been estimated at over

$50 million per year, or over $6 per vehicle. Compared

to other overall General Motors financial performance

figures in 1972, computer hardware costs were thus

over 0.2 percent of total sales, over 2.6 percent of net

profits, and over 18 cents per share of common stock.

Thus Computer Performance Evaluation (CPE) activi-

ties can have a significant leverage on overall cor-

porate financial performance, if they can reduce the

overall hardware expenditure without adversely affect-

ing productivity.

Corporate management recognized this in setting

up a corporate-level Machine Efficiency Project in

1970 to develop and apply CPE techniques. However,

widespread CPE application has been slow to come

because of the autonomy of the various GM Divisions;

the lines of authority above a Division and above the

* The views presented in ttiis paper are those of the author, based on his
experience in the automobile industry, and do not necessarily reflect the views
of the General Motors Corporation.

Machine Efficiency Project intersect at the Chairman

of the Board. The only corporate management check-

point on the use of CPE techniques is during the

approval cycle for new hardware procurements, and

it is at this point that CPE activities make the most

headway in many of the Divisions. The situation

appears to be similar in other large United States auto-

motive corporations, and often for other large multi-

division industries.

Despite its size and the generally conservative public

posture of the corporation. General Motors is far

from being staid and inflexible. EDP, for instance, is

the subject of intensive study and in 1972 bore little

resemblance to 1970 EDP. Predictably, a number of

the installations have grown in computing power. At

the same time, some locations have begun to pool

their resources into consolidated centers, while other

installations are absorbing workload formerly pro-

cessed by smaller machines in other parts of tlie

corporation.

This paper summarizes the types of decisions made

within GM on computer hardware and the related per-

formance criteria considered most important for com-

puter systems. It then discusses the major CPE needs
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of GM and similar companies; these tend to be in

the areas of policy, education, imagination, and

instrumentation.

2. Decision Categories

In the auto industry, management is concerned

with four classes of decisions. These involve the

critical areas of (1) capabilities, (2) capacity, (3)

control, and (4) cost.

Capabilities—What capabilities shall I provide?

What compilers, utilities, technical support, hardware,

etc. will facilitate attainment of my organization's

objectives?

Capacity—How much of each capability should I

provide?

Control—How do I police the system, the coders,

the users, in order to insure meeting organizational

objectives, given the information systems workload,

the hardware-software system, and the people involved

at any moment in time?

Cost—What is the most cost-effective approach to

meeting the objectives of the computer department?

3. Performance Factors

The following discussion is presented from the point

of view of those installations already in existence.

When data on utilization of capabilities (such as

compilers) are collected, conditioned, reduced, and

summarized, management is in a position to know

what use is being made of capabilities which are

currently provided. Such data can also be instructive

in projecting utilization of other capabilities which

may be in the planning stage. Further, simple displays

of such data over time puts management in a position

to respond to trends which may be developing in

demand for given capabilities.

Similarly, reports summarizing utilization of the

computer system and its various subsystems can give

management a feel for aggregate demand for re-

sources. Since averages and summaries tend to mask

certain other important attributes of utilization, man-

agement will find distributions showing utilization of

each component to be helpful. In fact, without such

distributions many important conclusions and deci-

sions may be ill founded. This is not to say that

distributions are needed in all cases. Averages and

summaries also provide information which is vital

to effective control of resource utilization. Often two

or more dissimilar subsystems may provide similar

service to users. Users may have a preference for

one subsystem and thus provide heavy demands on

that resource while the other resource goes under-

utilized. Having hard data on such a situation, man-

agement is in a position to take appropriate action.

Where such disproportionate utilizations are deemed

good, management may want to procure additional

capacity in the one area while decreasing capacity

of the other resource. On the other hand, management

may wish to take steps to encourage more balanced

utilization of each resource. In such a case, the billing

system is a convenient mechanism for implementing

this kind of management decision. By adjusting the

differential in cost of the resources to users, manage-

ment encourages greater utilization of the underutilized

component and to some extent penalizes user decisions

to overutilize the other resource.

Part of the effective management of data processing

is keeping costs in line. Once-simple decisions have

become complicated as the result of the proliferation

of products in the marketplace which can supply the

information processing requirements of the auto in-

dustry. IBM, Honeywell, Control Data, Burroughs, and

Univac represent the manufacturers of medium-to-

large computer systems. Varian, Digital Equipment,

Texas Instruments, and Data General are illustrative

of the many manufacturers of small and special-

purpose computing systems. The manufacturers of

components which take the same (or equivalent)

approach to a given problem are numerous, not to

mention vendors who compete on the basis of plug-

compatible equipment. As superior technology becomes

less dominant in the decision to buy hardware, vendors

are competing more in the areas of cost and vendor

support. In order to make decisions which minimize

total cost to the organization, management needs not

only cost data, but also performance data on the

various offerings which propose to satisfy given infor-

mation system processing requirements.

There are several sources of performance data, each

of which may be more appropriate for certain classes

of decisions than others. First of all, the vendors supply

specifications which describe the raw performance

attributes of their components and systems. In addi-

tion, your technical staff may collect performance data

under live or representative operating conditions.

You may prefer in some instances to simulate the

interaction of your requirements with the ability of
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the proposed system to deliver. Or you may want

to inquire of other installations who have investigated

performance of a given product or product class,

given the large investment which may be required to

keep abreast of all developments in the data pro-

cessing industry. Whatever route is chosen, manage-

ment is still left with the analysis question. Are the

advantages/disadvantages of one system enough to

justify the cost differential? Or vice versa?

Whereas distributions may be required in order to

know the impact of utilization and demand for certain

resources, gross measures are adequate for certain

other needs. Average CPU time and average I/O

counts per job step, for example, are good manage-

ment indicators. Trends in each of these areas have

implications for management decisions. Where remote

users are concerned, for example, management needs

to know levels and trends in demand for each remote

terminal and for each user of a shared remote station.

Without such data management must make decisions

blindly regarding deployment of remote terminals.

Given the fact that the automobile industry has a

very substantial inventory of computer hardware,

software, and applications in use at this time, current

efforts are to a very great extent determined by present

components. However, the same questions are impor-

tant across vendor lines. Some vendors provide account-

ing systems and monitors to collect performance

data. To this extent, one vendor's systems may be

superior to another's. On the other hand, since the

ability to implement monitors and accounting routines

has been demonstrated for virtually every major

system, the existence of such tools may not be an

overriding consideration in choosing a system. Vital

performance areas such as response time and turn-

around time retain their mandatory time boundaries

whether a given user is dealing with a 360/67 or

with some other piece of hardware. On the other hand,

it is quite evident that different users (and different

uses) may have widely differing performance require-

ments. Some analysis is required (be it ever so little)

in order to ascertain the boundaries for each user

application.

4. Needs of the Automobile Industry

CPE needs of the auto industry are similar to those

of other users. CPE needs fall into four categories:

policy, education, imagination, and instrumentation.

4.1. Policy

In general, corporate, middle, and installation man-

agements neither request nor receive reports which

measure the productivity of computer systems in the

auto industry. There are some notable exceptions, of

course. In the main, however, performance is regarded

as a binary question: Was the work delivered on

time, or was it not? As long as the work gels done

on schedule, management has little incentive to be

concerned with performance. As each division of

General Motors, for example, is highly autonomous,

the Corporate Information Systems and Communica-

tions Activity group is not in a position to control

the divisions relative to performance measurement.

A director of data processing operates so as to mini-

mize his maximum regret. The penalty for carrying

excess, underutilized capacity is less severe than the

penalty for being late with crucial reports. There is

apparently a fairly widespread assumption that the

penalty is severe for not meeting schedules for ALL
reports. Of course, this is true to some extent. But

few, if any, managers have conducted a systematic

investigation to assess the costs incurred when indi-

vidual reports are delivered some minutes or hours

after they are normally delivered.

A Comptroller's Circular Letter was a major step

forward in the communications of General Motor's

desire to increase the productivity of its EDP invest-

ment. In addition, the Corporate Information Systems

group involved the divisions in writing performance

measurement and evaluation guidelines into the Cor-

porate Data Processing Practices and Procedures

manual.

4.2. Education

Most of General Motors' installations are still in

the process of developing resident performance an-

alysts—a core of individuals who plan and implement

aggressive, on-going, productive performance improve-

ment projects within their installations. The rate at

which this development is taking place leads one to

be concerned that the turnover rate exceeds the rate

of development, hence defeating the project.

Furthermore, few computer science curricula pro-

vide students with the opportunity to concentrate in

the area of computer performance measurement and

evaluation. We addressed this lack by 1) conducting
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a performance evaluation seminar and 2) organizing

a Machine Efficiency Committee which met bimonthly

to exchange information relative to progress in the

installations. Task forces worked on projects con-

ceived by the committee.

For several years now, UCLA has offered short

courses which emphasize the importance of CPE,

serving as somewhat of a leader to other major uni-

versities. Examination of recent college schedules

reveals that other universities have begun to add CPE
courses to their catalogs. The University of Michigan

now offers a fairly substantial number of courses in

performance analysis. The University of Washington,

Brigham Young University, the University of Texas

at Austin, and others are offering courses in this

area, too.

Professional associations such as SHARE and

GUIDE have very active projects which deal with

performance evaluation. Other associations such as

ACM and CUBE have begun to organize similar

groups within their respective organizations. In fact,

the impetus has now carried overseas, receiving atten-

tion from the British Computer Society and the IBM
users' group SEAS. The National Computer Conference

(and its precursors) also encourages work in CPE.

Some computer manufacturers have issued state-

ments which indicate their intention to allocate more

resources toward gaining a better understanding of

the performance of their systems. In addition, vendors

of measurement tools provide a great deal of training

in evaluation techniques in the interest of creating

and exploiting a market for their products.

An interim solution to the pressing need for educa-

tion and training may be the establishment of con-

tinuing "institutes" in performance evaluation within

the larger auto companies. Either the Corporate data

processing staff or the General Motors Institute could

provide the facilities and the required instruction

within GM. Dr. Thomas E. Bell has conjectured that

it takes approximately 24 months to train a perfor-

mance analyst. Estimates from other sources are even

higher. It becomes imperative, therefore, that some

action be taken without further delay.

Perhaps equally important, if not more so, in the

area of education is the cultural lag which exists

in top and middle managements regarding perfor-

mance evaluation. The computer has been a real blessing

in the control of the large plants and divisions of the

far-flung operation of the automobile industry. The

computer is responsible for such large cost reductions,

cost avoidances, and new opportunities for revenue

that management is reluctant to question the efficiency

of the "goose that laid the golden egg." Even when
management casually opens the subject, computer tech-

nicians are generally prepared to illustrate how effec-

tive a tool the computer has been to the business.

Managements will have to recognize the merits of a

performance evaluation activity in their shops before

the gains which some companies report will be realized

in the automobile industry.

In addition, many EDP professionals have absolutely

no performance consciousness. Until this obstacle is

overcome, little progress is likely to be made in this

vital area. Of the many fine data processing installa-

tions within General Motors, two stood out as early

leaders in performance measurement and evaluation.

One shop emphasized configuration and operating

system tuning and monitored its system daily. In

this same shop, however, the COBOL programmers

noted that their applications tended to be I/O limited.

The program monitor reminded them of this fact

without presenting any solutions. On the other hand,

the FORTRAN programmers were not part of the

computer organization and—because of fairly liberal

budget allowances for computation—were not moti-

vated to seek to generate highly efficient programs

nor to perturb currently operating programs.

The other highly aggressive shop had done a better

job of selling performance evaluation to its manage-

ment and had a more balanced program of utilizing

configuration monitors, program monitors, accounting

data, and other tools. A great deal of progress has

been made over the past year. A number of managers

and performance analysts have accepted transfers with-

in General Motors and have begun to instill an interest

in performance evaluation in their new organizations.

4.3. Imagination

The discipline of computer performance measure-

ment and evaluation is still somewhat fledgling. In

addition, techniques are not as readily transferable
?

as some might wish for them to be. Consequently, it
'

is necessary for each performance analyst to utilize,

not only his skills relative to the computer, but also
j

his creativity in order to identify and take advantage

of opportunities which may be installation unique.



4.4. Instrumentation

From the homespun routines of the self-starting

programmer to the half duplex system which monitors

its other half, computer performance measurement

and evaluation has made considerable progress, espe-

cially in the last five years. Yet, today there still is

no comprehensive, integrated package which will

supply the answers needed to maximize computer

system performance. Packages such as PPE and CUE
are complementary; but correlating the outputs of

one with the other is a fairly major exercise.

A comprehensive package might consume an in-

ordinate amount of scarce resources when used. But

this is true only when packages are developed in the

conventional manner. Retrofitting is not known to be

an especially efficient engineering technique. Per-

formance monitors are essentially retrofits. What is

needed is an operating system with built-in software

probes which can be activated quickly and easily and

which consume few scarce system resources when in

operation.

IBM recently unveiled her new operating system

for virtual System/370 with no plans for built-in

performance measurement beyond that available on

System/360. (There is reason to believe, however,

that not all the capabilities of the hardware and its

measurement subsystems have been announced to the

public yet.) Some vendors of performance measuring

software have announced that their products will be

upgraded to deal with the new operating system. At

best we may expect better retrofits than was true of

first generation software monitors now that the moni-

tor developers have gained some experience.

Computer performance evaluation has indicated a

real need, not just for performance analysis tools,

but for efficient vendor-supplied software as well.

Utilizing the available techniques, General Motors, in

various locations, tuned the vendor-supplied sort and

spool writers. Other locations, in responding to urgent

screams from on-line users, were able to uncover

critical areas of inefficiency in vendor-supplied on-line

support packages. All this has highlighted the need

for more efficient vendor-supplied software. In the

interim, alternative sources have been selected for

some utilities. Other replacement utilities are also

being evaluated.

Another area in which there is a real scarcity of

tools and expertise is the real-time, on-line telepro-

cessing applications area. There is a rather distinct

trend toward utilizing and relying on more and more

on-line applications in critical decision-making and

resource-utilization, market-responding areas of the

automobile business. Time is very precious to the

auto companies as they strive and excel in world

markets. Products specifically designed to monitor

and evaluate teleprocessing applications are typically

retrofitted, and, therefore, inefficient in their inter-

faces with the computer system and its workload.

At General Motors we saw a rather distinct need

for a reduction in the manual intervention required to

optimize the hardware and software systems and the

application programs. Several products have begun

to emerge which offer promise in this area. CAPEX
automated the optimization of COBOL object code.

Boole and Babbage attempted to automate the tuning

of the operating system.

Hardware monitors are excellent tools to utilize in

evaluating a computer system. The major drawback

to the use of hardware monitors is the high probability

that something will go wrong, particularly in selecting

and connecting probes to capture desired signals.

Several attempts have been made to facilitate verifying

that probe points are properly selected and connected.

Some practitioners utilize an IBM Field Engineer

program to exercise the system in a predictable fash-

ion, during which the connections can be verified.

Other users have written their own exercisers. Boole

and Babbage suggested the permanent connection of

their probes to commonly used pins and the labeling

of the connections so that subsequent monitoring

sessions would not require reverification of the con-

nections in great detail. The Computer Measurement

and Evaluation Project of SHARE has suggested that

mainframe manufacturers provide a standardized hub

for easy access to the signals most often monitored.

IBM provides a limited hub on the 360/85 and the

370/165.

At General Motors and at many other places, there

exists a need for continuous monitoring of the com-

puter system. Traditional monitoring studies have

endeavored to select representative periods during

which the system would be monitored. Modifications

made on the basis of extrapolations from such sessions

have a high probability of being effective for total

system efficiency even though some individual jobs

may suffer. Monitors have tended to produce a single

figure which they have offered as being true in an

average sense for the period monitored. Some dis-

advantages of this approach include the fact that
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averages may conceal important information regard-

ing the distribution of two or more populations and

their interactions across time. Boole and Babbage

attempted to answer this need with a fairly inexpen-

sive monitor. The University of Texas incorporated

software probes (i.e., hooks) into their CDC 6600-

6400 operating system. Tesdata Corporation is now

offering a tiny, very inexpensive hardware monitor.

Because of its size. General Motors is in a position

to develop its own operating system. There is a need

for an in-house operating system which is tailored to

the purpose for every company which buys a com-

puter. If CM builds its own OS, it can build out these

inefficiencies and build in aids such as software probes.

The GM/OS would be self-regulating, reviewing de-

mands on an hourly basis to determine, for exam-

ple whether the resident SVC list should be modified

dynamically, or the RAM, or BLDL, or the size of

SQS, or the size of the supervisor itself. Dynamic

modifications would take place without operator or

programmer intervention. So far, corporate manage-

ment has declined to apply resources in this direction.

The valid business reason is that General Motors is

not in the software business. It is felt that managerial

and technical expertise can be used to bring in greater

returns in the mainstream of the business.

5. Summary

The computer has grown in its ability to provide

information processing support to the auto industry.

The budget for computers and related items has also

grown, both in magnitude and as a percentage of the

expense of sales. Computer performance evaluation

(CPE) has begun to offer help in increasing the

productivity of EDP equipment. General Motors has

recognized the need for CPE and encourages the auto-

nomous divisions to pursue CPE programs with

vigor. Despite early start-up problems, a CPE-con-

sciousness is taking hold within the EDP community

and promises results over the near term. While several

options remain open to the auto industry, it is gratify-

ing to see the increased formal preparation being

offered in computer science curricula in the leading

universities. This increased awareness will provide

CPE a prominent position in the attitude with which

EDP professionals approach their work, reducing the

need for CPE to be a separate, unpopular activity.
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1. Introduction

The unique problems of performance evaluation in

a university computer facility arise because of the

enormous diversity of usage patterns and resource

demand patterns with which a single facility must cope.

The university is typically a microcosm of the com-

mercial and professional world. The types of com-

puting which are done at universities include all of

the traditional categories: 1) very heavy research

computing, which demands enormous consumption of

resources by a single job; 2) very high volume batch

(low resource consumption per job) utilization from

student users in computer suppleinented instruction

and computer science courses; 3) large interactive

usage resulting from research which again typically

consumes substantial quantities of resources per job;

4) high volume remote terminal interactive usage

from students in such functions as computer-assisted

instruction. This is essentially transaction oriented

usage where rapid response is essential; 5) real-time

experiment control. This is usually a fairly minor

function in universities, however, except with special

purpose dedicated systems; 6) information retrieval

and analysis on large data bases. The most significant

measures of performance are the user satisfaction

variables in a weighted average over all classes of

usage. Interference of the sub-systems one with another

in competition for resources, particularly memory

resources, is often a limiting performance factor.

A special problem with universities is that the user

population tends to be highly transient with an enor-

mously skewed distribution of competence. The dis-

tribution typically has a median at a very low value.

These factors lead to certain specific effects upon both

the external management policies and the internal

management policies of the computer system. Clearly,

the internal management must be sufficiently flexible

so as to rationalize conflicting and competing demands

arising from different patterns of resource utilization

by different categories of work. The system itself must

be sufficiently simple in operation that even an unin-

formed and ignorant user can use its resources rea-

sonably efficiently for a simple task.

Another characterization is that university com-

puter centers typically have fluctuating patterns of
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demand. Typically, there will be a daily cycle (which

is common in commercial installations as well) but

also a cycle extending over several months represent-

ing semester or quarter terminations.

In an environment as diverse as this a key element

of performance evaluation is the characterization of

the workload. Secondly, a high premium must be

placed upon adaptability and flexibility of the man-

agement algorithms. This is true not only because of

the fluctuation of demand on the regular and known

cycles and the diversity of usage, but because uni-

versities are seldom in a position to reflect changing

circumstances by capital expenditure and must instead

change operating policies of the system in order to

cope with changing environments.

Subsystem performance for university computer

facilities can normally be subdivided into the service

given the diff"erent classes of users, the heavy research

users, the student batch users, interactive service, etc.

It is a balanced and adequate performance in these

subsystems which is basically the most important

criterion in universities. Total usage patterns are

indeed very significant. Reaction to performance mea-

sures is usually made in response to an imbalance

which reflects itself in poor performance by one or

more of the subsystems.

Absolute system performance is often an extremely

important element in university computer systems since

it is generally the case that there is a paucity of

resources to be spread over an enormity of demands.

Only by extremely efficient utilization of the total

system, can it be hoped to spread the resources ade-

quately to cope with the diversity of needs.

The discussion of performance factors which fol-

lows is not precisely tailored to the suggested cate-

gories of the other sessions but caters to their

existence as far as was reasonably possible.

2. End-User Satisfaction

The evaluation and importance of end-user satis-

faction in a university environment is complicated by

the complexity of that environment, just as are other

measures. We can, for the purposes of present dis-

cussion, divide the usage into four functional cate-

gories. There is research batch computing, which is

characterized by very large programs consuming large

quantities of resources, either CPU, random access

memory, or I/O channel transfer time, or all three.

There is high volume batch associated generally with

instructional purposes. These usually arise from sched-

uled classes which assign problems to be solved on

the computer. These jobs are usuafly characterized

by each individual unit being relatively modest con-

sumers of resources, but the aggregate will frequently

amount to the numerical majority of programs run on

the system. Very often these programs will make use

to a very high extent of standard system software

components, and involve relatively little execution of

user written code, perhaps 5 percent or less.

The interactive usage too can usually be categorized

into two factors. There will be instructional interactive

usage which will very often be of the form of com-

puter-assisted instruction, tutorials, problem solving

sessions from terminals, etc.; the resources consump-

tion per unit of this type of program tends to be quite

small and its usage of systems software tends to be

concentrated around a few specialized components.

Research interactive computing is of an entirely dif-

ferent nature. It tends to be programs which have very

large field length requirements, very often manipulates

very large data bases, and may, although not neces-

sarily, require considerable CPU service.

Clearly, the measures of service for each of these

groups is entirely different. The large scale research

user is primarily interested in the amount of resources

dedicated to his project over a period like a day, a

week, or a month. The urgency for deadlines and the

interest in turn-around time arises here primarily in

the debugging phase or when graduate students must

finish theses and dissertations, or when papers must

be prepared to meet deadlines (as is usually the case).

To the high volume small batch user the most impor-

tant criterion by far is very rapid turn-around time.

It is often the case in universities that there are sta-

tions available where students can submit their jobs

and (hopefully) wait for them to be returned without

undertaking other activities, i.e., a laboratory environ-

ment where the computer can be regarded as an

instrument upon which results are to be demonstrated.

Turn-around to the order of 5 to 15 minutes is very

significant for this type of usage. For instructional

interactive work, by far the highest criterion is sta-

bility. Very often the student is assigned access to a

terminal or has available the usage of a terminal

over a relatively restricted period. If the system is

not stable and does not provide service at approxi-
i

mately the expected level, he will have difficulty main-

taining the necessary work pace. Therefore, stability
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is the most important element with response time of

a fairly adequate level, necessary although this is not

usually a critical factor. To the research interactive

user, typically response time is the most important

variable. This also tends to be the measure which has

the most fluctuation. When a relatively small number

of this class of jobs is occupying the resources of the

machine, typically they will receive good response

time. When, however, they are competing with a large

number of student users, response time suffers and

they typically tend to get off the system or to complain

vociferously.

Each group in the university must be prepared to

tolerate variations in the quality of service available

to it. There are cyclic patterns of demand where stu-

dents in the instructional program tend to have work

clustering upon them toward the end of the semester

with term projects due, back assignments incomplete

which must be terminated by the semester, etc. Typi-

cally then the high-volume small-job batch load rises

to peak periods as the semester nears an end. Con-

sequently the research user finds his service deteriorat-

ing and his turn-around time becoming markedly

poor.

The interactive usage, on the other hand, tends to

have a more daily cycle. In the early mornings, typi-

cally one will find research users dominating the

resource consumption on the interactive system. In

midday it is typically the case that a large number

of classes will be scheduled and many terminals will

be occupied by students. In this circumstance one sees

the workload changing dramatically in character to

where performance is dominated by the existence and

demands of a large number of students operating

from terminals.

The factor which must be kept in mind is that each

group of users is capable of swamping and dominating

the system during its peak periods. The management

factors which affect the performance of each must be

such as to assure each group a reasonable share of

resources, while at the same time catering to the

inevitable swings and fluctuations in cycles and

demands which result from the structured pattern of

a university calendar.

3. Resource Utilization by Classification

and by Software System

A two-way classification of resource utilization is

the key information in managing the performance of

a university computer installation. By this I mean, the

resource utilization characteristics in terms of CPU
utilization, I/O channel utilization, remote storage

utilization, loading functions, etc., for major system

components and for user programs. The utilization

of the major system components must then be classified

according to the definable user groups, for example,

the large batch, high-volume batch, instructional inter-

active and research interactive as discussed pre-

viously. This type of knowledge enables one to do

effective predictive scheduling and to design algorithms

taking advantage of known resource utilization pat-

terns. It should be clear from the discussion given

earlier that it is necessary to carry out measurements

on a fairly frequent basis, for example, hourly during

the day at least on some measures, in order to cover

the daily cycles, while long-term averages are fre-

quently sufficient for other measures.

It is generally the case that there are distinct soft-

ware system elements associated with operation in each

mode of usage. Typically the high-volume batch user

of resource utilization will be heavily keyed to user

written programs originally coded in FORTRAN (or

COBOL) source. He will probably make heavy use

of specialized utilities such as random access I/O

managers and elements of the mathematical function

library. The resource utilization of such programs is

not immediately characterizable because there will

frequently be a high variability with the programs

alternating from a strongly CPU bound phase to

perhaps a strongly I/O bound phase, etc. The high

volume small batch users, however, typically make

very great utilization of the system's compilers and

utilities executing very little user written code. This

means that their resource utilization characteristics

can be established by examination of the mix of sys-

tem components which they have. It is generally the

case that the system components will have fairly fixed

and discernible patterns. For example, system utilities

such as copying of files from disk to disk, the FOR-

TRAN compiler, the MIX simulator, etc., will have

fairly constant patterns. These patterns may or may

not be favorable in terms of utilization of all-over

system resources. In many cases, however, if their

characteristics are known, their modes of usage and

characteristics can be altered to improve all-over

system performance. A very detailed study of the

usage of system components, compilers, utilities, etc.,

was carried out on the University of Texas system



by D. S. Johnson.^ The research interactive computing

typically executes its own code (or interpreter) and

system utility handlers such as editors, data manage-

ment packages, etc. The instructional interactive usage

typically has its resource consumption dominated

by requests for services to the operating system. Very

often the proportion of resources consumed by the

operating system in the university computer system

will be directly proportional to the number of instruc-

tional interactive users on the system.

Summary: Workload characterization decomposing

the work on the system into software system utilization

and then into functional classification is the key ele-

ment for controlling and balancing the performance

of a university computer facility.

4. Skewed Competence of the Users
and Performance

The enormously skewed degree of competence of

the users of a university system propose a unique

problem. The system must be so designed that ele-

mentary decisions lead to near optimal patterns of

resource utilization. Simple acts of carelessness can

cause severe degradation. For example, consider the

typical high-volume student FORTRAN compilation.

The FORTRAN compiler will occupy perhaps 24K
words of storage, while the student program will

typically occupy only 4K to 8K. Unless the system

automatically reacts to provide field length reduction,

then it may be that a student job will go through the

system occupying for its entire lifetime the field length

determined by the compiler. In a system such as that

represented by the University of Texas at Austin,

where the demand for compilation and execution of

student jobs rises to the level of 5,000 to 6,000 a

day, this represents a very significant utilization

factor.

Other examples come from usage of the interactive

system. The interactive system at the University of

Texas is extremely permissive. It will allow virtually

any system to be invoked from the interactive terminal

^ Johnson, D.S., Ph.D. dissertation, Tlic University of Texas at Austin, 1972.

that can be invoked via the batch system. It is some-

times the case that a student will attempt to use a

program such as the MIX simulator from a terminal.

As is usually the case with most interpreters, the

MIX system has a typically long CPU run-time to

accomplish a relatively small amount of work. When
it is being operated from a terminal, competing with

other interactive programs, this relatively long field

length interpreter will attempt to acquire several

seconds of CPU service at a shot. This results in the

large field length occupied by the ssytem being

swapped in and out of the core a large number of

times to accomplish a small amount of work, thus

performance can be significantly affected by an unin-

formed user invoking improperly a system component

which performs effectively when operated in the

proper environment.

5. Usage of System Subcomponents

The utilization of hardware system subcomponents

is of interest in university environments from two

viewpoints. It is frequently the case that the shifting

workload will move the bottleneck in the system from

one area to another. For example, the research inter-

active users typically run into a bottleneck with

respect to available core storage. The instructional

interactive utilization typically finds as the bottleneck

the swapping capability of the system. Thus competi-

tive and cyclic effects are the most interesting aspects

for the all over performance analysis with respect to

subcomponents utilization.

It is also frequently the case, however, that a

university will have a research program involved

with performance measurement and utilization.

In addition, it is also frequently the case that a

university computer center will have available to it a

group of systems programmers who can be used on

a daily or weekly basis for system-tuning. Thus uni-

versity environments are likely to have more use, on

a day-to-day basis, for information relating to sub-

component performance than are typical industrial

and commercial shops.
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B. GENERAL CPE CONSIDERATIONS

The papers in the previous section took a vertical

slice through the CPE objectives and criteria at several

levels of management concern, as seen by a single

type of organization (banking, automotive industry,

university). The papers in this Section take a hori-

zontal slice, across many types of organizations, at a

single level of management concern, while also attempt-

ing to relate the primary objectives and criteria at

their level to those at neighboring levels.

Gary Carlson's paper discusses CPE objectives and

criteria at the computer subsystem level, primarily

concerned with such items as CPU utilization, I/O
channel overlap, compiler speed, and the like. Morrison

treats the computer system level, primarily concerned

with such items as throughput, response time, and over-

head. Kiviat discusses the end-user subsystem level,

generally concerned with transactions processed per

day or per employee. Nielsen's paper concludes by dis-

cussing objectives and criteria at the end-user system

level (profit, stability, customer satisfaction, etc.), and

their relation to objectives and criteria at the other

levels.
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The goal of performance measurement is to improve the performance of the system and reduce

the cost. The present measurement tools start at the computer subsystem level. A thorough under-

standing of these tools seems to be necessary before we can move beyond the subsystem level into

the overall system, then the computer operations, then the computer management, and hopefully

beyond. Subsystem measurements have a direct impact on equipment configurations in terms of

reduction of presently installed equipment, postponement of planned equipment, selection of

new equipment and comparison between different vendors. How to detect and interpret low and

high device utilization and uneven distributions of activities is covered.

Overhead is explored in several contexts and an attempt to generalize the concept of overhead

is made. Performance comparisons are made between theoretical and practical maximums. Sub-

optimization is discussed, pointing out that some suboptimization can have no bad side effects

and should be achieved.

Variability in present measurement techniques is bothersome and is discussed briefly. A need

for better reporting techniques is indicated.

Key Words: Distribution; low utilization; overhead; suboptimization; subsystem measurement;

variability.

1. Introduction

fhe goal of most computer performance measure-

ment is to improve the performance of the system

and reduce the costs. The particular goals to be

achieved may differ from installation to installation,

but all are seeking for an improvement of performance

at lower cost. The measurement tools that we have

today generally start at the computer subsystem level.

These tools allow us to measure time and events and

to record these measurements on magnetic tape for

further analysis. The use of these tools can help us

to clarify some of the basic measureinents that are

possible in computer systems.

Hopefully, such measurements, if they can become

precise, consistent, and agreed upon, could lead to

new measurement techniques to measure more than

the subsystems in the computer room. We might later

evolve ways to measure the effectiveness of the people

in the computer room, then of the computer operation

within the institution, and perhaps the effectiveness

of the institution within society. This inay seem like

a long way to go, but it seems worthwhile to try to

aim in that direction. The first task for us, then, is

to improve our techniques and understanding of mea-

surement at the computer subsystem level.

2. Impact on Equipment Configuration

Measurement efforts today are often designed to

help us achieve a more optimum configuration of

equipment. This optimization can be achieved in the

following ways:

A. Reduction of presently installed equipment.

B. Postponement of planned equipment.

C. Selection of new equipment.

D. Comparison of different manufaclurcrs equip-

ment.
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All of these techniques have been used to improve

performance and reduce costs. No one should be

exclusively considered since all can be considered at

the same time. The above aspects of computer per-

formance are usually involved in the "tuning" of a

computer system. Tuning may be the first necessary

step along the path to an optimum performing com-

puter installation.

3. Factors to Interpret For Management
Action

It is becoming easier and easier to obtain raw data

from probe points or software programs on events

that occur with a system. The interpretation of this

data has not become appreciably easier over the few

short years of the performance measurement activity.

Often those involved in obtaining the maesurements

are not in a position to directly influence management

decisions that need to be made to make any necessary

changes. We need to develop ways of training com-

petent computer people to become competent inter-

preters of this increasingly large mass of performance

measurement data. We also need to train such people

to not only interpret the data, but also interpret the

data in such a way that those responsible people in

management can understand what corrective action

should be taken. One possible way of looking at this

kind of data is suggested in the following outline:

Low Utilization. Low Utilization is often a seri-

ous problem that is worth attacking directly. Low

utilization can lead to excessive costs though it does

give good performance to the users. Low utilization

has at least three dimensions:

Low device utilization. This is a case where a

given device such as a tape, disk, card reader,

printer, etc., has a very low overall utilization.

This condition can usually be detected with sim-

ple monitoring techniques. Such things as stop

watches or reading meters or just listening to the

sound of the printer can give appropriate clues.

More precise measurements clearly indicate the

low device utilization. Most installations seem to

have an exponential curve for the activity on a

number of similiar devices. For example, if we

have six tapes on a single channel, the first two

tapes have 60 percent of the usage, the next two

have 30 percent and the rest are spread out over

the remaining devices. This seems to hold for tapes

or disks. With this kind of distribution we can

often remove the lowest used device with little

degradation of performance. Similar conditions

are found with channels. If we have multiple chan-

nels on a system, their activity often follows a de-

creasing exponential curve with the implication

being that if you have the possibility of reducing

the channels and thus reducing expense, it should

be seriously considered.

Low CPU activity can be caused by too little

work, or as Schwartz [1] ^ has shown on a B—6700,
too much work. On this virtual memory machine a

high work load causes thrashing, with high I/O

activity resulting in the CPU waiting for I/O. In

one experimental overload the CPU activity

dropped from 90 percent to less than 30 percent!

Low device overlap. In an idealized computer

system one could imagine that every device in the

system would be running concurrently. This would

mean everything running in parallel. In actual

practice we never even come close to this possible

ideal. We have the myth in the industry of over-

lapped operations, but measurement has shown

that fact is often different from myth. The most

startling lack of overlap is the disk seeks on the

2314 type devices. In repeated measurements made

on IBM 360/30's, 40's, 50's, 65's, and 75's a typi-

cal percent of time that there are two or more

seeks in process is around 1 percent! It is possible

that systems could be changed to improve this

overlap and would lead to improved performance.

Another instance of the lack of overlap is in chan-

nels which have tapes on one and disks on another.

Often the overlap between channels is very low,

on the order of 4 to 5 percent. It would seem that

improving the percent of overlap would improve

performance. One trick that seems to work is to

split some tapes and some disks onto each channel.

This does require a two channel switch, but can

pay good dividends.

Low device availability. Low device availability

will force low utilization. Monitoring will indicate

that low utilization is occurring. Operating proce-

dures may be one cause. The scheduling of the

work load can cause apparent peaks of activity

and then lack of availability during these times I

with subsequent periods of enforced idleness.

1 Figures in brackets indicate the literature references at tlie end of this paper.
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Equipment failure also contributes to device un-

availability, but this can easily be monitored and

high failure rates should never be tolerated.

High utilization can often lead to problems of

poor customer service though they may make opera-

tional people feel good in the sense of a high usage

of the equipment. There seem to be at least two

areas of concern here.

Utilization can be artifically high due to the

connecting of asynchronous devices. One of the

most common examples of this is the attachment

of bulk core that opeartes at a slower cycle time

than the CPU to which it is attached. In one mea-

surement of the IBM LCS on a Model 50 where

the LCS cycle time is 8 micro-seconds and the

CPU cycle time is 2 micro-seconds, it was found

that 30 percent of the time was spent with the CPU
in a completely stopped mode waiting for syn-

chronization with the LCS. During this time the

CPU appears to have very high utilization. This

is true whether measured with a vendor supplied

meter or wait light or CPU active pin. Software

monitors also record the artifically high usage

figure. During this state of apparent high usage

the CPU is unable to do productive work and can

cause serious bottlenecks in terms of total through-

put in the system.

Excessively high utilization can appear good

from the operations standpoint but can lead to

abominable service from the user standpoint.

There seems to be an inherent conflict that to

achieve high CPU activity we need to have a rea-

sonably long queue of input jobs. The very fact

of having long input queues means that we will be

giving poor service to the customer. Each installa-

tion must try to achieve that balance of customer

service and equipment utilization that best satisfies

the particular organization's goals.

Uneven distributions of activity often lead to

performance anomalies. These distributions often

are of two forms:

External which seems to be related to the sched-

uling of jobs into the computer system. If little

effort is made to schedule jobs, we often find a

normal poisson curve describing the interval be-

tween arrivals into the system. This always causes

peak activity and consequent overload on the sys-

tem and degradation of service. Scheduling should

be encouraged which will flatten out the distribu-

tion of inter-job arrival times. To the extent that

users can be made aware of this problem and

adopt this as part of their scheduling algorithm

they can achieve better service on the same

equipment.

Internal uneven distributions of activity often

occur. A system that does not have the I/O and

CPU balanced will exhibit this behavior. Activity

may peak on particular channels or particular

devices and in one sense we then chase a peak load

around through the system, with the attendant lack

of parallel processing and lack of throughput. The

internal uneven distributions of activity should be

attacked by careful analysis of concurrent activity

and efforts to adjust the operating system as well

as the hardware to allow more even flow. We need

to have greater consideration of a computer sys-

tem as a continuous flow process similar to a

refinery rather than as a discrete series of inde-

pendent events. In other words, the pipelines al-

lowing information flow should be matched in

diameter of capacity.

Overhead is an often used but rarely defined

term. Management may ask about overhead and we

say it is too high, but we lack good definitions of

what overhead is or should be or could be. One of

the desperate needs in the performance measure-

ment field is clarification of the term overhead or

at least attempts at an operational definition. Over-

head is considered to be those activities that occur

in a system that do not directly contribute to the

achievement of the activity we are trying to do. We
should realize that overhead is not restricted to the

computer room but seems to occur in all activities

of life. In fact, one of the interesting kinds of com-

parisons is that if we assume that the average human

sleeps approximately eight hours and spends ap-

proximately two hours in eating and tending other

biological functions, we find that the average human

spends 10 hours out of every 24 hours in what might

be called overhead functions. This comes out to a

somewhat surprising 42 percent overhead figure for

the average human. Buildings have approximately

40 percent of the interior space consumed in what

might be called overhead functions such as stair-

ways, hallways, storage closets and so on. \^ ith

this thought in mind we should not be too shocked

if there is some overhead that seems to be impos-
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sible to reduce. Overhead in a computer system

can be found in at least four different areas:

The operating system overhead. This is one

which has received many tirades in the literature

but little light. Those of us who were running on

computers before operating systems arrived recall

the great skepticism we had, fearful that the over-

head would be an intolerable expense. I think

many of us also recall the great surprise we had

that in spite of the machine cycles given to the

operating system we got a significantly greater

number of jobs through the system. I recall in the

installation I was working at when the operating

system arrived, we had a three day backlog of

work to be done. When the operating system was

installed, we got caught up by mid-afternoon of

the first day. Virtual systems may be similar. It

would seem that we need serious scientific study

to clarify the general concept of overhead in com-

puter systems; but also to relate this to the larger

general phenomena in any system whether man-

made or living. In an attempt to start on this, we

have teased out one aspect of what might be called

overhead—though part of it is certainly a neces-

sary evil. On an IBM 360/50 running under OS

MVT 20.6, we ran a job stream with SMF, or the

facilities accounting routine, imbedded in the sys-

tem; measured the precise time with a hardware

monitor; and then ran the identical job stream

through with the SMF extracted from the system.

The CPU time was 13 percent less with SMF re-

moved. The elapsed time was 17 percent less with

SMF removed. One might then assume that SMF
as part of an overhead function may be taking as

high as 13 percent of our available cycles. One

needs to then carefully ask the question if this is

the kind of trade-off that you want for your instal-

lation.

Operator overhead can come from operational

inefficiencies where operators do not anticipate the

demands of the system and spend time searching

for tapes, paper, instructions, people, etc. Perfor-

mance measurement can show when the system is

waiting. It could seem that with an ideal situation

the human opeartors could be completely paral-

leled with the computer system. This would mean

that the system would give the operators messages

far enough in advance that they could take what-

ever human action is necessary. Many of the soft-

ware monitors give useful information in terms of

device-not-ready which can indicate some kind

of operator problem, therefore, possible overhead.

Compilers always involve overhead. Since com-

piling is a translation from the human to the

machine language, that operation in itself does not

directly contribute to getting the job done. It is

true that writing in higher level languages can

save time; and, therefore, this kind of overhead

can be useful—though we must realize that this

overhead exists and is measurable. The compiler

programs also need tuning.

Applications programs may have overhead, but

the overhead is generally significantly less than

the items listed above. Applications programs

should be carefully screened for excessive state-

ments or inefficiently coded sections of the pro-

gram. Software program analyzers should be used

on all high usage production programs. Many
COBOL analyzers have been useful in reducing

core used by 20 percent and reducing time by

10 percent to 20 percent.

Performance Comparisons. There is a need for

comparisons of actual performance measurements.

In the early days of performance measurement,

just a few years ago, a person could make a mea-

surement and not know if it was good or bad.

Today many people may think they have a good

measure, but may be only comparing it to other

measurements made in their particular installa-

tion and not realize what other installations have

been able to achieve. Performance comparisons

can be four different kinds:

Theoretical versus Actual. The theoretical pos-

sible performance of a device or system is often

different from the actual. It seems that this problem

can be further broken down into the following

areas:

a. The average actual measure. This would be a

range of measurement that people have found

in different installations, and this would not

say whether these were good or bad, just a

fact of observed measurements. This will be

discussed later.

b. The maximum theoretical possible is 100 per-

cent activity for all devices. 100 percent CPU
busy is both a theoretical and an achievable

figure. One could say theoretically that a
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printer or card reader could be driven at

100 percent activity. This, however, does not

square with reality.

c. The maximum practical possible is often un-

known, but is knowable. A typical example is

with card readers, punches and printers where

it always takes some time to change paper

forms or ribbons or cards. We hope to soon

be reporting the results of a study where we

try to drive some of these devices at the maxi-

mum speed and allow normal operational ser-

vicing and changing of forms, ribbons, etc. It

appears now that the maximum practical pos-

sible activity of EAM type devices is rarely

above 90 percent. It also appears that the

maximum practical activity on a disk channel

may be around 50 percent and on a tape

channel around 40 percent. Accurate measure-

ments of these maximum practical limits could

help us gain a clearer insight into when there

are conflicts within a computer system. If these

maximum practical values were known, it

might also be possible to make a start on more

automatic analysis routines. Such routines

could take performance measurement data and

compare it with these realistic maximums and

by some kind of realistic analysis give sug-

gestions to operational management of the

most pressing problems to be solved. Schwartz

and Wyner [2] have reported a monitor with

built-in threshold values. When CPU activity

exceeds 75 percent for more than 5 minutes, a

record is made.

d. There appears to be some optimum utilization

figure for each particular installation. This

optimum is determined by a large number of

variables which are often in conflict. In our

particular installation in the University, we

pushed the equipment and load to a sustained

90 percent CPU activity on a Model 50. We
found that this led to very poor customer

service in terms of response time and turn-

around time. We then set about trying to

improve the capacity of the system, change

the operational procedures, scheduling, algo-

rithms, etc., to reduce this activity. We now
have an installation goal to come down to

65 percent CPU activity. We feel that this

level of CPU activity will allow us a proper

return on equipment while providing accr-pt-

able service to the customer. Each installation

needs to carefully consider what its optimum
performance level might be.

We need to have available performance com-

parisons with the rated specifications. This applies

to I/O devices. We have measured some installa-

tions where the I/O equipment has been perform-

ing 18 percent below the manufacturer's rated

specification. The vendor should make the equip-

ment perform properly. Another aspect of this

which is now used at Brigham Young University

is in our request for bids. We specify that I/O
equipment must perform to the vendor specifica-

tions as measured by our monitoring equipment,

or the vendor must remove the product at no

penalty to the University. This is a clean area of

performance measurement since the rated specifi-

cations are always available and the measurements

to determine the device's performance are easily

made. The action to be taken is also clear—the

equipment should be tuned to perform up to,

or beyond, the rated specifications.

We should have performance comparisons with

other installations. In an attempt to make a start

on this. Table 1 is enclosed giving the range of

measures that have been observed in various IBM
360 installations. In the table are some hodge-

podge of different kinds including university,

industrial, commercial, etc. These figures are

crude and ambiguous due to various settings.

However, they start to give some range of ex-

pected measures. Tables like this should be refined

and a consistent effort be funded to obtain

coherent, meaningful data. In gathering this infor-

mation from various installations monitored, it

has appeared possible that there may be classes

of installations; for example, university settings

may differ from a credit card installation. These

may differ from a banking installation, these

from an insurance, these from a manufacturing

and so on. It would seem that if such classifica-

tions could be derived from actual data, we could

have ranges of observed measures in, maybe. 8 to

10 kinds of installations. A given installation

could then compare itself to the appropriate com-

parable kind of installation. Such information

might reduce the apparent variability we see in
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measures as we go from one installation to the

next.

The desired level of performance is the last com-

parison that should always be made. Based on the

goals and intent of management, we should be

able to establish the preferred level of activity for

the installation as a whole and then break this

down to the devices. Performance measurement

could then compare how an installation is doing

in relation to these preferred levels of activity. It

can usually be seen that higher levels of activity

lead to poor service and poor customer satisfac-

tion, and activity below these preferred levels

leads to excessive costs. We need studies to help

management set these desired levels in relation

to the other constraints they have.

4. Suboptimization

Suboptimization is another problem in performance

measurement where some people have been fearful of

suboptimizing a part of the system to the detriment

of the overall. It seems that suboptimization can be

broken down into three areas of activity:

A. Suboptimization with no bad side effects. In

this case we should clearly take whatever steps

are necessary to achieve this suboptimization.

In case the reader doubts that such cases could

ever occur, let me mention a few. If we find

that I/O gear is not performing up to its rated

specifications, adjustments must be made. This

can always be done during weekends or slack

times with no serious detriment on the through-

put of the entire system. The benefit is always

good and has never had a negative impact.

Another example is when we have the choice of

having parts of the operating system on disk or

in core. Proper analysis of the relative activity

can determine which should be where. In most

cases, we can reduce the core space with little

increase in disk space and achieve a significant

improvement in system performance. Other

examples may abound and should be put into

the common literature to allow all to achieve

these kinds of performance improvements with-

out requiring extensive measurement activity.

B. Some suboptimization can have some benefits,

but also some detrimental effects. Here we must

be very cautious and take what we can, but be

alert to possible detrimental effects in the overall

system. One example that can occur here is the

question of faster disks. Sometimes we can put

faster disks on a given channel and cause

channel imbalance or channel capacity to be

exceeded which then can cause a system to take

extra cycles to recover. In many cases in this

category of suboptimization, we are not solving

a problem, but merely chasing it around the

system. These should only be considered for

action when we feel we can reasonably chase

the problem out of the system so there are no

detrimental effects at higher levels.

C. Some suboptimized effort can cause major in-

creases in "cost" at other levels. These classes

of events should be avoided. An example that

has already been alluded to is to optimize CPU
activity to achieve a 90 percent to 95 percent

busy, but this results in terrible service to the

customer. In this category we must be very

careful to ask this same kind of question for the

entire computer operation within an organiza-

tion. We must no longer necessarily assume that

anything computer is good.

5. Variability

Variability in measurement has been and continues

to be a troublesome problem. Anyone performing mea-

surements has been frustrated by the apparent insta-

bility of the same measure at different times. It seems

that when we have apparent variability, this should be

taken as a clear indication that we do not understand

the thing that we are measuring. The more clearly

we can define what we are measuring, the more stable

our measurements can become. We should not be dis-

couraged by variability in a computer system and

feel that it is hopeless to try to make sense out of it.

Many fields of science, even in physics, have certain

side effects that are always present in making any

measurement. The variability introduced by these

effects can be partially controlled and those that can-

not, can be analyzed statistically to improve our

understanding of the underlying events and their

causes. In performance measurement we must consider

at least the following areas:

A. Confirming measurements must always be taken.

In too many cases we have seen measurements

that appear stable, become unstable with a
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second measurement. This relates to the stan-

dard scientific procedure of replication of experi-

ments. If we cannot replicate the experiment

and get comparable measurements, we do not

have a science, but only a fairy tale. When we

measure subsystem performance and recommend

action to be taken, we must always have con-

firming measures. To the extent that these mea-

surements can be made with different tools—so

much the better. At least we must be able to

replicate the experiment with the same tool at

different times.

B. We must be careful to separate fact from fiction

when considering what things might be variable.

For years the industry has had the common
impression that peak loads always occur in busi-

ness data processing installations. Assumptions

have been made that the peak load demands on

the equipment are significantly greater than dur-

ing the "normal" processing times. Repeated

measures in a number of installations show that

this is not an overall phenomenon, but that

peak loads in business data processing settings

generally relate only to the I/O devices. Typi-

cally, CPU activity will increase perhaps 3 to

4 percent from normal to peak, where I/O may
double. This most often occurs with printing

devices where the apparent noise and confusion

increase significantly at the "peak load" times.

Variability of measurement could be clearly

tied to the cycle of work to be done and thus

explain and reduce the apparent variability. It is

interesting to note that some measurements are

constant in light or peak load, like lines or cards

per minute.

C. We need to account for variability in more than

a statistical sense. Some common horse sense

questioning of the operational people can tell

you that the chief operator was sick, or the

equipment broke down, or a particular channel

was malfunctioning, or the system's program-

mer made a significant change in device assign-

ments, etc. To understand performance measure-

ment data we need to be like a detective and

try to uncover all related events that could help

us understand what happened.

D. Variability in reported results can be due to

different bases of measurement. An example is

time. We need to share with each other the time

base that we are using since this is so critical

in all computer performance measurement. The

kinds of time that are used are wall clock time,

CPU time as measured by some internal clock

within the CPU, systems meters, and separate

clocks in hardware monitors. It does not seem

practical at this time to try to urge any stan-

dards on anyone, but the least we can do is to

clearly define which time we have used in

expressing our measurements. This can reduce

some of the apparent variability.

6. Need For Better Reporting

Much of the measurement work done today is done

on a semi-crash basis to try to quickly justify the

acquisition of the measurement tool and the jobs of

those who are making the measurements. We find no

fault with this approach, but we should try to encour-

age and provide inducements for people to share the

results of measurements that they have made. In order

to share results, we need to clarify some concepts:

A. We need basic, consistent units of measure that

can have meaning from one installation to

another and from one manufacturer's equipment

to another. We should at least be able to give

operational definitions that are consistent. We
seem to have emerging defacto units of mea-

sure like CPU activity. On many machines this

can now be stated as the time measured by a

hardware monitor while attached to a given pin

at a given location in a given machine. Similarly,

software monitors can say they measure CPU
activity by examining the contents of a timer

register at the beginning and end of the pro-

gram run. Attempts should be made to pull

together measurements that have become defacto

standards and make these available to the com-

puting community.

B. In addition to better reporting, we need to work

towards the concept of exception reporting. This

would mean that after certain measurements

have been made we could tell if these are within

expected ranges or not. These relate to the data

given in Table 1 where we have observed ranges

of measurement. Exception reporting can only

be made meaningful if we have adequate sta-

bility of measurement.
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Table 1.

—

Typical range of hardware monitor measurements as % of wall clock time

360/30 360/40 360/44 360/50 360/65

System Meter 21-80 56-100 83-88 93-100 90-98

CPU Busy 16-51 17-52 32-48 44-85 32-93

CPU Only Busy 16-34 15^3 21^2

Protect Key 0 19-24 18-27 38-62

Supervisor State 20-32 22-67 30-53 25-32

Problem State 20^7 2.5^.5 33-40

CPU Wait On Printer 8-10 6-17 5-26

CPU Wait On Disk Seek 3-9 2-52 3-11 1.1-13.8

Multiplexor Busy 0.8-2.1 0.5-1.2 1.0 0.8-1.4 1.9-3.1

Multiplexor Meter In 10-26 61 40-100

Selector Channel (tape & disk) 16-27 21-35 31-49 13-44

Selector Channel (tape) 3-15 2-23 9-13

Selector Channel (disk) 5-19 11-18 25-39 11-48

Selector Channel (teleprocessing)

Printer Busy 8-22 7-36 18-27 29-53 8-57

Reader Busy 3-16 5-16 11-21

Cards per Minute 919-1033

Lines per Minute Rated 1100 813-1077 936-1074 959 975-1140

Lines per Minute Rated 600 570-683

Emulate Mode 0-6 21-34

LCS Inhibit 16-30 6-36

C. Derived variables must be considered as well as

directly measured variables. Rates, like terminal

response time or disk access times, are examples

of indirect measures. This kind of measurement

can lead to clarification of what happens during

events that are of importance to people. In one

study we have analyzed the events occurring

within a 360/50 system during a terminal

response time. The disk activity (including the

disk controller) only caused 14 percent of the

delay in response time; whereas, the non-inter-

ruptable processing within the operating system

accounted for 64 percent of the delay. This

measurement of response time is a derived mea-

sure. This particular case implies that faster

disks have relatively little impact on terminal

response time; whereas, certain changes that

might be made in the operating system could

have a significant impact. This study was indi-

cated by a factor analysis we ran over a wide

range of measurement of events that occurred

during the response time delay.

To summarize, computer subsystem performance is

still in its infancy and we should not be disappointed

at our lack of precision or lack of understanding. It

seems that we may be like a pre-Galilean lying on

the grass counting the stars. If we count carefully

enough we may find that there are patterns to their

movement and significance in their spatial location.

The instruments we have are undoubtedly not what we

need in the long run, but I think we have been given

a basic telescope so we can start to make more

accurate observations. It appears that we still need a

lot of people to help make star charts before we
.

launch off in our space ship. We should try to improve

our ability to share experience so that we can indeed

work towards a science and build on each other's

work.
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1 . Introduction

We may be describing the performance of data

processing systems a few years from now in ways

different from how we do so today. This paper

reviews the current use of several performance factors.

Problems and trends resulting from today's large and

increasing number of factors are noted, and sug-

gestions for changes to meet tomorrow's needs are

offered. Insights gained from evaluating IBM's recently

delivered virtual storage systeins during their devel-

opment and early release stages provide the basis for

discussing these changing requirements.

j
2. Some Current Practices—and Problems

A myriad of interrelated factors account for the

' performance of a data processing system.

Factor: agent, something that actively contributes to

a result.^

Parameter: a characteristic element; also: factor.^

a variable that is given a constant value for a

specific purpose or process.^

Variable: a quantity that can assume any of a given

set of values.^

^ The New Merriam Webster Pocket Dictionary (1971), G&C Merriam Co.
2 American National Standard (ANS) Definition, ANS Vocabulary for Infor-

mation Processing (1970), ANS Institute, Inc.

The terms "parameter" and "variable" are some-

times used to shade the meaning of "factor": 'variable'

to connote a "given" (for example, the size of the

user's main storage)
,
'parameter' to refer to a value

selected by the user (such as the level of multipro-

gramming), and "factor" to mean the measure of

performance, such as CPU utilization or throughput.

2.1. System and Workload Factors

It is convenient to group performance factors into

two broad complementary categories:

1. System factors—those hardware and software

configuration variables and operational parame-

ters which describe the data processing system

whose performance is under consideration. This

group includes the hardware resource utilization

factors used to create profiles of overall system

performance (see Figure 1). It also includes

factors which provide more detailed knowledge

of how the resources are used than the cumula-

tive totals shown in a system performance pro-

file. One such measure growing in popularity,

which combines the count of instructions executed

with their timing, is the rate at which instructions

are executed, termed "MIPS" (millions of
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instructions executed per second). The MIPS
rate of a CPU is not an engineering constant, but

rather a function of the internal architecture of

the CPU. It varies with the memory size, the

I/O device configuration, and the instruction

mix, that is, the workload being processed.

Another useful feature is the number of instruc-

tions required to process a transaction. These

factors are being used to classify interactive

workloads for estimating response times and the

maximum number of terminals or transaction

rates a system can support. System factors cover

a wide range of stability, size, and relative

dependence on one another.

2. Workload factors—those characteristics describ-

ing the load being applied to that system. Exam-

ples of factors in this group are the number of

transactions being processed per unit of time,

the level of multiprogramming, instruction se-

quences and frequencies of use, and the number

of instructions between branch instructions.

Parameters describing system loading are used

for such purposes as annotating measured results

and representing workloads as input to models.

Some workload characteristics (e.g., the number

of data sets accessed) are static, while others

(e.g., the working set size) are dynamic. Kim-

bleton [1] ^ and Lynch [2] each stress the impor-

tance of load characterization for performance

prediction. These parameters vary even more

than the system factors as to their level of detail,

relevance, and underlying assumptions.

More useful than simply listing several factors found

significant to performance, therefore, is to note some

problems and limitations their use imposes, par-

ticularly in light of our experience with virtual

storage systems.

2.2. Experience with Virtual Storage Systems

Improved performance in the broad sense of in-

creased productivity is one of the main advantages

claimed for virtual storage (VS) systems. A concern

of the designers and implementers of these systems is

to provide this capability without introducing excessive

overhead. Because of this concern, as well as the lack

of recognized measures of productivity, the extensive

investment in performance during the development of

the VS systems was oriented around the traditional

throughput, response time, and resource usage studies.

3 Figures in brackets indicate the literature references at the end of the paper.

The initial decision to implement VS systems for

S/370 was founded in these beliefs and later con-

firmed by measurements: (a) with existing multi-

programmed operating systems, much of main storage

was unused much of the time; (b) improved through-

put would result if the utilization of the CPU and

memory were brought into better balance, that is,

were more overlapped; and (c) in most instances

CPU utilization could safely be increased by the

amount estimated as needed to bring this balancing

about.

Almost 3 years before the August 1972 announce-

ment of IBM's VS systems, studies of address refer-

encing patterns using traces of several programs had

been made, resulting in the now-familiar steep working

set ("paracore" curves (see Figure 2).

The notion of "optimum real storage" (ORS) has

been introduced now that main storage is included

along with the CPU and I/O as one of the resources

to bring into balanced use. ORS, also referred to by

some as "paracore" or "working set size", is the number

of real storage page frames required by a program

in order for it to execute without increasing the page

fault rate to the point of thrashing—devoting more and

more resources to paging and less and less to produc-

tive work. The amount by which the real storage

required to process a workload in systems without

the dynamic address translation (DAT) facility

exceeds the amount of real storage available for paging

the workload in VS systems is known as the over-

commitment of main storage. Interesting as ORS is,

we so far lack a theory to explain its relationship to

certain variables in a multiprogramming environ-

ment—such as main storage overcommitment, the level

of multiprogramming, paging rate, and of course,

elapsed time or throughput. We do know that indi-

vidual programs optimized for VS systems exhibit a

more pronounced knee of the curve in Figure 2. The

knee is at that amount of real storage which is the

optimum relative to the amount of paging activity.

The system is sensitive to this ORS; that it, with only

slightly less storage available, the system will thrash.

It is also known that just as the ORS of individual

programs varies over time, so, too, does the amount

of paging at the system level vary, clustering at times

of peak activity such as job-to-job transition. Thus,

there must be a relationship between ORS, contention

for main storage, and performance. This seems

analogous to the knowledge of stand-alone CPU and

elapsed times of jobs which are then multiprogrammed.
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They are necessary but insufficient factors with which

to predict elapsed jobstream time or throughput.

Measured data and analysis were used to show that

for the size systems to be supported by VS/2, fewer

page faults, though not the minimum memory size,

would result from using 4K rather than 2K pages.

However, in the size systems to be supported by

VS/1 and DOS/VS, the number of page frames

required to be available for paging allowed for only

2K per page frame. One consideration in the decision

to proceed with 2K pages for the latter systems was

that theoretically, up to eight pages might have to be

referenced during the processing of one instruction.

The page size and other basic decisions relative to

VS were being made during the time that S/370s

without the DAT feature were first becoming available

to the program development groups. Since there is

greater credence in measured than simulation results,

various means were considered for obtaining and using

measured data. No single method of analysis was

utilized to the exclusion of all others. A prototype of

VS/2 Release 1 was built to run on the S/360 model

67, the only computer in the S/360 line with the

DAT feature; a simulation model of VS/2 Release 2

was written in CSS, analytic models of VS/1 and

VS/2 were used in several studies. In general, while

analytic and simulation models provided information

to help make or confirm several major decisions,

measured data was involved in each such decision

to the extent it could be obtained.

CCW translation time, the MIPS rate, paging activity

and storage contention were the focus of intense

study, though in the early stages paging activity and

storage contention were necessarily inputs to, rather

than results from, simulations. Models provided early

indications that the amount of real storage available

for paging would be one of the most significant factors

affecting performance in VS systems. It was also

known early that CPU utilization would be increased

and that the page fault rate was critical to the success

of the systems, since CPU time is consumed in ser-

vicing page faults.

We also recognized that introducing the use of VS
and the DAT facility might have significant opera-

tional and performance consequences for an installa-

tion, and that these would differ from one installation

to another based on a combination of several variables.

Two results of this concern were: 1) inclusion of a

generalized trace facility as part of VS, which per-

forms tracing and timestamping of user-selected system

events; and 2) studies of ways in which applications

programmers can achieve improved program per-

formance now that they no longer need be con-

strained to using only that amount of memory phy-

sically installed in the computer; e.g., see Reference [3].

It is useful to summarize the experience of several

system performance evaluation projects not by refer-

ring to their specific technical results but, rather, by

mentioning some problems limiting the usefulness of

these efforts, and then noting some trends and changes

in the way evaluations are or should be proceeding,

in order to overcome those limitations.

2.3. Problems and Limitations

Pervasive problems related to but extending beyond

technological ones are:

1. Performance evaluation can be an enormously

expensive undertaking. While specific dollar

costs are beyond the scope of this paper (be-

cause of the detailed description of the para-

meters and activities which would be needed to

understand the costs for some particular evalu-

ation), we know, for example, that a bench-

mark exercise (comparing just one well-defined

workload on two appropriately tuned hardware/

software configurations), a procedure in which

we have much experience and a large dollar

investment, costs several tens of thousands of

dollars. Several factors contribute to this problem:

a. Much machine time is consumed in obtaining

valid, reproducible data. Although the tech-

nology supporting functional development

and testing is evolving toward substantial use

of remote terminals, virtual memory and vir-

tual machine systems and other shared

resources, performance measurement remains

tied to dedicated stand-alone machine time for

the calibration and use of performance mea-

surement tools. That is, timing runs and pro-

duction runs cannot be processed concurrently,

in general.

b. There is a large dollar cost per information unit

obtained. Considerable effort is spent regen-

erating data already available to one analyst

simply because its existence is not known or

is insufficiently documented to satisfy another

analyst's need for control of his variables.

Moreover, quantities of raw data are gathered

but never reduced or used to their fullest. As

Belady and Lehman [4] have expressed it,
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"What is missing is not so much data as data

analysis. The data is all around us but little

is done with it." This, of course, is as much

a management problem as a technical one.

c. A third aspect of expense, one common to

other advancing disciplines, is the growing

effort required to remain current with the state

of the art. The body of informal and published

literature in the field of performance evalua-

tion is growing rapidly. (Solutions to the

problems attendant to this phenomenon were

worthy of deliberation at this Workshop.)

This is easily illustrated by some of the refer-

enced papers: Lynch [2] provides an overview

of current and future positions concerning

operating system performance and cites forty

references including several bibliographies;

Kobayashi [5] in his comprehensive review

of the state of the art of system performance

evaluation cites forty-nine references, calling

attention to recent progress in such areas as

workload characterization, statistical analysis

of measured results and queuing models, and

briefly mentioning simulation models; Parme-

lee et al. [6] discuss some of the several factors

other than main storage overcommitment

which affect program performance in virtual

storage systems (locality, and the paging

algorithm, as examples) in their review of

virtual storage concepts, and offer an anno-

tated bibliography containing ninety-six en-

tries, fourteen of which relate specifically to

studies of system performance.

2. Performance data has a very short shelf-life.

Seldom can a question be answered by obtaining

current data and comparing it with previously

stored data. Too many variables (whether con-

trolled and documented or not) have changed

to permit a useful comparison to be made.

3. A possible third problem area is quoted from a

conclusion of a first-line manager of a system

performance group: "Explanation of measure-

ment results takes more than 50 percent of the

time planned for performance measurements."

These problems (today's costly, transient, and

redundant approach to performance evaluation) result

from the large, unstructured number of computer sys-

tem performance factors and the absence of many
relational expressions among them. The needs and

changes suggested below address these problems.

3. Current Trends and Requirements
for Change

We may assess our progress relative to solving

today's problems and meeting the requirements of

future systems by examining the current trends and

then estimating what additional efforts need planning

to fully satisfy the long term needs.

3.1. Trends

Among the trends observable today are:

1. The scope of system performance measurements

is widening. Some examples:

a. Configurations are more varied, sometimes

now including networks;

b. Operations and other users' costs constitute

an increasing factor in the total installation

cost/performance ratio;

c. Availability, productivity, and value to the

end-user are more readily admitted as being

legitimate considerations of the performance

analyst.

As a result, additional factors and relationships

must be investigated and quantified.

2. Systems are being designed to make fuller use

of available resources. Prior to the VS systems,

a typical system was designed and configured

to handle an anticipated peak load. The load

(measured by the number of jobs processed per

unit of time in batch environments, in terms

of message rate for on-line systems) was an

object of maximization. Resources were allo-

cated according to a peak demand. For example,

main storage was allocated for the duration of

a job step based on the maximum instantaneous

need during the processing of that step. With

the more dynamic allocation of resources in VS
systems, all resources are utilized to a greater

degree; a balanced use is a system objective, to

truly free up and make available the previously

unused potential of the systems' resources.

Greater overlap (e.g., of CPU and I/O) is an

objective. This necessitates some reorientation

of performance analysis from independent mea-

surements of resource usage and throughput to

the correlation of overlapped resource usage

with throughput.

3. With virtual storage systems there is a trend

toward greater use of shared resources, exempli-
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fied by more programs being reentrant. Since

program fetching is less efficient than paging,

there is a double benefit: first, a single copy of

the program can be shared by more than one task

concurrently (reducing program fetching) ; and

second, paging is reduced, since reentrant pro-

grams contain more pages which remain un-

changed and therefore don't get written back to

the paging data set when the page frame in real

storage is freed or made available to another

task.

3.2. Requirements For Change

Based on the problems facing performance evalua-

tion and the trends seen today, several changes may be

appropriate:

1. No more striking need exists for a common voca-

bulary and technical approach to performance

evaluation than the need to communicate be-

tween the vendor and the end-user of a data

processing system. The performance-related

activities of the vendor (designing, developing,

selling, installing, and maintaining a system)

may be offset in time from those of the user

(predicting, configuring, and tuning the system),

but common to all of these activities are the

same technical complexities.

2. There is the necessity to describe the performance

of a system quantitatively. In an earlier paper

[7], I noted that regardless of the objectives of

evaluating the performance of a data processing

system, measured data is invariably required;

that generally this data is concerned with the

hardware or software resources of the system

in its fully operational (available) state; and

that any such data falls into one of these four

types: utilization (how long a resource is in use),

activity (how many times a resource is used),

contention (how much demand there was for a

resource which could not immediately satis-

fied), and load (what kind of demand there was

for a resource). The major portion of the paper

was then devoted to guidelines for selecting the

particular data to be measured as a function of

the purpose of the evaluation, and selecting

which measurement tools to use from the know-

ledge of what data is needed and what capabili-

ties are offered by the available tools. This

progression, from identifying the evaluator and

his objective, to specifying the particular data

to be measured and the means of measuring it, is

illustrated in Figure 3. The paper shows how the

current approach of computer system performance

evaluation often contrasts with the more dis-

ciplined approach required.

3. The collection and display of measured data

should be made more dynamic if it is to be

effectively used, just as the allocation of re-

sources by the system was made more dynamic

to make the system more responsive to the user.

4. Measurement technology needs to become more

implementation independent. According to some,

the tendency today toward elaborations of exist-

ing technology tend to work against innovation

and advances of the state of the art.

5. Measurement methodology should proceed in-

ward from the end services performed for the user

rather than outward from the details of activities

within the system.

6. To accomplish the above, we must learn to

characterize the end-user functions being mea-

sured independent of implementation, and to

identify the common activities. This is a different

approach than listing basic or fundamental fac-

tors as measures of performance and developing

a hierarchy of relational expressions.

7. Means of evaluating tradeoffs among costs,

schedules, and technical effects must be im-

proved. For example, without any long-term

financial justification for doing so, product devel-

opment personnel usually persist in the notion

that hardware decisions may be made sooner

than software ones, since software is inherently

more flexible and can be changed faster and

more easily.

8. Means of understanding the performance conse-

quences of changes in design, configuration, or

workload without the expense of implementing

and then measuring those consequences must be

improved. As Kimbleton [1] observes after not-

ing several studies which report separate analysis

of CPU scheduling algorithms, I/O models, and

memory management models, "predictions are

normally made in terms of the performance of

a subsystem and not the system as a whole."

In the Appendix is provided a more specific state-

ment of needs in this area of improved performance

predictability. I suggest that performance factors

which satisfy those needs will prove more valuable
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than those which continue to account for or explain

resource usage. Beyond advancing the technology to

the point of satisfying the needs listed there, I suggest

these two long term goals regarding terminology and

methodology:

1. Performance (and the tools and terms used to

measure and describe the factors affecting it)

must adapt from a notion of performance as only

applying to a "totally up," 100 percent available

system to that of performance over a range of

availability based on a variable hardware and

software configuration. The corresponding func-

tional requirement has been stated by a large

user organization [8] as: "The concept of dynamic

reconfiguring (including software must) be

applied wherever possible * * * It should be pos-

sible to alter system parameters, introduce new

versions of modules, etc. without re-IPL."

Other requirements stated in that reference

include providing consistency of terminal re-

sponse time, allowing user control of the overhead

tradeoff for performance data collection, and

creating a base of data for both tuning and

accounting. Performance should be more self-

tuning, and require fewer operator decisions.

The effect on system performance evaluation

may well be to introduce yet another type of

performance measure; namely, describing as a

percentage of the potential offered in theoreti-

cally well-functioning, 100 percent available

systems the performance actually being delivered

in a degraded mode of operation. With this

could come the definition of new performance

factors involving notions of efficiency, percent

of capacity, and of productivity.

2. Composite performance factors providing simpli-

fied, user-oriented measures of performance must

be developed. The temperature-humidity index,

wind-chill factor, and degree-day are examples

of such measures which have achieved popular

acceptance by the weather forecasters, skiers,

and retail fuel distributors, respectively. Other

attempts at this include the government's pollu-

tion index, the telephone company's message

unit, and, of course, the electric company's single

billable parameter, the kilowatt-hour.

These measures have in common an appealing

simplicity and practicality which were achieved

by forced elimination of precise or elaborate

qualification and highly technical terminology.

By contrast, just the mention of the phrase

"computer system performance factors" is likely

to set off a mental chain encompassing such

terms as CPU utilization, instruction mix, address

referencing pattern, workload characterization,

and many others; I've seen such lists extended to

over a hundred items. More than just their pro-

fessional instead of end-user orientation, these

"factors" tend to be measures of resources avail-

able versus resources used, rather than in terms

of work performed for the economic enterprise

which is served by the data processing system.

Of course, there have been attempts at simpli-

fied measures. To compare performance across

systems for the same workload or across work-

loads on the same system we have not only the

system performance profile (Figure 1) but also

several versions of a "standard machine unit," a

measure of system power or utilization indepen-

dent of many details of environmental para-

meters. Partition-hours is a simple attempt to

account for multiprogrammed machine time in

terms of yesteryear's batch-operated machine-

hours. Chow [9] studied the relationships of such

variables as cost, capacity, and access time. Hoja

and Zeisel [10] introduced three composite mea-

sures to analytically investigate the feasibility

of determining the optimal configuration of a

terminal-oriented multiprocessing system, given

a specific workload. Shedler and Yang [11] con-

sidered four variables, dependent on hierarchi-

cally more independent variables, to estimate

system performance. Haney [12] is attempting

to correlate programming manpower and sche-

dules to the structure and complexity of a system

using a technique he calls "module connection

analysis." Fed probabilities of changes in any

one module requiring changes in each other

module, he produces quantitative estimates of

the effects of module interconnections. Possibly

a similar analysis could be made to estimate the

effects on system performance of changes to the

performance of any component of the system,

for as Lynch [2] expresses today's status: "a

description of the performance of each part or

module of an operating system will, in general,

give little clue as to the overall system per-

formance."

An example of an overall approach is reported

by Waldbaum and Beilner [13], who developed

a total system simulator (hardware, software.
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workload, reliability, and operator actions) as

a means of improving installation performance

in a particular case.

It appears that the range of current investi-

gations spans the entire spectrum of system and

workload performance factors in an attempt to

establish some fundamental relationships among

them.

4. Summary

I have outlined several areas of computer system

performance in which our ability to provide more

adequate analysis and useful evaluation is limited

by current practices wherein additional factors are

being identified faster than the relationships among

them are being understood. I have suggested that a

number of changes are needed in technology, term-

inology, and methodology for us to advance beyond

these limits in the future, and discussed some. Due to

the lead time involved in developing and introducing

new technology, standards, and methods, we could

say that if we are not at least five years ahead of time

in our planning and thinking, we may already be

behind in our work. The future is already under con-

struction. What may be new is an enlarged awareness

and a sense of urgency, a growing conviction among

data processing users and vendors alike that we must

become more action-oriented in our planning and do

those things soon that need doing.
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APPENDIX

Performance Predictability Needs

1. Ability to translate system performance statements (e.g.,

objectives and specifications) into component performance

statements, and vice versa

2. Ability to determine how changes to machine and program

architecture will affect system performance

3. Ability to determine performance effects and costs of shift-

ing function to a different component (e.g., software to hard-

ware )

4. Ability to quantify on an incremental basis the performance

effects of adding, deleting, redefining system functions

5. Ability to determine from a component's performance in an

existing system what it will be in a new system.

6. Ability to identify for each component the other components

on which the performance of the given component depends,

and to quantify these relationships

7. Ability to specify values of design parameters (e.g., #buffers,

#phases, #fixed pages, . . . ) from objectives

8. Ability of designers and implementers to estimate resource

(hardware and programming) usage of various design possi-

bilities

9. Ability to get feedback during implementation about actual

values of design parameters and resources usage and a pro-

cedure to relate this to objectives and effect necessary recon-

ciliation

10. Ability to reconstruct after development the rationale (per-

formance consequences) supporting major design decisions

during development

11. Ability to estimate the potential performance of a specified

combination of hardware, software, and workload

12. Ability to determine how much of the potential perfor-

mance of a given system is being achieved by a given installa-

tion using that system

13. Ability to assess the performance of a given system relative

to that of competing or alternative systems
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Subsystem end-users should be concerned primarily with measures of system effectiveness that

are cost or value based. Only through these measures can they relate the operations of their

subsystem to the goals of the larger system. Individual subsystem effectivenes measures should be

related through a total systems effectiveness model to permit tradeoff and marginal allocation

decisions to be made.

Subsystem end-users are usually not concerned with measures of system efficiency, which are

the traditional computer performance measurements, but they are responsible for seeing that

their effectiveness is achieved at minimum cost, which is determined and achieved by analysis of

computer performance measurement data. Subsystem end-users therefore should see that their

operating units receive system efficiency measurement data and that they understand how resource

efficiency is related to system effectiveness.
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puter performance; system effectiveness.

1 . Introduction

Any discussion of "End-User Subsystem Perfor-

mance" cannot proceed without a clear definition of

the terms: User, End-User, System, Subsystem and

Performance. Without such definitions any discussion

will tend to be over generalized and not amenable to

useful summary and conclusion.

The following definitions will govern the comments

made in this paper:

User: An entity that receives service from a system

or subsystem.

Examples: a. A programmer using a computer

facility for production or develop-

ment work.

b. A teller using an inquiry terminal

for account status interrogation.

c. A real-time experiment using a

computer for data collection, analy-

sis, and parameter control.

End-User: The person at the end of a user-

subsystem chain who receives the ulti-

mate system service.

Examples: a. The marketing analyst who gets

his daily sales reports from an

applications programming group,

b. The financial vice-president or con-

troller who manages his company's

credit system through reports gen-

erated by his retail point-of-sale

computer terminal system.

System: A collection of people and equipment

organized to provide a service (or services)

to one or more end-users.

Examples: a. A reservations system designed to

match people and non-sharable re-

sources.

b. A tracking network designed to

monitor the progress of a satellite

as it orbits the earth.
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c. A time-sharing service that pro-

vides computational facilities to

remote users on demand.

Subsystem: A system that provides an identifiable

service to a user (either a person or a

subsystem) and is either an operating

part of a larger system or shares some

resources with another system.

Examples: a. The reservations subsystem of an

airline's total computer operation,

b. The time-sharing component of a

full-service computer service orga-

nization.

Performance: Some measurable quantity that relates

the function performed by a system

or subsystem to either the resources

required to perform the function or

the rate, quality or reliability with

which the function is provided.

Examples: a. Cost per teller inquiry.

b. Response time to a teller inquiry.

c. Time to develop a new applications

program.

d. Cost to provide a unit of comput-

ing power to a customer.

Ideally, the performance of a system should be

judged by measurements of the performance of the

services it provides to its end-user. However, the need

for control and decentralized management, and the

lack of integrated system performance models forces

the use of end-user subsystem performance measures

as surrogates for global performance measures.

Consider the following: A large retail chain installs

point-of-sale terminals at all its sales points in all its

stores. The terminals are connected to a central com-

puter that also does the chain's accounting, inventory

control, payroll, etc.

The end-user of the computer system, the company

president, can see whether net profits have increased

after installation of the POS terminals, but he can't

know whether profits can be improved or how various

components of the POS system contribute to profits,

nor can he control the operations and evaluation of the

system with balance sheet and P&L statistics. For these

purposes: management, control, design, determination

of efficiency as opposed to effectiveness, subsystem

performance measures must be used. And since decen-

tralized management decisions must be made, end-

user subsystem performance measures must be used

within a total systems performance framework to

guard against harmful suboptimizations.

To be more precise, end-user subsystem performance

measures of effectiveness must be developed that act

as surrogates for end-user system performance and

end-user subsystem performance measures of efiiciency

must be developed that act as hallmarks for local

control.

Consider the POS subsystem. A set of performance

measures must be chosen that capture the impact of

the subsystem or system effectiveness rather than dis-

play some visible subsystem product, i.e. collectable

sales dollars versus reduction in the rate of bad debts

by instant credit checking. What good is a zero bad

debt rate if most customers get so fed up with waiting

in line at the terminal that they stop shopping at the

store?

Yet to design an efficient subsystem, goals must be

specified for component designers that are necessarily

removed from or have a complex and indirect rela-

tionship to system effectiveness.

2. Categories of Performance Measures

The ultimate measure of any system's value is its

effectiveness—is it doing its job? Effectiveness can

be measured in many ways: in terms of time taken to

respond to a demand for service, in terms of quality

of service rendered, in terms of the rate at which

requests for service can be honored, etc. The ultimate

unit that relates incommensurate effectiveness mea-

sures to each other is the dollar: what is a unit of

response worth, what is it worth to discriminate at a

95 percent rather than 85 percent level. Performance

measures are of little value unless they can be reduced

to a common denominator. For example, the number

of reservations or jobs processed per employee per

hour is of no utility without the value of the jobs that

are processed. We all know full well the ability of

people to "beat the system", e.g. a clerk will select

people with easy jobs to process although the return

per person is low, to increase his processing rate, and

leave the more demanding, highly profitable customers

to fret, fume and depart.

Measures of performance should be chosen that

either singly, or in combination with other mea-

sures yield dollar values. Rates alone are not

adequate measures unless it is truly known that
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there is no inverse relationship, either present or

possible, between rates and dollars.

EfiBciency in the employment of resources is also

viewed as a performance goal, as indeed it is. We can

call a system efficiently designed if it employs the

fewest resources to achieve a stated effectiveness goal.

Efficiency is not to be confused with utilization, for

while high utilization probably follows from high effi-

ciency, the reverse is not true. High utilization is often

a symptom of low efficiency when viewed from a per-

spective of effectiveness. One reason that high utiliza-

tion and high efficiency are not necessarily related is

that many systems require that a reserve capacity be

present so that they can respond quickly to random

events. In these cases, high utilization equals high effi-

ciency if a correction is made for reserve requirements.

Efficiency is only meaningful in terms of effective-

ness, and measurements made of how resources are

used cannot be interpreted out of context.

3. System Design

Over the life of any system there is a common cycle

of events: design, production, operation, measurement,

evaluation, redesign, production, operation, * * *
.

During the design of a system performance goals are

set, and detailed work assignments made based on the

performance goals and the technology available, e.g.

before telecommunications it would have been unreal-

istic to expect an airline reservation clerk to process

as many reservations using telephone communications

as that same clerk can process today. The subsystem

performance goals should be set from a knowledge

of their effect on total system performance, i.e., from

a model of the system.

Once subsystem performance goals have been set,

system designers attempt to produce hardware and

software configurations that meet these goals efficiently.

For example, given that a reservations system is to be

designed to process N reservations per minute, or to

process N X 10^^ events per second, then an efficient

design will accomplish this with a minimal expendi-

ture of system resources.

Every system should be designed to measure and

report both its effectiveness and its efficiency. Effec-

tiveness data should be transmitted from each sub-

system to the system end-user who is in a position to

correlate total system performance with individual

subsystem performance measures.

Efficiency data should be transmitted only to the

level responsible for providing the service required to

achieve the subsystem goal, e.g. channel utilization,

terminal waiting time and CPU waiting for I/O per-

centage are reported no higher than the computer cen-

ter supplying the subsystem computer service. This

center can use the efficiency (utilization) measurement

data to reconfigure or tune the computer system to

provide the required service at least cost.

A design principle must be that system and sub-

system performance measurements are designed into

a system, and that these measurements form a set

complete enough to detect proper and improper system

performance. For example, it is probably always true

that high levels of utilization coupled with low mea-

sures of effectiveness mean that a system bottleneck

or problem exists at the resource having high utiliza-

tion; e.g., having a high CPU busy utilization and a

low transaction processing rate may mean that a faster

CPU or memory is needed, or that a recent data base

reorganization increased rather than decreased table

search time.

Since hardware forms only one part of a system

—

software and people being two other important parts

—

system measurements must go beyond mere counters

of hardware utilization. As it is impossible to tell what

utilization statistics mean without knowing the condi-

tions under which they were created, measurements

must be taken of the pattern of system inputs. A system

is designed to process transactions that occur at a

given rate and pattern, if the rate and pattern change

the ability of the system to process the transactions

efficiently changes, and a different level of utilization

may be required to meet the desired level of per-

formance. For example, if a new receptionist in a doc-

tor's office submits her patient transactions individually

throughout the day rather than batching them at the

end of the day, then the number of "doctor informa-

tion table" accesses will be higher and CPU time used

in reading data will be higher. As the doctor probably

pays a fixed price per transaction, the increased use

of system resources reduces the system's profit poten-

tial. The effectiveness measure "transactions processed

per day" may be high, indicating good system per-

formance, but so will the "cost per transaction" mea-

sure, indicating poor system performance. ithout a

measurement displaying system workload characteris-

tics it would be most difficult to place the blame on

the doctor's office rather than the computer system,

and take appropriate corrective action.
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4. System Measurement

Unless a system is designed to be measured, it may
be impossible to measure it.

System-effectiveness data have two principal dimen-

sions: time and cost. Common time measures are job

units processed per unit of time (throughput) and

units of time required to respond to a stimulus (re-

sponse time) . It is generally not sufficient to report

only aggregate time measurement data, such as the

average throughput or average turnaround time. His-

tograms of time measurement data collected over

variably set time intervals are required to infer such

things as the probability of a response within some

arbitrary number of time units or the probability of

achieving a throughput during a congested period of

at least some specified rate. The width of the histogram

class interval has to be variable to achieve efficient

processing and produce analyzed data in the most

reduced form.

Cost information can be obtained if system resource

usage is measured and applied against a costing algo-

rithm. Quite often such an algorithm does not exist

at a subsystem level, and the data that would be used

as input to such an algorithm is used instead, e.g.

CPU seconds instead of the cost of a CPU second. The

difficulty with this approach is that it does not allow

a trade-off between different resources to accomplish

the same task to be made in the format of a single

measure of effectiveness. It is sufficient for cost infor-

mation to be reported at an aggregate level only, i.e.

from resource utilization figures over an interval rather

than from analysis of individually computed job cost

figures, as management reactions are to average cost

levels.

Another measure that is important in determining

system effectiveness is value. At times, as in a time-

sharing service, time measurements are equated with

value. Here a fast response is taken to be more valu-

able than a slow one in that it leads to higher pro-

grammer productivity. (This may not always be true.)

In other systems, the value of a task is intrinsic to

the task and cannot be observed by a purely passive

observer. This is the case in a POS system where the

value of a transaction is recorded in its data. Value

measurements are important in situations where people

influence the flow of data and/or transactions into a

system, and their behavior is not observable but is

measurable.

System efficiency data is normally obtainable even

if a system has not been designed with measurement

in mind. Hardware and software monitors can measure

the utilization of devices, as well as their interaction

in defined states. It is often more difficult to define

the measure of efficiency than to measure it. For

example, one can measure the utilization of the PPU's

on a CDC 6000 system. But is it the percent utiliza-

tion of the PPU's or the percent of time the CPU
was held up because a PPU was not available that is

the appropriate measure of how well the PPU's are

used.

Utilization data should be reported in time series

form, over quanta determined by the unit activity

level of the resource, for resources that are shared.

As has been pointed out, a two-thirds utilization can

come about by 200 units of the time at 100 percent,

followed by 100 units of time at 0 percent, or by pat-

terns of 20 units at 100 percent followed by 10 units

at 0 percent. These patterns can yield vastly different

conclusions depending on the nature of the system

workload.

5. Summary

Subsystem end-users should be concerned primarily

with measures of system effectiveness that are cost or

value based. Only through these measures can they

relate the operations of their subsystem to the goals

of the larger system. Individual subsystem effective-

ness measures should be related through a total systems

effectiveness model to permit tradeoff and marginal

allocation decisions to be made.

Subsystem end-users are usually not concerned with

measures of system efficiency, which are the traditional

computer performance measurements, but they are

responsible for seeing that their effectiveness is achieved

at minimum cost, which is determined and achieved

by analysis of computer performance measurement '

data. Subsystem end-users therefore should see that I

their operating units receive system efficiency mea-

surement data and that they understand how resource

efficiency is related to system effectiveness.
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The end user's view of a computer system's performance is generally quite different from that

of the computer professional or of the service provider. He is unconcerned about such traditional

system performance measures as CPU utilization, channel balance, memory fragmentation, and

I/O queues. He is concerned only with the indirect effects of these measures as manifested in the

cost he incurs or in the performance he receives. Factors reflected in these measures encompass

items in the areas of accounting cost, control, system service, reliability, user interface, output,
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In addition to the usual perceptual differences that exist between server and user, there are also

significant disparities in the items taken to define performance, in the measures used to reflect

that performance, and in the criteria employed to evaluate the measured performance. The paper

explores some of these differences as well as discussing certain aspects of system performance

which are of particular concern to the end users of computer systems.
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The end user's view of a computer system's per-

formance is generally quite different from that of the

computer professional or of the service provider. In

addition to the usual perceptual differences that exist

between server and user, there are also significant dis-

parities in the items taken to define performance, in

the measures used to reflect that performance, and in

the criteria employed to evaluate the measured per-

formance. It is the purpose of this paper to explore

some of these differences as well as to discuss certain

aspects of system performance which are of particular

concern to the end users of computer systems.

In the final analysis the ultimate end users of com-

puter services are the presidents or chief executives of

2. The End Users

1 . Introduction those organizations using such services. However, it

is generally more illuminating to consider some of the

intermediate end users that fall in the spectrum

between the aforementioned ultimate end users and

the direct users of computer system services. Under

this approach the end users in commercial data

processing applications would be considered to be

the departmental and divisional managers, not the

data control clerks. In an educational setting faculty

members and department chairmen would be taken

as the end users rather than students or programming

assistants. In a programming or system development

environment it would be the project leaders and

development managers, not the programmers and

analysts, that would be the end users. Similarly, in

on-line reservations, banking, or ticketing operations

the end users would be reservations managers and vice

presidents for sales rather than agents or tellers dealing

with the public.

Now located at Stanford Research Institute, Menlo Park, Calif. 94025
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responsibility for the work that is being processed

by the computer system and for the personnel working

with that system (providing it with inputs, working

with its outputs). However, these individuals are not

direct users of the system themselves. Furthermore,

it should be recognized from this definition that these

users are not concerned with the technical charac-

teristics of the computer's performance except insofar

as it impacts the performance of their department or

operation. Even when they are so impacted, their con-

cern is likely to focus upon that impact rather than

upon the underlying reasons at the computer facility

or upon the resulting impact felt by other users of

the system.

3. The Basic Performance Measure

In principle the end user has but a single measure

of computer system performance. This measure is

simply the "cost" to do the "job." The term "job" is

used rather broadly here, so that it refers not only to

the computer job but also to the entire user system

which is serving the function for which the end user

is responsible. Thus, a computer system is only a part

of the larger system that must be considered. Clerical

staff, mechanical equipment, and even transportation

services may constitute a part of the system perform-

ing the job.

The term "cost" is also used broadly. Clearly it

should be stated in units that are appropriate for the

end user and his environment. Thus, cost might be

stated in terms of dollars/year, dollars/reservation,

dollars/student, or other monetary unit/unit of work.

The cost should be calculated so as to cover the "true

cost" of providing the service or performing the func-

tion for which the end user is responsible. Clearly

this will include an allocated or billed charge for the

computer or computer resources used, for the salary

and space costs of computer support personnel, for

peripheral and ancillary equipment, etc. Total com-

puter costs are generally relatively straightforward to

calculate for an existing operation (and to estimate

for a projected operation). (The allocation of these

costs, though, as charges to end users is much more

complex and raises a number of other issues that are

beyond the scope of this paper.) To these allocated

computer charges the end user must add his own costs

for staff, space, other equipment, etc.

However, there is still another aspect that must be

considered, and this relates to performance costs.

System response or throughput may influence staffing

levels and customer satisfaction. System capability may
affect transportation costs. System reliability may also

impact the operating unit's costs, including those

attributable to missed deadline penalties, customer

dissatisfaction, opportunity losses from missed sales,

overtime and idle staff time, staff morale, commit-

ments for standby facilities, etc. These performance

related costs can be significant, and only by reflecting

them can a true cost picture be obtained.

The above described "cost/job" measure will sufl&ce

to make definitive comparisons between different com-

puter systems, even if one should desire to compare

systems with different speeds, architectures, capacities,

or software. This measure is still appropriate in those

cases where the computer systems being compared

are not direct substitutes (e.g. employing different

mixtures of people, mechanical equipment, and com-

puters in the operation). It is important to note that,

even though the systems being compared might not

provide equivalent service (or meet the desired speci-

fications equally well), the performance cost figures

would correct for these differences. Thus, a single all

encompassing number can be used as a meaningful

end user performance measure.

4. Performance Measure in Practice

Although the above described cost/job measure

depicts in principle how an end user should measure

the performance of a computer system, it can not really

be advocated as a practical procedure. Many of the

considerations are difficult to measure or to judge,

others are simply too "fuzzy." Thus, for example,

how does one measure the additional staff that might

be necessitated due to the greater software complexity

of one system versus another? Or how does one

estimate the resources that will be lost as the result

of a tedious job control language? On the non-com-

puter side there are similar difficulties in measuring

the cost of a dissatisfied customer, of sagging staff

morale, etc. These measurement difficulties are fre-

quently compounded by an end user's inability (or

unwillingness) to make explicit trade-offs. Thus, it

may be very difficult to obtain a user's indifference

curve between lower probabilities of service disruption

on the one hand and higher cost with greater customer
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satisfaction and greater staff efficiency on the other.

As a result it is very difficult to assign costs to some

of the performance impacts; even if they could be

measured or estimated accurately.

Consequently, in some of these fuzzy areas managers

are prone to make these trade-offs implicitly rather

than explicitly. In other words, trade-offs are made

only on a case-by-case basis and usually only on a

"better or worse" basis rather than on a relative

scale. Thus, situation A (consisting of accounting

costs, service levels, morale, etc.) would be compared

with situation B, and one would be judged the better.

The various criteria would be compared and aggre-

gated implicitly, without ever explicitly attaching

weights to the various criteria or attaching costs

(benefits) to the resulting measures.

In such an environment resort is often made to cost

comparisons for some given level of general perfor-

mance. The differences in performance (e.g. system

reliability, ease of use) are all thrown together and

evaluated implicitly as a package against the ordinary

or accounting type cost for the system. Thus, the

measure of system performance from the point of view

of the end user becomes one of cost for a given level

of performance (or cost/performance for short)

rather than the overall cost of the performance.

These measurement difficulties clearly point to the

need for further research on both the proper measures

of some of these end user aspects of system perfor-

mance as well as the means to make the measurements.

On the computer side there is a need to measure staff

productivity in connection with the type of service

provided, the quality of that service, special features

offered, etc. The impact of time-sharing service upon

programmer productivity is an illustrative case. Most

of the other problem areas touched upon above are

not so much computer problems as they are application

problems. The cost of customer dissatisfaction, for

example, is very dependent upon the operating environ-

ment and is unrelated to the computer system. Even

the relationship between a computer system's perfor-

mance and the resulting level of customer satisfaction

is dependent upon the application and the environ-

ment. Thus, many of the more pressing questions are

not potential candidates for research by computer

scientists. They are, however, definitely in need of

study by persons in other fields and disciplines.

Given the use of cost/performance as the end user's

measure of system performance, it is appropriate to

consider in further detail some of the factors which

constitute this measure.

1—Cost: This factor might be termed the account-

ing cost in order to distinguish it from the overall

cost that was described previously. Accounting cost

encompasses the direct costs for using the computer

system as well as some of the more obvious indirect

costs. Direct costs cover the allocated costs of the

computer operation (e.g. equipment, space, operating

staff). The end user may incur these directly (the

computer being part of his area of responsibility) or

by allocation (computer service being "purchased"

from another operating unit) . Indirect costs might

include contract or missed deadline penalties (e.g.

lost float in a banking application), certain staffing

or overtime costs attributable to computer system per-

formance, reruns necessitated by errors, etc. The

accounting cost can best be characterized as the

"obvious costs." Depending upon the accounting sys-

tem used in the organization, the costs so developed

may or may not be an accurate reflection of the real

impact or actual costs in these areas. However, these

are the cost figures which are generally used in per-

formance evaluation.

2—System Service: Basically this factor covers the

turnaround or response received by the direct users

of the computer system. The service factor is of par-

ticular importance to the end user due to the impact

of customer service levels upon staff productivity and

upon the service levels that can in turn be provided

to the customer. Thus, the end user is interested in the

system's mean response time as well as the distribution

of the response times received. He is also interested

in the ability of other users to degrade his service and

in the control he can exercise over the service level

to be received by his staff (e.g. use of priorities,

rescheduling of workloads). The availability of effec-

tive control mechanisms is particularly important in

environments characterized by deadlines.

In order to provide the best possible service the

computer facility staff will be involved in a host of

activities, including the refinement of scheduling

algorithms and memory allocation procedures, the

balancing of channel activity, the configuring of sys-

tems, etc. A variety of system measurement activity

will generally be connected with these activities. How-

ever, all of this should be invisible to the end user.

He cares little for the efficiency of the scheduling

algorithm, for example, so long as it gives his staff

either (a) the desired service levels, or lb) the
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parameter options that will permit them to obtain

appropriate service levels as it becomes necessary.

3—Reliability: Although the end user is not con-

cerned about the reliability of any given piece of

equipment (as computer facility personnel might be),

he is very concerned with the reliability of the end

product (service) provided to his staff. Thus, the

frequency and duration of service outages from any

cause (including inadequate backup and recovery

procedures) is of interest as is the extent, frequency,

and duration of degraded service due to hardware

failure, software failure, facility failure to regulate

demand, etc. Attaching a cost to such unreliability

and including it in the first category above would be

very desirable, but this is generally not realistic at

the present time.

The impact of service reliability is very dependent

upon the application context. At one end of the

spectrum there is almost no effect (e.g. a quarterly

update that can be processed anytime during a week's

interval). Further along the spectrum are the cases of

general delays. Service outages merely cause every-

thing to slip forward in time (e.g. the result in most

program development situations) . There are some

immediate costs of lost time (e.g. staff salaries and

frustration) as well as the longer run slippage cost in

project completion (e.g. delay in receiving anticipated

savings). At the far end of the spectrum are the cases

where there is serious and immediate impact (e.g.

situations characterized by service deadlines or con-

tractual output requirements). The end user in this

type of situation needs not only a measure of the

service reliability but also some form of control over

the service level and the attention the computer facility

gives to reliability (e.g. supplemental service arrange-

ments). This matter of control is addressed at greater

length in the section on user controls below.

4—User Interface: This factor covers the ease with

which the direct users can use the system. It reflects

the "personal overhead" involved in specifying priori-

ties and setting up control cards or otherwise prepar-

ing for a run, the time and difficulty in making

contact with the system from a terminal, the amount

of training required for new personnel, the frequency

with which system changes necessitate a change in

staff procedures, etc. The cost effects of these items

tend to be non-quantifiable, but there are generally

good qualitative feelings for these variables.

5—Output: This factor encompasses a variety of

items relative to the output from a computing system.

An obvious item concerns the quality of printed out-

put, including proper form usage, form alignment,

type cleanliness and alignment, ribbon quality, etc.

Another item concerns the identity of the delivered

output (e.g. yours not someone else's), the order and

completeness of the outputs, etc. There should also be

a concern with the correctness of the outputs in the

sense that all of the proper job steps were run (and

run only once), that no input data was accidentally

loaded twice by an operator, etc. Despite the high

visibility of these areas to the user, there is generally

little if any regular performance measurement activity

along these lines.

6—Programming: Although not a computer service

per se, this factor is so closely related to the computer

system performance seen by the end user that it should

also be considered. Clearly there are the normal pro-

gramming costs for staff and machine time. However,

there are a number of other important considerations

which a computer system can influence, including the

speed with which programs can be developed, the

efficiency with which the programs will operate, the

ease with which the programs can be used, the degree

to which these programs can serve the needs of the

end user, the ease with which bugs can be tracked

down and eliminated, the ease of maintaining and

modifying existing application programs, and the spe-

cial features and facilities provided by the system.

Again, there are often good qualitative feelings for

these items, but there is generally little in the way of

quantitative performance measurement.

7—User Performance: A final factor, and one which

is of interest to both the end user and the computer

facility, covers the performance of the direct users.

This would include such items as late inputs for sched-

uled runs, improper inputs (e.g. providing the wrong

tape reel), erroneous data and poor quality media as

well as terminal input speeds and error rates. Real-

time and conversational systems sometimes measure

some of these aspects of user behavior; most of these

items are not monitored in batch systems.

In reviewing the content of the above described

seven factors that constitute cost/performance, one

can readily see the extent to which many of the tra-

ditional measures of system performance are absent.

The end user is not concerned with CPU utilization

or similar measures so long as the service which he

receives and the price which he pays for the service

are "acceptable." In other words, the end user judges

a computer facility on the cost/performance of the
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service (product) it. delivers, not on the manner in

which it produces that service.

5. User Controls

The end user is primarily concerned about the non-

computer aspects of his operation. The computer por-

tion of the activity is "contracted out"—at least logi-

cally if not physically. This is why the performance

considerations discussed thus far all focus upon system

performance as viewed at the interface between the

service provider and the service user. This also high-

lights the need to consider in somewhat more detail

the means by which the user and the computer facility

can relate to each other across this interface. For the

purposes of discussion a user's processing might be

divided into four categories.

1—Scheduled Batch: Work in this category is often

characterized by a reasonable predictability of its

computer resource requirements and of the time at

which those resources are required (e.g. an hour

everyday at 7:00 pm ) . Since work in this category

is of a recurring nature, the user and the facility can

invest the time to negotiate a cost-service schedule.

Ideally, the user would specify the input time, the

desired output time, and the resources required (prob-

ably derived from system accounting data on past

runs). The facility would then offer a rate for this

service based upon the job's resource and turnaround

requirements and upon the facility's general system

load. Presumably this would lead to negotiations

concerning price adjustments in response to changing

resource or turnaround requirements.

Although such an interchange would be very bene-

ficial, it rarely takes place in as explicit a fashion.

Rather, somewhat fixed resource rates are established,

and the user and the facility then haggle over the

schedule or service to be provided (with politics per-

haps becoming involved). Another problem concerns

the significant difference in the units which the two

parties employ in this process. The computer facility

thinks in terms of S/'CPU minute, $/track of file

space, etc. The end user thinks instead in terms of

S/order processed, $/account record stored, etc. If

the computer facility adjusts its thinking (rates quoted

in user units), then it must absorb any differences

between charged usage and actual resource usage.

If the computer facility does not adjust to the user

(rates quoted in resource units), the user will trans-

late actual charges back to user units and will see a

high day-to-day variance in these effective rates.

Finally there is the problem of delivery on the

schedule (fulfillment of commitments). The fact that

the facility suffered a hardware failure, or that a

software bug slowed down production, or that another

department's late inputs threw off the schedule is

interesting but not too meaningful to the end user.

Such "excuses" are of little consolation to a user

faced with his own output schedules, contractual or

otherwise. Thus, he needs to be able to exert some

influence or control over the operation of the facility

in order to protect his own deadline commitments.

Aside from "screaming" or exerting "political muscle",

he is often helpless. A possible vehicle for overcoming

this problem is the specification by the user of a

penalty or discount function for each scheduled job

or work unit.

Such a function would serve two purposes. First, it

would provide a late work indemnity to the user in the

form of an outright payoff or a discount in his pro-

cessing cost. Not only would this insure attention by

the computer facility, but it would also provide some

measure of consolation for the user. Second, such a

function would provide a variety of guidelines to the

computer facility, such as the relative importance of

a job (for on-the-fly scheduling after a failure), and

the general capacity as well as the backup capability

required. It is generally obvious that a facility should

install only enough equipment to meet X percent of

its deadlines in the course of a month. However, the

determination of the value of X without information

similar to that provided by the penalty functions is

very difficult.

2—Interactive Production : Work in this category is

often characterized by a predictable resource demand

per interaction and by a user concern for service

availability, response, and cost. Service unavailability

can have serious consequences for the end user s opera-

tion in this type of environment. Hence, as for sched-

uled batch, there is a need for user protection and

facility service guidelines. In this case, though,

processing may be scheduled in terms of response

times for given transaction levels during given time

periods (e.g. 3-second responses for demand rates up

to 45 per minute between 9 a.m. and 11 a.m.). Pre-

sumably a service facility would wish to protect itself

in such a situation either by refusing to accept higher

demand rates during the specified time period (so

that it could assure itself of meeting other commit-
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merits) or by accepting a temporarily higher demand

rate in return for a temporary waiver of the response

requirement. Operating in this type of an environ-

ment may necessitate additional performance mea-

sures—not only for after-the-fact performance eval-

uation, but also for control purposes in real-time.

Oftentimes the measures that would be useful for this

purpose are not among the standard ones.

3—Interactive Development: Work in this category

encompasses unscheduled and non-production types of

processing. It is often characterized by a relatively

unpredictable resource demand per interaction and by

a user concern for service availability and response.

Not only is there less control capability as a result,

but there is generally less information available about

the service actually being provided. Often resort must

be made to measures of good response (i.e. less than

Y seconds) for X percent or more of the requests, with

X being the figure of merit. Such a measure does not,

however, reflect the differences in the resources actually

required during each iteration. Thus, it is a fairly

gross indication of performance. The use of such a

measure also poses a problem for the user. Aside from

programmer unhappiness, very little is really known

about the effects of delayed response upon produc-

tivity. Predictable response is better than unpredic-

table, and response can vary with perceived processing

required without effect. There does seem to be some

optimal point up to which greater delay is advan-

tageous and beyond which human performance de-

teriorates. However, knowledge in this area is so far

very sketchy. Even the more straightforward rela-

tionship between programmer productivity and type

of computer service (e.g. batch processing, time-shar-

ing) is not really known. Thus, much more remains

to be done with respect to the development of appro-

priate measurement tools and techniques for this

category of work.

4—Unscheduled Batch: Work in this category is

often characterized by a wide variety of resource

requirements that are desired "on demand." The user

is often concerned primarily about turnaround and

cost. In this type of environment it is not feasible for

the computing facility to negotiate service require-

ments with each user for each job and then to sched-

ule those jobs, for volume considerations are generally

overwhelming. Thus, the brunt of the load leveling or

scheduling uncertainty must be passed along to the

user. Although there are many ways in which this

can be accomplished, the following three techniques

are indicative of the range of possible approaches.

a) First-come—first-served: This procedure may
be applied strictly to all work or only to unsched-

uled work on a resource available basis following

the scheduled workload. In either case a fixed rate

is established for computing, and the service

received by a user is a variable. This results in a

misallocation of resources unless all jobs are con-

sidered of equal importance. Further, a great deal

of user effort will often be devoted to pleading for

exceptional treatment, to developing sub rosa proce-

dures to get work in at the front of the queue, etc.

b) Priorities: This procedure permits the user

to select the priority he desires for his processing.

A fixed but different rate is attached to each priority.

Thus, there is a variable cost for computing depend-

ing upon the computing load and hence upon the

priority that the user must exercise to obtain the

anticipated service level desired. (Alternatively, the

user can always select a given priority and thereby

face a constant rate; however, his service will vary

with system demands.)

c) Variable Rates: This procedure permits the

user to select the desired service level. The rate

charged for that service will vary, however, depend-

ing upon system demand. This approach has the

advantage of eliminating the need for a user to

estimate the priority required to obtain a particular

service level at a given point in time.

The above approaches progressively remove more

and more of the uncertainty from the user with respect

to the service to be received, but they achieve this at

the cost of more and more uncertainty about the price

to be paid for that service. (Given that computing is

a limited resource, it is not possible for a user with

unscheduled work to specify both his cost and his

service.) Although the end user is concerned about the

service received and the cost incurred by his staff,

the "other costs" incurred in working with the system

are also important. Thus, the impact of the service

actually received, of the uncertainty in service levels

and rates, and of the time and effort required to inter-

face with the resource allocation mechanism must be

evaluated.

Despite the above comments the selection of a

scheduling procedure is not the sole province of the

user, for the computer facility is also affected. Thus,

while procedure (a) impacts the user the most with
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regard to service variability, it is the cheapest to

implement and operate. Procedure (c) frees the user

from system load estimation but only at the cost of

much greater measurement and control work by the

computer facility.

As for the interactive development work category,

the greater variability and unpredictability of unsched-

uled batch makes performance more difficult to eval-

uate. Again, too, there is the problem of the end user

being able to evaluate the worth of a given service

level to his department. When alternative scheduling

and control systems are included in the consideration,

there is the further problem of evaluating the fuzzy

cost-benefits that result.

6. Summary I

The end user is unconcerned about many traditional

aspects of computer system performance. Thus, such

system performance measures as CPU utilization,

channel balance, memory fragmentation, and I/O

queues are of little interest or value. The end user is

concerned only with the indirect effects of these mea-

sures as manifested in the cost he incurs or in the

performance he receives. In this connection there are

a variety of user oriented performance measures that

are frequently employed in practice. These measures

are of value not only to users but to computer facilities

as well. The factors reflected in these measures encom-

pass items in the areas of cost, system service, reli-

ability, user interface, output, programming, and user

performance.

Most of the items covered by these factors are

primarily user oriented rather than operationally

oriented (although characteristics of the latter are

involved). Measures such as turnaround, ease of use

of resource allocation procedures, contract deviations,

and quality of delivered output are illustrative. How-

ever, user measures can lead to the need for additional

measures on the part of the computing facility in order

that it may perform in a user oriented environment.

For example, consider the variety of data required if

a facility is to develop rates for guaranteed levels of

service.

Thus, although end user performance measurement

does not employ many of the traditional measures of

computer system performance, it does require a variety

of additional measures. Not all of these measures are

yet well defined, and still others have somewhat vague

interpretations. Clearly there is much work to be done

in this area, particularly on user impact or application

dependent effects (although the "computer measure-

ment" aspects are not completely in hand either).

Evaluating computer system performance from the

viewpoint of the end user provides a more meaningful

guide to these the ultimate users (who are afterall the

real justification for the computer system). Further,

such measures can provide perspective and direction

for the computing facility. They do add an additional

level of complexity to the measurement process, and

they can lead to some new areas of concern. They

also have their costs. This, however, is true for all

forms of measurement, and the cost-benefit of each

desired measure must be evaluated before it is added

to the measurement and analysis load. In situations

where there is a clear payoff, the measure should be

implemented promptly. In other cases a need for

further research may be indicated in order to reduce

the cost of making the measurement, to develop alter-

native or surrogate measures, or to find a better or

additional use for the measure so as to increase its

value.
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C. COMPLEMENTARY CONSIDERATIONS

Several pursuits are closely linked to performance

analysis because they all use common tools for a com-

mon purpose—to determine the types and degree of

interactions in computers. In addition, activities in

these related fields can strongly influence the per-

formance attained on a computer system. Some of

these fields are discussed in the papers below:

• Computer Design, by Wilner;

• Software Validation, by Rubey;

• Data Security and Privacy, by Chastain;

• System Reliability, by Hughes.

Their objective is to consider both the applicability

of performance analysis approaches in the related

fields and the degree of influence of the related fields

on computer systems performance analysis. Each con-

tains some discussion of the following topics:

1. Experience in the related fields that illustrate the

interactions between those fields and performance

analysis.

2. Problems encountered in the related fields due to

inadequate or inappropriate measures/measure-

ment tools.

3. Specifications for performance analysis work that

would aid efforts in the related fields.
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Complementary Pursuits—Computer Design

W. T. Wilner

Burroughs Corporation, Goleta, Calif. 93017

The relationship between computer design and performance analysis is argumentatively claimed

to be an information-producing symbiosis. Performance analysis can add precision to the conceptual

models which designers use to generate new systems. Most of the major aspects of good models,

however, are unquantifiable. Computer design can help or hinder performance analysis, mainly by

adding or omitting those few components which allow hardware monitors to recognize significant

system events.

Key words: Computer architecture; functional evaluation; hardware monitor; measurement tools;

performance measurement.

1 . Introduction

Computer design and performance analysis are two

of the three major components of the process which

brings computers into being. The process may be

represented as a cycle:

^ design

evaluation ^—- use

where "design" means the specification of function

and form in a computing system. Performance evalu-

ation provides feedback which clarifies the suitability

of a given design. In turn, performance analyses are

constrained to take place within the forms which are

available in a given design.

In addition, one of the uses of computers—the

third component of the process—is evaluation, the

study of computer subsystems for the purpose of local

optimization. Proper design enhances this increasingly

more significant function. Such local measurements

also provide feedback to the design process, since they

often show that computers are not as flexible or as

powerful as we would like them to be.

2. Contribution of Performance Analysis

to Computer Design

Designers select functions according to some model

of computing. One very general model was that of

Turing's, and it led to a very simple, and abysmally

slow machine. Much closer to today's computer was

the model which von Neumann had. Although heavily

biased by other, contemporary, mathematically-oriented

machines, its stored program concept provided a very

general facility.

Performance analysis is necessary to quantify

models beyond what the designer's intuition can deter-

mine. It can also demonstrate new trends in computer

usage. Both of these attributes were invoked during

the end of the Fifty's when the importance of soft-

ware development was making itself felt. The fact that

over 50 percent of many installations' time was attri-

butable to software development meant that hardware

ought to be biased more toward programming. Con-

cepts such as recursion, compatible data representation,

virtual memory, time-sharing, and multiprocessing

entered into designers' models of computing.

Currently, increasing activity in the file handling

and data communications modules of operating sys-

tems indicates trends toward data base and distributed

computing. If users would document these trends as ith
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quantitative measurements, they could encourage their

inclusion in designers' models, which would bring the

next series of computers closer to the users' new

requirements.

Performance analysis also illuminates the goodness

of fit of a particular computer form to common appli-

cations. First-generation machines typically had one

grossly underdesigned function, floating-point multiply,

which was significant to many topical applications.

Many program running times were a multiple of the

number of multiplications done. (Those days were

perhaps the only period when comparative evaluation

and predictive performance measures were available;

it's ironic that that was due to inadequate computers.)

Recognition of the need stimulated progress toward

fast multiplications. Unfortunately, this development

occurred just as non-numerical uses were becoming

paramount.

Analysis of stack machines documented their suit-

ability; such computers allowed simplified compilers

to generate code which was as efficient as a machine-

language programmer's. Lately, Knuth's analysis

showed that compilers spend most of their time doing

extremely simple things. However, stack organization

should remain in vogue because it anteceded a new

trend: structured programming. It is possible to make

subroutine calls faster than "go-to's" on a stack com-

puter, which makes the old way in which we have

been programming more expensive than the new way

without go-to's which we should be using.

A victory of performance analysis toward computer

design was the demonstration of superior performance

from language-oriented hardware. When the ALGOL-
oriented B5500 or the COBOL-oriented B3500 were

benchmarked in their respective languages against

conventional architectures, they were sometimes able

to outperform systems costing over five times as much.

This result paved the way for universal-host systems,

which can be biased toward one language or another

from microsecond to microsecond.

One should understand that the way in which per-

formance analysis effects changes in computer design

is not by solid numerical results, but by creating a

climate in which specific changes seem desirable or

necessary. Proposals for new computers contain per-

formance speculations which are usually disbelieved

in their details but which do persuade manufacturers.

Documentation of computer design, such as Thornton's

book on the CDC6600, typically contain no references

to performance analysis.

3. Inadequacies of Performance Analysis

for Computer Design

Performance analysis has had its defeats. Designers

have often proposed desirable innovations, only to have

them rejected due to a lack of corroborating measure-

ments. No measurement yet quantizes the loss of time

and resources due to fixed memory size and the poor

system design and reprogramming which it causes.

Virtual storage was added to computers over ten

years ago on an intuitive basis, and still cannot be

quantitatively justified, although many users by now
have had experience with it.

Most designers' computing models necessarily omit

some first-order variables because the scope of the

variables extends far beyond the limits of any com-

puting machinery. Until there is a reasonable way to

incorporate assumptions about major, non-computing

variables which affect performance, predictive mea-

sures may be impossible. One such variable is flexi-

bility. For most users, life itself demands that a

computer's foremost capabilities be flexibility and ease

of change. Attempts at formal definition quickly reveal

that these computer capabilities depend on the flexi-

bility of the organization which the computer serves,

and that defies definition.

Another characteristic which is of first-order impor-

tance is the smoothness with which performance de-

grades as a computer is gradually overloaded by a

growing organization. Even though we cannot do

simpler analyses than those of flexibility and graceful

degradation, equal time should be given to such

salient measures.

Many analysis techniques are difficult to transfer

from one system to another. It is important for users to

try to make measurements which are either independent

of architecture or whose dependence can be measured,

in order to build a body of knowledge upon which

comparisons can be made between computing systems.

An illustration of the difficulty involved can be seen

in the controversy between head-per-track and move-

able arm disk. The disk characteristics affect the way

a computer system is used, and this is hard to factor

out of any measurements.

Users have a capability which designers do not:

they can measure the real world. The real world is the

only legitimate source of feedback to the designers.

Most user groups now provide some statistics to their

respective manufacturers, but a systematic program

should be prescribed.
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It is important for users to accurately characterize

the environments in which computing machinery now

functions. Of course, characterizations which are sys-

tem-dependent (such as disk record length) should be

stated in a parameterized way (such as, average disk

record length = physical disk segment size). High-level

language users should be collecting statistics on how

they employ such languages, in the manner Knuth's

study of FORTRAN did. (The other side of the coin

is that every compiler should develop such statistics

and merely ask the user to mail them in every quarter.)

Finally, there are some inadequacies of performance

analysis which are mainly political. Users should place

a high value on built-in measurement tools. Their

presence in a system should strongly bias an acquisi-

tion decision in the system's favor. Benchmark results

should be edited to include probable speed gains due

to convenient performance monitoring. Consider two

systems, one with built-in performance measurement

tools, and the other without. If the instrumented system

is twice as slow as the bare system, it may still provide

greater throughput and accommodate a larger work-

load than the bare system because of the inexpensive

tuning which can be performed. Normal selection

criteria should reflect such a likelihood.

Also, performance measures which are misleading

should be discarded from the computer selection

process. If a user cannot predict how much work a

given machine will do, given its CPU speeds on typical

operations, he should not waste his time acquiring the

speed information. Performance analysis can help

computer design significantly by concentrating solely

on the most important criteria, such as flexibility,

ease of use, software reliability, and forgetting about

traditional measures, such as memory cycle time, CPU
operation times, and disk latency time.

4. Contribution of Computer Design
to Performance Analysis

In general, the user is in a much better position to

take advantage of performance analysis than the com-

puter designer because the user's world is much more

constrained. Users can often confine the scope of an

inquiry to a decision whether or not to add hardware.

Designers spend their time pondering basic questions

of system organization, and have small understanding

of the impact of one more device to any given con-

figration. Furthermore, the scope of a design revision,

covering the entire population of a computer system,

leads to cost-benefit trade-offs whose balance point is

in the region of catastrophe. A user can make a

significant change if he thinks he will realize a 10

percent increase in machine productivity. A designer

must be sure all users will realize an impressive gain

before he can make a significant change.

The "design-use-evaluation" cycle is completely

under the control of the user for his own software

systems. For the manufacturer's software and hard-

ware, performance analysis benefits the user primarily

to the extent that he can redesign his computer from

obtained measurements. Some computer designers have

done much to extend the user's capabilities for redesign.

Modularity allows gradual configuration changes in

response to slowly changing needs (or in response to

equipment failure). The user may have the freedom

to add or remove memory modules, processors, peri-

pherals, I/O channels, communication lines, remote

facilities, et cetera. If the computer designer has paid

adequate attention to flexibility and ease of use, no

software changes, either on the part of the user or

the operating system, are required as part of a con-

figuration change; new units can be fully utilized as

soon as they are brought on-line.

User-modifiable microcode allows gradual changes

in processing or I/O function. Effective use of this

feature depends on a detailed understanding of what

the user needs most. In many cases, the paramount

need is to relax artifical limitations w'hich machine

architectures impose, such as maximum main memory

size.

Cross-bar exchanges allow gradual changes in the

connectivity of a computing system. Their administra-

tion should be governed by measurements of traffic

along existing connections.

Since many systems are limited by operating system

response times, it is often necessary to specialize an

operating system to one's installation. Operating-

system-generating programs are one tool which design-

ers can plan for and make available for creating

special-purpose operating systems.

User control over high-level language program struc-

ture permits programs to cooperate gracefully with

whatever storage management scheme has been imple-

mented. It is to be expected that software designers

who provide such flexibility also provide the measure-

ment tools with which to obtain the information

which is needed to use it well.
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System accountability, through log information of

specifiable detail, is another designable property that

can give the users information they need to extract

the maximum throughput from their computer. Reports

of CPU, device, and software utilization frequently can-

not be generated from systems whose designers ignored

accountability.

5. Inadequacies of Computer Design
for Performance Analysis

In general, designers should not prohibit measure-

ments. When computers were simple, many measure-

ments were trivial because important events in a

system's behavior caused unique hardware phenomena.

For example, system overhead could sometimes be

obtained from the amount of time the computer's pro-

gram counter was less than a particular value. Now
that systems are forbiddingly complex, it is the respon-

sibility of designers to provide the unique hardware

phenomena which make measurement simple.

One technique which adds about .001 times more

cost to a system is the "monitor no-op" or function-

less machine instruction which has many bit repre-

sentations. For example, if the ordinary no-op has

unused bits, and if the unused bits may contain any

pattern of I's and O's, one can distinguish when a

system is executing various parts of its operating

system if these no-ops, with unique patterns, are scat-

tered in judicious places. Naturally, software systems,

as well as user programs, should be able to generate

unused monitor no-op patterns, too. This makes

an integrated software-hardware measurement system

trivial.

Whatever measurement tools appear in computers

are typically just those which the designers themselves

use. Without constant exposure to user requirements,

additional tools are usually eliminated during cost-

cutting programs. If the designers are only respon-

sible to the manufacturer for hardware, measurement

tools are minimal or nonexistent. On the other hand,

if the designers are responsible for hardware, firm-

ware, software, and intersystem connections, all man-

ner of tools will be built in.

At the very least, important hardware monitor probe

points should be accessible from the console. It is also

a prerequisite for allowing plug-in monitors, which

can be taken from one computer to another of the

same model population and hence establish uniform

measurements for that model. It is also a step toward

various levels of sophisticated monitors, which are

capable of progressively more detailed reporting of

measurements, and which allow each user to become

involved in performance analysis to various degrees.

Taking this one step farther, designers should be

encouraged (by statements of how much users are

willing to pay) to make monitoring modules avail-

able as options in a system. One can go from a bank

of ammeters to histogram displays, to weekly reports

on subsystem utilization and heavy users, and to dyna-

mic scheduling suggestions to the operator.

6. Summary

Performance analysis provides substance for the

conceptual models which designers use to generate

new systems. Most of the major variables, however,

are still unanalyzed. Computer design can provide or

prohibit both the information needed by performance

analysis and the redesign of systems or configura-

tions for greater productivity. Hardware which assists

with information gathering can be added very cheaply,

but the need for it has not gotten through to most

hardware designers and manufacturers.
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This paper describes the relationship between software validation and computer performance

evaluation. A brief review of validation objectives and methods is presented. With this background,

three principal aspects of the relationship between validation and evaluation are explored.

The first aspect to be explored is the activity undertaken during validation to compare the actual

system performance with performance predicted earlier. The second aspect, with which the paper

is concerned, is the difficulty of validation. This should be an important consideration in the

evaluation of a particular software or hardware system. The third aspect of the relationship is the

similarity of the tools used in validation and performance evaluation.
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1 . Introduction

Software validation has become as important an

activity in many computer-based system development

activities as the programming activity. The relation-

ship between software validation and computer system

performance evaluation is therefore an important sub-

ject for study. The overall objective of a software

validation activity is to convincingly provide assur-

ance that a computer system will, in combination

with the given hardware, satisfy all user requirements.

In a narrow sense this often is interpreted as requiring

a demonstration that there are no errors in the pro-

gram that will keep it from producing correct outputs

for all reasonable input data. However, a complete

validation activity has a much greater scope than a

continuation of programmer debugging. The relation-

ship between validation and performance evaluation is

apparent when the complete validation activity is con-

sidered. The next section has a brief discussion of an

idealized validation activity. This discussion is based

on the validation of real-time aerospace software;

both because of the experience of the author and

because it is in the development of aerospace software

systems that validation has been most widely and

;|

successfully employed.

The validation of real-time aerospace software has

received considerable attention because of the poten-

tially catastrophic consequences of an error in aero-

space applications. Many aerospace software customers,

recognizing that failure to validate operational soft-

ware is false economy, are willing to devote the atten-

tion and resources needed to achieve the requisite

highly reliable software. For these reasons aerospace

software validation has reached the level where other

application areas can profitably borrow from its con-

cepts and methods.

2. Validation Methods

The idealized software development cycle proceeds

in distinct stages. First, system requirements must be

determined and described in detail. Next, algorithms

which satisfy these requirements are developed and

described in the software specification. A detailed

program design is then created from this specifica-

tion. Finally, the program is coded in accordance with

this design.

As noted earlier, one important facet of validation

is the comparison of the program's capabilities with

the system's requirements. However, experience has

shown that it is not desirable to wait until the pro-
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gram is coded and debugged to begin the validation.

Waiting until the final stage to begin validation can

result in a program which is so unintelligible, poorly

organized, or intricate that validation is impossible

within reasonable cost and schedule constraints. Soft-

ware problems may be discovered that have their

origin in the software specification or detailed pro-

gram design. Such problems should have been dis-

covered earlier and, if they had been, an appreciable

savings in development effort and time would have

resulted. Therefore, a successful validation activity

begins with an examination of the system require-

ments, and then, in sequence with the software devel-

opment, proceeds to a determination of the software

specification's ability to meet these requirements;

then to a detailed comparison of the program design

with the software specification; and finally, to a veri-

fication that the computer code implements in every

aspect the detailed design. By verifying the correct-

ness of each intermediate product of the software

development process, with the preceding product as

the reference, the ultimate task of matching the final

program with the system requirements is greatly

facilitated.

The cost of such an incremental verification of

system correctness is more than balanced by the

savings that accrue because errors are detected early.

The validator makes extensive use of simulations in

performing each incremental verification step. The

early simulations used to verify the algorithm's ability

to satisfy the system requirements are often crude

and imprecise, however, as the validation process

continues the simulations are refined to make them

more accurate representations of the real environ-

ment. In some cases this elaboration of the simula-

tions continues to the stage that virtually all of the

systems components are represented by the actual

hardware.

One software performance characteristic that must

be verified at each stage in the software development

process is the ability of the final program to perform

the required computational tasks, using the existing

hardware configuration, in the time available. This

task is relatively straightforward after the final pro-

gram has been developed. However, in the earlier

phases of validation one must rely on an imperfect

knowledge of hardware and software performance.

It is at this early stage that the relationship between

validation and performance evaluation first appears,

in that the validator must verify that the expected

performance of the hardware system meets the expected

computational, input/output, and storage needs of the

software. The greater the confidence that can be placed

in these estimates, the smaller the margin in excess

computational, input/output and storage capacity the

validator can accept.

3. Validation Performance Estimation

How are these estimates of hardware and software

performance obtained by a validator? A validator

often uses methods that are no different from those

that the system and software designers have used to

select their design approach. In some cases the vali-

dator double-checks the designer's performance evalu-

ation; in other cases he extends the designer's per-

formance models to represent critical system com-

ponents in more detail without changing the basic

structure. If the validator judges that the designer's

performance evaluation was inadequate, a completely

new evaluation may be performed.

The validator's performance evaluation task is more

circumscribed than that of one who is concerned with

comparing two computer systems. The validator evalu-

ates the capability of a specific hardware system to

perform specific software functions. There are addi-

tional complications in real-time aerospace software

as compared with scientific or commercial software.

Aerospace software must satisfy stringent response

time requirements; times required between a stimuli

and a response on the order of 10 milli-seconds are

typical. These response times must be achieved with

a limited computer capacity; frequently the software

requires over 90 percent of the available computer

memory and time for execution.

These constraints require that the performance eval-

uation produce answers with high confidence albeit

over a restricted range. Simulation is the most power-

ful validation-oriented performance evaluation tech-

nique. It is employed if the expense of a sufficiently

precise simulation can be tolerated. To supplement

simulation, timing and sizing estimates for each soft-

ware module are prepared in terms of the basic com-

puter operations (e.g. load, add, multiply, disk access).

Time line analyses are performed in which the period

for the execution of each software module and input/

output operations are plotted on the scale of available

time. Determination of the worst-case execution times

for alternative program paths is accomplished by a

PERT-like network analysis. As such performance
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evaluations are performed the validator must compare

the results against the requirements, specification or

detailed design; taking into consideration the uncer-

tainties in the evaluation results. To gain some insight

into how accurate computer memory requirements can

be predicted, the original estimates and the actual

memory utilization for a large real-time avionics soft-

ware system were compared. The original estimate and

the actual memory utilization were identical; both were

equal to the size of the memory that was available.

This obviously tells one little about the accuracy of

the estimation methods although it may tell one some-

thing about the ability of programmers either to

squeeze a program into the available space or fill up

the space available. For the application examined, it

was the former situation because when estimated and

actual sizes of individual modules of the program were

compared the differences were as great as 50 percent.

What actually happened in this project, and in many

others, is that modules were rewritten many times to

get them to fit, with some modules being smaller than

the original estimates in order to balance those mod-

ules which grew and could not be reduced.

The use of a higher-level programming language

j

adds another factor to the timing and sizing analysis

I and subsequent performance evaluation. It is generally

! recognized that the use of a higher-level language and

I

its associated compiler result in less efficient machine

I
code; unfortunately, there is little quantitative data

,j

on the extent of this inefficiency. One approach that

j has been taken in specific projects is to calibrate the

'} compiler. This is accomplished by coding benchmark

programs in assembly and higher-order languages, as-

j

sembling and compiling both versions, and comparing
' the resultant object code. One pitfall of this method

,
is the possible differences between the benchmark pro-

gram and the application programs with regard to the

[

types and frequencies of the functions to be per-

,
formed. Another is the considerable differences in pro-

grammer performance that, for example, have resulted

|j' in one programmer's version requiring twice the mem-

jj
ory as another's even though both used the same

I higher-order language and worked from the same pro-

||

gram design.

j;

The lack of attention paid in scientific and commer-

,
cial programming environments to higher-order lan-

!_
guage and compiler inefficiencies is due in large part

to the widely accepted opinion that any such inefficien-

cies are more than compensated for by greater pro-

grammer productivity.

I

i

The small amount of knowledge that exists concern-

ing a particular compiler's inefficiencies is sympto-

matic of the relative lack of truly effective methods for

determining the computational requirements of soft-

ware before that software is developed. Considerable

effort may partially compensate for this lack in the

aerospace environment but even then there always

exists the possibility that substantial system redesign

late in the software development process may be re-

quired because of inaccurate performance estimation.

4. Validation-Oriented Constraints

In developing a computer system, the effect of the

hardware and software design alternatives on valida-

tion must be considered. It is possible to define a hard-

ware/software configuration which cannot be ade-

quately analyzed or tested during a reasonable valida-

tion process. Even without reaching this extreme, par-

ticular hardware and software alternatives which at

first appear to be the cheapest may become the most

expensive when the impact on validation cost is con-

sidered. For example, it has been claimed that valida-

tion costs for the Apollo guidance software were

doubled because of the absence of hardware floating

point instructions and the absence of a single instruc-

tion "save for restart" capability in the Apollo Guid-

ance Computer and because of the complexities of the

Apollo software's interrupt executive.

Validation imposed constraints may actually reduce

the effective computational capacity of a computer

system. This often occurs in real-time aerospace sys-

tems even though, as was mentioned earlier, high effi-

ciency is more important for such systems than for

most scientific or commercial applications. Correct soft-

ware behavior can and usually should be given prece-

dence over high efficiency.

One example of the trade-off between efficiency and

ease-of-validation that has been made in several aero-

space systems involves the design of the software ex-

ecutive or operating system. As in scientific and com-

mercial systems, the software elements or modules

which do the computational work have their execution

scheduled, invoked, suspended and terminated by the

executive.

Different modules have to be executed at different

rates, some periodically and some upon demand. An

interrupt-based executive, using the interrupt facility

of the real-time computer, suspends the execution of a

low priority module when the indication is received



that a higher priority module should be executed.

Then, after the high priority module has been executed,

the execution of the low priority module is resumed

at the point where the interruption occurred. The vali-

dator must demonstrate that the interruption of any

module at any point in order to execute any higher

priority module does not affect the correctness of the

results obtained. This can be very difficult when there

are many interrupt levels and when the modules share

a common data base. To alleviate this problem, some

aerospace software executives have been designed so

that each module is short enough to permit it to be

executed before any interruption can occur. Each mod-

ule returns to a do-nothing routine after execution;

only this very simple routine is interrupted to execute

another task. This type of executive requires that the

software be divided into small "bite-size" modules. It

also wastes computational capability because the do-

nothing routine is often being executed instead of

some useful module. The performance of a system

having this type of executive will often be considerably

less than the performance of an identical system that

has a conventional interrupt executive.

5. Validation-Oriented Simulations
in Performance Evaluation

The use of simulations in validation has already

been mentioned. At the final stages these simulations

can be very elaborate and detailed. For example, sim-

ulations of a real-time computer system on a large

scale general purpose computer are often employed.

Such computer simulations are capable of duplicating,

bit for bit, the actual behavior of a real-time computer

in executing the aerospace software. The computer sim-

ulation operates in conjunction with an equally de-

tailed simulation of the environment which produces

the inputs for the real-time computer and acts on the

outputs that are generated.

If information about the performance of an existing

system or a modification of that system is desired, the

simulations that were designed for validation provide

a powerful tool for obtaining that information. Such

simulations are usually much more heavily instru-

mented than are hardware monitors used in perform-

ance evaluation. Such simulations already have probes

that allow access to system parameters, such as the

real-time clock, and provide mechanisms for accumu-

lating the data from these probes and outputting this

data in user defined formats.

By use of a computer simulation it is simple to

measure the time required for execution of any soft-

ware segment, the total time that is spent performing

any particular computer operation, and the time be-

tween any stimuli and the corresponding response. The

time measured is the time that would be measured if

one had the same access to the actual system and not

the simulation's execution time; typically such simula-

tions run inuch slower than real-time.

Of course much of the information that can be ob-

tained has already been gathered during the validation

in demonstrating that the program satisfies the system

requirements. By making appropriate changes in the

simulations it becomes possible to measure the effect

of modifications to the actual system. For example, by

changing the appropriate parameter and then exercis-

ing the system through simulation one can evaluate

the effect of a faster memory on system response time.

In the past a validation-oriented simulation was de-

signed and implemented for one particular hardware

system configuration with little thought to creating a

general capability useful for the simulation of many

different configurations. Recently much more attention

has been paid to developing more general simulations,

largely because of the desire to reduce the cost of

future systems. For example, computer simulations

have been developed in which the user can specify the

word size of the real-time computer. To determine the

optimum word size for a particular application, the

user runs several simulations, each with a different

word size, and selects the word size that provides the

needed accuracy.

6. Summary

Validation and performance evaluation are comple-

mentary pursuits. Improvements in performance evalu-

ation methods will be of benefit to validation activities.

The existing validation methods for predicting com-

puter system performance, although far from perfect,

should be of interest to anyone interested in the appli-

cations of performance evaluation. A performance

evaluation should not neglect validation considerations, .

particularly where inefficiencies must be tolerated in

order to facilitate validation. The simulation tools used

in validation can provide data for performance evalu-

,

ation, especially when modifications to an existing^

system need to be evaluated.
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The necessity for security often overrides the concern for optimum performance of a computer

system. However, it is important that the relationships between security and performance be

recognized. In this paper three major areas concerning these relationships are discussed.

The first concern is with some of the types of hardware and software that are required in order

to maintain security internally in an ADP system, and the effect of this hardware and software

on the performance of the system.

The second area discusses some of the complex problems of evaluating the impact of security

software on the performance of computer systems.

The final area discusses a number of other technical and human problems often associated with

evaluating performance in a secure environment.
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1. Security Hardware and Software

1.1. Special Security Hardware

Security hardware is generally employed when com-

puter systems must transmit and receive sensitive data

over telecommunication lines. This type of hardware

is employed to protect data during transmission. The

hardware consists of cryptographic devices at each end

of the communication line. Basically, a device at the

originating end of the communication line scrambles

data into some seemingly meaningless bit pattern. The

device at the receiving end of the line unscrambles the

bits into the original form. This security hardware

usually operates at speeds at least as fast as the trans-

mission speed of the communication line, and there-

fore causes no degradation in the performance of the

computer system.

—File Access Security,

—Input and Output Processing Security, and

—Data Transmission Security.

• Reprinted with permission of Datamation,® Copyright 1973 by Technical
Publishing Company, Greenwich, Connecticut 06830.

These three are discussed below with some comments

on other internal security precautions which may be

considered.

1.1.1. File Access Security

This level of security basically is a check at "file

open time" to determine if the user attempting to open

the file for processing has permission and clearance to

access the file. Usually the list of users, their access

rights, and their clearance level is stored in a direct

access storage file. When opening a file, the user's re-

cord is pulled from the list and examined to determine

if he has permission to access the desired file. A com-

parison is also made of his security clearance and the

highest level of security data in the file.

This level of security imposes insignificant overhead

on the system. The time spent opening files is usually

minor relative to the time spent processing the data in

the files.

The processor time required to make the security

level and permission determination is insignificant.
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The number of additional input or output instructions

required to make these determinations varies depend-

ing on the number of users with access to the sj'stem,

the number of protected files on the system, and the

blocking efficiency of the files which contain the access

lists. In one such system the additional I/O's required

are usually less than ten.

1.1.2. Input and Output Processing Security

This is the lowest level of software security. It in-

volves security checks on every input or output instruc-

tion received by the system. There can be several se-

curity checks made at this level. The most elementary

check is to insure that the user attempting to access

the data is the one who was processed through file ac-

cess security at file open time. A check is also made

to insure that the user has the authority to do what he

wishes with the file. For example, a check may be

made to insure that a user who has "read only" author-

ity is not attempting to alter information in the file.

Additional security checks could be made at this level.

In the system with which the author is familiar, the

overhead introduced at this level can be as low as

one-tenth of one millisecond per input or output in-

struction.

1.2. Special Security Software

Unlike security hardware, security software does

cause some degradation in the performance of com-

puter systems. The degree of degradation depends on

the level of security which is employed (as well as the

efficiency of the code). There are at least three levels

of security which can be implemented internally in a

computer system:

1.2.1. Software Data Transmission Security

The security hardware discussed previously only

"protects" data while it is being transmitted. It does

not determine whether or not the data should be trans-

mitted. This determination is normally made by an

additional software security check. The purpose of this

check is twofold. First, it insures that the security level

of data to be sent is not higher than that authorized

to go to the destination terminal. Secondly, it insures

that the security level of the data is not higher than

that authorized to be received by the person who is

using that terminal. Security of this nature is usually

implemented in the telecommunication software, where-

as the levels previously discussed are usually imple-

mented in the input and output control system of the

supervisory software.

In a system familiar to the author the overhead in-

troduced by this level of security is less than one

millisecond per transmission.

Within the author's experience in measuring per-

formance of secure systems, a properly designed sys-

tem should not add overhead greater than 5 to 10

percent of any resource for these three levels of soft-

ware security. On one such system the overhead is less

than one percent.

Additional overhead may be introduced if there is

a requirement, at one or all of these levels of software

security to produce sufficient information to accommo-

date a security audit trail.

1.2.2. Additional Internal Security Precautions

There are at least two other types of overhead that

are associated with most secure systems.

First, there is overhead caused by requiring security

identification information to be printed at the top and

bottom of each output page on either printers or

terminals.

Secondly, there may be some special hardware or

software associated with computer systems which is

designed to occasionally test or attempt to subvert the

security of the system. This function tests the integrity

of the security system by occasionally attempting to

perform the operations that the security system is de-

signed to prevent. In one system it was found that this

function, due to the frequency of its use, was taking

seven percent of the total processor time. (This prob-

lem has since been corrected.)

Depending on the degree of security required by an

installation, additional supervisory software may be

implemented to provide more comprehensive internal

security in computer systems. Some functions this addi-

tional software could perform are:

—special validation of programs requesting to enter

supervisory mode,

—monitoring and validation of certain types of re-

quests within supervisory mode—such as requests

to access different locations in internal memory,
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—prevent access to the control information of files

(as opposed to access to the data in the files),

—periodically test the system to insure that the

mechanisms established to control applications

programs have not been illegitimately altered, and

—^to destroy sensitive data when it is no longer

needed by writing over the files with meaningless

data.

The additional overhead caused by any of these

functions depends on how it is designed and imple-

mented in the operating system and the efficiency of

the programming required to perform the function.

The function of writing over files to destroy the data

could introduce significant I/O overhead since many

applications and utility programs utilize a significant

number of temporary files.

2. Performance Evaluation of

Secure Systems

Security routines are usually part of the super-

visory software. The security software provided by the

computer vendors may not be sufficient to satisfy the

unique security requirements of individual installa-

tions. When this situation arises, modifications—which

may not be minor—must be made to the supervisory

software.

The task of measuring the effect of security software

on the overall system can be a difficult assignment. The

problem is essentially the same as that of monitoring

any non-standard supervisory software. Three tech-

niques are especially applicable to measuring the effect

of security software on the overall performance of the

computer system:

—advanced hardware monitors

—detailed simulation models

—software instrumentation.

A hardware monitor which can monitor activity at

selected memory locations can be used to ascertain

overhead due to security. Several existing monitors

have this capability; however, they are somewhat

expensive.

Detailed simulation models may also be used to de-

termine the effect of security software. Since security

software usually consists of modifications to standard

supervisory software, traditional computer simulation

packages (such as SCERT and CASE) can not be

utilized. Models of the detail required have to be con-

structed in lower level simulation languages such as

SIMSCRIPT, SAM and ECSS.

The construction of detailed simulation models in

lower level simulation languages requires considerable

expertise, time, and computer resources. Modeling of

supervisory software is difficult. It requires the same

level of understanding as that needed for the original

writing of the software. Considerable computer re-

sources are also required to debug, test and run the

models. It would not be inconceivable for a detailed

model to have an actual run time to simulated time

ratio of 10:1.

Software instrumentation is basically a monitor

which is in continuous operation, for it is built in as

an integral part of the supervisory software. Software

instrumentation consists of specially located instruc-

tions that count and time the execution of the security

software. The count and timing data is used to evalu-

ate the effect that the security software has on the

overall computer system.

Since software instrumentation is imbedded in the

operating system, programming for it, like most sys-

tems programming, is a very difficult task. This pro-

gramming task must be repetitiously performed for

each new release of the operating system. Because this

coding cannot easily be removed it continually imposes

a degree of overhead on the computer system.

3. Technical and Human Considerations

When making performance measurements in a se-

cure environment, additional technical and human fac-

tors should be considered.

The popular technical factor to be considered is,

"Can a performance monitor obtain sensitive informa-

tion from a secure computer system?" The discussion

of this issue involves two considerations:

—accidental compromise of sensitive information,

and

-intentional compromise of sensitive information.

3.1. Accidental Compromise

It is unreasonable to suspect that hardware monitors

composed of only mechanical and electronic counters

could inadvertently obtain sensitive information from

computer equipment. Hardware monitors which can

monitor data (i.e., bit patterns) in addition to just

85



counter data could possibly record sensitive data. How-

ever, it is doubtful that monitors could accidently be

attached to the computer in such a manner that mean-

ingful alphanumeric data would be recorded. In addi-

tion, the data reduction software that is used to process

the monitor data into reports would probably be un-

able to process data that has been erroneously recorded.

It is conceivable that software monitors could record

sensitive data. Primarily, this is because most software

monitors operate in supervisory mode and have au-

thority to access data anywhere in the computer sys-

tem. However, the author does not believe it is likely

that meaningful data would be recorded inadvertently,

and even though data were recorded it would not be

likely that the data reduction software supplied with the

monitor could process the erroneous data.

3.2. Intentional Compromise

Using monitors to intentionally obtain sensitive in-

formation from computer systems is quite another

matter.

It has often been noted that the applications of hard-

ware monitors are limited only by the creativity of the

individuals using them. Today there are in existence

some very advanced hardware monitors. Some of these

not only have internal storage but are actually mini-

computer based. Such hardware monitors could record

some of the alphanumeric data that is being pro-

cessed by computer systems. Data reduction software

could be developed to process the recorded alpha-

numeric data.

Another security consideration concerning hardware

monitors (or any hardware device) is the possibility

of a foreign device being placed in the monitor to

transmit the conversations of the people in the com-

puter area or electronic signals from the computer.

Some monitors are physically complex internally and

it would be difficult for the layman to detect such a

covert device.

Since software monitors operate in supervisory mode

and have the complete system at their disposal (unless

prevented by special security software), it is entirely

possibile that they could obtain sensitive information

from the system. Again it would not be difficult to im-

plement reduction software to process the recorded

data.

3.3. Human Problem

The number of people who have access to a secure

computer facility is usually limited. The backgrounds

of these individuals usually undergo a comprehensive

investigation to determine if they are likely to compro-

mise sensitive information to competitors (or in the

case of the Government, to subversive organizations).

Many performance measurement tools and tech-

niques in use today are acquired from outside vendors.

If problems arise (don't forget Murphy's Law) vendor

personnel may have to be called in to find and solve

the problems. If their backgrounds have not been in-

vestigated, special controls must be followed before

they are allowed entry into the computer facility. As

a minimum, they will have to be escorted by autho-

rized personnel. Depending on the sensitivity of the

data, all normal processing may have to be terminated

until the uncleared personnel have corrected the prob-

lems and left the premises. This may sound like a

minor inconvenience, but installations which are new

to performance evaluation may depend heavily on

outside support.

4. Summary

The necessity for security is often a greater concern

than the performance of the computer system. How-

ever, it is important that the relationships between

security and performance be identified. The specific

relationships identified in this paper were:

—Cryptographic hardware has no effect on the per-

formance of the system,

—Security software should not degrade performance

by more than 5 to 10 percent,

—Determining the degree to which security soft-

ware degrades performance may be a complex

and costly task,

-It is not likely that performance monitors would

unintentionally compromise sensitive information

from secure computer systems; however, it is pos-

sible for performance monitors to intentionally

obtain sensitive information, and

—If utilizing performance monitors one should con-

sider the inconvenience of occasionally tolerating

uncleared personnel in the immediate vicinity of

the secure com.puter.
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Abstract

A literature search discloses very few papers devoted to the improvement of system reliability

through the use of performance evaluation techniques. A brief description is provided of an

existing hardware monitor of advanced design which is capable of discerning both software and

hardware events. In terms of such a tool, methods are discussed by which an attack may be

launched on a number of the root causes of system unreliability. In order that new forms of

packaging technology may not jeopardize the continuing use of such techniques, a proposal is

made for the inclusion of a monitoring register in future computer systems.

Key words: Hardware monitoring; monitoring register; software monitoring; system reliability.

' 1 . Foreword

I

"While the JCC's attempt to present the specific re-

sults of recent research, the Workshop's objective is to

j

integrate research results with practitioner's experience

to determine the areas in which performance evalua-

) tion techniques and facts are currently well established,

If and the areas in which further research is required to

develop adequate techniques. The Workshop papers

!; should identify significant facts, attempt to develop
I taxonomies, and initiate fruitful discussion, while the

JCC papers are usually stand-alone descriptions of

.J

work."

,)
Taken from a pre-Workshop guide to participants,

I

the quotation which stands at the head of this paper

I
gives the ground rules which were observed by authors

yj
in planning their contributed position papers.

I
Unhappily, the use of the software or hardware-

I

monitoring techniques of performance evaluation is far

!i from well established insofar as practical improve-

ments in computer system reliability are concerned,

i The author will proceed to justify that statement in

I
a moment, but first invites the reader to consider what

||

such a situation implies. According to the ground-
' rules, he must nevertheless "* * * integrate research

results with practitioner's experience * * * must deter-

mine areas in which further work is required * * *

should identify significant facts, attempt to develop

taxonomies, and initiate fruitful discussions * * *"

This author was determined to discuss actual achieve-

ments rather than proposals, and to concentrate upon

the practical rather than the theoretical. He was, there-

fore (in the absence of any body of work published in

this field), forced to fall back on his own "practition-

er's experience," which was not directly aimed at relia-

bility improvements. Rather, that experience was

concerned with a development project aimed at the

improvement of current techniques of fine-detailed

hardware and software system measurement, and to

be carried out with minimal artifact on a working

computer system. It so happens that the capabilities

of such a tool are precisely what are required in order

to be able to apply performance monitoring techniques

to the improvement of system reliability. This position

paper, therefore, of necessity will conform more closely

to the description of a JCC paper than we might wish;

the author trusts that it will at any rate "identify sig-

nificant facts, and initiate fruitful discussion."
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2. The "Non-Establishment"

Returning to the paucity of published work in the

field of performance evaluation techniques devoted to

improvements of system reliability, a literature search

was made of the main stream of published computer

literature. It was considered that the JCC papers of

1971 and 1972, together with the references to other

work contained therein, were representative of work

undertaken in the past five years, together with pre-

vious publications which were in some measure land-

marks and had continuing interest.

The criteria by which published works were selected

were as follows: list A was formed containing papers

devoted to performance evaluation involving software

or hardware monitoring techniques; list B contains

papers covering system reliability; list AB represents

the intersection of lists A and B, namely, papers which

involve both performance measurement and system re-

liability. Now list A contains 52 papers of which 20

are significantly hardware-oriented. List B contains 71

papers, of which 43 are significantly hardware-

oriented. List AB contains five titles, just one of which

concerns hardware methods for monitoring (real-time)

systems in order to improve reliability.

It may be of interest to note that a further 85 papers

which involved performance evaluation and/or simula-

tion were considered, but were excluded on the

grounds that they did not in any way touch upon real

measurements of the systems being discussed, but

rather concerned modeling or mathematical analysis

and discussed performance evaluation only in a gen-

eral way. The five papers contained in list AB are

given in Appendix 1, and inspection of the papers

shows that several only narrowly made the list.

Paper ABl is typical of several papers describing

evaluation of user programs, generally written in

FORTRAN or COBOL. It was included here because

one class of errors which it detects is attributable to

quirks in implementation of the object system arith-

metic unit. Papers AB2 and AB4 concern error recov-

ery through software, and come close enough to usage

of software monitoring techniques to justify their

inclusion.

Paper AB3 is of considerable significance, since it

parallels much of the work to be described in the

present paper, but in the area of critical real-time

systems.

Paper AB5 was included on the grounds that it

covers, although in general fashion, precautions taken

with a user-oriented transaction system to ensure ade-

quate performance and high reliability.

3. Possible Explanations

It is clear from the size of lists A and B that the two

fields have enjoyed very considerable interest among
computer professionals during the last few years. Why,
then, this surprising state of affairs, where so little

evidence is shown of attempts to adapt techniques from

the one field to the requirements of the other?

Perhaps we should examine the problems which face

the would-be practitioner. Accepting for the moment
the continuing dichotomy between software- and hard-

ware-oriented performance measures, let us first con-

sider the difficulties which beset an exclusively software

monitoring approach.

First there is the problem of reliance upon the sus-

pect system, which is by definition of dubious reliabil-

ity. Second, there is an inherent difficulty in all forms

of serial software monitoring, namely that of making

a set of adequate observations without causing an in-

tolerable degradation in system performance. Third,

there is a problem of accessibility at a level of fine de-

tail to those items of information (depending on the

particular system architecture) which are inextricably

embedded in the hardware.

Despite these factors, there do exist some examples

of software monitoring for improved reliability, par-

ticularly in the area of retriable I/O functions.

Turning to hardware monitoring techniques, super-

ficially it would appear that this approach offers a

greater potential for reliability improvement because

it possesses several inherent advantages.

First, there is independence from the subject sys-

tem and its suspect hardware and software. Second,

there is an implied ability to tap any of the signals

which exist in the wiring of the subject system's back-

panel. Third, there is a wide range of resolution in

time and space of the signals which are of interest, in

contrast with the overhead and accessibility problems

of the alternative approach.

On the other hand, there is a serious drawback re-

siding in the inability to observe and discriminate

upon software events, and thereby modify, in some '

way, the purely hardware measurements.

The question must still be faced: why has no serious '

attack on system reliability through this avenue been
,

reported?
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A well-considered answer to that question appears

to involve several factors. There are the technical prob-

lems of knowing where to look, of validating the

accuracy of a nontrivial number of temporary attach-

ments to backwiring, or certifying (on an unreliable

system, remember!) that the attachments themselves

do not compound existing problems, of planning and

implementing a manual setup of the hardware moni-

tor's controls (including patch-cording a special plug-

board, in all probability), and finally, of interpreting

the captured data. Small wonder that the software

specialist prefers to pore over voluminous 'crash

dumps', while his hardware-oriented colleague peers

into his oscilloscope.

Is there a way of resolving this dilemma? The au-

thor believes that there is; it necessarily involves some

rethinking of the conventional acceptance of a cast-in-

concrete division between software and hardware mon-

itoring. In fact, we must consider ways and means of

merging the two techniques so as to maximize their

conjoint effectiveness.

This "practitioner's experience" with such a system

will shortly be published in a paper entitled, "On

Using a Hardware Monitor as an Intelligent Peri-

pheral."^ In that paper, the co-authors describe what

they believe to be the basis of the hardware/software

monitor of the future. In summary, it involves a high

performance programmable hardware monitor, a

means for selecting and conditioning a desired sub-

group from a large set of permanently available hard-

ware signals, and a means of initiating the transmission

by the subject operating system of encoded identifiers

specifying software events. Given this configuration,

the entire monitoring subsystem may be typified as an

intelligent peripheral device forming an extension to a

host system, rather than a mere inflexible appendage

to the subject system under observation.

4. Areas of Potential Application

In describing the application of the enhanced hard-

ware monitor to the improvement of system reliability,

we shall attempt to group areas generically in an at-

tempt to fulfill our commitment to 'develop taxonomies.'

^J. Hughes and D. Cronshaw. "On Using a Hardware Monitor as an Intelli-
gent Peripheral." Pertormance Evaluation Review, ACM (SIGME) Vol. 2,
No. 4, December 1973.

5. Antecedence (also Posteriority)

The well-known trace is what we have in mind. It

is possible, however, to accommodate a number of

interesting variations:

1. Traces leading up to, as well as following, an

event.

2. The event may be of a hardware, software, or

hybrid hardware/software type. For example, the

execution of a specific instruction by a specific

user, while in a specific hardware state.

3. The trace may be of all instructions executed, or

of a selected subset of instructions (conditional

branches, perhaps), or of data reads or writes at

specific memory location (s) ; it may include soft-

ware data (e.g., identity of current CPU user)

.

A trace incorporating some of the above elements

is shown in Figure 1; a full explanation of its sig-

nificance will be given shortly.

6. Localization

Here we would be concerned with a situation where

it is suspected that corruption from an unknown source

is afi^ecting critical locations in memory, which contain

either data or code. (In the latter case, a crash dump

would, in all probability, disclose the exact symptom,

and the next application area "Provenance" would be

called for.)

A case in point might be the inadvertent overwriting

of cells in a system resource allocation table, indicat-

ing free and allocated blocks of pooled file storage

space. An equally serious situation might involve cata-

strophic changes in critical code stored in trap or inter-

rupt locations. Figure 2 shows output for our program-

mable hardware monitor showing the sequence and the

frequency of overwrites into a critical code area.

7. Provenance

Here we would be concerned with a question such

as "which system task provoked this error?" Assum-

ing that the error is discerned by our monitor, then

tagging it with the appropriate identifier (provided by

the subject operating system) is comparatively simple.

Returning to Figure 1, we have an example of this

type of situation. The error to be detected is of a com-

plex nature. It arises because any of a number of sys-
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tem tasks is permitted to embark on a time-slice with

interrupts disabled. By convention, however, all such

tasks must re-enable within an allotted time, let us say

less than 300 microseconds. Suppose that we have evi-

dence suggesting that one or more tasks is contraven-

ing this rule? Then our hardware monitor may be

utilized to detect the situation. The output data shows

for how long the disabled state had persisted when

intercepted and also the user identifier number (line

01 ) . It also continues with a trace of consecutive in-

struction locations and opcodes, together with the

states of the interrupt inhibited and privileged instruc-

tion flags (lines 02 to 30).

8. Prolongation

This application arises in real-time systems where

we wish to improve reliability by ensuring that the

range of periods of time when interrupts are continu-

ously inhibited remains below some desired upper

limit. The primary task is to identify and order the

long disable sequences. It then becomes possible to

form a judgment as to whether improvement (by sep-

arating non-reentrant sequences with a disable/re-

enable breakpoint) is feasible, and if so, precisely

which sequences must be reduced.

An example is provided in Figure 3 which shows a

ranked list of identified disable sequences in the Sigma

UTS Operating System (release COl). In this case,

since some of the disabling points arise in overlays

of the operating system code, supplementary runs (of

the "provenance" type) are required to positively

identify those members of the set.

9. Distribution

The associative memory of our proposed hardware

monitor has some interesting properties when used as

an interval timer; that is to say, when preceded with

data representing time interval values and then re-

quested to match an input (time) value.

If there exists a possibility that outlying interval

times may exceed the maximum preloaded value, it is

possible to avoid the equivalent of the "frequency

folding" problem which plagues aerospace instrumen-

tation by modifying the data reduction algorithm as

follows. One cell of associative memory (e.g., line 61

in Figure 4) is uniquely preioaded so as to guarantee

a mismatch on initial inquiry. An outlying value fail-

ing to match at the first attempt is then forcibly

matched with this cell, a frequency count is increment-

ed, and the current (outlying) value is compared with

the current maximum outlying value, and the greater

of the two written back into data storage (MAXIMUM,
line 61). In this way sufficient information may be

gathered to form a necessary and sufficient description

of the statistical distribution of the periods which are

of interest.

10. Utilization

A latent source of unreliability in a supposedly fully

tested and debugged operating system may reside in

the fact that some sequences of code have never been

exercised and, therefore, are not validated. In the pres-

ence of some extreme condition, at a future time

such code may be activated for the first time—under

critical working load, with unpredictable results.

Our proposed hardware monitor may be utilized to

subject all system code to close scrutiny—and unlike

previous hardware monitors, may cover overlays and

system-initiated "user" tasks, as well as permanently

resident code.

Figure 5 shows an example where lines 6 through 8,

representing instruction address X'3D00' through

X'3D2F' are never executed in either of two possible

modes.

11. Selective Fault Injection

Another possibility—which comes close to what J.

Gould describes in Reference AB3—is to stimulate the

subject system with an injected error or overload con-

dition, then monitor the resulting reactions, using tech-

niques described under previous application headings.

Some such technique is possible with existing hard-

ware monitors, operated manually. A much more pow-

erful insight is possible with our proposed system,

however, not merely because of improved facilities

for observing resulting software/hardware events. The

payoff would come from the programmability of the

monitor, making it possible to pre-select vulnerable

intervals during which one would like to have the error

condition injected.
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12. Problems and a Solution

This may have appeared to be an overly optimistic

projection of what is possible with existing equipment.

In contrast, what problems may be foreseen?

Among hardware monitoring practitioners it is well

known that each make and model of computer presents

idiosyncratic difficulties. These typically are concerned

with such matters as instruction pre-fetch before or

during conditional branches, observation difficulties

for opcodes executed from registers or from interrupt

locations, skewing in time of signals, such as opcodes

and success/failure when the code was a conditional

branch, etc.

These difficulties create relatively minor problems

leading to negligibly small inherent errors with current

equipment. New equipment now coming to the field

is liable to compound some of these types of problems

and also to add a new one. With new types of packag-

ing, access to signals of interest may well become pro-

hibitively difficult as compared with attachment to

most computers in use today. Unless a solution can be

found to these problems, then sophisticated forms of

joint hardware/software monitoring—with all the ad-

vantages which they offer to performance evaluation

—

may never come to maturity.

The only solution appears to be for computer man-

ufacturers to include what may be called a Monitoring

Register in their equipment, and provide standard plug

and socket accessibility for external equipment.

Appendix 2 sketches a format for such a register,

arranged with four optional levels of implementation.

Option I would provide all that is needed for simple

low-cost (possibly graphical) resource overlay monitors.

Option II would go beyond that and enable exe-

cution intensity by address, opcode mixes, or simple

event observations to be made.

Option III would extend to the current level of per-

formance described in this paper, by including soft-

ware event identification.

Option IV would make possible, in an elegant man-

ner, a two-way interaction process between system and

Monitor. This leads directly to possibilities such as the

optimization of scheduling, early warning for overload

reconfiguration, and the like.

13. Summary

This paper has outlined what is possible for relia-

bility improvement using existing techniques of joint

hardware/software monitoring. (Indirectly, perhaps,

it has also indicated new fields for general perfor-

mance evaluation.) The opportunity has been taken of

raising a warning voice on the subject of the increas-

ing difficulty of performing hardware monitoring,

given the increasingly complex and inaccessible pack-

aging technology of the new computer systems, and a

proposal has been made which would mitigate many

of these difficulties.

APPENDIX 1
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[AB2] D. D. Droulette, "Recovery through programming sys-
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467-476.

[AB3] J. S. Gould, "On automatic testing of on-line real-time

systems," Proc SJCC 1971, AFIPS, pp. 477-484.

[AB4] A. N. Higgins, "Error recovery through programming,

Proc FJCC 1968, AFIPS, pp. 39^3.
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action system," Proc SJCC 1972, AFIPS, pp. 1197-1206.

APPENDIX 2

Proposal for a Monitoring Register

Option I

Slowly changing signals, in millisec to seconds range, such

as I/O channels busy, CPU busy, CPU in privileged state, etc.

Option II

Rapidly changing signals, internally in nanosec to micro-

second range, but staticised for duration of following instruc-

tion. Include instruction address, opcode executed, requisters

referenced, data reference address, success/failure for

branches, byte/character/ word length for variable length

instructions, etc.

Option III

"Software filter option"—identifier (s) transmitted volun-

tarily by subject operating system.

Option IV

"Return identifier option"—destination for messages trans-

mitted by external monitor to operating system.
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FORMATTED OUTPUT* LIVE FROM ADAM
DUMP OF ADAMS MEMORIES AT 1 2x25 FEB 07 >' 73 # PROGRAM NAME ^INHIBTIMIS
SAMPLE N0« « 2* ADAM STATUS « D10A*PLUGB0ARD READ DATA « 1420

DISA IN OP INHIBTIME
LOG BLE HB

00 3D37 03 FF 0
01 3D37 03 C023 1380
02 D04F 03 69 ^ 0
03 D053 03 25 ^

\ 0
04 D054 03 68 \ 0
05 D056 03 31 \ 0
06 DO 57 03 69 \ 0
07 DO 56 03 47 0
06 D059 03 20 \ 0
09 00 5

A

03 68 \ 0
10 D04E 03 31 \ ^
11 D04F 03 69

\ I12 DO 53 03 25
13 D054 03 68
14 D056 03 31 \ 0
15 D057 03 69 0

\o
^0

16 D058 03 47
17 D059 03 20
18 D05A 03 68 0
19 D04E 03 31 0
20 D04F 03 69 o\
21 D053 03 25 0

^

22 DO54 03 68 0
23 D056 03 31 0
24 D057 03 69 0
25 D058 03 47 0
26 D059 03 20 0
27 DO 5A 03 68 0
28 D04E 03 31 0
29 D04F 03 69 0
30 D053 03 25 0

Figure 1. 'Provenance and Posteriority'

^Identifier 02 signifies ALLOCAT module.
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FORMATTED OUTPUT FROM HISTORY FILE WH016JAN05
DUMP OF ADAMS MEMORIES AT 16t27 JAN I 6# • 73>PROGRAM NAME «WHOl
SAMPLE NO* » 1#ADAM STATUS * E03B>PLUGBOARD READ DATA « FFOO

ADDR COUNT OVER WRITES
U?C ESS WRIT

00 4002 1 40
01 4004 1 41
OS 7F37 2 43
03 7F38 30 43
04 7F5E 1 44
05 7F66 1 45
06 7F8E 1 46
07 0718 1 47
08 071B 1 48
09 0 0 49
10 0 0 4A
11 0 0 4B
12 0 0 4C
13 0 0 4D
14 0 0 4£
15 0 0 4F
16 0 0 50
17 0 0 51
18 0 0 52
19 0 0 53
20 0 0 56
21 0 0 57
2S 0 0 58
23 0 0 59
24 0 0 5A
25 0 0 5B
26 0 0 5C
27 0 0 5D
28 0 0 5E
29 0 0 5F
30 0 0 60 2

Figure 2. 'Localization'

Sample period 12 hours overnight;

observed write activity is the resul

of normal system initialization.
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FORMATTED OUTPUT FROM ADAM HISTORY FILE INH19FEB01
SAMPLE NO* 6 TAKEN ON 13tl4 FEB 19* '73 ADAM STATUS D03B PLUGBOARD RE

PROGRAM INHIBTIM18 (D) INTERRUPT DISABLES <ONLY)l OlOO USECS);COUNT & M

U^NG DISABLES
ALL0CAT-f-*24 194148
DELTAQO-t-* 19 1 103
COG CODE*«Fa 874
SSS<»>* 1 1

1

833
COG C0DE*»480 697
EG0CR2'i-*24 695
SSS-*^*422 492
MBS+«D3 540
TtQ J0BS<*>»1 506
TlRCE+«9 458
TtRDERL-*-* tC 579
GBG-(-«2D 425
C0tIN0'f*12 420
CO t IN0-*>»18 889
C0COP56+* ID 310
SSS+» 157 0
TtOV*«2D 355
C0CSEND<*>*44 186
COG CODE* .450 332
REGl 330
COG CODE* .467 325
lOSGU**! 266
SERDEV-i-»15 208
ALLOCAT.63 282
RBBAT-f*44 279
RE ENT**! 272
PULLALL*»15 252
TjPULLE*. 1 182598
WAKSUP^.7 217
TtCHS*»4B 184
TtCHS**! 184
lessT+.s 160
TtDELUS'i-«4A 136
SGCQ2-t-«l 0
SERDEV+.E 133
STKOVF 130
COCOFF+.i 118
NEVQ<i-.2F 90

LATHER FIELDS 1- 160

Figure 3. 'Prolongation'

Cumulative maxima (microseconds) in

one hour observation period.
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FORMATTED OUTPUT FROM HISTORY FILE RES27JAN01
DUMP OF ADAMS MEMORIES AT 10l35 JAN 27# • 73* PROGRAM NAME «RESP
SAMPLE N0> « 1»ADAM STATUS « DO3B> PLUGBOARD READ DATA " 0000

INTERVAL FREQU MAXIMUM
UM3 ENCY

00 0 0 0
01 1 0 0
02 2 0 0
03 3 0 0
04 A 0 0

t 1 t t

t 1 t t

t t t 1

34 34 0 0
35 35 0 0
36 36 0 0
37 37 471 0
38 38 72 0
39 39 200 0
40 40 762 0
41 41 44 0
42 42 18 0
43 43 321 0
44 44 1771 0
45 45 19 0
46 46 10 0
47 47 3538 0
48 48 570 0
49 49 141 0
50 50 83 0
51 51 96 0
52 52 33 0
53 53 5 0
54 54 11 0
55 55 9 0
56 56 0 0
57 57 2 0
58 58 13 0
59 59 28 0^
60 60 0 ^0
61 664^629 £1223-*^ C683

Figure 4. 'Distribution'

Variation in times to restore user

environment

.

122 observations exceed 60 microseconds.

Longest period = 68 microseconds.
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FORMATTED OUTPUT* LIVE FROM ADAM
DUMP OF ADAMS MEMORIES AT 09j22 FEB 21 >• 73> PROGRAM NAME «BLKTIME$
SAMPLE NO. * UADAM STATUS « DOAA# PLUGBOARD READ DATA 0689

TRUE*
WArtRnMLTV — If t RTIIAI

yjKJ 9A AnA •anAn on '\aO O
n 1 1 AA in7nou / u 1 1 n

inAn 107 AO S f 4
o n m^inOl^^v 7Rr O

nA A'^9A •arvAnOLf^U 1 1 n 1 t1 1 o 1 1

1 n

A

'ipi'^n01./0U 1 77AAIff lO
uo "5non ft

VI

n7V r n "^ni n ft

V o n •^nnnOlAiU n
n Q A')9 •^Pirn AS043
1 rt1 u n opirnOv/E«U '40Oe
1 t n ipnn nw
1 9 OOVw 1 Q
1i O '^PRnOwOVrl *%An

AA 1 IPAn 07AA
i 1 9nn "^p onOw TV AnAA
OO t A 'ip AnOw ou AAAA

I r ^R9 O OO f u 0770c f f c
1 O 1 1 Ac;7 "^pAnooou A7AAO f OO
1 O n OO 9U OO

1 AA IPAn ftU
9 1 A t IP "^nOO ou ftU
fie n OOoU n

CO A

1

o \ IP 1 AOO 1 •*

PA on OOUv ftU
1 n')AS oor u soo

SO AO •inirnOOr>U C\AO34a
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Figure 5. 'Utilization'

Times are cumulative microseconds of

CPU execution in REAL or VIRTUAL mode

during 10 minute observation period.
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CHAPTER III

Tools and Techniques

A. MEASUREMENT

Tools and techniques for monitoring a computer

system's performance have developed rapidly over the

last five years. At the beginning of the period, analysts

were faced with the question: How can I obtain any

data on the system's performance? Today the question

is often: Which tools should I select to measure which

system characteristics? Although measurement technol-

ogy has advanced dramatically, it (and associated

areas) still require further development and, particu-

larly, research.

Four papers on these topics are presented in this

section. Warner reviews the historical development of

monitoring tools and suggests where further monitor

development will (or should) go. Schwetman's paper

is concerned with the topics of designing experiments

in which monitors are used and with the analysis of

data from these monitors. He notes that performance

variability is one of the difficult realities to address,

and Bell's paper explains the magnitude, importance,

and techniques to deal with this variability. These

tools, techniques, and problems are highly technical;

JefFery's paper points out that this technology should

be employed only if required.
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Abstract

First generation computers were designed to operate in a serial fashion—performing one opera-

tion at a time (e.g., input, output, process). Performance evaluation was simply a matter of deter-

mining, with a watch or calendar, the time from the start of a job to the end. After several

generations of computers, we now have systems with an enormous degree of complexity and

parallelism.

In an effort to keep pace in the performance evaluation area, several computer manufacturers,

as well as companies not directly involved in the manufacture of computers, have built a number

of performance measurement tools. These tools cover the whole spectrum, from a simple device

using electromechanical counters, to a system larger than most computers it would measure.

Future measurement systems will involve both hardware and software. Special software some-

times will communicate with the hardware monitor over a special I/O interface. These new mea-

surement systems will then not only provide information about system performance, but will provide

much more accurate job accounting information than is currently available, as well as doing a

better job of scheduling.

Key words: Computer, evaluation, hardware monitors, measurement, performance, software moni-

tors,' throughput.

1. Introduction

This paper describes measurement devices used for

evaluation of computer systems. It does not examine

any measurement techniques. In an effort to develop a

basis for "fruitful discussion," I have suggested the

measurement tools that I think will evolve in the fu-

ture. But first I must examine the origins of today's

measurement devices and the current stage of develop-

ment in order to lay the groundwork for the evolution

that I envision. In tracing the history of these tools, I

have not attempted to describe all that have been, or

are, available. Instead, I have indicated only where

advances or changes have occurred.

I have been the principal designer for much of the

equipment that I discuss. Although it might be sug-

gested that my selection for discussion is biased, the

fact is that these are the ones that I know most about

and am most competent to describe. They are also

many of the landmarks in the changing measurement

picture.

2. History

First generation computers were designed to process

as fast as possible in two principal areas of applica-

tion: scientific and commercial. The scientific proces-

sors were judged by how fast they could add, subtract,

multiply, and divide; the commercial processors were

judged by how fast they could manipulate data. These

early processors were organized to operate serially

—

that is, they had to input the program and data before

processing could begin. While processing, the com-

puter could do no I/O. Upon the completion of proces-

sing, the information was output.
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These machines were very easy to evaluate. You had

to trigger a stopwatch when the load button was de-

pressed, and you stopped the watch when the last line

was printed.

You could improve execution time somewhat by

streamlining the program, if you knew where to look,

but processing improvement was limited by very slow

I/O devices. Throughput evaluation of these systems

meant using a watch or a calendar to time a program

or a series of programs from beginning to end.

Computer manufacturers were quick to realize that

this serial process was wasteful, so the next generation

of computers was designed to perform the I/O func-

tions in parallel with program processing. This pre-

sented a new set of problems to the marketing depart-

ments of computer manufacturers. Since a customer

would evaluate several vendors' equipment by using

benchmarks, it no longer was a simple matter of whose

processor was the fastest. How well parallel I/O was

handled became important.

In the case of IBM, the answer lay in measuring the

degree of parallelism, or overlap, between processing

and I/O. After several attempts to do this with soft-

ware, a hardware device was designed. It was called

(aptly and simply) "The Hardware Monitor."

This device was nothing more than a collection of

standard instrumentation counters with some minor

logic to interconnect them. The problem was that this

rather simple device required a fairly elaborate inter-

face to be designed into the computer.

Since the early computers had nothing like a wait

state, this interface also had to have instruction recog-

nition circuits for decoding the standard instruction

loops used to wait for I/O completion. The Hardware

Monitor counted instructions executed, channel 1 busy,

channel 2 busy, unit record (equipment) busy, CPU
wait, and total elapsed time.

Here are some of the hardware devices that evolved

from the Hardware Monitor. All but one are for IBM
machines.

Channel Analyzer—This device was functionally the

same as the Hardware Monitor but much smaller,

employing computer circuitry instead of the instru-

mentation counters. While the Hardware Monitor

measured 6' by IV2' by 2' in size, the Channel

Analyzer was footlocker size.

Program Monitor—The Program Monitor performed

the same function as a trace program but also mon-

itored channel activity. It could trace the logic flow

of a program running on the computer and record

the results on magnetic tape. While a program might

take from 10 to 100 times as long to execute while

running in trace mode, the Program Monitor al-

lowed the program to operate at full speed, because

the Monitor was transparent to the host system.

The drawback to widespread usage of the Program

Monitor was the fact that the data reduction pro-

gram could, and ofteii did, take up to 71/2 hours to

reduce 51/^ minutes of trace information to usable

data.

"P" Snatcher—This device was similar to the Pro-

gram Monitor. It used one Univac 1108 to trace an-

other Univac 1108. It could capture only I714 sec-

onds of trace information at one shot, however.

Program Event Counter (PEC)—The PEC was an

improved version of the Channel Analyzer with more

counters. The two principal added features were a

logic plugboard and comparators. The logic plug-

board allowed for combining the interface signals

in various ways prior to directing them to counters.

The comparators provided the ability to compare

storage addresses or storage content against up to

six fixed quantities.

Execution Plotter—The Plotter was an attempt to

overcome the data reduction burden imposed by the

Program Monitor. It took the storage address, trans-

formed it to a voltage through a D/A converter and

displayed this voltage on the vertical axis of an

oscilloscope. The horizontal axis was time; it was

generated by moving film in a strip film recorder.

In this way, core usage could be seen as a moving

spot on film, where a bright spot meant high usage.

Systems Analysis Measuring Instrument (SAMI)—
A larger version of the PEC, SAMI had more count-

ers, more comparators, and more programmable

logic. The unit was built in a System/360 Model 50

frame, contained 50% more logic than a standard

Model 50, and consumed twice the power. One of

the more interesting features of this machine was

its relocation register which could be set by the host

machine. The register allowed the comparators to

operate on relocatable addresses. Although it

worked from a measurement interface, the SAMI
was the first device as far as I know that could also

collect data using general purpose probes. This de-

vice also was the first to be used to monitor System/

360.
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Basic Counter Unit (ECU)—The BCU was the

predecessor to all of the first commercially available

hardware monitors—CPM I and II, SUM, Dyna-

probe, CPU 7700 and 7800. It was to be used to

service IBM customers and was not for sale. The

reason given for not selling the BCU was that the

Systems Engineer should receive and interpret the

results in order to avoid erroneous conclusions that

might be drawn if the customer were left to his own

devices.

X-ray—X-RAY has all of the features of the first

commercially available hardware monitors, with mi-

nor exceptions, and also some very useful improve-

ments. The most notable is its ability to map core

usage, which, in my view, is much more important

than the simple trace technique employed in the

Program Monitor and Execution Plotter.

3. Software Tools

While the hardware monitor has many features that

make it ideal to do most of the measurement and

evaluation jobs on computing systems, it lacks the abil-

ity to gather information at the individual program

level in a multiprogram environment. The software

monitor, on the other hand, lends itself well to this

job. However, it is unable to gather accurate mea-

surement information at the device level, and, of course,

it imposes an overhead burden to the system it is

monitoring.

Software monitors are designed to operate at three

different levels. At the first level, they operate to give

information about the total system, e.g., SUPERMON,
Boole and Babbage's CUE. These focus on hardware

resources and operating system functions which cause

available wait time. The programs analyze the per-

centage of CPU wait according to the reason for the

wait, I/O path availability, queue properties, and de-

vice accessibility. These programs most closely ap-

proximate the function of a hardware monitor.

The second type analyzes resource requirement at

the individual program level, e.g., PROGLOOK, Boole

and Babbage's PPE, Lambda Corporation's LEAP.
These allow the user to see where his programs are

spending their time and where program improvements

can be made.

The last type is, basically, a set of job accounting

routines, e.g., SMF. These show resource utilization

such as CPU, direct access device, used versus re-

quested core, and a completion code summary.

4. Where Are We Today?

The latest hardware monitors are beginning to in-

corporate minicomputers in their design. Since hard-

ware monitors have, in the past, produced a large

quantity of recorded data which is often quite over-

powering, these new monitors provide some preproces-

sing. Or, as Hughes calls it, "software filtering."[l] '

Examples of these new devices are the Tesdata 1185,

[2] and the COMRESS Dynaprobe 8000.[3] COM-
RESS claims that their system can measure job timing,

task switching, queue delay timing, channel program

activity, IOCS activity, etc. These are sizeable claims,

but, at present, some subset of these can be achieved

only by taking the measurement data produced by a

monitor and the software data produced by the host

system during a processing run, then merging both

sets of data during a separate post-processing phase of

the data reduction program.

At the other end of the price spectrum is the Micro-

Sum,[2,4] a CRT device which attaches to the host

system using probes. It can display 8 or 16 events as

a percentage of elapsed time in histogram form. This

device in its simplest form is very useful to the opera-

tions staff as a real time tool for resource balancing.

5. The Future: Some Thoughts

In the past, hardware and software monitors have

been used on a once-in-awhile basis or by installations

that have complex systems or more than one system or

both. This limits a monitor's usefulness to those users

that have large budgets. By developing additional uses

for this monitoring equipment such as job accounting

and resource scheduling, monitors can be made useful

for all types of users or installations—large, small,

complex, simple.

What I am suggesting is a process controller that is

capable of accepting commands from the host system

and that can interact with the operating system. These

ideas are not new, and several successful attempts in

this direction have been made already. [1, 5, 6]

5.1. Job Accounting

By maintaining job resource files in the process

controller and allowing the controller to update each

time an interrupt is handled, a great deal of the bur-

1 Figures in brackets indicate the literature references at the end of this paper.
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den and most of the overhead could be removed from

the host system. If we couple this information (up-

dated job resource files) with the hardware monitor

measurement information, we can achieve a degree of

accuracy and repeatability never before possible.

5.2. Scheduling in Real Time

From prior runs, operational characteristics and re-

source requirements can be catalogued by the process

controller. Once it knows the requirements of the jobs

currently in the job queue, the resource requirements

of these jobs plus the request queues and the actual

status of all I/O devices and data paths (measured

information), the process controller can alter the se-

quence of these jobs to take advantage of under-

utilized resources.

5.3 Performance Measurement

Measurement information can evolve as a by-

product of job accounting and scheduling rather than

as primary, stand-alone data. It then serves as the long

range planning tool for predicting when it will be

necessary to add additional resources and/or upgrade

the CPU.

Measured information is not an end in itself, but,

rather, one of several inputs that will lead to an ef-

ficiently managed computing system. Current systems

are too large and too fast to be scheduled by the hu-

man resource alone. What we must come to is a closed-

loop system of process control.
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Experimental observations form an important part of computer system performance evaluation.

It is through experimentation that models are validated, simulations parameterized and systems

tuned. This paper surveys several approaches to designing experiments to aid in the assessment

of systems behavior. Data gathering tools and techniques are discussed, as are the important topics

of data presentation and data analysis. The paper concludes with a critical examination of the state

of the art of experimentation. The key problems are found to include: (1) a lack of generally

applicable guidelines, (2) a missing link between low-level data and high-level questions and (3)

a lack of means for dealing with variations in behavior attributable to variations in the workload.

Key words: Computer system performance evaluation; experimental assessment of system behavior;

performance data analysis; performance data presentation; performance monitoring.

1. Introduction

Experiment design and data analysis as related to

computer system performance evaluation covers a great

diversity of topics ranging from the development and

validation of analytical and simulation models to cas-

ual observation of a subsystem, such as a disk drive, in

operation. In this paper, the term "experiment" will be

restricted to mean a period of observation of a com-

puter system in operation. The system being observed

could be either an actual or a simulated system.

Experimentation is an important part of computer

system performance evaluation. It is through experi-

mentation that models are validated, simulations para-

meterized and systems tuned. In spite of its impor-

tance, design of computer-based experiments has re-

ceived little attention in the literature. Experiments

themselves have been described, but no base of knowl-

edge and experience concerning experiment design is

available.

Experiments on computer systems have produced

many beneficial results, but there are limitations to an

experimental approach to finding solutions to system

performance problems. These limitations center on the

variability of the system load found in normal opera-

tion. This problem, and several others, are discussed

in this paper. It is hoped that as experience is gained,

solutions to some of these problems will emerge.

An extensive bibliography covering performance

evaluation appeared in a recent issue of Computing

Reviews; this will be referred to as the CR Bibliog-

raphy. [1]
'

2. Classifying Experiments

An experimenter initiating a program of computer-

based experiments has to make several choices about

various techniques available to him. Many times he

can choose between using an actual computer system

or a simulated system; he can observe the system in

normal operation or create a special test environment;

and he can gather data at any one of several levels of

detail. The purpose of the study, the tools and systems

available, and the background of the experimenter all

influence each of these decisions, and others, which

must be made. This section presents features of experi-

ments which can be used to classify them along the

lines suggested by the choices open to the experi-

menter.

1 Figures in brackets indicate the literature references at the end of this piper.
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2.1 Computer System Used

One way of classifying an experiment is by the

kind of system being used as the test bed. This dis-

cussion will consider experiments conducted on both

actual operating computer systems and on simulated

computer systems. Actual systems have some advantage

over simulated systems because they already exist and

because they are very realistic. Alternatively simulated

systems may require a prodigious implementation ef-

fort, and the degree of attained realism is always

questioned.

The major drawback to using actual systems is that

questions about systems or features of systems which

are not available cannot be answered, while a simu-

lated system can be constructed to model almost any

system or system feature. Also, there is the matter of

cost; stand-alone usage of existing systems can be pro-

hibitively expensive. However, it is not clear that using

simulated systems is much less expensive. One simu-

lated system is reported to consume five minutes of

actual computer time to simulate one minute of time

on the modeled system. [2] Trace-driven modeling is an

interesting blend of these two types of experimental

techniques. [3]

There have been several documented studies which

use both kinds of systems. Many such studies are listed

in the CR Bibliography. [1]

2.2. Operating Environment

Some experimenters may wish to compare the per-

formance associated with several alternative configura-

tions or combinations of system features. Such a com-

parison uncovers the fact that most performance indi-

cators vary with both the system (hardware and soft-

ware) configuration and with the job load. In order

to make valid comparisons of performance, one must

control the job load so that a given operating environ-

ment can be reproduced. This controlled environment

has been achieved by using sets of benchmark jobs,

synthetic jobs [4] and controlled job introduction tech-

niques for batch systems [5] and terminal simulators

for time-sharing systems. [6]

Another operating environment is found in the nor-

mal or production mode of operation. When observing

the system in this environment, the experimenter has

some assurance that he is gathering "typical" per-

formance data, an assurance which may be lacking

in the controlled environment. This normal (but un-

controlled) environment does present problems to the

experimenter. For example, it may be difficult, if not

impossible, to compare data gathered during separate

periods of observation. Also, peculiar or unexpected

values may be observed in the data, and there may be

no convenient way of relating such observations to the

job load being processed.

2.3. Purpose of Experiment

Another way of classifying experiments is by the

expressed purpose. One series of experiments may be

aimed at "tuning up" an existing system. Here the

emphasis is on trying to answer questions such as:

"Is the system operating at an "adequate" level of

performance? If not, why not? If so, can this level of

performance be achieved for less money?" Many
"tune-up" studies have been conducted; most have pro-

duced at least some noticeable improvement (often

because the system was operating so poorly). [7]

Another type of study may be directed toward evalu-

ating different system configurations and different com-

binations of system options. One such study (unpub-

lished) dealt with the desirability of acquiring a drum

on a large System/360. The experiments included ob-

serving a system with and without the drum to deter-

mine whether or not the drum could be cost-justified

(it was).

Some studies have been concerned with detect-

ing and eliminating bugs within a system. Another

study located system bottlenecks and was used to jus-

tify changes in job-processing priorities. [8] In sum-

mary, there can be several different reasons for con-

ducting experiments, and the experiments can be clas-

sified by these purposes.

2.4. Level of Detail of Data

One other way of classifying experiments is by the

level of detail of the collected data. In some situations,

a stop watch, or perhaps some gross level job account-

ing information, may be all that is available or re-

quired. At another level, detailed job accounting data

is used to produce information about resource utiliza-

tion and the flow of jobs through a system.

Another level of data is characterized by sampling

monitors (hardware or software). Here information

is obtained about resource usage and even queueing
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or contention for resources. At a very low level there

may be some event-logging facility which can record

(for later analysis) the stream of chosen events as

they occur during system operation.

In attempting to compare these levels, one can gen-

erally say that the lower the level, the greater the

amount of data and also the greater the cost of gather-

ing the data. (Stopwatches are very cheap.)

3. Current Status-—Data-Gathering
Facilities

Successful analysis of computer systems using ex-

perimental techniques depends on access to good tools.

When a simulated system is being used, the relevant

tool is the simulator. When an actual system is being

used, the relevant tools are encompassed in the data-

gathering and analysis facilities. The state of simula-

tion aids has been discussed in numerous other

sources. [9] This section will concentrate on surveying

the current state of data-gathering tools.

3.1. Job-Accounting Facilities

Most operating systems used with large third-genera-

tion systems come equipped with some job-resource

accounting facility. Others have had such facilities

added so that today most system users can use job-

resource accounting data as a source of measurements.

In some systems, this facility is quite extensive and

potentially a source of useful data. For example, usage

of many system resources such as CPU time, I/O
facilities and disk space can be recorded for use as an

evaluation aid. This data source can also provide in-

formation about the jobs flowing through the system

and the system programs being used by these jobs.[10]

This type of data-gathering facility is of limited use

in many experiments because the data does not re-

flect usage patterns; it only reflects total usage. For

example, CPU idle time for an entire shift can be

obtained, but CPU idle time for a particular minute

cannot. Another problem occurs if the apportionment

of use charges is not done in a systematic fashion. For

example, in some systems an interrupted user program

is charged for the CPU time required to process the

interrupt, even if that program was not responsible

for the interrupt. While this may be an equitable

charging scheme, it does not enhance the value of job-

accounting data as an aid to performance evaluation.

Still other problems can be attributed to the coarse

resolution of the system clock.

3.2. Sampling Monitors (Software

and Hardware)

Sampling monitors sample and record the status of

system variables. Hardware monitors record the status

of variables at the circuit level. For example, they can

record the usage of or contention for hardware re-

sources,[ll] but they are generally limited in their

ability to record the status of resources or queues rep-

resented as tables in core. Because of this apparent

limitation, information on the lengths of queues or the

flow of jobs is not readily available to hardware

monitors.

Software sampling monitors also record the status

of variables, but at the software level. For example,

they can collect information about the contention for

resources and resource usage as seen at the operating

system level. [12] Software monitors do impose an

added load on the system. It is hoped that this added

cost is outweighed by the benefits of getting the data.

Also, there are some variables of interest which can-

not be sampled by software monitors: memory inter-

ference is one such variable.

There are items of interest which are not readily

available to any sampling monitor. For example, the

interval between two events is not easily measured by

sampling techniques. Also patterns or sequences of

events are not usually obtainable.

3.3. Event Recording

A few operating systems have been equipped with

a general event-recording facility. [13] This type of

tool is probably the most general. It is capable of pro-

viding almost any information about the operation of

the software system which could be desired by a re-

searcher. It is also the most expensive in terms of

effort required to implement and systems resources

required by the data-gathering activity. The fine level

of detail which is available is the cause of these prob-

lems. Also, the researcher faces formidable decisions

in selecting items to be summarized in the report

generation phase.

Some hardware monitors have been used as event-

recording tools. This usually turns out to be an ex-

tremely difficult and time-consuming endeavor.
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4. Current Status—Data Analysis

Display, reduction and analysis of the gathered data

is a critical problem area in any experiment. It is es-

pecially critical in the area of computers because of

the large quantity of data which can be gathered in a

relatively short period of time. One experimenter using

an event-record facility logged 1.6 million events per

hour.[5]

The most primitive display of data consists of listing

all of the events as they occurred. While this method

of presentation may allow the experimenter to see se-

quences and patterns of events which may not show

up in any higher level data display, it also may allow

him to "not see the forest for the trees."

Data displays may consist of time-based bar graphs

and frequency histograms or the more normal statis-

tical quantities, such as the sample mean and standard

deviation, the range, the min, the max, etc. These all

represent reduced data which can be more easily inter-

preted. The problem is that each level of reduction

involves a trade-off between the quantity of informa-

tion and comprehensibility of the information.

A simple example follows. In one study, the CPU
utilization was recorded by a hardware monitor. The

resolution of the monitor was 5 seconds (i.e. the data

was presented as a sequence of numbers, each repre-

senting the percentage of a 5-second interval the CPU
was busy). When this data was summarized over a

1-hour period, the sample mean was observed to be

62 percent (pretty good). However, the sample vari-

ace was observed to be over 2000, which, based on

other observations, was judged to be very high. Finally

a time-based bar graph was produced; this graph

showed that the data was a sequence of several one

minute intervals of zero percent CPU busy followed by

a sequence of intervals of 100 percent CPU busy. The

user finally recalled that during the period in question

the maintenance engineers had been using the system

and were running intermittently some diagnostic pro-

grams. While perhaps an extreme situation, it does

vividly illustrate problems associated with using "sim-

ple" statistics. It also vividly illustrates the continuing

need for relating the observed data to the system job

load.

5. Current Status—Experiment Design

In the field of statistics, a well-designed experiment

produces valid results as efiBciently as possible. [14] An

experimenter observing a computer system has to pro-

duce a well designed experiment in this sense, but he

also must solve some problems which are not normally

found in experiments in other areas. Three features of

computer-based experiments emerge as requiring spe-

cial consideration: (1) the speed of data accumulation,

(2) the dependency of observed results on the lob load

and (3) a disparity between the level of questions

asked and the level of data gathered. The status of the

design of computer-based experiments can be placed

as roughly equivalent to design of experiments in other

fields, but with these additional factors, the design

procedure may be more complex.

This section will not discuss experiment design from

the statistical viewpoint. Instead it will focus on the

three problem areas mentioned above. The discussion

assumes that the importance of using reliable statis-

tical techniques and of developing a plan prior to the

beginning of experimentation is understood.

5.1. Speed of Data Accumulation

Events can occur at an extremely rapid rate in a

computer system. This obvious fact can lead to prob-

lems when data is gathered from an operating com-

puter system. Because of this speed, storage of the

gathered data becomes a limiting factor as an experi-

ment is being designed. Many times, the designer has

to sacrifice detail in order to gather data over a sig-

nificant period of time. Data is often compressed as it

is gathered, at an increase in the cost of collection and

perhaps at an additional cost of losing some of the

desired information. Sampling techniques are some-

times used as a means of reducing the amount of

collected data.

The speeds present also mean that event recording

can be expensive in terms of resources required to

gather the data. A software monitor can impose a sig-

nificant load on the observed system. Hardware moni-

tors also become more sophisticated, and hence more

expensive, as greater resolution is required.

Because of the large amount of data which can be

accumulated during the course of an experiment, the

data analysis and data presentation phases assume an

important role. It is impractical to view all of the data

collected in many experiments. The experimenter has

to develop statistics and data displays which accurately

summarize and portray the factors being studied. There

is a need for improvement in this area.
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5.2. Dependency of Results on the Job Load

As stated earlier most performance indicators vary

with both the load being processed and the configura-

tion of the system. This often restricts the applicability

of the results of an experiment to the environment in

which it was conducted. Currently, there is no satisfac-

tory method of characterizing a job load in terms of

the demands it makes upon a system. This inability to

characterize program and job behavior limits the use

of performance evaluation techniques.[15]

In order to factor out the load as a contributor to

variations in observed performance, the experimenter

can choose between two techniques: he can conduct

his experiments in a controlled environment, or he can

observe the normal (uncontrolled) environment and

hope that load-caused variations are averaged out over

a long period of time. Neither technique is entirely

satisfactory. Since a system typically functions in an

uncontrolled environment, it is imperative that any

results of an experiment be applied in this environ-

ment. Since there is no convenient way of characteriz-

ing the load, it is difficult to predict that the obtained

results will be transportable to the normal production

environment. There have been new systems which were

selected and configured on the basis of sets of bench-

mark jobs and which did not function satisfactorily

when installed.

When observing the system in normal operation, the

experimenter is seeing the system in some part of its

regular environment and has some assurance that

beneficial results can be applied. However, in this

environment, the experimenter is limited in his ability

to compare results gathered across different periods

of observation.

5.3. Disparity between Level of Questions

and Supporting Data

Often, the questions posed at the onset of an experi-

ment are of a subjective type at a rather high level of

abstraction, while the data which can be collected is

definitely objective and usually at an extremely low

level. Examples of questions which may be posed

follow

:

1. Assuming only a limited expenditure of funds,

what changes can be made which would result

in increased job throughput?

2. What should be done to decrease system response

time?

3. What will be the impact on system performance

of adding an additional application (or more
jobs) to a system load?

The data which can be gathered typically include

items such as the percentage of time a data channel is

busy or the amount of time the CPU is in wait state.

There seems to be a missing link between macroscopic

questions and microscopic answers. There is a definite

need for a methodology which would guide experi-

menters in the selection of collectable data to support

answers to typical questions.

6. Future Directions—Computer-Based
Experimentation

What can we strive for in the area of computer-

based experimentation? There seem to be three general

areas of experimentation which should be improved.

One is the training of experimenters to make better

use of currently available tools and techniques. For

example, modern applied statistics is being used rou-

tinely in other areas to solve problems which are sim-

ilar to those faced by experimenters in performance

evaluation. Knowledge of statistics can provide assis-

tance in both the design of experiments and the analy-

sis of data. [16]

Another aid to experimenters would be a collection

of information about previous experimentation (both

successful and unsuccessful) so that present efforts

could benefit from previous efforts. Such a collection

does not exist in the literature because 1) this type of

experimentation is very specific to a particular operat-

ing environment thus usually not of wide enough in-

terest to be considered for publication and 2) this type

of activity often produces results which are considered

proprietary and thus cannot be published (especially

if negative results are produced).

Another area of experimentation which needs to be

extended is in the area of developing a methodology

or group of techniques which could ease the design ef-

fort. This could include development of models (ana-

lytical and simulation) which could be used as guides

to experimentation. Such models could hopefully allow

an experimenter to form questions at the previously

mentioned higher or macroscopic level and then to de-

termine those measurable quantities which influence

the desired measure of performance. Also, some mod-
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els could be used to predict performance in new oper-

ating environments.

The third area of improvement is concerned with

describing or characterizing job loads. The present

lack of load characterization methods limits the range

of applicability of experimental results. The desired

results in this area would include a method of present-

ing conclusions about present levels of performance

as a function of the present load parameters. If this

were done, then conclusions could be extended to modi-

fied loading conditions with some degree of certainty

that the conclusions would remain valid.

7. Summary and Conclusions

This discussion has not detailed the design and anal-

ysis of successful computer-based experiments. Rather,

it has presented 1) some background material, 2) an

evaluation of the current state of experimentation, and

3) some suggestions for future directions. One of these

directions could be development of a mechanism which

would allow new experimenters to benefit from pre-

vious experiments. Currently, most experimental re-

sults have been isolated and fragmentary and have not

been extendable to other types of computer systems

or, in some cases, to other sites using the same system.

The status of tools available to experimenters is

judged to be adequate but not perfect. Current prob-

lems center on lack of flexibility and on high costs

(money and resources required) of some of the tools.

However, the status of these tools is not significantly

hindering successful experimentation. It is other fac-

tors which limit the experimenter. These other factors

include:

1. A lack of techniques and experience upon which

to build

2. A missing link between microscopic measure-

ments and macroscopic questions

3. A lack of load characterization methods

An awareness of the problems in these three areas

and attempts to solve them can lead to major improve-

ments in the design and implementations of experi-

ments in the area of computer performance evaluation,
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The performance of a computer varies significantly, even when it is subjected to the same load.

Analysts who are performing between-machine comparisons, predicting performance, or merely

trying to understand performance can be led to incorrect decisions if random variability is inter-

preted as representing real differences. Tightly contolled tests employing a flexible synthetic job

indicated that elapsed time, processor time, and response time vary enough to deceive analysts.

Several trends seem to indicate that variability will increase with time, so the effect will increase

in importance. Both computer manufacturers and performance analysts should take specific actions

to preclude problems due to computer performance variability.
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variability.

"It ran 20 percent faster when I cut out the I/O

buffering."

"My simulation is accurate to within 10 percent

every time."

"This system was chosen because it did 14 percent

more work than the next best system."

Statements like these nearly always assume that the

value for a performance metric is a single, fixed num-

ber; if a test is run twice—or ten times—the result

will be the same in every case. This assumption

—

stated more succinctly—is that there exists zero within-

sample variability. Therefore, the variation between

samples (e.g., several runs on the same computer) can

be disregarded in comparison with the variation be-

tween samples (e.g., runs on computer A compared

with runs on computer B). If the standard deviation

(a measure of variability) of run times on computers

A and B were always far smaller than the difference

in run times on the two machines, the within-sample

variability would clearly not be significant. Unfortu-

nately, this nice situation does not always obtain,

and the analyst is presented with difficulties in many
analyses.

•Now located at TRW Systems Group, Redondo Beach, Calif. 90278.

1. Importance of Variability

Most analyses of computer performance involve the

comparison of one situation with another. The two

situations might be the desired processing capacity

and the predicted capacity, or the capacity of one sys-

tem and that of another system, or the capacity of the

system before a change and the capacity after the

change. In these cases variability within a sample ob-

viously will make the analysis more difficult and ex-

pensive. If the confidence in a difference needs to be

increased, more samples need to be taken in order to

obtain better estimates of the population mean. This

process is often so expensive that analysts settle for a

single sample of each population and assume that no

variability exists; the single sample is assumed to

accurately represent the population. If variability is

large and differences are small, the analyst may choose

the wrong conclusion.

A different situation also can lead to problems. If

an analyst takes a single sample of one metric of per-

formance (e.g., throughput) and attempts to relate it

to a single sample of a load metric (e.g., GPL utiliza-

tion), he may conclude that a relationship holds true
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when it is false. An example of the danger in this pro-

cedure is plotting a graph of throughput versus CPU
utilization using a single sample of each variable for

each degree of loading. If variability does exist in the

performance of the computer, the graph will exhibit a

wavy line even if a smooth line would represent popu-

lation means. The analyst then would be led to investi-

gate the causes of the false "wiggles" rather than

concentrating on the system's real characteristics.

2. Magnitude of Problem

The suggested situations above would be unworthy

of consideration if computer performance variability

were small; some indication of the magnitude of the

problem is necessary to evaluate its importance. Sev-

eral people at Rand and elsewhere have used a modi-

fication of the Buchholz synthetic test job to determine

the magnitude of variability in strictly controlled test

situations on IBM and Honeywell equipment. This test

job fas modified) includes embedded measurement in

the form of interrogations of the system's hardware

clock and recording of the elapsed time between certain

major points in the program execution. The job is

structured as follows:

1. Set up for the job's execution,

2. Set up for running a set of identical passes with

a prescribed I/O-CPU mix,

3. Execute the set of identical passes and record in

memory the time of each pass's start and finish.

4. Print the resultant execution times and compute

some simple statistics for them,

5. If requested, return to step 2 to repeat the opera-

tions for a new I/O-CPU mix,

6. Terminate the job.

The measurement of each pass provides a number of

identical samples from which the analyst can determine

the variability within a job. By running the job in a

number of different environments (e.g., concurrently

with another, similar job), a known situation can be

created to determine variability between jobs. Other

statistics such as CPU time, I/O counts, and core used

can also be employed.

The simplest situation to investigate is one in which

no jobs other than the test job are active. The system

is initialized and no other activity is initiated except

for the single job. In this simple test the parameterized

test job is set to run in either of two modes—as a

totally CPU-bound job or as a totally I/O-bound job.

The elapsed time to execute the CPU-bound portion

of this job on Rand's 360/65 evidenced no variability

within the job that was above the measurement's reso-

lution. The I/O-bound portion's elapsed time, however,

typically varied enough to result in standard deviations

(for 20 identical executions) of about .5 percent of

the mean (mean of about 35 seconds) . This small value

indicates that, at least within a stand-alone job, varia-

bility is not impressive.

The situation becomes less encouraging when the

comparisons are between separately initiated jobs. The

statistics of interest now include initiation time, ter-

mination time, and average execution time of a pass

through the timed loop for each separately-initiated job.

The initiation time of the jobs (accounting time-on

until control passed to the job) averaged 8.12 seconds

with a standard deviation of 5.03 percent of the mean.

The termination time (job execution completion until

accounting time-off) averaged 3.72 seconds with stan-

dard deviation of 16.7 percent of the mean. The sample

size of identically run jobs is too small for computa-

tion of meaningful measures of variability; in two

specific instances, however, the average elapsed time

to execute the CPU portion differed by less than the

resolution of measurement. The average execution time

for the I/O-bound portion, in two instances of samples

of two, changed by 0.4 percent and 1.2 percent. (Allo-

cation of files was done identically in each instance.)

Although the within-sample variability appears small

for internal portions of a job, the initiation and the

termination times vary significantly. Elapsed time may

be inadequate for evaluating performance changes in

short jobs.

Thus far, elapsed time has been the only statistic

used for evaluation of variability. Another statistic,

I/O counts (EXCP's on a System 360 operating

MVT), have proven to have virtually no variability.

Other statistics of interest exist, and one of the most

commonly used is CPU time. While elapsed time is an

easily defined and obtained indicator of job perfor-

mance, CPU time is often complex. Even its definition

is open to dispute; major parts of a job's CPU activity

may not be logically associated with that job alone.

For instance, the rate of executing instructions may be

reduced as a result of activity of a channel or another

processor in the system. In addition to the definitional

problem, accounting systems are often implemented in

ways that users feel are illogical. These problems are

seldom of importance when a job runs alone in the

system, but may be critical during multiprogramming
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or multiprocessing. Repeated runs of our test job on

the 360/65 did not indicate any meaningful variability

when the CPU-bound job was run stand-alone, but the

I/O bound job, in two cases, provided CPU times of

29.4 seconds and 28.7 seconds (a difference of 2.4

percent of the mean). The I/O variability, however,

does not appear critical because this job ran, stand-

alone, for an elapsed time of approximately 780 sec-

onds; the difference of 0.7 seconds is therefore less

than 0.1 percent of the elapsed time. Under multipro-

gramming results vary more.

Although the CPU charges should not vary when the

job is run under multiprogrammed rather than stand-

alone, our results indicated that the results contained

both a biasing element and a random element. The

charges for the CPU-bound job went up from 583 sec-

onds (stand-alone) to 612 seconds (when run with the

I/O-bound job) to 637 seconds (when run with a job

causing timer interrupts every 16.7 milliseconds) to

673 seconds (when multiprogrammed with both the

other jobs). The changes in CPU charges are clearly

dependent of the number of interrupts the system han-

dles for other jobs on the system. The largest CPU
charge observed in this series of tests with the CPU-

bound job was 15 percent over the stand-alone charge,

but larger biases can be obtained by running more

interrupt-causing jobs simultaneously. In one particu-

larly annoying case, the author observed a job whose

CPU charges differed between two runs by an amount

equal to the smaller of the two charges—a 100 percent

variation! I/O-bound jobs often experience CPU
charge variability of equal relative magnitude, and

I users with I/O-bound jobs have come to expect 30

j|

percent variations in their charges. These problems are

jj

not unique to IBM equipment. We found virtually the

I

same sorts of variability when running on a Honeywell

:
615 dual processor. Variability in the charges for jobs

,! in other non-paged systems appears to be similar,

li

The measures discussed above are primarily oriented

l|

to batch processing; slightly different measures are

usually meaningful for on-line systems. In the case of

on-line services, response time is usually the measure

of most interest. An on-line system operating with low

priority in a computer would be expected to have vari-

able response, but relatively constant response is usu-

1

ally expected when the on-line system is given a

I

priority only a little below the operating system itself.

J

We ran a series of carefully designed tests to provide

I

an indication of this assumption's validity on the

; WYLBUR text editor in Rand's normal environment.

A heavily I/O-bound activity (listing a file on a video

terminal) experienced response time with a standard

deviation 23.2 percent of the mean. A heavily CPU-
bound activity (automatically changing selected char-

acters) had reduced variability—15.6 percent of its

mean. A variety of other editing functions experienced

similar variability under a pair of different configu-

rations. The standard deviations as percentages of

means ranged from a low of 5.7 percent, to a typical

12 percent, to a high of 30.8 percent. These values

were obtained with different levels of user activity on

WYLBUR by real users (as opposed to our artificial

load for testing), but did not include the variability

often introduced by time-sharing systems since the

360/65 is not time-shared.

Our standard synthetic job was executed on a Hon-

eywell 615 system under its time-sharing system. The

elapsed time to execute each pass through the CPU-
bound portion was recorded to provide an indication

of the variability of response time during normal op-

eration on that system. Each pass could be executed in

about 9 seconds, but on occasion the average was as

large as 597 seconds with the standard deviation ex-

ceeding the average. (It was 598 seconds.) Variability

of this magnitude can produce highly anti-social beha-

vior by users and ulcers for analysts.

3. Future Treuds

Computer performance variability will probably not

get worse before it gets better. It will probably just

keep getting worse. Reducing variability (and retain-

ing meaningfulness) appears to be an objective that is

inconsistent with improving functions and/or per-

formance. Increased functions can be acquired at the

expense of performance, or they can be included in a

system with little performance degradation by employ-

ing performance enhancements in the new functions'

designs.

Many performance enhancements (either for the

sake of new features or for performance's sake itself)

inherently introduce variability. For example, rota-

tional position sensing on disk drives can improve

average response time and average throughput. How-

ever, it introduces another randomizing element in

computer operations and therefore increases variabil-

ity. Making resources available to more independent

jobs will increase variability as each job adds its bit

to the variability of all the others.
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Vendors appear to be feeling the pressure of user

demands for improved performance, and will probably

respond to this pressure by improving performance.

Many of the techniques used to improve performance

will increase the magnitude of variability in job and

system performance as overhead operations become

more sophisticated and new hardware sometimes re-

duces parts of processing time.

4. Any Hope?

The presence of large variability in peformance

measures makes performance quantification and im-

provement difficult. Four actions may reduce the varia-

bility-introduced difficulty of these tasks.

4.1. Improve Measures

Vendors' systems are often implemented in ways that

make the variability larger without any apparent off-

setting advantage. Performance analysts should not

need to contend with artificially-introduced variability

in addition to the naturally-existing variability in act-

ual system performance. For example, the handling

of I/O interrupt processing time in some systems is

particularly bad; the processing is merely charged to

the job in control at the time the interrupt occurs.

This could be changed easily, but the vendors have not

demonstrated an eagerness to correct the problem.

4.2. Use Better Statistical Techniques

Performance analysts should not depend on a single

value from a population to represent that population

when it possesses unknown variability. Performance

analysts should employ, at least, the rudimentary sta-

tistical tools taught in beginning statistics courses.

4.3 Quantify Variability

Individuals should share information about variabil-

ity so that its magnitude will be known during the for-

mulation of a performance analysis plan. Better tests

need to be designed for this quantification than the

rudimentary ones in this discussion.

4.4. Design Hypotheses Better

Much of performance analysis consists of testing hy-

potheses. Some measures clearly have larger variability

than others; hypotheses should be designed to employ

the ones with least variability when several alternatives

exist. In addition, the hypotheses should be worded so

that testing can be performed in a situation intro-

ducing the least variability that is practical.

These actions are so simple to implement that the

severity of problems posed by variability can be re-

duced when necessary. There is good cause for hope

that we can deal with computer performance variabil-

ity, but wishing for an end to variability is futile.
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In lieu of an integrated approach to performance, it may be helpful to propose a structure for

consideration of the entities of Performance Measurement: systems, applications, and measurement

techniques. It is proposed that these entities can be compartmentalized into "domains," for the

categorization of performance measurement. It is likely that definite domains will be uncovered

indicating the use of performance measurement, or more important and less widely recognized,

where it is not cost-effective to perform system measurement.

The tools for measuring performance—hardware monitors, software monitors, and accounting

systems—are discussed in terms of system level or application level management programs.

Several tasks are suggested that need to be addressed: (1) the gathering of currently available

information on the use of accounting systems, and the development and publication of guidelines

for the employment of accounting data; (2) the development and postulation of a set of Computer

Performance Evaluation domains; (3) a Performance Measurement Handbook comprising guide-

lines for utilization of computer performance evaluation over all domains.

Key words: Accounting systems; hardware monitors; performance evaluation; performance mea-

surement ; software monitors.

1. Increasing Interest in Performance
Measurement

A barometer of interest in a particular area of the

computer industry is the time devoted to the subject

at the AFIPS Joint Computer Conferences. Perfor-

mance measurement's importance was indicated by the

allocation of no less than six sessions at the 1972 Fall

Joint Computer Conference. This indicator of merit,

along with the amount of space allocated by the tech-

nical periodicals, and the many technical conferences

devoted to the subject (this one included), has caused

a bandwagon effect advocating, if not encouraging, the

use of performance measurement tools and techniques.

But this indicator may be misleading. A survey, taken

at this writing, revealed fewer than 200 hardware mon-

itors in use (by some 1000 installations). It also re-

vealed only about 1500 software monitors in actual

use. If we are to believe these figures, apparently less

than 10 percent of our medium and large scale system

installations are applying software or hardware moni-

tors to performance measurement. Perhaps a lack of

knowledge about the proper role and use of perfor-

mance measurement, and specifically, about the de-

vices and techniques has made management reluctant

to apply these and other aids.

Possible management questions include:

• What are meaningful measurements?

• When is the appropriate time to measure?

• What are the criteria for the selection of these

tools?

• Are there problem-specific tools?

• Can performance measurement lead to improved

reliability or to a productivity index for manage-

ment?

2. A Structure For Evaluation of

Performance Measurement

Since answers to these questions are not readily

forthcoming, tied neatly in a package, some selective
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efforts must be made to provide information which

will instill the confidence in management to invest in

and undertake performance evaluation.

In lieu of an integrated approach to performance

measurement, it may be helpful to propose a structure

for consideration of the entities of performance mea-

surement : systems, applications, and measurement tech-

niques. Except in cases of primitive sequential batch

machinery, consideration of any of these entities alone

is insufficient. It is proposed that these entities can be

compartmentalized into "domains," for the categori-

zation of performance measurement. It is likely that

there will be uncovered definite domains that indicate

the use of performance measurement, or even more

important and less widely recognized, where it is not

cost-effective to perform system measurement.

3. The Tools—Measurement
versus Prediction

Before a discussion is presented on the applicability

of specific tools to specific problems, a classification

of the tools should be made. The tools used to mea-

sure performance include hardware monitors, software

monitors, and accounting systems; conspicuously ab-

sent are simulation and benchmarking.

There is a spectrum of tools and methods which

spans from measurement to evaluation with many com-

binations in between. Monitors are at the measurement

end; the analysis of their output by man or program

is a movement toward the evaluation end of this spec-

trum. Simulation, by language or by package, is a

predictive tool rather than a measurement tool and is

closer to the evaluation end of the spectrum. Experi-

ments have been carried out with a simulator being

driven by on-line measurements from a monitor. This

is one way a simulation can be calibrated or validated

to increase its reliability as a predictor, but the sim-

ulation is not itself a measurement tool. Similarly,

simulation models have been derived directly from

accounting data.

Benchmarking is also often considered a tool for

performance measurement. The benchmark itself, how-

ever, serves as a workload for timing in computer sys-

tem selection. It is in the area of computer or system

selection that measurements obtained during a bench-

mark run can be used to determine performance. An-

other use of benchmarking is in comparison of timings

before and after a system is "tuned." The percentage

difference in the timings indicates relative improve-

ment. It should be remembered, however, that a bench-

mark is only a partial representation of the complete

workload. The benchmark is only valid as a predictive

tool when this subset accurately reflects the character-

istics of the workload.

4. Application Programming Performance
Measurement and System Level
Performance Measurement

In discussing performance measurement, one should

first ask whether it is the system level or the application

level programs which should be measured. While per-

formance may be improved in both areas, the proper

application of the tools is dependent upon this first

cut at measurement goals.

4.1. Application Programming Performance

Measurement Tools

The improvement of performance for an application

program has traditionally been based upon reducing

the run time within a serial processing environment.

(It should be noted that the individual reduction of

run times for each program of a set processed in a

serial processing environment does not necessarily

mean a reduction in the total run time of the set within

a multi-programming environment.) The running time

for such a program may be reduced by two methods:

(1) more efficient program coding, or (2) more eflB-

cient file organization.

4.1.1. Software Monitors

The program-oriented software monitors are of ei-

ther the system dependent, sampling type or the in-

strumented program type. In the first type the software

monitor is run as an application program within the

computer system. An interrupt triggered by a timer

causes control to be relinquished to the software moni-

tor which takes a "snapshot" of various registers and

records them on tape. By this sampling technique the

relative activity within various areas of memory can

be displayed and compared with a program listing. i

In the second type, the source program is instru-

mented to collect data on itself. This can be done by

the programmer, by a preprocessor, or by a compiler.
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Such systems are of necessity language dependent but

are often useful for debugging as well as performance

measurement.

4.1.2. Accounting System Information

Many accounting systems collect comprehensive, de-

tailed information about program activity. Descriptive

data (blocking, number of records read, file open

time, overlay calls, etc.) enable the programmer to ob-

tain gross data about program performance and exten-

sive data about file usage.

4.1.3 Hardware Monitors

The first hardware monitors could not easily identify

specific areas of high activity within main memory.

They had only two address comparators and no ability

to correlate program identification with memory ac-

tivity. Newer hardware with more comparators and

many accumulators provided an easier method of

locating main memory areas of high usage. This same

address content increment logic, adapted from mini-

computer memories, permitted measurement of instruc-

tion activity by attaching probe points to the instruction

register, thus giving the programmer a picture of the

instruction activity which could presumably enable

him to substitute faster instruction sequences for

slower ones. The minicomputer-equipped hardware

monitors easily permit memory activity mapping for

optimization. The latest announced features include up

to 20,000 memory counters to collect information such

as channel time, device time, seek time, and interrupt

time, for each program processed in the system. Such

information is obtained from a set of probes and time

stamped as it is collected in the minicomputer's

memory.

4.1.4. File and Program Organization

Any of the above methods can provide information

about the spatial and temporal pattern of reference to

main and secondary memory. In a paged environment

this information has taken on increased importance in

light of Denning's working set model. A related ques-

tion is the organization of files in a storage device with

location dependent access time. Any of the measure-

ment methods which record by channel and device will

be valuable here.

4.2. System Oriented Performance

Measurement Tools

The improvement in performance of a total system

can create a reduction in total system processing time

and the potential for cost savings. It must be empha-

sized that these savings can only be realized if there

is a real increase in useful computing or the real re-

duction of fixed expenses. For example, if the upgrad-

ing of a configuration to accommodate an additional

workload can be delayed by improving the overall

system performance, then the additional workload can

be placed on the original machine. Improved system

performance may also eliminate the need to staff and

pay for a second or third shift of computer operations.

System performance improvement may also reduce re-

sponse time and program turnaround time. Software

monitors, hardware monitors and accounting systems

can all be used to aid in system performance improve-

ment.

4.2.1. Software Monitors

Software monitors used for system performance add

an overhead which can distort the performance profile.

A software monitor can examine system queues, CPU
utilization (including software monitor overhead to

correct for the monitor-introduced distortion), sched-

uling and resource conflicts, channel balance, channel

utilization, disk read/write head movements, instruc-

tion activity, etc., but cannot effectively monitor oper-

ating system functions because of the program lockouts

in supervisory state and the masking of interrupts. The

software monitor permits examination of core usage,

queue lengths, and instruction activity with relative

ease. Because the software monitor relies on the host

computer's system timer, the software monitor does

not produce an independent measurement as does a

hardware monitor. System software monitors are sys-

tem dependent in the same way as the first type of

application monitor is.

4.2.2. Hardware Monitors

The job for which the capabilities of the hardware

monitor are most closely matched is measuring such

system parameters as CPU utilization, channel balance

and utilization, device delays, etc. Advantages include

relative independence of hardware and system being
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measured and no overhead to distort the system being

measured. Against this, there are many system func-

tions for which there is no obvious correlation mea-

surable by a hardware monitor.

4.2.3. Accounting Systems

Systems accounting is essentially instrumentation in

the system software for self-measurement. It is analo-

gous to the second type of software monitor for appli-

cation programming. Typically the information col-

lected is about system status at the start of a system

event (input/output, schedule, queue, etc.), conclusion

of a system event (program termination) , or at a speci-

fied interval of time. These events are time stamped

and written to magnetic tape or disk. Analyzer pro-

grams can be written or obtained to sort this informa-

tion by time of day, program, type of program

(COBOL compilation, FORTRAN compilation, COBOL
execution, etc. ) and provide information such as mem-
ory utilization, blocking factors, mix of program types,

etc. This accounting information is easily collected,

requires no additional purchase of software or hard-

ware, and provides an excellent first profile of system

performance. There is, of course, some overhead asso-

ciated with the data collection as there is with a specific

software monitor. The more sophisticated accounting

systems should be considered as built-in software moni-

tors of the first type.

5. Is Performance Measurement
Always Needed?

Performance measurement costs money. In most

cases thousands of dollars are required for a meaning-

ful measurement effort. It is not always clear that the

improvement in performance justifies the costs. The

installation manager should examine the needs of the

installation, the tools, the costs of using these tools

(equipment as well as personnel costs), and the pos-

sible benefits before making any decision. For instance,

the first and obvious tool for measuring system per-

formance is usually supplied with the system—the ac-

counting package. This certainly is indicated as an

initial Computer Performance Evaluation (CPE)

device. By further example, unless the installation pos-

sesses an unusually large pool of measurement re-

sources, one should not monitor for the sake of

monitoring. One should have a definite reason which

can usually be stated in the form of a problem. Exam-

ples of such problems are:

(1) saturation of the system,

(2) poor turnaround (for batch systems)

(3) poor response time (for time-sharing systems)

(4) excessive cost of suggested vendor hardware

augmentation

(5) customer complaint about variability of billing

data

This set of problems (and others not included) re-

quire solutions; these problems sooner or later will

cost the installation money. The manager must decide

how to solve the problems in a manner consistent with

organizational goals.

6. Some Short-Range Solutions

As mentioned above, accounting systems can pro-

vide considerable measurement of performance. They

usually can be obtained at minimal or no cost from

main-frame vendors. However, little information is

currently available on the effective use of this context.

It would seem that an important task to be addressed

would be the gathering of such information and the

development and publication of guidelines for the em-

ployment of accounting data by facility managers in

performance measurement. Using this immediately

usable body of knowledge as a base, there would be

developed a set of desirable accounting data features

which would influence the design of future systems.

Another area which appears to have near-future

attainability and usability would be the development

and postulation of a set of CPE domains. This would

enable not only the organization of future, advanced

CPE work, but would provide a structuring for aggre-

gation of data reflecting the appropriateness of CPE.

Finally, having developed a structure for organizing

techniques and encoding data, the necessary prereq-

uisite has been established for undertaking a develop-

ment of a long-range nature: a performance measure-

ment handbook, comprising guidelines for utilization

of CPE over all domains.
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B. THEORY AND MODELS

Analytical models may be used for very immediate

requirements to understand or predict the performance

of a computer system. Alternatively, they can be used

to describe a theory of computer system performance.

The papers in this section deal with a variety of ap-

proaches to both types of models and to the general

topic of theory development. They provide an over-

view of the strength and limitations of each approach

as well as describing each approach's primary charac-

teristics.

Denning's and Muntz's paper discusses one of the

best-known approaches to analytical modeling—queu-

ing theory. The paper by Kimbleton discusses the

capabilities and limitations of analytic modeling for

computer system sizing and tuning. Johnson's paper

deals with an entirely different approach; he employs

Petri nets and probabilistic transitions to determine

steady-state conditions. The approach described in

Hellerman's paper employs the concept of the compu-

tational work performed in a single step. Kolence's

paper suggests that the concept of work be pursued,

but through analogy with the concept of work as

defined in Physics.
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that representing the multiple (simply defined) resources of a computer system and the sequencing

of tasks among these resources gives models which are simple enough to yield to analysis and yet

are applicable to systems of interest. Theoretical results from the study of such networks are sum-

marized and directions of future research are briefly discussed.

Key words: Analytical models, evaluation, measurement, networks, performance, queues.

As with other performance evaluation methods, an-

alytic studies of computer systeins yield only approxi-

mations to the solutions we desire. In analytic model-

ing several distinct types of compromises can be made

:

1. In the abstraction of the real world to a mathe-

matical model. Examples here include the assump-

tions of certain arrival processes, service time

distributions and idealized service disciplines.

2. In an approximate analysis of the mathematical

model. The diffusion approximation is an example

of an approximate solution technique.

3. In settling for a less complete solution, e.g., mean

response time rather than the distribution of re-

sponse time, or equilibrium distributions rather

than transient solutions.

4. In settling for a less convenient form of solution,

e.g., a Laplace transform or a computational pro-

cedure is obtained rather than an explicit solu-

tion.

It is usually possible to increase preciseness in one

area by introducing additional compromises some-

where else. Unfortunately much of the work in analytic

modeling has concentrated on exact solutions for mod-

els which are gross simplifications, i.e., the compro-

mises are made in constructing a mathematically

tractable model. Too little attention has been paid to

approximations and bounds on performance. However,

it should be pointed out that the real question is

whether the analysis yields results which are valid in

a practical sense and not whether the model appears

"over simplified." For example Lassettre and Scherr

[1] ^ used a simple machine repairman model for TSO
with considerable success; although without their ex-

perimental verification of its applicability it is likely

that the model would be dismissed as "over simplified."

Where to compromise is an exceedingly difficult ques-

tion and can really only be determined by experience

in applying analysis.

We are faced with the problem of determining what

characteristics of a system must be included in a model

to get reasonably accurate results. The "classical" que-

ueing model for computer system scheduling [Figure

1] has assumed a single resource. The results of analy-

sis of this type of model often do not agree terribly

well with observed behavior. More recent research

has been directed toward representing the multiple

resources of a computer system and the sequencing

of tasks among these resources. As one might expect

this generalization to multiple resources has required

that the characterization of the use of individual re-

sources be less precisely defined. The indications thus

far are that this tradeoff gives models which are sim-

ple enough to yield to some analysis and yet are

applicable to systems of interest [2,3].

1 Figures in brackets indicate the literature references at the end of thi» paper.
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1. Queueing Networks

A queueing network consists of a set of service cen-

ters {Sj). Each service center comprises a queue or

queues, one or more units of some given resource, and

a service discipline. Each class of customer in the net-

work (customer = job = task) has a transition matrix

p(»> =:
[p

<-i^

]^ where p gives the probability of a

customer in class i requesting service at 5^ after re-

ceiving service at Sj. Each class i of customer has a set

of service distributions {/^T} where F (x) gives the

probability that the service time of a class i customer

at Sj does not exceed x. The state of an m-service-center

system is a vector {xi, . . . ,Xm) in which Xj represents

the state of S. The theory of networks has yielded the

following results.

1. One can solve for the state-probabilities of an

arbitrary network if each Sj is one of these

four types:

a. the discipline in Sj is processor sharing,

F'^j^ arbitrary for all i,

b. Sj contains enough units of resource to avoid

queueing, F/^^ is arbitrary for all i,

c. the discipline in Sj is FIFO, Fj'" is exponen-

tial for all I.

d. the discipline in Sj is LIFO, Fj^^-* is arbitrary

for all i.

2. Servers of the four types can be mixed in any

network.

3. Customers may change class dynamically. (Use-

ful for modeling customers changing from one

mode of behavior to another.)

4. The network can be open (number of customers

in it variable) or closed (number of customers

in it fixed)

.

5. Various types of state dependent service rates

can be modeled. (This is useful for example, in

approximating the behavior of secondary storage

devices which operate more efficiently under

higher load.)

The above work is an outgrowth of queueing network

theory begun by Jackson, Gordon, and Newell; the

latest results quoted above came from F. Baskett at

Stanford, R. R. Muntz at UCLA, K. M. Chandy and

F. Palacios at the University of Texas at Austin.

A special case, the central server network [7] has

been studied extensively since it represents a common
system configuration:

80

CPU

81

DEVICE

1

8n
DEVICE

n

Figure 2. Central Server Model

The transition probabilities of the above network are

go, . . . ,qn. Experimental work at the University of
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Texas at Austin (by F. Baskett) and the University of

Michigan (by C. Moore, S. Kimbleton, and B. Arden)

showed that this and similar types of networks have

the following property: when the original service dis-

tributions are replaced by exponentials having the

same means as the originals, the mean queue lengths

and server idle probabilities will be within a few per

cent of those of the network when the original distri-

butions are used. In other words, the exponential

assumption seems to be less important than the struc-

ture of the network: it is more important for the net-

work structure to reflect that of the real sysem than it

is for the distributions to reflect those of the real

system. This property permits the use of exponential

assumptions as a viable first approximation, thus

yielding a network whose analysis is both tractable

and useful. The results of analysis of queueing net-

works as described above have confirmed that in many

cases (those listed above) the equilibrium state prob-

abilities of the network model depend only on the

means of the service time distributions and not on

the exact distribution chosen.

The results outlined above have been concerned

with determining equilibrium state probabilities. Re-

search on other approaches to the analysis of queueing

networks is currently underway. These other ap-

proaches include the application of the diffusion ap-

proximation to networks [4] and numerical solution

techniques [5]. No single approach dominates the oth-

ers. There are the usual tradeoffs as to the range of

models to which they apply, the predicted perfor-

mance measures, form of solution, etc.

The results for arbitrary networks have at this point

a number of limitations (more optimistically we could

refer to these as areas for future research). Some of

these are:

1. Very little is known about the transient behavior

of networks. The diffusion approximation ap-

proach has yielded some results on transient

behavior but is thus far limited in the class of

networks to which it applies.

2. Most studies have assumed a customer requests

only one resource at a time.

3. Blocking effects in networks have proved diffi-

cult to handle analytically.

4. Studies of configurations subject to oscillatory

behavior (e.g., thrashing) have just begun (8).

The analysis of multiple resource models is pro-

gressing rapidly (see [6] for an extensive survey). The

results thus far have been promising but more expe-

rience is needed in the application of these models

to real systems.
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Performance analysis, as practiced by end users, appears to be dominated by the trial and error

approach. Computer systems modeling techniques have received relatively little usage by such users

except for the sporadic application of commercially available computer system simulators. Vendors,

by contrast (cf. the various ACM and IEEE publications) have been extensive users of both

analytical and simulation based techniques for performance analysis. This paper discusses some of

the reasons underlying the lack of extensive usage of such techniques by end users, identifies an

area of performance analysis appropriate to the usage of modeling techniques and discusses an

approach to its investigation through their usage.
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1. Utility of Modeling

End users are naturally wary of computer systems

modeling techniques in view of the substantial initial

investment required (development, calibration, veri-

fication, validation and training) and the absence of

an existing structure which identifies the role of com-

puter system modeling techniques in performance

analysis. Since such a role has not been clearly defined,

evaluation of the cost effectiveness of modeling is

difficult and the trial and error approach is adopted

by default.

Determination of computer systems modeling cost

effectiveness requires careful identification of both

costs and rewards. Some insight into the magnitude

of these costs may be obtained by observing that al-

though the yearly rental cost of the commercially

available computer system simulators is in the neigh-

borhood of $10,000, management usually "ballparks"

the cost of a simulation based approach to performance

analysis at $50,000.

Since the commercially available computer system

simulators have been carefully engineered for ease of

use by persons unskilled in modeling techniques, and

since analytical techniques and other tools described

in the literature have received relatively little human

*Now located at Information Sciences Institute, Marina Del Ray, Calif.
90291.

engineering, it follows that the cost of their application

will be even greater. Thus, their usage has normally

been restricted to universities and other technically

oriented institutions in which the necessary skills are

more readily available.

Two major rewards accruing through the use of

modeling are: (1) greater insight into the nature of

the basic physics of the process being modeled, and

(2) reduced costs achieved through economies of scale

permitted by widespread application of techniques

developed at one location to many different locations.

In view of economic considerations, insight, although

deemed a desirable byproduct, is usually judged sig-

nificantly less important than reduced costs. However,

in view of the incomplete state of many of the models

described in the literature and the consequent need

for additional development and refinement, cost re-

ductions are difficult to demonstrate in the context of a

single installation. Further, the opportunity to achieve

economies of scale through simultaneous implementa-

tion of centrally developed models has been limited

since each site within a given organization has usually

been established as a unique entity.

Recently, a desire to achieve economies of scale

in several areas of computing has led to unified pro-

curements of relatively large numbers of homogeneous

(i.e. same vendor, same product line) systems such
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as the Air Force Advanced Logistics System (ALS)

and Base Logistics System (BLS) as well as the DOD
World Wide Military Command and Control System

(WWMCCS). Further, several of the larger corpora-

tions are either actively contemplating or are initiating

such acquisitions. Such systems would appear to per-

mit the necessary economies of scale required to

underwrite the development and implementation of

appropriate modeling techniques provided their role

and a reasonable approach can be suitably identified.

2. Computer System Performance
Components

Development of a role for modeling can be achieved

through consideration of the major determinants of

computer system performance which are: (1) the

system workload, i.e. the collection of jobs to be

processed, (2) operating personnel proficiency and

(3) system configuration, i.e. the hardware and hard

software which are to be used as determined by the

sizing and tuning methodologies employed.

Identification of the proper system workload is a

difficult task although substantial economies can be

achieved by elimination of redundant or unnecessary

jobs [BELLT 72]^ Centralization of the investigation

of proper system workload appears unlikely since it

requires careful systems analysis at each site.

Improvement of personnel proficiency is an organi-

zational problem. As such, it requires careful attention

to prevailing attitudes of the personnel involved, in-

centives available to improve performance and man-

agement willingness to adopt or implement more

flexible approaches to achieve improved performance.

Because of the complexity of this problem, most in-

stallations are more concerned with achieving a satis-

factory level of personnel proficiency than with

optimizing personnel proficiency.

Optimization of the system configuration as a func-

tion of the workload and assuming acceptable personnel

proficiency requires consideration of the performance

impact of: (PI) file locations, (P2) hardware con-

figuration, (P3) job resource requirements and

reference behavior, and (P4) the schedule detailing

the sequence in which the execution of jobs is to be

initiated. These topics are appropriate for investigation

through the use of computer systems modeling tech-

niques. However, the difficulty of achieving useful

1 Figures in brackets indicate the literature references at the end of this

p.ipcr.

results from a management viewpoint is increased by

the (performance) interrelationships existing among
these variables. Thus individual studies of a single

variable provide information of uncertain value;

studies providing information on the interrelationships

among these variables would appear to be more useful.

3. Using Modeling in Sizing and Tuning

We now discuss two endpoints of a spectrum of

possible model based approaches to obtaining 'good'

system performance as a function of P1-P4. These

approaches would be implemented through either:

(1) application of currently existing optimization

techniques available within the operations research

literature, or (2) development of a heuristic pro-

cedure for performance improvement based upon

computer systems modeling techniques.

The first approach, although initially attractive,

suffers from the severe defect that the extensive sim-

plifying assumptions required for the application of

optimization techniques, e.g. mathematical program-

ming [DANTG 63], markov renewal programming

[ HOWAR 60 ] or other optimization techniques

[WILDD 67] renders interpretation of the results

obtained difficult. Typically, at least one of the fol-

lowing simplifying assumptions is made: one job at '

a time in execution (contrary to the multiprogram-

ming nature of current computers), job processing
|

times are deterministic (contrary to the observed

interdependencies between job processing times and

the collection of concurrently executing jobs) or '

conceptualization of the system as a single resource J

(contrary to the multitude of interactions among device I

categories, e.g. processors, executable memory, secon-

dary storage devices and data paths).

The unsatisfactory nature of the results achieved r

through this approach is implicit in the failure of
i

management to make significant use of either the j

extensive existing literature on scheduling in general '

(cf. [CONWR 67]) or its application to computer
^

system scheduling in particular (cf. [SAHNV 72]).
j

To achieve results of more direct use to management,
^

the modeling techniques employed should permit a
^

closer rendering by the model of the dynamic inter-

action among jobs, systems and schedules. This can
j

be achieved provided one is willing to forego direct

application of existing optimization techniques and is,
j

instead, willing to consider development of heuristic
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approaches. The basic components of such an ap-

proach are (1) a means of determining system per-

formance given P1-P4 have been specified, and (2)

techniques for determining desirable modifications to

achieve systems with better performance.

Evaluation of changes in system performance

through direct modification is usually unsatisfactory

because of the time required for implementation.

Studying the performance effects of changes through

simulation models can usually be performed more

rapidly. However, although simulation is faster than

direct modification, a computer system simulator

which provides reasonably extensive information on

device utilizations and delays (required for deter-

mining the nature of subsequent modifications) typi-

cally operates at a rate of 2-10 times faster than real

time. This is clearly too slow to permit testing of large

numbers of modifications which would require speeds

of at least two orders of magnitude faster than

real time.

Several analytic approaches to the prediction of

computer system performance have been developed

[GAVED 67], [MOORC 71], [BUZEJ 71,] [KIMBS

72]. Although these approaches appear capable of

achieving the required speed, they typically assume

that the workload can be probabilistically specified

and that jobs are either statistically homogeneous or

can be classified as being from one of a collection

of statistically homogeneous job classes. Provided

this restriction can be suitably relaxed, one approach

to achieving the required speed would be through the

use of analytic models to predict system performance

over those periods of time during which the com-

position of the mix is constant and then to aggregate

the resulting performance information to determine

shift performance.

To evaluate the utility of this approach, a prototype

j
version of such a performance prediction tool has been

j

implemented [KIMBS 73]. The initial prototype could

process a shift of N jobs in 3N seconds (on an IBM

I
360/67). This would seem to be a reasonable speed

for production batch installations. Examination of a

I few test cases revealed that agreement between pre-

dicted and measured values was reasonable, e.g. the

difference was in the range of 15-20% of the mea-

sured value. Through a process of refinement of both

1 the analytic techniques used and optimization of the

I code produced, an additional increase in speed should

1 be achievable. Thus, a potential means for satisfying

the first requirement for the development of a heuristic

approach to the performance analysis of production

batch systems is at hand.

The second requirement for development of a

heuristic approach for achieving "good" computer

system performance is a means for determining the

nature of desirable modifications. This requires identi-

fication of a quantitative interpretation of the term

"desirable," and, as will be attested to by anyone who

has ever engaged in a performance analysis effort, is

a difficult problem whose general solution may exist

only in parametric form. However, given that a quanti-

tative interpretation has been chosen, the currently

existing computer systems inodeling literature would

appear to provide extensive information for the devel-

opment of suitable heuristics.

4. Concluding Remarks

It is clear that development and implementation of

an approach such as that described would tax the

resources of an individual site. However, once such

an approach has been initially implemented, its trans-

fer to and usage by individual sites should be cost

effective.

Modeling is also useful because it forces considera-

tion in a quantitative manner of the basic forces

driving the process being modeled. As an example,

determination of suitable workload characterizations

and desirable monitor requirements are topics of con-

tinuing concern. Answering these questions in this

generality would appear to be exceedingly difficult, if

not impossible since no means has been provided to

test the adequacy of the answer. However, if instead

one requires only that the workload characterization,

used in conjunction with a suitable modeling approach

should yield some specified level of agreement between

predicted and observed values, the question assumes

a more tractable form. The potential existence of an

answer is suggested by the capability of commercial

simulators to yield reasonable results in many cases.

It should be noted that the determination of monitor

requirements can then be regarded as an exercise in

evaluating their capabilities for gathering the data

required for the workload characterization. Although

this approach does oversimplify matters somewhat,

it does indicate that answers to these questions exist

provided the questions are posed in more specific, and

thus answerable terms.
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Computer behavior can be represented by directed

graphs in general and by Petri Nets in particular with

each state labeled with its probability of occurrence.^

For any given net, these state probabilities can be

computed

:

a. Under Bayesian (or equilibrium) conditions

(where the conditional probabilities for each of

the n states following immediately each event are

equal to—)
n

or

b. Where some or all of the conditional probabilities

are known from other experimental or prior

information, and the unknown conditional prob-

abilities are treated under Bayesian conditions.

The equilibrium state probabilities for each state on

that Petri Net which represents the whole (problem +
machine) structure can be computed noting that the

sum of the state probabilities for each participant must

equal 1. This is to say that each program participant

is always at some one place in the net. For only one

program, this simply states that the program con-

tinually "restarts" whenever it "completes" so that it

is always running, progressing through the net or

exiting the net and reentering it.

1 Johnson, Robert R., "Some Steps Toward an Information System Per-
formance Theory", first USA-Japan Computer Conference, Tokyo, Japan.
Oct. 1972.

The expected or "typical" state probabilities for any

given set of data exercising any given Petri Net can

be experimentally determined.

The object of this note is to present an experimental

means to determine the time spent in each state. With

this information and information about the prob-

abilistic behavior of a new data base, the time to

execute this new data base can be predicted. The con-

cepts involved here are defined with respect to the

events and states of a Petri Net:

rti = number of occurrences of the state i. State

i follows event i

Pi = probability of the state i

Pi = ^— where S pi = 1

ti = per unit time spent in state i per occurrence.

This assumes time spent in state i is the

same for each occurrence of state i.

U.T.= unit time for the equilibrium occurrence

conditions me-

U.T. = 2 TUe ti (2)
i

Ai = appearance of occurrence of state i meas-

ured as the proportionate time spent in

state i out of total possible time:
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Ai = Tlj tj

i (3)

Tj = execution time required to traverse the

series of states i for an experiment /:

Tj — 2 Tiij tij

(4)

Time can be related to the state probabilities by

approximating the state probabilities with their

appearance:

Pi = Ai (5)

The appearance of a state i can be measured experi-

mentally:

Ai
Tlj tj

S Hi ti

i

(6)

For an experiment the appearance A^ is computed:

nu ti,^

hi

(7)

Aii
2 H'ij ti]

For stationary processes, where outside real time

events do not change the times required to execute

the events, the ti can be assumed independent of the

experiment j:

ti — tij for all j considered here (8)

The per unit state times ti can be determined by run-

ning a number of experiments j for different induced

values Tiij and measuring total elapsed time Tji

Tj = 2 riij ti

-1

(9)

This requires = i number of experiments and the

knowledge of the riij for each experiment.

The number of occurrences TUj is computed by

knowing (or setting) the conditional probabilities at

each event (or branch point) in the graph, and making

use of the relationship between probability p and

conditional probability p

pi 2 Pi 1, ^ •
Pi

k

(10)

where there are k states preceding state i.

Two examples are given for the typical program

graph shown in Figure 1. The first example is com-

puted for equilibrium (or Baysian) conditions when

the conditional probability for taking each branch is

^ . The second example is computed for the case

where the conditional probability for taking the loop

branch is 50 times the conditional probability of taking

the exit.

The probability of the top state in each example is

chosen as X and each subsequent state probability is

determined in terms of X. Unknowns Y and Z are

introduced for the two top loops and solved:

For state 02

:

For state 03:

but also:

P,= Y + Z

= f {y + x + z)

Y + X + Z

.Z = X + Y (11)

For state 04:

y=| [x + Y + z)

(12)

and using (11)

Y = X

Thus:

Z= 2X

Y = X

as shown on the graph. This same method is used to

compute probabilities as shown on the rest of each

graph.

128



Y=X
01

Y=50x
01

Z=2x

02

03

04

2x

2x

Z=50(5I ):

02

03

04

I X

0 I X

Y = X

Z=2x

05

06

07

W=4x

1 4x

4x

09

2x

Equilibrium Conditions

Each loop taken once per exit

I

X
31

16

Figure

129

Y=50x

Z-50(5I )x

05

06

W=50(5I ) X

07

08

09

51 X

5l^x

5! ^x

D I X

10

Known Statistics

Each loop taken 50 times per exit

X
140661

16



B6700/B7700 FORTRAN COMPILATION MARK 2,3,017
MLIST SINGLE STACK CODE FREE OPT = 1
ISET LONG
ISET VECTORMODE
$SET GRAPH

DIMENSION A(50. 50) , B(50.50), C(50.50)
N = 50
DO 10 1 = 1,

N

DO 10 J=1,N
A(I,J)=S1N(,4)
B(I, J) =S0RT(2.0)

10 CONTINUE
C*
C* THE ABOVE LOOPS ARE TO INITIALIZE THE ARRAYS 'A' AND 'B' TO
C* NON-ZERO VALUES, TO KEEP THE ADDS AND MULTIPLYS FROM BECOMING
C* TRIVAL.
C*

WRITE(6,65)
1000 CONTINUE

TI = TIME(11)
DO 200 11 = 1,

N

DO 200 JJ= 1,N
C(II, JJ) =0
DO 100 K=1,N
C(II, JJ) = C(II, JJ) +A(II,R) +B(K, JJ)

100 CONTINUE
200 CONTINUE

Tl= (TIME( 11) -Tl) +2.4/1000,0
WRITE(6,66) N,N,T1
N-N-10
IF (N,I,1.0) STOP
N= MAX0(N,1)
GO TO 1000

65 FORMAT (///)
66 FORMAT( ' TIME FOR '

, 12, ' BY '
, T2,

END • MATRIX MULTIPLY IS •,F8,2, ' MILLISECS.')

Figure 2.

The value of X is determined by summing the state

probabilities, equating to unity, and solving for X as

shown.

The m for state 08 of the first experiment (equi-

librium) is 4 and 2 ru for this experiment is 31. For
the second experiment, ru for state 08 is 51^ and X m =

i

1

140661"

These values of m and S m are computed for i = 16

different experiments, the program is executed those

16 different times and its execution speed Ti measured.

Using these values, the per unit state times ti are com-

puted by equation (9). The program shown in Figure

2 has the graph of Figure 1.

Summary

A practical experimental means to compute the per

unit time spent per state in a program is presented.

This means requires measuring elapsed time of the

entire program only, plus being able to preset the

number of times each branch is taken during experi-

mental runs.

These per unit times then are used (via equations

1, 4, 5) to predict the program's execution time when

only probabilistic information is known about the

program's data base.
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The concept of power is defined and proposed as a new performance measurement tool for com-

puter systems. Several examples are given that illustrate the calculation of power for small devices.

The efficiency of a system is then discussed in terms of power. Finally, the new methods are com-

pared with other methods of system evaluation.

Key words: Computer efficiency, evaluation, measurement, performance, power, work.

1. Introduction

Elsewhere [1] ^ we outlined a theory of computational

work. The computational processes we dealt with were

thought of as being implemented by an organization

of steps, and the work of each step was determined

from its truth table, or more generally from its table-

lookup specification. The whole theory was based on

the definition of the work of a step f:X-^Y,

where Y = [ji, . . . y„} , Xi = {ji) , and \Xi\ is the

number points in the set Xu We investigated some

properties of this measure, such as the dependence of

work on the kind of implementation (Cartesian, com-

positional, and sequential). We showed that the meas-

ure could be interpreted as the information in a mem-
ory for the table-lookup implementation of the step, so

the unit of work is the unit of information. To distin-

guish the context, we could not resist the suggestion

that the work bit be called a "wit," and the unit of

power—a wit per second—be called a "wat." Except

I for this we said nothing at all about the time for exe-

cution of a process.

2. Computational Power

I
Real processes implemented on devices or facilities

I
take time. A device or facility that does computational

Figures in brackets indicate the literature references at the end of this paper.

work w in time t, the cycle time, may be said to have

a power rating of w/ 1. This seems simple, but there

may be a problem when we try to reconcile the overall

power of a collection of devices in a facility with the

sum of the powers of the individual devices. Suppose

a process consists of two individual sequential steps:

Step 1 doing work wi in time ti, and Step 2 doing work

W2 in time fc. Looking at the process as a whole, the

total power is (ivi + wz) / {h + ^2) . But looking at the

individual steps, the power is wi/ti + w^/ti. These are

not the same.

Which shall we take as the power of the process?

The answer is clear as soon as we see that the device

for Step 1 is utilized only during the time interval t\.

Although its rating over this interval is wi/h, its

rating over the process cycle time is wi/ [ti + ^2).

Similar considerations for Step 2 then show that the

overall rating of the facility is {wi + wz) / {h + ^2)-

Thus, we have a Principle: The power of a facility

comprising a set of devices is the total work per total

time, provided each device is used just once in each

use of the facility. This principle is independent of

and particular work measure w{j). We find it con-

venient in applications of our measure, but it would

be just as convenient using any other measure.

The provision that each device be used just once is

clearly met by the Cartesian and compositional syner-

gisms. To be met by the sequential synergism, in which

the first step is a branching process g which selects
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just one of a set of possible alternative second steps

{/i}, it is necessary to look upon the set (/i) as a single

device. We shall take this view.

We shall now apply the principle in evaluating the

power of some facilities.

3. Application: Gated Latch

Consider the gated latch, with truth table shown.

d

c

Data
Contro

I

Internal State
Output

In this case, the sum of the works of the steps is 6.

By the principle, if the cycle time is t, the power is 6/ 1.

4. Application: Decoder

Suppose a decoder of n binary variables xi X2, . . . ,

Xn operates sequentially. The first step branches on xi

then:

and:

fixi) =

foixz)

to if Xl = 0

if X\ = 1

/oo if X2 = 0

/oi if X2. = 1

/lO if X2 = 0

in if X2 = 1
/l(X2)

and so on. Since each operation takes work 2 and since

there are 2"—1 operations, the work of the decoder is

2(2"—1). There are n levels to the decoder, and if the

entire process takes time t, each level takes time t/n.

But each level has utilization \/n, so the power of the

decoder is 2(2"—l)/f, as expected from the Principle.

c z d y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

The device may be implemented sequentially as follows.

Step

Branch on c

c= 0 : y <— z

c= l : y ^ d

Work
2

2

2

5. Application: Read Write Storage

A storage with 2" words (m address bits) and n bits

per word may be thought of as comprising an m bit ad-

dress decoder, and 2"'n storage cells, organized as 2"*

words, each with n bits. The /-th bit of the f-th word

may be implemented by a gated latch as shown below:

Here dj is the output of the /'-th bit of the storage data

register (SDR) and ya is an input to the /-th bit of

this SDR. In [1], we saw that the work of the two

variable AND is 3.245. Hence, the work of the storage

is:

w = 2(2-"-!) + 12.49/12"*

Word i

Write

di

GATED
LATCH

Word i
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A few values are given in Table 1. The IBM System/

360 G40 storage, having 16 address bits, 16 content

bits per word, and an access time of 2.5 X 10~^ sec-

onds, has a power of 5.29 X 10^^ wats.

Table 1.-— Work of a storage, in wits, 2™ words, n bits per word

m
16 24 32

n xl06 xl09 xl0i2

16 13.2 3.39 0.867

32 26.3 6.74 1.73

48 39.4 10.1 2.58

64 52.5 13.4 3.44

6. The Power and Efficiency of A System

We think of a computer system as comprising a set

of facilities

—

F\, . . . , Fn- Each facility may be a stor-

age, a register, an incrementer, a mover, an arithmetic-

logic unit, . . . anything that has input states and con-

sequent output states. We have indicated by a few ex-

amples how the work and power of a facility may be

determined. The aggregate power of a system is defined

as the sum of these:

, n ivi

i = 1

When facilities are interconnected in a particular sys-

tem, they do not work continuously, since each must

wait for information from the others before it has

something to do. Because of this, given an interconnec-

tion and a workload there is a Ui for each facility,

0 < zii < 1, giving the utilization of the facility. The
utilization may be determined from an analysis of the

system as a queue network, or from the control pro-

gram, or any other means. The power of the system

on the given load L is then:

P{L) = ^}'±^
ti

and the efl&ciency of the system under this load is:

7. Summary

We wished to show that the computational measure

proposed in [1] can be used to evaluate the power

and efficiency of real systems. To be most convincing,

we should take a real system and evaluate it, fas in

[5] ), but this is out of the question with our limited

pages. Instead, we took a representative facility (a

storage) and showed how to evaluate its work and

power, and how to use these results in the overall

evaluation of a system.

8. Discussion

System evaluation in terms of "wats" does not have

the mix weakness of mips; nor is it magically derived,

like some other measures. Still, it may be asked : What
is its use? Why do we need such a measure? We have

come to look upon the problem of measuring processes

as a key technical problem of the computer industry.

It has plagued us for many years. In 1960, Bagley [2]

wrote: "There is a need for a measure of data proces-

sing ability * * * " Seven years later, Calingaert [3]

wrote: "The accurate estimation of the performance of

a specific system on a given application is clearly a

very difficult problem * * * It is a challenge which must

be met, however, if the computer industry is to achieve

maturity." And in 1969, Emanuel Piore [4] was re-

ported to have urged the academic community "to

articulate these industry requirements for a theoretical

base, for a set of measurements for hardware and soft-

ware." Still, industry seems to have gotten along in the

past, somehow, without such a theoretically based

measure. Is it really needed? What would we do with

it? Replace mips? Is there something in the course of

the industry's development that makes the problem

more urgent at present?

Perhaps. We may be guided by analogy with physi-

cal energy. The trend toward systems in which many

users share resources, toward networks of computer

installations, * * * obviously resembles power distribu-

tion systems. Just as an electric power installation gen-

erates and distributes power to customers who run

machine tools and washing machines, toasters and

lights, similarly computer installations generate and

distribute computational power to compute payrolls

and insurance premiums, make reservations and exe-

cute APL transactions. Just as the motors, toasters,

and lights have their power ratings, and draw power
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from the generator, similarly, the payroll, reservation,

and APL transactions draw computer power from the

system. How much? The question is important be-

cause, presumably, the cost to the user should be pro-

portional to the amount of power he uses, his "wat-

minutes". This is very different from the time the

user is on the system.

Consider: If two jobs are in a multiprocessing sys-

tem for the same time, but one job uses a weak com-

bination of resources while the other uses a powerful

combination, should not the cost of processing the jobs

reflect this?

Measurement is needed when there is an exchange,

a buying and selling, a taking and transferring of com-

putational power. And now, we see it is not enough for

a power measure that it be applicable only to the in-

ternals of a computer system. The measure must also

be applicable to the jobs that are processed on the

system. The statements of user oriented languages such

as FORTRAN, COBOL, and APL, all specify processes

in their own right, conceptually, existing independently

of their hardware implementation in some system. Can

we measure the work of these processes in the same

terms used to measure the computer? Yes. It does not

matter whether the inputs and outputs of a process

are distinct hardware states, or distinct conceptual en-

tities; the principle of the measure is the same. So the

answer is yes, in principle. But the systematic applica-

tion of the measure to all possible statements of a

language like APL in order to measure jobs expressed

in that language is another matter. This is what re-

mains to be done.
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This paper is a brief exposition of the idea that a "software physics" exists, and furthermore that

it is based on the same concepts as used in the natural sciences. The idea of a software unit is

introduced to name the entities embodying the basic observable properties of software physics.

These properties are identified as work and time. (Another property, existence, is not referenced in

this paper.) The relation of these properties, in a general sense, to the variables of performance

monitors and modeling is commented on.
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To a large extent, the way one looks upon the basic

nature of an object of scientific study determines the

form and the power of the subsequent theoretic con-

structs. Examples of this fact abound in the history

of science. It therefore is important to be explicit

about one's world view when proposing the develop-

ment of a field of science. The purpose of this paper

is to explicitly consider the world view from which I

believe a software physics can be fruitfully constructed.

It is impossible for me to start with the "most

important" idea first, since this is one of those situa-

tions where several ideas or concepts appear to be of

equal importance. In a way, one may also look upon

the set of concepts as a set of axioms, some of which

may be related or replaced with others to build dif-

ferent logical constructs. But the one concept which

appears to justify the use of the terminology "software

physics" and which certainly strongly affects the form

of the theory arises from the following observation.

There are many fields of human endeavor which

call themselves sciences: physics, chemistry, biology,

sociology, anthropology, and computer science are but

a few. Of these, we observe that those which use the

basic "principles" of physics and chemistry make up a

conceptually single group, characterized by common
terminology and, further, the ability to translate knowl-

edge in one special area to other specialized fields. We
tend to call these the "hard sciences" or the "physical

sciences." The other group is most singularly charac-

terized by their individual iconoclasm.

Computer science is absolutely unrelated to eco-

nomic theory, sociology, political science, etc. Indeed,

even in that subgrouping of the "soft sciences" which

is generally concerned with the study of man and his

behavior, little if any interconnection exists in the deep

conceptual sense found in the physical sciences. As a

means of differentiating between these groupings of

sciences, let us divide sciences into "physical sciences"

and "singular sciences," where the term singular is

used to denote the lack of an underlying conceptual

infrastructure between the singular sciences, in oppo-

sition to the infrastructure of the physical sciences.

(The infrastructure of the physical sciences is well

illustrated in Margenau's "The Nature of Physical

Reality," McGraw Hill.)

A fundamental choice in one's world-view consists

in the (usually implicit) decision to either approach

the building of the science from a singular point of

view, or within the context of the infrastructure of

the physical sciences. An absolutely essential point

to understand is that one must make this decision

wholeheartedly; either the complete infrastructure is

accepted or not. To "borrow" terms and ideas from

the physical sciences without acknowledging the full

conceptual linkage between all of the fundamental

concepts of the physical sciences is to straddle the

fence between the physical sciences and a singular

science. As the 18th and 19th century Rationalists

discovered, the transition probability on that fence is

heavily biased toward the singular sciences.
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The fundamental choice of software physics is to

wholeheartedly accept the full conceptual infrastruc-

ture of the physical sciences as the foundation from

which to evolve a theory of softwear behavior.

There are good, practical reasons for this choice.

If the choice is wrong, we shall be forced into the

field of singular sciences relatively rapidly—say, less

than a decade. But, we shall know why we are a

singular science, and have at least some proof, namely

our failure, that we are indeed singular. But, if the

choice is right, we will be deeply aided and speeded

on our way by the availability of the infrastructure

and its intellectual wealth of preciseness and form.

Analogy, that most powerful of tools of scientific

discovery, is at the same time a most dangerous of

seas to venture upon for a scientific quest. It is less

dangerous if the full conceptual infrastructure is

accepted as one can subject the analogy to at least

some critical tests. For singular sciences, the shoals

of analogy are uncharted.

Another practical reason for our choice is that our

decision permits us to recognize theory when we see

it, as opposed to accepting mechanistic descriptions

as theory—the bane of the soft sciences. We shall

return to this point in more detail later.

If this fundamental choice names software physics,

and clearly and cleanly separates it from the field of

computer sciences as it is known today, it does so

intellectually but, of course, not in terms of the object

of study. Yet, the world-view of software physics has

yet another important concept which both broadens

and simplifies the object of study beyond that of com-

puter sciences: the software unit.

In software physics, the object of our study must be

the inherent properties of software, without regard

to the arbitrarily selected sizes or packages of code

which we name subroutines, tasks, programs, jobs,

applications, operating systems, etc. In other words,

we must be at least initially concerned with universal

properties of software. Each of the aforementioned

packages may well have interesting properties in their

own right, but the properties of first interest to soft-

ware physics are those which they all share. A word,

a name, is needed to characterize this set of universal

properties, and any grouping of code which may be

of interest in the context of such properties. The name
I have selected is software unit. Thus, whenever in

software physics one speaks of a software unit, one is

not distinguishing size; rather, one is distinguishing

universal properties from properties arising uniquely

from the structural, and perhaps functional, choices

made during the design process.

The softwear unit plays a role in software physics

roughly the same as the center of mass, in its role as

a point mass, plays in natural physics. In fact, through-

out the natural physics, one deals with equivalent

concepts; electrical charge, time, mass, energy, forces,

etc. are universal properties associated with matter in

some sense, regardless if matter is artificially fash-

ioned into an object or if it is considered in terms of

molecules or galaxies. The term software unit is meant

to convey the vessel in which similarly universal

properties are embodied.

One great advantage of the software unit concept

is that the properties of software units are observable

to monitors and other forms of instrumentation. In

fact, with extremely few exceptions, the observables

of computer monitors are only observables of software

units. The current basic challenge of software physics

is to provide a basic unifying theory relating these ob-

servables one to another in meaningful ways. This work

has been completed in essence, and is currently being

prepared for publication. The work to be published

must be experimentally tested before it can be called

an accepted theory. At the minimum however, it will

represent an example of a theory in software physics.

Thus, the essential aspects of the software physics

world-view can be summarized by saying that it is

believed the basic principles and concepts of the natu-

ral sciences will be found to apply to the behavior

of the universal properties of software units. It should

perhaps be explicitly pointed out that descriptions

of software, such as listings, flow-charts, etc., are

outside of the current range of interest of software

physics.

Software units assume the physical form of elec-

trical and magnetic states within a computing system,

and the observables of software physics, such as "CPU
busy," are due to the action of software units within

the computing system. In simpler words, one measures

the effect of a software unit driving a computing

system. An interaction thus exists between the work-

load software unit and the physical configuration of

the computing system. This is most obvious when one

considers a family of machines, such as the 360 and

370 series. Within a given machine type, say a

360/65, the I/O configuration attached may vary

considerably. If one runs an identical program soft-

ware unit on two or more 360/65's with different I/O

configurations, one is apt to observe quite different
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I/O measures. Yet the CPU measures as provided by,

say PPE, are quite constant. Reversing the conditions

and changing main frames up and down the 360 line,

one obtains a variation in the CPU measures as well

as I/O.

It is perhaps a subtle but important point that the

same workload produces different values for the observ-

ables. It leads to the question of which observables

are independent of configuration and which are at

least partially, if not wholly, dependent upon the con-

figuration in which the software unit is physically

realized. In my work, the question has an especially

simple answer: for a given software unit realized

identically on two or more different configurations,

the work done by a software unit is independent of

configuration, but the times associated with perform-

ing that work are dependent on the configuration.

Variables, such as power, composed of work and time

variables, are dependent on the configuration through

time, and independent with respect to work. This, by

the way, is an easily testable hypothesis given precise

definitions of the terms work and time.

Both work and time are also concepts of the natural

physics. In software physics, work and time must be

fully equivalent at the conceptual level to these con-

cepts in natural physics if our world-view is to hold.

As it turns out, in my studies at least, time has been

the more difficult to be precise about. Work however

is the key conceptual link between the natural physics

and software physics, since it links directly to the con-

cepts of energy and force, and thence on to the

remainder of the conceptual infrastructure of the

natural sciences. Regardless of the correctness of my
own work, I would expect that the concept of work is

the key to a demonstratively viable software physics.

Work, in my studies, is said to be done by a soft-

ware unit whenever a medium is recorded upon, and

the amount of work performed is numerically equal

to the number of bits acted on. (This means the iden-

tity transformation does the same amount of work as

a transformation which changes all bits.) In natural

physics, work is performed whenever a force acts to

change the state of the system under observation.

These two definitions are equivalent, with the soft-

ware unit playing the role of the force, and the media

acted upon (e.g., core, registers, magnetic tape or disk,

punched cards or paper tape, printer paper, etc.)

representing the system under observation. Because of

this equivalence, the definition of software work results

in the identification of a software unit as a force

because of the relationship between these two concepts

in the natural sciences. The equivalence also forms a

solid link, in my studies at least, between the two

physics which will maintain the essential world-view

belief that software physics is not a singular science.

Certain implications of the idea of a software phys-

ics are meaningful to the practical problems of com-

puter measurement, and others to equally practical

problems in the current efforts to analytically model

computer systems behavior. The first set of problems

are directly addressed by the work currently under

preparation. Suffice it to say that most of the ques-

tions concerning the meaning and relationships be-

tween observables obtained by monitoring are resolved

in very simple ways. However, the implications in

terms of analytic modeling are not covered in that

work, and a few words on the subject are useful here.

Perhaps the most fundamental implication, and one

which nicely spotlights the distinction between model-

ing and theory development, lies in the choice one

has as to the variables used in an analytic model. Cur-

rently, one normally assumes rather limited "workload

distributions," and is completely free to select what-

ever variables appear appropriate. Because the analytic

results one obtains often differ depending on the

workload distributions used, and because these dis-

tributions are not known to generally occur in prac-

tice, the results of most modeling efforts are rather

limited in their generality. More to the point, however,

the variables selected (e.g., "mean arrival rate,"

"mean service time," "page fault rate," etc.) are unre-

lated to fundamental properties of software in general

or, in our terms, to software units. Since they are

fundamentally "time" variables, they are deeply related

to a particular hardware configuration. By itself, this

is not bad. What is bad is that they are not related

often in a sufficiently analytic fashion to be generally

meaningful.

In essence, current modeling efforts are hampered

in attaining generality by two factors: no accepted

theory exists which identifies the fundamental variables

of software behavior, and no general method of

characterizing workloads in terms of these variables

is available. A theory, or more correctly, a suffi-

ciently powerful theory of software physics should

resolve these difficulties. My own work is but a step

toward that sufficiently powerful theory, but hope-

fully it will be of some use in model building by both

its world-view and its definitions of software unit

work and time.
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CHAPTER IV

Recommendations

A. INTRODUCTION

One of the objectives for the Workshop was to pro-

duce a set of recommendations on specific topics.

Initial position papers on each topic were written by

participants prior to the beginning of the Workshop.

In addition to the four planned topics (Standards,

Professional Activities, Research and Development,

and Education and Training) two additional topics

generated so much discussion during earlier sessions

that they were separately discussed. These two topics

were Monitor Register Standardization and Workload

Characterization.

In order to address all the topics the participants

met in separate panels and generated sets of recom-

mendations based on the initial papers and the earlier

sessions. Subsequently, all the Workshop participants

discussed these recommendations and attempted to

reach a consensus position.

The material in each of the following sections begins

with a summary of the outcome of the discussions;

these are repeated from the first chapter for the sake

of clarity. The initial position paper on each topic

follows for the topics in which such papers were writ-

ten. Finally, excerpts from the discussions are pro-

vided in order to indicate how the participants arrived

at the final positions.

B. STANDARDS

1. Workshop Results

Workshop participants were unanimously in favor

of the following recommendations:

A representative organization such as the National

Bureau of Standards (NBS), American National Stan-

dards Institute (ANSI), or Computer and Business

Equipment Manufacturers Association (CBEMA) must

formulate guidelines for:

1. Terminology;

2. A Minimum Set of Accounting Data;

3. Intrinsic Monitoring Capabilities for Computing

Systems.

The word "guidelines" is a much weaker term than

"standards." It implies a set of broadly-disseminated

reference definitions which the community recognizes

as nominal and preferred usage, but which are not

universally binding. In some areas, such as the

Monitor-Register discussed below, attempts were made
at the Workshop to press toward advocating standards.

but unanimity could not be achieved. In general, the

reluctance to advocate standards was based on a feel-

ing that the CPE field was not sufficiently well-under-

stood yet. Standards developed at this time might not

be sufficiently easy to apply, might be discriminatory,

and might stifle innovation. Thus they might not be a

net benefit for the field. In some areas, such as bench-

mark standardization, even guidelines were felt to be

too ambitious.

However, there was a very strong feeling at the

Workshop that significant performance losses result

from the current confusion with respect to definition

of such terms as CPU utilization, response time and

overhead, with respect to proliferation of incompatible

sets of accounting data, and with respect to definition

of interfaces to monitoring tools. The recommended

guidelines are needed as soon as possible. At the very

least, their formulation will serve as a stimulus to

improved communication in the CPE field, and in

some cases they might serve as successful prototypes

for an eventual standard.
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NATIONAL BUREAU OF STANDARDS SPECIAL PUBLICATION 406, Computer Performance Evaluation:

Report of the 1973 NBS/ACM Workshop, March 27-30, 1973, San Dieco, Calif. (Issued August 1975)

Standards in Performance Evaluation and Measurement

R. W. Bemer

Honeywell Information Systems, Phoenix, Arizona 85005

Giving "evaluation" equal billing with "measurement" opens the door to discussion of perfor-

mance that is good or bad, as opposed to fast or slow. Through this opening come considerations

of security and confidentiality, validation of software and hardware means for performing arith-

metic operations and evaluating mathematical functions (to varying degrees of precision and

accuracy), code independency, auditing and warranty, optional optimization in compilation of

running programs in high-level languages, and retention of statistics of every aspect of operation

—

for later analysis and reduction of duplicate work.

Key words: Accuracy; audit; certification; code-independent; documentation; optimization; preci-

sion; run statistics; security; terminology; validation; warranty.

1. Justification

The United States Government has imposed certain

requirements upon the manufacture of automobiles,

i.e., to be constructed so as to withstand collision at X
kph without sustaining more than $Y in damage, or

the like. The Government has stated that requiring such

action is within its right to protect the safety of its

citizens.

Perhaps the reason that analogy of automobiles to

computers is so facile is that computers are also a

major restructurer of society. The newer computer uses

have a greater than ever proportion of integration into

human activities (even into the automobile). It seems

certain that the computer has a direct effect upon not

only the safety of our citizens, but also upon other

rights. It might thus be reasonable to demand that soft-

ware and hardware should also be built to certain

standards to protect these rights.

Giving "evaluation" equal billing with "measure-

ment" in the discussion of performance of computer

systems is a major step, for it permits us to subsume

good and bad performance as well as fast and slow

performance. It enables us to view the need for con-

fidentiality and security concurrently with perform-

ance measurement. There is probably much common-
ality in the requirements for both.

2. Nomenclature

The present intense efforts on performance evalua-

tion and measurement indicate a movement toward

professionalism in the computing field. Yet inspection

of successful professions shows the basic need for stan-

dard nomenclature, and this is lacking in our field.

In particular, the American National Standard Vocab-

ulary is to be renamed as a dictionary; this is quite

proper, for it is only a list of defined usage in alpha-

betical order of the terms. It has no structure, Avhereas

the IFIP/ICC Vocabulary did. Imagine a dictionary

for the botanist!

And did you ever see such a sloppy term as "over-

head"?

We might start with the primitive of:

Work—Answer-producing

—Answer-validating

Not Work—Scheduling

—Monitoring

—Allocating Resources

—Reporting

—etc.
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Another partitioning includes people as well—in a

time sequence of software preparation, testing and

validation, production runs, and modification. All of

these need to have subactivities named and defined

more rigorously than at present. The jargon of JCL

is incomprehensible to those that use other systems,

and vice versa in many cases.

We need standard terminology for the operating

system functions—resource management, data manage-

ment, core compaction, incomplete allocation attempts,

waiting, swapping, saving for restart or protection

against crash, user validation, etc., etc., so that the

smaller functions and program kernels can be assigned

to their proper place in the classification structure.

These are the working functions, which would go on

whether or not the performance was measured. Sim-

ilarly, we need good definitions of the monitoring and

measuring functions.

3. Reporting

A distinction should be made between the two types

of reporting—online for operator intervention and

change, and offline (later) for accounting and analy-

sis. Both provide opportunities for performance im-

provement. The most improvement is likely to be avail-

able through providing the operator with sufficient

tools, once the operating system has been shaken down

somewhat. (I would prefer to see operators of higher

caliber than programmers, at least for complex sys-

tems, with this reflected in the promotion scale.)

ANSI X3 is very unlikely to achieve a standard for

operating systems. There could be some standardiza-

tion in the subset of reporting activities and their ap-

pearance to operators. This might seem unnecessary

in the present situation, where programmers change

installations with a basic knowledge of some standard

programming language, whereas operators scarcely

ever do so. But wait until management finds out that

some operators have skills, and a feel for tuning a sys-

tem, that make them far more valuable than any pro-

grammer who knows COBOL only.

Accordingly, it is not too early to seek some stan-

dards for reporting, by both printed message and ana-

log displays, of resources allocated and used with

respect to the individual jobs or batches of jobs. From
the crude manometer display on up, more than re-

source consumption must be reported; contention must

also be reported and identified to specific tasks, i.e.,

resource wastage as well as resource consumption.

4. Software Construction

4.1. Code Independency

All software, whether it be written in high-level or

assembly language, should be code-independent from

the native character code of the CPU and/or any other

code such as the ISO Code (ASCII) and EBCDIC.

The importance of this condition may be 'judged by

the fact that the original 360 software, written without

control over such code dependencies, has never been

able to be converted to run the 360 as an ASCII-based

machine—a feat that the hardware is fully capable of

doing.

It may also be judged by an example program in

the benchmark tests for the WWMCCS procurement.

The source program, although written in COBOL, uti-

lized conditional statements that were operative based

upon knowledge of the collating sequence of the

EBCDIC (in order to provide these benchmark pro-

grams, they were first written for the IBM 360/50, and

so tested). The HIS 6000 programmers assumed from

the terms of the specifications that ASCII was to be

used throughout, and at first could not get correct an-

swers. When a subroutine was inserted to mimic the

EBCDIC sequence, there was an 8 percent penalty in

running time.

The class of statements that can operate improperly

due to code dependency is definable. Source programs

may be searched mechanically (by program) for such

occurrences, and offending statements at least printed

out for manual inspection, if not automatic.

Alternatively, input data to program testing should

be given in up to three codes—^ASCII, EBCDIC, and

the native CPU code if it differs. Such testing should

all fall under the Quality Assurance function.

As to public warranty, all software should be certi-

field to auditors, and in advertising, satisfactorily

tested for code independency, whenever there is any

possibility of portability.

4.2. Frequency of Usage
,

I'

Software should be so constructed that a frequency

count of execution is obtainable, upon demand, for all

components. This requires a standard way of identi-
,

fying such components, and conformance to standards
|

for call and linkage (in hierarchical form, by func-

tion).
,
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There should also be provision for count of actual

machine instructions during execution of a working

program (for the program itself, however, distinct from

the operating system, which should have its own

count). This provides a "signature" analysis of gen-

erated code. In the WWMCCS procurement, a high

frequency of single-character moves indicated improp-

er generation of object code. Rewrite resulted in a

great improvement in running time.

Frequency of program component execution is quite

a different thing from frequency of instruction usage.

Both are useful. The latter may be accomplished satis-

factorily in a Monte Carlo sense by trapping the in-

struction in operation at fixed intervals of time. In

600 FORTRAN, this showed that a 4-instruction link-

age took up 7 percent of all running time during com-

pilation. Two instructions were cut easily, thus im-

proving 3.5 percent. Over the lifetime of the system,

this amounts to several million dollars.

4.3. Computational Accuracy

Results, or answers, are commonly not as accurate

as the programmer expects them to be. This is often

due to successive operations, truncation, roundoff, ba-

sic precision used for both fixed and floating point

operations. Use of greater precision should be not

only under the control of the programmer, but also as

a handle to the operating system. It is conceivable that

the programmer should be required to state a value of

expected or required accuracy for answers from a

computational program segment. The operating sys-

tem could randomly switch to multiple precision and

rerun that segment, with an error message if the dif-

ference from the single precision answers exceeds the

stated bound.

There should be a standard for floating point com-

putation (in either hardware, firmware, or software)

that says: When addition or subtraction of two floating

point numbers results in an effective zero because they

are of equal magnitude to the precision used, the re-

sult shall have a fixed point part of zero, with an ex-

ponent part diminished only by the precision of the

fixed point part—the exponent shall not be the mini-

mum representable. For old CPU's that do not operate

in this manner, all such computations should be inter-

rupted for logging and/or notice to the operator/

programmer.

There are many studies in the literature (and the

number is accelerating) that show inaccuracies in the

common mathematical and business functions that ex-

ceed by far the inaccuracies in the normal arithmetic

functions. This calls for certification of such functions

for specific accuracy within a specific range, with pub-

lic notice given—for either free or product software,

arithmetic, mathematical, or business.

There should be a standard for such programmed

function that requires the accuracy, execution time,

and storage use to be integral with the function. Then

the programmer could call for certain accuracies for

general computation, and one of multiple forms for a

specific function could be selected to meet (but not

overmeet) that requirement.

4.4. The Compilation Process

We take the premise that programs of any signif-

icance will be compiled many times prior to successful

operation, and many times later for update and modi-

fication, and that this process will move to the juris-

diction of other than the originating programmer.

Optimization is often a substantial component of

running time, sometimes up to half. Therefore com-

pilers should be constructed so that optimization is

selectable.

Virtual storage or not, breaking up a large program

into several components for compilation and testing is

still good practice.

The compiler should have facility to flag identifiers

of fewer than enough characters to make good docu-

mentation for other users. Uniqueness is not enough.

Compilers should always produce an updated source

program! This should contain at least:

• An imprimatur identifying the compiler used,

language features required (or not used), level,

and time.

• A statement of the facilities and resources used,

running time (either demanded or assigned),

etc., for later analysis.

• A concordance of identifiers and statement t} pes

used (this may be in hard copy at option).

• A reblocked source program, indented to show

nested levels.

• Appended list of mistake messages, if any. or an

indicator of successful compilation, as far as the

compiler can tell.
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5. Documentation

All data on media should be self-descriptive as to

format and content, regardless of whether or not it is

to be used for interchange. Present labeling standards

are insufficient.

It is presently difficult to associate program docu-

mentation and run instructions with the program itself,

because many programs are kept in punch card form.

However, with the full-scale advent of cassettes this

condition should be mandatory.

Local documentation, i.e., that associated with the

individual operating statements or groups of state-

ments, may be subject to a certain minimum amount

of verbiage, else the program rnay not pass Quality

Assurance.

6. Hardware

It is difficult to make many standards for hardware

design, for the technology is at a time when virtually

anything is possible at a reasonable price, due to

microprogramming and chips.

One definite requirement is that all CPU's should

have at least two clocks—one continuous and one reset-

table—both fully available to software.

3. Workshop Discussion

Many participants felt that "standards" could not

be set because performance evaluation ideas have not

matured adequately. Instead, the term "guideline" was

adopted by most people. One of the areas for potential

guidelines was accounting data.

Browne: It should be possible to have some guide-

lines, even if not standards, saying that all systems

shall put out the following things on an accounting

basis. If it's done right, there should be some mini-

mum guidelines for main-frame vendors and software

vendors that solve some of our problems. I think this

is a "must." I think we should put some guidelines

down suggesting that this is a minimum kind of thing

that we ought to be looking for; we'll do better later.

Bell: It seems that the epitome of what we're stranded

for is for accounting data, when the systems collect

essentially the same data and put it in different for-

mats with slightly different definitions. It's apparently

trivially easy to make them coincident. They ought

to be coincident so that things can be done in a

consistent manner. It's like having tape drives with

different size reels.

Browne: There are two points to the problem. They

should be receptacles for linear transformation and

be consistent.

Bell: I second it.

Boehm: Ok, would somebody state precisely what it

is that we're saying ought to be "musts."

Browne: I think we should write some guidelines

—

we must write some guidelines for minimum content

in the accounting system and for a common format

for accounting data.

While the need for such guidelines was clear, poten-

tial problems were noted by other participants.

Kolence: I'd like to recommend two points that I

think are important. One is that along with the type

and format of data of be obtained, the capability for

the user of such data to obtain other new data is

important. In other words, I don't think we could

expect our suggestions to serve a fixed set of data

that's going to be given for everything. I think it's

imperative that we make a resolution open ended to

permit other types of data to be collected. In other

words, the facilities must be there to collect other

data than what we anticipate now. That's point one.

Point two is what we were talking about earlier:

That integrated instrumentation systems include a

minimum set of accounting data and report it well.

Jeffery: You want also to be absolutely sure that

what goes into a guideline can use results from a

research environment.
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C. MONITOR REGISTER

1. Workshop Results

Connecting a hardware monitor to a computer sys-

tem sometimes creates problems. Probe point iden-

tifications are sometimes difficult to obtain, and some-

times they do not exist. Attachment to the wrong

point is easy, but detecting the problem from the resul-

tant data is difficult. Attached probes can load circuits

and cause temporary hardware malfunctioning; care-

less attachment can physically damage the computer.

Laying cables disrupts operations as floor panels are

lifted, and careful analysts often demand that com-

puting be halted while the actual connection is per-

formed. All this would be unnecessary if a standard

attachment plug were provided.

Hardware monitors are capable of cheaply collect-

ing data that current software monitors cannot collect

easily or at all. They facilitate measurements that are

independent of the host machine and therefore can

be used in situations where reliability is low. In

addition, these monitors can be used on different

hardware and software systems so that comparisons

can be made through time and across installations.

Finally, communication to the machine for purposes

of on-line performance enhancement is virtually im-

possible without some special interfacing device.

While measurement through hardware is far from

constituting the entire realm of performance analysis,

it is important enough that mainframe vendors (and

peripheral manufacturers) should recognize the user's

need in this area.

The panel which met on this topic suggested that a

special register be implemented for monitoring. This

monitor register would be implemented differently for

different hardware, and a manufacturer might choose

to implement successively higher levels of the register

over the lowest, level one, register. The various levels

are as follows:

Level One: Lowest level register, designed to facili-

tate current techniques. It would consist of buf-

fered lines to show device activity status and

would have complete documentation on logical

and electrical characteristics.

Level Two: A register to enable software in the

host machine to communicate with the hardware

monitor. It would consist of a register one word

wide, loadable by the host machine's software.

with half loadable from a protected state and half

from an unprotected state.

Level Two (Extended) : Intended to ease monitor

design. It would save the unprotected half of the

above mentioned word so that bit status set by a

user could be maintained for that user.

Level Three: Full memory bus capability. This

level would bring out (buffered) instruction ad-

dress register (s), data address field (s), operation

code(s), comparator status, etc.

Level Four: Communication to host system. This

level would consist of a register readable (in both

protected and unprotected states) by the host

machine for input of special resource-allocation

messages from a monitor.

The monitor register suggestion generated much

discussion with some people maintaining that it

assumes the current situation as the long-term tech-

nological environment. For example, micro-program-

mable devices throughout a system might make defini-

tion of words like "device active" impossible. Therefore

future monitoring capabilities should be designed by

manufacturers so as to provide a recommended set

of data, but with complete freedom of choice as to

the technology and architecture of those capabilities.

Other participants argued that the results of past

vendor designs for facilitating performance analyses

did not indicate that users should wait to see what

vendors might implement. Attempts to obtain a defin-

itive consensus on this issue by vote were inconclu-

sive, with many abstentions.

2. Workshop Discussion

Several performance improvement practitioners

noted their enthusiasm for having a well-defined data

collection facility integrated in a computer's hardware/

software. They felt that a monitor register was the

most appropriate manner for obtaining data from this

facility. Other participants, however, felt that other

considerations made such a technique unreasonable.

Morrison: I just feel that you're not going to get

what you're asking for by asking for so much. It was

a wonderful idea 8 years ago. You have heard that

view expressed to this particular group. The concept

of integrated monitoring has been intermingled with

hardware monitoring and current practices of deter-
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mining component utilizations. It's just not going to

be that way in the future. The words about imple-

menting an integrated performance reporting facility

are what I think is the essential idea.

Boehm: Could you name a specific area where you

think a monitor register would cut into the freedom

of a vendor?

Morrison : Well, the first issue is how much goes into

every machine versus how much the particular cus-

tomer wants. That is not the primary issue involved. It's

there, but that's not the main issue. The problem in-

volves a lot of other things: training of the people who

are going to have to maintain these more complex ma-

chines—all sorts of things to tell them, what not to tell

them. The whole area of what goes into a computer

—

including those ideas that just add to cost—the idea of

how a manufacturer examines a number of new con-

cepts for incorporation. Out of well over a hundred well

thought-out, justified, quantified ideas come only a

few which should add to the cost of the new machines.

Second, much of the separate stuff is coming into

every new machine so that you can get high perfor-

mance. Today we think about an operating system

as not included in the hardware but it may happen.

I do feel that you're possibly locking out something

when you attempt to consider specific hardware im-

plementations. With more integration you're going

to have less capability to control variables. If you

started with the guidelines and said, "Let's generate

information and have some control over what we're

going to do," I could understand that.

Wilner: I think that if you're talking about writing

a guideline, I feel capable of interpreting whatever

words are in it in terms of new architecture.

Boehm: I'd like to hear a technical discussion be-

tween Bob and Wayne as far as what the fundamental

technical difference is between what they're saying.

Wayne is saying that any guideline he has can be

incorporated. It is sufficiently lucidly worded as far as

he's concerned so that he can incorporate it in there.

But you don't feel that.

Morrison: No, oh no.

Warner: I think the principal difference is not a

technical consideration, but a marketing consideration.

I just wanted to say that and no comment is necessary.

Boehm: Bob Johnson, could we get your reaction to

this from a corporate management standpoint?

Johnson: The problem I have is being worried about

what's practical and realizable. Most of you talk about

finding in your logic manuals by dint of great effort

a combination of some probe points with real mean-

ing. At least a number of our systems people and

development people are finding that they can't find

some of these things. Whether or not they can be

found, I don't know. I haven't gone into it myself.

I don't think these problems are because of reluctance

or inhibition or any of that; it's just not there in a

form that we could really depend on. Another aspect

that I think important for us to consider is that these

things that we're asking for are things we today think

are important. We don't know that they are. They

allow us to do something. But in support of Bob

here, the things that may be important to us 3 to 5

years from now may not at all be the things that

you're asking about. If we're going to pick an exam-

ple, take the number of instructions executed. If you're

going to make applications processing machines and

execute the application directly, the definition of an

instruction isn't clear and this whole discussion gets

very tenuous. What is it we're looking for? Perhaps,

we're executing all types of language statements and

this execution is going on in many different places in

the machine at once. What is it that's going on in the

simple instruction? There isn't any way to track it.

Kiviat: You don't know what the machines are like

that we're going to have. You can't tell us what you

might want to measure for them, and we all know it's

too late to do anything about the machines that we do

know something about. So let's stop what seems to

be a fruitless discussion.

D. WORKLOAD CHARACTERIZATION

1. Importance

A recurrent topic during the Workshop was the

necessity for better means of workload characteriza-

tion, i.e., of determining meaningful categories of

workload types, and parametric forms for describing

a workload of a given type. Such a capability is

important because it provides the necessary frame-

work for:

1. Verifying performance improvement hypotheses

by enabling an analyst to normalize performance
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improvements during periods of changing work-

load;

2. Predicting trends in computer usage of various

types, and predicting the resulting resource

strains;

3. Providing functional forms and parametric data

to enhance analytic modeling;

4. Providing useful parameters for closed-loop

monitor-scheduler modules in advanced operat-

ing systems;

5. Improving the quality and comparability of

benchmaking activities.

2. Complexity of the Workload
Characterization Problem

As mentioned above, a working group was con-

vened at the Workshop to try to develop a definitive

workload characterization. The group found it was not

all that easy. As far as categorization, there are several

classes of categories which include at least the follow-

ing:

1. Job or transaction characteristics

a. Value of job completion (function of time,

input data, state of application system, etc.)

b. Resource demands

1. By component

(a) hardware (CPU, core, disk, chan-

nel, etc.)

(b) software (compiler, I/O, user code,

etc.)

2. By usage pattern (probability distributions

of resource demands)

(a) by timing

(b) by amount

2. Inter-job characteristics

a. Dependence of job completion value on com-

pletion of other jobs

b. Probability distributions of job interarrival

times

The process of determining workload types appears

to involve an intuitive cluster analysis with respect to

the above categories, in order to identify clusters of

jobs with similar characteristics such as student jobs,

accounting jobs, I/O-bound jobs, on-line transactions,

etc. Determining the appropriate parametric forms for

each type generally involves a similar, but usually

more quantitative analysis. Some guidelines with re-

spect to these determinations are given in the con-

clusions below.

3. Conclusions

1. The most useful form and level of detail of a

workload characterization depends on its appli-

cation. This implies that workload characteriza-

tion is generally an iterative, circular process.

2. A workload characterization is useful only to the

extent that the necessary parametric information

is easily available. A good example is the two-

parameter job characterization (CPU seconds of

execution and kilobyte-minutes of core residence)

sufficient to provide effective job scheduling in

the Air Force business data processing system

cited in Section I.B.4. A counter example would

V be a 100 X 100 contingent probability table of

memory references in a complex Monte Carlo

simulation model.

3. Workload characterizations are often machine-

dependent. For example, initiator and terminator

activities are quite time consuming in IBM 360

machines, but usually negligible on CDC equip-

ment. This implies the need for extreme caution

when characterizing a workload to serve as a

reference for benchmark tests during the equip-

ment selection and procurement process. In some

cases, a workload characterization suitable for

benchmarking may be unachievable.

4. The primary needs in the workload characteriza-

tion area are for an increased level of empirical

information exchange on the utility and achiev-

ability of various characterizations, and for fur-

ther complementary work toward an underlying

theory which is relevant and accurate both in

explaining previous situations and in predicting

future situations.

4. Workshop Discussion

A good deal of the discussion focused on the

machine-dependence of workload characterization and

its implications for benchmarking as a means of rating

alternative computers in procurement evaluation.

Boehni: Our panel last night felt that this machine-

dependence makes a major caveat for anybody who

is trying to use workload characterization for bench-

marks. Unless you realize that, you can get into very

147



big trouble taking something that was a good work-

load characterization on one machine and using that

characterization to benchmark another machine.

Wilner: What's a big caveat. Something that's likely

to fail?

Boehm: Not necessarily. Our feeling was that the

most productive thing to do was to consider the ade-

quacy of the workload characterization not as a given,

but as a hypothesis. Then you can be prepared to test

whether that hypothesis is true, and, if you find out

that your workload characterization isn't any good on

another machine, then you know that you've got to do

something else to evaluate the relative performances.

Wilner: Wouldn't it be a simpler course to avoid

thinking about benchmarking for the present time?

Boehm: But people still have to choose computing

machines. If you do that independently of any charac-

terization of your workload, you'll be worse off than

starting somewhere and being sensible about it.

Wilner: How sensible is it to do something that's so

machine dependent? How does anyone know what his

comparisons mean?

Boehm: What's the alternative?

Bell: Don't buy any more machines for a while.

Wilner: No, no, no!

Kimbleton: Workload characterization can also dif-

fer on benchmarks depending on whether you make

the assumption that each machine runs exactly the

same code, on the one hand, or that each one solves

the problem the best way it can, on the other hand.

Nielsen: One way we looked at this (which isn't a

solution, but was our way of characterizing it) is that

you can either take a job-oriented or a function-

oriented workload characterization. On the former,

you would select a set of jobs and hope that that

characterization holds true on the other machines

you're working on. On the latter, you can take the

approach of trying to characterize the properties in

the workload which should be compared. That is,

you're saying what the important characteristics by

type are independent of job load, and then trying to

match those characteristics on what you're doing

statistically.

Other portions of the discussion focused on the

interdependence of a workload characterization and

what the system is being used for, and on the general

unpredictability of an installation's workload charac-

teristics.

Schwetman : Another point was that the form or the

format of the characterization is dictated by what

you're going to use it for. For example, if Dick Muntz

wanted some data on workloads for an analytic model,

he's got one set of things he really needs. If Norm
Nielsen wants to draw up a model for a simulator, he

might want different things, such as more detail in

sequencing, or more information for scheduling jobs

or for fine tuning.

Nielsen: This implies two things. One is that what

you use to characterize a workload is a function of

what you want to do with it, in that we can always

come up with a counter example, for which a given

workload feature is irrelevant or inappropriate. The

other is that at the present time, we don't think that

there is a theory that can say: "This is the thing that

characterizes the workload." There's so much that is

empirical. The things that are important are a function

of what you want to do and the machines that you

have—the different machines, the different operating

systems and different things that cause changes in

the quality of the workload. You have to experiment

with your system to find the things about workload

that have an effect on my system.

Schwetman: Another point we discussed was that

you really can't prove anything about the future. Com-

puter systems are no better or worse in that respect

than any other field. Thus, you really shouldn't expect

that a model would accurately predict the future. All

you can say is that you've known cases where in the

past it worked, and the same thing goes for all the

other techniques you can think of, in economic model-

ing, or simulation or anything. And so my comment

was, you can also not predict the future success of a

marriage necessarily. All you can do is make a good

guess, and sometimes you're right. Sometimes things

work out and occasionally it fails. And that's the

point. In spite of the fact of the uncertainty, people

still do get married. And the reward outweighs the

risk, I guess.
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E. PROFESSIONAL SOCIETY ACTIVITIES

1. Workshop Results

Workshop participants voted 23 to 2 in favor of the

following recommendation:

The professional societies should treat this

field no differently than any other. The societies

should provide the usual channels of communica-

tion but should not themselves try to provide or

measure compliance to standards.

The dissenters pointed out that there exist some

professional societies which promote and monitor

standards, and that professional societies in the com-

puter field should exert more leadership in this direc-

tion. The majority opinion was that other types of

organization (e.g., NBS, ANSI, CBEMA) were bet-

ter suited for standards roles, and further that the

major needs in the CPE field at this point were along

the traditional professional society lines of stimulating

and facilitating professional communication and infor-

mation dissemination.

In the area of information dissemination, existing

publication channels were considered generally ade-

quate, as long as SHARE and ACM's Special Interest

Groups on Measurement and Evaluation (SIGME-

TRICS) and Simulation (SIGSIM) continue their

trend toward publication of well-documented results

of CPE efforts. There was some concern that profes-

sional journals in the computing field were overly

biased toward publishing theoretical rather than

empirical results.

One topic of particular concern was that of model

validation. Users of analytic or simulation models of

computer systems currently have no way of deter-

mining the extent to which the model has been vali-

dated for their situation, often leading to lost time

and effort, to duplicative validation activities, and at

times to inappropriate management decisions. Work-

shop participants felt that much could be done, within

professional societies and elsewhere, to encourage

and communicate the results of model validation activi-

ties. The initiatives at the February 1973 ACM SIG-

METRICS Conference were a valuable first step in

this direction.
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Since the role that the technical societies should

play in the field of measuring computer performance

is very broad and somewhat delicate it is necessary

to approach the topic from a philosophical point of

view, and also to note that this is not a scientific

paper but rather is merely opinions.

As a background I observe that we live in an age

of social and political experimentation. The past ten

years, and more, have seen a great many very costly

social experiments tried, most of which have failed to

live up to the test of reasonable results, and many of

which have left us worse off than we were before we

started. Thus a healthy degree of cynicism is justified

when faced with proposals for a Computer Society

activity in the area of computer performance mea-

surement, especially since once beyond the lowest

level of measuring what happened there immediately

appear various consequences and goals that fall close

to, or even into, the areas of social and political

activities.

Our American society has apparently finally realized

that we have limited resources and cannot do every-

thing. The Federal Government appears to be embarked

on a path of retrenchment, different from the immedi-

ate past when every new proposal had a good chance

of getting money. Similarly, the technical societies

have found that they too have limited resources and

are gradually cutting back various "well intentioned"

activities in order to get a balanced budget—and

possibly even reduce the outstanding indebtedness.

With this as a background, let me move a bit for-

ward toward the main topic, my view of the role of the

Technical Societies. Many of the proposals that are

made are viewed against the background of successful

ventures in the hard, physical sciences, such as the

atomic bomb and the moon shots. Usually the prob-

lems that we pose in the physical sciences have solu-

tions with known characteristics which can be used

both to guide us in the search for a solution and to

ineasure the solution when we think we have found

one. But the meaning of a solution in the social

sciences is not so clear, nor is the very existence of a

solution guaranteed—no matter how much we wish

there were one! For example, what would be a solu-

tion to the current Israeli-Arab situation? Do you

believe that there exists anything that would be widely

accepted as a solution to the problejn? Thus, before

we propose to measure computers are we sure that

there are measures that would be widely accepted as

relevant? It would be nice if there were, but past

experience, running over more than 20 years, shows

that we have never come to any agreement on how

to rate computers. Not that we have not repeatedly

tried! In the scientific application area it has been

regularly proposed that a set of test problems be

found for rating machines, but no such set of prob-
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lems has yet emerged from all the effort that has

universal consent as being relevant. If this is so in

the scientific area, how much more diffcult will it be

in the business area! And in other areas!

The governing rules in much of mechanics are

second order differential equations so that, in prin-

ciple, all we need to know are the initial positions

and velocities in order to know everything that will

happen in the future. The behavior is called the solu-

tion. But I doubt that in the social sciences we will

ever find such simple underlying formulas, and I even

doubt that there can be such simplicity. Instead, what

I expect we will find are a number of complex, general

rules, each somewhat vague and surrounded by a halo

of exceptions that are "explainable after the fact" but

are not "predictable." Thus I believe that in many
areas we will in the future be in the same position

that we are now; we cannot reliably predict but we

can account for what happens after the fact.

Why am I talking so much about the social sciences?

Simply to remind you that the physical sciences are

based on the external world of observations. It is true

that we have learned that to some extent we condition

what we will see by the way we observe—thus in some

senses the special theory of relativity revealed the

external world. On the other hand the social sciences

are centered around the human and his behavior, and

we have found these sciences remarkably difficult to

develop with the precision of the physical sciences.

When we come to the computer sciences they are

mainly a creation of the human mind (this in spite

of the very real physical computer), so that they are,

in many respects, on the far side of the social sciences

from the physical sciences. They will be even softer

than the social sciences.

I hope that you now see why I take a dim view of

much of the past measurement in the computer sci-

ences. I feel that those measurements which concen-

trate on the machine itself will have many of the

attributes of the physical science measurements, but

as you move away and begin to include software you

move onto less firm ground.

It is when you begin to recognize that there is a

human as well as a machine, and it is their inter-

action that is important, then you get well into the

social sciences and their softness, vagueness, and

trouble in getting at fundamental results of lasting

importance. Beyond the human-machine interaction is

the even more basic point that both the humans and

the machine are financed to meet corporate and insti-

tutional goals; then you are at the foundations of

why the whole exists.

Finally, when you try to measure the ideas we have

in computer science you find that you have little

precedence for guidance. Because, to me at least,

much of computer science is concerned with human
ideas. We need to try to measure, but should not

expect immediate, practical results.

Thus in the field of computer measurement we face

the dilemma, that which we can measure very easily

is only slightly relevant to the purposes of the com-

puter and the people running it, including the pro-

grammer, the planners, etc. What we want to measure

is the effectiveness of the whole system, and we have

so far made only the slightest efforts in this direction.

Further, the scientific aspects of computer science are

even more elusive.

The response of most of the audience is, I suspect,

"Let us ignore what we cannot measure and get on

with what we can measure." But we are concerned

with a whole system, and it is well known that the

optimization of a part of a complex system is usually

detrimental to the performance of the whole. The

current concentration on machine optimization is

often, I suspect, done at the cost of the total system

performance. Although improvements are made on

paper in the whole system, the "improvements" are

apt to be counterproductive.

It is for these reasons that I am reluctant to see

the computer societies get into the difficult field of

measurement. We are likely to do more harm than

good in the long run if we try to set up standards in

the areas where we can measure easily and vo-

luminously!—and thereby neglect the measurement of

the larger goals which we do not know how to do.

With all this negative talk, let me say a little on

the positive side. The societies can, should, and prob-

ably will, encourage meetings for the exchange of

information, ideas, and techniques, as well as mutual

encouragement to persist. And the societies will prob-

ably provide reasonable space for publication of the

better results. But let me make myself perfectly clear

(as the saying goes) I do not think that the technical

societies have the resources in ideas, money, or

manpower to measure computers directly, or even to

propose worthwhile measures much beyond what we

are already doing.

I further believe that the technical societies should

not try to compete with established commercial efforts.

While this is not an exclusive rule, I feel that the
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technical societies should concentrate on the more

scientific aspects of their fields and avoid the more

engineering aspects. With all the measurements that

have been made in the past I have yet to see much of

scientific merit emerge—what has emerged is a lot

of very valuable techniques for making measurements.

I would like to believe that we can gradually create

a science of measurements and their processing and

interpretation, but I am not certain that it will happen

in the near future.

All this should not be interpreted to mean that I

am against measurement. I have a motto:

"Without measurement it is difficult to have a

science."

which should indicate that I feel otherwise. What I

am opposed to is the technical societies getting directly

into the act. Their proper role is one of helping and

encouraging their members to do good scientific

work.

3. Workshop Discussion

Some participants felt that professional societies

should take a much more active role in such areas as

standards; others felt this could easily lead to abuses

and discouragement of diversity. For example, here

are some comments on the panel's proposed resolution.

The professional society panel believes that

professional societies should treat the field no

differently than any other. The societies provide

the usual channels of communication, but should

not themselves try to provide or measure com-

pliance to standards.

Morrison: I disagree that that is a correct assessment

of what some professional societies do. In the area of

acoustical standards, for example, the professional

societies most certainly promulgate, in regard to

standardization of terms.

Kimbletoii: The danger is that a situation can evolve

in which a small group of individuals in, say, ACM,
have a lot of control over the disposition of ACM's
position and related funds. The group can then imply

that it receives and disperses ACM approval for the

direction and scope of the scientific effort, giving its

position an unfair advantage. Particularly since CPE
is a field in a great deal of flux, it does not seem

like a professional society like ACM should come out

with a position paper on the field. It should serve

as an enabling means of discussion and clarification

of issues in the field.

Morrison: But the point is, having promulgated a

position, a society can get people working on the

issues. Under some conditions, they can change their

positions, but if you take no position you are not

involved.
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F. RESEARCH AND DEVELOPMENT

1. Workshop Results

Workshop participants were strongly divided on the

matter of R&D priorities in the CPE field. After some

discussion, it appeared that the most productive

approach would be to ask participants to list their

choices of the (roughly) three most important R&D
projects they would fund if in a position to do so.

The results, representing 23 responses, are given in

Table 5 below which is reproduced from Chapter 1

for clarity.

Table 5.

—

Desired R&D projects

Theory (4 categories) 8^

Measures and Criteria 7

Model validation and refinement 7

Workload characterization 6

National CPE laboratory 5

Closed-loop monitor-manager 5

Representation of systems and

information structures 5

Comparative measurements collection 4

Hardware-software monitor 2

Variability and predictability 2

Statistical methods 1

Programmer productivity determinates 1

^General theory, 3; Analytical models, 3; Queueing theory, 1;

Work-energy theory, 1.

Most of the entries are fairly self-explanatory, but

the national CPE laboratory deserves some added

explanation. It would involve the provision of a com-

puting center stocked with measurement and evalua-

tion tools available to theorists and experimenters

wishing to test theories and hypotheses on computer

system performance.

Most of the discussion of this concept centered on

the problem of maintaining a representative real-

world workload on an experimental system. Many
users with deadlines would prefer not to use such a

system even if it were available free of charge. How-

ever, it would be most valuable for the facility to

run live production work, both by itself and in con-

cert with a set of representative parameterized work-

load characterizations.

Other recommendations of the R&D panel drawing

more general support from the Workshop participants

were various information dissemination and consoli-

dation activities such as specialized workshops and

conferences on CPE theory, workload characteriza-

tion, etc., channels for review and evaluation of R&D
work, and reference books for the field. In this last

area, participants were polled for their opinions on

the most valuable yet-unwritten document in the CPE
field. The results for the nine responses received are

given in Table 6.

Table 6.

—

Valuable documents: Unwritten

4—Measurement & Evaluation Handbook (when, how to use

accounting data, monitors, simulators, etc.)

1—Expose of the Unreliability of Every Known Comparative

Measure

1—Facilities Management for Small-to-Medium Computer

Centers

1—Organizing and Managing Measurement and Evaluation

1—Applied Statistics for Computer Performance Analysts

1—Integration of Four Types of Performance Measurement

into a Single Tool (internal hardware monitors, external

hardware monitors, software monitor, "mini" software

monitor)

.
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I would like to bring emphasis to the use of products

of R&D in this area. Funds will not be made available

nor will the potential social benefits of the R&D work

be achieved if R&D is not addressed to "real" problems

and to "real" solutions.

By "real" solutions, I mean solutions that can be

taken advantage of by the appropriate "real" people

—people with limited or constrained resources and

with loads that are pushing those constraints.

I take this view, also, because I feel the product

follows the market more than the product making the

market when it comes to CPE. Simple techniques

must be available to the normal installation to allow

the most benefits to accrue. Large installations, uni-

versity installations and multiple similar installations

probably have already adopted many of the techniques

of which we talk.

In point of fact, in my limited experience, these

installation types are beginning to see new dimen-

sions to the CPE problem. Many of them are finding

that much of the remaining freedom to achieve further

benefits does not remain in the center's area of

1 jurisdiction but resides with, for example:

||

a. The external customer, his requirements and his

programmers;

b. The bookkeepers who need simple, "fair," charg-

ing algorithms which usually charge on the

"average" although decisions usually cost on the

margin;

c. Management decisions as to type, quantity and

cost of service to be supplied to various and

varying customer types.

The computer center should not be allowed to legis-

late on its use in such a way as to displace costs from

the center and force them back on the customer in

some other account, such as his salary account. How-

ever, this does occur.

On-line checkout is possibly an inefficient hardware

use, and it increases the costs and complicates the

management procedures for the center. So! But con-

tention has it that the value of on-line operation

varies significantly over the spectrum of programmer

talents. Do we expect to expand CPE to include these

areas? If not, we do not answer the "real" world

problem; but to do so would take us further over our

heads.

I say we must talk to these "real" world manage-

ment problems or we lose much of our market. The

question is how?

It is not the case that the majority in count or
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dollar expenditure form in the DP community is

pursuing applications that are on the margin or edge

of technical feasibility. However, many of our studies

and results have been made in such an arena.

Can we, out of these highly technical endeavors,

come up with techniques, guidelines, etc., for the other

segments of the market? Do they need tools as sophis-

ticated, as precise? Are there general guidelines, and

can we validate them? Have we?

I have prepared a chart of possible times for the

use of CPE efforts. (See Figure 1)

Before
Software
Des i gn

Dur i ng

1 mp 1 emen-
tat i on

After
Initial

Operat i ons

Before equip-
ment selection
^instal 1 at ion

A C F

After
equ i pment
i nsta 1 1 at ion

8 D F

Figure 1

Whether some of these boxes, such as E, are vacuous

or not can be argued depending on your belief in

"software first" concepts. Independent of our leanings,

it is clear to us all that most of the market is in state F.

In addition, I have a list of people who are involved

in our world:

Computer Center Users Management

Operators The "real" user Auditors

Schedulers Requirement Analysts Accountants

Systems Program Designers Operating

Hardware (Strategy) Managers

Managers Program Implementers Resource

(Tactics) Managers

What do we have to say to these people? Are we

talking to all of them? Should we be?

I have left out of the list stated above many of our

colleagues. This is not to disparage their work nor to

minimize their contributions. For example, the exten-

sive work effort put in by IBM to finalize the design

of the "cache" for the 360/85 staggers the mind in

both completeness and probable cost. Most of this

type of practitioner is amply supplied with both talent

and money. I feel we must address the "poor" people

of which we seem to have an abundance.

I know that it is easier to sell "good" advice to a

technically competent buyer, and it is almost as easy

to sell "any" advice to the technically naive as it is to

sell "good" advice. In fact, "any" sellers almost always

"oversell"; "good" sellers undersell

—

a penalty in the

average market place.

Thus, most of us concentrate on helping the tech-

nically competent who knows how to use us rather

than being missionaries among the naive. How can

we turn this around? I feel that NBS and the ACM
can help in developing and selling the "good" brand

advice, and I hope that is their goal.

Who among us is collecting the questions that prac-

tical (and poor) managers must answer in the course

of managing their installations? How can they use

any guiding principles we may promulgate, and how

can they use current or new PME data to help them

classify their condition and develop and select among

alternatives?

Has anyone done any studies of whether "homo-

geneous" programs, all of similar characteristics, can

be better run than highly variable? Most of us avoid

the extremes; should we?

Is a standard core program module size of which

multiples can be chosen more efficient than varying

sizes? How do we measure efficiency—at the sched-

uler's elbow or at the programmer's?

Can we develop a post-run analysis program that

would point out "what could have been done" versus

what was done? How could it be used? By whom?

Who should be responsible for discovering, by way

of analysis of data specially collected during a run,

that local or "tactical" changes can speed up process-

ing? This probably depends on what tools are avail-

able and what special knowledge is needed to use

them. Can we reduce this special knowledge to a

minimum?

Are there any "runtime" tools to point out strategic

possibilities for improvement in programs or sets of

associated programs?

What kind of "charging" algorithms have the effects

alluded to by Watson ^ of providing the "right"

incentives?

1 R-573-NASA/PR—Computer Performance Analysis: Applications of Ac-

counting Data, R. I. Watson, May 1971, Rand, page S3.
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Can appropriate incentives be worked out for all

the participants in system creation and operation?

Do they vary and how?

I hope our discussion at the workshop covers things

for the average installation as well as for the expert.

Many of us need more light on where we are walking

today than on the pinnacles of the future.

3. Workshop Discussion

Much of the discussion centered around the concept

of a national CPE laboratory, which would give CPE

researchers access to large machines and representa-

tive workloads for experimental purposes.

Burrows: Another valuable R&D activity would be

to provide for both the theorist and pragmatist a

computational arena for testing their ideas. It doesn't

have to have standardized workloads, but the work-

load ought to be well instrumented and checklisted,

so that what's flowing through the arena is well-

defined and available. And people could go there and

G. EDUCATION

1. Workshop Results

The Workshop participants strongly endorsed the

recommendations of the Education and Training panel

that a coordinated program of CPE education and

training should be established and supported by uni-

versities, funding agencies, large user organizations,

and professional societies. The program would have

two main focal points for educational leverage: edu-

cation for motivation to increase awareness of the

general potentials, pitfalls, and procedures of CPE;

and education for competence to increase the quality

and quantity of practitioners in the CPE field.

In the area of education for motivation, the main

targets are:

• Managers at the intersection of authority over

computing resources and computer users;

• Computer center managers;

• Lead systems programmers;

• Users;

• Vendors—hardware and software.

check out both the uses of a concept and its theory

as well.

Browne: To be useful the workload in such an arena

would have to be production work—above all else,

production work. Without production work you can

forget it.

Kolence: That was the idea here. You wouldn't neces-

sarily have one installation and one computer and do

all your work on that, but rather there would he a

capability to go around to different places.

Burrows: What installation manager with a realistic

workload is going to let people experiment with his

live system? Does he get an extra $100,000 a year

to suffer the pain of having guys come in and borrow

all his stuff?

Browne: All you'd have to do is halve your service

fee.

Kiviat: Not true. I had a hardware monitor that I got

for free on a trial basis. I went to a number of instal-

lations and said, "Would you like me to attach it so

you can see what it does?" I couldn't get any takers.

AND TRAINING

The most promising mechanisms for attracting and

motivating the above individuals are:

• Seminars, tutorials, and workshops for focal

points of purchasing control (e.g., state agency

D.P. boards, professional organizations, such as

the American Bankers' Association, American

Management Association, and Federal agencies) ;

• Books and periodicals: case histories, etc.

In the education for competence area, the main tar-

gets are:

• System programmers;

• Application programmers;

• System designers;

• Direct users;

• New professionals entering the field.

The most appropriate mechanisms for attracting and

motivating the above individuals are:

• University—regular students

—continuing education

• Co-op programs
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• Summer courses

• Books, periodicals

• Professional societies—ACM, IEEE, etc.

In addition more detailed recommendations for a

university CPE education program are formulated by

Noe in the following Section. Specifically, university

education in measurements and evaluation has the

opportunity to do the following:

1. Spread a performance-oriented viewpoint among
those preparing for teaching and practice in the

field. This should orient problem solvers to

attack what is important, not just what is in-

teresting. When resources permit it, this can be

extended to professionals returning to the uni-

versity for "refresher" courses.

2. Stimulate research and development of means

for measurement of complex computer hardware

and software systems through dissemination of

understanding of the problems and possibilities.

3. Influence other computer science courses so that

they include measurement and evaluation view-

points relevant to the particular topics, such as

compilers, operating systems, architecture, logi-

cal design and data structures.

Toward this end, the following recommendations

were developed in the university education area:

1. Measurement and evaluation viewpoints and tech-

niques should be taught at the university level

to spread consciousness of the importance of the

topics, and to encourage research and develop-

ment.

2. Initially this should be taught as a separate topic,

through formal courses and individual studies

and projects. The ultimate aim should be toward

inclusion in other courses where a measurement

and evaluation view is important, and the sep-

arate course work should be needed only for

advanced topics for students who specialize.

3. When taught as a separate course, measurement

and evaluation should be placed at an inter-

mediate level—after students are well aware of

the function of hardware and software systems,

but before advanced courses on design of such

systems.

4. Familiarity with statistical methods should be

acquired through prerequisites and should only

have to be reviewed as part of the measurement

and evaluation course work.

5. Measurement and evaluation should be taught in

conjunction with course work on modeling of

computer systems.

6. The particular type of modeling emphasized is

less important than the viewpoint relating the

modeling method to measurements and evalua-

tion. The models (be they predictive or descrip-

tive) should be used for their ability to provide

evaluative information, and for their provision

of a context for communications about measure-

ments and their meaning.

7. Information should be exchanged on a continuing

basis concerning the concepts to be taught and

the most effective methods of conveying them.

The SIGCSE Bulletin of the ACM provides one

good forum for such exchange—probably better

than the Performance Evaluation Review which

is received by ACM SIGME members, who are

already convinced of the topic's importance.

8. The most important recommendation is for con-

tinued research attention to develop the prin-

ciples pertinent to measurement and evaluation

of computers. This is a joint responsibility of

those in industry, government and the univer-

sities.

In view of the general consensus at the Workshop

that a great deal of the improvement available

through CPE techniques could be achieved with

present-day technology, a high priority on educational

activities to unlock such a large savings potential

appears well justified.
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The paper presents the view that computer measurement and evaluation should be taught in

universities to stimulate research activity and to establish in the minds of students the importance

of the measurement and evaluation viewpoint. It is recommended that measurement and evaluation

initially be taught as a separate course, but the ultimate aim should be for the viewpoint to pervade

all course work on hardware and software systems, at which time the need for the specific course

should vanish. A list of suggested concepts is included.
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1. Introduction

Why is it important to have university-level educa-

tion in measurements and evaluation? It is tempting

to ignore the topic because it is not well developed

and because it intersects so many well established

courses that it seems difficult to determine what its

relationship should be to these other parts of the

computer science field. However, computer measure-

ment and evaluation needs research and development,

and there is need for dissemination of the solved and

unsolved problems and of their importance to other

aspects of computer science.

Specifically, university education in measurements

and evaluation has the opportunity to do the following:

1. Spread a performance-oriented viewpoint among
those preparing for teaching and practice in the

field. This should orient problem solvers to

attack what is important, not just what is interest-

ing. When resources permit it, this can be

extended to professionals returning to the uni-

versity for "refresher" courses.

2. Stimulate research and development of means

for measurement of complex computer hardware

and software systems through dissemination of

understanding of the problems and possibilities.

3. Influence other computer science courses so that

they include measurement and evaluation view-

points relevant to the particular topics, such as

compilers, operating systems, architecture, logical

design and data structures.

A number of experimental instructional programs

are under way in various universities, but there is wide

variation among the approaches. The rate of growth

of interest in measurements and evaluation is very

high in the computer field and this is leading to an

increase in the growth of courses dealing with such

topics. However, course development is difficult be-

cause the principles that are important to measure-

ments and evaluation are diffuse and, in some cases,

not established (an example being a machine-inde-

pendent measure of computing work). Also, many

of the viewpoints require direct practical experience,

but this can easily become too involved for inclusion

in a university course during a quarter or semester.

Furthermore, the many techniques useable in mea-

surements and evaluation, and the many areas where

evaluation viewpoints are needed, make for a difficult

decision regarding relationships with other courses.

All these points lead to the need for recommenda-

tions concerning course work, so that those just start-

ing may draw upon the successes and failures of others

)
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who have been teaching in the area. Among these

needed recommendations are: Concepts to be taught;

methods of teaching: relationship to other courses in

terms of level of students and prerequisites.

2. Survey of Current Activity

Representatives of 19 universities, in addition to

the author's home campus, were contacted in the

search for formal and informal activity relating to

measurements and evaluation. There is no claim that

this is an exhaustive survey. It has been accomplished

through contacts known to the author, augmented by

follow-up on further suggestions from those who w'ere

contacted. The author would appreciate hearing from

other active parties. Among those contacted, three ^

have specific courses dealing with computer measure-

ments and evaluation: eleven of them have measure-

ment and evaluation portions of other courses, although

they have no single course concerned with the topic.

The remaining universities have no detectable course

work in the field but some do have research and

development underway that trains students on an

individual basis.

Many papers have been published, particularly since

1970, and there is need for an up-to-date annotated

bibliography. Several efforts to provide one are re-

ported to be underway (one being by the Los Angeles

Chapter of SIGMETRICS) but are not yet published.^

The only text devoted entirely to measurement and

evaluation is one that has just been published 11973)

by Prentice-Hall: "Evaluation and Measurement Tech-

niques for Digital Computer Systems," by M. E.

Drummond, Jr. Some aspects of the field are covered

in the conference papers "Statistical Computer Per-

formance Evaluation," edited by Walter Freiberger,

Academic Press, 1972. (For a review of this book,

see the ACM SIGMETRICS Performance Evaluation

Review, V. 2, No. 1, March 1973, Pg. 16.)

In addition, books are reported to be in preparation

by the following authors

:

H. Hellerman, SUNY, Binghampton

P. F. Roth and M. Morris, Federal ADP Simula-

tion Center

^ Universily of California at Berkeley, Brigham Young University, and Uni-
versity of Washington.

2 Now published, ACM-SIGMETf?ICS, Performance Evaluation Review, June
1973, Vol. 2, pages 37 thru 49.

3. Recommendations and Discussion

General—It is the author's belief that instruction in

measurements should initially be concentrated through

specific courses designed for that purpose, but that it

should ultimately merge into other topics. Why con-

centrated at first: why not just let it grow as part of

the other topics? For two reasons:

1. Such concentration will help to develop the prin-

ciples and stimulate research activity in the area.

2. There is a need to train a "generation" of

teachers and practitioners who are very con-

scious of computer measurements and evalua-

tion so that they can assimilate these views into

other activities.

Ultimately, however, courses on compilers, program-

ming techniques, operating systems, computer net-

works, computer architecture, logical design, simula-

tion and data structures should be taught with

performance as an important underlying concept and

measurements necessary to assess performance should

be discussed as a normal part of the specialized topic.

As a side note, this relates to the author's belief

that hardware and software monitors should flourish

for a time, but they ultimately should be largely

absorbed into hardware and software system designs.

Measurement tools should be built into the systems

right from the start. (If it can be done in Volkswagons

it should be possible in computers.) Pressure from

those who purchase and lease computers can bring

this about.

Prerequisites—The current variation of computer

science curriculum makes it inappropriate to make a

hard and fast recommendation that measurements

and evaluation should be at a graduate or under-

graduate level. There is a general trend in computer

science in which new curricular activities are initiated

at graduate level but, as they become more well under-

stood and as the depth and variety of undergraduate

computer science background increases, the graduate

topics flow down into the undergraduate area. At this

time it is most likely that specific courses in measure-

ments and evaluation would be initiated at the grad-

uate level in most universities. More fundamental,

however, is the question of prerequisites.

Is it better to have students well versed in the areas

in which measurement and evaluation plays an impor-

tant role before they take a formal course in measure-

ments and evaluation? Or is it better to have them
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aware of the importance of evaluation prior to study-

ing the other areas? In view of the author's belief

that measurement and evaluation viewpoints and tech-

niques should ultimately be incorporated into other

courses, the second approach seems preferable. How-

ever, it requires some preliminary appreciation of

system architecture, operating system function and

software systems structures before one can talk sen-

sibly about measurements and evaluation. It seems

appropriate at this time to concentrate on measure-

ments and evaluation at an intermediate level after

the student has gained an understanding of hardware

and softwear system functions but before delving too

deeply into design methods. Advanced work in mea-

surements can still be added through thesis projects

and individual study for the specialized student.

Some background in statistics should be acquired

before focusing on measurement and evaluation tech-

niques. Complexities of current systems often prevent

use of direct causal relationships such as underlie

many studies in the physical sciences, and one is

forced to use some of the statistical tools long used by

those in the social, physiological and medical fields.

Students should have enough statistical background

so that they can go on to understand what statistical

concepts are useful in measurements and evaluation,

why they are useful and why some common statistical

techniques are not useful. (For example, some of the

common variance reduction techniques become very

costly when applied to data on computer performance.)

Measurements and evaluation of computers must be

taught in conjunction with some kind of model of the

systems being evaluated. A model is essential in order

to provide the stimulus for measurement and evalua-

tion questions and to provide a context within which

results are used. As an absolute minimum, a "model"

must exist in the form of someone's idea of how a

system does or should perform. More formal modeling

^1
methods exist and their evolution and use in relation

I

to computer evaluation should be encouraged.

The precise type of modeling that is emphasized

in conjunction with measurements and evaluation is

probably less important than that some modeling con-

cept accompany the work. The emphasis on particular

modeling techniques may vary from one university

to another depending on the interest of the faculty.

Some may concentrate on analytical models; others

I
on stochastic or on simulation models. In all of these

j

predictive modeling methods, measurements are nec-

i
essary for establishment of parameter values and for

validation of the models. Performance evaluation con-

cepts are important in each of them in terms of

orientation of the model and its use. Measurements

and evaluation may also be related to purely descrip-

tive models, which in general must precede the pre-

dictive models. In any case, the understanding of the

system provided by descriptive models can serve as

basis for planning of measurements and for a[)plica-

tion of the evaluative techniques.

Concepts—The following is a list of concepts sug-

gested for inclusion in a course on measurements and

evaluation

:

1. Why measure?

1.1 Types of measurements: Views of computer

manager, user and designer.

1.2 Results and how to use them: Tuning, equip-

ment postponement and equipment selection.

2. Relation of measurement and evaluation to

models.

3. Model taxonomies.

3.1 Roles of various types of models in measure-

ment and evaluation.

4. What to measure?

4.1 Problem definition, its importance and its

relation to measurements and evaluation.

4.2 Know the system being measured. (Impor-

tance of this point should be stressed for all.

The time in the course devoted to discussion

of a particular system will depend upon the

students' background and on the measure-

ment project assignments to be given. I

4.3 Influence of component cost on choice of

measures.

5. Hierarchical approach to measurements.

5.1 Focus on most important issues.

5.2 Exogenous and endogenous systems.

6. Instrumentation (history of development, current

status and future trends).

6.1 Hardware monitors.

6.1.1. Techniques of use: Probe attachment:

setup and checkout.

6.2 Software monitors.

6.2.1. Accounting data.

6.3 Advantages and disadvantages of the two

monitor types.

6.4 Combined hardware and software monitors.

7. Some underlying problems in time measurement.

7.1 Implications of multiprogramming and multi-

processing.
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7.2 Internal clocks: Tradeoff between resource

use and timing accuracy.

7.3 Synchronization of external clocks.

8. Use of statistical methods for data reduction and

experiment planning.

9. Measurement of system resource utilization.

9.1 System models (descriptive).

9.2 System profiles.

9.3 Throughput.

9.4 Use of hardware and software monitors.

10. Measurement of user programs.

10.1 Graph models.

10.2 Branch activity counts.

10.3 Branch execution times.

10.4 Time variation of memory requirement.

10.5 Turnaround.

11. Measurement of operating systems.

11.1 Relation to resource utilization and user

program performance.

11.2 Operating system overhead.

12. Load description (for evaluation) and modeling

(for prediction)

.

12.1 Need for load description to relate per-

formance measurements to known condi-

tions.

12.2 Methods for load description.

12.2.1 Traces.

12.2.2 Benchmarks and synthetic jobs.

12.2.3 Statistical measures.

12.3 Shortcomings of load description methods.

12.3.1. Lack of machine independence.

12.3.2. Costs of benchmarks and synthetic

jobs.

12.4 Measures of computing work inherent in a

program.

12.4.1 Status of research.

13. Future design for measurement.

13.1 Design features that could simplify the

measurement tasks.

13.1.1 Hardware systems.

13.1.2 Software systems.

With only one text available, as noted above, (and

it has not yet been reviewed relative to the recom-

mendations of this paper) there is need for lectures

in which the main objective is to provide perspective.

Use of the current literature is important, but this

must be done on a very selective basis since the volume

of the literature has abruptly expanded since 1970.

Direct project experience is extremely desirable, pro-

viding one has the appropriate vehicles, i.e. a com-

puter with which to experiment and the hardware

and/or software monitor. In some instances where

it is impossible to experiment directly with the com-

puter due to potential interruption of service to a large

community of users, some experience can be provided

by extracting information from the accounting log.

This is a valuable but limited tool. Another important

proviso concerning project experience is to select a

task that provides insight but does not require an

amount of work that proves overwhelming during a

quarter or semester course.

Following are examples of some of the problems

and projects assigned during various courses:

1. Student's FORTRAN program to extract and

process a tape containing data on UNIVAC
1108 performance. The following data are plotted

vs. elapsed time:

Number of jobs in mix

Memory use

CPU time

I/O request and time spent in I/O

2. Two-man projects are assigned on individual,

real, system analysis projects drawn from local

university, government or business administra-

tion applications (e.g. speed-up of access to per-

sonnel data; processing of parking tickets). No
implementation is done; the final output is a

report proposing a solution, emphasizing cost

benefits. This provides good experience in plan-

ning, but lacks "feedback" from implementation.

3. Students inject assembly language counting and

timing statements into FORTRAN programs,

which are then run on an XDS Sigma 5. Result-

ing data are used to assess frequencies and times

for program branches.

4. Students make use of pre-modified operating

systems in Sigma 5 to intercept and analyze I/O

calls.

5. Students compare hardware monitor measures

of resource use in CDC 6400 with system ac-

counting log measures of the same quantities

—

the simplest example being CPU utilization.

4. Summary of Recommendations

1. Measurement and evaluation viewpoints and tech-

niques should be taught at the university level

to spread consciousness of the importance of the
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topics, and to encourage research and develop-

ment.

2. Initially this should be taught as a separate topic,

through formal courses and individual studies

and projects. The ultimate aim should be toward

inclusion in other courses where a measurement

and evaluation view is important, and the sep-

arate course work should be needed only for

advanced topics for students who specialize.

3. When taught as a separate course, measurement

and evaluation should be placed at an inter-

mediate level—after students are well aware of

the function of hardware and software systems,

but before advanced courses on design of such

systems.

4. Familiarity with statistical methods should be

acquired through prerequisites and should only

have to be reviewed as part of the measurement

and evaluation course work.

5. Measurement and evaluation should be taught in

conjunction with course work on modeling of

computer systems.

6. The particular type of modeling emphasized is

less important than the viewpoint relating the

modeling method to measurements and evalua-

tion. The models (be they predictive or descrip-

tive) should be used for their ability to provide

evaluative information, and for their provision

of a context for communications about measure-

ments and their meaning.

7. Information should be exchanged on a continuing

basis concerning the concepts to be taught and

the most effective methods of conveying them.

The SIGCSE Bulletin of the ACM provides one

good forum for such exchange—probably better

than the Performance Evaluation Review which

is received by ACM SIGMETRICS members,

who are already convinced of the topic's im-

portance.

8. The most important recommendation is for con-

tinued research attention to develop the prin-

ciples pertinent to measurement and evaluation

of computers. This is a joint responsibility of

those in industry, government and the univer-

sities.

This brief paper has gained much from the informa-

tion and enthusiasm provided by the individuals con-

tacted in other universities. It is hoped that this sum-

mary will, in turn, be useful to them and to others

involved in this field.

Much of the author's opportunity to think about

measuring and modeling techniques has been provided

by support under grant #GJ28781 from the Office of

Computing Activities, National Science Foundation,

and this support is gratefully acknowledged.

3. Workshop Discussion

Due to time constraints, the education recommen-

dations were not discussed as extensively as were the

others. The discussion tended to underscore the im-

portance of a strong educational program in CPE,

as indicated by the following summary comment:

Browne: I would like to take the opportunity to raise

a most significant point again. It was a general con-

sensus that application of current technology for

performance measurement and analysis could yield

most of what improvement can be obtained. It, there-

fore, follows if by education we can motivate people

to attempt performance evaluation while simultane-

ously training competent talent to carry out the tasks,

a great impact could be made in only a couple of years.

The figures collected at the conference would suggest

a potential return of perhaps 1 to 2 billion dollars

from such a program. Clearly then it should be of a

very high priority.
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One Space Park
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Dr. James C. Browne

Department of Computer Science

University of Texas

200 West 21st Street

Austin, Tex. 78712

Mr. James H. Burrows

Headquarters, U. S. Air Force

Directorate of Data Automation

Washington, D.C. 20330

Professor Gary Carlson

Director, Computer Sciences

167 MSCB
Brigham Young University

Provo, Utah 84601

Mr. Walter Carlson

IBM Corporation

Old Orchard Road

Armonk, N.Y. 10504

Dr. Dennis Chastain

U.S. General Accounting Office

441 G Street, N.W., Rm 6108

Washington, D.C. 20548

Mr. George DiNardo

Vice President, Mellon National Bank, N.A.

Mellon Square

Pittsburgh, Pa. 15230

Dr. Richard W. Hamming
Head, Computer Science Research Department

Bell Telephone Laboratories

600 Mountain Avenue

Murray Hill. N.J. 07974

Dr. Leo Hellerman

Dept. BIO, Building 707

IBM Corporation

Poughkeepsie, N.Y. 12602

Mr. James Hughes

Xerox Corporation

701 South Aviation Boulevard

MIS Al-85

El Segundo, Calif. 90245

Mr. S. Jpffery

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Dr. Robert R. Johnson

Vice President, Engineering

Burroughs Corporation

Second Avenue at Burroughs

Detroit, Mich. 48232

Dr. Stephen R. Kimbleton

University of Southern California

Information Sciences Institute

4676 Admiralty Way
Marina Del Rey, Calif. 90291

Mr. Philip J. Kiviat

Dept. of the Air Force

Federal Computer Performance Evaluation

and Simulation Center

Washington, D.C. 20330

Mr. Kenneth W. Kolence (Program Co-Chairman)

3591 Louis Road

Palo Alto, Calif. 94303

Mr. Gerald W. Findley

Automated Data & Telecommunications Service

General Services Administration

1121 Vermont Ave. N.W.,

Washington, D.C. 20405

Mr. Robert L. Morrison

System Development Division

IBM Corporation

Dept. 99, Building 707-1

Poughkeepsie, N.Y. 12602
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Professor Richard R. Muntz

Computer Science Division

School of Engineering and Applied Science
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Los Angeles, Calif. 90024

Dr. Norman R. Nielsen

Information Systems Group (J1053)

Stanford Research Institute

333 Ravenswood Ave.

Menlo Park, Calif. 94025

Professor Jerre D. Noe

Chairman, Computer Science Group

University of Washington

228 Roberts

Seattle, Wash. 98105

Dr. John Pasta

National Science Foundation

1800 G Street N.W.

Washington, D.C. 20550

Mr. Ray Rubey

Logicon, Inc.

Claypool Bldg., Suite 145

4130 Linden

Dayton, Ohio 45432

Professor Herbert Schwetman

Department of Computer Sciences

Purdue University

Lafayette, Ind. 47906

Mr. Eugene Seals

The Rand Corporation

1700 Main Street

Santa Monica, Calif. 90406

Mr. Dudley Warner,

Vice President & Chief Scientist

Tesdata Systems Corporation

1234 Elko Drive

Sunnyvale, Calif. 94086

Dr. Wayne Wilner

Burroughs Corporation

Hollister Avenue

Goleta, Calif. 93017
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