
NBS SPECIAL PUBLICATION 405

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Benchmarking

and Workload Definition:

A Selected Bibliography

with Abstracts



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, ( 3 ) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Eleptricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences - — Applied Radiation - — Quantum Electronics " — Electromagnetics " — Time

and Frequency ' — Laboratory Astrophysics ^ — Cryogenics \

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety * — Building

Environment * — Technical Evaluation and Application * — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum

accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

' Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

" Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
* Part of the Center for Building Technology.



Benchmarking and Workload Definition

A Selected Bibliography with Abstracts

Josephine L. Walkowicz

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued November 1974



Library of Congress Cataloging in Publication Data

Walkowicz, Josephine L.

Benchmarking and workload definition.

(National Bureau of Standards Special Publication 405)

Supt. of Docs. No.: C13.10:405

1. Electronic digital computers—Evaluation—Bibliography.

I. Title. II. Title. Workload definition. III. Series: United

States. National Bureau of Standards. Special Publication 405.

QC100.U57 No. 405 [Z5642.2] 389'.08s [016.0016'4] 74-17210

National Bureau of Standards Special Publication 405

Nat. Bur. Stand. (U.S.), Spec. Publ. 405, 45 pages (Nov. 1974)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13.10:405). Price $1.05



Benchmarking and Workload Definition:

A Selected Bibliography with Abstracts

Josephine L. Walkowicz

These 85 citations to the literature of benchmarking and workload definition were selected

from a longer list of documents, encompassing a somewhat broader scope, that was submitted

to Federal Information Processing Standards (FTPS) Task Group 13 in response to a request

made to attendees of the Task Group's Planning Session held on July 12, 1973, at the National

Bureau of Standards. One of the topics discussed at the Planning Session was the collection

of a selected bibliography on workload definition and benchmarking. The bibliographic effort

was to be directed not so much toward exhaustiveness as toward the development of a bibliography

that the attendees had found useful and would, therefore, recommend to other workers in the

field. Of the approximately 250 citations submitted to the Task Group, these 85 were selected on
the basis of two criteria: (1) the item dealt primarily with benchmarking or workload definition;

and (2) hard copy was available at the Institute for Computer Sciences and Technology. The
citations are arranged alphabetically by last names of the first authors. Each citation has an
abstract, a classification category assignment, and a list of key words. The category assignments
are made from a classification scheme that was developed for the collection and that is used here
as a Category Index to the Bibliography. A Key Word Index is also provided.

Key words: Benchmarking; bibliography; computer performance measurement; computer procure-

ment; workload definition.

Introduction

A Planning Session to review the objectives, scope,

and proposed program of work for FIPS Task Group
13, Workload Definition and Benchmarking, was held

at the National Bureau of Standards on July 12, 1973.

One of the topics discussed at the Planning Session

was the collection, as a possible ongoing activity of the

Task Group, of a selected bibliography on workload
definition and benchmarking. The effort was to be
directed not so much toward the development of an
exhaustive bibliography of the field as toward a

bibliography of literature items that the attendees

had found useful and would, therefore, recommend to

other workers in the field.

To initiate this effort, all attendees were invited to

submit lists of such documents. The response to this

invitation yielded a collection of approximately 250
citations to the literature of benchmarking and of

computer performance measurement.

In addition to citations, attendees submitted descrip-
tions of the benchmarking process in competitive
computer procurements, and some suggestions for

key words to describe that process. In organizing the
material for further use by the Task Group, it became
apparent that the work might be of immediate value
to a wider audience, and a decision was made to

publish the bibliography as a National Bureau of
Standards document.

The Bibliography consists of 85 citations selected
from the original collection on the basis of two
criteria: (1) the item dealt primarily with bench-
marking or workload definition; and (2) hard copy
was available at the Institute for Computer Sciences

and Technology. The number in parentheses which
terminates each bibliographic entry has significance

only as a local file reference. Each citation has an

abstract, one or two numbers indicating classification

category assignment, and a list of key words. The
citations are arranged alphabetically by last names
of first authors.

The classification scheme was developed on the

basis of a consolidated description of the bench-

marking process, as envisaged by Planning Session

attendees, and augmented to include a general cate-

gory to accommodate necessary discussions of the

measurement process and related background topics.

Items are assigned to one or more categories, as

appropriate to reflect their content. The classification

scheme is presented on page 40, where it also serves

as a Category Index to the publication.

The Key Word Index also begins on page 40. The
key words assigned to each citation were taken from

the literature itself; no attempt was made to standard-

ize terminology or to decide whether or not one

author's job mix was another's workload. Needless to

say, neither the classification scheme nor the list of

key words can be considered exhaustive or definitive

of the field; both require further development and

testing against a larger collection of documents.

In addition to regular distribution of NBS Special

Publications, this publication will be made available

to FIPS Task Group 13 for further use in whatever

continuation effort the Task Group deems necessary

or desirable. Reader comments are invited regarding

the general value and interest in expanding the scope

of the bibliography, and will be gratefully received

by the author.

1



Bibliography

1. Abrams, Marshall D., George E. Lindamood,
and Thomas N. Pyke, Jr., Measuring and

Modelling Man-Computer Interaction, in As-

sociation for Computing Machinery, Pro-

ceedings of the SIGME Symposium, February

1973, pp. 136-142, 11 refs. (6430166)

The paper describes the Dialogue Monitor
developed at the Institute for Computer
Sciences and Technology as a tool for the

measurement of computer services, particu-

larly those provided by interactive systems.

The model of service used here is concerned

with performance measurement external both

to the user and to the computer, and focuses

on the dialogue which takes place between

the two.

External performance measurement completes

the analytic and stimulus approaches used by
Karush; service may be measured as delivered

to actual users or to an artificial stimulus.

The character, with two associated descrip-

tors, is the unit of measurement. The first

descriptor is the identity of the character's

source; the second descriptor specifies the

time of occurrence of the character. The
character itself is explicit; its source is im-

plicit in the communications discipline; and
an external clock provides the time of occur-

rence.

With these simple data several models of

the man-computer dialogue have been devel-

oped. The models differ primarily in the

degree of the interactiveness of the dialogue.

The paper presents two models and the terms

used to describe each. The data stream model
is described in terms of idle time, think time,

computer burst, user burst, computer inter-

burst time, user interburst time, computer
burst segment, user burst segment. The stini-

ulus-acknowledgement-response model is de-

scribed in terms of acknowledgement delay,

acknowledgement time, acknowledgement
character count, system response time, system

transmit time, system character count, user

think time, user transmit time, and user char-

acter count.

The operation of the monitor is described

briefly and some analysis of the data is pro-

vided. (JLW)

Category: 1.2

Key words: Dialogue monitor; idle time; man-com-
puter interaction; measurement tools; models; think

time.

2. Arbuckle, R. A., Computer Analysis and Thru-

put Evaluation, Computers and Automation,

15:1 (January 1966) pp. 12-15, 19.

(6430197)

"The real criterion for measuring system

performance is thruput. Yet many evaluations

use only internal comparisons to rate a sys-

tem's overall performance." Add-time, in-

struction time, instruction-mix, and kernel

problem comparisons may provide relative

internal performance figures for specific cases,

but these are generally applicable to com-

parable computer families. In thruput evalua-

tion, the power of a system must be measured

in terms of how fast it can perform the com-

plete job.

In this connection, two type of benchmark
problems are suggested: one which estimates

time, another which reports actual running

times. How well either can evaluate thruput

depends essentially on two major considera-

tions: how well the benchmarks reflect actual

jobs; and how well they characterize the

total workload. Production job runs are

identified as the "best way" to measure a

system's performance. The widespread use of

generalized compilers provides the capability

to run actual production jobs or systems wilh

entirely different organizations. The choice

of selecting jobs to reflect total system load

still remains, even with this approach. Hard-

ware monitors can be used to evaluate and

tune system components. The article con-

cludes with an example of the use of a hard-

ware monitor to improve performance of an

IBM-7094 system. (JLW)

Categories: 3.0; 1.2

Key words: Application benchmarks; computer sys-

tems: hadware monitors; IBM—7094; throughput.

3. Bell, T. E., Computer Performance Analysis:

Measurement Objectives and Tools, The
RAND Corp., Santa Monica, Calif., Rept. No.

R_584-NASA/PR, February 1971, 32 pp.,

27 refs. (6430172)

This report suggests a number of objectives

for computer system measurement and analy-

sis beyond the commonly accepted one of tun-

ing. Objectives in computer operations

—

identifying operational problems and improv-

ing operational control—mean that personnel

in this area should become familiar with

new tools and techniques. Computer system

simulators should be concerned with model
validation as well as model development. In-

stallation managers need results from this field

in order to select equipment, trade man-time
for machine-time, and tune installed equip-

ment.

2



Data collection tools for use in measurement
and analysis are necessary to fulfill these ob-

jectives. These tools range from simple, inex-

pensive ones—audio and visual indicators,

operator opinions, and logs—to the more so-

phisticated hardware and software monitors.

Each of the simple tools can provide initial

indications of performance, but hardware and
software monitors are usually necessary for a

thorough analysis. Five binary characteristics

can describe a monitor: (1) implementation
medium, (2) separability, (3) sample por-

tion, (4) analysis concurrency, and (5) data

presentation. An analyst should determine the

characteristics his analysis requires before

choosing a product.

Recognizing objectives and choosing measure-
ment tools are two important steps in a per-

formance analysis study. This report deals

with these two topics so that analysts can
proceed to four more difficult and critical

topics. Modeling, choosing a data collection

mode, experimental design, and data analysis

deserve at least as much attention as examin-
ing data collection tools. (Author)

Category: 1.2

Key words: Computer performance analysis; com-
puter performance measurement; measurement tools;

simulators; validation.

4. Bell, T. E., B. W. Boehm and R. A. Watson,
Computer System Performance Improvement:
Framework and Initial Phases, The RAND
Corp., Santa Monica, Calif., Rept. No. R-549-

PR, August 1971, 55 pp., 4 refs. (6430187)
This report distills selected RAND experience
and research in the measurement and evalua-

tion of computer system performance into a
set of practical guidelines for organizing the

initial phases of an effort to improve the

performance of a general-purpose computer
system. The report is desianed primarily as

an aid for "getting started" and provides a

procedural framework which consists of seven
phases. Only the initial three phases are dis-

cussed in detail in this report.

Phase 1 is "understanding the system," and a
Preliminary Questionnaire is suggested for

this purpose. The Questionnaire asks general,

descriptive questions about organization,
workload, hardware and software, and the
accounting system. For Phase 2 which is

"analyzing operations," a Detailed Question-
naire is suggested as a guide to the kind of
data gathering which must be undertaken in
order to analvze computer system perform-
ance. The details reauired identify characteris-
tics of operations, of jobs, and of the system.
A Questionnaire on current measurement and

evaluation activities is also suggested. Phase
3 is an aid to installations in developing per-

formance improvement hypotheses; methods
of analysis are suggested that provide a

transition from analyzing operations to formu-

lating hypotheses, and a number of general

hypotheses appropriate to particular problem
situations are presented. (Modified author)

Category: 1.2

Key words: Computer performance analysis; guide-

lines; questionnaire_s.

5. Boehm, B. W., Computer Systems Analysis

Methodology: Studies in Measuring, Evaluat-

ing, and Simulating Computer Systems, The
RAND Corp., Santa Monica, Calif., Rept. No.

R-520-NASA, September 1970, 42 pp., 17

refs. (6430186)

The report is a summary of the results of four

studies on computer systems analysis and
simulation performed under contract to NASA.

One of these studies was on measurement and
evaluation of computer systems. Among the

critical areas cited in this context is that of

"a strong instability in gross measures of

multiprogrammed system performance (cen-

tral processing unit utilization, throughput,

etc.) with respect to changes in load character-

istics, disk data set allocation, and scheduling

algorithms. Small changes in load characteris-

tics, etc., can easily produce large changes in

multiprogrammed system performance. This

phenomenon has the following significant

operational implications: (1) significant im-

provements in CPU utilization or throughput
(usually at least 30 percent; sometimes over

300 percent) can be realized from invest-

ments in tuning multiprogrammed computer
systems; (2) computer systems selected and
procured because of their performance on a

series of benchmark jobs can lead to disastrous

mismatches if great care is not taken to assure

that the benchmarks are fully representative;

and (3) as workload characteristics change
with time, the maintenance of a well-tuned

computer requires a continuous rather than a

one-shot effort."

Thus considerable study of the pertinent inter-

actions is necessary before the key contributing

factors are isolated. In situations arising from
several dominant factors, use of the simplest ex-

planation as a basis for decision can lead to

"highly dysfunctional" results.

A good example of this phenomenon is provided

in one of the studies. Performance measures of

an IBM-360/65 (in terms of the percentage of

CPU cycles productively utilized) indicated an

increase after the addition of 50 percent more of



core memory and several additional disk drives.

However, a more detailed analysis of the data

indicated that the increase actually correlated

with a decrease in the average number of jobs

resident in the increased memory, and was pri-

marily due to an "otherwise undetected" increase

in average CPU usage by individual user jobs.

Analysis also indicated that the increased per-

formance was due as much to decreases in the

I/O characteristics of the workload as it was to

configuration changes. (JLW)

Category: 1.2

Key words: Computer performance evaluation; com-

puter performance measurement; multiprogrammed
computer systems; system tuning; workload repre-

sentation.

6. Boksenbaum, Melvin, Results of Benchmark Com-
parison of the Performance of IBM-360/85 and

370/165, Memorandum Kept., 2 Apr 71, 11 pp.

(6430146)

The author states that the benchmark is a valid

and useful tool in a comparison of the 360/85
with the 370/165. The reasons given for this

are several. The performance of the 360/85 is

known so that the relative performance of the

370/165 will be meaningful. Both machines are

available with similar peripheral equipment and
operating systems software. The programs selected

for the benchmark are representative of the in-

stallation workload.

The benchmark consists of three parts: (1) a

compute-bound linear programming problem run

standalone; (2) an I/O bound monthly financial

closing job also run standalone; and (3) a job

stream of 29 programs taken from the normal
installation workload.

The first two programs cited above represent the

two extreme types of processing by a computer
system and their performance by the 370/165 is

a good measure of that computer's capabilities.

The 29 programs comprising the job stream were

carefully selected in order to represent every type

of job run on the 360/85. Programs from each

user department were selected on the basis of

departmental monthly computer usage. The pack-

age includes a daily financial run which spans
the job stream, six linear programming jobs of

various sizes, and 22 other programs whose
elapsed running times vary from one to fifteen

minutes and which are coded in PL/I, COBOL,
assembly language, and object code. The bench-

mark has a run time of approximately one hour
on the 360/85. Summary data are presented in

tabular form.

The results indicate that performance of the 370/
165 should be approximately 90 percent of the

360/85. Turnaround time, peripheral utilization

and overtime usage will not be significantly af-

fected. However, the replacement is expected to

effect a cost reduction of more than 20 percent,

so that net increase in performance is significant.

(JLW)

Category: 3.3

Key words: Application benchmarks; benchmark run

analysis; computer performance measurement; com-

puter systems; IBM-370/165; IBM-360/85; work-

load representation.

7. Bookman, Philip G., Barry A. Brotman and Kurt

L. Schmitt, Use Measurement Engineering for

Better System Performance, Computer Decisions,

4:14 (April 1972) pp. 28-32. (6430167)

The article suggests, in the absence of a discipline

of "measurement engineering," an engineering-

like approach which will provide a methodology

for the application of measurement tasks. This

approach is illustrated by a case study of a data

center at Allied Chemicals which had an IBM-
360/50 and a 360/40 processing a workload con-

sisting of local batch, remote job entry, and on-

line systems. Through the use of the Configuration

Utilization Evaluator (CUE) and of the Data Set

Optimizer (DSO) the system was tuned and op-

timized so that the net results were the dropping

of the 360/40 system and an annual saving of

about a quarter of a million dollars. The author

considers hardware and software monitors neces-

sary tools to a measurement methodology, with-

out which it would be impossible to obtain in-

formation on what parts of the system are in need

of improvement or which ones are not operating

at optimal capability. (JLW)

Category: 1.2

Key words: Computer performance measurement; con-

figuration evaluators; data optimizers; measurement
engineering; software monitors; system optimizing;

system tuning.

8. Brocato, Louis J., Getting the Best Computer Sys-

tem for Your Money, Computer Decisions, 3:9

(September 1971) pp. 12-16. (6430198)

The article describes a method for evaluating 5

vendor proposals, based on weighting all of the

required system elements and dividing the score

by dollar costs. The "best" system then is bench-

marked. This is a departure from current prac-

tice in which all vendors are required to per-

form the benchmark. If the benchmark run of

the "best" system is successful, then that system

is selected for procurement. If the benchmark
fails, then the "next best" system is benchmarked,

and so on, if necessary, until a contract is award-

ed. (JLW)



Category: 1.3

Key words: Proposal evaluation.

9. The Benchmark, or What It Takes to Measure

Up Sperry Univac Review, 3:1 (1973) pp. 8-9.

(6430239)

A brief overview of Univac's benchmarking fa-

cilities and practices. Of note are the following

observations. This [benchmark test] "may last

as long as six hours for a UNIVAC-9700 or

even five eight-hour days for a UNIVAC-1110.
It normally includes a time demonstration in a

stopwatch environment and a functional test of

basic software capabilities." One benchmark fa-

cility includes an IBM-360/40 [which] "allows

us to run our system directly against the com-
petition's ... It also helps us find specific prob-

lem areas in a program of a 360 user who is a

potential customer." The benchmarking facility

is considered to be a skill center continually

building conversion knowledge. From 500 to 1,000

operational programs may be represented in a

customer conversion which is usually a longer

process than the pre-sale benchmark. At the Mar-
keting Test Center in Eagan Township, Minnesota,

there are usually 2 to 5 benchmarks in process,

with customers in attendance, with another 10 to

15 benchmarks in various stages of completion.

"Today's customers want to actually witness per-

formance, so that benchmarks precede virtually

all procurement. An average benchmark here

takes from 6 to 12 weeks, including preparation.

This includes approximately 100 hours of actual

computer time and from 60 to 75 total man
weeks. The time can vary greatly. We've had
benchmarks requiring as little as four hours from
start to finish. Others have taken up a year."

The first successful 1110 benchmark was com-
pleted in November 1972 at this facility, and some
fifty more have been completed since then. In

addition, two or three 1106 benchmarks are also

run each week. This facility also does final check-

out on specific benchmark configurations of

benchmark programs prepared in totally execut-

able form by the Eastern Test Center located in

Washington, D.C. (JLW)

Category: 3.0

Key words: Benchmark costs; benchmark facilities;

benchmark practices; benchmark times; UNIVAC.

10. Buchholz, W., A Synthetic Job for Measuring
System Performance, IBM Systems Journal, 8:4

(1969) pp. 309-318, 6 refs. (6430101)

Performance in this article is defined quanti-

tatively in terms of the running time of a given
job. As a yardstick serves to measure length, so

a synthetic job can serve to measure those char-

acteristics of a computer to which the job is

sensitive. There are several requirements for a

synthetic job: (1) it can be stated as a machine-

independent procedure; (2) it must be meaning-

ful over a wide range of computer systems; and

(3) it should be short enough to permit accurate

measurement, and yet not so long that measure-

ment becomes a burden—this requires a cyclic

procedure with running time directly propor-

tional to the number of repetitions.

The synthetic program which is used as an illus-

tration is written in PI/I and is modeled after

a file maintenance procedure which makes heavy

use of I/O devices. The program has a compute
kernel of variable length and its storage require-

ments may be varied also, so that it is possible

to simulate compute- and I/O-bound situations.

In multiprogramming situations a well-controlled

job stream, consisting of synthetic jobs with

known properties, can be used as a measure of

system throughput and of slowdowns in jobs

resulting from concurrent processing of other

jobs.

The author makes no claim as to the representa-

tiveness of the synthetic program of a real file

maintenance application. However, the adjustable

parameters of the program can serve to approxi-

mate the steps of a real program and thus pro-

vide a tool for simplifying the testing of bench-

marks. Though a synthetic program cannot rep-

resent all of the complexities of a real program,

it can be much better controlled and can provide

the user with details on what is being measured
and what the limitations are.

Similarly, a synthetic file maintenance program
alone may not be able to model all of the steps

of a real application. Also there is the inherent

danger that a single measure of performance

may lead to designing a system tuned to a par-

ticular job. "But if several dissimilar programs
are used, a system that does well in all of the

items is likely to do well on real jobs. A small

collection of parameterized procedures, imitating

such operations as sorting and matrix computa-

tions, may well prove to be adequate standards

of comparison from which a user can select those

most appropriate for his application." (JLW)

Category; 3.2

Key words: Machine independence; synthetic program
(PL/I); synthetic program requirements.

11. Buckley, Fletcher J., Estimating the Timing of

Workload on ADP Systems: An Evaluation of

Methods Used, Computers and Automation, 18:2

(February 1969) pp. 40-42, 9 refs. (6430194)

The article discusses and evaluates methods used

for timing of specified workloads by various

computer systems. Three methods are discussed:

(1) mathematical calculations of CPU and I/O

5



time required for execution of a workload which

is described usually by a detailed layout of files

and by a generalized description of programs;

(2) simulation; and (3) benchmarks.

The validity of the first method is questionable

for several reasons. These are the grossness of

the program descriptions, the subjective elements

in estimating numbers and "average" instruc-

tions, and the disregard of the effects of the

operating system as well as of the efficiency of

the compiler.

Simulation includes the same basic methodology

coupled with techniques which would provide

better workload representations. These tech-

niques include use of more detailed and complete

object program descriptions, use of probability

tables to permit study of random events, and

incorporating compiler characteristics into the

simulation process. To make simulation a valu-

able tool in the evaluation process, the author

suggests that objective means of measuring and

testing basic parameters of computers and of

operating systems and better methods of work-

load descriptions are required. He adds, how-

ever, that "additional work along these lines

seems impractical and appears to be on the

extreme fringe of the state-of-the-art."

Benchmark techniques seek to represent the total

workload by the use of representative programs.

Advantages of the benchmarking process are

that the actual operating system, the actual com-
piler, and the actual machines proposed by a

vendor are tested. Abstractions of these com-

ponents are, therefore, unnecessary. Several ob-

jections are raised to the benchmarking process:

(1) uncertainty about representativeness of

benchmark programs and of test data; (2) the

cost in time and dollar resources of providing

benchmark programs and data; (3) cost of con-

version of benchmark programs to fit vendor

computers; (4) cost of the benchmark runs;

(5) difficulties in obtaining a precise configura-

tion of a vendor's system; and (6) "the apparent

impracticability of attempting to completely

benchmark all aspects of a workload, for ex-

ample, 30 remote users in a real time situation."

Partial solutions to the problems inherent in

benchmarking are suggested. The programs con-

stituting a given workload can be categorized

into classes, and the significance of each class

can be determined by the major portion (in

terms of running time) each class requires. Two
sets of data are also suggested—one to be used

by the vendor to test a benchmark program
which had been modified to run on a particular

computer, the other set for a customer-supervised

run to obtain actual running time data.

Actual costs of running a benchmark are not

considered to be substantial. A truly representa-

tive benchmark can be run in 2 hours, which at

$300 an hour ( IBM-360/50 ) is not a large

fraction of the total benchmark cost. Analysis

of results is, of course, a must in the case of

the benchmark which, in the author's opinion,

can produce good results, even if the benchmark i

is not a panacea. (JLW)

Category: 2.2

Key words: Benchmark costs; benchmark time; com-

puter systems; IBM-360/50; workload representation;

workload timing.

12. Budd, A. E., A Method for the Evaluation of

Software. Volume 1. General Description Includ-

ing Benchmark Considerations, Mitre Corp.

Bedford, Mass., Tech. Kept. No. MTR-197,
August 1966, 36 pp. (ESD-TR-66-113, Vol. I;

AD-639586) (6430200)

The report describes a three-step procedure for

evaluating software: (1) select the software

component categories needed by the user; (2)

select individual features of each category by

weighting the importance of each measure of

software capability; and (3) assign appropriate

weights to the features selected.

Nine software categories are identified: (1)

procedural language compilers; (2) operating,

executive, or monitor systems; (3) sort and/or

merge routines: (4) output report generators;

(5) languages for simulation; (6) symbol ma-

nipulation languages; (7) data management sys-

tems; (8) general utility library routines; and

(9) problem oriented language systems.

Fourteen measures are then identified as those

useful to any installation considering the addi-

tion of one of the software components to its

facility. The choice of measures to be so used

was dictated by considerable care in selection of

characteristics that: (1) are significant; (2)

cover the complete range of software com-

ponents; (3) are separable and sufficiently dis-

tinct to be of general utility; (4) are measurable

in some realistic way; and (5) allow relative

comparison of some attribute.

The suggested measures are listed below. The
report presents with each measure a quantity

that is measurable, a related quantity for pur-

poses of comparison, and a method of assigning

a value to the measure in cases where this is not

obvious. A short title follows each measure.

(1) Decreased Programming Time (Pro-

gramming)

(2) Decreased Checkout Time (Checkout)

(3) Conserve Compilation Time (Compila-

tion)

(4) Conserve Execution Time (Execution)

(5) Framework for Efficient Utilization of

I/O Equipment (I/O Utilization)

6



(6) Economies in Object Program (Product

Economy)
(7) Framework for Efficient Utilization of

Secondary Storage (Secondary Storage)

(8) Flexibility for Hardware Growth or

Change (Growth Flexibility)

(9) Framework for Optimizing Simultaneous

Use of I/O and Central Processing Units

(Simultaneity)

(10) Decreased Facility Maintenance Cost

(Maintenance)

(11) Minimized Operator Intervention (In-

tervention)

(12) Increased Machine Independence (In-

dependence)

(13) More Standardized Documentation

(Documentation)

(14) Less Initial Programmer Training

(Training)

Once the user/evaluator has selected features

significant to his requirements, he can determine

their relative advantages and which features

vary from one vendor or machine to another.

A basic format for this process is suggested.

The report concludes with a section on general

benchmark considerations. A table presents tim-

ing requirement standards broken down by rec-

ognizable points in time and timing quantities

suitable for each. For observers and reporters of

the results of a benchmark demonstration, a

guideline-questionnaire is presented in 8 parts:

(1) General and Administrative Questions; (2)

Benchmark or Source Program Development;

(3) Translation of Source Program; (4) Test

and Debug; (5) Object Program Operations:

(6) Potential Software Deficiencies; (7) Poten-

tial Software Extras; (8) General Comments.
(JLW)

Categories: 1.2; 3.6; 10

Key words: Benchmark timing standards; guidelines;

questionnaires; software characteristics; software

classification.

13. Calingaert, P., System Performance Evaluation:

Survey and Appraisal, Comm. ACM, 10:1 (Janu-
ary 1967) pp. 12-18.

The state of the art of system perfomance evalu-

ation is reviewed and evaluation goals and prob-

lems are examined. Throughput, turn-around,

and availability are defined as fundamental meas-
ures of performance; overhead and CPU speed
are placed in perspective. The appropriateness
of instruction mixes, kernels, simulators, and
other tools is discussed, as well as pitfalls which
may be encountered when using them. Analysis,

simulation, and synthesis are presented as three

levels of approach to evaluation, requiring suc-

cessively greater amounts of information. The
central role of measurement in performance

evaluation and in the development of evaluation

methods is explained. (Author)

Category: 1.2

Key words: Computer performance measurement;

measurement parameters; system availability;

throughput; turnaround.

14. Campbell, D. J. and W. J. Heffner, Measurement
and Analysis of Large Operating Systems Dur-

ing Systems Development, in AFIPS, Proceed-

ings of the Fall Joint Computer Conference,

1968, Part 1, pp. 903-914, 3 refs. (6430224)

The paper reports on experience in the develop-

ment of GECOS III which led to the develop-

ment of a series of techniques for the measure-

ment and analysis of the behavior of operating

systems. Both hardware and software measure-

ment techniques used in developing GE's operat-

ing systems are discussed; software techniques

include simulation and system recording.

System recording encompasses four techniques:

(1) system design that allows for adequate meas-

urement; (2) built-in system auditing tech-

niques; (3) event tracing; (4) performance

analysis and recording.

The authors' experience with each of these is

reported in detail, with summary output data

presented in graphic form. The single lesson

learned is that continuous measurement is an

absolute necessity for top efficiency in operating

systems. "It is truly amazing how seemingly

minor changes in a system can have profound

effects on overall performance." (JLW)

Category: 3.6

Key words: Event counters; event tracing; GECOS
III; operating system measurement; operating sys-

tems; simulation; software performance analysis; sys-

tem auditing; system design; system monitoring;

system recording.

15. Cantrell, H. N. and A. L. Ellison, Multiprogram-

ming System Performance Measurement and

Analysis, in AFIPS, Proceedings of the Spring

Joint Computer Conference, 1968, pp. 213-221.

5 refs. (6430173)

"Performance analysis consists simply of trying

to answer the question, 'Where does the time

go?' and given an answer, applying a subjective

judgment as to whether the amount of time

spent on a given function is reasonable." These

concepts (as embodied in the classical theory
'

measurement/revised theory/revised measure-

ment/cycle) are here applied to an analysis of

performance and software of the GE-625/635
GECOS II operating system.

GECOS II keeps a running total by program
(system as well as application) of all processor.

7



channel, and device time used. Analysis of ac-

counting data produced by GECOS II revealed

that the question, "Where does the time go?"
could not be answered from this data. A tenta-

tive theory, "The extra time goes into overhead,"

was advanced. Analysis of overhead processor

time revealed the fact that overhead processor

time was significant but not excessive, and that

there was significant idle time in a supposedly

heavily loaded system. The theory, "The extra

time goes into overhead," was dropped and re-

placed by the question, "Why is processor idle

time so high?" Analysis of octal memory dumps
was made and led to the conclusion that over-

head was not the problem, and that "whatever
the problem was, it could not be exposed by
analysis of overhead time summaries."

This analysis also yielded a "succession of well

defined, understood, and evaluated system per-

formance bugs . . . which were corrected in the

prototype versions of the next software system

distribution." The resultant throughput improve-

ment on customer sites averaged 30 percent and
ranged from 10 to 50 percent, depending on the

load mix.

Application of the "Where does the time go?"
principle to analysis of individual program per-

formance yielded some interesting results. For
example, one COBOL program was found to

be spending most of its total time in the machine
in opening, closing, and checking the labels of

a small transient tape file. Another interesting

result was really an unexpected discovery of a

solution to the problem of determining where
compute time goes within a program. By using

a high density sampling method and inter-

rupting an executing program according to

some statistically independent pattern, it was
noted that the frequency with which the inter-

rupt location falls within a particular instruc-

tion sequence is proportional to total program
time spent in executing that instruction se-

quence. This method was applied to a variety

of programs and proved to be a valuable tool

for tuning long running and/or frequently

used programs, as well as in locating compute
time performance bugs. The first application of

this tool to the FORTRAN compiler increased

compiler speed by 27 percent.

The current implementation of both system and
individual program performance measurements
is done by MAPPER which is loaded as a

user program. MAPPER runs are made over

a period of several hours of normal system

operation and require one online printer, 4K
of core, and penalty of 10 percent in reduced
machine performance. A sample of output of

the monitor is provided in the article. Data
output from these runs show that the following

performance factors can be identified and

evaluated: (1) hardware configuration bottle-

necks—I/O channels, tapes, drums, disc, core,

etc.; (2) indications of inefficient I/O strategy

—

blocking, buffering, etc., in individual user pro-

grams; (3) the effectiveness or ineffectiveness

of the actual multiprogramming mix; (4) the

effects of machine room procedures upon sys-

tem performance; (5) the relative efficiencies of

various optional strategies of machine operation

with enough information to define why this way
is better than that one; (6) possible operating

system performance bugs.

Another output of MAPPER is the major event

report which provides a tool for measuring and
understanding the detailed operation of the

operating system.

In addition to the above, some intangible re-

sults are reported. Of particular interest and

significance to benchmarking is the capability

here to accumulate data on total time used by

each program, and sorting the results to arrive

at the top ten (or twenty or fifty) programs.

These top ten, typically, appear to account for

50 to 80 percent of the total load. This implies

that a very few programs account for a large

portion of installation efficiency and throughput.

These programs are ideal candidates for fine

tuning, especially in view of the fact that the

tools discussed here have been successfully ap-

plied to considerable reductions in program
running times. Mixing the top ten with appro-

priate short jobs can do much to optimize

throughput and increase capacity of the installa-

tion. (JLW)^

Category: 1.2

Key words: GECOS II; operating system measure-
ment; operating systems; program timing; program
tuning; software monitors; software performance
analysis; throughput; workload representation.

16. Commission on Government Procurement. Re-

port of the Commission on Government Procure-

ment, Volume 3, Chapter 5, Special Products

and Services, December 1972, pp. 45-54.

(6430201)

Because of its recent dramatic growth as an

industry, and its importance to all government
operations, automatic data processing equip-

men was one of the products singled out for

special treatment by the Commission on Govern-
ment Procurement.

The Commission's findings regarding bench-
marks are reported here verbatim.

Benchmarks. These are a series of computer
programs designed by the using office as

representative of the workload that will be

processed. Benchmark requirements are in-

corporated in Government solicitations for

8



computers. The Business Equipment Manufac-

turers Association (BEMA), in a poll of

equipment manufacturers, obtained a general

estimate that as much as 50 to 80 percent

of the cost of bidding is tied to benchmarks,

mainly because they are individually designed

and developed separately for each procure-

ment.

Acquisition procedures should be tailored to

the equipment that is being acquired. Often

more than half of an agency's budget for an

information system may be expended before

the specifications are released to industry.

The use of standard benchmarks would sub-

stantially reduce these costs.

Recommendation 14. Develop and issue a set

of standard programs to be used as bench-

marks for evaluating vendor ADPE proposals.

Top-management officials give a great amount
of attention to equipment oriented details. The
emphasis is on computer performance and

evaluation rather than ADP personnel costs.

For example, each new system now involves

a completely new set of benchmark programs
with the attendant personnel costs of their

development. One solution would be to de-

velop a set of standard programs for use as

benchmarks. At the time of acquisition, an

appropriate sample of the standard programs
would be selected. Vendors and procuring

personnel would become familiar with the

standard programs, and only the program
mix would change from one procurement

actio;! to another. The Center for Computer
Science and Technology, an organization in

the NBS Institute for Applied Technology, is

a logical choice to develop standard bench-

mark programs.

Category: 1.3

Key words: Benchmark; computer procurement pol-

icy; procurement methods; specifications development.

17. Crowding, Edward P., A Controllable Synthetic

Job Stream for Benchmarking, IBM Systems
Development Div., Poughkeepsie, N.Y. Kept.

No. TR 00.2173-1, 6 June 72, 13 pp., 2 refs.

(6430149)

Benchmark job streams have been widely used
in comparing performance of hardware/soft-

ware systems. This paper recounts experiences

in defining, collecting, and executing representa-

tive job streams.

A new benchmarking approach is presented

—

the synthetic job step. A control card specifying

desired characteristics is input to the synthetic

step and controls its execution. The technique
has resulted in faster, less expensive and more
accurate benchmark tests for systems per-

formance evaluation. (Author)

Category: 3.2

Key words: Accounting data; benchmark run analy-

sis; job stream representation; synthetic job step;

synthetic jobs; synthetic job stream; workload analy-

sis; workload characteristics.

18. Denning, Peter J., A Statistical Model for Con-

sole Behavior in Multi-User Computers. Comm.
ACM, 11:9 (September 1968) pp. 605-612,

3 refs. (6430168)

The ability of a computer system to com-
municate with the outside world efficiently is as

important as its ability to perform computa-

tions efficiently. It is quite difficult to char-

acterize a particular user, but rather easy to

characterize the entire user community. Based

on the properties of this community we have

postulated a hypothetical "virtual console." No
claim is made that a virtual console behaves

like any actual console, but the entire collection

of virtual consoles models the collection of

actual consoles. Using the model we answer

questions like: How many processes are sus-

pended waiting for console input? What is

the maximum rate at which a process can exe-

cute? What bounds can be set on overall buffer

requirements? Answers to these and similar

questions are needed in certain aspects of

operating system design. (Author)

Category: 1.3

Key words: Input/output design; models; multi-user

terminals; operating system design; statistical models:

virtual console.

19. Denning, Peter J., The Working Set Model for

Programming Behavior, Comm. ACM, 11:5

(May 1968) pp. 323-333, 17 refs. (6430169)

Probably the most basic reason behind the

absence of general treatment of resource alloca-

tion in modern computer systems is an adequate

model for program behavior. In this paper a

new model, the "working set model," is de-

veloped. The working set of pages associated

with a process, defined to be the collection of

its most recently used pages, provides knowledge

vital to the dynamic management of paged

memories. "Process" and "working set" are

shown to be manifestations of the same ongoing

computational activity; then "processor de-

mand" and "memory demand" are defined;

and resource allocation is formulated as the

problem of balancing demands against avail-

able equipment. (Author)

Category: 1.3

Key words: Models; multiprogrammed computer sys-

tems; paging; program analysis; program behavior;

program models; resource allocation; scheduling; sta-

tistical models; storage allocator; working set model.

9



20. Department of the Army, Development of Stand-

ard Benchmarks, in Management Information

Systems. Information Processing Systems Ex-

change, Pamphlet No. 18-10-2, May 1973, pp.

1-8.

The article describes the joint effort undertaken

in September 1972 by the Departments of the

Army, Navy, Air Force, and the Defense Supply

Agency to develop standard benchmarks. The
standard benchmarks appear to be a less costly

alternative to benchmarks composed of user

programs. The description of workloads by a

number of standard, variable parameter pro-

grams (or standard benchmarks) appears to be

feasible with the increasing use of task oriented

benchmark programs (update, sort, etc.) in-

stead of application benchmark programs, like

payroll, inventory, etc.

Overall control of this project has been assigned

to the Department of the Army. Estimates of

the development effort are presented in a PERT
chart, and expected to require roughly 70
man-months over a 10-12 month period. Main-

tenance of the program library is estimated to

require two people full time. This may more
than double with the expansion of the library for

future applications, such as scientific. Develop-

ment of initial programs and distribution to

suppliers is expected in the Fall of 1973.

Though not claimed as a panacea solution to

the current benchmark dilemma, certain ad-

vantages to standard benchmarks are cited:

(1) reduced preparation time and cost for

users; (2) reduced cost and response time for

suppliers; (3) flexibility in use; and (4) a

wider base of users. The major disadvantages

cited include: (1) high initial cost; (2) non-

universality (in that standard benchmarks are

not feasible in procurement of time-sharing,

real time, process control, data management
applications, or in those situations where stand-

ard programming languages will not be used) ;

and (3) lack of user confidence.

The initial concepts were refined at the Con-
tributors' Symposium on Standard Benchmarks
which was held at the U.S. Army Computer
Systems Support and Evaluation Command in

September 1972. Comments from Symposium
participants indicated manufacturer willingness

to support this endeavor which would be bene-

ficial to them as well as to the Government.
The main concern of manufacturer participants

was the development of programs that would
permit all suppliers to represent capabilities of

their equipment accurately and fairly, at low
cost.

A flowchart for a typical, modular synthetic

program for updating is given. Also, there is

a chart indicating an interface between the user

approach to the preparation of the benchmark
and that of the supplier. (JLW)

Category: 3.2

Key words: Contributors' Symposium on Standard

Benchmarks; standard benchmark program library;

standard benchmarks; synthetic benchmark program
library; synthetic benchmarks.

21. Department of the Army, Test Data Generators,

in Management Information Systems. Informa-
tion Processing Systems Exchange, Pamphlet
No. ia-10-3, September 1973, pp. 1-8.

(6430191)

The article suggests a definition for test data

generation: "Any manual or automated process

or method by which test data (records or files)

may be generated on the basis of controlling

parameters."

A review of current test data generation methods
and parameters indicates that software test

management practices have not evolved beyond
initial practice of using existing data sets or

creation of test data sets from hand-coded test

data. This is considered to be a significant factor

in the ever increasing costs of software develop-

ment, failures to meet production deadlines,

and malfunctions or failures of new programs.

Current use of test data appears to be generally

limited to testing of new programs and changes

or modifications thereto.

Available software for automated test data

generation is described under three categories:

(1) "Repeaters"—packages capable only of

repetitive data generation with little user con-

trol.

(2) Media-to-media copying and reformatting

software-—generally requires much human effort

to create adequate test data.

(3) Test data generators—packages which

generate test data sets according to user sup-

plied dimensions and specifications.

In order to be classed as automated test data

generation software, a package should require

manpower outlays only to set specifications, to

prepare control operation statements, and to

run control cards. The general characteristics of

such software are discussed, together with imple-

mentation philosophies and their impact on

both quality and costs.

Use of test data generation software can accrue

to considerable advantages to an installation,

such as reductions in development costs as well

as in production losses due to programmer
errors. However, few of these advantages will be

realized unless the staff is properly trained in

the use of the packages and unless software

development management policies and proce-

dures are directed toward maximizing the

potential benefits of test data generators. (JLW)

10



Category: 5.1

Key words: Test data generators.

22. Department of Defense Computer Institute, Air

Force Computer Evaluation and Selection Pro-

cedures, no date, 187 pp. (6430185)

The material has been extracted from an operat-

ing manual in use by the Air Force ADPE
Selection Office for computer evaluation and
selection. The segments included provide a

complete overview of the constraints and con-

siderations that are employed by the Air Force.

Material not included is concerned with internal

office procedures and other matters in greater

detail than necessary for course requirements.

The Selection Office uses a combined cost

effectiveness/technical evaluation technique. Em-
bodied here is the concept of a probabilistic

workload representation against which the ven-

dors' equipment is tested in the live test demon-
stration which is mandatory in accordance with

a SECDEF memorandum dated July 20, 1966,
and entitled, "Management and Use of the Elec-

tronic Computer." Benchmark problems com-
prise the live test demonstration, and must be
processed by each vendor participant. The
criteria specified for the benchmark are first

"that the problem must be well defined so that

a specific, representative test can be given.

The problem must be unambiguous to ensure
that each manufacturer is demonstrating
against the same criterion and should be
written in a higher level language. . . The
primary validation tools are the representative

benchmark problems and functional demonstra-
tions of certain proposed features which the

vendor must satisfactorily run using the equip-
ment and software proposed." (JLW)

Category: 1.3

Key words: Application benchmarks; benchmark spe-
cifications; computer performance evaluation; com-
puter selection procedures; Department of the Air
Force; workload representation.

23. Dopping, 0., Test Problems Used for Evaluation
of Computers, BIT, 2:4 (1962) pp. 197-202.
(6430199)

The article describes the choices and kinds of

benchmarks ("test problems") designed by a

Swedish governmental committee (in coopera-
tion with the Swedish Board for Computing
Machinery) for use in a procurement of com-
puters for Sweden's census and tax collection
operations.

Five test problems, "all very carefully defined"
were given to manufacturers for benchmark
runs: (1) punched card-magnetic tape conver-
sion, including a number of plausibility checks;

(2) sort of various numbers of items of varying

lengths and varying-length keys; (3) printout

of long lists from magnetic tape, with some
editing; (4) input/output; (5) internal opera-

tions.

Results of benchmark runs are presented for

all five programs on the Bull G-30, IBM-1401,
ICT-1301, RCA-301, and SAAB D-21 com-
puters. The figure of merit used in rating each

system was the division of speed by price to

measure the "price per unit of work," assuming
that the computers are always fully utilized,

with any overcapacity sold, so that all computer
hours represent the same value. (JLW)

Categories: 11; 3.3

Key words: Application benchmarks; Bull G-30;
computer systems; IBM-1401; ICT-1301; RCA-301;
SAAB D-21; Sweden.

24. Drummond, Mansford E., Jr., Evaluation and
Measurement Techniques for Digital Computer
Systems, Prentice-Hall, Inc., Englewood Cliffs,

N. J., 1973, 338 pp., bibliography.

Several chapters (or parts of chapters) of this

monograph are of interest to benchmarking.
Chapter 4, "Systems Analysis Techniques," dis-

cusses some of the simpler methods useful in

determining throughput and/or response time

attributes. The concept of "relative systems

throughput" is introduced and defined as fol-

lows: "Relative systems throughput is a relative

estimate of the performance of a computing
system when compared to some base computing
system. It is the ratio of the time of computation

of a given load on the base system to the time

of computation of that same given load on the

comparing system."

The base system is defined as the hardware
configuration, the system programs, the applica-

tion programs, and the data processed by these

programs. Formula timing is a technique used to

provide timing estimates for performance of

certain applications. Profile conversion provides

a way of estimating boundaries of expected job

or system performance for a range of processing

or configuration options. The third analytic

technique presented in this chapter is the

synthetic model or an estimate of system time

which is a combination of subsystem times with

assumed overlap factors. Subsystem times, in

turn, include device times which are structured

from data set activity. The synthetic models can

be structured to accommodate sensitivities such

as interjob set up time, media switching time,

operator messages and response times. An
enormous amount of detail is required for such

analysis; the author presents several algorithms

for developing synthetic models.

11



The author discusses benchmarks in a chapter

devoted to data acquisition. He notes the gross

data requirements in using application programs
in the evaluation process, and suggests a way
of overcoming these requirements by the "use of

an application program known as a 'benchmark.'

A benchmark is some particular programmed
procedure with some amount of associated data

which has been chosen in such a way as to im-

part meaning to the originator of the bench-

mark. . . A critical point to keep in mind is

that there is no requirement for a benchmark
to represent any application or expected loading

on a system; its only requirement is that it have

meaning to the originator."

The application or set of applications that use

a major portion of the computer system's time

should be used to structure the benchmark which
"has the requirement that it meets in its

principal attributes the applications which it is

purporting to either represent or span. Notice

that the artificial program does not necessarily

have the requirement of representing the calcu-

lating procedure of any other particular pro-

gram."

The artificial program can also be used to deter-

mine sensitivity of system parameters. A figure

displays a synthetic job structure, and there is

a brief discussion on how to put together a

synthetic job. This particular section concludes

with a brief paragraph on "an alternative to

obtaining actual applications, sample applica-

tions, benchmarks, or what have you, is to

measure attributes of actual applications as they

are being processed in their normal environ-

ment." Data on the incidence of use of particular

applications may then be used to predict per-

formance under varying parameters or config-

urations.

Chapter 9 discusses and illustrates methods of

presenting the results of an evaluation process to

a nontechnical audience. fJLW)

Category: 1.2

Key words: Application benchmarks; artificial bench-

marks; benchmarks; formula timing; job profile;

measurement parameters; synthetic job structure; syn-

thetic system model; system profile.

25. Drummond, M. E., Jr., A Perspective on System
Performance Evaluation, IBM Systems Journal,

8:4 (1969) pp. 252-263, 6 refs. (6430096)

The author presents a historical summary of the

growing complexities of performance evaluation.

Three primary types of evaluation are noted:

classification; comparative evaluation; and ab-

solute evaluation. "An absolute evaluation is

one that produces time estimates for the per-

formance of a required function or operation."

Absolute evaluation may be a step in a com-

parative evaluation or it may be an end in it-

self. In structuring an absolute evaluation, not

only the appropriate techniques must be used,

but the choice of data to be used in the evalua-

tion of a specific application requires that the

data in some way represent that application.

In some situations, data requirements may be

enormous. To overcome this, use of an applica-

tion known as a benchmark is suggested. The
author defines a benchmark as "a particular pro-

grammed procedure with some associated data

chosen in such a way as to impart meaning to

the originator of the benchmark." For the com-
mercial data processing community the classical

benchmark problem is payroll gross-to-net cal-

culation, while for the scientific it is matrix

inversion.

The synthetic program is noted as an alternative

to the actual application Or benchmark. While

the synthetic program must match the principal

attributes of the applications it purports to rep-

resent or span, it need not necessarily produce

the results of any particular program. Since the

parameters of synthetic programs may be varied,

sensitive functions may be studied, and results

of the evaluation can provide tables or graphs

for extrapolation of performance for particular

applications. (JLW)

Category: 1.2

Key words: Application benchmarks; computer per-

formance evaluation; historical summary; synthetic

benchmarks.

26. Ferrari, Domenico, Workload Characterization

and Selection in Computer Performance Meas-

urement, Computer, 5:4 (July/August 1972)

pp. 18-24, 22 refs. (6430202)

The article discusses workload characterization

as one of the most general, central, and difficult

problems in computer system performance

evaluation. The main objective in selecting a

workload is that it be fully representative of the

real workload. Analysis of current selection

techniques indicates that they are generally

primitive in respect to workload representation.

Yet the evaluation of system performance re-

quires that the drive workload be representative

of the real workload. Three basic types of tech-

niques for obtaining the drive workload are

analyzed, and the relative merits of each are

discussed. These three techniques are: (1)

natural—use of the real workload directly with-

out manipulation; (2) artificial—design and im-

plementation of a workload independent of the

real workload, and (3) hybrid—assembly of

a workload from parts of the real workload.

The author concludes that the major differences

among these techniques are those between the

12



natural on the one hand, and the artificial and

hybrid on the other. Natural workloads require

longer measurement sessions, usually in their

own environment and user community. A na-

tural workload does not require any prepara-

tion, since it is already in existence, and mea-

surements performed on a system driven by a

natural workload cause very little degradation

in performance due to interference of measure-

ment tasks. Shorter measurement sessions are

one of the basic reasons for use of non-natural,

techniques. Another advantage is the capability

to run an artificial or hybrid workload on a

compatible system at any location. On the other

hand, non-natural workloads take time to de-

velop, and are therefore more costly than na-

tural workloads. Also a system driven by a

non-natural workload cannot serve its real users

at the same time.

A comparison of hybrid with artificial work-

loads indicates that development of the former

is less expensive. "However, hybrid techniques

require that the real workload be not only

measurable (which is always necessary for the

validation of a non-natural workload), but also

available for recording, and this may be dif-

ficult in some installations. Moreover, . . . arti-

ficial jobs (especially of the synthetic type) are

more flexible and, if carefully adjusted and

validated, can provide better representativeness

with the same session duration or equal rep-

resentativeness with a shorter duration." (JLW)

Categories: 3.0; 2.2

Key words: Artificial benchmarks; hybrid bench-

marks; natural benchmarks; workload description;

workload representation.

27. Forest Service, U.S. Department of Agriculture,

Computer Job Load Analysis. Volume I. Gen-

eral Description Job Load Analysis System;

Volume IL System and Program Documentation,

Washington, D.C., 1970, Prepared by Computer
Learning & Systems Corp. (PB 201-120, PB
201-121; 6430272; 6430273)

The two-volume report presents the results of a

study prepared by the Computer Learning and
Systems Corporation for the purpose of defining

Forest Service computing requirements and of

developing and implementing a plan for meeting

these requirements.

A mechanized process was used to define and
analyze the computer workload. This process

included the following major features: (1) a

complete inventory of all computer programs
in use and under development; (2) an inventory

of all existing and proposed applications; (3)

a computerized data base describing (1) and

(2) above; (4) provision of capability to ex-

tract and summarize information from the data

base; and (5) development of an automated

method for selection of simple programs rep-

resentative of the total workload.

The representative programs were extracted

from the data base by a program called CIDE
(Case Input Data Extracts) whose output pro-

vided the required workload description for

input into the CASE (Computer-Aided System

Evaluation) simulation system. CASE was used

to simulate runs of defined workloads on alter-

native equipment configurations and system

software.

All of the computer programs used in the work-

load analysis are described by detailed flow-

charts and narrative descriptions of major steps

in the programs. In addition to this, five ap-

pendices to the reports present the forms used

for description of programs and applications

together with instructions for use of the forms,

instructions for the validation process and prep-

aration of related forms, instructions for coding

data for keypunch forms, and a description

of the use made of CASE in the study. The
latter appendix also presents sample pages from

several reports produced by the CASE simu-

lation system. (JLW)

Categories: 11; 2.2

Key words: Automated workloaa definition; workload

analysis; workload definition; workload representa-

tion.

28. Good, John and Bruce A. M. Moon, Evaluating

Computers for the New Zealand Universities,

Datamation, 18:11 (November 1972) pp. 96-99.

(6430164)

The article reports performance data on a batch

of 34 FORTRAN programs which were used

to measure CPU power needs and performances

in the procurement of new equipment for New
Zealand's universities. The Burroughs 6700 was

chosen for the five largest institutions with ad-

jacent communications links to serve the smaller

institutions.

The benchmark consisted of programs designed

to investigate FORTRAN language characteris-

tics and particular features of the hardware

being tested. Collectively the benchmark was a

model of one university's job stream. Most pro-

grams were "live" ones written by university

users as part of their work, and a realistic pro-

protion of the programs contained known bugs.

By running the benchmark as a datum on an

IBM-360/44 and timing the performance with

an IBM-2989 Basic Counter Unit, the charac-

teristics of the benchmark were known: it was

compiler-intensive in comparison with the job

stream; it was I/O intensive; the benchmark

was 24.6 percent CPU active while the job

stream it modelled was 35 percent CPU active.

13



The major purpose of the exercise was to provide

a base level of performance against which to

measure the throughput of each candidate sys-

tem. A model of a FORTRAN job stream was
admittedly narrow, but the only practical

benchmark for the New Zealand universities.

The heavy investment in FORTRAN and lack of

expertise in other languages made the FOR-
TRAN requirement fundamental to university

purposes.

In rating machine performance in the execution

of the benchmarks, two parameters were of in-

terest: (1) disc-to-disc (sometimes tape-to-tape)

elapsed time; and (2) CPU time required to

execute the benchmarks, minus overhead. The
overhead costs for the 360/44 were not deducted

because this overhead is minimal. The CPU
time thus calculated was considered to be a

measure of the raw power of the compiler/CPU/
core speed combination, while the disc-to-disc

elapsed time recorded the amount of this

power which was made available by the operat-

ing system/backing store/core size combination.

These figures are tabulated for the nineteen

hardware configurations tested. Another table

shows the powers of these same configurations

in terms of throughput of the 360/44 CPU
rounded to a scale of 19. According to this

rating, the UNIVAC-1108 and the CDC-6400
were found to have a throughput capacity 19

times that of the original 360/44 configura-

tion. (JLW)

Categories: 3.3; 11

Key words: Benchmark characteristics; benchmark
run analysis; computer system; FORTRAN job

stream; IBM 360/44; job stream representation; New
Zealand; university computing center.

29. Gosden, J. A. and R. L. Sisson, Standardized

Comparisons of Computer Performance, in Pop-
plewell, C. M. (Ed.), Information Processing

1962, (North-Holland Publishing Co., Amster-
dam), 1963, pp. 57-61. (6430189)

The paper describes in detail the method used

by Auerbach to measure the performance of a

computer system on a file updating task. This

is one of several benchmarks used in Auerbach's
Standard EDP Reports to present comparative
performance characteristics for several config-

urations of most computer systems. The other

benchmark tasks used for this purpose are

matrix inversion and sorting.

Performance of each computer system is mea-
sured at three levels: basic operations; opera-

tion of individual devices; and operation of

particular configurations. "A detailed and com-
prehensive timing procedure" is deemed to be

the basic requirement for accurate and consist-

ent results. From these basic figures perform-

ance measures can then be generated for a large

number of different cases. Factors and para-

meters which need to be considered in develop-

ing a "typical" task for a typical configuration

are spelled out in considerable detail. (JLW)

Category: 3.3

Key words: Standard benchmarks.

30. Greenbaum, Howard J., A Simulator of Multiple

Interactive Users To Drive a Time-Shared Com-
puter System, Massachusetts Inst, of Tech.,

Cambridge, Mass., Project MAC Report, MAC-
TR-58 (Thesis), January 1969, 181 pp., 5 refs.

(6430205)

The thesis describes the use of a PDP-8 to

simulate up to 12 users typing from prepared

scripts to provide a terminal load generator for

performance measurement purposes. The Simula-

tor can accommodate users at either the IBM-
7094 Compatible Time-Shared System (CTSS)
or the GE 645 Multiplexed Information and

Computing Service (MULTICS) at M.I.T.; it

is flexible enough to simulate users on most time-

sharing systems which use Bell 103H-compatible

data sets. Initial implementation of the Simula-

tor System was for support of a maximum of

four users.

The Simulator recognizes and verifies responses

transmitted to it by the system. In addition, the

Simulator emulates the user's think time between

lines of input. Actions of the simulated users are

controlled by "Scripts," prepared in advance,

which contain information necessary to perform

the checking and verification of responses as

well as the emulation of think time. The scripts

are encoded in a special language and converted

to magnetic tape files which may then contain

a library of scripts. A SCRIPT LOADER pro-

gram moves designed script files to the PDP-
8 disk unit; the program also does some editing

for proper script formatting. The simulation

process is controlled by the scripts on the

disk unit and progresses until scripts of all users

have been exhausted or until a "fatal" error

occurs. All messages transmitted during the

simulation are recorded on magnetic tape which

may be listed and analyzed by one of several

other programs which comprise the Simulator

System. The largest problem facing a prospective

user of the system is identified as the design

of the scripts so that these do, indeed, represent

a normal load to the system.

Seven appendices are provided with the report;

the first of these is entitled, "Users Handbook
to Simulator System Operations." (JLW)

Category: 5.2

Key words: Computer systems; PDP-8; terminal

load generator; user simulation; user scripts; work-

load generator.

14



31. Hahn, S. G. and E. V. Hankam, Kernel Analysis

of Elliptic Partial Differential Equations, IBM
Systems Journal, 5:4 (1966) pp. 248-270,

6 refs. (6430177)

The procedure used here in evaluating com-
puter performance for a large class of problems
leads to the development of a set of formulas

which have problem-dependent and machine-

dependent parameters which yield a measure
of speed when computer time specifications are

substituted. These formulas comprise that par-

ticular set of instructions in the program which
is repeated over and over again. This set is

defined as the "kernel" and includes also the

I/O operations necessary for transferring data

into main storage.

The program is for solving partial differential

equations by the extrapolated Liebmann method.

Kernel programs are given for the IBM-360 and
7094 computers for comparative performance
evaluation of the two systems. Timing formulas

desired include time needed for calculation as

well as for read/write operations. The general

effect of several I/O devices on the timing

formulas is also discussed.

In summarizing their findings the authors noted

several interesting observations. Considerable

insight was gained into the economic use of

computers when large blocks of data can be

transmitted at the same time. In this particular

method of solution of the problem involved, use

of a computer with very large main storage

with relatively slow access appears to be pref-

erable to other I/O devices. Seek time of disks

would considerably slow down data transmis-

sion.

An appendix provides the two kernel programs
used—for the IBM-360 in both short and long

arithmetic, and in single as well as double
precision for the IBM-7094. (JLW)

Categories: 3.1; 1.2

Key words: Comparative computer performance meas-
urement; computer systems; IBM-360; IBM-7094;
kernel programs; partial differential equations.

32. Hatfield, D. J. and J. Gerald, Program Restruc-

turing for Virtual Memory, IBM Systems Jour-

nal, 10:3 (1971) pp. 168-192, 14 refs.

(6430180)

Program reference patterns can have a more
profound effect on paging performance in a

virtual memory system than page replacement

algorithms. This paper describes experimental

techniques that can significantly reduce paging
exceptions in existing, frequently executed pro-

grams. Automated procedures reorder relocat-

able program sectors, and computer displays

of memory usage facilitate further optimization

of program structure.

Experience to date has shown that the display

of a virtual memory use pattern is a good
diagnostic tool. The automatic sector reordering

technique brings noticeable improvements in

paging performance where there is room for

improvement, reducing the necessary working
space (for a given number of exceptions) by
as much as one-third to one-half. Optimal page

sizes for programs appear to depend on (besides

physical I/O timings) complicated patterns in

the use of virtual memory, about which little is

known.

In consideration of possible extensions of these

techniques, it was found that program sector

duplication may be desirable. A comparison of

the number of communications among sectors

to the number of communications within sectors

can be used to measure the goodness of the

modularity of the program. Data areas in a pro-

gram may be defined as sectors and their com-
munications examined. This intelligence could

be built into optimizing compilers for improved

program performance in a relocation environ-

ment. (Modified author).

Category: 1.3

Key words: Optimizing compilers; paging exceptions;

program optimization; program reference patterns;

program relocation; virtual memory systems.

33. Hicks, Harry T., Jr., The Air Force COBOL
Compiler Validation System, Datamation, 15:8

(August 1969) pp. 73-74, 76-77, 81. (6430208)

(6430208)

The article describes the design criteria of the

Air Force COBOL validation system, the in-

ternal structure of the system, and its use in

measuring a given compiler against Standard

COBOL.

Design criteria included many very important

to good benchmarks: language independence

in methods for specifying the contents of pro-

grams and for generating the programs them-

selves; adaptability to many computers and to

changes and variations in the COBOL language;

modularity, with easy transfer of statements

between modules; and a capability for thorough-

ly testing a given compiler. Efficiency was not

a design criterion, because it was felt that any

increase in efficiency would be at a sacrifice of

the system's machine independence.

Several uses other than compiler validation,

were noted for the system. These include: aid

in debugging and adapting existing programs

to compiler modifications; identifying differ-

ences between a present compiler and the com-

piler to which conversion is being planned; and

a rapid way of developing familiarity with an

operating system as well as with the com-

piler. (JLW)

15



Category: 3.6

Key words: Benchmarks; COBOL val^^ation; Depart-

ment of the Air Force; design criteria; test program
generators.

34. Hillegass, John R., Standardized Benchmark
Problems Measure Computer Performance, Com-
puters and Automation, 15:1 (January 1966)

pp. 16-19. (6430203)

The article describes techniques used in develop-

ing standardized benchmark problems which

have been used to produce relative measures of

computer system performance. These were pub-

lished in a rigidly standardized format for more
than 60 different computer systems in the

Auerbach Standard EDP Reports for several

problems: matrix inversion, sorting, and file

updating.

The techniques are illustrated in a file updating

benchmark designed to handle 10,000 master

file records. Performance of a number of sys-

tems (then) available commercially in the stand-

ardized file updating problem is compared
graphically. The graph is designed to show
trends in internal processing power of computer

systems. It would appear from this information

that, dollar for dollar, third-generation com-
puters (those whose first delivery came after

January 1, 1964) are twice as fast as their

predecessors.

In discussing the validity of this technique, some
interesting observations are made. Among these

is the observation that in the case of benchmark
problems which measure sorting and matrix

inversion speeds, timing data derived from the

techniques used by Auerbach usually agree to

within 10 percent of timing data provided by
computer manufacturers for their standard

routines to do the same jobs. A further observa-

tion made is that in the few cases where it

was practical to actually run the Auerbach
benchmark problems on different computers,

there has been quite close agreement between

estimated and actual processing time data.

(JLW)

Category: 3.0

Key words: Application benchmarks; standard bench-

marks.

35. Holdsworth, D., G. W. Robinson and M. Wells,

A Multi-Terminal Benchmark, Software—Prac-

tice and Experience, 3:1 (January-March 1973)

pp. 43-59, 7 refs. (6430171)

The benchmark described in this article was
constructed in order to compare two different

versions of the same operating system (GEORGE
3), particularly those aspects of the system
which affect a user on a console of a multi-

terminal system.

By observation of an existing system (the

ELDON 2), a profile of typical users and user

activities was developed and a set of commands
was generated to simulate user activity at

terminals.

A parameter deemed critical to performance of

a multi-terminal system is access to the file store.

Much effort was devoted to a determination

of the actual distribution of file sizes, and the

distribution of files within the "seek-space" of

the physical devices and within the index.

Other parameters required were detailed tim-

ings of actual messages passing between users

and the system. For the benchmark actual

sequences of messages were used and all of the

files to which these messages referred were in-

corporated into the file store.

The appendix summarizes the findings from the

benchmark run and attempts to define a distribu-

tion of "average" users and their activities at

the computer system terminals. (JLW)

Category: 3.2

Key words: Artificial benchmarks; average user; com-
puter systems; ELDON 2; England; GEORGE 3; op-

erating systems; user profiles.

36. Ihrer, Fred C, Computer Performance Projected

Through Simulation, Computers and Automa-
tion, 16:4 (April 1967) pp. 22, 25-27.

(6430210)

A discussion of simulation, its methodogy, and
uses, oriented around SCERT. The author makes
an interesting observation:

The evaluation of computer hardware can no
longer be realistically accomplished by compar-
ing instruction execution times, peripheral

speeds, memory sizes and other unrelated hard-

ware performance data. Other approaches to

performance prediction, such as benchmark pro-

cessing and instruction mix statistical data, are

inadequate for the evaluation of computers per-

forming in a multiprogramming mode of opera-

tion. (Excerpt)

Category: 1.3

Key words: Computer performance evaluation; simu-

lation.

37. Ishida, Haruhisa and Nobumasa Takahashi, Job
Statistics at a 2000-User University Computer
Center, Performance Evaluation Review, 2:2

(June 1973) pp. 2-13. (6430192)

The Computer Center at the University of Tokyo
(Todai) is one of 7 large university centers

serving researchers throughout Japan; it pro-

cesses the 120,000 jobs annually submitted by
2,000 academic users in various research in-

stitutions.

16



A FORTRAN program is used to analyze the

job characteristics at the Todai Center. The
article presents detailed data (in graphical form)

on jobs submitted for the school year April 1969

to March 1970. Two reels of magnetic tape

were necessary to record account data for

123,705 jobs. Data on the following parameters

are reported for each job: use time, CPU time;

core memory actually used; number of input

cards; number of pages printed; number of

cards punched; termination status; turnaround

time; CPU busy time; and job size.

A table presents comparative data for 1966,

prior to a scaling upwards of the system. An
8-fold increase in CPU speed of the new system

(HITAC-5020E with 2 HITAC-5020 processors)

resulted in only twice the former capacity be-

cause of the four-fold increase in job size.

Plans are being made to upgrade the present

system to a HITAC-8800 by the fall of 1972.

(JLW)

Category: 2.2

Key words: Accounting data; computer systems;

HITAC-5020; Japan; job statistics; Tokyo Univer-

sity; University computing center.

38. James, D. L., A Remote Terminal Emulator for

Loading and Performance Measurement of On-
Line Systems, Mitre Corp., Bedford, Mass., Rept.

No. M72-83, March 1972, 32 pp. (Documenta-
tion of paper presented at SHARE XXXVHI
meeting in San Francisco, March 1972)

(6430206)

The paper (presented at SHARE XXXVHI)
reported on experimental work at the Mitre

Corporation on a remote terminal emulator sys-

tem for use in measuring performance of large-

scale, multi-terminal, online computer systems.

The emulator consists of hardware and soft-

ware separate from that of the system under
test. In a live test demonstration for a given

procurement, a suggested configuration would
consist of the proposed central processor with

its associated peripherals and the emulator at-

tached to the communications interface, instead

of to the remote terminals and part or all of

the communications portion of the system.

The general characteristics of the remote termi-

nal system are described in detail. This is fol-

lowed by a discussion of an experimental model
of a remote-terminal emulator which has been
implemented and tested against an IBM-360/50
and an IBM-370/155. Implementation of the

experimental model was on an Interdata Model
3 under VENUS, a microprogrammed operating
system which can accommodate up to 11 simul-

taneous user jobs. The emulator operates as
one job under VENUS. Sample scenarios are
presented to illustrate and describe operation of

the experimental model.

Analysis of a relatively small amount of data

produced by the experimental model indicates

that possibly sixteen teletypes might be sup-

ported or emulated by the model. However, con-

siderable extrapolation is necessary in order to

estimate total capacity of the emulator.

Current design efforts at Mitre have reached

the initial implementation stage on a Data Gen-

eral NOVA-800 minicomputer. This design veri-

fication model will be used as a basis for speci-

fications for purchase of a prototype system for

delivery to the Air Force for evaluation under

live test demonstration conditions. One of the

most important features in the current design

work is the modular concept which, theoretically,

can emulate any number of terminals. An ap-

pendix provides and illustrates a sampling of

scenario instruction types which are included

in the current design. (Material in the Appendix
was not presented at the SHARE meeting.)

(JLW)

Category: 5.2

Key words: Computer systems; emulator; IBM-360/
50; IBM-370/155; Interdata model 3; job loading:

live test demonstration; NOVA-800; operating sys-

tems; remote terminal emulator; user simulation: user

scenarios; VENUS; workload definition.

39. Johnson, R. R., Needed: A Measure for Measure,

Datamation, 16:17 (December 15. 1970) pp.

22-30, 27 refs. (6430110)

Answers to typical questions posed todav about

computer capabilities can be provided by only

one way and that is by programming the prob-

lem of interest and running it. This requires ex-

haustive benchmarks which are expensive, time

consuming, and "provide little real knowledge

that's extrapolable to other computers or dif-

erent problems." There is a basic need for a

"Theory of Computer Performance." Develop-

ment of such a theory requires two kinds of

information: information on the structure of

programs during execution; and information on

the response of computers to these program

structures.

Lacking that, four parameters are in general

use today for analyzing computer performance

—

capacity, throughput, run speed, and ease of use.

The author defines the last parameter as that

which describes the effort and time required to

prepare a problem for solution by a computer

plus the effort required to operate the computer

and its peripherals.

These four performance parameters are used in

four different ways which form four classes of

measures.

Class I—Design Measures—needed bv designers

to evaluate trade-offs between alternative struc-

17



tures; generally do not exist; measures needed

covering all four performance parameters.

Class II—Purchasing—Sales Measures—quanti-

tative measures needed by customers and sales-

men for comparative selection and competitive

sales; have been developed and used widely;

Adams charts, instruction mixes, and bench-

marks represent three levels of escalating effort

to relate run speed to throughput; ease of use

considered a feature which might be available

from certain vendors; capacity difficult to

predict.

Class III—Configuration Measures—needed by
users in deciding how many of what are actually

required to do their job, once a given system

has been decided on.

Class IV—Operating Measures—needed by com-
puter center managers who need to optimize

their systems' performance against known work-

loads; hardware and software monitors are being

used; progress is being made in developing per-

formance sensitivity criteria.

The author then discusses briefly some of the

available measurement techniques and states that

the only reliable and accurate one is the bench-

mark which he defines as a complete program
selected from those that are to be run in the

actual application. "As long as benchmarks are

seen in the large and small mixes expected in

the actual operation, a good indication can be

obtained of both the large and small problem
behavior of that system." However, the limita-

tion of the benchmark is that its primary use-

fulness is as a Class II measure for marketing
purposes. In addition to this, a large effort is

required to program benchmarks and to prepare

realistic data. "Benchmark performance can be
misleading in terms of the capacity of a system

unless complete benchmarks are selected to

place a capacity load on that system. Perform-
ance predictions for other problems not bench-
marked can be risky extrapolations."

The article concludes with discussions on: (1)
techniques using computers for studying system
performance simulation, monitoring, and an-

alysis; (2) three forms of analysis used in the

study of computer throughput—statistical analy-

sis, graphical analysis, and algorithmic analysis.

In the course of this, an excellent review of the

literature is provided. (JLW)

Category: 1.2

Key words: Benchmarks; computer performance anal-

ysis; computer performance measurement; literature

review; measurement parameters; simulation; system
monitoring.

40. Joslin, Edward 0., Application Benchmarks: The
Key to Meaningful Computer Evaluations, in

Association for Computing Machinery, Proceed-

ings of the National Conference, 1965, pp.

27-37. (6430162)

The author considers the following question as

the most important in the computer evaluation

process: "How long will it take this system to

process my workload?" He then states that

application benchmarks are the best available

timing techniques, and that the method used to

set up application benchmarks will determine

how truly representative the benchmarks will be.

The article deals with the second of these factors.

An application benchmark is defined as: "A
routine to be run on several different computer

configurations to obtain comparative throughput

performance figures regarding the abilities of

the various configurations to handle the specific

application." Three key characteristics emerge

from this definition: (1) the benchmark is to

be run on the configuration, not handtimed; (2)

throughput, not processor time, is important;

and (3) the run is aimed at a specific applica-

tion, not just as a "general goodness" bench-

mark.

The method for preparing truly representative

application benchmarks is then described. Total

representativeness demands that each bench-

mark be representative of a class problems as

to type of processing performed by its class, that

it be representative of time required for process-

ing, and of memory and peripheral equipment

requirements for that class. Illustrative classes

presented include: FORTRAN coded engineer-

ing problems; FORTRAN coded mathematical

problems; and COBOL coded business problems.

The illustration is continued through the steps

required for the development of an application

benchmark:

—determination of timing requirements for each

class of problems;

—determination of equipment requirements for

each class of problems;

—determination of correct ratios between com-
pile and compute times for each problem.

From an appropriate mix of the above factors,

the full month's workload is developed. Next

are the problems of reducing this to a "properly

proportioned miniaturized version" of the work-

load, and of assigning proper queuing priorities

to the problems used. Eight figures are presented

to illustrate the mixing and matching that is

essential to the development of a truly repre-

sentative application benchmark. (JLW)

Category: 3.3

Key words: Application benchmarks; compile/com-
pute ratios; timing requirements; workload construc-

tion; workload representation.

18



41. Joslin, E. 0., Cost-Value Technique for Evalua-

tion of Computer System Proposals, in AFIPS,
Proceedings of the Spring Joint Computer Con-

ference, 1964, pp. 367-381, 17 refs. (6430174)

The cost-value technique proposed here involves

two major changes to existing evaluation tech-

niques which could bring about a more under-

standable and realistic selection of computer

equipment.

The first change is in methodology. The cost-

value technique attempts to consider all items

of value to a computer system, but to consider

them only once and in the environment in which

they belong. The categories scored are total

system cost and "extras" which are defined as

features like expansion potential, vendor support,

or similar characteristics which are part of total

system cost, but differentiating between vendors.

The second change is in scoring technique. The
cost-value technique uses dollars rather than

weighted points as the basis of comparison. This

provides a more natural basis for comparison.

It eliminates the need for "tradeoffs" and gives

management deeper understanding of the total

selection process.

Since the technique is a dynamic one, a number
of improvements might be made. The use of

debits, as well as of credits, could be made im-

mediately and might make the technique a

little more natural. Two other improvements,
however, would require more work and under-
standing. These are quality determination and
time dependent cost-value assignments, both of

which are discussed briefly. (Modified author)

Category: 1.3

Key words: Cost-value; proposal evaluation; scoring.

42. Joslin, Edward 0., Describing Workload for Ac-
quiring AD? Equipment and Software, Com-
puters and Automation, 18:6 (June 1. 1969)

pp. 36-40. (6430225)

The author presents a detailed discussion on
how to obtain the mix of representative pro-

grams to be used for benchmarking purposes.

This mix of representative benchmark programs
is the first necessary requirement for describing

workload. The second requirement is a descrip-

tion of system growth in terms of a series of

expected workload levels.

In selecting programs for the representative mix
several considerations are important:

(1) the programs should be written in a

standard, higher level language;

(2) the mix should be small enough to be
processed during a single half-day bench-
mark demonstration;

(3) the programs are selected not to prove

the worst case situation, but rather to

test and demonstrate timing and capa-

bility for the normal situation.

Should it be necessary to assume and demon-

strate capability to handle worst case situations,

benchmark programs selected for that purpose

should not be included in the representative mix.

They should be treated separately as capability

benchmarks.

A method for deriving a representative set of

programs is discussed and illustrated in detail.

Calculation of extension factors and growth

projections is also discussed and illustrated.

(JEW)

Category: 2.2

Key words: Application benchmarks; growth projec-

tions; job mix; system life projections; task mix;

workload description.

43. Joslin, Edward 0., Techniques of Selecting EDP
Equipment, Data Management, 8:2 (February

1970) pp. 28-30. (6430143)

A brief discussion of the importance of using

proven procedures in four areas of EDP equip-

ment selection: preparation of specifications for

competitive selection; workload representation;

evaluation; and costing.

Workload description is part of the specifica-

tions, and important enough to merit its own
place of importance in the procurement process.

Description of the benchmark should consist of

benchmark programs to be run on the bid sys-

tem(s) for a determination of total time. For

the benchmarks to be truly representative of

the workload, it is essential that the programs

selected be representative of the types of tasks

to be processed, the time requirements, equip-

ment and storage used, the language used, all

in the required order or sequence. The extension

factor must be determined; this can be described

as the "total monthly time to perform the task

set divided by the throughput time to run the

representative program."

Other considerations relevant to selection of

representative programs include:

(1) They must represent current and past

workload data.

(2) The growth factor must consider current

size and planned gro\Nl:h of the facility.

(3) They must be selected with an eye to

future fiscal policies.

(4) They must reflect current and future

manpower.

(5) They should cover some fixed system

life period, normally four to six years.

This involves a large expenditure of labor which,

however, pays large dividends in verification of

19



vendors' timing claims. A "single click-click

with a stop watch" signals the end of a run and
obviates any discussion, for: "It's put up or

shut-up time, and everyone knows it and there

is little point in arguing with the stop watch."

(JLW)

Category: 2.2

Key words: Application benchmarks; computer selec-

tion procedures; system life projections; workload de-

scription; workload representation.

44. Joslin, Edward 0. and John J. Aiken, The Valid-

ity of Basing Computer Selection on Benchmark
Results, Computers and Automation 15:1 (Janu-

ary 1966) pp. 22-23. (6430196)

This elementary discussion of the validity of

basing computer selections on the results of

benchmark runs presents a "commonly accepted

definition of a benchmark [as] a routine used

to determine the speed performance of a com-
puter system." If the routine used for the bench-

mark is truly representative of a workload,

then the results of the benchmark run provide

an excellent basis for selection.

An Air Force procurement in which actual prob-

lems were used as benchmarks, and some of

the findings uncovered during the procurement

are discussed. Compilation and execution times

for four benchmark problems on four computer

systems are tabulated. The relative ranking of

each system varies from benchmark to bench-

mark, and this finding is used to make "clear

that the measuring device (benchmark) used

to determine the capability of a system does

make a difference."

Examples from the tabular data are then used

to illustrate the critical necessity of selecting

benchmark problems to properly reflect the

total workload which is to be processed. (JLW)

Category: 9

Key words: Application benchmarks; workload rep-

resentation.

45. Karush, Arnold D., Benchmark Analysis of

Time-Sharing Systems, System Development
Corp., Santa Monica, Calif., Kept. No. SDC-
SP-3347, June 1969, 40 pp. (AD-689 781)

The paper discusses the use of benchmarks to

measure and understand the behavior of a gen-

eral purpose time-shared system. This application

of benchmarks is unusual in that: (1) there is

no published literature on the application of

benchmarks to time-shared systems; and (2)

the benchmarks measure system functions rather

than job tasks. After discussing the benchmark
design concept, the paper describes the bench-

mark programs that were produced to measure

System Development Corporation's ADEPT
time-sharing system. Three types of calibrations

were performed on ADEPT, together with nu-

merous experiments. These are described to-

gether with some of the results. The paper con-

cludes with a discussion of the problems and

potential uses of the benchmark technique.

(JLW)

Category: 3.2

Key words: ADEPT-50; Benchmarks; computer per-

formance measurement; computer systems; experi-

mentation; multiprogrammed computer systems.

46. Karush, Arnold D., Evaluating Time-sharing

Systems Using the Benchmark Method, Data
Processing Magazine, 12:5 (May 1970) pp 42-

44, 2 refs. (6430104)

A summary article which discusses the bench-

mark programs which were used to measure the

behavior of System Development Corporation's

ADEPT-50 time-sharing system.

The techniques used focused on measuring the

effects of functions basic to system operation,

rather than on measuring system performance

of predefined tasks. The functional variables in-

cluded are: swap activity; compute activity;

interactive activity; I/O activity; page activity;

and resource allocation. Throughput (amount of

work processed by the computer) and response

time (delay between a user's request and system

reply) served as metrics of behavior for these

functional variables. Each of the seven bench-

mark programs developed provided one or more
of the stimuli; thus all programs affected all of

the functional variables, both individually and

when run in reasonable combinations.

System performance was measured by the bench-

marks in three different environments: (1)

stand-alone; (2) benchmark; and (3) real-

world. In the stand-alone environment only one

program was run at a given time, thus testing

system throughput and response time in a batch

mode. The benchmark environment provided a

measure of a "typical" set of demands upon the

system. This was achieved by considering each

benchmark program as a user and by running

all seven programs simultaneously. Measures ob-

tained from this experiment roughly paralleled

those from the real-world environment. This en-

vironment simulated the behavior of a time-

sharing system operating near its rated capacity.

By considering one of the benchmark programs
as a user with a constant and known demand
for service, and running the program when the

system has an almost full complement of real

users, various metrics can be developed. Some
of these include a measure for degradation in

response time and throughput under varying

user loads; load variances; and what scheduling

20



algorithms actually schedule. The technique may
also be used to tune a system to the needs of

its user population. (JLW)

Category: 3.2

Key words: ADEPT-50; benchmarks; compute ac-

tivity; computer performance measurement; computer

systems; interactive activity; I/O activity; multi-

programmed computer systems; page activity; re-

source allocation; response time; swap activity;

throughput.

47. Karush, Arnold D., Two Approaches for Meas-

uring the Performances of Time-Sharing Sys-

tems, Software Age, 4:3 (March 1970) pp. 10-

13, 18 refs; Part Two. Stimulus Approach to

Time-Sharing Measurement, ibid., 4:4 (April

1970) pp. 26, 27, 40, 8 refs; Conclusion. A
Comparison of Analytic and Stimulus Approach
to Time-Sharing System Measurement, ibid., 4:5

(May 1970) pp. 13, 14, 3 refs. (6430103)

The two approaches for performance measure-

ment which the author describes are: (1) the

"stimulus" approach in which the system is

considered as a black box to which a controlled

set of stimuli is applied in order to activate

the system's functions and then observing the

results; and (2) the "analytic" approach in

which probes are inserted into the black box
in order to record any level of the system's be-

havior. Both approaches have been used to

measure SDC's ADEPT time-sharing system.

The author places benchmarks into the first cate-

gory which is less costly to develop and gen-

erally requires less sophistication in the imple-

mentor. "The programming of benchmark pro-

grams is also less costly than the programming
of instrumentation, measurement and recording

routines. . . . Personnel with little experience

can produce the benchmark programs. Testing

can be done under time-sharing. Errors affect

no one else."

In benchmarking for the ADEPT system, 6
functional variables were selected; compute, in-

teractive, high speed I/O, swapping, paging, and
resource allocation. Seven benchmark programs,
each incorporating stimuli of selected functional

variables were written and run simultaneously

in a time-sharing mode, thus simulating a "typi-

cal user population." The technique was also

used to measure the effects of variable sizes of

quantum-time upon different user demands as

represented by the benchmarks.

In discussing areas for further development, the

author suggests the following relevant to bench-
marks:

Stimulus Approach:

"(1) The conditions under which this ap-

proach is cost-effective must be defined. Al-

though the analytic approach provides much
more information, benchmark programs can

still fill an important role due to their lower

cost and the immediate utility of the infor-

mation.

(2) Standardized measures for describing

and ranking the performance of time-sharing

systems should be developed. If these meas-

ures could be expressed in terms of throughput

and response time, perhaps standardized

benchmark programs could be specified for

inter-system comparison.

(3)

(4) The design of the benchmark programs

should be refined so that a minimum system

load and terminal time need be required to

extract a maximum amount of information."

(JLW)

Categories: 3.0; 1.2

Key words: ADEPT-50; benchmarks; compute ac-

tivity; computer performance measurement; computer

systems: experimentation; interactive activity; I/O

activity; multiprogrammed computer systems; page

activity; resource allocation; response time; swap ac-

tivity; throughput; user simulation.

48. Kerner, H. and K. Kuemmerle, A Workload

Model and Measures for Computer Performance

Evaluation, George C. Marshall Space Flight

Center, Alabama, NASA TN D-6873, October

1972, 26 pp., 8 refs. (6430151)

A generalized workload definition is presented

which constructs measurable workloads of unit

size from workload elements, called elementary

processes. An elementary process makes almost

exclusive use of one of the processors, CPU, I/ O
controller, etc., and is measured by the cost of

its execution. Various kinds of user programs

can be simulated by quantitative composition

of elementary processes into a type. The char-

acter of the type is defined by the weights of its

elementary processes and its structure by the

amount and sequence of transitions between its

elementary processes. A set of types is batched

to a mix. Mixes of identical cost are considered

as equivalent amounts of workload. These for-

malized descriptions of workloads allow investi-

gators to compare the results of different studies

quantitatively. Since workloads of different com-

position are assigned a unit of cost, these descrip-

tions enable determination of cost effectiveness

of different workloads on a machine. Subse-

quently performance parameters such as through-

put rate, gain factor, internal and external delay

factors are defined and used to demonstrate the

effects of various workload attributes on the

performance of a selected large scale computer

system. (IBM)



Category: 2.2

Key words: Cost effectiveness; computer performance

measurement; workload definition; workload specifi-

cation.

49. Kernighan, B. W. and P. A. Hamilton, Syntheti-

cally Generated Performance Test Loads, in As-

sociation for Computing Machinery, Proceedings

of the SIGME Symposium, February 1973, pp.

121-126, 6 refs. (6430148)

The paper describes the design of and experience

with an automated benchmark-generation fa-

cility that involves two components. The first

component is a simple, highly parameterized

synthetic job or "program which uses precisely

specified amounts of computing resources, but

which does no 'useful' work." Any set of re-

source utilization parameters for the synthetic

jobs specifies an executable program of known
characteristics which can be used to model the

behavior of another program. The second com-
ponent of the facility is a generator program
that converts a job stream specification into a

complete, ready-to-run set of synthetic jobs that

can then be used to exercise the system in a

controlled and reproducible manner.

Many advantages are offered by this approach:

(1) there is no need to find real jobs with the

right properties; (2) creation of large test data

bases is not necessary; (3) tests can be easily

scaled up to test large systems; (4) incremental

changes are easily made, as necessary; (5)

transferability is simple, since only two pro-

grams are involved; (6) test generation and
execution is entirely self-contained; and (7)

all the benefits accruing from an automated
procedure—not the least of which is the rela-

tive freedom from human error.

The environment for the experiments reported

is a dual-processor Honeywell 6070 GECOS HI
with 256K of 36-bit words of storage, 15 million

words of fixed-head storage, 75 million words of

moving-head disk storage, and two DN-355
communications processors interfacing with

"about half a dozen remote computers." The
batch computing aspect, however, is most im-

portant in resource utilization, therefore a batch

environment is implicit in the paper. However,
the approach described is also valid for time-

sharing and for mixes of time-sharing and
batch: the system runs a large time-sharing sys-

tem as a "permanent" batch job.

The simplest model of a synthetic job for such

an environment has only 3 resource utilization

parameters: core storage; CPU time; and I/O
time. The authors have expanded on these basic

parameters with sufficient detail to produce syn-

thetic job streams that drive their system "es-

sentially identically to specified real streams

(agreement on most parameters within 10%) ."

These refinements, as well as others that could

be added, involve a trivial increment to the

basic structure of the synthetic programs and

require only the addition of extra control cards.

Tabular data are presented on four experiments

conducted: (1) matching a standard bench-

mark against a synthetic batch stream; (2)

matching compiler job steps with the synthetic

job steps; (3) comparison of two synthetic

streams in a full-load test of the overall system;

and (4) simulation of a "normal" user load.

In the experimentation there was much reliance

on the detailed accounting information kept by

the system for each step and on the metering

information kept by the operating system.

A number of experiments are planned for the

future: (1) measurement of major changes in

system hardware; (2) fine tuning of system and

measurement of effects of such changes as varia-

tions in scheduling and dispatching modules,

memory management, location of system files,

etc.; and (3) error-checking and catching of

performance bugs. A profitable by-product of

the experiments run to date was the detection of

several system bugs and solution of a hardware
problem as a result of running the benchmark
job stream.

In conclusion, the authors state that:

(1) synthetic jobs are easily constructed to

match most real jobs; (2) the basic measures

of memory, CPU, and I/O appear to be suffi-

cient to represent real jobs; (3) system per-

formance measures are relatively insensitive

to the internal structure of the synthetic jobs

comprising a test; (4) job streams represent-

ing special demands require relatively little

refinement; (5) CPU and I/O time measure-

ments are appropriate for matching job

streams, since these are parameters of the

jobs being matched; and (6) for experiments

in transferability, synthetic jobs creating CPU
and I/O transactions are to be preferred, since

these measures will be independent of system

hardware and software. (JLW)

Category: 3.2

Keywords: Computer systems: experimentation; Hon-
eywell-6070; synthetic benchmarks; synthetic job

parameters; synthetic jobs; synthetic job stream; syn-

thetic job stream generator; transferability.

50. Kolence. Kenneth W., Experiments & Measure-

ments in Computing, in Association for Com-
puting Machinery, Proceedings of the SIGME
Symposium, February 1973, pp. 69-72, 2 refs.

(6430165)

The paper is intended as an initial step toward

establishing an experimental discipline within

22



the field of software physics which "is concerned
with understanding the laws governing the be-

havior of software units." Software units con-

sist of arbitrarily large (or small) groupings of

code whose variable observable properties con-

stitute their behavior in contrast to their func-

tional properties. In this context, several classes

of computer performance measurement activity

are reviewed, to provide perspective in the de-

velopment of an experimental discipline for

testing behaVioi' of software.

Building of an experimental discipline requires

S6rtie general agreement on how one proves or

disproves a theoretical hypothesis. One is pro-

posed from the physical sciences: Experiments
performed to verify some hypothesis concerning
the real-world behavior of software units can
only be accepted as valid if direct measurement
is used to obtain all data.

From this it is obvious that an experimental
discipline must be based on measurement and
not on other techniques such as simulation.

Simulation offers prediction which must then
be verified or countered by measurement.

The second step in establishing an experimental
discipline is also suggested from the physical
sciences and that is that results of important
experiments be published easily. The author pro-

poses that SIGME encourage the publication of

measurement experiments and data in the com-
puter field, for general constructive criticism

and comparison against theoretical predictions.

In the absence of theory applicable to problems
of interest, the author suggests encouragement
of membership to suggest procedures for de-

veloping empirical curves of interest. (JLW)

Category: 1.3

Key words: Measurement experiments; program be-

havior; software performance measurement; software
physics; software testing; software units.

51. Kolence, Kenneth W., The Software Empiricist,
Performance Evaluation Review, 2:2 (June
1973) pp. 31-36. (6430193)

The article is an announcement as well as the
first occurrence of "The Software Empiricist,"
a new feature of Performance Evaluation Re-
view. Software engineering has as its goal "the
design of systems to perform as we wish them
to." This requires an understanding of the mean-
ings of the variables that are measured, or "the
rationale of what has been called software
physics."

The new feature will be devoted to the empirical
development of such an understanding by pro-
viding a publication vehicle for empirical and
experimental data and thus developing a solid

body of knowledge.

Correspondence is invited initially on "charac-

terization of what types of empirical data are

of value, what is meant by the term experimental

data, and what constitutes an experiment in

software physics." Empiricism, "the search for

quantitative expressions of the behavior of some
object of study prior to the existence of a formal

predictive theory," in reference to software can-

not be a "random search for any quantitative

expression of some system's behavior. We have

that situation today. Software empiricism is the

search for invariant relationships between the

variables of computer measurement."

The author characterizes the people involved in

performance improvement as "all empiricists in

one way or another, . . . [and] software em-
piricism can and does proceed without formal

theory to guide it." This must necessarily be so

until good evidence is obtained of the existence

of invariant relationships between measurable

variables.

The author invites submission for publication

of evidence of such invariance, and conversely,

evidence of relationships clearly not invariant.

Comment is also invited on the form of data

presentation for the new Section. The author

takes the initiative by suggesting circular graphs,

recommending that they be called "Kiviat plots"

or "Kiviat graphs," and inviting experimenta-

tion with two samples appended to the article.

One graph form is for the presentation of job

step time usage, the other for workload char-

acterization.

Admitting that chances of any response are quite

low, the author ends with a promise to "dig up

examples" for the next few issues of the Review.

(JLW)

Categories: 11; 1.3

Key words: Measurement experiments; software engi-

neering; Software Empiricist; software performance

measurement; software physics.

52. Kolence, Kenneth W., A Software View of Meas-

urement Tools, Datamation, 17:1 (January 1,

1971) pp. 32-38. (6430176)

In discussing the characteristics and role of

software performance measurement tools, the

author states that a usable set of measurements

requires a combination of descriptive and quan-

titative variables which must be extracted from

memory without altering significantly the run

characteristics of the system. Three parameters

are involved: CPU cycle requirements, 10 ac-

tivity, and core usage, all of which must be

measured for each program module or segment.

Sampling techniques can be used to obtain data

with an acceptably low CPU overhead rate.

Separation of the function of data execution

23



from that of data analysis reduces further the

danger and/or necessity of altering the system

being measured.

Within this context the author discusses some
of the performance measurement products on

the market, with specific references to two Boole

& Babbage products, the program evaluator

(PPE) and the configuration evaluator (CUE).
The key relationships in the performance equa-

tion are expressed as:

E=Sx

where S=throughput rate=software units per

unit time

a;=:average CPU work per software unit=CPU
cycles per software unit

£^=configuration efficiency=efficiency of CPU
cycles used for job mix represented by

a:=CPU cycles per unit time.

Solving the equation for S represents the

throughput of a given job mix for a given

configuration.

There are relatively few computer performance

measurement tools on the market. Nearly all

of them detect and measure CPU busy or non-

available CPU wait time. The class of products

called configuration evaluators (whether hard-

ware or software) are used to detect sources

and magnitudes of avoidable CPU wait time.

In this connection, access properties of data

devices appear to play a significant role in gen-

erating avoidable CPU waits. The author cites

(but does not identify) an available product

which uses data collected by a configuration

evaluator to optimize the organization of data

sets on disc in order to reduce average seek

delay time.

Program evaluators measure CPU cycle require-

ments for each segment of a program and record

those whose CPU cycle requirements are sig-

nificant. Program evaluators are useful in identi-

fying the top ten "CPU cycle using" programs
which then need to be refined to reduce their

requirements of CPU cycle times. The article

concludes with a section on selection of measure-
ment tools. (JLW)

Category: 1.2

Key words: Configuration evaluators; data optimizers;

measurement tools; software evaluation; software

monitors; software performance measurement.

53. Lambert, David W., Report on FIPS Task Group
13, Workload Definition and Benchmarking,
paper prepared for the Fall 1973 Meeting of

The Computer Performance Evaluation Users

Group, held at National Bureau of Standards,

Gaithersburg, Md., 4-7 December 1973, 5 pp.
(6430259)

Benchmark testing, or benchmarking, one of

several methods for measuring the performance
of computer systems, is the method used in the

selection of computer systems and services by the

Federal Government. However, present bench-

marking techniques not only have a number of

known technical deficiencies, but they also rep-

resent a significant expense to both the Federal

Government and the computer manufacturers

involved. Federal Information Processing Stand-

ards Task Group 13 has been established to pro-

vide a forum and central information exchange
on benchmark programs, data methodology, and
problems. The program of work and preliminary

findings of Task Group 13 are presented in this

paper. The issue of application programs versus

synthetic programs within the selection environ-

ment is discussed. Significant technical problem
areas requiring continuing research and experi-

mentation are identified.

These problem areas include: the lack of a com-
mon terminology and measurement parameters;

difficulties in determination and representation

of workloads; workload specification and gen-

eration for online systems; machine-dependence

of synthetic benchmarks; and new computer
system architectures. (Modified author)

Category: 3.0

Key words: Application benchmark program library;

application benchmarks; benchmark program develop-

ment; benchmarks; FIPS Task Group 13; synthetic

benchmarks; workload definition; workload specifica-

tion.

54. Lambert, David W. and John F. Wood, USDA
Synthetic Benchmark Project, Informal Report,

October 15, 1973, 7 pp. (6430204)

The report describes the steps, problems, and
technical considerations in the development cur-

rently underway of synthetic benchmark pro-

grams for an equipment procurement in the near

future. This particular procurement was initially

for a single facility to accommodate the process-

ing requirements of the Agricultural Stabilization

and Conservation Service and its 3,000 field

stations. Other Department of Agriculture re-

quirements were later consolidated into a single

procurement which, in turn, was further con-

solidated into a joint procurement with the Gen-

eral Services Administration.

Analysis of the combined total requirements re-

sulted in the identification of approximately 600
online tasks, classified into 14 category types.

Since application programs useful for bench-

marking were nonexistent, it was decided to

develop synthetic programs which could be ad-

24



justed as required to fit the 14 categories. Syn-

thetic program sets have been designed and

programmed, and the sizing and validation

process is now underway.

The categorization of the workload was the in-

itial step in the creation of a synthetic workload

which is described in detail, together with tech-

nical problems encountered in the development

process.

The 12 synthetic programs developed to date

.j^O^ritten in FORTRAN or COBOL. For data

^:'^^agement, assembly language programs were

{''.wMtKn- to emulate the necessary functions of

•-'~c^£(^A^%eneration, transaction sets, etc. Approxi-

mailely oherhalf of the Department's benchmark
/ development effort was devoted to these pro-

grams.

Once the validation process for the synthetic

programs is complete, several additional steps

still remain in the benchmarking process. These

include specification of benchmark requirements

for the solicitation process, vendor preparation

and execution of the benchmark, re-run for vali-

dation purposes, and then the evaluation of the

final results of the benchmark tests. (JLW)

Categories: 11; 3.2

Key words: Assembly language; COBOL; data gener-

ation; Department of Agriculture; FORTRAN; Syn-

thetic benchmarks; synthetic program modules; task

classification; transaction file generation; workload
definition.

55. Leavitt, Don, Study Asks: Are Synthetic Bench-

marks Possible? Computerworld, June 20, 1973,

p. 13. (6430158)

A brief description of a study launched by a

Department of Defense steering committee on
the feasibility of developing a representative

library of standard benchmark programs focus-

ing on specific data processing tasks rather than

on entire applications.

The benchmarks under study would be opera-

tional but synthetic programs composed of vari-

able task-oriented instruction streams, proce-

dures, and data files from which a user could

choose to tailor programs sufficient to represent

his workload.

The steering committee has identified nine basic

data processing tasks that "probably" should
be in the proposed benchmark library: modified
sort; edit; sequential update; indexed sequential

update; random update; report extract; com-
pute; remote inquiry; and remote update. (JLW)

Category: 3.2

Key words: Department of Defense; standard bench-
mark program library; standard benchmarks; syn-

thetic benchmark program library; synthetic bench-

marks; synthetic program modules.

56. Larson, Chris, The Efficient Use of FORTRAN,
Datamation, 17:15 (August 1, 1971) pp. 24-31.

(6430178)

The author presents numerous and detailed sug-

gestions for FORTRAN optimization that the

user can manually do at the source code level

to improve object code performance. Optimal

object code for the target machine is the only

concern when a FORTRAN program is in the

production stage. Coding techniques which re-

sult in a fairly good code do not eliminate the

need for optimizing compilers, because many
machine-dependent features cannot be antici-

pated by a user program and because even the

best source code can be improved and enhanced

by an optimizing compiler.

An analysis of how FORTRAN compilers deal

with source code constructions is presented under

the following headings: input/output statements;

subscripts; data types and conversions; expres-

sion evaluation; machine-dependent and miscel-

laneous optimizations for various instructions

and statements.

Admittedly, many of the recommendations pre-

sented here defeat the purpose of a high-level

language which is to free the programmer from

the rigidity of computer languages. However, the

author feels that optimal object code is im-

portant enough to the programmer to make him

willing to share the optimization burden. Com-

pilers, in their turn, could minimize this burden

by providing optional feedback data regarding

program execution. For FORTRAN, the author

suggests an option in the form of an "execution

report" based on compiler-inserted frequency

collection code at every node of the object pro-

gram and expansion of all STOP statements into

calls to a FORTRAN subprogram which would

merge the original source code with the fre-

quency data. Such a report could conceivably

be used as input to subsequent compilations for

insertion in the most frequently executed areas

of the program. (JLW)

Category: 3.5

Key words: FORTRAN optimization; program opti-

nization.

57. Loughlin, John B., 360/370 Comparative Bench-

mark Analysis, in Proceedings of SHARE
XXXVII, 1971, pp. 79-100. (6430150)

A series of eighteen programs, eleven in the

scientific job stream and seven in the commer^

cial job stream, were written initially in 1967

to assist Wichita State University in the evalua-

tion of a third generation computing system. In

the years which have followed, additional in-

25



terest was expressed upon the part of a number
of computing vendors and other computing or-

ganizations to have this same job stream run

through their respective systems. Since 1967 this

benchmark job stream has been run 6ver fifty

times on some twenty-four different CPU's and
sixteen different operating systems. Mainframes

tested included—Burroughs 2500, 3500, 5500;

Control Data 3100, 3200, 3300, 6400, 6600;

General Electric 415, 425, 435, 625; IBM 1620,

1130, 360 models 25, 30, 40, 44, 50, 65, 67, 75,

145 and 155; UNIVAC 1106 and 1108.

The results of the first two years of testing were
summarized and evaluated by McCuUough. At
that time, only gross occupancies were captured,

and in many cases gross occupancy for the job

step was not available. Lack of adequate and con-

sistent job accounting information has posed

many serious problems. In the benchmark tests

in more recent years, every attempt was made
to capture both gross occupancy and CPU time

information at the job step level, and to identify

interjob step gross occupancy overhead when-
ever possible. Naturally, one of the more diffi-

cult matters of concern has been the problem
of comparing hardware and software systems

which are not exactly alike with regard to per-

ipheral equipment and operating system features.

Unless otherwise noted, peripherals used were
800-1,000 cards per minute readers, 900-1,100
lines per minute printers with 48-64 character

print sets, 120 KB tape drives, and 2314 or

equivalent disk drives.

The report contains a short description and
characteristics of each job in the job stream.

Results from the various runs of the commercial
and scientific job stream on IBM systems are

reported as a series of unweighted gross occu-

pancies. Job step gross occupancy and CPU
times are shown whenever job accounting cap-

tured this information. Therefore, careful in-

terpretation should be exercised in order to

evaluate relative speed or throughput for any
given system. Additional untimed runs were
made in a multiprogrammed, multijob stream
mode on a number of machines. The time from
first card read to end of execution of last job
and time of last line printed, as well as CPU
time consumed were examined on several operat-

ing systems as the order of the jobs run was
changed. Because of the wide variance in fea-

tures, as well as options of generating an operat-

ing system, many differences, some difficult to

repeat, were found and hopefully would provide
the basis for subsequent analysis for an addi-

tional paper. I IBM)

Categories: 11; 3.3

Key words: Benchmark run analysis; benchmark test-

ing; experimentation; job characteristics; job stream
representation; multiprogrammed computer systems.

58. Lucas, Henry C, Jr., Synthetic Program Speci-

fications for Performance Evaluation, in As-

sociation for Computing Machinery, Proceed-

ings of the National Conference, 1972, pp.

1041-1058, 15 refs. (6430111)

Various techniques for performance evaluation

have been reviewed. For the major purpose of

selection evaluation, a proposal and preliminary

specifications have been developed for a series of

synthetic test modules. This proposal features

a set of industry wide modules developed by a

committee from the computer industry and ref-

ereed by a professional organization. These mod-
ules would be provided by each manufacturer

in a variety of languages for all of his com-

puters. An outline of some preliminary specifi-

cations for the modules has been presented,

though the details will have to be worked out

ultimately by the committee.

The evaluator represents his anticipated job load

by selecting from among a series of synthetic

modules to form different runs. He formulates

a series of experiments in which different runs

are executed using the various jobs. All of the

modules are highly parameterized, making it

easier to tailor the tests to the anticipated job

load. It is maintained that synthetic modules are

the most flexible method to test hardware, soft-

ware, and their interaction for the purposes of

evaluating system performance. Two examples

were given to illustrate the use of synthetic

program in performance evaluation. (Author)

Category: 3.2

Key words: Compiler evaluation; computer perform-

ance evaluation; operating system evaluation; pro-

gram parameters; synthetic benchmarks; synthetic

program modules; synthetic program specifications.

59. Meiners, Eugene E., A Machine-Independent

Data Management System, Datamation, 19:6

(June 1973) pp. 92, 94-95, 2 refs. (6430195)

The article reports on a development that may
help reduce the problems associated with transfer

or changes in computer-based information sys-

tems.

A machine-independent data management sys-

tem means that the DMS is readily transferable

from one computer to another. This attribute is

an advantage additional to those inherent in

DMS packages. If a given DMS package and its

associated files have been written in a pro-

gramming language approved by the American
National Standards Institute, then the DMS can

be easily adapted for use as a benchmark.

Such a data management system is available

today, and it is called "the Machine-Independent
Data Management System" (MIDMS). This was
developed by the Defense Intelligence Agency

26



(DIA) with contractual assistance from the

General Electric Company.

Machine-independence was a design factor in

MIDMS, since there were none on the market
with that attribute in 1968. COBOL was chosen

as the language for MIDMS which is modular
in design with a dynamic overlay structure which
permits execution with a minimum amount of

core storage. Some additional attractive attri-

butes are capability for accommodating both

fixed and variable-length records; the records

may contain fixed, periodic, and variable sub-

sets of data; and may also contain unstructured

information of unknown length in the variable

sets. In addition, the standard MIDMS interface

permits calls of COBOL, FORTRAN, or as-

sembly language subroutines.

The system was programmed and is operational

on the IBM-360 series. The transfer to the HIS
G—635 is almost complete. Retrieval and output

capabilities are operational on the Honevwell
system, and file maintenance was expected to be
available in June 1973.

The feasibility of machine-independence has
been demonstrated by the fact that MIDMS is

operational on two quite different systems. Keep-
ing MIDMS viable on both systems simultane-

ously will give added proof of the practicality

of the development. (JLW)

Category: 3.4

Key words: Data management systems; Defense Intel-

ligence Agency; Machine Independent Data Manage-
ment System; MIDMS; transferability; transferable

benchmarks.

60. Morgan, D. E. and J. A. Campbell, An Answer
to a User's Plea?, in Association for Computing
Machinery, Proceedings of the SIGME Sym-
posium, February 1973, pp. 112-120, 22 refs.

(6430179)

The paper reports on criteria, tools and tech-

niques which can be helpful to a computer user

in deciding which system to procure or in de-

termining how badly his current system is per-

forming. Benchmarking appears to be a good
way to provide the information necessary for

evaluation of the relative merits of available

computer systems.

The authors identify two types of conventional

benchmarks: (1) general goodness benchmarks;
and 1 2) programs selected from the job profile

to be benchmarks.

A general goodness benchmark is a specially-

constructed program that performs tasks com-
mon to many computer installations, represents

a wide range of problems in general terms only,

and serves as a computer industry standard in

evaluating computer system performance.

The paper defines system evaluation as the

"function of evaluating a system to improve

its operation or for procurement," and user

evaluation as the "function performed by a user

in deciding which system to use." In system

evaluation, choosing a system "tuned" to a

particular set of programs is to be avoided,

while in user evaluation, the objective is just

that, i. e., choice of a system tuned to a par-

ticular set of programs.

Accurate results are produced by benchmarks,

provided that the programs selected for the

benchmark are, indeed, typical of the user's job

profile. In the authors' opinion, the synthetic

job, as described by Buchholz, obviates the dan-

ger of choosing a system tuned to a particular

set of programs in user evaluation. Two con-

cepts used by Buchholz, "nonsense" calculations

and the cyclic nature of his synthetic program,

are then used by the authors to synthesize a set

of programs to aid in choosing a system tuned

to a given set of programs. To do this, synthetic

programs must (1) represent the user's job pro-

file so accurately that relative costs remain the

same, and (2) "be inexpensive to generate and

use, relative to the savings realized by choosing

to run on the least expensive system." Such syn-

thetic programs are called synthetic benchmarks

because they are used as conventional bench-

marks. Two further considerations are presented:

costs of synthetic programs can be significantly

reduced because "properly structured files of

garbage can be constructed inexpensively by a

ten-line FORTRAN program," since data for the

synthetic program is not used in the processing,

therefore all that is required is that data be

similar in structure to actual files. A further

consideration is that synthetic benchmarks do

not demand resources in the same order or

amount as required by actual programs.

Two approaches to the generation of synthetic

benchmarks are presented: (1) resource demand
and (2) service demand. Both approaches are

illustrated.

The resource demand approach is quite detailed

and vulnerable to differences in system soft-

ware, language translations, and even machine

architecture. However, this approach lends itself

to automation rather easily and produces "fairly

accurate" results on different model computers

of the same series, or on computers with identical

operating systems.

The service demand approach measures at the

language level the computing and I 0 services

required by the programs in the job profile.

These service demands are then mapped by a

translator into resource demands. By defining

the synthetic benchmark in service terms, the

results of the benchmark run reflect the efficiency

of the system's software, the language translator,

27



and the computer architecture. The service de-

mand approach is illustrated by a hypothetical

job mix consisting of one FORTRAN program
analyzed for services provided by it and a syn-

thetic benchmark created from the service

measurement.

The service approach was also tried with a non-

trivial job profile of two COBOL programs. Four
computer systems were evaluated: IBM 360/50
and 360/75 and two PDP-lO's at two different

installations. The costs of running actual and
synthetic programs at the four installations are

tabulated; costs for the synthetic runs were con-

sistently lower at all four installations.

Measurement of services for the experiment was
done manually by determining the number of

times each statement is executed in a program
and then determining the services demanded
by each statement. The second step was written

for statements which were executed only a few
times. The Algol-W compiler could be used

to automate the first step; automation of the

second step, however, "is nearly equivalent to

writing a compiler for the language."

In another experiment it was found that opti-

mizing compilers such as FORTRAN H must
be used with caution in synthetic benchmarks.
The FORTRAN H compiler might omit a piece

of code should it "become obvious" that that

particular piece of code does nothing!

The authors conclude that both approaches have
faults in user evaluation—and the faults of the

resource demand approach are the more serious.

Four advantages are claimed for the service ap-

proach over conventional evaluation techniques:

(1) tailoring to user job profiles, thus more
accurate results; (2) adjustable processing capa-

bility can reduce costs of evaluation; (3) data

independence; (4) opportunity provided to user

to learn how difficult it is to use a system, what
is its performance, reliability, and availability,

and where help is available. (JLW)

Category: 3.2

Key words: Benchmark costs; comparative computer
performance measurement; computer systems; data in-

dependence; experimentation; IBM-360/50; IBM-
360/75; optimizing compilers; PDP-10; standard

benchmarks; synthetic benchmarks; test data.

61. Murphey, Jesse 0. and Robert M. Wade, The
IBM 360/195 In a World of Mixed Job Streams,

Datamation, 16:4 (April 1970) pp. 72-79

(6430209)

The article describes the method used for de-

sign verification and early estimates of perform-

ance of the IBM 360/195. For this, more than

a hundred job samples were collected from the

workloads of possible users of the system. The

jobs were then dynamically traced and analyzed,

and a small number of job steps were selected

as a sample set for projections. For each selected

job step, the one trace-output tape was located

whose contents produced an instruction execu-

tion frequency mix most closely matched to that

of the job step as a whole. In this way, 17 job

step segments were established as criteria for

comparative, internal system performance pro-

jections.

To predict internal performance of the 360/195.

a timer program was used to model CPU
operations to the extent of drawing timing

charts accounting for all computation progress

during each machine clock cycle. Input to the

timer program were the trace-output reels;

summary reports produced by the timer tabu-

lated data such as number of machine instruc-

tions executed, total CPU time per run, and

processor and buffer storage fetches and stores.

Accuracy of internal performance predictions

based on this methodology has been found to

be well within 10 percent. The three main ap-

plication determinants of the 360/195 system's

internal performance appeared to be the in-

struction mix, the operand addressing pattern,

and the ordering of instruction codes in the

program.

A predictive methodology was also designed for

measuring throughput potential, based on case

studies to assess this potential in terms of user

programs, operating system components, and

I/O devices available in 1969. Three of these

case studies are discussed.

The methodology was based on the construction

of an acceptable job stream which was then run

on each of three different hardware systems:

a 360/65 defined as the base for performance

comparisons, a 360/85, and a 360/91, with

each system having I/O and OS/360 com-

ponents appropriate for each job stream. The
results of these runs are presented in tabular

form and are considered "impressive." However,

as of October 1969, the job stream had not

been fully optimized, nor had the case study

been properly completed. Additional sources of

performance improvement were discovered in

the course of the study. (JLW)

Categories: 2.3; 11

Key words: Comparative computer performance meas-

urement; computer performance measurement; com-

puter systems; experimentation; IBM-360/65; IBM-
360/85; IBM-360/91; IBM-360/195; job step

execution frequency; job stream definition; software

monitors; throughput.

62. Oliver, Paul, Review of Standard Benchmark Ef-

fort, Department of the Navy, Automatic Data
Processing Equipment Selection Office, Wash-

28



ington, D.C., Memorandum Report, 31 July

1973, 9 pp., 9 refs. (6430163)

The thrust of current federal effort in "stand-

ard benchmarks" is to develop a measurement

tool with certain desirable qualities. Certain

characteristics of computers can be measured in

the selection process: (1) availability of hard-

ware and software, expressed in terms of reli-

ability, ease of maintenance, etc.; (2) work
capacity, which can be measured from various

points of view—as can be seen from the terms

used below; (3) job time or time required to

execute a single job; (4) system throughput or

how much work is done; a function of the job

mix, the job load, and various system para-

meters; (5) response time—a measure of the

quality of services rendered, and largely de-

pendent on scheduling priorities. In the con-

text of computer selection, it would be reason-

able to limit the scope of effort of measuring

throughput capacity, without losing sight of the

considerable importance of response time in an

on-line environment.

Benchmark study is very closely related to the

subject of computer performance evaluation,

since some combination of evaluation techniques

will need to be used to develop "standard

benchmarks." These evaluation techniques can

be broadly classified into two categories. The
first category of techniques is task-oriented and
is concerned with system throughput capabilities

with respect to a given workload. The techniques

include (1) instruction timing that reduces

workload to specific classes of instructions;

(2) instruction mixes or representative samples

of instruction sets designed to reflect usage in

a given type of application; (3) kernels or small

sequences of code which perform a single func-

tion, for example, a table search; (4) "natural"

benchmarks that consist of a subset of a given

workload; f5) "hybrid" benchmarks that con-

sist of a subset (further modified) of a given

workload; and (6) "synthetic" programs or a

set of programs written specifically for the pur-

pose of making comparative evaluation.

The second category of techniques is computer-

oriented and emphasizes the system under
evaluation rather than the workload to be pro-

cessed by the system. These techniques include

(1) hardware monitors which are relatively in-

expensive, precise in measurements, non-disrup-

tive, and insensitive to data-dependence; (2)

software monitors—characteristically the exact

opposite of hardware monitors; (3) queueing
models which are convenient, imprecise, and
shallow; and (4) simulation models, which are

expensive, less imprecise, and usually present a

credibility gap.

For some period of time now some form of

benchmarks has been the accepted form of

minimum performance measurement in com-

puter selection throughout the federal market-

place. Natural or hybrid benchmarks have an

advantage over synthetics in that they deal with

a real system, and thus avoid a "semi-real" job

mix as well as the credibility problem inherent

in simulation. Some of the more serious prob-

lems associated with benchmarks are: (1) inac-

curate reflection of a given job mix; (2) sys-

tem-dependence; (3) frequently do not run

correctly, even on their native systems; (4)

require too unduly long execution times; f.5)

require unreasonable file volumes; (6) require

inconsistent measurement procedures; and (7)

costly—both in time and dollar resources—to

buyers as well as vendors.

The impetus for "standard benchmarks" is

resolution of the problems associated with na-

tural and hybrid benchmarks. Within the DoD
additional impetus has come from: (1) "Task

Group Report on Methods for Reducing Time
and Cost Required for ADPE Procurement";

(2) "Contributors' Symposium on Standard

Benchmarks"; and (3) suggestions in the litera-

ture on possibility of synthetic programs.

Use of synthetic programs in performance

evaluation is not new. This technique has prob-

lems, too, all of them related to modeling the

job mix. Some of these problems are: (1) their

highly stylized form makes them very vulnerable

to optimizing compilers; (2) use of analytic

techniques to characterize a job mix is known
to be grossly imprecise and the techniques them-

selves tend to become limiting factors; (3)

use of software monitors for data collection

frequently results in the creation of the Haw-
thorne effect; (4) a multitude of parameters

is involved in a mix of programs; (5) there are

no clear techniques for matching job parameters

to mix parameters; and (6) workload modeling

is dependent on component-oriented techniques

cited above, and suffers from the same weak-

nesses.

Several current, complementary efforts in the

Federal Government are underway, aimed at

designing representative benchmarks.

1. U.S. Army System Support and Evaluation

Command

Recently issued a solicitation for a "Standard

Benchmark Study." Objectives of the contract

are: "(a) the definition of all tasks and measur-

able functions performed by a computer in

executing business-type applications: and (bt

development of a method or technique of identi-

fying and measuring the occurrence of each

function or parameter in each task for the pur-

pose of profiling computer workloads." The

solicitation is the result of a study by a DoD
Joint Steering Committee which has defined a

29



preliminary set of application tasks and task

parameters for benchmark purposes.

2. Department of Agriculture

Has constructed a comprehensive set of bench-

mark programs which include such functions as

transaction processing and data base manage-
ment. This package should be studied in any
effort geared toward designing a library of

standard benchmark programs.

3. Department of Labor

Has under development a job simulation model
with actual-use statistics as control parameters.

Standard benchmarks are not the goal of this

effort—but there is potential spinoff.

4. U.S. Marine Corps

Is involved in a project similar to that of the

DoL, except that hardware monitors are used to

provide data for creation of synthetic jobs.

5. ADPESO

The Navy's ADP Equipment Selection office has

several activites under way. These include:

(1) the development of a small (5-7 program)
library of synthetic programs in joint support

of the DoD Steering Committee and their own
in-house effort. The following assumptions un-

derlie this effort: (a) relatively few parameters

control the behavior of synthetic programs; (b)

behavior of the programs relative to changes

in parameters is predictable; (c) a workload
can be specified based on parameters implicitly

defined by the synthetic programs; and (d)

these parameters can be set so as to reflect the

workload. Such a set of programs could be used

to enhance existing natural benchmarks, and for

relatively simple systems such a mix could be

the entire benchmark. The programs are cur-

rently in the testing phase of development.

(2) "Sanitization" of natural benchmarks
through: (a) use of correct programs which
run on at least their native machines; (b) stand-

ard code—or identification of non-standard in

cases where standard is impossible; (c) trans-

lation of routines for conversion of machine-

independent modules to machine-dependent
form, as needed. Some indication of the merit

of this activity is expected by the end of calendar

1973.

(3) Investigation of machine-independent basic

procedures for benchmarks: duration, file

volumes; code standardization; and allowable

configurations.

The library of synthetic programs consists of the

following: (1) sequential file processing; (2)

indexed sequential file processing; (3) relative

I/O processing; (4) COBOL sort; and (5)

computation—a program to exercise arithmetic

processing capabilities. The Army's Selection

Office is writing Program Edit and Report Ex-

tract modules to add to the library. As each pro-

gram is completed, it will be exercised in order

to determine execution under varying parameter '

settings. This phase is also scheduled for com-
pletion in calendar 1973. i

A final effort is planned to relate program para- !

meters to installation workload parameters

—

to institute the "acceptance" phase of the effort.

By second quarter of 1974, some indication

should be apparent as to the usefulness of this

synthetic programs approach. (JLW)

Category: 3.0
(,

Key words: Department of Defense; Department of
"

the Navy; Standard Benchmark Study; standard ^

benchmarks; survey; synthetic benchmark program
library; synthetic benchmarks; synthetic program ^

modules; transferable benchmarks.

63. Parupudi, Murty and Joseph Winograd, Inter-

active Task Behavior in a Time-Sharing En-

vironment, in Association for Computing Ma-
chinery, Proceedings of the National Conference,

1972, pp. 680-692, 12 refs. (6430182)

Continuous Software Monitoring System
(COSMOS) is a measurement tool developed for

observing and analyzing user behavior and
operating system performance under the

f

UNIVAC Series 70 Virtual Memory Operating S

System (VMOS), an interrupt-driven, time-
|;

shared, demand paging operating system.

This paper reports empirical data obtained by
using COSMOS to observe a large number of

interactions in which a wide class of programs
were being executed interactively. Distributions

of think time, compute time, page fault be-

havior, and I/O frequency are presented.

(Author)

Category: 1.2

Key words: Compute time; computer performance

measurement; demand paging; interactive activity;

I/O activity; operating system measurement; operat-

ing systems; page faults; software monitors; software

performance measurement; think time; Virtual Mem-
ory Operating Systems (VMOS) ; virtual memory sys-

tems.

64. Pearlman, Jack M., Richard Snyder and Richard

Caplan, A Communications Environment Emu- >

lator, in AFIPS, Proceedings of the Spring
'

Joint Computer Conference, 1969, pp. 505-512. ^

The Honeywell Communications Environment i

Emulator (HCEE) is a communications network

simulator whose prime purpose is to aid in the

checkout and debugging of communication soft-

ware. It will simulate up to 63 lines with up to 8

30



terminals per line, and can generate at least

70,000 messages of 700 characters each per

hour. During execution HCEE generates, trans-

mits, and logs queries; receives and analyzes

error codes; and logs system responses. A
number of parameters describing the system

under test, the terminal, and user characteris-

tics, and the reporting are all parameterized and
under control of the operator. It is interesting to

note that the query generated by HCEE is

chosen from a query vocabulary list which is

part of its data base. The actual query itself is a

random combination of words from that

list. (MDA)

Category: 3.5

Key words: Communications network simulators;

Honeywell Communications Environment Emulator;
measurement driver; query generator; simulators;

software performance analysis; user characteristics;

user simulation; workload generator.

65. Robinson, Louis, Computer Systems Perform-
ance Evaluation (and Bibliography), IBM Corp.,

November 1972, 35 pp. (6430157)

An overview of the state of the art, techniques

and tools in use for measuring and evaluating

computer systems performance. The bibliog-

raphy consists of 365 citations, each annotated
with keywords. (JLW)

Category: 1.5

Key words: Bibliography; computer performance eval-

uation.

66. Ruth, Stephen R., Using Business Concepts To
Evaluate Large Multi-Level Business Systems

—

Some Applied Techniques, in Association for

Computing Machinery, Proceedings of the

SIGME Symposium, February 1973, pp. 73-77.

(6430147)

The author proposes dollar costs as a basic

element of any device involving system measure-
ment and evaluation. Three examples are pro-

vided of the application of marginal analysis

for the purpose of selection of the best mix of

measurement and evaluation techniques. The ex-

amples present "before and after" data for cost

tradeoffs in: (1) evaluation of a vendor-sup-

plied linkage-checking routine; (2) evaluation

of the use of system resources by a program
involving data manipulation primarily; and (3)

evaluation of compiler efficiency.

Category: 1.3

Key words: Compiler efficiency; compiler evaluation;

compiler optimization; program analysis; software

evaluation.

67. Scherr, Allan L., Time Sharing Measurement,
Datamation, 12:4 (April 1966) pp. 22-26.

(6430184)

The article describes measurements made of the

performance of the MAC system during the 3-

month period from December 1964 through

February 1965. The system at that time consisted

of an IBM-7094(I) with two 32K memories,

IBM-1301-2 discs, an IBM-7320A drum and

an IBM-7750 connected to model 35 teletypes

and to IBM-1050 terminals. The community of

users consisted of nearly 300 people who were

characterized by the computational load they

placed on the system.

Users, or the programs serving them, were con-

sidered to be in one of six states, each of which

is defined. These six states are: dead, command
wait, working, input wait, output wait, and

dormant.

The basic unit of work in a time-sharing system

is considered to be the interaction, or "the

following sequence of events: user thinks, types

input, waits for a response from the system, and

finally watches the response being printed."

Thus the user may be in either of two states,

the working while he is waiting for the system

to execute a program, or command wait while

the system is waiting for the user. An interac-

tion, then, can be defined as the activity that

occurs between two successive exits from cither

working or command exit states.

Data were gathered by a program which ran as

part of the scheduling algorithm which recorded

the sequence and timing of the events com-
prising typical interactions. Approximately

80,000 commands of five types were monitored:

file manipulation, source program input and

editing, program execution and debugging, com-

pilation and assembly, and miscellaneous com-

mands such as save and resume core images,

programs to generate commands, etc. Data from

the measurements are presented in graphs which

show "think" time per interaction, program size

distribution, processed time per interaction, and

interactions per command. Other graphs show

a typical response time distribution measured

from a simulation of MAC under a constant load

of 25 interacting users, and simulation results

of response time versus processor time per inter-

action. These last two parameters were derived

from simulation in order to eliminate from the

measurements results of a constantly changing

load. The author feels that simulation models

can be easily derived from these data of ac-

curate performance predictions. These predic-

tions have been confirmed by comparing them

with actual performance data from the MAC
system.

Category: 1.2

Key words: Computer performance measurement;

computer performance prediction; computer systems;

IBM-7094; MAC system; man-computer interaction;

31



multiprogrammed computer systems; system monitor-

ing; think time; user characteristics; user simulation;

work unit.

68. Schwemm, Richard E., Experience Gained in the

Development and Use of TSS, in AFIPS, Pro-

ceedings of the Spring Joint Computer Con-

ference, 1972, pp. 559-569, 10 refs. (6430207)

The author classifies the experience gained

under four major areas: system structure; sys-

tem performance analysis; software develop-

ment tools; and management of software devel-

opment. The second of these areas is of concern

to benchmarking.

In the course of the development of TSS/360,
a comprehensive scheme evolved for dealing

with system performance. Three components
comprised the scheme: establishment of per-

formance objectives; creation of external (to

the computer) performance measurement tools;

and creation of internal recording tools and

data reduction facilities. Since TSS/360 is de-

signed for three modes of operation (batch,

conversational, and a mixture of the two), per-

formance was defined for each mode of use.

However, only conversational performance is

discussed in the paper.

Conversational performance is defined as the

maximum number of tasks which the system

will support with acceptable response time.

Specifically, a benchmark terminal session was
defined by dividing the interactions into three

classes—trivial, non-trivial and data-dependent.

Acceptable response times for each of these

classes were further defined as follows:

command example response time

trivial text entry 4.0 seconds
non-trivial . data set creation 7.5 seconds
data-dependent compilation undefined

Since the above benchmark terminal session was
not typical of any user's conversational work-

load, most users specified their own benchmarks.
However, the consensus is that the above defini-

tion of performance is adequate. The initial

performance objective was to support 40 tasks

with one CPU with 512K memory, 1 drum and
1 disk channel.

In order to measure a load imposed by live

users on TSS/360, a measurement driver was
created to simulate the live environment under
controlled and reproducible conditions. A sche-

matic diagram of the TSS/360 measurement
driver is presented. To measure conversational

performance, a series of driver runs is executed,

with varying numbers of tasks for each run.

A curve is then drawn representing response

time as a function of the number of tasks. The
paper includes such a curve for TSS/360 re-

lease 6.0 for 2 different system configurations.

The measurement driver discussed here runs on .

the IBM-360/40 and has been used by some ,

installations to evaluate system performance on

their own benchmarks. A second measurement '

driver is mentioned, this one developed by
Carnegie-Mellon University for the IBM-360/67

'

with the version of TSS under study in this
'

paper. The Carnegie-Mellon Simulator (SLIN)
is compatible in script and timing characteris-

tics with IBM's and produces comparable out-

put.

The paper concludes with a discussion of debug-

ging aids and internal recording tools such as

the Systems Performance Activity Recorder

(SPAR), the Systems Internal Performance
Evaluation (SIPE), and the Instruction Trace

Monitor (ITM). (JLW)

Category: 5.2

Key words: Benchmark terminal session; computer

systems; debugging aids; hardware monitors; IBM-
360/40; IBM-360/67; man-computer interaction;

measurement driver; multiprogrammed computer sys-

tems; operating systems; response time; software

monitors; TSS/360; user scripts; user simulation;

workload generator.

69. Schwetman, H. D. and J. C. Brown, An Experi-

mental Study of Computer System Performance,

in Association for Computing Machinery, Pro-

ceedings of the National Conference, 1972, pp.

693-703, 17 refs. (6430181)

This paper describes an experimental study of

the performance of a large multiprogrammed
computer system (the UT-l/CDC 6600 system

at the University of Texas at Austin) under

systematic variation of available resources and

resource allocation algorithms. The experiments

were carried out in a controlled and repro-

ducible environment provided by a synthetic

job stream generator. The experimental data

were recorded by an event-driven software moni-

tor which recorded a complete trace of system

activities at the level of system defined events.

The study relates resource utilization and queu-

ing patterns to the metric of job completion

rate. The experiments undertaken in these stud-

ies are single factor experiments. Compensatory

reactions by this complex system to variation of

individual resources are nonetheless revealed.

The experiments also demonstrate the criticality

of optimal scheduling of bottleneck resources

and offer comparisons of the performance of

multi-drive disk units under different conditions

of availability and space assignment. The data

gathering facility was also run on the production

environment to determine base lines for com-

parison to the experiments as well as for an

understanding of the production mode of opera-

tion of the system. (Author)

32



j

Category: 1.2

I

Key words: CDC-6600; computer performance anal-

I

ysis; computer performance measurement; computer

j

systems; data gathering; experimentation; job com-

,j

pletion ratio, queuing patterns; resource allocation;

j
software monitors; synthetic job stream; synthetic job

stream generator; Texas University.

70. Shope, W. L., K. L. Kashmarak, J. W. Inghram
I and W. F. Decker, System Performance Study,
' in Proceedings of SHARE XXXIV, Vol. 1, 1970,

I

pp. 568-659. (6430106)

1 Directors and managers of computing facilities

are faced each day with questions such as—how
fast is our workload growing? Can current

machinery contain future growth and for how
long? What do new hardware and software

developments mean to this installation?

In order to obtain answers to these questions,

the University of Iowa Computer Center began
in the spring of 1969 to perform benchmark
analyses of both hardware and software. It was
apparent at that time and is still apparent today

that very little valuable information exists to

help guide the installation in making an evalua-

tion. Prior to any analysis, many important ques-

tions regarding benchmarking techniques need
to be resolved. What kind of data are needed?
How can the data be obtained? Should software

or hardware measurements be made?

One of the prime requisites for a meaningful
benchmark analysis is a job stream representa-

tive of a given environment. At UCC, the deci-

sion was made to assemble a set of jobs from
the real job stream which reflected normal
operations. Fifty-two jobs were selected through
the use of a sample procedure involving the

distribution of jobs run versus time of day to

generate random times of day at which samples
were extracted. The samples consisted of jobs in

execution at these times; selection, in turn was
on the basis of first-in-first-out and on job
classification (which involved amount of core
storage and type of processor required). The
effect of this procedure was to weight selection

in favor of hours of heavy usage and distribu-

tion of jobs by classes similar to the normal job
stream. The sampling period lasted three days.

For testing purposes, the jobs were organized in

order of time of selection to construct a job
stream that required approximately 55 minutes
of execution time on the University's IBM-
360/65. In retrospect it was learned that average
CPU utilization was approximately 10 percent
higher in the test job stream than in the actual

job stream. The test job stream was adjusted
somewhat after the first set of tests; a com-
parison of actual versus test job streams (pre-

sented in the Appendix) revealed that the latter

were representative.

Other material presented in the Appendix pre-

sents data on the 16 benchmark users, and de-

tails on the jobs in the test job stream. A sum-

mary sheet describes changes instituted at the

University Computer Center and an estimate of

of values returned as a result of the tests. (JLW)

Categories: 3.3; 10

Key words: Benchmark run analysis; computer sys-

tems; cost-value; experimentation; hardware moni-

tors; IBM-360/65 ; Iowa University; job character-

istics; job classification; University Computing Cen-

ter; workload construction.

71. Smith, J. Meredith, A Review and Comparison

of Certain Methods of Computer Performance

Evaluation, The Computer Bulletin, 12:1 (May
1968) pp. 13-18, 5 refs. (6430190)

The article presents a discussion of various types

and relative merits of instruction mixes and

benchmarks. For an estimate of the relative

power of different computers over a wide range

of applications, some means must be found for

combining the run results of the benchmarks
and mixes. A calculation of such a measure of

relative performance is suggested and illustrated.

The work unit, used by the British GPO for

evaluating performance, is described briefly.

(JLW)

Category: 3.0

Key words: Benchmark run analysis; benchmarks; in-

struction mixes; work unit.

72. Sreenivasan, K. and A. Kleinman, On the Con-

struction of Representative Synthetic Workloads,

The Mitre Corp., Bedford, Mass., Rept. No.

MTP-143 March 1973, 31 pp., 9 refs.

(6430170)

The evaluation of computer systems is usually

conducted for the purposes of improving the

present performance, predicting the effects of

changes in either the existing system or the

workload, or comparing different systems. The

evaluation may use analytical modeling, simula-

tion, or experiments with the existing system.

In all these cases there is a need for a drive

workload that imitates the real workload with

reasonable fidelity, but in an abbreviated form.

This paper describes a method of constructing

the drive workload using synthetic programs.

The real workload is characterized by the magni-

tude of the demands placed on the various

system resources; for example, the CPU time,

number of I/O activities initiated, core used,

and the usage of unit record devices. These are

obtained from the system accounting data. The
representative drive workload is constructed by

matching the joint frequency distribution of the

selected characteristics. The drive workload is

33



realized by using a synthetic program that con-
tains many parameters. By adjusting these para-
meters, any desired combination of workload
characteristics can be obtained. Using this pro-
cedure a synthetic workload with 78 jobs is con-
structed to represent a month's workload (for

an IBM-370/155) consisting of about 7000
jobs. (Author)

Categories: 2.2; 3.2

Key words: Accounting data; computer systems;
IBM-370/155; synthetic workload construction;
workload characteristics; workload representation.

73. Sreenivasan, K. and A. J. Kleinman, On the

Construction of a Representative Synthetic
Workload, Comm. ACM, 17:3 (March 1974)

pp. 127-133, 13 refs. (6430278)

A revised and later (July 1973) version of

Mitre Kept. No. MTP-143. The method des-

cribed was applied to the construction of a

synthetic workload of 88 jobs, representing a

month's workload consisting of about 6000
jobs. (JLW)

Categories: 2.2; 3.2

Key words: Accounting data; computer systems;
IBM-370/155; synthetic workload construction:
workload characteristics; workload representation.

74. Stanley, W. I., Measurement of System Opera-
tional Statistics, IBM Systems Journal, 8:4
(1969) pp. 299-308, 6 refs. (6430100)

The paper describes design factors and data
gathered by JAS, the job accounting system de-

veloped for continuously and automatically
monitoring a real-time operating system. Use
of JAS provides a variety of statistics at optional
levels of detail, at little cost in computing time
or time lost in collecting unwanted information.
All monitored information is stored in a data
base for post-processing which is flexible so that

reports tailored to particular needs may be
produced.

Operational statistics gathered by JAS are used
for performance evaluation in two ways: to

optimize the operating system performance and
to characterize workloads in simulating system
operation. Experience with the real-time environ-
ment indicates that few statistics are needed to

characterize the workload, given suitably para-

meterized models calibrated with detailed,

measured performance data. These data include

types of jobs and job steps (assembly, linkage-
editing, etc.) and some information about the

equipment (main storage capacity, CPU speed,

etc.). Use of operational statistics in preference
to hypothesizing workloads was found to en-

hance the accuracy of system simulation. (JLW)

Categories: 1.2; 2.2

Key words: Accounting data; job accounting system

(JAS) ; simulation; statistical analysis; statistical

models; system monitoring; workload characteristics.

75. Statland, N., R. Proctor, J, Zelnick, R. Getis and

J. Anderson, An Approach to Computer In-

stallation Performance Effectiveness Evaluation,

Auerbach Corp., Philadelphia, Pa., Rept. No.
1243-TR-2, June 1965, 164 pp. (ESD-TR-65-
276; AD-617 613)

The process provides objective measures of per-

formance efficiency based on both quantitative

and qualitative data, and provides standards for

measuring installation effectiveness. Specifica-

tions and characteristics are collected via ques-

tionnaires, once and only once, in four cate-

gories—computer hardware, extended machine
( hardware ^software interaction), software eval-

uation and problem specification. An extension

of this measurement of computer system per-

formance provides a rating for the performance
of a given software package on a given piece of

hardware by comparing the time derived from
the hand tailored coding to the timing resulting

from the object program produced by the soft-

ware. This ratio measures the efficiency of the

software on the specific hardware configuration.

The aggregate ratios for all the individual per-

formance criteria are used to derive a perform-

ance standard for a software system. Algorithms

are used to summarize the raw data elements and
a computer program will select data elements,

make simple arithmetic combinations of these

elements into composites, and prepare the data

for entry into a statistical analysis. Stepwise

multiple regression analysis is utilized to deter-

mine the relative significance of various data

elements and to calculate their relative

weights. (Author)

Category: 1.3

Key words: Computer performance evaluation; com-
puter performance measurement; program timing;

questionnaires; software performance measurement;
statistical analysis.

76. Steffes, Sylvester P., How the Air Force Selects

Computers, Business Automation, 14:8 (August

1967) pp. 30-35. (6430161)

The article reports on an interview with Col.

Steffes in which he describes the system analysis

that preceded the formulation of the bid package

prepared by the Electronic Data Processing

Equipment Office, the Air Force's centralized

agency for competitive evaluation and selection

of commercial computer systems. The RFP was
for the Air Force's Phase II Base Level Data

Automation Standardization program, and in-

volved the requisition of about 135 computer

34



systems. After identifying all systems which
would be replaced, the second step in the analy-

sis involved the gathering of wofkload statistics.

Analysis of workload statistics resulted in a 4-

level classification of workloads, A through D.

After this, more than 1,000 applications were de-

fined and simulated in order to gather data

on the capability of current equipment to per-

form the processing tasks required. Like pro-

cessing tasks were then consolidated into an
RFP workload which consisted of approximately

250 applications for each workload level. The
RFP specified that this workload had to be ac-

complished in 200 hours of operational use

time per month. The specification for the "D"
level workload required further that a live test

demonstration be given of the equipment pre-

pared.

Four suggestions are presented for users in

preparation for solicitation of vendor proposals:

(1) expend as much effort and time as possible

in analyzing and developing specifications: (2)

develop evaluation criteria based upon the

specifications released to industry prior to the

issuance of the RFP; (3) determine the tech-

niques to be used for validating vendors' pro-

posals, e.g., benchmarks, simulation, etc., (4)

establish firm dates for accomplishing all de-

fined tasks, e.g., proposal submission, bench-
mark, equipment installation, etc. (JLW)

Categories: 1.3; 11

Key words: Application benchmarks; computer selec-

tion procedures: Department of the Air Force; work-
load analysis; workload characteristics; workload
specification.

77. Strauss, J. C, A Benchmark Study, in AFIPS,
Proceedings of the Fall Joint Computer Con-
ference, 1972, pp. 1225-1233, 4 refs. (6430109)

The paper presents a case study of bench-
marking for third generation, multiprogrammed
system selection which was conducted by the

Washington University at St. Louis to aid in se-

lection of a replacement for their IBM-360/50.
The new system would have to be able to process
the existing IBM-360/50-oriented workload with
a minimum of conversion. In addition, it was
desirable that the replacement system provide
sufiicient excess capacity to support new ap-

plications. It became clear from these and other

considerations that the selection decision had
to be strongly influenced by the relative per-

formance of prospective new systems on the

existing workload. This was the basis for the

decision to conduct a benchmark study of the
relative performance of various competing sys-

tems on a representative sample of the cur-

rent batch-oriented workload. Selection of sys-

tems for the study was based on combinations

of past experience, subjective opinions of suita-

bility, and satisfactory relations with local rep-

resentatives of vendors.

The objectives of the study and the design of

a comprehensive benchmark to achieve these

objectives are presented in detail for four pros-

pective systems. Burroughs B-6714, IBM-370/
155, Univac-1108, and the XDS Sigma 9, to-

gether with comparative data for the Univer-

sity's IBM-360/50.

The principal objective of the study was "to

determine the relative thruput of similarly priced

and similarly configured computers on a well

defined workload." Secondary objectives in-

cluded a determination of: (1) a measure of

conversion difficulty, based on conversion effort

required by the various vendors; (2) the ex-

tent and usefulness of standard accounting data

collected by the various operating systems; (3)

sensitivity of system performance to tuning of

the hardware/software configuration; and (4)

relative performance of the systems on certain

benchmark characteristics (relative CPU times

for COBOL and FORTRAN compilation and

execution, for example).

The text of the benchmark description that was
supplied to the vendors is given in the Appendix
to the paper. The text includes detailed run

procedures and specifications of expected output.

Operational rules for the benchmark runs and a

summary of output expected from each vendor

are presented in tabular form.

The benchmark itself consisted of 25 jobs: 6

COBOL (IBM COBOL F) and 13 FORTRAN
(IBM FORTRAN G) compile and execute runs;

and 6 WATFIV jobs. One COBOL job tested

compiler diagnostics, but all the other jobs were

executable. In addition, the benchmark included

one job whose sole function was to expend any

available CPU time not required by other jobs

or by the operating system, and thus gain some
measure of extra capacity.

The results of the benchmark series are sum-

marized and detail data are presented in tabular

form for all systems. Summary data for thruput

performance are given in terms of elapsed time

for the execution of the benchmark series. Some
interesting observations are added on the cor-

rections that had to be made on the raw data

in order to arrive at comparable thruput

measures in the cases where vendors chose to

interpret the rules "somewhat differently." The

paper ends with brief discussions of individual

system performance.

Two "obvious and important" conclusions were

drawn from the study:

(1) That the general benchmarks described

here could be run with relatively little effort

35



on such a wide diversity of machines speaks

well for the standardization of COBOL,
FORTRAN and general operational pro-

cedures.

(2) When establishing rules for benchmark
operation, it is imperative that vendors fully

understand the meaning and importance of

each constraint.

No system was chosen, as a result of all of the

above. "In light of today's troubled economics
picture, [this] is probably not surprising."

Also, in the process of the benchmark study

and analysis, "it became obvious that the con-

cept of a single central computer had to be care-

fully reviewed in light of the rapidly developing

technology currently surfacing in the small

machine area." (JLW)

Categories: 2; 11

Key words: Accounting data; benchmark description;

benchmark design; benchmark run analysis; bench-

mark specifications; Burroughs B-6714; computer
systems; IBM-360/50; IBM-370/155; multipro-

grammed computer systems; system tuning; transfer-

ability; UNIVAC-1108; university computing cen-

ter; XDS Sigma 9/Washington University.

78. Timmreck, E. M., Computer Selection Methodol-

ogy, Computing Surveys, 5:4 (December 1973)

pp. 199-222, 88 refs. (6430261)

The process of selecting a computer is very com-
plex, involving much technical detail and much
economic approximation. Because of the sub-

stantial investment which many organizations

have in computers, it is of significant benefit

to use selection procedures which minimize
computer costs as much as possible within the

numerous difficult constraints always present

in computer selections.

The issues involved in such selections are so

complex, the needs and economics are so vari-

able, and the trade-offs which must be made are

so qualitative that it is not meaningful to sug-

gest a single, universal approach to selection.

Instead of attempting such a recommendation,
this paper provides a framework and a basis

from which the user can confidently determine a

selection approach which is appropriate to his

own circumstances.

An exposition of the basic considerations under-

lying selection is presented, followed by a de-

tailed analysis of the steps in the selection

process, including alternative approaches to car-

rying out these steps. An account of procedures

used by various organizations is given. Finally,

a bibliography, organized by subject matter, is

included to facilitate deeper investigation of the

issues raised. An appendix contains an attempt

at comparison of some major computers.

Three types of benchmarks are discussed and
defined. "A live benchmark is a representative

set of programs chosen directly from the user's

workload. . . An artificial benchmark is a pro-

gram which models a live benchmark. . . A
standard benchmark may be considered a more
sophisticated kernel, and sometimes it is difficult

to distinguish between the two."

The artificial benchmark has a significant ad-

vantage over the live benchmark in that it can

easily be converted to run on many different sys-

tems. However, the artificial benchmark is a

much less accurate model than the live bench-

mark. Another disadvantage of the artificial

benchmark is the difficulty inherent in exercising

a machine and proving what was accomplished.

The standard benchmark suffers as a selection

tool because it is not drawn from a user's work-

load. The literature indicates substantial agree-

ment that the well-composed live benchmark
is the only tool accurate enough for selection

purposes. The problem of "tailing" in live

benchmarks is seldom discussed in the litera-

ture. This happens when all jobs in the bench-

mark are finished except one which may require

two additional hours, and thus processing time

for the whole benchmark must include these two

hours. (Modified author)

Category: 1.3

Key words: Artificial benchmarks; benchmark prac-

tices; computer performance evaluation; computer

selection procedures; costs; cost-value; live bench-

marks; simulation; standard benchmarks; synthetic

benchmarks; tailing.

79. Totaro, J. Burt, Real Time Processing Power: A
Standardized Evaluation, Computers and Auto-

mation, 16:4 (April 1967) pp. 16-19. (6430211)

The article describes Auerbach's standardized

estimating procedures for measuring computer

performance in locating and updating randomly

addressed records in real-time applications.

Like the generalized file processing benchmark
problem (described by Hillegass), the random-

access benchmark represents a typical inventory

control application. Unlike the first problem,

however, the random-access benchmark problem

uses master files stored on random-access de-

vices, accepts detail transactions in random
order, and writes the reports of file activity on

auxiliary storage devices.

Results of the benchmark problem are presented

in timing "kernels" keyed to the problem flow-

chart, so that a systems analyst can obtain per-

formance estimates for specific processing jobs

by assembling timing kernels for program seg-

ments unique to his applications. (JLW)

Category: 3.0

Key words: Application benchmarks; standard bench-

marks.

36



80. Waldbaum, Gerald, Evaluating Computing Sys-

tem Changes by Means of Regression Models,

in Association for Computing Machinery, Pro-

ceedings of the SIGME Symposium, February

1973, pp. 127-135, 10 refs. (6430183)

This paper describes how a regression model of

the Research Center's APL system was con-

structed and used for evaluating system changes.

The regression methodology that is generally

used for performing such an analysis is believed

to have been expanded by the introduction of

multiple regression equations for estimating the

cumulative distribution function of a perform-

ance variable.

A model is developed, which shows that the size

of the workspace, but not the number of work-

spaces in core, significantly affects the perform-

ance of the Research Center's system. In par-

ticular, the model indicates that increasing the

workspace size from 5 to 7 tracks causes 11

percent of all requests to be degraded by at

least 0.4 seconds under mean load conditions.

(Author)

Category: 1.2

Key words: Computer performance analysis; statisti-

cal models; workspace size.

81. Watson, R., Computer Performance Analysis:

Applications of Accounting Data, the RAND
Corp., Santa Monica, Calif., Rept. No. R-573-
NASA/PR, May 1971, 61 pp., 2 refs. (6430188)

Virtually all Air Force and NASA computer in-

stallations collect and record accounting data

(which, in computer systems, are an account

of computer resources used by each job proc-

essed). However, seldom is any use made of

these data except at those installations that use

accounting data to charge for computer serv-

ices. This report suggests that the analysis of

computer system accounting data can be a

valuable tool in computer performance analysis.

The report describes the types of accounting

data generally available at most computer in-

stallations—discussed in the context of the ac-

counting data collcted by RAND's IBM-360/65
computer system. Techniques for conditioning

and reducing the data are then discussed, along

with various reports that can be generated from
such data. The balance of the report concerns

specific applications of accounting data analysis

in computer performance analysis.

The report also discusses such other applications

of accounting data analysis as validation of

system performance measurements taken by
hardware or software monitors, and use in either

developing and testing a new computer charging

scheme or in updating an installation's current

charging scheme in the face of changing work-
loads or changes in the system.

Accounting data can be used to verify that a

typical workload of jobs was run during a

monitored period. This is determined by com-
paring workload and performance characteris-

tics during the monitored period with work-

load and performance characteristics during

previously monitored periods.

A scan of the computer resources used by each

job step is useful in: (1) checking the CPU-
boundness of jobs by observing (a) the number
of CPU seconds used by each job step, and

(b) the ratio of CPU seconds to total time on

the computer; (2) checking the I/O-boundness

of jobs by observing the number of I/O's used

by each job step; (3) checking to see if a job

unusually dominated the computer system over

the monitored interval.

Summary figures for the monitored interval are

useful in comparing the workload and perform-

ance characteristics with previously monitored

periods. Performance measures that proved use-

ful at RAND include: (1) average CPU utiliza-

tion; (2) average job I/O's processed per

second; (3) average job steps processed per

hour: (4) average number of jobs in core; and

(.5) average revenue produced per hour. Work-
load measures that proved useful at RAND in-

clude: (1) mean and frequency distribution of

CPU seconds used per job step; (2) mean and

frequency distribution of I/O's used per job

step; (3) mean and frequency distribution of

core memory requested per job step.

With these simple measures, it was often deter-

mined that impressive results were due to shifts

in job stream characteristics rather than im-

provements in the system. For example, one

change (making some supervisor programs

core-resident instead of storing them on disk)

seemed to result in a doubling of CPU activity

when a software monitor was used to measure

performance under actual operation. However,

analysis of the accounting data for the same

time period indicated that an abnormally heavy

load of CPU-bound jobs had caused the shift.

Had the accounting data not been checked, un-

warranted conclusions would have been the

result. (Modified author)

Category: 1.2

Key words: Accounting data; computer performance

analysis; computer performance measurement: com-

puter systems; IBM-360/65; job step execution fre-

quency; measurement tools; resource utilization; vali-

dation; workload characteristics.

82. Weihrich, W. Fred, Computer Selection. Data

Management, 8:2 (February 1970) pp. 31-33.

(6430144)

A good summary description of the computer

selection procedure followed by the Navy De-

37



partment's ADPE Selection OflSce, a staff func-

tion reporting directly to the Special Assistant

to the Secretary of the Navy.

An indispensable feature of all major acquisi-

tions is the requirement for an actual bench-

mark demonstration. This is the "only way to

assure that the hardware and software required

do indeed exist and that together they will ac-

complish what the supplier promises in an

acceptable time."

Equally imperative is a thorough review of the

workload. The review must result in the assur-

ance that the benchmarks are truly representa-

tive of the nature of the workload and that

realistic factors are applied to extrapolation of

the benchmarks into a realistic projection of

the total workload as well as to projections of

overall system growth and life.

Benchmarks are characterized as "merely noth-

ing more than typical operational program
samples." (JLW)

Category: 1.3

Key words: Application benchmarks; benchmark dem-
onstration; computer selection procedures; Depart-

ment of the Navy; proposal validation; workload defi-

nition.

83. Williams, Quincy N., et ai, A Methodology for

Computer Selection Studies, Computers and
Automation, 12:5 (May 1963) pp. 18-22.

(6430218)

The article describes the method used at Smith
Kline & French Laboratories to arrive at figures

of merit for ranking vendor responses to their

RFP for upgrading their computer installation.

Five factors were considered important: equip-

ment specification; benchmarks; software; sup-

port; and cost. Each of these was given a weight

of 20; the components which comprise such

factors, and the rating assigned to each com-
ponent are presented in chart form.

The benchmark chosen consisted of four prob-

lems: marketing information retrieval and mail-

ing list preparation; billing and sales analysis;

scientific information retrieval; and statistical

analysis involving matrix inversion. The 20 per-

centage points allocated to the benchmark factor

were distributed to the individual problems in

accordance with their relative importance in

the company's workload. (JLW)

Category: 1.3

Key words: Application benchmarks; computer selec-

tion procedures; proposal evaluation.

84. Wiorkowski, Gabrielle K. and John J. Wiorkow-
ski, A Cost Allocation Model, Datamation, 19:8

(August 1973) pp. 60-65. (6430217)

The cost allocation model presented fulfills the

criteria of equitable, reproducible, and realistic

charges. The model establishes the relative value

of resources for comparison on a common basis

and encourages users in practices conducive to

establishing lower operating costs. Data neces-

sary for the implementation and maintenance

of the cost allocation model provide a measure-

ment of overall system performance. Although

cost allocation in a multijob processing, tele-

processing and virtual storage system is a com-

plex task, it is a necessary task, and can result

in numerous benefits to the installation and its

users. (Excerpt)

Category: 1.3

Key words: Computer performance measurement; cost

allocation; cost allocation model; multiprogrammed
computer systems; virtual memory systems.

85. Wood, David C. and Ernest H. Forman.
Throughout Measurement Using a Synthetic Job
Stream, in AFIPS, Proceedings of the Fall Joint

Computer Conference, 1971, pp. 51-55. 3 refs.

(6430223)

The paper describes experience in defining work-

load characteristics and then translating these

into a synthetic job stream. A job stream is de-

fined here as "a collection of independent jobs

which can be used to determine the relative

throughput of a multiprogramming system based

on the time taken to execute all the jobs."

A job stream can be assembled from actual jobs.

However, the following difficulties have been

experienced in using for test purposes a job

stream consisting of actual jobs: (1) reluctance

of users to supply programs, data bases, and

operating instructions; (2) security require-

ments prevent the inclusion of many jobs; (3)

characteristics of each job are fixed, therefore

many jobs are needed to closely match the over-

all characteristics of the job streeim; (4) dupli-

cation of large data bases is extravagant; (5)

difficulty in keeping complex jobs viable in the

face of changes in operating systems and cata-

logued procedures.

To characterize a workload, the parameters con-

sidered important were: CPU utilization, I/O
channel activity, core requirements, printer out-

put, and tape and disk requirements. These para-

meters of actual jobs can be used as specifica-

tions for creating a synthetic job.

The synthetic job used in this paper is based

on the type of program suggested by Buchholz,

and written in PL/L A listing of the program
is supplied, along with a brief description of

what it does, its parameters, plus a brief dis-

cussion on running time and the order of jobs

in the job stream.

38



The validity of using a synthetic job stream to

measure throughput was tested by comparison

with a representative job stream composed of

actual jobs selected from the workload so as to

reflect the workload characteristics previously

defined. Activities reported by a hardware mon-
itor for the two job streams are discussed.

Subsequent use of a synthetic job stream was

for the purpose of obtaining a measure of the

relative throughput of three different IBM-360
con^^tmitions. Conclusions reached from the

experimentation reported confirm the practi-

cality of the synthetic job stream approach to

performance measurement. (JLW)

Categories: 3.2; 2.3

Key words: Actual job stream; computer systems;

experimentation; hardware monitors; IBM-360/50;
IBM-360/65; multiprogrammed computer systems;

synthetic jobs; synthetic job stream; synthetic job

stream generator; synthetic program (PL/I) ; through-

put; workload characteristics.

39





Category Index

Preliminary Classification Scheme
1. General

(General discussions and analyses of topics not specified

elsewhere; articles of an introductory or survey nature;

bibliographies)

.

1.1 Theory
1.2 Measurement parameters; Performance analysis 1; 2;

3; 4; 5; 7; 12; 13; 15; 24; 25; 31;

39; 47; 52; 63; 67; 69; 74; 80; 81

1.3 General discussion of specific topics ....8; 16; 18; 19;

22; 32; 36; 41; 50; 51; 66; 75; 76; 78; 82; 83; 84

1.4 Tutorial

1.5 Bibliographies 65
2. Development of Benchmark Specifications

2.0 General discussion 77
2.1 Data volume
2.2 Workload description and representation 11; 26;

27; 37; 42; 43; 48; 72; 73; 74

2.3 Job stream definition and representation 61 ; 85

2.4 Growth projections

2.5 Other factors

3. Choice and Preparation of Benchmarks
3.0 General discussion 2; 9; 26;

34; 47; 53; 62; 71; 79
3.1 Kernels; instruction mixes 31
3.2 Synthetic programs 10; 17; 20; 35;

45; 46; 49; 54; 55; 58; 60; 72; 73; 85
3.3 Application programs 6; 23; 28; 29; 40; 57; 70
3.4 Software packages _ 59
3.5 Program analyzers and optimizers 56; 64
3.6 Software evaluation 12; 14; 33
3.7 Performance testing of benchmarks
3.8 Transferable benchmarks

4. Documentation of Benchmarks
4.1 Machine-dependent features

4.2 Machine-independent features

4.3 Processing and output requirements
5. Test Data Preparation

5.1 Data generation 21
5.2 Job stream generation 30; 38; 68
5.3 Other factors

6. Specification of Validation Procedures
6.1 Operating system optimizers

'

6.2 Timing requirements
7. Vendor Preparation

7.1 Sanitization

7.2 Equipment configuration

7.3 Preliminary run
8. Actual Run of Benchmark
9. Validation of Run 44
10. Analysis of Benchmark Run and Report of Results

("How to" articles; reports of actual or experimental
runs) 12; 70

11. Case Studies and Experimentation 23; 27; 28;

54; 57; 61; 76; 77

Key Word Index

Accounting data

17;

37; 72; 73; 74; 77; 81
Actual job stream _ 85
Application benchmark program library 53
Assembly language 54
Automated workload definition 27
"Average" user 35
Benchmark characteristics 28
Benchmark costs

9;

11; 60
Benchmark demonstration 82
Benchmark description 77
Benchmark design 77
Benchmark facilities 9
Benchmark practices

9;

78
Benchmark program development _ 53
Benchmark run analysis 6; 17; 28; 57; 70; 71; 77
Benchmark specifications

22;

77
Benchmark terminal session 68

Benchmark testing — 57

Benchmark time _ — 9; 11

Benchmark timing standards 12

Benchmarks _ 16; 24; 33; 39; 45; 46; 47; 53; 71

application 1; 2; 6; 22; 23; 24; 25; 34; 40;

42; 43; 44; 53; 76; 79; 82; 83

artificial 24; 26; 35; 78

hybrid - 26

live - - 78

natural _ 26

standard 20; 29; 34; 55; 60; 62; 78; 79

synthetic 20; 25; 49; 53; 54; 55; 58; 60; 62; 78

transferable 59; 62

Bibliography - 65

COBOL - - 54

COBOL validation 33

Communications network simulators 64

Comparative computer performance measurement .... 31; 60; 61

Compile/compute ratios 40

Compiler efficiency 66

Compiler evaluation - 58; 66

Ckimpiler optimization - 66

Compute activity -- 46 ; 47

Compute time 63

Computer performance analysis 3; 4; 39; 69; 80; 81

Computer performance evaluation 5; 22; 25; 36;

58: 65; 75; 78

Computer performance measurement 3; 5; 6; 7; 13;

39; 45; 46; 47; 48; 61; 63; 67; 69; 75; 81; 84

Computer performance prediction 67

Computer procurement methods _ _ 16

Computer procurement policy -- 16

Computer selection procedures 22; 43; 76; 78; 82; 83

Computer systems

ADEPT-50 45 ; 46; 47

Bull G-30 - 23

Burroughs B-6714 77

CDC-6600 69

ELDON 2 - - 35

HITAC-5020 -.. 37

Honeywell-6070 49

IBM-360 - 31

IBM-360/40 68

IBM-360/44 _ 28

IBM-360/50 11; 38; 60; 77; 85

IBM-360/65 61; 70; 81; 85

IBM-360/67 - 68

IBM-360/75 - — 60

IBM-360/85 6; 61

IBM-360/91 61

IBM-^60/195 - 61

IBM-370/155 38; 72; 73; 77

IBM-370/165 — 6

IBM-1401 — 23

IBM-7094 2; 31; 67

ICT-1301 .._ - _ - 23

Interdata Model 3 38

MAC - 67

NOVA-800 38

PDP-8 30

PDP-10 60

RCA-301 - 23

SAAB D-21 23

XDS Sigma 9 77

UNIVAC-1108 - — 77

Configuration evaluation 7; 52

Contributors' Symposium on Standard Benchmarks 20

Cost allocation -

Cost effectiveness ^8

Costs : 78

Cost-value - •• 41; 70: 78

Data gathering - 69

Data generation — ^4

Data independence - - 60

Data management systems _ - - — 59

Data optimizers - - 7; 52

Debugging aids - — "8

Defense Intelligence Agency - - 59

41



Demand paging 63
Department of Agriculture — —- _ 54
Department of the Air Force 22; 33; 76

Department of Defense - 52; 62
Department of the Navy _ 62; 82
Design criteria _ _ — 33
Dialogue monitor _ _ _ _ 1

Emulators 38
England 35

Event counters 14

Event tracing _ _ 14
Experimentation 45; 47; 49; 57; 60; 61; 69; 70; 85

FTPS Task Group 13 _ 53
Formula timing 24
FORTRAN _ 54
FORTRAN job stream 28
FORTRAN optimization 56
Grovirth projections _ 42
Guidelines 4; 12

Hardware monitors _ _ 2; 68; 70; 85
Historical summary 25
HoneyTvell Communications Environment Emulator 64
Idle time 1

Input/output design 18
I/O activity .. 46; 47; 63
Instruction mixes 71
Interactive activity 46; 47; 63
Iowa University _ 70
Japan 37
Job Accounting System (JAS) 74
Job characteristics 57; 70
Job classification 70
Job completion ratio 69
Job loading 38
Job mix 42
Job profile 24
Job statistics 37
Job step execution frequency 61; 81

Job stream definition 61
Job stream representation 28; 57; 70
Kernel programs 31
Literature review 39
Live test demonstration _ 38
Machine independence 10
Machine Independent Data Management System 59
Man-computer interaction 1; 67; 68
Measurement driver ...64; 68
Measurement engineering 7
Measurement experiments 50; 51
Measurement parameters 13; 24; 39
Measurement tools 1; 3; 52; 81
MIDMS 59
Models

Cost allocation _ 84
Man-computer interaction 1

Multi-user terminals 18
Paging 19
Program 19
Statistical 18; 19; 74; 80
Synthetic system 24
Virtual console 18
Working set 19

Multiprogrammed computer systems 5; 19; 45;

46; 47; 57; 67; 68; 77; 84; 85
New Zealand 28
Operating system design 18
Operating system evaluation 58
Operating system measurement 14; 15; 63
Operating Systems
GECOS II 15
GECOS III _ 14
GEORGE 3 _ _ 35
TSS/360 68
VENUS 38
VMOS (Virtual Memory Operating System) 63

Optimizing compilers 32; 60
Page activity 46; 47
Page faults _ _ _ 63

Paging exceptions

Paging models
Partial differential equations

Procurement methods

_ 32

19
31

16

Program analysis

19;

66
Program behavior ..— 19; 50
Program models 19
Program optimization _ 32; 56
Program parameters 58
Program reference patterns 32
Program relocation 32
Program timing 15; 75
Program tuning 15

Proposal evaluation

8;

41; 83
Proposal validation _ 82
Query generator 64
Questionnaires _

4;

12; 75

Queuing patterns _ 69
Remote terminal emulator 38
Resource allocation 19; 46; 47; 69; 81

Resource utilization 81

Response time 46; 47; 68
Scheduling _ 19

Scoring _ _ 41
Simulation

14;

36; 39; 74; 78
Simulators _

3;

64
Software characteristics 12
Software classification 12

Software Empiricist 51
Software engnieering _ 51
Software evaluation 52; 66
Software monitors

7;

15; 52; 61; 63; 68; 69
Software performance analysis

14;

15; 64
Software performance measurement 50; 51; 52; 63
Software physics

50;

51

Software testing 50
Software units _ 50
Specifications development 16
Standard benchmark program library

20;

55
Standard Benchmark Study 62
Statistical analysis

74;

75
Storage allocator 19
Survey 62
Swap activity

46;

47
Sweden 23
Synthetic benchmark program library 20; 55; 62
Synthetic job parameters 49
Synthetic jobs

17;

49; 85
Synthetic job step 17
Synthetic job stream

17;

49; 69; 85
Synthetic job stream generator _ 49; 69; 85
Synthetic job structure 24
Synthetic program modules 54; 55; 58; 62
Synthetic program (PL/1) _ 10; 85
Synthetic program requirements 10

Synthetic program specifications 58
Synthetic system model _ 24
Synthetic workload construction

72;

73
System auditing 14
System availability 13

System design 14
System life projections _ 42; 43
System monitoring

14;

39; 67; 74
System optimizing 7

System profile 24
System recording 14
System tuning _. 5; 7; 77
Tailing _ _ 78
Task classification 54
Task mix 42
Terminal load generator 30
Test data _ _ 60
Test data generators _ 21

Test program generators _ 33
Texas University _ _ 69
Think time _ 1; 63: 67
Througput 2; 13; 15; 46; 47; 61; 85
Timing requirements _ 40

42



Tokyo University 37

Transaction file generation 54

Transferability - 49; 59; 77

Turnaround — — - 13

UNIVAC - 9

University computing center 28; 37; 70; 77

User characteristics 64; 67

User profiles 35

User scenarios 38

User scripts - 30; 68

User simulation 30; 38; 47; 64; 67; 68

Validation - 3; 81

Virtual console 18

Virtual memory systems 32; 63; 84

Washington University 77
Work unit 67; 71
Working set model 19
Workload analysis 17; 27; 76
Workload characteristics 17; 72; 73; 74; 76; 81; 85
Workload construction 40; 70
Workload definition 27; 38; 48; 53; 54; 82
Workload description 26; 42; 43
Workload generator 30; 64; 68
Workload representation 5; 6; 11; 15;

22; 26; 27; 40; 43; 44; 72; 73
Workload specification 48; 53; 76
Workload timing H
Workspace size , 80

The assistance of Mrs. Dolly Downs who typed the manuscript is gratefully acknowledged.

43





NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. l^UBI R ATION OK RlvPOKT NO. 2. Gov't Accession
No.

NBS Spec. Pab. 405

3, Recipient's Accession No.

Benchmarking and Workload Definition: A Selected
Bibliography with Abstracts

5, Publication Date

November 1974
6. Performing Organization (^ode

7. AUTHOR(S)

Josephine L. Walkowicz
8. Performing Organ. Report No.

Q PKRPORMIMr; ORr, A M !7 AT IHN MAMP AMH AnHRP^^'s

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

640.1135

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (StreGt, City, State, ZIP)

Same as No. 9

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Card Catalog Number: 74-17210
16. ABSTRACT (A 200-word or less (actual summary of most si^ilicant information. If document includes a significant

bibliography or literature survey, mention it here.)

These 85 citations to the literature of benchmarking and workload definition were
selected from a longer list of documents, encompassing a somewhat broader scope, that
was submitted to Federal Information Processing Standards (FIPS) Task Group 13 in
response to a request made to attendees of the Task Group's Planning Session held
on July 12, 1973, at the National Bureau of Standards. One of the topics discussed
at the Planning Session was the collection of a selected bibliography on workload
definition and benchmarking. The bibliographic effort was to be directed not so
much toward exhaustiveness as toward the development of a bibliography that the
attendees had found useful and would, therefore, recommend to other workers in the
field. Of the approximately 250 citations submitted to the Task Group, these 85
were selected on the basis of two criteria: (1) the item dealt primarily with
benchmarking or workload definition; and (2) hard copy was available at the Institute
for Computer Sciences and Technology. The citations are arranged alphabetically by
last names of the first authors. Each citation has an abstract, a classification
category assignment, and a list of keywords. The category assignments are made
from a classification scheme that was developed for the collection and that is
used here as a Category Index to the Bibliography . A Keyword Index is also
provided.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Benchmarking; bibliography; computer performance measurement; computer procurement;
workload definition.

18. AVAILABILITY [^Unlimited 19. SECURITY CLASS
(THIS REPORT)

21. NO. OF PAGES

1
For Official Distribution. Do Not Release to NTIS

UNCL ASSIFIED 45

Order From Sup. of Doc, U.S. Government Printing Office
Washington. D.C. 20402. SD Cat. No. CI 3. 10:405

20. SECURITY CLASS
(THIS PAGE)

22. Price

1 !
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151 UNCLASSIFIED

$1.05

USCOMM-DC 29042-P74





I

\

I

i



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

1


