








NBS SPECIAL PUBLICATION 401

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Computer Performance

Evaluation



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences - — Applied Radiation — Quantum Electronics ^ — Electromagnetics ' — Time
and Frequency ^ — Laboratory Astrophysics " — Cryogenics \

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety * — Building

Environment * — Technical Evaluation and Application * — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

Headquarters and Laboratories at Gaithersburg,
Washington, D.C. 20234.

' Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
* Pan of the Center for Building Technology.

Maryland, unless otherwise noted; mailing address



Computer Performance Evaluation

1

Proceedings of the Eighth Meeting of

Computer Performance Evaluation

Users Group [CPEUG]

Sponsored by

United States Army Computer

Systems Command

and

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Edited by

Dr. Harold Joseph Highland

State University Agricultural and

Technical College at Farmingdale

New York 11735

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Diredor

Issued September 1974



Library of Congress Cataloging in Publication Data

Computer Performance Evaluation Users Group.

Computer performance evaluation.

(NBS Special Publication 401)

"CODEN: XNBSAV."
Sponsored by the U. S. Army Computer Systems Command

and the Institute for Computer Sciences and Technology, National

Bureau of Standards.

Supt. of Docs. No.: C 13.10:401

1. Electronic digital computers—Evaluation—Congresses. I.

Highland, Harold Joseph, ed. II. United States. Army. Computer
Systems Command. III. United States. Institute for Computer
Sciences and Technology. IV. Title. V. Series: United States.

National Bureau of Standards. Special Publication 401.

QC100.U57 No. 401 [QA76.5] 389'.08s

[001.6'4]

74-13113

National Bureau of Standards Special Publication 401

Nat. Bur. Stand. (U.S.), Spec. Publ. 401, 155 pages (Sept. 1974)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13.10:401). Price $1.80



FOREWORD

As part of the Federal Information Processing Standards Program,
the Institute for Computer Sciences and Technology of the
National Bureau of Standards sponsors the Federal Information
Processing Standards Coordinating and Advisory Committee
(FIPSCAC) and a series of Federal Information Processing Stand-
ards (FIPS) Task Groups. The Task Groups are composed of rep-
resentatives of Federal departments and agencies, and in some
cases of representatives from the private sector as well. Their
purpose is to advise NBS on specific subjects relating to Infor-
mation Processing Standards.

One of the Task Groups is FIPS Task Group 10 - Computer Component
and Systems Performance Evaluation. Among FIPS Task Group 10'

s

other responsibilities is to sponsor a self-governing Computer
Performance Evaluation User's Group (CPEUG) whose purpose is to
disseminate improved techniques in performance evaluation through
liaison among vendors and Federal ADPE users , to provide a forum
for performance evaluation experiences and proposed applications,
and to encourage improvements and standardization in the tools
and techniques of computer performance evaluation.

With this volume, the proceedings of the CPEUG are for the first
time being made available in a form that is readily accessible
not only to Federal agencies but to the general public as well.
This is in recognition of the fact that computer performance
evaluation is important not only for Federal ADP installations
but also for those of the private sector.

It is expected, therefore, that this volume will be useful in
improving ADP management through the use of performance evalua-
tion in both the private and public sectors.

Acknowledgement is made of the assistance of Dr. Joseph 0.
Harrison, Jr., Chairman of the FIPSCAC, and Captain Michael F.
Morris, USAF, Chairman of FIPS Task Group 10, in promoting and
producing this volume.

Ruth M. Davis, Ph.D., Director
Institute for Computer Sciences
and Technology

National Bureau of Standards
U. S. Department of Commerce

iii



ABSTRACT

The Eighth Meeting of the Computer Performance Evaluation Users Group (CPEUG)

,

sponsored by the United States Army Computer Systems Command and the National
Bureau of Standards, was held December 4-7, 1973, at NBS, Gaithersburg . The

program chairman for this meeting was Merton J. Batchelder of the U.S. Army
Computer Systems Command at Fort Belvoir, Virginia 22060 (CSCS-ATA Stop H-14)

.

About 150 attendees at this meeting heard the 17 papers presented on computer
performance, evaluation and measurement. Among the papers presented were those
dealing with hardware and software monitors, workload definition and bench-
marking, a report of FIPS Task Force 13, computer scheduling and evaluation in

time-sharing as well as MVT environment, human factors in performance analysis,
dollar effectiveness in evaluation, simulation techniques in hardware
allocation, a FEDSIM status report as well as other related topics.

These proceedings represent a major source in the limited literature on computer
performance, evaluation and measurement.

Key words: Computer evaluation; computer performance; computer scheduling;
hardware monitors; simulation of computer systems; software monitors;
systems design and evaluation; time-sharing systems evaluation

iv



PREFACE

The evolution and rapid growth of computer
performance, evaluation and measurement has
been the result of an amalgam of developments
in the computer field, namely:

• the growing complexity of modern digital

computer systems;
• the refinement of both multiprogramming

and multiprocessing capabilities of an
increasing number of computer systems;

• the concomitant expansion and complexity
of systems programming;

• the accelerated trend toward the estab-

lishment of computer networks;
• the myriad of applications programs in

business, technical, scientific, industrial

and military fields; and
• the emphasis on massive data bases for

information retrieval, data analysis, and
administrative management.

Prior to proceeding, it is essential to define

several basic terms so that the examination
is not made in a vacuous environment.

Performance, according to the dictionary, is

defined as "an adherence to fulfill, to give a

rendition of, to carry out an action or a pat-

tern of behavior. "

Evaluation is defined as a " determination or

the fixing of a value, to estimate or appraise,
to state an approximate cost. "

Measurement is defined as a "process of

measuring, the fixing of suitable bounds, the

regulation by a standard. "

Computer performance, evaluation and mea-
surement is now vital to the designer, the

user and the management -owner of a modern
computer system. To some, computer
performance, evaluation and measurement is

a tool, a marriage of abstract thought and
logic combined with the techniques of statis-

tical and quantitative methods. To others,
it is a technique with very heavy reliance on
modeling and simulation and simultaneously
involves features of both classical experi-
mentation and formal analysis. The prob-

lem of exact specification is made the more
difficult by the recent birth and development
of computer performance, evaluation and mea-
surement as a discipline within computer
science.

Among the early practitioners of this disci-

pline were the members of CPEUG [Computer
Performance Evaluation Users Group], indi-

viduals from many United States Governmental
agencies involved in various phases of this field.

At about the same time, there were a number
of academicians as well as analysts from busi-

ness and industry working in this area, and this

gave rise to the formation within the Association
for Computing Machinery of SIGME [ Special
Interest Group in Measurement and Evaluation]

which is currently known as SIGMETRICS.

In its formative period of growth, computer
performance, evaluation and measurement has

relied heavily upon modeling and simulation.

It has been concerned with the design of com-
puter systems as well as the analysis of the

behavior of these systems. The analyst, on
the one hand, has used simulation to secure
detailed information about a system that he
has created, or about which his knowledge is

limited. On the other hand, the analyst

has used simulation to test various hypotheses

about the system in an effort to improve its

performance. It is a quixotic hope that as

this discipline grows it will become more inter-

disciplinary and involve the work not only of

modelers, simulators and statisticians, but also

behavioral scientists, economic analysts and

management scientists.

Computer performance, evaluation and measure-
ment is replete with benefits for the computer
community - the manufacturer of modern elec-

tronic processing equipment, the user of that

equipment, especially the manager responsible

for the complete operations, as well as the

purchasers of this equipment. It is cap-

able of providing many urgently needed answers

V



to problems faced today, such as:

• procurement - the evaluation of various

proposals for different systems configura-

tions ;

• planning — determination of the effects

of projected future workloads upon an
existing or planned system;

• costing - detailed information of cost

data to users of an existing or planned

computer system or network;

• scheduling - the allocation of systems
resources to the various demands on

the system;

• designing - how best to design a new
or modify an existing system, and how
to improve the operation of that system;

• optimization - determination of a systems
mode to enhance the performance of a

portion or of the entire system.

Within this volume are the technical papers
presented at the Eighth Meeting of the Com-
puter Performance Evaluation Users Group.
The Meeting was sponsored by both the United
States Army Computer Systems Command and
The Institute for Computer Sciences and Tech-
nology of the National Bureau of Standards,

and was held December 4th - 7th, 1973 at

Gaithersburg, Maryland. Added to these

technical papers are other papers which were
presented at an earlier meeting of CPEUG
but never published.

Dr. Harold Joseph Highland, Editor

Chairman, ACM\ SIGSIM [ Special Interest
Group in Modeling and Simulation of the

Association for Computing Machinery]

Chairman, Data Processing Department of

the State University Agricultural and
Technical College at Farmingdale ( New
York >

June 1974

Vi



TABLE OF CONTENTS

* PREFACE
Dr. Harold Joseph Highland, Editor

New York State University College at Farmingdale v

* COMMENTS OF CHAIRMAN, CPEUG
John A. Blue

Department of Navy, ADPESO X

* COMMENTS OF PROGRAM CHAIRMAN
Merton J. Batchelder

U. S. Army Computer Systems Command x'ij

* KEYNOTE ADDRESS
Brigadier General R. L. Harris

Management Information Systems, U . S. Army 1

* INITIATING COMPUTER PERFORMANCE EVALUATION

GETTING STARTED IN COMPUTER PERFORMANCE EVALUATION
Philip J. Kiviat and Michael F. Morris

Federal Computer Performance Evaluation and Simulation Center .... 5

A METHODOLOGY FOR PERFORMANCE MEASUREMENT
Daniel M. Venese
The MITRE Corporation 15

* ACCOUNTING PACKAGES

USE OF SMF DATA FOR PERFORMANCE ANALYSIS AND RESOURCE
ACCOUNTING ON IBM LARGE-SCALE COMPUTERS
Robert E. Betz

Boeing Computer Services, Inc 23

USING SMF AND TFLOV\^ FOR PERFORMANCE ENHANCEMENT
James M. Graves
U. S. Army Management Systems Support Agency 33

* SOFTWARE MONITORS

U SAC SO SOFTVV^ARE COMPUTER SYSTEM PERFORMANCE
MONITOR: SHERLOC
Philip Balcom and Gary Cranson
U. S. Army Computer Systems Command 37

vii



* B E N C H M ARKS

BENCHMARK EVALUATION OF OPERATING SYSTEM SOFTWARE:
EXPERIMENTS ON IBM'S VS/2 SYSTEM
Bruce A. Ketchledge

Bell Telephone Laboratories 45

REPORT ON FIPS TASK GROUP 13 WORKLOAD DEFINITION
AND BENCHMARKING
David W. Lambert
The MITRE Corporation 49

* HARDWARE MONITORS

PERFORMANCE MEASUREMENT AT USACSC

Richard Castle

U. S. Army Computer Systems Command 55

A COMPUTER DESIGN FOR MEASUREMENT — THE MONITOR
REGISTER CONCEPT
Donald R. Deese
Federal Computer Performance Evaluation & Simulation Center 63

* SIMULATION

THE USE OF SIMULATION IN THE SOLUTION OF HARDWARE
ALLOCATION PROBLEMS
W. Andrew Hesser
USMC Headquarters, U. S. Marine Corps 73

* RELEVANT CONSIDERATIONS

HUMAN FACTORS IN COMPUTER PERFORMANCE ANALYSES
A, C. (Toni) Shetler

The Rand Corporation 81

DOLLAR EFFECTIVENESS EVALUATION OF COMPUTING SYSTEMS
Leo J. Cohen
Performance Development Corporation 85

* SPECIFIC EXPERIENCE

COMPUTER SCHEDULING IN AN MVT ENVIRONMENT
Daniel A. Verbois

U. S. Army Materiel Command 99

PERFORMANCE EVALUATION OF TIME SHARING SYSTEMS
T. W. Potter

Bell Telephone Laboratories 107

A CASE STUDY IN MONITORING THE CDC 6700 - A MULTI-
PROGRAMMING, MULTI-PROCESSING, MULTI-MODE SYSTEM
Dennis M. Conti

Naval Weapons Laboratory 115

viii



* FEDERAL COMPUTER PERFORMANCE EVALUATION
AND SIMULATION CENTER

FEDSIM STATUS REPORT
Michael F. Morris and Philip J, Kiviat

Federal Computer Performance Evaluation & Simulation Center 119

* PREVIOUS MEETING: SPECIAL PAPERS

DATA ANALYSIS TECHNIQUES APPLIED TO PERFORMANCE
MEASUREMENT DATA
G. P. Learmonth
Naval Postgraduate School 123

A SIMULATION MODEL OF AN AUTODIN AUTOMATIC SWITCHING
CENTER COMMUNICATIONS DATA PROCESSOR
LCDR Robert B. McManus
Naval Postgraduate School 127

* ATTENDEES: EIGHTH MEETING OF COMPUTER
PERFORMANCE EVALUATION USERS GROUP 137

ix



COMMENTS OF CHAIRMAN

COMPUTER PERFORMANCE EVALUATION USERS GROUP

This publication provides papers presented at the
eighth meeting of the Computer Performance Eval-
uation Group held at the National Bureau of
Standards, sponsored by the United States Army-

Computer Systems Command and the Institute for
Computer Sciences and Technology of the National
Bureau of Standards ; and some papers presented at

the meeting held in March 1973 at Monterey,
California, and sponsored by the Naval Postgradu-
ate School.

for the time and effort they have expended on the
preparation and presentation of their papers . I

thank them very much for making the meetings that
I have chaired so successful. I know that with
that kind of support, future meetings will be even
more interesting and informative. I look forward
to having continued contact with all members of
CPEUG, and I wish the new officers all the best.

As the now past chairman of CPEUG, I am very
pleased at the qualities of these papers. They
provide valuable information on a wide spectrum
of computer performance evaluation techniques and
tools. The authors deserve a great deal of credit John A. Blue



COMMENTS OF PROGRAM CHAIRMAN

EIGHTH MEETING OF

COMPUTER PERFORMANCE EVALUATION USERS GROUP

I wish to express my appreciation to the members
of government, industry and the academic com-
munity who contributed their time and resources

to m.ake this a highly successful conference.

Brigadier General Richard L. Harris, Director of

Management Information Systems for the Army, set

the tone of the conference with his keynote ad-

dress. Authors of the 16 technical papers shared

the benefits and problems of their endeavors with

Computer Performance Evaluation tools and tech-

niques.

The conference technical program began with an
overview of items for consideration when initial-

izing a computer performance evaluation program.

This was followed by applications of the CPE
tools in order of increasing complexity. Philip

Kiviat, Technical Director of the Federal Computer
Performance Evaluation and Simulation Center,

concluded with a summary of contributions by
FED SIM.

The conference scheduling of a presentation each
hour allowed time for questions and participation

from the audience. Ample coffee breaks also per-

mitted time to pursue specific CPE problems and
discussions and stimulate new ideas.

This exchange of performance evaluation experi-

ences should have widespread effect on our ADP
community. Each agency is striving to improve
its application of ADP systems. Interchange of

experience should continue through contacts with

others met at the conference.

Good luck, and let us hear from you.

Mert Batchelder

xi



COMPUTER PERFORMANCE EVALUATION USERS GROUP

EIGHTH MEETING HELD 4-7 DECEMBER 19 73

AT NATIONAL BUREAU OF STANDARDS

GAITHERSBURG, MARYLAND

Program Committee

Mr. Merton J. Batchelder, Chairman
Mr. John A. Blue

MAJ Richard B. Ensign
Mr. William J. Letendre

Mr. William C. Slater

CPEUG Officials 1971 - 1973

Mr. John A. Blue, Chairman
Mr. William J. Letendre, Vice Chairman
MAJ Richard B. Ensign, Secretary

CPEUG Officials 19 74 - 1975

Mr. William J. Letendre, Chairman
MAJ Richard B. Ensign, Vice Chairman
Mr. Jules B. DuPeza, Secretary

xii



KEYNOTE ADDRESS

Brigadier General R. L. Harris

Director, Management Information Systems, US Army

Good Morning Ladies and Gentlemen:

I am pleased to have a chance to
welcome you to this meeting of the Com-
puter Performance Evaluation Users Group.
I believe such meetings are most bene-
ficial to all users of ADR through the
sharing of information on mutual problems
and because they provide us the chance to

leave our desks and, for a little while,
to look at the bigger problems on the
horizon. Since becoming the Army's
Director of Management Information Sys-
tems in July, I have had an opportunity
to review some of the history and current
philosophy which underlies the Army's
approach to the management of ADP. I

have also discussed with my staff the
future trends and areas for exploration
over the next five to ten years. I

would like to share some of these thoughts
with you this morning.

The Army has had a long association
with the development and use of digital
computers. Initially we used these
machines to assist us in processing com-
plex scientific computations and, more
recently, our attention has been focused
on automating the bread and butter
functions logistics, personnel admin-
istration, and financial management. The
Army's first interest in digital computers
dates back to 1942 when we commissioned
the University of Pennsylvania's Moore
School of Electrical Engineering to design
and produce the electronic numerical inte-
grator and computer (the ENIAC). The in-
stallation of the ENIAC in 1947 in the
Ballistic Research Labs at Aberdeen,
Maryland marked the beginning of the
widespread use of electronic computing
machines within the Federal Government
and the civilian economy as well. The
ENIAC was closely followed by the instal-
lation of our second computer, the EDVAC,
or Electronic Discrete Variable Automatic
Computer, operational at BRL since 1949.
These initial computers were used pri-
marily for solution of ballistic equa-
tions, fire control problems, data re-
duction, and related scientific problems.
From these beginnings, the Army expanded
its use of both unique and off-the-shelf
computers to other scientific and admin-
istrative areas, so that by the begin-
ning of the sixties, the Army had over
100 computers in its inventory.

During the sixties, the Army ex-
panded its use of ADP at a rate of almost
fifteen percent annually. This expansion

was caused by two major factors--the con-
flict in Southeast Asia and the increas-
ing complexity of our weaponry and the
personnel skills and logistic base neces-
sary to support them. This complexity
was the price we had to pay for the
greater move, shoot, and communicate
equipment of the Army in the field. More
importantly, the attendant requirement
for faster, more responsive ways of
supporting this combat power became quick-
ly apparent.

We have, however, been conscious of
the need to economize and have made sig-
nificant gains in our efforts to stem this
spiral of e ver- i n creas i n g ADP costs. Like
most of you, we have been helped along by
Congress, of course. However, in spite of
these efforts, our resource commitment is
still significant. We are currently
expending more than three hundred and
eighty million dollars and nineteen thou-
sand manyears on this effort, while oper-
ating almost 950 computers of all shapes
and sizes. This commitment to automation
has been so pervasive that there is prob-
ably no manager at any level within the
Army whose decisions are not influenced
by the products of our automated systems.

To continue to provide the quali-
tative support required by today's man-
agers in an era of decreasing resource
availability and increasing constraints
on flexibility, we all must become better
at managing the resources we do have. Our
increased management efforts in the Army
will fall in three major areas: better
planning, better management of systems
development, and, lastly, increased
productivity in software.

From an organization viewpoint, we
shall continue our commitment to the
centralization of software development
through increased emphasis on the develop-
ment of standard systems in more
functional areas. The benefits which the
Army has gained since the establishment
of its central design agencies have per-
mitted us to reduce the total number of
personnel in ADP by almost one-third
while at the same time increasing the
qualitative support to managers at our
major operating activities. Combined
with our centralization efforts is our
continuing search for better methods of
defining functional requirements. Part
of this effort has been to place squarely

/

1



in the hands of the functional user the
responsibility for determining these
requirements and for preparation of the
supporting economic justification for
undertaking the software development
effort.

Better software development is predi-
cated upon better planning methods which
can help us to allocate our planned re-
sources to meet new user requirements.
Along these lines, we believe that we
can no longer sell automation by using
subjective arguments. We all recognize
that the day of automation for automa-
tion's sake has passed. We must now sup-
port our requirements with quantitative
economic and benefit analyses, as well as
workload projections. Use of both of
these tools is predicated upon an adequate
means of data gathering for predictive
purposes. In line with this, one of the
current major efforts of my office is to

improve our dollar and utilization report-
ing systems to provide the data we now
feel is necessary to help us make these
critical resource allocation decisions.
One such effort which we have just com-
pleted is a hardware requirements pro-
jection model called SCORE . This model
enables us to project needed upgrades in

computer capability dependent upon
increasing workload over time.

Turning now to the question of soft-
ware productivity, it is this area in

which we can most benefit from the
discussions which will take place over
the next four days. Increased pro-
ductivity will not come from increased
or better management alone. Technology
will assist us and we in the Army intend
to lean on the technologists. In order
to do this, however, we will have to
increase our management of R&D expend-
itures in information science. One of
the investments we are making is in the
area of performance monitors. We are
excited about the possibilities inherent
in performance monitors, and have been
since we first started using them in

1970. We are currently decreasing our
operating costs through the use of per-
formance monitors at our central design
agencies. Details of these efforts are
included in two presentations by the
Computer Systems Command. We also have
two monitors at our Computer Systems
Support and Evaluation Command (our ADPE
evaluation and selection command). CSSEC
is using these monitors in an ombudsman
role to help determine the right hardware
configuration to match user processing
requirements. We are using the monitors
in a number of ways -- no different, I'm
sure, than how they are being used by
others. We have found the use of these
monitors most effective as aids in ADPE
configuration balancing and the
optimization of data base design.

We are particularly interested in
their potential in software optimization.
The trend in software development, in-
cluding systems software, is toward po-
tential use of a higher order language.
(UNIVAC, for example, for their new, but
unannounced, 1100 system are building
most of their compilers and operating
system in PL-1). In this environment,
monitors are a prerequisite in achieving
throughput effectiveness; that is, find-
ing the critical code and optimizing it.
We are attempting to build our software
in a similar manner. We are still sub-
jected to the argument that software
effectiveness can only be achieved through
use of an assembly language. I believe
that management, ever sensitive to total
life cycle costs, will find that the
higher level language approach, in con-
junction with an effective monitor, will
prove the more economic solution for most
systems

.

I certainly cannot be classified as

a computer expert, but it is clear to me
that the automation field in this next
decade will undergo considerable change.
There will certainly be greater emphasis
on the compu te r- commun i ca t i on s inter-
relationship and continued moves toward
distributive processing with hierarchies
of processing power. Revolutionary
changes are on the horizon in software.
We all recognize the accelerating cost
imbalance between hardware and software.
Steps must be taken to redress this im-
balance. Software development must move
from its present cottage industry stage
if it is to continue to exist. The
engineers, armed with microprogramming
techniques and a well established manu-
facturing discipline, are a force to be
reckoned with. The general purpose off-
the-shelf computer as we know it may very
well give way in the eighties to micro-
programmed special purpose devices
capable of solving well defined problems
at minimal cost.

What does the software industry need
to meet this challenge? From my per-
spective, it appears to me that the list
i ncl udes

:

a. A simple management-oriented
language for describing automation re-
quirements - -a tool which can be placed
in the hands of the computer neophyte to
enable him to bridge the functional
analyst-computer analyst communication
gap

.

b. Means of increasing the pro-'
ductivity of our programmers. Many
attempts have been undertaken to achieve
this goal. Monitors used in conjunction
with a procedure-oriented language will
help. The team programmer concept,
structured programminq, the machine tool

2



approach to software development and
automatic programming are all attempts
which have been undertaken to increase
programming productivity.

c. Programming is estimated to
represent only fifteen percent of the
system life cycle time. Approximately
fifty percent of a programmer's time is

spent trying to find logical (and il-
logical) errors. Very little attention
is now being focused on the validation
problem, and yet, it is precisely here
where our major resources are expended.
This subject area demands our profes-
sional attention.

d. Improved control systems for
management use are required. A pre-
requisite to management control is ade-
quate planning. Planning, in turn,

requires refined estimating techniques.
The computer industry has been embar-
rassingly deficient in its failure to
develop a system to help management
estimate system costs. The DOD commun-
ity has made minimal attempts in this
area with little success to show for our
money. This area, too, demands much more
of our managerial attention.

The challenges I have outlined are
substantial, but the potential return is
great. We have no alternative but to
approach them -- if necessary -- one at
a time.

This symposium is certainly a step
in that direction, and I urge all of you
to keep these objectives in mind as you
participate in these discussions.

Thank y ou

.

3





GETTING STARTED IN COMPUTER PERFORMANCE EVALUATION

Philip J. Kiviat and Michael F. Morris

FEDSIM

1, WHEN TO START A PROGRAM

A, EXPENDITURE LEVEL DECISION

When the cost of a computer in-
stallation reaches some threshold value,
a CPE program may be examined as an in-
vestment problem. The installation costs
include all computer and peripheral equip-
ment; supplies such as cards, tapes and
paper; all computer operations personnel;
and any systems programmers that are used
solely to keep the computer system operating.
The value of the system's products must be
established. Where no price is already
associated with existing products, a
break-even price per customer-ordered
piece of output must be calculated and
assumed as the start-up value. Once a

system's cost exceeds its value, or value
could be higher if the system could pro-
duce more salable products, CPE is needed.
When value exceeds cost, but cost is high,
CPE aimed at cost reduction is in order.
As long as no value is associated with the
system's products, there will be no real
cost-reduction motivation to attempt to
improve a system's performance (except,
perhaps, as an academic exercise) .

B. PROBLEM DRIVEN DECISION

More typical of the reason most
CPE efforts are begun: another set of
applications are to be added to an already-
busy computer system; projected workload
growth was an underestimate; the director
of operations says he needs another or a

larger computer; etc. Someone must look
deeply and carefully into the way that
existing resources are being applied to
meet existing demands. Then the demands
and resources must be aligned so that
room for growth is available. A simple
example maybe seen that really made a sub-
stantial difference in work performed at
no real change in products produced: A
system of 14 batch programs that had been
operational on various equipment for nearly
16 years was modelled using a simulation
package. This system ran an average of 4

hours and 3 0 minutes and interfaced with
several other systems so that neither in-

puts nor outputs could be changed. Several
proposed changes were tested on the simu-
lator. Two very simple changes were found
that made substantial differences in the
system's performance: first, the programs
were allowed to run simultaneously (multi-
program) wherever possible; and, second,
records stored on disk were blocked to the
average track size. The average system
run time went down to 2 hours 5 minutes
giving better than a 50% reduction each
time the system is run. Total CPE project
time was about six manweeks; five in the
simulation phase and one to alter and test
the programs. No magic or profound intel-
lect was involved in this effort, just a

thorough examination of the demands and
resources

.

C. PRELIMINARY ANALYSES: SETTING
GOALS, DEFINING APPLICATIONS

One of the worst ways to start a

CPE effort is to purchase a hardware moni-
tor and assign a person to use it to "do
good things". Many starts have been made
just like this and few, if any, have suc-
ceeded. The monitors are stored away,
collecting only dust. It is much more
reasonable if specific systems are identi-
fied for analysis with modest goals set
such as -- decrease the time that is used
by one old program by 5%; or, document the
flow of jobs form the input desk to the
output window and reduce the total turn-
around time for one large job by 5%. No
sophisticated tools are needed and any
standard time study text will provide guide-
lines for the test. What these types of

projects allow a manager to accomplish
are, first, operations personnel become
aware of a systematic improvement effort;
and, second, recommendations will be made
regarding information that is needed, but
very difficult to obtain. Setting only
one or two simple improvement goals causes
unknowns to become visible. These unknowns
may then be categorized into application
areas for solution by specific CPE tools
or techniques. The usual result of these
initial efforts is establishment of a

systematic analysis of the accounting pack-
age information and some physical rearrange-

5



ment of computer support room layout. Once
the analysis effort is underway, specific
needs for additional CPE capability will
become apparent. This approach is really
quite conservative, and it may take six
months or more before the effort begins
to produce useful results. But, once
underway, very valuable results will be
produced

.

2 . SELECTING TEAM MEMBERS

The work "team" is used continuously
to stress the point that a lone individual
seldom succeeds for very long in a CPE
effort. This is not to imply that more
than one full-time person is always neces-
sary, but rather that at least three dif-
ferent types of individuals need to be
involved and the background that leads
to CPE successes is seldom found in any
one person.

A. NECESSARY BACKGROUND

Implementing improvements is often
more difficult than identifying improve-
ments. Nearly all significant improve-
ments require either programming skill or
a background in systems engineering.
Since systems programmers usually evolve
from applications programmers, system men
are ideal CPE specialists. A systems
programmer with a field engineering his-
tory is even better. Education in a
scientific discipline usually helps a
person to examine situations systematic-
ally. A scientific education nearly al-
ways exposes an individual to fundamentals
of mathematics and statistics. These
traits--systematic thinking and knowledge
of math and statistics—are also neces-
sary for a CPE team. An additional feature
that adds immeasurably to a CPE team's
effectiveness is an academically diversi-
fied background. Reasoning here is like
in any other developing field—the broader
the investigator's background, the more
likely that parallels will be seen in
other fields where similar problems have
already been solved.

B. TYPES OF PEOPLE

Considerable amounts of nearly
original or, at least, innovative thought
is a major part of any disciplined investi-
gation. (And the CPE team will indeed
appear to be investigators if they are
properly placed in the organizational
structure.) Picking a person and making
him think as a routine part of a task is
a nearly impossible approach. It is far
better to pick a reaearch type who takes
every assignment as a challenge to his
thought process. (If no researchers are
available, pick a lazy person with the
experience and education mentioned earlier.)

Next, and at times most important, is
a person who can explain and convince.
Perhaps an "evangelist" would come closer
to describing this person than "salesman",
but "evangelist" would be a misleading out-
line heading. (That is, no divine guidance
is necessary for CPE success--it does help,
though.) This person is particularly im-
portant at the beginning and end of each
CPE project. The idea of performing each
project usually needs to be "sold" all the
way down to the lowest involved working
level. In fact, to be of lasting worth,
it is more important that these working
level people be convinced that CPE is
worthwhile than that higher management
be so convinced. Further, a sales type
is essential when a project is completed
(to make certain that those responsible
for authorizing implementation of team
recommendations are thoroughly convinced
to do so) . Unless changes are made, the
CPE effort will be wasted.

As a CPE team must produce useful work
in a timely manner, a worker is a must. This
is the one individual who should be full
time in the CPE field. He need not be
particularly well educated or intelligent
but he must not be lazy. He will probably
be both the easiest one to find and the
least expensive to pay. This is the team
member who should have the strong system
programming background as he will be the
one that will sift through reams of output
and determine feasible changes in programs.

It should by now be clear that good
CPE teams aren't easy to find. This is
true. In two cases of large CPE activities,
about 100 detailed resumes of people who
think they are qualified are examined to
find each CPE specialist who turns out to
be good. Most often, it's faster to offer
the duty to someone in your shop that has
the background and is of the type described
earlier (or maybe to steal someone who
is already a success - but this expensive)

.

C. IMPORTANCE OF ATTITUDE

It is often true that very good
systems programmers are extremely reluct-
ant to change anything that they didn't
think of first (or, at least to change it
the. way someone else has) . This is a
very poor attitude to bring into a CPE
team. The best team members are open-
minded and eager to examne suggested changes
from whatever source. Be careful that an
individual who is too conservative in his
work doesn't defeat the purpose of your
CPE team. It is an imaginative and innova-
tive field.

D. IN-HOUSE OR CONSULTANTS

If time is available to decide to



go into CPE based on return on investment
(as opposed to an immediate operational
problem) it is certainly more beneficial
to develop the CPE capability in-house.
If the CPE need is immediate and if you
have no capability in-house and can't hire
a proven performer as a regular employee,
then the only alternative is to use a
consultant. There are certainly cases
where a return-on-investment decision
requires that the CPE investment be less
than the cost of an established in-house
effort. Such cases could be handled by
consultants (although these aren't the
jobs consultants try very hard to get...).
As a general rule, solve immediate one-
time problems with consultants. Solve
immediate, but general problems with a
consulting contract that requires the
consultant to train your in-house CPE
team. Solve continuing, non-urgent
problems totally in-house. The suggestion
here is no different for a CPE team than
it would be for any other effort — the
best way is in-house.

3. ORGANIZATIONAL PLACEMENT OF THE CPE
TEAM

Let's assume here that computer system
expenditures are large enough to justify a
continuing 1 1/2 - 2 manyear CPE invest-
ment per year on an in-house basis. (In
the consultant case, the following could
be put in terms of "Who should the
consultant report to?").

A. LINE VERSUS STAFF

A CPE team performs a staff
function: it investigates existing
methods, finds and recommends alternative
methods, and outlines ways of implementing
methods. Although the team must be able
to implement any recommendation, it is
usually a misallocation of scarce talent
for the team to do this. Usually, and
particularly in very large data processing
environments, the CPE team will periodi-
cally be challenged (generally by a
middle-manager in applications programming
surroundings) to do the implementation job
themselves. About every 8 to 12 months,
this should be done. In the process of
implementing its own recommendations, the
team not only gains operational credibility,
it also has the opportunity to sharpen and
update the team's own programming (or
systems design) skills. This keeps the
CPE team from becoming a group of former
experts. And this is important.

B. REPORTING AUTHORITY

Organizations are so very differ-
ent that the only way of describing
placement, in general, is in relative
terms. The team should, at the very
lowest, report to the same person that the
data processing or computer center manager
reports to. Ideally, the CPE team should

report to the corporate-level controller.
This placement insures that recommendations
that are accepted will be implemented.
Also, it will encourage the team to view
their activity in a cost-benefit light.
The more cost conscious the CPE team, the
more likely that sound recommendations will
be made. Unless the data processing center
is extremely large, the CPE team should not
report to the manager of data processing.
(Extremely large: more than three separate
and different computer systems and monthly
least cost—or equivalent--of more than
$100,000.) If there is a good argument for
using consultants continuously rather than
in-house personnel, it is in this reporting
authority region: A CPE team is really a
working level activity. It is not custom-
ary to have this type activity reporting at
such a high level. However, it is customary
for consultants and outside auditors to
circulate at the working level and report
at very high management levels. Except in
cases of very small companies (the president
acting as data processing manager) , company
size has little to do with the CPE team's
organizational placement. It is more a
matter of scaling the CPE effort to match
the computer effort, which is generally
dependent on company size.

C . CHARTER

This is the CPE team's license to
operate. When duties to identify improve-
ments in computer system operations are
assigned to a group outside the direct
control of the computer center manager
(as recommended earlier) , it is mandatory
that clear notice of the team's operational
arena be given. This notice should be
formal (written) and signed by the highest
possible corporate officer. Such a notice
will be a charter or license to become
involved in even the most routine aspects
of providing computer support. The charter
need not be long or particularly specific.
General direction is usually better because
it's never known ahead of time exactly which
areas will produce the most plentiful
savings. The ideas regarding system bottle-
necks and workload characteristics that
grow in the computer center without benefit
of CPE tools, are almost always wrong.
(Explain: scientific vs. business mix,
printer-bound, etc.) A charter should
include, as a minimum, the following
statements

:

"No new programs or systems of
programs and no substantial changes to
existing programs are to be implemented
without first having the design or change
reviewed by the CPE team. If in the CPE
team's opinion it is necessary, the design
or change must be simulated to predict its
impact on the existing workload and to test
any reasonable design alternatives before
committing resources to programming and
implementing the system or change.

7



"Before ordering new equipment to
replace, to add to, or to enhance existing
equipment's speed or capacity, the CPE
team must be called upon to measure the
levels of activity and contentions of the
system or portions of the system that
would be affected by the new equipment."

This type of charter will allow
the team to examine both existing systems
and proposed changes before new workloads
or equipment acquisitions are committed.
Determining the impact of such changes
requires a thorough knowledge of existing
workloads and systems. The benefit from
this initial learning phase for the CPE
team will be significant: it is almost
always the first time that a review of all
facets of the computer center's activity
will have been attempted by knowledgeable
and impartial persons. This phase is, in
itself, sound justification for establish-
ing a CPE team.

D. CONTROLS

Since a good CPE team that is
properly placed in the organization will
represent a high level of technical
competence and have the endorsement of
upper management, there will be a tendency
to react quickly to the team's sugges-
tions. It is, therefore, important that
rather strict controls be established to
insure that the team follows a total
project plan (more about this later) to
its conclusion before discussing possible
recommendations with those who will be
implementing the changes. Otherwise,
there may be changes well underway before
all aspects of the changes are examined.
And these may turn out to be unacceptable
changes when everything is considered.
It is quite easy to avoid this situation
by adding a statement to the "charter"
that establishes a need for written
directive by some specified manager
(above the CPE team) before any recommen-
dation is to be implemented. Whenever
possible, management should insist that
the CPE team provide at least two
recommended approaches to the solution of
any problem. And the approach should be
selected by a manager above the CPE team
or within the area that will be most
affected by the recommended change.

4 . PROJECT ADMINISTRATION

A. JOB DESCRIPTIONS

The formal writeups that cover
CPE team members must mention the need to
(1) work with documentation describing the
logical and physical flow of signals
through the system and its components;
(2) perform measurement analyses and cod-
ing changes of applications and control
programs; (3) install or connect such CPE

devices or tools as are available; (4)
develop and use simulation and modeling
techniques; and (5) document activities and
recommendations for use by management.
These may be elaborated as required to fit
each personnel department's peculiar needs.
But these five basic areas are necessary to
insure that the CPE team has the minimal
capability to perform useful projects.

B. RESPONSIBILITIES

A CPE team just as any other group
of employees, must be expected to produce
results that are worth more than they cost.
A detailed listing of responsibilities and
procedures will be given in a moment, in
classical management terms. At this point,
it is enough to say that the team is
responsible for "paying its own way." In
the early start-up phase, it isn't reason-
able to demand this of the team. But, by
the end of its first year of existence, a
CPE team that hasn't documented savings
equal to or greater than its costs should
be dissolved. By itself, this is a heavy
responsibility to meet.

C . PROCEDURES

The day-to-day operating procedures
of the CPE team are essentially the same as
for an audit group or, in times past, for
a time-study effort: define a problem,
examine existing methods, postulate changes,
test change, recommend best changes, and
oversee implementation of accepted recom-
mendations. Written procedures are important
especially for groups that visit detached
sites

.

D. RECOMMENDING CHANGES

As pointed out earlier, changes
should be recommended to management, not
at the working level. The recommendations
should only reach the working level in
clear-cut, directive form.

E. FORMAL REPORTS

These will be the only real
(tangible) product of a properly run CPE
team. The changes (except in the rare
cases mentioned already) will be made by
other programmers and engineers. Only by
carefully and completely documenting each
project can the CPE team progress in an
orderly manner. A format for project
reports that has proven useful in several
environments is that of the classical
"staff study": Purpose, Scope, Procedure,
Findings, Conclusions, and Recommendations
— preceded by a short summary of major
findings and recommendations. Hopefully,
the entire report, but at least the
summary and recommendations, should be
completely "jargon" free. (The best
report is worthless if only the authors
can understand it.)

8



F. PROJECT MANAGEMENT

It has been implied several times
that the CPE team is most effective if it
operates on a project basis. CPE projects
tend to be ad hoc in nature: each one has
a single purpose. The following remarks
are therefore framed in this project
orientation. In classical management
terms the CPE project manager's job is to:

—PLAN: Determine requirements of
the project in terms of people, facilities,
equipment, etc.; estimate the project's
duration and relationships between work-
load of the CPE team and the project's
deliverables

.

—ORGANIZE: Request and insure
availability of the necessary facilities,
equipment, personnel, material, and (most
important) authority.

—DIRECT: Set time and cost
milestones and bounds for what must be
done; make all operating, project-specific
decisions

.

—CONTROL: Measure performance
against plan and take any necessary
actions to correct malperformance.

—COORDINATE: Insure that all
involved activities are aware of, and
receptive to the project's efforts, goals,
and recommendations.

To make certain that the full
impact of this project administration
section has been made clear, a few minutes
will be spent on an exhaustive listing of
the responsibilities of a CPE project
manager. First, it is pointed out that if
the CPE team is large, or if team members
have specific skills that not all team
members have, each project or study may
have a different project manager. Each
project manager is responsible for the
technical content and conduct of the study.
His ultimate responsibility is twofold:
to the managers that receive the team's
recommendations and to the individual or
group who will implement the team's
recommendations. For lack of a better
term, these two groups are referred to as
the "customer". The individual CPE project
manager is responsible for:

1. Insuring that he can
detect malperformance.

2. Establishing measures to
prevent malperformance.

3. Assuring that he can
correct malperformance.

4. Insuring that all ideas
will be explored and exploited.

5. Exercising positive
cost control.

6. Insuring that schedules
will be met.

7. Establishing quality
control procedures.

8. Thoroughly understanding the
kinds of management abilities that will be
required in a project.

9. Determining the quantity of
management required in a project.

10. Determining what must be
provided by all parties involved, e.g.,
sutomer, other suppliers.

11. Knowing what is needed to
"solve" the problem.

12. Understanding the customer's
problem and translating it into a solvable
CPE problem.

13. Insuring that a clear,
consistent, and appropriate plan for each
study is produced.

14. Knowing how the results of
the study will fill the customer's needs.

15. Insuring that the planned
approach to the project is logical and
realizable

.

16. Understanding the details
of the approach.

17. Insuring that all essential
tasks are included.

18. Insuring that no unnecessary
tasks are included.

19. Knowing the output from
each task.

20. Judging whether or not each
task is the best way to achieve the output.

21. Knowing what resources are
required for each task.

22. Periodically reviewing the
adequacy of the skills, quantity of
personnel, facilities, equipment, and
information.

23. Insuring that commitments
of all resources made to the project are
honored

.

This is a rather long list for each CPE
project but the team's tasks are complex and
detailed enumeration of the individual
project manager's responsibilities is
important. What, then, is left for the
leader of the CPE team to do if he is not
always the project leader? — Even a longer
list of non-technical, management tasks.

9



The CPE team leader acts to:

1. Manage objectives of each
CPE study.

-Does the customer know what
he wants?

-Does the customer have the
authority to perform its
tasks?

-Are all the results the
customer requests needed?

-Is the customer adequately
motivated to support CPE
efforts over the long haul?

2. Schedule the project tasks.

-Use a documented, quantita-
tive (graphic) method to
schedule people, equipment,
facilities, tasks.

-Act to acquire resources
when needed.

-Establish procedures to
monitor and control progress.

3. Select and organize personnel.

-Determine when outside
support is required.

-When necessary, establish a
project management structure.

-Motivate personnel to the
goals of the project.

-Distribute workload to make
the best use of present
talents and promote cross
training by on-the-job
experience.

-Strive for a minimal,
consistent, level of detail,
adding detail only on evidence
that it is required.

6. Control costs.

-Establish control procedures.

-Guard against inefficient use
of people and equipment.

-Obtain CPE resources best suited
to a project at a cost that is
consistent with project size
and importance.

7. Manage validation phase.

-Expose all assumptions,

-Determine the "level of noise"
inherent in different methods.

-Establish procedures for
debugging and testing.

-Specify nominal outputs in
advance of experimentation.

-Insure sensitivity analyses
are performed.

-Specify levels of confidence
required to demonstrate
success of a method.

-Insist a validation plan be
developed in advance of its
need.

8. Manage documentation effort.

-Insure that all assumptions
and limitations are specified.

-State the purpose and use of
each recommendation.

4. Manage the scope of each study.

-Determine whether a study
should be specific to a
project or made more general.

-Determine essential components
and boundaries of the study.

-Insure all boundary effect
assumptions are considered
and stated explicitly in
project reports.

5. Control the level of detail
for each study.

-Derive an evolutionary
development plan that permits
continual assessment and
redirection.

-Describe each recommendation
clearly in narrative form.

-Establish a project notebook
that is a chronological log
of all project decisions,
actions, trip reports, etc.

-Insure that a good channel of
communication exists between
CPE team members and their
customers

.

9. Manage experimentation effort.

-Develop an experiment plan
that is consistent with project
objectives before starting a
new type of project.

10



-Establish validity of statisti-
cal analysis procedures when
they are applied.

-Insure analyses are consistent
and correct.

-Insure summaries and presenta-
tions are clear, illuminating
and concise.

-Insure experiments produce
required results.

5. ACQUIRING TOOLS AND TECHNIQUES

(Most of the rest of the outlined
topics will be covered in detail by other
presentations. They are mentioned here,
briefly, simply to introduce them as
important topics that require concern if
a viable CPE effort is to be established
at any installation)

.

A. FREE TOOLS - ACCOUNTING PACKAGES

Before any special CPE tools are
purchased or techniques are learned, the
output of the system accounting package
should be studied in detail and thoroughly
understood. A tremendous amount of informa-
tion that can lead to improved computer
performance is contained in accounting
data. In almost every case, it is a "free"
good. That is, it is collected as a
routine task. If nothing is now done to
your facility's capacity: eliminate the
accounting package. But if you are
seriously considering the establishment
of a CPE activity, you'll have to
reinstall this package at least periodi-
cally. Nevertheless, if you don't use
its output now, stop generating it.

B. COMMERCIALLY AVAILABLE TOOLS

A list of all GPE suppliers is
given in the following table. There are
three general product categories:

-Accounting package reduction
programs, referred to in the
table as "Other".

-Monitors, broken into hardware
and software monitors.

-Simulation, which is in the form
of general purpose CPE packages,
specialized simulation languages,
and simulation studies.

C. SURVEYING THE FIELD

Several individuals have compared
and contrasted the various CPE tools that
are now available. Such surveys should
be examined before commitments are made
to any one CPE supplier. User's groups
are the best sources of this survey
information. Figure 8-10 lists several

CPE product suppliers as an indication of
the broad availability of such products.

D. LEARNING TECHNIQUES

All CPE techniques require some
training before they can be used. In order
of least to most training, these are:

-Accounting system analysis

-Software monitors

-Hardware monitors

-Simulation languages

-Simulation packages

While CPE techniques can be learned
by self-study, classroom training is advised.
On-the-job training is imperative, as class-
room courses can teach only technique , and
not guidelines or standards for its applica-
tion in the field.

E, PROCURING TOOLS

As mentioned earlier, it is not v^ise
to begin a CPE effort by purchasing CPE
equipment. First, use the available account-
ing data, then acquire a software monitor or
accounting data reduction package (lease one,
don't buy, as it will soon be unused in most
shops) , then develop a simulation capability,
and finally — when the CPE team justifies it
for a specific project — acquire a hardware
monitor. This procurement of tools should
span at least one year and probably two
or three.

6. A FLOW CHART FOR CPE DECISIONS

The chart shown in Figure 8-17 describes
many situations where CPE may be useful.
It's certainly not exhaustive, but it covers
enough situations to give a new CPE team
an ambitious start. Its use can help an
organization to decide where the applica-
tion of CPE may produce worthwhile results.

CONTINUING THE EVALUATION ACTIVITY

Once established, the CPE team loops through
a series of continuing activities:

A. Examine and select new CPE tools

1. To keep up with developments.
2. To interchange information with

CPE teams

B. Determine CPE measurement frequencies
with respect to:

1. The characteristics of each
installation

a. Capital investment
b. Workload stability
c. Personnel

2. The aging of systems

11



3. Planned workload changes

a. New systems

b. New users

c. New user mix, e.g., RJE,
interactive, batch

C. Maintain a close watch over the
distribution of computer activity by
device and by program to:

1. Relate equipment costs to
level of use

2. Determine trade-offs possible
between cost and performance

3. "Tune" the total system as a
routine task

a. Data set allocation

b. Selection of programs for
multi-programming

c. Operating system and
applications program
optimization

D. Develop a CPE data base

1. CPE information collected by
one tool will usually be used
in conjunction with that
collected by another tool.

2. Historical data can be used to
predict trends in workload,
usage, etc.

3. As new analysis tools and
techniques are developed,
data from well-understood
situations is needed to test
their discriminant and
predictive power.

4. A common data format and structure
is needed to compare similar
installations for normative
and management purposes.

5. Customized interfaces can be
built between the data base
and the CPE tools used to
standardize and simplify tool
usage and add additional
features, e.g., editing.

6. "Trigger" reports can be
incorporated into data base
processing or interface programs
to indicate that something is
happening in the system that
should be studied in detail.

E. Integrate operations and measure-
ment activities

1. Educate operations personnel to
be aware of visual cues to
system malperformance

2. Use existing and new operations
reports

a. Console logs

b. System Incidence Reports

c. "Suggestion Box"

3. Educate operators in use of
tools to improve selection of
jobs for multiprogramming,
mounting of tapes and disk
packs upon request, etc.

Operator performance is an overriding factor
in the operation of an efficient third-
generation computer installation .

F. Establish good relations with the
computer system vendor

1. May require assistance for
probe point development

2. May require permission to attach
a hardware monitor

3. First instinct of maintenance
personnel is to resist measure-
ment activities

4. Acquire a knowledge of his
activities and the acquaintance
of his research staff

G. Kiviat Graphs for Diagnosing Computer
Performance (Refer to reprint of "Computer-
world" article)

SPECIAL CONSIDERATIONS AND FINANCIAL ASPECTS

A. A minimum investment in CPE tools
and technicians will be one manyear per year
and an equivalent in tool and training
expenditures, computer costs, travel
expenses, etc. Assume this is $40,000
based on proration of the following costs
experienced at the Federal Computer-

Performance Evaluation and Simulation
Center (FEDSIM)

.

1. Typical FEDSIM staff salary:
$19,700

2. Software monitor: $1-15,000

3. Hardware monitor: $4-100,000

4. Accounting system analysis
prograiTi: $3-15,000

12



5. Simulation packages:
$12-40, 000

B. CPE savings must be at least 5%,

probably no more than 20$ on an annualized
basis, although many individual projects
will show larger returns. For example:

$40,000/. 05 = $800,000 per year - to
justify on low expected CPE value;

$40, 000/. 20 = $200,000 per year - to
justify on high expected CPE value.

C. CPE savings are difficult to
quantify in many instances, e.g., system
design analysis via simulators, configura-
tions studies for system enhancement,
measurement of workload to prepare
benchmarks for new RFP, etc.

CPE savings are easy to quantify
in other instances, e.g., equipment
returned after a reconfiguration prompted
by a measurement analysis, computer time
saved by system and program tuning, etc.

But what is extra computer
capacity, improved turnaround or better
response worth to the company?

D. Manufacturers will not assist most
smaller installations in their CPE efforts,
as their goal is to increase these to

larger systems. CPE is counter to this
goal

.

E. There are many small systems using
general purpose computers for highly
specialized applications. CPE effort in
these installations should be spent
in stripping all unused or unnecessary
parts out of the control program to
match it to the special application.
In the case of serial, batch systems
(or serial, batch equipment) there is
little that CPE can do for performance.
In these cases, the best available
programming techniques are called for.

F. CPE should include:

1. Software package evaluation

2. Software validation and
verification

3. Equipment reliability studies

4. Studies of programming
techniques

5. Management and organizational
effects

But it rarely does. CPE should
be viewed from a total systems
perspective .

13





A' METHODOLOGY FOR PERFORMANCE MEASUREMENT

Daniel M. Venese

The MITRE Corporation

I. INTRODUCTION

This paper presents a methodology for perfor-

mance evaluation. A general framework is devel-

oped to orient and direct a performance evaluation

task. Within this framework, operating systems

can be classified and compared, hypotheses for-

mulated, experiments performed, and cost/benefit

criteria applied. This methodology has the fol-

lowing underlying assumptions:

(a) Most systems can be modified or tuned
to achieve improved performance.

(b) Although some optimizations will not
degrade other areas of system performance
(removing a system-wide bottleneck) , most
performance gains will be the result of

compromise and cause degradation in

another area of system performance.

(c) Relatively small changes can often lead

to dramatic changes in system perfor-
mance .

(d) Modifications indicated by a performance
evaluation study should be cost effective.

(e) In many cases when a performance bottle-
neck is removed, another will immediately
become the limiting factor on performance.

The aim of this methodology is to account for

the significant factors that affect a performance
evaluation effort. Inadequate performance evalua-
tions result from limited outlooks. Purely tech-
nical evaluations concentrate on hardware and
software monitors, but ignore the human factors.

Other efforts have obtained huge quantities of

data without a framework for analysis. In general,
two of the most common inadequacies are to take a

narrow approach to performance evaluation and to
gather data without having a means to analyze it.

II. OUTLINE OF METHODOLOGY

The following outline describes the steps in

the performance evaluation methodology:

(a) Understand the system. Classify the

subject operating system according to the

framework provided in paragraph III.

(b) Survey the environment. Examine and
analyze the environment surrounding the
computer installation including manage-
ment attitudes and goals, mode of opera-
tion, workload characteristics, and
personnel experience.

(c) Evaluate system performance:

(1) examine problem types,

(2) formulate performance evaluation
hypothesis ,

(3) conduct benefits analysis, and

(4) test performance evaluation hypothe-
sis .

III. OPERATING SYSTEMS FRAMEWORK

In order to conduct an effective performance
evaluation, it is necessary to understand the
operating system. Although the precise implemen-
tation of each operating system differs in many
respects, they have many facets in common. The
identification and classification of these common
functions into a framework for understanding
operating systems is an important step in computer
performance evaluation (CPE)

.

This framework for operating systems is not
intended to be all inclusive since operating sys-
tems can be examined and classified from other
meaningful points of view. Examining and classi-
fying from the user point of view, is an example
of another framework. The framework presented
here isolates those portions that are important
in CPE and allows various systems to be compared
by means of this common classification.

Large-scale third-generation computers typi-
cally have more resources than any single program
is likely to need. The rationale for an operating
system is to manage the utilization of these re-
sources allowing many programs to be executing at

one time. The resource manager concept of oper-
ating system is the product of J. Donovan and
S. Madnick of MIT.

In a computing system with finite resources
and a demand for resources that periodically ex-

ceeds capacity, the resource manager (operating
system) makes many policy decisions. Policy deci-
sions are strategies for selecting a course of

action from a number of alternatives. There is

general agreement that as many relevant factors as

possible should be included in policy decisions.

For example, the core allocator algorithm might
consider such factors as the amount requested, the

amount available, the job priority, the estimated
run time, other outstanding requests, and the

availability of other requested peripherals. Dis-

agreement arises as to how factors should be

weighted and the strategies that are most appro-

priate for the installation workload.

The component of the operating system that

decides which jobs will be allowed to compete for

the CPU is the job scheduler. The scheduling
policy might be first-in, first-out (FIFO) or

estimated run time with the smallest jobs sched-

uled first. The FIFO strategy is one of the

simplest to design and implement, but it has many

disadvantages. The order of arrival is not
necessarily the order in which jobs should be
selected for execution nor can it be assured that

a FIFO scheduling policy will provide a balanced
job mix and adequate turnaround for priority jobs.

Although general prupose algorithms can provide

15



an acceptable level of service for a wide spectrum
of situations, tuning to the needs of the partic-

ular DPI can realize significant gains in effi-

ciency and ease of use.

Once a job has been allocated and is eligible

for execution, the process scheduler (system
dispatcher) decides when jobs gain control of the

CPU and how long they maintain control. The pro-
cess scheduler queue may be maintained in order
by priority, by the ratio of I/O to CPU time or in

a number of different ways. The job scheduler
decides which jobs will be eligible to compete for

CPU time while the process scheduler decides which
jobs will receive CPU time. A number of other
decision points and important queues are found in

operating systems. These include I/O supervisors,
output queues, interrupt processing supervisors,
and data management supervisors.

Another important facet of operating systems
is the non-functional software which carries out

the policy decisions and comprises the bulk of the

operating system software. The gains to be
effected in the areas of policy making are pri-

marily the result of tuning to the particular Data
Processing Installation (DPI) while the gains from

the non- functional software are primarily the re-

sult of improvements in efficiency. For example,
the routine that physically allocates core has a

number of minor housekeeping decisions to make and

any improvements to be realized in this area will
be from an improved chaining procedure or a faster

way of searching tables or a similar type of gain

in efficiency.

Once this framework for computer systems has
been adopted, systems are no longer viewed as a

collection of disparate components, but as a

collection of resources. The operating system is

the manager of these resources and attempts to

allocate them in an efficient manner through po-

licy decisions and non-functional software to

carry out these decisions. System bottlenecks are

not mysterious problems, but are the result of

excess demand for a limited resource. By stating
performance problems in terms of the relevant

resources instead of in terms of the effects of

the problem, the areas in need of investigation
are clearly delineated.

IV. SURVEY THE ENVIRONMENT

Understanding and classifying the subject
operating system is one facet of understanding the

total system. Computers do not operate in a

vacuum. Their performance is influenced by the

attitudes and abilities of the operations per-
sonnel, programmers and managers. Although imr
proving the performance of a system by stream-
lining the administrative procedures is not as

dramatic as discovering a previously unknown in-
efficiency in the operating system, the net gain
can be just as worthwhile.

Computer Operations

Parts of the following survey are based on

the Rand document, "Computer Performance Analysis:
Framework and Initial Phases for a Performance
Improvement Effort," by T. E. Bell.

(a) Determine the prime operational goal of
the computer center.

(b) Determine which job or group of jobs
constitutes a significant part of the

installation's workload.

(c) Describe the explicit actions taken by
the computer operations to help schedule
the computer, e.g., using job priorities
to promote a good job mix.

(d) Determine the most frequent causes for
computer reruns, e.g., mounting the wrong
tape for a production run.

(e) Determine from interviewing computer
operations personnel the extent to which
the following are done:

(1) scheduling of jobs,

(2) premounting of tapes and disks,

(3) interfacing with users,

(4) card handling,

(5) responding to console commands , and

(6) documenting operational difficulties.

(f) Determine the extent and impact of on-line
applications on the computer system.

(g) Determine from interviewing users the
adequacy of the following: turnaround
on batch jobs, response time for time-
sharing and on-line applications , and the
availability of the system.

(h) Determine the average number of system
failures per day, the average time be-
fore the system is available and the

average time between system failures.

(1) Determine a typical working schedule for
the computer center and include preven-
tative maintenance, dedicated block time,

availability of time-sharing and on-line
applications, and time devoted to classi-
fied jobs.

(j) Determine the approximate lines of print
output per day, number of cards punched,
and number of tapes processed.

(k) State how priority users are scheduled.

(1) State the number of special forms re-

quired each day.

Computer System

(a) Determine the approximate CPU utilization
on a daily basis.

(b) Determine the average number of jobs pro-
cessed per day.

(c) Determine the average number of jobs

1.6



being mul tipro gramme d /mult ip recessed. V. PROBLEM TYPES

(d) Construct a diagram of the computer
configuration.

(e) Determine the degree of use of on-line

(disk) storage as compared to tape for

the following

!

temporary (scratch)

(2) object programs.

(3) source programs,

(A) short-term storage.

(5) permanent storage. and

(6) scratch storage for sorts

Job Characteristics

(a) Determine the typical peripheral require-

ments for the median computer job.

(b) Determine the typical core and CPU re-

quirements for the median computer job.

(c) Determine the percentage of jobs that are

production and debug.

(d) Determine the percentage of jobs that are

classified or that require special pro-
cessing.

(e) Determine the percentage of jobs that use
a language processor.

(f) Determine the percentage of jobs that are

batch, time-sharing, and on-line.

(g) Determine and examine in detail the pro-
gram or programs that require (s) the

most significant percentage of computer
resources

.

(h) Determine the language and percentage of

use for the applications programs.

Measurement Activities

(a) State which performance evaluation tools
are used to evaluate system performance.

(b) Determine the current or last perfor-
mance evaluation project.

(c) State how hardware and software problems
are recorded, monitored, and resolved.

(d) State what system modifications have
been made to improve performance.

(e) Determine what reports are available on

a periodic or as required basis on system
performance

.

(f) Determine what performance evaluation
tools are available at the installation.

This section describes the various kinds of

problem areas encountered in a CPE effort. The
classification of problems as operational, admini-
strative, hardware or software is essentially for
the purpose of discussion. Although problems can
impact in many areas , corrective action should be
taken at the cause instead of treating the effects.

Operations

The area of computer operations is one of the

most important to CPE. In reality, computer
operations can have a dramatic effect on system
performance. The typical net gain of an improve-
ment in software may be 4% to 8% while the actions
of computer operations in the areas of scheduling,
job control, peripheral operation, etc., can affect
performance by 10% to 20%.

There are several measures historically used
to gauge the effectiveness and productivity of

computer installations. These indicators of per-
formance include the number of jobs processed per
day, the average CPU utilization, the average
turnaround time, and the system availability.
Although these measures apply with varying degrees
to other areas, they seem most appropriate for
computer operations since they are most affected
by computer operations. Since examples can be
found of systems delivering overall poor perfor-
mance that have high CPU utilization or that pro-
cess many jobs a day, these indicators should be
considered in the context of the total installa-
tion.

In general, well run computer operations will
have the following characteristics in common:

(a) The number of informal or undocumented
procedures is at a minimum.

(b) The existing procedures are well publi-
cized to the users, are easy to use, and

are kept current.

(c) Whether the DPI is "open" or "closed"

shop , access to the computer room is

based primarily on actual need.

(d) Procedures are established to manage and

monitor the computer configuration. This

might include down time and error rate

per device, utilization per device, and

projections of system changes based on

workload.

(e) The service to users of the DPI meets

their needs.

Administrative

Administrative problems are non-technical
factors that degrade system performance. Included
under this heading are the attitudes and goals of

management: the organizational structure of the

(f) The areas of responsibility for the

operators, supervisors, and job control
personnel are well defined.

17



DPI, the training and education of the data pro-

cessing staff, and the level of documentation for

computer systems. Initial analysis performed on

data gathered by monitoring tools will not indi-

cate that administrative problems are limiting
performance, but further analysis supplemented by
the experience of the analyst will usually narrow
the potential list of causes to a few and through
the process of elimination administrative problems
can be isolated.

In a system of any kind and especially in

computer systems, each of the components should
work harmoniously with others. To some degree,
the operator can compensate for inadequate docu-
mentation and the job scheduler can provide a

reasonable job mix even when not tuned to the DPI

workload, but beyond that point the effectiveness
and performance of the total system will be de-

graded. When the operators spend a disproportion-
ate amount of time trying to decipher documenta-
tion, other areas will be neglected; and when the

job scheduler makes assumptions about the DPI

workload that are incorrect, the total throughput
will be reduced.

Software

The types of software problems that can occur
are of two kinds, system software problems as in

operating systems or access methods and applica-
tion software problems or those that are associ-
ated with a particular set of user developed pro-
grams. System problems relating to performance
are potentially more critical since they can
affect all the programs run on the system while
application program problems usually do not have a

system-wide impact. If, however, the application
program is a real-time application that runs 24

hours a day, then its performance assumes a high
degree of importance.

System Software

Third generation computers have general pur-
pose operating systems that can accommodate a wide
spectrum of workloads with varying degrees of

efficiency. A problem is that inefficiencies in

large-scale computers are often transparent to the

user. A heightened awareness of tuning techniques
can lead to improved performance.

Performance problems associated with system
software include:

(a) The suitability of the scheduling algo-
rithm to the DPI workload.

(b) The selection of resident and transient
system routines.

(c) The interface of the system to the
operator via the computer console.

(d) The tape creation, processing, and
label checking routines.

(e) System recovery and restart procedures.

(f) Direct access file management techniques,
e.g., file creation, pruging access.

(g) The operation of data management routines.

(h) The suitability of the access routines,
e.g., indexed sequential, random to

the DPI workload.

Applications Software

While the tuning of system software has a

system-wide benefit, the tuning of applications
programs has benefit for that particular appli-
cation. At first, it seems that the investigation
of performance problems for application programs
would be an area of low payoff since tuning the

entire system has an inherently greater impact
than tuning a subset of the system. The amount
of payoff is dependent upon the size of the appli-
cation program and the amount of resources used.

Tuning a system dedicated to a single application
is virtually equivalent to tuning the system soft-
ware. The characteristics of the DPI workload
will dictate the selection of application programs
for tuning and performance evaluation. Care should
should be taken not to lose sight of the areas of

high payoff while concentrating on areas of in-
trinsically limited payoff. An example is a sys-
tem that was tuned in regard to record and block
sizes, file placements on disk and still delivered
poor performance. What was overlooked was the fact

that the system contained 12 sorts. Reducing the

number of sorts would have equaled all the other
performance gains so painstakingly achieved.

The following list itemizes tuning techniques
for application programs:

(a) Tuning programs to the special features
and optimization capabilities of language
processors

.

(b) Attempting to balance the ratio of I/O
to CPU.

(c) Adjusting file volumes, record lengths,
and block sizes to the peculiarities of

the physical media.

(d) Ordering libraries so that the most fre-

quently used members are searched first.

(e) For virtual paged environments the fol-

lowing guidelines are applicable:

(1) Locating data and the instructions
that will use it in close proximity
to maximize the chance of being on

the same page.

(2) Structuring the program logic so
that the flow of control is linear
and that references are concentrated
in the same locus.

(3) Minimizing page breakage by avoiding
constants, data, and instructions
that overlap pages.

(4) Isolating exception and infrequently
used routines on separate pages from

the mainline program logic.

18



(5) Attempt to construct programs around
a working set of pages that will
most likely be maintained in core

by the page replacement algorithm.

(f) Determine the feasibility of allocating
scratch, sort, and intermediate files on

permanently mounted media.

(g) Key indicators that may indicate in-
efficiently written application programs
are the following:

(1) Unusually high CPU utilization may

indicate unnecessary mathematic
operations and excessive data con-

versions .

(2) Imbalanced channel utilization may

indicate poor file dispersal.

(3) High seek time may indicate poorly
organized files.

Hardware '

Indicators that hardware problems exist in-
clude: poor overall reliability, failure of key
components, frequent backlogs of work, imbalanced
channel utilization, low channel overlap, and I/O
contention for specific devices. These indicators
can be grouped into three general problem types:

(a) misuse of configuration which implies
that the basic hardware is adequate, but
that it is improperly structured so that

some channels sit idle while others are

saturated or that the availability of

key components is low because of poor
configuration planning,

(b) inadequate configuration which implies
that the hardware components lack the

capacity, speed, or capability to provide
a minimum level of service and that it is

advisable to procure an expanded or re-
vised configuration, and

(c) excess capacity which implies that DPI
workload is being processed inefficiently.

Hardware problems are corrected by upgrading,
eliminating or reconfiguring specific components.
Alternatives exist to hardware changes such as

reducing or smoothing the workload, tuning the
system, adopting a new operating system, but the
increasing cost of software versus the decreasing
cost of hardware often dictates that the cost
effective solution is a hardware change.

VI. FORMULATE HYPOTHESIS OF PROBLEM

Working hypotheses are guideposts to system
evaluation. The purpose of the hypothesis is to
provide a working solution to a specific problem
as related to an understanding of the total sys-
tem. The hypothesis directs the collection of
data that will be used to affirm or deny its
validity. Becuase of the complexity of computer
systems, a number of hypothesis will be required
to investigate interrelated system problems.

Figure 1 is a chart which may be used to relate
symptoms to causes and aid in the formulation of
relevant hypothesis.

VII. BENEFITS ANALYSIS

This section provides guidelines to be used
in determining the benefits to be realized from a

performance improvement. In almost every case a

performance improvement will come at some cost,
whether it is the time and resources necessary to

implement it, the degradation that will result in

some other area of system performance or the change
in mode of operation. Certain changes will result
in such a dramatic gain in system performance that
a detailed benefits analysis is not necessary to

determine their value and other changes will pro-
duce such a marginal gain in performance that they
are obviously not worth the effort. The difficult
decisions are the borderline cases where a number
of factors must be weighed before a judgement is

reached.

The cost to implement a proposed change can be
expressed in time and resources , degradation in
some other area of system performance, or changes
in operating and administrative procedures. Dif-
ferent types of costs can be associated with CPE
changes. The operating system efficiency might be
improved by recoding a frequently used system mo-
dule in which case the cost would be the one-time
expense to replace the module. A change in job
log-in procedures might improve the ability to

trace and account for jobs and this would be a re-
curring cost (since it would be done each time a

job was submitted). In general, one-time or non-
recurring costs are usually effected in the areas
of computer system hardware and software while
recurring costs are usually effected in admini-
strative and operating procedures.

VIII. TEST HYPOTHESIS

In a structured approach starting with an

understanding of the total system, an analysis of

the problem types, and a well formulated hypothe-
sis, the amount and type of data needed to test
the hypothesis should be limited and relatively
easy to obtain. Data to test the hypothesis can

be derived from personal observations and account-
ing data or explicit performance monitoring tools

such as hardware and software monitors, simula-
tions, analytical models, or synthetic programs.

The hypothesis is intended to be no more than

a tentative working solution to the problem and
should be reformulated as necessary when addition-

al data is collected. To test a specific hypothe-
sis data should be collected and experiments per-
formed in a controlled environment.

Even when the data gathered tends to support
the validity of the performance evaluation hypo-
thesis, the net gain in performance may be sur-
prisingly small or even negligible. The reason

for this is that a second restraint on performance
became the primary limiting factor once the most
obvious was removed. The performance analyst

should be aware that there are many limitations on

performance and as one bottleneck is eliminated
another will become evident. If, for example, the

19



s

Y

M

P

T

0

M

S
HIGH

CPU

LOW

CPU

(WAIT)

LOW

CPU/CHANNEL

OVERLAP

LARGE

SEEK

HIGH

CHANNEL

USE

LOW

CHANNEL

USE

LOW

CHANNEL

OVERLAP

CHANNEL

IMBALANCE

LOW

MULTIPROGRAMMING

INADEQUATE

RESPONSE

TIME

HXGiL CPU 3
1, 2

3

LOW CPU (WAIT) 4 2

LOW CPU/CHANNEL OVEHLAP 1, 2

3
9

LARGE SEEK 2 St
HIGE CHANNEL USE 5, 6,

9
8 8

LOW CHANNEL USE. 10 7 7

LOW CHANNEL OVERLAP 8 7 2,8

CHANNEL IMBALANCE 8 7 2, 8

LOW MULTIPROGRAMMING
I, 4
II, D

JU.\i\l/X2*V^Uill JIl SSSli QJT U Ix J IZ^ i JJXLCi
3, 9,

11, 12

CAUSES

:

1. IMBALANCED SCHEDULING 8.

2. POOR FILE PLACEMENT 9.

3. INEPFICIENT CODING CAPPLICATLONS) 10.
4. INEFFICIENT OPS 11.
5. EXCESSIVE PROGRAM LOADING 12.
6. INEFFICIENT DATA BLOCKING 13.
7. EXCESSIVE CHANNEL CAPACITY

POOR DEVICE/CHANNEL PLACEMENT
CPU BOUND WORKLOAD
I/O BOUND WORKLOAD
LIMITED CORE CAPACITY (INADEQUATE)
LIMITED CPU CAPACITY (INADEQUATE)
LIMITED I/O CAPACITY (INADEQUATE)

FIGURE 1

RELATING SYMPTOMS TO CAUSES

20



primary impediment to multiprogramming is the

scheduling algorithm, then its redesign may

achieve a significant gain in the multiprogramming

factor, but only a small improvement in total per-

formance because the addition of more jobs causes

a key channel to become saturated and the I/O wait
time to become excessive. A total approach will

not stop with discovering the most obvious limita-

tions to performance, but will delve deeply into

the system and postulate a number of limitations

on performance and approach them in a concerted

manne r

.

BIBLIOGRAPHY

ACM-COMMUNICATIONS

1. A Method for Comparing the Internal Operating
Speeds of Computers, E. Raichelson and

G. Collins,
(May 64, vol. 7, no. 5, pp. 309-310).

2. Relative Effects of Central Procassor and
Input-Output Speeds Upon Throughput on the

Large Computer, Peter White,
(December 6A, vol. 7, no. 12, pp. 711-714).

3. Determining a Computing Center Environment,
R. F. Rosin,
(July 65, vol. 8, no. 7, pp. 463-468).

4. Economies of Scale and IBM System/360,
M. B. Solomon, Jr.

,

(June 66, vol. 9, no. 6. pp. 435-440).
Correction: (February 67, vol. 10, no. 2,

p. 93).

5. Systems Performance Evaluation: Survey and
Appraisal, Peter Calingaert,
(January 67, vol. 10, no. 1, pp. 12-18).
Correction: (April 67, vol. 10, no. 4,

p. 224).

6. An Experimental Comparison of Time-Sharing
and Batch Processing, M. Schatzoff, R. Tsao,
and R. Wiig,
(May 67, vol. 10, no. 5 , pp . 261-265).

7. Further Analysis of a Computing Center Envi-
ronment, E. S. Walter and V. L. Wallace,
(May 67, vol. 10, no. 5, pp. 266-272).

8. An Experimental Model of System/360,
Jesse H. Katz

,

(November 67, vol. 10, no. 11, pp. 694-702).

9. A Methodology for Calculating and Optimizing
Real-Time System Performance, S. Stimler and
K. A. Brons

,

(July 68, vol. 11, no. 7, pp. 509-516).

10. On Overcoming High-Priori ty Paralysis in
Multiprogramming Systems: A Case History,
David F. Stevens,
(August 68, vol. 11, no. 8, pp. 539-541).

11. Some Criteria for Time-Sharing System Per-
formance, Saul Stimler,
(January 69, vol. 12, no. 1, pp. 47-53).

12. A Note on Storage Fragmentation and Program

Segmentation, B. Randell,
(July 69, vol. 12, no. 7, pp. 365-372).

13. The Instrumentation of Multics , Jerome H.

Saltzer and John W. Gintell,
(August 70, vol. 13, no. 8, pp. 495-500).

14. Comparative Analysis of Disk. Scheduling
Policies, T. Teorey

,

(March 72, pp. 177-184)

.

15. The Role of Computer System Models in Perfor-
mance Evaluation, Stephen R. Kimbleton,
(July 72, vol. 15, no. 7, pp. 586-490).

ACM-COMPUTING SURVEYS

16. Performance Evaluation and Monitoring,
Henry C. Lucas, Jr.,
(September 71, pp. 79-91).

ACM-JOITRNAL

17. Analysis of Drum I/O Queue Under Scheduled
Operation in a Paged System, E. G. Coffman,
(January 69, pp. 73-99).

ACM-PROCEEDINGS

18. Application Benchmarks: The Key to Meaning-
ful Computer Evaluations, E. 0. Joslin,
(20th National Conference 65, pp. 27-37).

19. The Program Monitor - A Device for Program
Performance Measurement, C. T. Apple,
(20th National Conference 65, pp. 66-75).

20. Hardware Measurement Device for IBM System/
360 Time-Sharing Evaluation, Franklin D.

S chulman

,

(22nd National Conference 67, pp. 103-109).

21. A Hardware Instrumentation Approach to Evalu-
ation of a Large Scale System, D. J. Roek and
W. C. Emerson,
(24th National Conference 69, pp. 351-367).

ACM-SIGOPS

22. Workshop on System Performance Evaluation,
(April 71, Harvard University).

AFIPS-CONFERENCE PROCEEDINGS: SPARTAN BOOKS .

NEW YORK

23. Cost-Value Technique for Evaluation of Compu-
ter System Proposals, E. 0. Joslin
(1964 SJCC, vol. 25, pp. 367-381).

24. System Aspect: System/360 Model 92, C. Conti,
(1964 FJCC, vol. 26, pt. II, pp. 81-95).

COMPUTER DECISIONS

25. How to Find Bottlenecks in Computer Traffic,

(April 70, pp. 44-48)

.

26. A Pragmatic Approach to Systems Measurement,
Sewald,
(July 71) .

21



27. Use Measurement Engineering for Better Sys-

tems Performance, Philip G. Bookman, Barry A.

Brotman, and Kurt L. Schmitt,
(April 72, pp. 28-32).

COMPUTERS AND AUTOMATION

28. A Methodology for Computer Selection Studies,
0. Williams, et. al. ,

(May 63, vol. 12, no. 5, pp. 18-23).

29. Methods of Evaluating Computer Systems Per-
formance, Norman Statland,
(February 64, vol. 13, no. 2, pp. 18-23).

30. Computer Analysis and Thruput Evaluation,
R. A. Arbuckle,
(January 56, vol. 15, no. 1, pp. 12-15, 19).

31. Standardized Benchmark Problems Measure
Computer Performance, John R. Hillegass

,

(January 66, vol. 15, no. 1, pp. 16-19).

MODERN DATA

32. The Systems Scene: Tuning for Performance,
J. Wiener and Thomas DeMarco,
(January 70, p. 54).

NATIONAL COMPUTER CONFERENCE

33. Performance Determination - The Selection
of Tools, If Any, Thomas E. Bell,

(1973, pp. 31-38).

34. A Method of Evaluating Mass Storage Effects
on Systems Performance, M. A. Diethelm,

(1973, pp. 69-74).

35. Use of the SPASM Software Monitor to Evaluate
the Performance of the Burroughs B6700, Jack
M. Schwartz and Donald S. Wyner,

(1973, pp. 109-120)

.

36. A Structural Approach to Computer Performance
Analysis, P. H. Hughes and G. Moe,

(1973, pp. 109-120)

.

RAND REPORTS

37. Computer Systems Analysis Methodology:
Studies in Measuring, Evaluating, and
Simulating Computer Systems, B. W. Boehm,

(September 70, R-520-NASA)

.

38. Experience with the Extendable Computer Sys-
tem Simulator, D. W. Kosy

,

(December 70, R-560-NASA/PR)

.

39. Computer Performance Analysis: Measurement
Objectives and Tools, T. E. Bell,

(February 71, R-584-NASA/PR)

.

40. Computer Performance Analysis: Applications
of Accounting Data, R. A. Watson,
(May 71, R-573-NASA/PR)

.

41. Computer Performance Analysis: Framework
and Initial Phases for a Performance Improve-
ment Effort, T. E. Bell, B. W. Beohm, and

R. A. Watson,

(November 72, R-549-1-PR)

.

SHARE

42. Study of OS 360 MVT System's CPU Timing,
L. H. Zunlch, SHARE Computer Measurement
and Evaluation Newsletter,
(February 7, 70, no. 3)

.

43. Computer Measurement and Evaluation Committee
Reports, Thomas E. Bell, Chairman,
(SHARE XXXIV Proceedings, March 70, vol. 1,

pp. 492-547).

44. Systems Measurement—Theory and Practice,
K. W. Kolence, (SHARE
(SHARE XXXIV Proceedings, March 70, vol. 1,

pp. 510-521).

45. Hardware Versus Software Monitors, T. Y.
Johnston

,

(SHARE XXXIV Proceedings, March 70, vol. 1,

pp. 523-547).

SYSTEMS DEVELOPMENT CORPORATION REPORTS

46. Two Approaches for Measuring the Performance
of Time-Sharing Systems, Arnold D. Karush,
(May 69, SP-3364)

.

THE COMPUTER BULLETIN

47. A Review and Comparison of Certain Methods of
Computer Performance Evaluation, J. A. Smith,
(May 68, pp. 13-18)

.

UNIVERSITY REPORTS

48. Evaluation of Time-Sharing Systems, Georgia
Institute of Technology,
(GITIS-69-72)

.

49. Performance Evaluation and Scheduling of
Computers, Engineering Summer Conference,
(July 1972, University of Michigan).

50. Statistical Computer Performance Evaluation,
W. F. Freiberger,

(1972, University of Rhode Island).

BOOKS

51. Joslin, E. 0., Computer Selection . Addison-
Wesley Publishing Co. (1968).

22



USE OF SMF DATA FOR PERFORMANCE ANALYSIS AND RESOURCE ACCOUNTING

ON IBM LARGE-SCALE COMPUTERS

R. E. Betz

Boeing Computer Services, Inc.

INTRODUCTION

The search for ways to measure the per-
formance of computer systems has led to
the development of sophisticated hard-
ware and software monitoring techniques.
These tools provide visibility of the
utilization of resources, such as CPU,
channels and devices and also, with
proper analysis, an indication of
internal bottlenecks within the computer
system. By themselves, however, these
utilization values tell a data process-
ing manager very little about his current
capacity, how much and what type of
additional work can be processed or
whether the configuration can be reduced
without suffering throughput degradation.
The manager has a further problem in
knowing when to apply the monitoring
tools, in determining beforehand that
the system is operating inefficiently
or in identifying those applications
which are causing the problem.

Boeing Computer Services, Inc. (ECS),
when faced with the problem of managing
many nationwide large scale IBM computers,
turned to the use of System Management
Facility (SMF) accounting data. Through
experience and slight modifications to
SMF a reporting system was developed
that quantifies performance and capacity.
This reporting system is known as the
SARA (System Analysis and Resource
Accounting) system and is in use in all
computing centers managed by BCS.

This paper briefly describes the SARA
system, discusses some of its uses
in past studies, and discusses the
impact of virtual systems on SMF
reporting. The SMF data base is explain-
ed in order to put the SARA function in
perspective with the other monitoring
techniques

.

SYSTEM OVERVIEW

Figure 1 is a simple overview of a
large scale BCS computer system,
OS/MVT with TSO. As application
programs are processed they make demands
on the supervisor in the form of

supervisor calls (SVC's) such as obtain
core, allocate devices, execute channel
program (EXCP) and set timer. Modules
to perform these functions either are
already resident in memory and are
executed or are loaded from the system
device and executed. Other portions of
the supervisor read the job card deck;
schedule, initiate, and terminate the
job; and print the output.

The capability to perform online dataset
editing and online application program
execution is provided via the Time
Sharing Option (TSO) . TSO is a special
type of application program which is
given the ability to execute some
privileged instructions usually
restricted to the supervisor.

The System Management Facility is so
named because it is a series of system
exit points that allow the user to
program decisions peculiar to his
system. For example, an exit is provided
immediately after a JOB CARD is read.
The computing facility may have decided
to abort all jobs with invalid account
numbers and make a check of the job's
account number at this exit point.
When an invalid account number is
encountered, an appropriate message
is written and the job is terminated.

As the application program is processed
SMF data is collected and stored in
memory buffers. Wall clock time data is
collected on such items as when the job
was read in, when the job step was
initiated, when device allocation
started, and when the job step was
terminated. Resource utilization data
is collected such as how much memory was
allocated, location and type of data sets
or files allocated, and number of I/O
accesses (EXCP's) made to each data set.
When the job step terminates, the SMF
data collected on it is output to a file.
At the completion of all job steps for a
job, another type of record is written
to the file to describe the job.
Similar data is collected causing
different record types to be written at
the completion of printing or of a TSO

23



terminal session. All types of records
are identified by a unique number
(0 through 255) contained in the record.
Note that the supervisor does not
collect data on the functions it must per-
form in support of the application
programs and thus SMF data is only
indicative of resources used for applica-
tion programs.

FIGURE 1.

SYSTEM OVERVIEW, OS/MVT WITH TSO

Accounting data usually includes devices
allocated, CPU time, wall clock time of
critical events and memory allocated.
This type of data can provide informa-
tion on the work mix and on the resource
utilizations of the application programs.
The data has further advantages of (1)

continual availability and (2) report-
ing in terms familiar to the computer
manager

.

BCS EXTENSIONS TO SMF DATA

CPU

APPLICATICN PPOGRAM 1

STEP 1

STEP 2

APPLICATICN PROGRAM 2

STEP 1 STEP 2 STEP 3

I
TIME SHARING

_OPTiq^
TS

SUPERVISOR

SUPERVISOR FUNCnCNS

SUPERVISOR
MXULES

SMF

APPLICATION
PROGRAM
MXULES
OR DATA

MONITORING TECHNIQUES

Software monitors are usually used to
intercept supervisor activity (SVC's)
for module loading activity, to sample
internal tables for various queue
lengths/times, and/or to sample devices
for device busy time.

Hardware monitors physically attach to the
computer system. They usually measure
resource utilizations by timing the
duration of pulses of the internal
circuitry.

The disadvantages of the above monitors
are that they tend to be expensive if not
needed continually and that it is diffi-
cult to correlate the workload impact on
the system. When a computer manager
wants to know what his present perform-
ance is and what additional workload can
be processed, it means very little to him
that the channels are being used 30% and
the CPU 55%.

BCS began using SMF for performance
reporting as soon as the data became
available with IBM system releases. As
weaknesses of data content became appar-
ent, programs were written by BCS for
various SMF exits and modifications were
made to interrjal system code to supple-
ment the data. This additional data
included the start time of device
allocation and the start time of problem
program loading (this data is present in
the latest system releases) . It also
included counts of tape mounts due to end
of volumes, counts of disk mounts, time
in, roll-out status, and absolute memory
address of region allocation.

Two significant additions to the SMF
data were a calculation of the job step
single stream run time, called Resource
Utilization Time (RUT) , and a calcula-
tion of the proportionate resources used
by the job step, called Computer Resource
Units (CRU's)

.

The RUT and CRU concepts were originated
to provide repeatable billing to custom-
ers. A job can be processed on any BCS
computer system and in any workload
environment and be billed the same cost.
RUT and CRU soon became important as
performance indicators as discussed in
the following sections.

THE SARA SYSTEM

The BCS entries of RUT and CRU and the
optional SMF extensions allow the SARA
system to overcome the limitations of
accounting data for system analysis.
In addition, during the processing of SMF
data, SARA provides the capability of
calibrating the data to the computer
configuration and workload so that EXCP '

s

can be transformed into device and
channel utilizations. The results of
SMF data are now calibrated to unique
computing environments and can be
different for device locations as well
as device types. Although the device/
channel utilizations are estimated,
they help to pinpoint trouble spots
much more readily than do counts of
EXCP's. The calibration constants of
each BCS computer system are cali-
brated periodically.

24



During the report program processing,
the SMF data is analyzed by the machine
states of the multiprogramming environ-
ment. The CPU and I/O activities of a
job step are averaged over the period
from program load time to job step
termination. A snapshot of system
processing at any time period would show
a level of activity with a number of
jobs processing at a specific CPU
and I/O activity level with a specific
amount of memory and devices allocated.
These parameters represent a machine
state until one of the job steps stops
or another starts. The activities of
all machine states are accounted and
reported as illustrated in a later
section which shows some of the report
types

.

Using CRU's, one can calculate CPU's per
hour (the CRU's generated per hour of
system active time) or the problem
programs CRU rate (the CRU's generated
per hour of problem program run time)

.

These figures quantify the machine capa-
city required to process the given work-
load. CRU can thus be used as a
figure of merit for computer performance.

Using RUT, one can calculate RUT hours
per system active hour (this is termed
"throughput" in SARA and is the
accumulated RUT of all job steps over
an interval of system active time)

.

One can also calculate a job-lengthen-
ing-factor by dividing job step RUT
into the actual job step run time.
These figures indicate internal conflicts
caused by poor machine loading or a poor-
ly tuned system, and thus give an
indication of multiprogramming efficiency.

SARA also calculates "memory wait time"
and "device wait time" . Memory wait
time is the time from termination of
the last job step to start of device
allocation for the current job step.
(This wait time also includes some
device deallocation and initiate time,
but long periods indicate a wait for
memory.) Device wait time is the time
from start of device allocation to
start of problem program load.

TYPICAL SARA STUDIES

BCS makes a technical audit of its
large scale computers at least once a
year. The audit is performed by
personnel who are familiar with
hardware/software monitors and SARA.
The audit establishes the CRU capacity
of the machine, its performance in
meeting priority demands, identifies
bottlenecks and makes recommendations
for system and/or configuration changes.
The following sample reports were taken
from audits and are presented not
because of major benefits or savings

that resulted, but because they demon-
strate some of the uses of SMF type data
when organized properly.

JOB SUMMARY REPORT

Before proceeding to a system study, it
may be well to introduce the type of
information provided by SARA. The JOB
SUMMARY REPORT, shown in Figure 2, gives
an overview of system performance and
shows total job resource requirements.
Figure 2 summarizes an eleven hour, second
shift period of operation for a 370/165,
although the report period is selectable
and may cover any number of hours, days
and/or weeks

.

This particular report (Figure 2) came
from the main processor of a dual 370/165
configuration driven by a LASP operating
system. The 24002 (seven-track tapes)
and the 24003 (nine-track tapes) device
types are unique to this facility, since
they were so named during the calibration
input phase of SARA (the device type
notation extracted from the operating
system by SMF, denotes that a tape drive
is a 2400 (or 3400) device type and makes no
distinction between different types of
tape drives)

.

This system is displaying relatively good
performance with good "throughput" and
"CRU/hour" values. Two criteria which
indicate possible performance improvements
are the relatively low "percent CPU" and
"job lengthening factor". Memory size
does not appear to be a problem per the
low value of "memory wait" but "device
wait" could be excessive. This system
will be studied further in the follow-
ing examples of SARA reports.

FIGURE 2

SARA JOB SUMMARY REPORT

SARA JOB SUMMARY REPORT FROM 73118 TO 73118
TOTALING 1 DAY MACHINE=165A

NO. MEMORY DEVICE
JOBS STEPS WATT WATT

TOTAI£ 117 975 2.000 6.194

CPU RUN ROT CRU
HOURS HOURS HOURS

TOTALS 4.945 50.896 35.189 6488.25

24003 24003 24002 24002

HOURS NUMBER HOURS NUMBER

TOTAI£ 9.565 499 4.992 306

3330 3330 2314 2314

HOURS NUMBER HOURS NUMBER

TOTALS 4.967 2778 0.197 103

THROUOMjr = 3.20
AVERAGE CRU/HOUR = 589.75 LENGTHENING FPCTOR

OF AVERAGE JOB = 1.45 PERCENT CPU = 44.9

UP TIME = 11.002 TOTAL TIME ACCOUNTED FOR=11.002

NUMBER OF TAPE MXJNTS = 861, NUMBER OF DISK

MOUNTS = 7

25



RESOURCE ALLOCATION DISTRIBUTION

To effectively manage a configuration, it
is necessary to know the utilization of
resources and specifically how that
utilization is distributed. To con-
figure the proper number of tape drives,
one must know how much time the minimum
number and subsequent numbers of tape
drives are required. The "Resource
Allocation Distribution" report, shown
in Figure 3, illustrates this distri-
butive data.

As the multiprogramming machine states
are analyzed, SARA records the discrete
number or amount of resources allocated
or used at different machine states.
Figure 3 is an example of this type of
data for allocated nine-track tape drives.
The report period was based on a pre-
dominantly scheduled production period
when tape drive demand was the highest.
The 24003 device type is unique to this
facility since it was so named during
the calibration input phase. The report
shows

:

0 The discrete increments of the
resource (in this example zero to
twenty eight 24003 tape drives)

0 The time in hours that exactly 0,

1, 2, . . ., 28 tape drives were
allocated

0 The percent of the total time period
that is represented by the
allocation time of the discrete
increment

9 The accumulated percent

0 A graphic distribution to the nearest
one percent of the discrete
increment percentage.

The arithmetic mean number of tape drives
allocated is reported as well as the
"number of units or less" that are
allocated 95% of the time.

This particular distribution is from the
same main processor of a dual 370/165
configuration as was discussed in
Figure 2. The total configuration had
84 tape drives, 28 nine- track and 20
seven-track on the main processor and
20 nine-track and 16 seven-track on the
support processor. In addition, the
configuration had thirty two 3330 disk
spindles and sixteen 2314 disk spindles.
Facility management wanted to decrease
their dependence on tape and add more
3330 modules but they were
constrained to maintain the same config-
uration costs with no schedule slides. A
logical tradeoff was: How many tape
drives can be released to recoup the
costs of additional 3330 modules?

The Resource Distribution Reports
showed that four 9-track drives (with
minimal risk) and no 7-track drives
could be released from the main pro-
cessor. No 9-track drives but four
7-track drives could be released from the
support processor. To quantify the risk,
the eight drives were "taped off" and
restricted from operations use. "Before"
and "after" runs of SARA showed no
discernible degradation of capacity or
throughput and resulted in a trade
of tape drives for disk.

These distribution reports are available
for other devices, memory, CPU, channels,
concurrent job streams, throughput, CRU '

s

and direct access data sets.

FIGURE 3

RESOURCE ALLOCATION DISTRIBUTICN

SARA RESOURCE DISTRIBUTION REPORT FRCM 73118
TO 73118 TOTALING 1 DAY MACHINE=165A

ALOC ACCUM DISTRIBUTION
*24003 TIME %TIME * 10 '

0 0.002 0.02 0.02
1 0.003 0.03 0.04
2 0.005 0.04 0.08
3 0.018 0.16 0.24
4 0.048 0.44 0.68
5 0.359 3.27 3.95 AAA
6 0.179 1.63 5.58 AA
7 0.195 1.77 7.35 AA
8 0.464 4.22 11.58 AAAA
9 0.417 3.79 15.37 AAAA

10 0.637 5.79 21.16 AAAAAA
11 0.212 1.93 23.08 AA
12 0.810 7.36 30.44 AAAAAAA
13 0.980 8.91 39.35 AAAAAAAAA
14 0.479 4.36 43.71 AAAA
15 0.836 7.59 51.30 AAAAAAAA
16 0.815 7.41 58.71 AAAAAAA
17 0.358 3.26 61.97 AAA
18 0.905 8.23 70.20 AAAAAAAA
19 0.789 7.17 77.37 AAAAAAA
20 0.256 2.33 79.70 AA
21 0.536 4.87 84.57 AAAAA
22 0.497 4.52 89.09 AAAAA
23 0.575 5.23 94.32 AAAAA
24 0.097 0.88 95.20 A
25 0.232 2.11 97.30 AA
26 0.165 1.50 98.80 A
27 0.071 0.65 99.45 A
28 0.061 0.55 100.00 A

20 * 30 * 40

MEAN UTILIZATION = 15.39

95% UTILIZATION UNDER 23.78

26



JOB STREAM EFFICIENCY REPORT

A question frequently asked of an OS/MVT
environment is: What is an optimum
number of active concurrent jobs? Too
many active jobs may produce internal
conflicts sufficient to degrade capacity
compared to a number of smaller jobs. Too
few active jobs may not achieve maximum
capacity.

As concurrent job streams are determined
from the multiprogramming machine state
analysis, SARA records the average
number or amount of resources allocated
or used and the performance criteria at
the different levels of concurrent job
streams. Figure 4 is an abbreviated
example of this type of data showing
only the performance related criteria.

The report shows for each level of
concurrent job streams:

• the level of job streams

« the percent of time that exactly
0, 1, 2, . . .,7 job streams
were active

0 the throughput

0 CPU percent

• CRU's/hour

The SMF data was collected from the same
dual 370/165 configuration as in
Figure 3 but for a period representing
more of a demand (as opposed to sched-
uled) workload.

This facility was previously running ten
initiators on each system. The BCS
software monitor showed heavy device and
channel queuing and so the active
initiators was reduced to seven. The
report in Figure 4 shows vividly that
neither ten nor seven active initiators
was correct.

The support processor that must handle
the spooling activity (reading cards
and printing output) and scheduling of
jobs seems to have bogged down at more
than 4 job streams as witnessed by the
throughput and CRU's/hour (note that
data points at less than 10% of the
active time are usually discarded as
too small a sample). In addition, LASP
response to Remote Job Entry (RJE)
and a BCS online system seems to have
slowed down drastically during the
demand workload periods when short jobs
were running and much initiating,
terminating, card reading and printing
output was occurring. This was verified
by timing the duration for LASP to
refurnish the RJE print buffers and
timing its response time to the online/

LASP interface commands such as status of
job, backlog, submit, etc. The support
processor while providing OS services
for a large number of job streams and
LASP support for both systems, generated
internal supervisor queuing such that the
problem programs were seriously degraded.

The main processor, however, had not yet
peaked at seven initiators and continued
to produce more work with each increase
of concurrent jobs. It is possible that
an increase in initiators would produce
an increase in throughput and CRU ' s per
hour

.

It was recommended that the number of
initiators on the support processor be
reduced by one and on the main processor
be increased by one. Although the
recommendation was followed, the results
of the changes are not yet available.

FIGURE 4

JOB STREAM EFFICIENCY REPORT,
DUAL 370/165 's

SUPPORT PROCESSOR

Concurrent
Job Streams Time Thruput % CPU CRU's/Hr .

1 7 .81 16 284

2 6 1.66 30 482

3 20 2.66 48 651

4 23 3.35 49 581

5 29 2.77 35 457

6 13 3.21 26 448

7 2 4.09 20 432

I PROCESSOR

1 0 0 0 0

2 0 0 0 0

3 2 2.84 39 447

4 7 3.06 46 484

5 13 3.96 45 567

6 35 4.09 47 574

7 43 4.55 49 619

INTERVAL AVERAGE REPORT

Some facilities have a cyclic workload,
i.e., the daytime workmix characteristics
are different from the overnight work-
mix characteristics. To analyze these
systems, a capability is required to
observe performance at different inter-
vals of the day, perhaps hourly or by
shift. The "Interval Average" report
provides this capability.

27



The interval average report shows
chronological intervals of average
activity throughout the report period.
Figure 5 is an abbreviated example of
this report showing problem program
hourly averages of CPU per cent, CRU's/
hour, throughput, core allocated, number
of job streams and calculated channel
utilization for the time period from
0800 to 1800.

This data was collected from a 370/165
running HASP RJE and BCS TSO. The work-
load is primarily priority demand jobs
which are submitted via RJE with up to
20 communication lines and TSO support-
ing 60 to 70 users. As jobs are sub-
mitted, a "job class" is calculated and
assigned by the system based on job
resource requirements.

Initiators are given job class assign-
ments to best satisfy the priority
demands (e.g. an initiator assigned job
classes A, B, C must process all jobs
of class A before B or C; if no class A
jobs are in the queue, it may process
class B; if no class A's or B's, it may
process class C) . The calculated job
classes and the initiator class assign-
ments are such that small jobs are given
preferential treatment. The larger the
job, the longer the committed time to
process the job.

This facility had been experiencing
unacceptable TSO response at 70 users.
To reduce internal conflicts and/or TSO
degradation, the number of active
initiators was reduced from six to
four during peak TSO periods from 0800
to 1800. Thus, four problem programs
would be the most that could run con-
currently. The two deducted initiators
had been primarily assigned to process-
ing large jobs.

The reduction in active initiators did
result in reduced TSO response time.
SARA showed a reduced job lengthening
factor, and the BCS software monitor
showed a significant reduction in
device/channel queuing. There was also
a reduction in processing CRU's/hour.

Figure 5 is typical of processing with
four active initiators. It is apparent
from the Interval Average Report that:

• the job class assignments were far
too weighted to small jobs as
witnessed by the poor core utili-
zation which in turn produced few
CRU's

0 the input workload could not keep
the initiators active with their
present class assignments per
the low number of job streams

• the deducted initiators should be
activated at 1600 per the reduction
in job streams (this is about the
time that terminal users quit sub-
mitting small jobs since they won't
be processed by quitting time and
submit large overnight jobs; this
is also the time of highest job
backlog)

.

The initiator job class assignments were
reworked (this is a separate study in
itself but relies heavily on job class
and job priority resource requirements
as reported by SARA) . The result was
an increase in CRU's/hour generation
from less than 300 to 350, better satis-
faction of priority demands and little
effect on the improved TSO response times
The system with four initiators was doing
better than the previous operation with
six initiators (although the new job
class assignments were primarily
responsible, a concurrent effort to
reorganize the system packs was also
beneficial)

.

FIGURE 5

SARA INTERVAL AVERAGE REPORT

TIME PRDB CRU's THRU CORE
inter\;al CPU /Hr. PUT ALLOC

0800-0900 6 142 1.23 198
1000 19 365 3.79 524
1100 8 195 2.11 323
1200 14 267 2.24 392
1300 31 351 3.01 347

1400 21 350 2.90 402

1500 17 251 2.24 402

1600 11 234 1.96 351

1700 8 257 2.30 335

1800 36 340 2.55 246

JOB CHAN
STMS 2 3 4 5

1 20 9 4 4

4 26 2 8 2

3 10 6 5 7

3 36 27 8 15

3 26 1 3 0

3 59 3 3 25

3 22 4 10 11

3 18 8 27 10

2 14 3 47 0

2 16 5 3 11

THE FOLLOW-UP

The foregoing studies resulted in
recommendations for system improvements,
but a study should not end at that point.
It is relatively easy to obtain a tape
of SMF data for post change analysis
even at an offsite location. Analysis
of the results of change not only allows
further tuning of the original recom-
mendation but provides experience in the
most significant types of changes.

28



Also, the studies make mention of
throughput, CRU ' s per hour and the job
lengthening factor as performance indi-
cators. With experience and a variable
number of computer configurations to
investigate, BCS performance analysts
have come to recognize the performance
capability of a given machine config-
uration. This allows an almost instan-
taneous analysis of a "machine in
trouble" and if the problem cannot be
found, the hardware/software monitors
are used for a thorough analysis.

VIRTUAL MEMORY SYSTEM

Virtual memory systems provide up to 16
megabytes of virtual core, a faster and
larger real memory, and a more integra-
ted operating system with internal
processing algorithms that can be tailor-
ed to the workload. The concept of job
processing does not change. The follow-
ing discussion is based on 0S/VS2-
Release 1.6 unless specific details are
known on Release 2.0. For example.
Release 2 offers a System Activity
Measurement Facility (MFl) , a monitoring
function that sounds like a limited
software monitor, but little is known
about it at present.

Figure 6 is a simplified overview of
the 0S/VS2 system operation. The
primary functional features and
differences over OS/MVT are:

9 the Dynamic Address Translator
(DAT) , a hardware device that
translates CPU "virtual memory"
accesses into "real memory"
address locations

« the 10 supervisor additional soft-
ware function which translates 10
virtual memory addresses into real
memory address locations

• virtual memory allocation to job
steps in 64K byte blocks

% real memory utilization by job stqps
in 4K byte pages.

The virtual system philosophy then is to
increase the user's memory size (a

bottleneck heretofore) by giving him up
to 16 megabytes of usable core and to
decrease the real memory needed by a
particular job by making the job's
most active 4K pages reside in real
memory. This along with the internal
priority schemes should allow the
user to load up the system with jobs
and let the system work them off as
efficiently as possible.

Under 0S/VS2, SMF records for job steps
and TSO sessions include page ins and
page outs. In addition, for TSO, the

number of swaps, swap page ins and swap
page outs are recorded. A system type
SMF record gives counts of system page
ins, page outs, page reclaims and TSO
region swapping statistics.

FIGURE 6

SYSTEM OVERVIEW, 0S/VS2

VIRIUAL
MEMORY

REAL
MEMDRY

CPU

DAT

STEP 2 VIRIUAL
MEMORY

On
]

PROBLEM PROGRAM
PAGES

REAL SUPERVISOR-PERFORMS I/O ADDRESS TRANSLATIOJ

VS2 OR MVI

The decision to change frcm a basic MVI systan

(i.e. 370/155,165) to a VS2 paging
system (i.e. 370/158,168) involves many
considerations including cost, perfor-
mance and/or special applications. The
cost tradeoffs are well defined but one
must still determine what performance
gains the new, faster memory will produce
what paging overhead will be suffered
and what the performance impact will be
on applications programs and/or time
sharing. Before proceeding with replace-
ment, BCS chose to benchmark the new
systems

.

Benchmark jobs were obtained from each
BCS large scale computer. The BCS TSO
stimulator was rewritten for 0S/VS2

29



(the TSO stimulator called TIOS, TSO Input
Output Simulator, emulates the TSO user's
activity per predefined scripts) . The
BCS software monitor was rewritten for
0S/VS2. Where possible, tests were con-
ducted using the hardware monitor. SARA
was modified to incorporate the new
paging data.

Testing was done at IBM data centers on
both VS2 and MVT.

APPLICATION PROGRAMS BENCHMARK RESULTS

lower total CPU than under the 2 mega-
byte system) and results in inefficient
job processing. Note that the thrashing
threshold algorithm which is supposed to
limit paging was not available during
these tests.

FIGURE 7

370/158 TEST RESULTS

OS/MVT(21.6) VS2 (1.6) VS2 (1.6)

2 MEGABYTE 2 MEGABYTE 1 MEGABYTE
4 INITIATORS 7 INITIATORS 7 INITIATORS

Figure 7 shows benchmark results of
application programs (jobs) run under OS/
MVT and VS2 on a 370/158, 2 megabyte
system and a special case of VS2 on a

370/158, 1 megabyte system. This particu-
lar benchmark contains 56 jobs and comes
closest to representing an overall BCS
workload although other benchmarks of CPU
and I/O boundness were also run. The
test results are somewhat tailored to BCS
test requirements (such as for initiators
with MVT) and BCS fine tuning. The test
of the 1 megabyte system was prematurely
aborted at 75% completion because excess-
ive paging extended the elapsed time
beyond the scheduled time.

The test data show some interesting
results. The CRU generation and through-
put rates of MVT and VS2 under these test
environments were about equal. The job
lengthening factor was very much less
under MVT and this was an objective of
that test. The CPU accounted to applica-
tion programs, as shown by SARA, was less
under the VS2 system. The total CPU,
as shown by the hardware monitor, was less
under the MVT system. This apparent CPU
contradiction is a result of IBM's
decision to delete from SMF accounting
those routines that produced variable CPU
times under variable paging requirements.

1.ELAPSED
TIME HRS

(DATA FRCH
SARA)

2.CHJ's/HR
(SARA)

1.907

311

3.THRDUaiPUT 2.03

(SARA)

4.J0B-
LENGTHINING 1.60
FACTOR (SARA)

5. PROGRAM
CPU%
(SARA)

64

6.TOTAL CPU % 75

(HDWE MONITOR)

7. PROBLEM STATE/
SUPERVISOR 54/21
STATE-CPU %

(HDWE MONITOR)

8.CHANNEL HRS 1.57

(HDWE MONITOR)

1.893

306

2.03

2.70

57

88

55/33

1.47

1.916*

230

1.56

4.10

44

75

38/37

1.48

* TEST ABORTED PREMATURELY

The ratio of SMF CPU% to total CPU%
on the MVT test results is typical of past
MVT system studies. The lower channel
hours required under VS2 are reflective
of very little paging activity.

The VS2,1 and 2 megabyte systems test
results make another interesting compari-
son. The excessive job lengthening factor
of 4.10 indicates inefficient job process-
ing for the 1 megabyte system. This
system required 260,000 pages as compared
to 1800 pages for the 2 megabyte system.
Approximately 40% of the paging was
performed for two jobs. Although the
channel hours are about the same, much
of the channel time for the 1 megabyte
system was spent in paging. The excess-
ive paging shows increased CPU overhead
(as evidenced by the increased ratio
of supervisor CPU to total CPU) and some
time waiting for pages (as evidenced by

TSO BENCHMARK RESULTS

TSO was tested using the BCS written TIOS
(TSO Input Output Simulator) . TIOS
simulates any number of terminal users
each performing a set of unique commands
per a pre-established script. The script
requirements were developed based on a
survey of experienced BCS terminal users.
TIOS allows simulation of a proportionate
TSO user load across different increments
of users and thus provides a consistent
basis of analysis (quite different from
analysis of the production TSO system
with its random user load)

.

Figure 8 shows an abbreviated SARA inter-
val report (much like Figure 5 for
application programs) depicting TSO
activity only. The variables that were
important in analyzing system performance

30



for application programs are also impor-
tant for analyzing TSO. This report
shows the number of users who started
their session during the interval, the
average number of users logged on, the
percent of time all users actually
occupied memory (i.e. were swapped in),

CPU percent, throughput and CRU's
per hour. A thorough analysis of TSO
can be made by using SARA type data,
response time data provided by the
analysis program of TIOS, and hard-
ware/ software monitor data.

In general, the test results show that
TS0/VS2 at the present time cannot
compete with TSO/MVT. TS0/VS2 generates
much paging activity, uses three times
as much CPU as MVT (e.g., from 16%
under MVT to 52% under VS2) , produces
30% less CRU's per hour, and gives
longer response times. These observa-
tions are valid for as few as 15 users
to as many as 60 users.

TEST RESULT CONCLUSIONS

The test results showed that the VS2
paging system is not yet an acceptable
replacement for the MVT system but is

sufficient to handle some of the special
applications within BCS (e.g., a large
memory on line system) . The excessive
overhead will undoubtedly be reduced in
later system releases. These releases
will warrant testing because of the
operating system advantages e.g.,
job scheduling, device allocation,
priority grouping.

Other test results showed that with
either operating system:

• The 370/158 produced better
performance than the 370/155

• the software translation of virtual
addresses in a strictly I/O
bound benchmark produced more
overhead on 370/158 than was
balanced by the improvement in
CPU speed over the 370/155

« Automatic Priority Grouping
does produce better performance.

FIGURE 8

SARA TSO INTERVAL REPORT

START USER NO. % M % THRU CRU
TIME STRT USER STOR CPU -PUT /HR

20.750 0 0.0 0 0 0.0 0

21.000 0 0.0 0 0 0.0 0

21.250 0 0.0 0 0 0.0 0

21.500 44 17.8 20 4 0.04 20
21.750 0 45.0 179 36 0.29 48
22.000 1 44.8 175 33 0.27 46
22.250 1 45.0 174 32 0.27 46
22.500 0 45.0 174 32 0.27 47
22.750 0 45.0 174 32 0.27 47
23.000 0 38.1 141 24 0.22 39
23.250 0 0.0 0 0 0.0 0

23.500 0 0.0 0 0 0.0 0

IMPLICATIONS OF VS2 ON SARA

The test results show that excessive pag-
ing produces system degradation. This
means that paging activity and perform-
ance relative to the paging activity will
somehow have to be monitored. This also
holds true for the priority/scheduling
schemes and the trashing threshold
setting.

SARA now contains paging activity for
application programs and for the total
system. This data, at a minimum, allows
one to recognize specific application
programs that require excessive paging
(and should be reorganized) and to estab-
lish performance levels at different
paging levels. With experience, it is
hoped that performance correlations can
be found that will evolve into more
concise parameters depicting overall
system performance.

As new SMF data becomes available with
new 0S/VS2 releases, notably MF/1
under Release 2, SARA should have the
flexibility to accommodate the data in-
compatibility with its reporting
requirements. For example, MF/1 data
may replace our current calibration
function or if overhead to collect
MF/1 data is high, it may be used
infrequently to support the adjustment
of the calibration constants.

SUMMARY

BCS has found that the use of accounting
data provides a relatively quick and
flexible method of system analysis and
resource accounting. With experience
and appropriate modifications to SMF data,
BCS has been able to establish capaci-
ties, determine more cost effective
configurations and resolve workload
scheduling conflicts for large scale
computers

.

Incorporating performance indicators
into the SARA reporting system not only
aids in evaluating the current production
systems, but also aids in predicting the
capability of new systems.

Recently announced operating system
changes with their associated scheduling
and priority parameters will make more
important the quantitative measurement
of work done and will increase the value
of SARA in studying these systems.

31



BIBLIOGRAPHY

1. BCS Docximent No. 10058, SARA System
User's Guide

2. BCS Document No. 10068, 370/158
Advanced Technology Testing

3. BCS Document No. 10077, TIOS Users
Guide

4. BCS Memo, Technical Audit of
Northwest District 370/165 A&B

5. BCS Memo, Technical Report - Data
Services District 370/165 Evaluation

6. IBM Publications GC35-0004-OS/VS
SMF, GC-6712-OS SMF, GC28-0667-
0S/VS2 Planning Guide for Release 2.

32



USING SMF AND TFLOW FOR PERFORMANCE ENHANCEMENT

J . M . Graves

U.S. Army Management Systems Support Agency

Agency Overview

Before I get too involved in this presentation
of how we use SMF and TFLOW for performance
enhancement, let me give you a few words of back-
ground on my Agency, USAMSSA, The U. S. Army
Management Systems Support Agency. We were
created several years ago to serve the Army
Staff's Data Processing requirements. From our
site in the Pentagon, we handle the full range of
commercial and scientific applications, with a

slight bias toward the commercial. Applications
are processed via batch, TSO, and RJE on a 3

megabyte IBM 360/65 and 1 and 1/2 megabyte IBM
360/50 using OS/MVT and HASP. As you might
expect, we have a large number of peripheral
devices attached to the two machines, some of
which are shared. We have a number of oper-
ational conventions, but I need mention here
only those two which have an impact on systems
performance. The first operating convention is

what I call the SYSDATA convention, whereby all
temporary disk data sets are created on per-
manently mounted work packs given the generic
name of SYSDATA at System's Generation Time.
The second operating convention to bear in mind
is the fact that of the total of 80 spindles on
the two machines, only 41 are available for
mounting our 150 private mountable packs, the
remainder being used by permanently resident
packs

.

Problem Areas Defined

We have in the past made use of a number of tools
to analyze system perfomance: two hardware
monitors - DYNAPROBE and XRAY, a software monitor
CUE, and last but not least, personal observation
the computer room. These tools are all excel-
lent in defining those areas of system perform-
ance that need optimizing, e.g., the CPU is not
1001 busy, the channels are not uniformly busy at
a high level, certain disk packs show more head
movement than others, and there are an excessive
number of private pack mounts. However, none of
the usual tools tell you what to do to eliminate
or alleviate defined system bottlenecks. Our ap-
proach to filling this information gap, is to use
free IBM software - SMF and TFLOW - to produce
data for subsequent reduction into reports which
at least point you in the right direction. SMF
is a SYSGEN option and TFLOW, which records
everything that goes through f^e trace table, is

available from your IBM FE as a PTE. After
making the indicated system changes, v.'e i^ack

to the monitors to validate results.

Core Availability

The first area of system performance we examined
was core availability, which on most machines, is
one of the most important constraints on the de-
gree of multiprogramming, and therefore on the
maximum utilization of the machine. The more
tasks that are in core executing concurrently,
the higher will be the utilization of the CPU,
the channels, and the devices, provided of course
that device allocation problems do not arise from
the additional concurrently executing tasks. If
allocation problems do occur as a result of an
increased level of multiprogramming, a rigidly en-
forced resource oriented class structure will
help. If this approach fails to reduce allo-
cation lockouts to an acceptable level, device
procurement is about the only other avenue of
approach. One way of justifying (or perhaps I

should say rationalizing) the acquisition of
additional peripheral devices to support the

additional tasks now multiprogramming is to

regard the CPU cost and the core cost per addi-
tional task as essentially zero, since these costs
were a fixed item before you began system tuning.
In summary, by making more core available, one
should be able to support extra applications at

no cost, or in the worst case, the cost of

enough new devices to lower allocation conten-
tion to an acceptable level. Short of bolting
on more core, there are a number of approaches

one can adopt to increase the average amount of
core available at any one time, and I will de-

scribe two of our approaches.

The Weighted Core Variance Report

In our computing environment, since i\fe do not
bill for resources consumed, there is no econo-

mic incentive for a user to request only that

amount of core which he actually needs to ex-

ecute his program. To the contrary, many con-

siderations in the applications programmer's

mileau influence his REGION request to be on
the high side. First, he wants to avoid S 80A
abends -core required exceeds core requested.

Second, he ivants to provide enough core over and

above the requirements of his program to provide

a dump in the event of an abend. Next, he wants

to provide room for future expansion of his

program mthout the necessity of also changing

his JCL. This consideration is particularly

Important to him if his JCL has been stored on

tiie catalogued procedure librar>', S\'S1.PR0CLIB.

Wext, t^^ere is f^p cf^rtain knnwledae that cod-

ing and keypunching effort can be saved by

33



specifying the REGION request at a higher level
than the step EXEC statement, e.g., the EXEC
PROC statement, or on the JOB statement. In
either case, the REGION specified is applied to
each step of a group of steps, and must there-
fore be large enough to enable the largest step
of the group to execute. Obviously this practice
can lead to gross core waste if there is a large
variance between the REGION requirement of the
largest and smallest steps. For exanple, we
have experienced 300K compile, link, and go jobs
when the 30 OK was required only for the go step.

One approach to this problem would have been to

introduce a JCL scan to prohibit the use of the
REGION parameter on the JOB statement or the
EXEC PROC statement. I personally preferred
this approach, but it was the consensus of our
management that there was nothing wrong per se
with specifying the REGION requirement at a
higher JCL level than the STEP statement. Only
when such a specification results in wasted core
should the user be critisized. Since there is no
way to know how much core actually will be used
until after it is used, and after the fact re-

porting system had to be developed to identify
daily, on an exception basis, those users lAose
wasteful REGION requests were causing the great-
est inq^act on core availability. This mechanism
is the Weighted Core Variance Report. The idea
of the report is to produce an index number for
each job step whose magnitude is a measure of the
degree of waste his region request has produced
in thd system. Acceptance of the report by
management was contingent upon the repeatability
of the computed index number. From SNIP type 4

step termination records, the variance bet^^^een

the requested core and the used core is confuted,
a 6K abend/growth allowance is subtracted, and
the result is weighted by the amount of CPU time
used by the step. This product is further
weighted by dividing by the relative speed of the
hierarchy of core where executed. Negative re-
sults were not considered, since this result
means the programmer was able to come within 6K
on his core request. CPU time was used rather
than thru time since it was felt that this
figure was more independent of job mix consi-
derations. The weighted variances are listed in
descending order with a maximum of 20 job steps
per administrative unit. It was felt that 20

job steps was about the maximum that a manager
would attend to on one day. A minimum index
value of 500 was established to eliminate re-

porting on trivial index numbers. The report is

distributed daily to 40 or 50 management level

personnel. Implementation of the teport was met
with widespread grousing which has continued up
to the present. This, I feel, is a strong indi-
cation that the report is serving its purpose.

Access Method Module Utilization Report

Lest I give the impression that my idea of
system tuning is to attack problem programming,
let me describe the second of our approaches to

achieve a higher level of core availability -

One of the most interesting design features of
OS is the use of re-entrant modules resident
in a shareable area of core designated the
Link Pack Area. If these modules were not so
located and designed, there would have to be
multiple copies of the same module in core at
the same time - one copy for each task that
required its services. By having these modules
core resident, the various tasks multipro-
gramming can share the one copy, thus effec-
tively saving an amount of core equal to the
number of concurrently executing tasks, minus
1, times the size of the module. The higher
the degree of multiprogramming and the larger
the module in question, the greater is the ben-
efit in core savings , or looking at the
situation from another point of view, the
greater is the core space availability. This
increase in availability can be anything but
trivial on a machine with a healthy compliment
of core, since some access method modules are
substantial in size - 2 to 4K for some BISAM
§ QISAM modules for example. Our criteria for
validating the RAM list is to select for link
pack residency only those modules which show
concurrent usage by two or more tasks more
than 501 of the time. Unfortunately, we were
unable to locate any free software that would
give us a report of concurrent utilization of
access methods. We then looked to see if we
could generate such a report from the data we
had on hand. Such data would have to provide
a time stamp giving the date and time that each
task began using each access method module, and
another time stamp when the task stopped using
the module. If we had this information, it

would be a relatively simple manner to cal-
culate for each access method module the length
of time there were from zero to 15 concurrent
users and then relate the total time for each
level of multiprogramming to the total measure-
ment time as a percentage.

It becomes clear that the stop and start time-
stamps were already available in the form of
SMF type 4 Step Termination records and the
SMF type 34 TSO Step Termination records.
What was not available was the all important
access method module names invoked by each
step. This is where TFLOW gets into the act.

We had used TFLOW previously to get a more
conplete count of SVC requests than CUE sup-
plies, and so were familiar with the fact

that when SVC 8 (load) is detected, the

module loaded was provided in a 32 byte TFLOW
record. Therefore, in the TFLOW data, we

had the access method module name, but no
time stamps or step identification. The pro-
blem was how to relate the TFLOW data and the

SMF data. Fortunately, TFLOW gives the ad-

dress of the Task Control Block (TCB) of the

task requesting the access method. This

information is provided to an optional user-

v^^itten exit at execution time. By seardiing
a short chain of control blocks - from the TCB
to the TCT to the JMR - we were able to locate
the SMF JOBLOG field consisting of the JOBNAME,

34



READER on date, READER on time. This JOBLOG

data is reproduced in every SMF record pro-

duced by the job in execution, and is unique

to that job. Also located in the JMR is the

current step number. By copying the JOBLOG

and step number to a TFLOW user record also

containing the access method module name, we

have a means of matching the TFLOW user record

to the SMF step termination record ivritten some-

time after the access method module is loaded.

By suppressing the output of the standard TFLOW

record, and recording only those user records

that represent a load request for an access

method module, the overhead attendant with

TFLOW' s BSAM tape ^vriting is kept to a minimum.

RAM List Validation Results

As a direct result of this analysis of access

method module utilization at USA^^SSA, we have

recommended that tlie following changes be made

to the standard IBM RA^^ list:

Additions --Totaling-- -----bytes

Deletions " -1^538..bytes

Some of these additions and deletions were sur-

prising. The additional BISAM and QISAM modules

indicated a much heavier use of ISAM than we had

imagined. The deletion of the backward read on

tape, and the various unit record modules is

surprising only in that we should have thought

of it before but didn't, since practically

everyone at USAMSSA uses disk sort work files

instead of tape sort work files where backward

reading is done, and having HASP in the system

precludes a number of imit record operations,

since HASP uses the EXCP level of I/O.

What Increased Core Availability has meant to

USAMSSA

Use of these reports, plus other systems tuning

techniques, has enabled us to go from 12 to 1^

initiators in our night batch setup on the ircdel

65, and from 3 to 5 TSO swap regions plus an

extra background initiator in our daytime setup.

CPU utilization has gone from the 65% - 75%

busv range to 90 - 100% busy. Except for week-

ends, we are able to sustain this level of

activity around the clock on the model 65.

So much for core availability, the increase of

which was intended to tap the unused capacity

of our CPU. To a large degree, we have suc-

ceeded in this area. However, the increased

degree of multiprogramming has tended to exag-

gerate whatever I/O imbalances previously exist-

ed. We wanted to be able to keep a continuous

eye on the disk usage area, since we had noted

that some packs were busier than others and

that some packs were frequently mounted and

dismounted". We did not want to run Boole 5

Babbage's CUE every day, all day to get this

infonnation, for several reasons: systems

overhead for one, and the uneasy feeling that

maybe the required infonnation is somewhere out
in the SMF data set. We certainly were paying
a considerable system overhead in having SMF
in the first place; wouldn't it be nice if we
got something more out of it than job account-
ing and the core availability uses I've al-
ready described.

Disk Multiprogramming Report

We developed a report, the Disk Concurrent
Usage Report, which gives an approximation of
the CUE device busy statistic. We started
with the assumption that if there are a large
number of concurrent users of a single disk
pack, it is virtually certain that there will
be a correspondingly high device busy stati-
stic and that probably a large component of
this busy figure is seek time. Also for
private packs not permanently mounted, one
can reasonably infer that a medium to high
degree of concurrent use requires many oper-
ator interventions for mounts. Getting the
measure of concurrent disk utilization follows
the same approach as concurrent access method
module utilization. Again type 4 SMF records
were used to supply the start and end time

stamps for each step run in the system. In-

stead of having to go to TFLOW to pick up the
name of the shared resource, this time we
were able to find the volume serial number
(VOL/SER) of each disk pack containing each
data set on which end of volume processing
occurred in the SMF types 14 and 15, or EOV
records. The types 4, 14, and 15 SMF records
are matched to one another by the same common
denominator as was used in the Access Method
report -- the SMF JOBLOG, consisting of Job-
name, Reader On Date, and Reader On Time.
Locating the step which processed the data set

ivhich came to end of volume is accomplished by
"fitting" the record ivrite tim.e of the type 14

or 15 record to the step start and end times.

Once we have the time a step starts to use the
pack and the time is stops using the packs, it

is a simple matter to resequence the combined
data and compute the percentage of time there

were varying numbers of concurrent users on the

pack.

We have used this report in several different

ways. One way is to validate the permanently

resident (PRESRES) list for private packs;

that is, are all private packs that are per-

manently resident really busy enough to justi-

fy their mount status, and are there any non-

resident packs which are so busy they would be

coo'^ candidates for addition to the PRESRES

list? Another iray we've used this report is

to check the activity of our SYSDATA, or work

packs. Because OS bases its allocation of
tenporary data sets on the number of open

DCB's per channel, one may wind up with con-

siderably more activity on some work packs than

on others . Our circumx^ention of this problem

is to move a frequently allocated but low I/O

activit)^ data set from a relatively busy channel

35



to the channel containing the high activity
SYSDATA work pack. This data set is typically a
popular load module library. A big problem in
USAMSSA as far as system tuning goes is the
dynamic nature of the use of private data sets
as systems come and go. A data set that is very
active one month may be very inactive the next
month. The only way to keep up with the effects
that this produces in the system is by constant
monitoring and shuffling of data sets.

Data Set Activity by Disk Pack Report To aid us
in getting a better idea of the nature or qual-
ity of the disk activity noted in the previous
report, we produce a report which gives a

history of the activity on each pack by data
set name, the number of EOV's recorded and the

DHMAME of the data set, where that information
would be significant. We wanted to know which
data sets were being used as load module librar-
ies so that we would have good candidates for
relocating to a channel containing an over-used
SYSDATA pack. We also wanted to know which data
sets were used by batch only, TSO only, and
both batch and TSO in order to have the best
group of data sets placed on the 2314 spindles
which are shared between our two computers. All
of the above information is contained in the
9vtF type 14 and IS records, with the exception
of the TSO versus batch breakout , which we
accomplish by analysis of our highly structured
jobname. Additionally, the number of mounts
for the pack is assumed to be the number of dis-

mounts, which are recorded in the type 19 SMF

record. The number of IPL's and ZEOD's (oper-

ator Halt command) must be subtracted from this
number if the pack was mounted at IPL time or
ZEOD since a type 19 record is also written at
these times.

We have also used this report to reorganize
disk packs, particularly where one data set is
the cause for most of the pack mounting. If
the data set is very heavily used, we may try
to find space for it on a peimanently mounted
pack.

Conclusion

We feel that the reports just described can be
used as a vehicle for system tuning, in that

they suggest courses of action by pointing out

system anomalies. We can increase core availa-
bility by monitoring programmer core requests
with the Weighted Core Variance Report and by
modifying the standard IBM RAM list to accu-
rately reflect USAMSSA's use of access methods.
We can reduce disk I/O contention by monitoring
disk utilization with the Disk Concurrent Usage
Report and by monitoring data set activity
with the Pack/DSN Activity Report. In a more
passive sense, the reports can be used as a

daily verification that the system stayed in

tune without the attendant inconvenience of
running a hardware or software montior. We

find these reports to be useful. If you are

interested in acquiring them, see me during
the coffee break, or see Mert Batchelder and

he will give you my address.

36



USACSC SOFTWARE COMPUTER SYSTEM PERFORMANCE MONITOR: SHERLOC

Philip Balcom and Gary Cranson

U.S. Army Computer Systems Command

1. ABSTRACT .

This technical paper describes the internal and
external characteristics of SHERLOC, a 360 DOS
software monitor written by the US Army Computer
Systems Command. SHERLOC primarily displays
1) the number of times each core image module is

loaded, and 2) CPU active and WAIT time, by core
address, for the supervisor and each partition.
The major advantage of SHERLOC over most, if not
all, other software monitors is that it displays
supervisor CPU time by core address. In this
paper emphasis is placed on the concepts required
for a knowledgable system programmer to develop
his own tailor-made monitor. Results of using
SHERLOC since completion of its first phase in
August 1973 are discussed. SHERLOC stands for
S^omething to Help Everybody Reduce Load On
Computers.

2. GENERAL DESCRIPTION OF SHERLOC .

SHERLOC is started as a normal DOS job in any 40K
partition. During initialization, SHERLOC re-
quests information such as the sampling rate from
the operator. When the operator then presses the
external interrupt key, SHERLOC begins sampling
at the specified rate, accumulating, in core, all
samples. When the operator presses the external
interrupt key a second time, SHERLOC stops sam-
pling and allows the operator to indicate whether
he wants SHERLOC to terminate, or to record the
gathered data on tape or printer, or a combina-
tion of the above. After satisfying these re-
quests, if SHERLOC has not been told to termi-
nate, the operator can press external interrupt
to cause SHERLOC to continue sampling without
zeroing its internal buckets,

A separate program named HOUIES exists to print
data from the tape or to combine data from the
tape by addition or subtraction before printing.
Thus, in monitoring for two hours, if data is
written to tape at the end of each hour, a print-
out for the last hour alone can be obtained by
running HOLMES and indicating that the first data
is to be subtracted from the second. Naturally,
HOmES stands for Handy Off-Line Means of Extend-
ing SHERLOC.

3. SHERLOC PRINTOUT AND INTERNAL LOGIC .

SHERLOC consists of two modules: SECRIT and
WATSON. SECRIT stands for SHERLOC' s External
Communication Routine, Initiator and Terminator.
WATSON stands for Way of Accumulating~and Taking
£amples Obviously Needed.

~

SHERLOC
Something to Help Everybody
Reduce Load On Computers

SECRIT WATSON
SHERLOC' s External Way of Accumulating

Communication Routine and Taking Samples
Initiator and Terminator Obviously Needed

FIGURE 1

A. SHERLOC Initialization . (Figure 2). When
SHERLOC is started by the operator (Box Al),
SECRIT receives control and requests information
such as sampling rate from the operator (Box Bl),
SECRIT then attains supervisor state and key of
zero via a B-transient. SECRIT modifies the ex-
ternal new program status work (PSW) and the
supervisor call (SVC) new PSW to point to WATSON.
SECRIT makes all of DOS timer-interruptable by
turning on the external interrupt bit in operands
of the supervisor's Set System Mask instructions
and in all new PSW's except machine-check. SECRIT
sets the Sample flag = don't-sample which WATSON
will later use to determine whether to take a sam-
ple. SECRIT then sets the operator designated
interval in the hardware timer (Box LI). SECRIT
adjusts the DOS software clock so that the soft-
ware clock minus hardware time will always give
DOS the real time of day. SECRIT then WAITs on
an Event Control Block (Box B2).

B. When the Timer Underflows . When the timer
interval elapses, the hardware timer underflows
(Box A3) causing an external interrupt. The ex-
ternal new PSW becomes the current PSW immediately
upon timer underflow since SECRIT has modified DOS
(Box Gl) so that external interrupts are always
enabled. WATSON receives control (Box B3) because
SECRIT changed the address in the external new PSW
during initialization (Box Fl). WATSON then
checks the Sample flag (Box B3) previously set by

SECRIT (Box Hi). Since this flag initially indi-

cates samples are not to be taken, WATSON sets
another interval in the hardware timer (Box G3),
adjusts the software clock, and loads the external
old PSW (Box H3), This returns control to what-
ever was occurring when the previous interval
elapsed. This loop (Boxes A3, B3, G3, H3) in

which the interval elapses but no sample is taken

will continue until the external interrupt key is

pressed (Box A5)„ When pressed, an external
interrupt occurs, giving control to WATSON.

WATSON inverts the Sample flag (Box B5) and then

tests it (Box F5). At this time in our example,
Sample flag = sample. Therefore, WATSON returns

37



flAKE ALL
OF DOS
TIMER-
INTERRUPTABLE

Set
sample fu\g
= DON T
SAMPLE

Set timer
interval

Reset
SYSTEM

4
® Terminate

S E C R I T

to the interrupted process (Box H5) by loading
the external old PSW. The next time the timer
internal elapses (Box A3), WATSON will test the

Sample flag (Box B3) and decide to take a sample
(Box F3)

.

C. Taking a Sample Due to Timer Underflow . A
sample is taken by incrementing various buckets
in core. (See Appendix 1). In the TOTAL TABLE,
the SAMPLE INTERRUPTS and TOTAL INTERRUPTS
buckets are incremented during every sampling.

The CPU SAMPLE INTERRUPTS or WAIT SAMPLE
INTERRUPTS bucket is incremented based on

whether the external old PSW indicates the

computer was in the CPU or WAIT state,

respectively.

Regarding the TASK TABLE, there are seven tasks
in DOS with no multi-tasking. Three are the

partitions. The combination of the other four

are generally thought of as the supervisor. Each
task may be using the CPU, or may be explicitly
(ie voluntarily) waiting for something other than
the CPU (eg I/O), or may be implicitly (ie invol-

TlMER
UNDERFLOWS

SVC
INTERRUPT
OCCURS

Operator
PRESSES
EXTERNAL
INTERRUPT

Take a
SAMPLE

Set TIMER
INTERVAL

Pass control
TO DOS SVC
HANDLER

Return to
interrupted
PROCESS

POST SECRIT
COMPLETE

Return to
interrupted
PROCESS

AT SO

untarily) waiting for the CPU because some higher
priority task is using the CPU, From the SVC 7

and SVC 2 bound bits in each task's Program
Information Block (PIB) , WATSON can determine
which buckets to increment in the EXPLICIT and

IMPLICIT WAIT columns of the TASK TABLE. If the

external old PSW indicates the computer was in

the CPU state, then the Program Interrupt Key

(PIK) indicates which bucket in the CPU column to

increment.

In the CORE TABLE, the first column gives the

hexadecimal address of the starting byte of 16

byte intervals throughout core. When WATSON is

taking a sample, it finds the resume PSW of each
explicitly waiting partition in that partition's
save area. It determines whether a partition is

explicitly WAITing from the SVC 7 and SVC 2 bits
in the PIB, WATSON then increments the WAIT SAM-

PLES bucket associated with the address in each

resume PSW. The resume PSW address is the address
of the instruction next to be executed. Further-
more, if the external old PSW indicates the com-

puter was in the CPU state, WATSON increments the

38



CPU SAMPLES bucket associated with the address in

the external old PSW. The remaining columns of

the CORE TABLE are not created during sampling.

At this point the sampling process (Box F3) is

complete.

D. After Taking a Sample Due to Timer Underflow .

WATSON then sets another interval in the hardware

time (Box G3) , adjusts the software clock, and

loads the external old PSW to resume normal sys-

tem processing (Box H3).

E. When an SVC Interrupt Occurs. SVC instruc-

tions are executed by both the supervisor and

problem programs. Problem programs execute SVC's

to ask the supervisor to initiate I/O, to fetch

core image modules from disk into core, etc.

When an SVC is executed, an SVC interrupt occurs
(Box A4) and the SVC new PSW becomes the current

PSW. WATSON then receives control since SECRIT
changed the address in the SVC new PSW during
initialization (Box Fl). If the Sample flag in-

dicates not to take a sample (Box B4) , control is

passed to the DOS SVC interrupt handler (Box G4)
to handle the SVC. On the other hand, if a sample
is to be taken (Box F4) (See Appendix 2), either
the SUPERVISOR or PROBLEM PROGRAM bucket at the

top of the FETCH TABLE is incremented based on the
supervisor state bit in the SVC old PSW. If the

SVC is an SVC 1, 2 or 4, the FETCH bucket is

incremented, and the name pointed to by register 1

is either found in the table and its bucket incre-
mented, or else added to the table with bucket
equal to one. This completes the SVC sampling
process (Box F4) , Control is then passed to the

DOS SVC interrupt handler (Box 04).

F . When the Operator Presses External Interrupt
to Record Data. If the operator presses the

external interrupt key (Box A5) when the Sample
flag = sample, WATSON receives control, inverts
the Sample flag to don' t-sample, POSTs SECRIT
complete (Box G5) and returns to the interrupted
process. SECRIT then (Box F2) reads commands
from the operator. If the operator indicates
that the accumulated samples in core are to be

recorded on tape and/or printer, SECRIT accom-
plishes the recording (Box G2)

.

(See Appendix 2) During printing, the last six
columns of the CORE TABLE are calculated. The

CPU SAMPLE PERCENT column is the CPU SAMPLE column
divided by the SAMPLE INTERRUPTS in the TOTAL
TABLE. The WAIT SAMPLE PERCENT column is the WAIT
SAMPLES column divided by the SAMPLE INTERRUPTS.
The TOTAL SAMPLE PERCENT column is the sum of the
previous two columns. The next three columns are
running totals of the corresponding previous three
columns

.

After recording on tape and/or printer (Figure 2,

Box G2) , if the operator has not indicated that
SHERLOC should terminate, SECRIT again WAITs
(Box B2). The operator may then press external
interrupt (Box A5) to resume sampling. On the
other hand, if the operator has indicated that
SHERLOC should terminate (Box H2) , SECRIT resets
the previously modified new PSW's and Set System
Mask operands to their original status, and goes
to End-of-Job (Box N2)

,

4. USES TO DATE .

There have been primarily two uses of SHERLOC to

date.

A. Supervisor Improvement. The Computer Systems
Command had decided to change from its previous
8K supervisor to a 20K supervisor, primarily due

to additional required and desired features. On
a 360-30, it was found that the additional features
in the 20K system caused a decrease in computer
thruput of between 207„ and 307o compared with the

8K system. SHERLOC was developed to improve this

thruput.

(See Appendix 3). The supervisor options and other
computer system characteristics for the 8K and 20K
systems are shown in the columns labelled 1 and 8,

respectively. The general plan was to compare,
for each option, the degradation against the ben-
efits gained. The largest unknown was the degra-
dation of each option. SHERLOC was used to obtain
a rough approximation of the degradation of each

option. For supervisor options, the approximations
were developed from matching, by absolute address,
the supervisor source coding for each option with
the CORE TABLE printout. This provided the CPU time

spent in each option. This CPU time was in some

cases only approximate since for some options the

code is scattered in the supervisor. This CPU
time was then multiplied by an educated estimate
of the percentage of constraint of this CPU time

on thruput. This converted CPU time into approx-
imate run time.

In the case of the job accounting option, JA=YES,
it was decided, with help from the CORE TABLE, that

this option should be treated as two suboptions.
The first, (STEP) in column 8, keeps track of the

start and stop time of each step. The second

(CPU, WAIT, OVHD), keeps track of CPU and WAIT
time by partition, and overhead time. To implement
the separation of these two suboptions, the full

option would be generated and the (CPU, WAIT, OVHD)
coding no-op'ed.

A non-supervisor option under consideration was on

which library each module would reside and in what
order their names would appear in the directory of

a given library. This option affects search time.

This is the next to last option in the figure.

From DOS DSERV listings and the FETCH TABLE, it

was concluded that the sort modules should be on

the Private Core Image Library and that their names

should be at the beginning of its directory. It

was also concluded that no other library adjustments
need be made. The improvement (or negative degrad-
ation) due to this change was easily approximated
by calculation.

Now that an approximate run time degradation was
known for each option, tests 2 thru 7 could be

designed, ie
, options could be grouped rationally,

based on approximate degradation and feature

desirability. An 'X' in columns 2 thru 7 indicates
that the option was specified as in column 8 rather
than as in column 1. The various supervisors and

libraries were then created and run with live data.

The results are designated as "Eustis" near the

bottom of the figure. Test 1 took 3007 seconds.

39



The degradation for the other tests used 3007 as

their denominator. None of the times in the figure
include operator intervention. The options in

test 4B were considered optimal. Tests were then
run with an average volume of live data. The
results are designated as "Meade" at the bottom
of the figure. The resulting "Meade" 4B degrad-
ation was -0.77o instead of the original 20K
supervisor degradation of between 207o and 30%,

This improved supervisor currently runs at about
20 sites and is expected to soon run at 40.

Assuming the following factors, the results of

this study will save about $50 per hour * 20 hours
per day * 300 days per year * 40 sites * 25%
degradation reduction = $3,000,000 per year.

B. SPOOL Improvement . The second use of SHERLOC
has been in speeding up a SPOOL program on 360-30fe,

Generally our user programs write print data to

tape or disk and writes to a printer. It was
discovered that a background process would run
about 377o slower when SPOOL was running in fore-
ground than when nothing was running in foreground.
(See Appendix 1). By SHERLOCing this SPOOL running
alone, the CORE TABLE revealed that supervisor
CPU was 33, 57% and problem program CPU was l,267o.

Each of these percentages was calculated by sub-
tracting the CUMULATIVE CPU SAMPLE PERCENT at the
beginning of the appropriate core area from that
at the end. Furthermore, the CORE TABLE indicated
that the large supervisor CPU usage was due to the

unchained printer channel command words since the
problem program was asking the supervisor to han-
dle each print or space operation separately. By
changing SPOOL to chain up to 20 print and space
operations together, the supervisor would handle
only one twentieth as many requests. In our test
environment, this reduced the supervisor CPU to

3.98% and the background degradation to 9%,

Since this SPOOL currently runs at about 20 sites
and is expected to soon run at 40, this improve-

ment will be substantial,

5. FUTURE SHERLOC IMPROVEMENTS .

We intend to change SHERLOC so that it can be run
without usual operator assistance. This means
that parameters will be entered by card rather
than console, and that SHERLOC will start and stop

sampling based not on pressing external interrupt,

but perhaps on the starting and stopping of the

job being monitored. We also intend to write each
sample to tape rather than incrementing appropriate

buckets. Later another program would read these

samples from tape, increment buckets and print.

This would reduce core required from the current

40k to about 4K. We would also complete the docu-
menting of SHERLOC. At that time it could be used
by others. Later, we may add capabilities such as

monitoring the percentage of time each device and

channel is busy.

6. CONCLUSION,

In conclusion, SHERLOC ' s major advantage over most,

if not all, other software monitors is that it

displays supervisor CPU time by core address.

This is possible because WATSON operates above the

operating system. SHERLOC has assisted in increas-
ing thruput on twenty 360-30' s and 40' s by indicat-

ing modifications to our supervisor and libraries,

and is currently aiding us in improving our SPOOL
program. Developing SHERLOC took one man-month.

Improving the supervisor and libraries took three

man-months. These four man-months of effort are

expected to save $3 million per year.

40



MNmLl_^/-iAX!JJ^Lt_,^''^Z/C jU r FRjii^ t • • .J2 .
JOB_.Mn,i _ J^f.. JJ'±^Z ^}X i'^/l l / M

OLO SPiiuL IN r 1 . 9H91 , R_ F(;,.uR D3._. _
SPOuL rE:sj__. frL. _filLi?

I NTSSA:^1PLE_INIS
001059:?

ALL rtOUNO
BG

"

F2
Fl
ATTN koutime:
Qij'iF.SCr

_CPiL. s 'V'lPL.r.

o'oCJTO'j

CPU
0001
0000000
00 000 3

0

000 2 22^
00 0000 0_

0000000
OJOOOOO

wait sahple_
00070O3

ex' wait im wait

ints -TliTAL INTS

TOTAL T/'BLE

0000000
0000001
0010993
oooai2^"
0 00 00 00
0 00 00 00
0 000000

CPU

00093? I

0000000 '

"

0000000_<-
00 005 3 5

'

00 000 JO
oooo()bo

"

00 000 00

-M TABLE

WAIT TOTAL
C_U'M_

C3U

CORE TABLE

WA it' tot'al^
C PU WAIT SAMPl

£

S A"PLE SAMPLE SAMPLE SAMPLE
A 0 D H S A Mi'L r s S A-'fPL E S PFI'CCNT PFKCEMT P t^CE'^T Pl-t<CEMT P cR CENT PEKCFNT

00 1 5 0 0 ) 1 9 5 0 01. 7
9" 001 . 79 001 . 79 001 .

79"

0016 0 0 0 3 7 J 0 03.47 0 0 3.47 005.?^-> 00 6. 26
00 170 J ) 1 1

1

00 1.01
... ,

001 .or ''0(/6.2 7 00 6. 27
00 18 0 jOJ3d1 i

"; 0 1 . 2 2 003.22 009. 60 009. 50
00190 002 06

. _ . .

0 i3 1 . H 9 'SUPERVISOR 001.89 " oi l
.' 39 '

^
01 1.39

00 1 A 0 000 3 5 COO. -(2 AREA: 0 00.3 2 011.71 Oil. 71
00 ICO J0:l7;i 0 00. 71 33.57-0.00 0 00. 71' 012.43 012.43
00 IDO 0 Ju3 7 0 00. 3 3 =33.57 0 00.3 3 012. 76 012. 76
OOIE 0 0 0 132 OO0.T3 "000.93 U'i3.70 '013-70

OlOAO ) )0n2 300.01 000.01 03 1.17 031. 17

01F50 00153 3 01. 40 001.40 03 2. 5

B

032 . 5 i

01^6 0 0 0004 000.03 0 00.0 3 0 3 2.61 032. 61
01-^70 00041 000. 3 7 000.37 03 2.99 032.99
OIF8 0 00063 _ 000. 5 7^ 000. 5 7 033. 57 033. 57
12;3C0 ToTi 93 lu;3.oo 1 o'o.oo 0 i 3 . 5 7 100. 3

'O 133.57
10/^60 00001 03 3 .5-3 1 30 . u 0 13 1.53
10370 JJOlO "o'oj.ot' 300. 09' 0:s'i.67 lOvJ.OO 13 3.67
ll)Sf30 OJOLl nou. 10 000.10 03 3.7 7 113. 0 0 133. 77

I 0 T 9 0 0)021 0 00. 1

9

000. 19 03 1. 96 100.90 133.96
108 AO 0 JU 02 000.91 000.01 033. 98 100. 00 13 3.9"?

najo 300 02 9 00.01 000.01 034.00 100.0 0 134. 00
lOHCO 0 )J10 0 00. 0 0 000.09 03 4. 09 loo.n 3 1 J-f. 09
loan 3 0 3:304 000. 0 ^ > PROBLEM 000.0 3 0 3 4.13 1 00. 0 0 13 4.13
10 9o0 0 00 32 000. 0 1 PROGRAM 000. 0 1 03 4. 15 100. 0 0 134. 15
1 0 17 0 00 0J9 OOO. 9 ^ AREA: 000. 08 034.23 100.0 0 134.23
1 '3 A 3 0 00 OOP 000. 07 34.83-33.57 000.0 7 034.30 1 oo. 90 13-+. 30
10 A50 000 3 7 0 00. 3 i =1.26 OOO. 3 3 0-S4. 64 1 00.00 13 4.64
lOABO 000 11 0 Oo . 1 0 0 00. 10 03 4 . 74 130.0 0 134. 74
lOEEO JOO J^i 0 00. 0 4 000.0 4 0 14.73 100.0 0 134. 79

IDFAO 0 300} 0G129 000. 02 07 4. f'2 0 7h. 6 5 054. 32 1 74. 62 2 0'>.44

1 p'p 0 0 30 01 034. 32 174.6 2 20'-i.46

1€32 0 3 30 01
. , w 03^. 8 3 174.62 239.46

APPENDIX I

41



FECH TABLE
SVC FETCH COUNTS

0000000000065074 =SUPV
=FETCH

0000000000044623 =PPGM 0000000000006026

$$BATTNG

$$8E0J

$$GTPIK

$$BOMS G2

$JOBCTLn

$$BCBL IS

tSBOMTfcS

$tBOI S04

$$BSETFL

$$BOSI GN

$$BCMT0l

$$B0UR01

SORTRCD

SORTRCN

SORTRBA

SSBUMTOi'l

L12ATINJ19

I.SF13200

LI 1ATN30

BALIOVRA

LSFl3a30

LSF13850

LSF14200

L12ATN 14

00001

00 106

00035

00005

00019

00027

00030

00044

00010

00157

00028

00003

00025

00016

00016

OOOll

00003

00001

00001

00002

0000 1

0000 1

00001

00001

$JOBCTLG

tJOBCTLA

$$BOPE!MR

$t80MSG5

$$BaCP01

$$BCBUSR

$$BOIS0l

$$HOIS05

tSBSETFF

t$BUSD12

$$BENDFL

SORT

SORTRCC

SORTRSU

SURTRPB

$$BUMT04

L12ATN13

LSF134E0

LSF13oEl

HALIOVRB

L11AT(\136

LSF13860

LSF14300

LSF14800

00 108

00105

00 106

0000 1

00041

00133

00044

00044

00010

00066

00012

00016

00016

00016

00016

00024

00015

00001

0000 1

00001

0000 1

00001

00001

00001

$$GTPIKC

$$BATTNU

$$B0PfMR2

$$BE0J2

$$BCLGSE

$$B0PEN2

$iBOIS02

$$B0 IS06

$$Bi>bTFG

i$B0SDI4

t$BENOFF

SURTRCL

$$Bosuai

SORT ASA

SORTRSM

LSF100R2

L12ATN 17

SORTRSN

LSF13bRl

$$BSETL

1

L12ATN15

LSF13870

LSF14350

LSF160EI

00036

0000 1

00038

00001

00 26 1

00098

00044

00044

00010

00066

000 10

00016

00091

0001b

00016

00001

00004

00012

00001

GO 157

00001

00001

00001

00001

t$BEO J4

$JOBCTL

J

$$60PEN

ttBPSW

$ JOBCTLK

$$BQMT01

t*BOI 503

$$B01S07

$$8OSD00

$$BUSOC 1

$$8CL0S2

SORTRCB

*$30SD02

SORTROA

SCRTROC

$tBCBUSH

L12ATN18

SOKTRGB

LSF136R2

BAL lOVRC

LSF13835

LSF 140B1

LSF14400

LSF16000

APPENDIX 2

42



W 00

u
•H
3
D*
(U
U

>> m m
iH 3 3
rH O O
nj 0) <u

C 00 >^ 00
o n) n)

•H 01 4-1 ^ 4-)

JJ iH c «) c
O o -Q n)

C > O >
3 U

o CO Ph

3 •

o. o

^4-1 >^ U) 4-1 <u

4J n) 4-1 dJ O iH
•H U T-l O Q) XI

.H O 4J n)

(do- nJ CO o C
t/) Q) C/) P O
Ij «1 (-1 4-1 O. -H
QJ QJ CJ 4J

p. Q) cu cn

•H U <D

C -H l^ 3
•H <U

C cu

CO CO

p m C) XI «-i O"

•H OOrl

• <UJ3-H(U
to XI > 4-lXJH C O C 3
CO 3 I 3 3
>-l 4J O "-I

Q> >»*H CJ CO

01 CO ui-H C "~i

iH D.UScOH-H>
-H CO I CO 00

3 14 (U3xi1'''^I^
O 01 .HO. O'H l-i CD
Q O. C7(D T-iO O CNi

TEST # = 1 2 3 4 4A 4B 5 6 7 8

MPS= YES X X X X X X X X BJF
TP= NO X X X X X X BTAM
EU= NO X X X X X X X X YES
ERRLOG= NO X X X YES
IT= - NO X X X X X X X F2

TEB= 5 X X X X X X X X 13

TEBV= NO X X X (DASD,13)
SKSEP= NO X X X X 16

CE= NO X X X X X X X 800
JA= NO X X X X X X X [STEP]

JA= NO X X X [SIO]

JA= NO X [CPU,WAIT,OVHD]
PTO= NO X X X X X X X YES
PCIL= NO X X X X X X X X YES
CBF= NO X X X X X X X 5

CCHAIN= NO X X X X X X YES
AB= NO X X X X X X X YES
WAITM= NO X X X X X X X YES
DASDFP= NO X X X X (1,2,2314)
[PGM= 25,10,5 X X X X X X X X 100,100,22]
JIB= 25 X X X X X X X X 80
CHANQ= 15 X X X X X X X X 40
IODEV= 17 X X X X X X X X 40
[peripherals single X X double]
[SVC 51 NO X X X X X X X YES]
[assgn tapes to 2 X X X X X X X X 1]

[sorts on PCIL NO YES YES YES YES YES YES YES YES NO]

[JCL, file alloc, 8K X X X X X X X X 20K]

libraries ,workarea

fRun t ime
in seconds. 3007 2671 2701 2710 2748 2717 2905 2950 3101 3794

Eustis Degradation in I

l_=(T-3007)/3007. 0.0 -11.2 -10.2 -9.9 -8.6 -9.6 -3.4 -1.9 +3.1 +26.2

fRun time

I in seconds. 8245
Meade < Degradation in %

l^=(T-8245)/8245. 0.0

7987

-3.1

8186

-0.7

[ ] Logical, not actual, specifications.
APPENDIX

43





BENCHMARK EVALUATION OF OPERATING SYSTEM SOFTWARE: EXPERIMENTS
ON IBM'S VS/2 SYSTEM

Bruce A. Ketchledge

Bell Telephone Laboratories

This paper concerns the problem of evaluating a

new and unfamiliar operating system using bench-
marking techniques. A methodology for conducting
a general evaluation of such a system is presented,
and illustrated with a recent study of IBM's new
VS/2 system. This paper is broken into 2 major
sections

:

1. An Operating System Evaluation
Methodology.

2. A Case Study: Evaluation of IBM's
VS/2 Operating System.

In the first section, an operating system evalua-
tion methodology developed in the Business
Information Systems Support Division at Bell
Laboratories is presented. The second section
illustrates the application of this technique in

a recently-completed VS evaluation project.
Before plunging into the main parts of this paper,
a little background (and a few caveats) are needed.

This paper will concern, specifically, methods of
conducting a general evaluation of a batch only
operating system. The use of the word 'general'
implies that the type of evaluation project dealt
with would not be aimed at predicting the
performance of an already-coded application on
the system (utilizing a particular central
processor). Rather, the situation we envision is

the case where the general performance-effecting
features of the operating system are to be
identified and probed to a sufficient depth to
allow 'ball -park' estimates of the system's
performance (e.g., overheads) in a given
processing environment.

Moreover, this paper looks at batch-only systems,
although much of the general methodology
described might well apply in time-shared or
batch/time-shared envi ronments

.

As this paper is the outgrowth of an evaluation
project concerning a particular operating system
(IBM's VS/2 Operating System), it might be well
at this point to briefly sketch the historical
background of this project. Shortly after the
IBM announcement of virtual systems on
August 2, 1972, the Business Information Systems
Support Division at Bell Laboratories made a

decision to do a general evaluation of these new
systems. IBM's clear commitment to virtual
systems, combined with the many new features of
these systems, made the need for such an evaluation
imperative.

Up until the time an IBM virtual system was avail-

able in-house (April 1973), the main part of the
evaluation effort centered, necessarily, on read-
ing IBM-supplied documentation concerning VS/1

and VS/2. As will be discussed in Section 2, once
a 'live' VS system was at hand, an experimental/
benchmark approach was used in gaining familiarity
with the system.

Once familiarity with the system was gained, formal

benchmark tests were conducted and the resulting
data were analyzed. Seen in its entirety, it was
felt that this evaluation project followed a pattern
of sufficient generality and interest to be abstracted
in the form of a general approach to operating system
evaluations. It is this methodology we discuss in

the next section.

1 . An Operating System Eval uation Methodology
We propose to attack the problem of conducting a

general evaluation of a batch operating system in

four phases. The principal motivation behind for-
malizing the evaluation process and dividing it in-

to four functional phases is to assure that no

major characteristic of the system being examined
nor any potentially useful approach to that system
is excluded from consideration. As will be pointed
out below, the particular approach proposed also

has the benefit of facilitating management of the

project in cases where more than one person is

involved.

Some caveats to be borne in mind concerning the

methodology to be proposed are the following:

Vendor cooperation.
Available system.

Internal documentation.
Our approach depends heavily on the vendor's co-

operation, and having available (perhaps through

the vendor), a 'live' system to test as well as

internal documentation of the operating system.

Generally, the vendors have been cooperative,
especially if the system to be tested is a new

offering. In any event, the most crucial require-

ment for a successful evaluation effort is the

availability of a 'hands-on' system. In the sequel

we shall assume all of the above elements are

present during the project.

The phases of the evaluation project are listed

on the next page, along with the rough percentage

of the total evaluation effort each might be expected

to consume.

45



EVALUATION PROJECT PHASES

1. Analysis of Vendor Documentation/Establishment
of Project Goals. (30%)

2. Development of Experiments/Tools. (20%)

3. Testing of Experiments/Tools. (20%)

4. Conduct formal benchmark experiments, analyze
data. (30%)

The phases are named in such a way as to suggest

(roughly) their basic functions. Note that the

percentages shown represent only typical amounts

of the total effort (in man-months) devoted to that

phase. Also note that according to this table,

70% of the effort is concentrated in the pre-bench-

mark phases. . .the significance of this fact will

be discussed below.

The first phase of the evaluation project involves
analysis of vendor documentation and development
of 'working hypotheses'. This is a crucial phase

of the project (and should consume at least 30% of

the total effort). During this phase the following
activities occur:

. Analysis of vendor 'high level' (overview)

documentation.

. Analysis of vendor 'low-level' (internals)

documentation.
Establishment of reasonable goals for the

project, taking into consideration factors

such as vendor support, complexity of the

system to be modeled, benchmark time

available, etc.

Development of one or more 'working hypo-
theses' about the system.

Analysis of vendor overview documents is especially
important if a human factors' evaluation of the

system is desired (i.e., ease of use, complexity,
debugging aids, etc.). Internal documentation must

be analyzed with special care if potential sources

for one or more software or hardware probes are

to be recognized. For example, if the system

keeps tables of important internal events or queues,

it may be worthwhile to gather that data (with soft-

ware) in order to aid in performance evaluation.

This technique will be illustrated in Section 2.

Goals can be set for the project only when some

familiarity with the operating system has been

developed. Influencing the goals are factors

including

:

. Available resources (time, manpower, computer

time)

.

. Complexity (novelty) of the operating system.

Once some familiarity with the system has been

gained, and goals for the project set, it is impor-

tant to structure the project around one or more

central 'themes'. In many cases this central theme,

or 'working-hypothesis', is suggested by an out-

standing or novel feature of the system to be

examined. In some cases a 'straw-man' may be set up,

which then motivates experiments designed to knock

it down. In any event, such working hypotheses
about the system serve to keep the experiments
proposed in Phase 2 of the effort relevant to the

goals set in Phase 1. Section 2 of this paper
offers an example in which a comparison with the

vendor's other major operating system provided an

all -important working-hypothesis.

Phase 2 of the project involves capitalizing on the

knowledge gained in Phase 1 by developing specific
experiments and tools designed to probe important
areas of the operating system. Some, though not
all, of the experiments may be aimed at challenging
the working hypothesis developed in Phase 1. Other
experiments may be aimed at directly comparing
throughput of the new operating system of the same
vendor. Generally, each experiment will be handled
by one individual (including its design, testing,
and benchmark runs) and will include 3 elements:

. Software to stimulate the system ('Job
mix

'
)

.

. Measurements tools - hardware monitor,
software monitor, log files, etc. This
category includes software to reduce the

collected data.

Detailed specification of the experiment.

The evaluation team may decide to allocate one mem-

ber of the team to handle some functions common
to all the experiments (ie, hardware monitoring).
The detailed specification of each experiment, how-
ever must be done on an individual basis, especially
if one goal of the benchmark is the development
of a real familarity and self-confidence about the

system by members of the team (these experimental
designs must be reviewed by the team leader, of

course). During the second Phase new tools needed
to probe sensitive areas of the system may have
to be developed. The tools may serve either or

both of the validation and measurement functions.

The validation function concerns the checking of

important system routines for operation that is

consistant with the system's logic (as documented
by the vendor) and consistent with system initiali-
zation parameters. For instance, in a VS/2 system
initialization ('IPL') parameters may be set so

as to effectively prevent the VS/2 Dispatcher
from 'deactivating^ (marking non-dispatchable) user

tasks due to excessive paging. During the VS/2
evaluation project discussed in this paper, the

systems parameters were set so as to 'turn-off
task deactivation, and the effect of these para-

meter settings was checked independently by a

software monitor which examined the systems'

Nucleus region and validated that no user tasks

were being deactivated. (The use of this monitor
is further illustrated in Section 2 of this paper).

Particularly with a new operating system release,

'bugs' in the system may cause entire benchmark

runs to be invalidated without causing the system

to 'crash' (thus signalling the difficulty).

Passive protection can be provided by a software
monitor or trace facility, such as described above,

which checks for normal operation of the system

internals, especially immediately after system

initialization. The measurements function, of

course, is central to the entire effort. Software

4 6



monitor techniques, in particular, are useful for

measuring logical queues in the operating system

as well as determining efficiency and stability of

operating system resource-allocation algorithms.

The integration of these measurements with more

conventional measurement techniques (hardware

monitors and log files) is illustrated in Section

2.

Phase 3 of the evaluation project involves testing

and debugging of each experiment and tool on the

system to be benchmarked. This is an excellent

opportunity for each member of the team to acquaint

himself with the system and gain a real feel for

the response of the system to various stimuli

(job streams). Ideally, this phase of the eval-

uation project should extend over a considerable
period of time, to allow intuition about the

system to grow as well as allow revamping of

tools or experiments which prove invalid. This

period also allows the sensitivity of the system

to initialization parameters (in IBM jargon, 'IPL'

parameters) to be determined (especially if nominal

parameter values are to be selected for the vench-

mark itself).

Phase 4 of the project involves carrying out the

formal experiments developed in the earlier phases,

analyzing the resulting data, and documenting the

results. In most cases, by the time this phase

has been reached, most (70% or more) of the work

has been done and the experimental designs crystal

-

ized. Experience has shown that relatively little

can be done to correct or revamp experiments yielding

invalid or unreproducible results in this phase...

this 'debugging' must be done in Phase 3.

Certainly the most interesting part of the project is

the data analysis which follows the benchmark

runs. The working hypothesis must be refuted or

validated at this point, and alternative explana-

tions (based on internals knowledge gained in Phase

1) of system behavior advanced if necessary. It is

crucial that all the experimental results be under-

stood in terms of the internal structure of the

operating system in order to be able to say the pro-

ject was a success. Documentation of the results
should include those explanations, for they may

help others unfamiliar with the system comprehend

and appreciate the benchmark results. Conclusions
and recommendations about the operating system

should be written up- as a separate section of the

final report, and should consider the experimental

results obtained in their totality, as well as

any other knowledge or intuition gained about the

system during Phase 3.

While many of the points made above were very gener-
al, it is easy to give specific examples of their
implementation in the context of the recently-com-
pleted evaluation of VS/2 done at Bell Laboratories.
In the following section the course of this evalua-
tion project is followed in light of the discussion
of Section 1

.

2. A Case Study : Evaluation of IBM's VS/2
Operating Sys tem

Phase 1 (analysis of documentation) of the VS/2
project began with collection of VS/2 documentation.

Primarily internals documentation of the operating
system was examined, especially prominent in this

role being the IBM-supplied 'Features Supplements'
for VS/1 and VS/2. The hardware changes IBM intro-

duced with the VS announcement also were examined,
primarily through the 'Guide to the IBM 168'

manual

.

After the necessary background in VS v/as obtained,
goals for the evaluation effort were set. It is

worthwhile at this point to discuss in some detail

the considerations which led to the goals establish-
ed for the study, and to list the goals themselves.

The VS benchmark had several goals. Various factors
inherent in the environment in which the tests were
run conditioned these goals and restricted the type
of tests which could be run. In particular, the
hardware configuration used was a 370/145 CPU with
51 2K bytes of memory. The restricted amount of main
storage available made it impossible to do a worth-
while comparison of OS and VS throughput. This was
because OS/MVT 21.6 was found to occupy over
half of main memory when running, thus restricting
the memory available to user programs in such a

way as to limit the number of user programs running
simul tanel usly to one or two at most. Thus any OS

results obtained would be mostly a function of the

lack of multiprogramming depth in the runs. The
only alternative would have been to run jobs of
unrepresentati vely small memory (Region) require-
ments so as to allow more jobs to be active
simultaneously under OS. This alternative was
discarded.

Another conditioning factor for both the experiments

and the resulting conclusions was the size, speed,

and architecture of the 370/145 CPU. The 370/145
does not have the highly centralized control regi-

ster structure, pipelining features, outboard chan-

nels, or cache memory of the larger 370 CPU's. Thus

questions relating, for example, to the effect of

a triple-hierarchy memory (cache, main memory, and

virtual memory) on system performance could not

be explored because of the 145's lack of a cache

memory. Hardware monitoring was also more diffi-

cult on the 145 than on more 'centralized' CPU's

like the 155 or 165. This fact, however, did not

significantly hinder the study.

With the above factors in mind, and with an eye on

Bell Laboratories' particular interests as a con-

sultant to Operating Telephone Companies, the fol-

lowing goals were set for the benchmark:

1. Develop a better understanding of VS internals

and spread this knowledge among others in Bell

Laboratories as a whole.
2. Develop an 'intuitive feel' for the general

performance of the 145 running under a VS op-

erating system.

3. Lay the foundation for further benchmark and

simulation efforts directed at VS through the

development of tools and techniques for VS

analysis.
4. Develop a data base of experimental results

from a VS system that would be useful in_

validating future simultation and analytic

models of VS.

5. Highlight areas of strength and weakness of VS

to help Operating Telephone Companies (OTC's)

47



make informed decisions concerning acquisition
of VS systems.

6. Shed light on possible areas of further explora-
tion by Bell Laboratories personnel concerning
VS performance factors.

The above goals were, as discussed earlier in this
section, conditioned by the hardware restrictions
of the system tested. In particular no comparison
of OS and VS throughput was attempted. Rather
the above goals emphasized in-depth probing of
VS in its own right (goals 1 and 2), as well as the
building of a foundation for a multi-faceted
approach to the predictive question itself (goals
3 and 4). Goal 5 was included to meet the imme-
diate needs of OTC data processing managers who
must make dollars and cents decisions, based on
such studies, concerning selection of hardware
and software. Finally, any good study results
in more new questions being asked than old questions
being answered, and goal 6 reflected this fact.
In total, these goals represent a rather typical
example of goals for a general batch operating
system evaluation project.

After these goals were set, the development of a

working-hypothesis about VS/2 was facilitated by
comparison with OS/MVT (on which VS/2 is based).
Clearly, the main difference between these systems
is in the area of memory management considering
VS/2's virtual memory capability. Hence the
working hypothesis arrived at was a rather simple
one, i.e., that due to the overheads inherent in

managing virtual memory the paging rates associated
with the system would be the main determinant of
system overhead and would have a great effect on
overall throughput. Implicit in this hypothesis
was the assumption that paging would be rather
costly (in CPU cycles) in VS/2 and hence the
system would degrade as soon as any significant
amount of paging occured. This hypothesis was
shown later to be false, but in the process of
designing experiments that tested the hypothesis,
much was learned about the system.

Phase 2 of the project was dominated by development
of tools and experiments to test the working hypo-

thesis as well as answer other questions about

the VS/2 system. One highlight of this phase was

the development of a software monitor, appropriately
named VSMON, which was used both to validate the

VS/2 operating system and measure its performance.

The development of VSMON began in the first phase

of the project, when specific tables used by the

VS/2 Paging Supervisor to record the status of

each 4K-byte page of main storage were discovered.

These tables ( Page Vector Table and Page Frame Table )

also record the status of various logical queues in

the VS/2 operating system. Hence it was decided

that in order to validate and measure VS/2 Paging

Supervisor performance a software monitor which

would periodically access those tables would be

built. The result was a tool useful in both

measuring the ownership of real memory by user and

system programs and in checking for correct oper-

ation of the Paging Supervisor. It is worth noting

that in one instance, a potentially harmful 'bug'

in VS/2 was found using the VSMON monitor; the

affected benchmark experiment was rerun after the

'bug' was fixed. The measurements from the monitor
have made possible (in combination with log file

data and hardware monitor information) a much more
complete picture of the VS/2 system than heretofore
had been obtained.

Phase 3 of the project was spread over almost two

months of time, during which each of the 5 major
experiments was tested, and the VSMON monitor
checked out. As a result of this extended 'dress-

rehersal
'

, the last phase of the benchmark came

off without incident, each experiment operating

as expected. As of the time of this writing, docu-

mentation of the project is in progress.

We believe that the methodology set forth in Section

1., and the case study presented in Section 2., pro-

vide a useful set of guidelines for those in the

field who are anticipating general operating system
eval uations.

48



REPORT ON FIPS TASK GROUP 13 WORKLOAD DEFINITION AND BENCHMARKING

David W. Lambert

The MITRE Corporation

ABSTRACT

Benchmark testing, or benchmarking, one of

several methods for measuring the performance of

computer systems, is the method used in the selection

of computer systems and services by the Federal

Government. However, present benchmarking tech-

niques not only have a number of known technical defi-

ciencies, but they also represent a significant expense

to both the Federal Government and the computer manu-

facturers involved. Federal Information Processing

Standards Task Group 13 has been established to pro-

vide a forum and central information exchange on

benchmark programs, data methodology, and problems.

The program of work and preliminary findings of Task

Group 13 are presented in this paper. The issue of

application programs versus synthetic programs within

the selection environment is discussed. Significant

technical problem areas requiring continuing research

and experimentation are identified.

INTRODUCTION

Earlier this year the National Bureau of Standards

approved the formation of FIPS Task Group 13 to serve

as an interagency forum and central information ex-

change on benchmark programs, data, methodology,

and problems. The principal focus of Task Group 13 is

to be on procedures and techniques to increase the tech-

nical validity and reduce the cost of benchmarking as

used in the selection of computer systems and computer

services by the Federal Government.

In May, invitations were issued to Federal

Government Agencies, through the interagency Commit-

tee on Automatic Data Processing and the FIPS Coordi-

nating and Advisory Committee, for nominees for mem-

bership to Task Group 13. Invitations for industry

participation were also issued through CBEMA. In

response to these invitations we have received 26

nominees from various Federal agencies and 6 from

industry. These names are being submitted to the

Assistant Secretary of Commerce for approval and we

hope to be able to start holding meetings in late

January or early February of next year.

This morning I would like to cover the five main

topics shown in the first vugraph (Figure 1). First, a

brief review of the approved program of work for Task

Group 13. Second, a review of some of the techniques

and typical problems involved in the current selection

procedures. Next, I will discuss some alternatives to

the present methods used to develop benchmark pro-

grams and attempt to clarify a major issue in the

selection community at this time : application programs

or synthetic programs for benchmarking? Asa fourth

topic , I would like to review the general methodology

of synthetic program development and some specific

tools and techniques currently being used. I would

like to conclude with an overview of some key technical

problems in workload definition and benchmarking

which require further research and experimentation.

FIGURE 1

REPORT ON FEDERAL INFORMATION PROCESSING STANDARDS

TASK GROUP 13

WORKLOAD DEFINITION AND BENCHMARKING

PROGRAM OF WORK

REVIEW OF THE CURRENT SELECTION PROCESS

BENCHMARK PROGRAMS: APPLICATION OR SYNTHETIC?

THE METHODOLOGY FOR SYNTHETIC PROGRAM
DEVELOPMENT

• SUMMARY OF PROBLEMS REQUIRING FURTHER

STUDY AND EXPERIMENTATION

49



PROGRAM OF WORK

The presently approved program of work is sum-

marized in the next vugraph (Figure 2). The first three

tasks should be self-explanatory. Task 4 is probably

the most controversial at this time because it is not

really clear what type of benchmark programs should

be included in any sharing mechanism such as a library.

I will discuss this issue later in my talk. As part of

this task we plan to test and evaluate a number of avail-

able benchmark programs. If you have programs and/

or a test facility and would like to participate in such an

activity, we would be pleased to hear from you. In

Task 5, initially we plan to capitalize upon the experi-

ences of people who have been involved in previous

selections and to prepare a preliminary set of guidelines

to be made available to users and others faced with

selection problems. Federal Guidelines and Standards

will possibly come later. The bibliography (Task 6) is

intended to include articles and reports covering all

aspects of workload characterization, workload genera-

tion, benchmarking, comparative evaluation, etc. —

but limited to the selection environment. This task is

well under way with more than 75 articles having been

identified at this time.

FIGURE2

PROGRAM OF WORK

1. FUNCTION AS A FORUM AND CENTRAL INFORMATION
EXCHANGE

2. REVIEW CURRENTLY USED SELECTION PROCEDURES
AND TECHNIQUES

3. IDENTIFY AND EVALUATE NEW TECHNICAL APPROACHES

4. DEVELOP AND RECOMIVIEND A MECHANISM TO FACILITATE

SHARING OF BENCHMARK PROGRAMS

5. PREPARE FEDERAL GUIDELINES AND STANDARDS

6. DEVELOP A SELECTED BIBLIOGRAPHY

THE SELECTION PROCESS

For the benefit of those of you not familiar with

the selection process, I have listed the typical steps

used in most competitive procurements today in the

next vugraph (Figure 3).

5

FIGURES

STEPS IN CURRENT SELECTION PROCESS

1. USER DETERMINES TOTAL WORKLOAD REQUIREMENTS
FOR PROJECTED LIFE CYCLE OF SYSTEM.

2. USER SELECTS TEST WORKLOAD, TYPICALLY WITH
ASSISTANCE OF APPROPRIATE SELECTION AGENCY.

3. SELECTION AGENCY PREPARES AND VALIDATES BENCH-
MARK PROGRAMS, DATA AND PERFORMANCE
REQUIREMENTS FOR RFP.

4. VENDOR MAKES NECESSARY MODIFICATIONS TO BENCH-
MARK PROGRAMS AND RUNS ON PROPOSED EQUIPMENT
CONFIGURATIONS.

5. VENDOR RUNS BENCHMARK TEST FOR USER AND
SELECTION AGENCY FOR PROPOSAL VALIDATION
PURPOSES.

6. VENDOR RERUNS BENCHMARK TESTS AS PART OF
POST-INSTALLATION ACCEPTANCE TESTING.

Step 1 is typically only one aspect of the require-

ments analysis and preliminary system design phase

for any new system. For upgrades or replacements to

an existing system, there are a variety of hardware

and software monitors and other software aids that can

be used to collect data on the existing system. Various

programs and statistical analysis techniques can be

used to analyze this data to identify the dominant char-

acteristics of the present workload. For example, a

number of workers are beginning to use a class of

cluster algorithms to aid in this step. The major

problems occur for conceptual systems or systems in

which the workload is expected to change radically in

the future: for example, when changing from a batch

environment to a time- sharing environment. In these

cases, it is extremely difficult to estimate the future

workload, particularly for the later years in the pro-

jected life cycle of the system.

In step 2, the general goal is to determine peak

load periods or to compress long-term workloads —

such as a 30-day workload — into a representative test

workload that can be run in a reasonable length of

time — say two hours. For batch, multi-programmed

systems, the test workload is generally designed to

have the same mix of jobs (and in some cases, se-

quence of jobs) as the total workload determined in

step 1. For on-line systems, the test workload must

also be designed to represent the mix of terminal jobs

in the total workload. For an upgrade or replacement



of an existing system, the peak period or representa-

tive mix can generally be identified or selected using

resource utilization data. The test workload can also

be verified by comparii^ its resource utilization data

against the original data. For conceptual systems, of

course, none of this experimental activity can talce

place.

Within the selection environment, the principal

goal in step 3 is to develop machine- independent bench-

mark programs. In current selection procedures, the

benchmark programs are generally drawn from among

application programs obtained from the user's installa-

tion. This has a number of drawbacks due to differ-

ences in job control techniques, program languages,

and data base structures from machine to machine.

Also, in many cases the original programs were

tailored to take advantage of some of the particular

features of the user's machine. Most of these prob-

lems have been satisfactorily solved for batch, multi-

programmed systems. However, there are a host of

new problems foreseen with the advent of general pur-

pose data management systems, time- sharing and

on-line transaction processing applications.

In step 4, the principal objective is to collect

timing data for each configuration (original plus aug-

mentations to meet a growth in workload) to be proposed

in response to the RFP. Most problems and costs in

this step are attributed to trying to get the benchmark

programs to run on the vendor's own machine because

of language differences and data base structure differ-

ences. In my own experience, seemingly simple prob-

lems such as character codes and dimension statements

have been the cause for much aggravation in trying to

get one program to run on another machine.

In steps 4, 5 and 6, there are major costs on the

part of the vendors to maintain the benchmark facility,

including equipment and personnel. There can also be

significant scheduling problems if the vendor is involved

in a nimiber of procurements at the same time. These

costs , and in fact all the vendor costs in preparing his

proposals and running benchmarks, eventually get

reflected in the costs of the computers to the Federal

Government.

BENCHMARK PROGRAM DEVELOPMENT

Most of the technical problems and costs In the

current selection process are generally attributed to

having to select, prepare, and run a new set of pro-

grams for each new procurement. What are some of

the alternative approaches that could be addressed by

Task Group 13 ? The first one is probably the most

obvious, and that is to develop tools and techniques

to simplify the process of sanitizing a given user pro-

gram and then translating it to other machines. This

would include preprocessors to flag or convert machine-

dependent job control cards, dimension statements,

etc. I am not aware of any serious attempts or pro-

posed attempts along this line; however, it seems to

have some merit for consideration by Task Group 13.

A second approach , which has been proposed but

never implemented even on an experimental basis , is

to develop and maintain a library of application bench-

mark programs. These programs would then only have

to be translated to other machines once. For each new

procurement, the user would select some mix of bench-

marks from this library which best approximates his

desired test workload. The library would probably

have to be extensive, since it would have to contain

programs for a great variety of engineering, scientific

and business applications. One proposal that I am

familiar with specified 20 Fortran and 20 Cobol pro-

grams, all to have been parameterized to some extent

to permit tailoring to a specific user's test workload.

This approach seems to have been set aside by the

selection community for a variety of reasons, the

primary one probably being the cost to develop and

maintain such a library. There is also some question

as to the acceptance of this approach by the users. I

believe that if the costs and benefits were analyzed on

a Government-wide basis, this approach may be more

favorable than it has appeared in the past.

The third approach, and the one receiving the

most attention these days in the selection community,'.

51



is the synthetic program, or S3T3thetic job, approach.

As most of you know, a synthetic program is a highly

parameterized program which is designed to represent

either (1) a real program or (2) the load on a system

from a real program. The first form, which is a task-

oriented program, is generally designed so that it can

be adjusted to place functional demands on the system

to be tested, such as compile, edit, sort, update, and

calculate. The second form is a resource- oriented

program which can be adjusted to use precisely speci-

fied amoimts of computer resources such as CPU

processing time and l/ O transfers. Neither does any

"useful" processing from an operational standpoint.

Typically, the test workload can be specified in

terms of say 10 and 15 different types of task-oriented

synthetics which. Incidentally, may contain common

parameterized modules such as tape read, compute, or

print. In the resource-oriented synthetics, there is

normally one original program which is duplicated and

adjusted to represent individual programs in the test

workload.

The motivation toward synthetics in the selection

environment is of course the same as for an applica-

tion benchmark library. The benchmark program or

programs need only be translated and checked out once

by each computer manufacturer, thus minimizing the

costs involved in future procurements. The most

serious technical question regarding ssmthetics seems

to be their transferability from machine to machine,

particularly the resource-oriented synthetics, since

demands on resources are obviously dependent on the

architecture of each machine. The task-oriented syn-

thetics seem to offer the most promise within the

selection environment primarily because they seem

least system dependent. Also, user acceptance would

be more likely if some means can be developed to ex-

press or map usei>oriented programs in terms of

task-oriented synthetic programs.

SYNTHETIC PROGRAM METHODOLOGY

The general methodology of the synthetic job ap-

proach is stmimarized in the next vugraph (Figure 4).

FIGURE 4

ELEMENTS OF SYNTHETIC JOB APPROACH

1. COLLECT JOB AND SYSTEM DATA ON ACTUAL SYSTEM

2. SELECT SYNTHETIC PROGRAM TASKS OR MODULES

3. CALIBRATE SYNTHETIC WORKLOAD

• SET INDIVIDUAL PROGRAM PARAMETERS

• SET JOB MIX AND/OR JOB TIMING PARAMETERS

• RUN SYNTHETIC WORKLOAD ON TEST SYSTEM

• COLLECT AND COMPARE DATA

• REPEAT TO ACHIEVE DESIRED DEGREE OF CORRELATION

Accounting programs are commonly used for

data collection, although there is increasing use of

hardware monitors, trace programs and other soft-

ware packages to get more detailed timing data on the

real (and the synthetic) jobs in execution. As has been

pointed out earlier in this meeting, it is often neces-

sary to use special techniques or develop special pro-

grams to be able to make specific measurements for

the problem at hand. For example , in an experimental

program sponsored by the Air Force Directorate of

ADPE Selection, we are using a Fortran frequency

analysis program to obtain run time data on actual pro-

grams. This data is in turn used to set the parameters

of a synthetic Fortran program, while accounting data

(SMF on an IBM 370/155) is used to compare the syn-

thetic job to the original user job. For TSO jobs, we

use a system program called TS TRACE to collect

terminal session data, use this data in developing a

synthetic session, and compare the two sessions on the

basis of SMF data.

SUMMARY OF TECHNICAL PROBLEMS

In this last vugraph (Figure 5) , I have listed

some of the major problems affecting computer per-

formance measurement and evaluation in general and

computer selection in particular.

The lack of common terminology and measures

affects all areas of selection. Including workload

characterization, performance specification, and data

collection and analysis. The semantics problems

alone make communication difficult between users and

selection agencies and selection agencies and vendors.

52



FIGURE 5

SUMMARY OF PROBLEMS

• STANDARD TERMS AND MEASURES ACROSS MACHINES

• WORKLOAD DETERMINATION AND REPRESENTATION FOR

CONCEPTUAL SYSTEMS

• TRANSFERABILITY OF SYNTHETIC PROGRAMS

WORKLOAD SPECIFICATION AND GENERATION FOR ON-LINE

SYSTEMS

. EFFECTS OF NEW COMPUTER SYSTEM ARCHITECTURES ON

PRESENT METHODS

The next two problem areas have been discussed

earlier. The fourth problem area is essentially how

to benchmark on-line systems, particularly those with

large numbers of terminals. There are a number of

techniques in use at this time: operators at terminals

following a given script; special processors to gener-

ate the terminal load; and special programs to process

a magnetic tape with pre-stored message traffic.

However, because of the lack of common terminal

languages, it is necessary to develop a different

script for each vendor's computer, which is not only

costly but raises questions of equivalency across

machines. For external drivers, such as the Remote-

Terminal Emulator being developed for the Air Force

Directorate of ADPE Selection, there are also major

implementation problems due to the large variety of

terminals and the lack of standard data communications

control procedures.

On the last point (in Figure 5) there is a new set

of problems as a result of the trend toward virtual

memory machines, computer networks and other

computer-communications systems. In virtual memory

systems, for example, synthetic benchmark programs

have to be carefully constructed to accurately represent

the dynamic addressing characteristics of user pro-

grams. There are practical problems of how to mea-

sure their addressing characteristics, as well as how

to represent them in a synthetic program. Most syn-

thetics currently under investigation for virtual memory

machines contain matrix calculations which have the

property that page fault rates can be adjusted (by

changing the location of the data) while keeping the

CPU execution times constant.

Problems such as these cannot be neglected by

those involved in the selection process. It is hoped

that Task Group 13 can serve an effective role in their

clarification and in identifying and evaluating possible

solutions.

53





PERFORMANCE MEASUREMENT AT USACSC

Richard Castle

U.S. Army Computer Systems Command

INTRODUCTION

The United States Army Computer Systems Command
(CSC) was activated 31 March 1969 under the

direction of the Assistant Vice Chief of Staff
of the Army (AVCSA) and charged with the respon-
sibility for the design, development, programming,
installation, maintenance, and improvement of

Army multicommand automatic data processing (ADP)

information systems. These multicommand auto-
matic data processing information systems must
satisfy the information management requirements
for as many as 41 identical data processing
installations (DPI) located throughout the

Continental United States, the Pacific and
Europe. These systems include both management
data systems and tactical data systems. The

hardware configuration of the DPI's, on which
the management information systems are executed,
are not controlled by CSC, but rather are selected
by the Army Computer Systems Support and Evalu-
ation Command under the direction of the AVCSA
and in accordance with cost effectiveness studies

to determine the optimum hardware distribution
for multicommand systems. Therefore, since
hardware configuration changes would involve
costly and time consuming optimization studies
and acquisition procedures, the continually
growing Army data processing needs requires that

the throughput of the multicommand DPI's be

maximized without reconfiguration.

This obviously can only be accomplished by reduc-
ing the run time of existing data processing
systems and insuring that new systems, currently
under development or soon to be fielded, are
optimized for minimum run time. Thus, the need
exists in the Computer Systems Command for program
performance measurement, to reduce system program
run time, and for configuration performance
measurement, to identify hardware /software bottle-
necks, caused by program changes or added workload
from newly fielded systems.

APPROACH TO PERFORMANCE MEASUREMENT

The charter of the Computer Systems Command con-
tains a requirement to conduct ADP research and
development in order to keep abreast of the cur-
rent state-of-the-art and to insure that the
Command and its customers benefitted from tech-
nology advances. Recognizing the importance of
performance measurement, the Commanding General
assigned the responsibility for a research task
to the Quality Assurance Directorate to develop
a Command combinational hardware /software perform-
ance monitor. This task, R&D Task IV, Computer
System Performance Monitor, was organized to
accomplish the following milestones:

o Acquire and use existing monitors to

evaluate the state-of-the-art.

o Evaluate the experience gained in using
the existing monitors.

o Based upon this experience, develop
specifications for a Command combinational
hardware/software monitor to be used on

multicommand ADP systems.

o Develop the monitor and place it in

operation.

Task IV progressed to the point at which a hard-
ware monitor was purchased, the X-RAY Model 160;

several software monitors were leased, DPPE, DCUE,
CUE and Johnson Job Accounting; the monitors were
used in operational environments; and specification
development began from the experiences gained in

the use of the monitors. At this point, it became
evident that industry was keeping abreast of and

in some instances leading our specification develop
ment in their monitor development programs. Indeed

it appeared that by the time milestone 4 was reache

the desired monitor would already be available off-

the-shelf from industry.

Consequently, the decision was recently made to

attempt to leap-frog industry and start development
of automated evaluation of performance monitor data

This research task was assigned to the Advanced
Technology Directorate and the performance monitors

currently in the inventory were to be put to more

intensive operational use by the Quality Assurance
Directorate

,

APPLICATION OF PERFORMANCE MEASUREMENT AT CSC

The inventory of performance monitors currently

being used at USACSC are shown in Figure 1.

These performance monitors are used by CSC through-

out the multicommand ADP systems life cycle as

shown in Figure 2. Figure 2 also shows the appli-

cation of performance monitors by the Quality

Assurance Directorate during the life cycle.

Early in the programming and documentation phase,

as soon as object programs are available, program

performance measurement can begin and program run

time minimized. In the later phases of system

integration and prototype testing both problem

program and system performance monitors are used

to aid in integration and reduce run time. Later

in the life cycle, during system installation and

after the system is operational, performance

measurements and analyses are made to insure that

no bottlenecks have crept into the system.

55



MONITOR TYPE VENDOR
OWNED/
LEASED TRAVEL LIMIT CAPABILITIES

X-RAY 160 Hardware Tesdata

DPPE

DCUE

Software Boole & Babbage

Software Boole & Babbage

Johnson Job Software Johnson Sys, Inc.

Accounting

LEAP Software Lambda Corp.

Owned

Owned

Leased

Leased

To Be
Leased

None

Mul ticommand
Sites

1 Site Per

Lease

1 Site Per

Lease

None

32 Counter/Timers
2 Distributors

96 Probes

IBM 360 DOS
Problem Programs

IBM 360 DOS Systems

IBM 360 OS or DOS
Systems

IBM 360 OS Programs
Systems & Accounting

FIGURE 1 Quality Assurance Monitor Inventory

P PMING S
H

A DEFINITION
S

LIFE CYCLE

DEVELDPI^fff A'lD IHST/'iLATION

SYSTEil

DESIC^J

DLFAIlill

DESIG1

PRjGR/V'J^ING /^^D

i]oaj[€f[rATio;i

TEST A^!D

II^GFATiaJ

Of^RATIO^J &

MAIrfFEi^j^iCE

; FI!iAL

ms
Ie mi&

S

INITIAL

DESIQJ

REVIB^!

PDR DEBUG

TESTING

CDR

ItSTiriG

K-ITEGR

TESTING

PRITO

"EST

OPERATIONAL

SYSTEh UST

gGFSR

cASRA

DFSR

eSYSTE'V

SPECS

eSYSTETI

e DESIGN A^!AL/SES

e PF{OJECr PLA^lNIi^iG

e PmGRAr/mD!jL£
flARRaTIVES/FmWS

9 TEST CRITERIA

PROGRC^^

NOTEBOOKS

TEST FLANS &

PROCEDURES

0 TEST

s 7uST REPORTS

s PERroR:fljCE

ANALYSIS

Q CPEf^ICi^iAL

PERPOi^^^NE

A^iALYSIS

® OPERATIOrIA;.

RE\TB'iS

9 CHA^iGE

A'l/^LYSIS

FIGURE 2 Life Cycle

56



These performance monitors are used by CSC through-

out the multlcommand ADP systems life cycle as

shown in Figure 2. Figure 2 also shows the

application of performance monitors by the Quality
Assurance Directorate during the life cycle.

Early in the programming and documentation phase,

as soon as object programs are available, program
performance measurement can begin and program run

time minimized. In the later phases of system
integration and prototype testing both problem
program and system performance monitors are used

to aid in integration and reduce run time. Later
in the life cycle, during system installation
and after the system is operational, performance
measurements and analyses are made to insure that

no bottlenecks have crept into the system.

SOME APPLICATION EXAMPLES

The monitors available to CSC have been used for

several different applications in the past two

years. Some of the applications that were import-
ant for their initial instructiveness in the use
of monitors were the Base Operations System
(BASOPS) II Timing Study, the Theater Army Support
Command (Supply) System (TASCOM) (S) monitoring
effort and the Standard Installation and Division
Personnel System (SIDPERS) prototype tests. The
Standard Army Intermediate Level (Supply) System
(SAILS) Run-Time Improvement Study is the most
recent and most successful application of perform-
ance measurement and therefore, is presented in

the greatest detail here,

BASOPS II Timing Study ,

The purpose of the BASOPS II project was to

incorporate expanded functional capabilities into

the SAILS program to incorporate the operational
Standard Finance (STANFIN) programs and to include
a newly developed SIDPERS package. The purpose
of the timing study was to predict if the three
subsystems would operate in a targeted 16 hour
time frame on the standard BASOPS S360/30 con-
figuration with core extended to 128K bytes.
The Boole & Babbage DPPE software monitor was
used to form the basis for the computations of
the timing study. Completed SAILS programs
were monitored on an IBM 3360/30 times. Based
on these figures the remaining program run times
were computed and it was determined that the

proposed system daily cycles would require in

excess of 20 hours at five of the largest BASOPS
installations. Nine medium size installations
would require more than 15, but less than 20
hours. The remaining installations were estimated
at less than 15 hours run time. As a result of
this study, the SAILS and SIDPERS subsystems are
currently undergoing run time reduction studies,

TASCOM (S).

The Theater Army Support Command (Supply),
TASCOM(S), supports the US Army Material Manage-
ment Agency, Europe (USAMMAE), which is a theater
inventory control center having centralized
accountability for command stocks in Europe,

The system utilizes two IBM S360/50 I mainframes
with 32 IBM 2401 tape drives and 7 shared IBM 2314
disk units. The operating system is MET II and is
supported on line with five IBM 1403 printers, one
IBM 2501 card reader, two IBM 2540 card reader
punches and sixteen IBM 2260 remote display stations
for on-line inquiry to the system. The Boole &
Babbage CUE Software monitor was used to monitor
the configuration utilization. The system was
monitored for forty-nine and one-ha^if hours and
it was found that the channel usage was unbalanced
and the number of loads from the SVC-Library were
excessive. After recommendations for device/
channel reassignment and changing the resident
SVC's, the measured time saved was 100 seconds
per hour on each of the CPU's in the number of SVC
loads and 88 seconds per hour per CPU by reduction
in the number of seeks required for SVC loads.
The total measured savings was 188 seconds per
hour per CPU, Other recommendations were made
and are being implemented,

SIDPERS, Ft, Riley.

Monitoring of SIDPERS Prototype Tests at Ft. Riley,
Kansas, was the first trip into the field with the
X-RAY Hardware Monitor. The X-RAY Hardware Monitor
is approximately 5.5 feet tall, 2 feet square and
weighs 460 pounds. Although it is mounted on
casters and is classed as portable, unless there
are elevators or ramps leading to the computer
site, difficulty can arise in locating the monitor
in the computer room. If this particular monitor
is crated and shipped to the computer site by air
freight, the memory unit of the monitor invariably
becomes dislodged and must be reseated in its

connector

.

The SIDPERS Prototype Tests were conducted on an

IBM S360/30 with 128K bytes of core and a single
set of peripherals consisting of four IBM 2401
tape drives, four IBM 2314 disk units, one card
reader/punch and a single printer. There were no
vendor supplied monitor probe points for the IBM
360/30. Consequently, probe points had to be

developed from the IBM logic diagrams before
monitoring could be continued. This trip was
extremely beneficial in revealing problem areas
in the field shipment, installation and monitoring
with a hardware monitor,

SAILS RUN TIME REDUCTION STUDY

GENERAL . A study designed to improve the perform-
ance capabilities of a Command standard system
through the use of performance measurement and

evaluation tools was conducted in June 1973. As
the responsible agent for the development of
multicommand standard software systems, any ineff-
iciencies contained in USACSC developed software
are multiplied many times over when the software
is released for operation at numerous Army sites.

Generally, programs are released to the field when
they run in a specified hardware and software
environment and satisfy specified functional
requirements; performance goals are usually afford-
ed a lower priority.

57



The Standard Army Intermediate Level Supply (SAILS)
System, a multicommand

,
integrated automatic data

processing system, was selected for a run time
reduction study. This system was developed for
implementation on IBM 360/30-40 systems under DOS.
Although SAILS is a newly developed supply and
related financial management system, selected
modules from two other Army Supply Systems are
included in the total package. As a result of

this amalgamation, a fairly complex system has

emerged, with 70 programs comprising the daily
cycle. Some of the larger programs, with as many
as 30,000 COBOL source statements, contain numerous
overlays to accommodate the 98K core allocation
constraint designed for the problem program. At
the time of this study, the system was undergoing
prototype testing and the basic cycle run times
far exceeded expectations. In fact, it seemed
apparent that approval for extension of SAILS

to other sites would be contingent upon some

streamlining of the system. In general, serious
doubts were expressed as to whether the existing
hardware at 41 Army bases could handle this add-
itional workload.

Although the need for a run time reduction study

surfaced, actually selling the idea of initiating
a full scale study was met with some resistance.

To understand this resistance, a brief review of

some of the problems experienced is presented.

o Management Support. Difficulty was
encountered in convincing management that

allocating resources to an optimization
effort was as important as supporting other
priority commitments. Meeting present
milestone schedules took precedence over
efficiency of operation. The continual
receipt of functional modifications also
was frequently cited as reason for deferring
the proposed study.

o Past Usage of Performance Measurement Tools.
Until recently, the use of software perform-
ance monitors at USACSC was limited. For a

long period of time, vendor releases of the

software monitors either contained errors
or when employed in a particular environ-
ment, presented some special problem. It

was not always clear who was at fault;

however, a fair assessment of the situation
is that success was only obtained through
a process of trial and error. The documen-
tation, training and vendor support did not
prepare the user for the "out of the ordin-
ary" situation.

o Experience with Optimizing Techniques.
Once the problems of getting the monitors
operational were overcome, few personnel
had the necessary training and experience

to effectively analyze the trade-offs of

implementing various optimizing alternatives.

The development of ability to identify
improvement potential and make experimental
modifications took time.

However, once these problems were resolved, the

study proceeded smoothly. The approach taken and

results obtained follows.

Task Force Development. To accomplish this study
in an expeditious manner, a team was formed whose
members had the prerequisite skills and capabil-
ities as described below.

o One individual proficient in the use of
JCL and performing DOS system tasks (i.e.,
library functions, use and application of
executive software); also knowledgeable in
the COBOL language, programming techniques
and hardware timing and performance charact-
eristics .

o One individual knowledgeable in the func-
tional aspects of the SAILS system as well
as the ADP system functions (i.e., overall
logic flow and processing concepts; file
formats, organization and accessing methods;
and interfaces with the remainder of the

SAILS system or other external systems).

o One individual capable of operating the

SAILS system on an IBM 360/30-40; also
capable of handling the scheduling,
management of tapes and disk files, and

some statistics collection.

o Three individuals proficient in the use of
performance monitors, their operation and
implementation, as well as the interpret-
ation of analysis data and subsequent
implementation of various optimization
techniques

.

Baseline Cycle Selection . A baseline cycle was
selected against which all subsequent testing was
to be performed. Primary considerations in the
selection of this cycle for monitoring, analysis,
and trial modifications were:

o A cycle for which detail statistical and
job accounting information was available.

o One which had processed a representative
volume and mix of transactions,

o One which had processed the broadest
possible range of transactions In terms
of transaction type and logical processing
situations. This qualification was to

insure the highest degree of reliability
that trial program modification which were
to be made would not adversely affect
functional logic.

A cycle processed during prototype testing, which
met the above criteria, was selected. All master
files, libraries and inputs necessary for rerunning
in a controlled test environment were available.
For accounting purposes, both console logs and
Johnson Job Accounting reports were available.

Subject Program Selection . After giving appropriate
consideration to the objectives of the effort,
resources available and time limitations, it was
obvious that initial efforts would have to be
restricted. This restriction was in terms of both
the number of programs to be studied and the degree
of optimization attempted. For these reasons, only
nine of the basic cycle programs were selected for

study. These programs were selected on the basis

58



of their average run time from statistics accumul-
ated on all cycles processed during the prototype
testing. The rationale used in selecting these

programs was that they would provide the greatest
potential for immediate reductions in cycle run

time. Each program had averaged between one and

six hours effective production time while the

group as a whole was consuming approximately 60-

70% of the total cycle time.

Object Computer for Experiment . Since most
extension sites currently have S360/30's, it was
recognized that the ideal environment for conduct-
ing the planned tests would be a S360/30 configur-
ation with peripherals identical to those on which
the system will run; however, dedicated time in

the required quantity and time frame could not be

obtained. Consequently, it was decided that a

S350/40 with identical peripherals was the most
suitable alternative. Since the nature of many
actions to optimize a program are actually "tuning"
it to a particular environment, results obtained
on the S360/40 were later validated on a S360/30.

Tools Employed . Three proprietary software products
were used to analyze and monitor the subject
programs.

o STAGE II - Tesdata Corporation. This
package is a "COBOL" source code optimizer
which accepts as input the source program
statements and produces a series of reports
which identifies possible inefficiencies
and potential areas for improvement of both
run time and core storage requirements.

o DOS Problem Program Evaluator (DPPE) -

Boole & Babbage, Inc. This product
consists of two basic elements, the
Extractor and Analyzer. The Extractor
resides within the same partition as the
object program during its execution.
Statistical samples of activities within
the object program are collected via a

time based interrupt and recorded on a

temporary file. The analyzer then uses
this recorded information to produce
reports and histograms showing percentage
of CPU activity within the program's
procedure at 32 byte intervals, quantifies
both file oriented and non-file oriented
wait time and identifies that to which it

is attributable,

o DOS Configuration Utilization Evaluator
(DCUE) - Boole & Babbage, Inc. This soft-
ware monitor also consists of an Extractor
and an Analyzer. The techniques used are
similar to DPPE, but in this case, result-
ing reports are relative to performance
and loading of the hardware and system
software as a whole. Detailed data is

presented regarding such items as input
and output device utilization, channels,
disk arm movements and SVC library.

Experiment Constraints . In order to insure a

reasonable degree of confidence that proven bene-
fits would result and could be quantified with
available time and resources, certain constraints
were self-imposed. Only those program modifications

which could be accomplished with three or four

manhours of analysis and reprogramming effort were
considered for immediate implementation and test-

ing. Changes meeting this criteria were not made
unless they could be accomplished within the con-

fines of system resources presently used by the

program. Specifically, no changes were considered
which would require more than 98K core, more tape

drives, additional disk space, or which would
involve a major impact on the remainder of the

SAILS system. These constraints assured that any

significant identified savings could be incorpor-
ated and issued to the field with a minimum of

further analysis. Caution was used so as not to

make changes which would adversely affect the

program's functional logic. Although potential
for improvement was indicated in these areas,

they were not addressed due to the risk of creat-

ing "bugs" in the programs and thereby, jeopard-
izing the objective.

Methodology . Preparatory to actual testing,
arrangements were made with Tesdata Corporation
to acquire STAGE II on a 30-day trial basis.

STAGE II reports were then obtained for the nine

selected programs. Initially, it was planned to

proceed immediately with changes indicated by

STAGE II and appraise results through monitoring
as the first step in program testing. This course

was subsequently abandoned; however, when two

factors became apparent. First, several errors
and limitations were discovered in the STAGE II

reports which indicated the information was some-

what less than totally reliable.

Second, the volume of diagnostics created by

STAGE II made selection of prime optimization
areas difficult. As verified later by testing

with DPPE, certain routines, although employing
other than the most efficient techniques, simply

were not executed frequently enough to consume
significant amounts of time. Therefore, efforts

were concentrated in accordance with DPPE and DCUE

indications, using STAGE II reports as an aid in

determining alternative methods and techniques

to incorporate.

Initially, the entire benchmark cycle was run on

the S360/40 in a controlled environment and all

intermediate files necessary to test trial modif-

ications for the nine selected programs were
captured. Timing statistics ^^ere collected and

execution times for each of the subject programs

were recorded as the baseline time to which all

comparisons would be made. All timed tests

conducted throughout the effort were in a dedic-

ated environment. Worthy of special note is the

fact that these baseline times were obtained with-

out a monitor in operation, while all times

recorded for modified programs were obtained with

a monitor in operation and are therefore inclusive

of monitor overhead (estimated at no more than 5'0 •

This means that reduction of run times resulting

from subsequent testing of modified programs are,

if anything, understated.

After completion of the benchmark cycle test,

programs were modified on the basis of DPPE and

DCUE reports, tested while remonitor ing , and

modified still further when this was feasible

under the constraints mentioned earlier.

59



TEST PROFILE
RUN TIME, CORE USAGE, CPU ACTIVITY, WAIT TIME

EXECUTION TIME CORE STORAGE WAIT
ACCUM ACCUM CPU NON

PROGRAM SUBJECT RUN ELAPSED CHANGE USED CHANGE ACTIVE FOW FOW

P08ALB Basel ine 27

:

:10 NA 93,531 NA 80,,00% 3 .10% 10 . 28%

Modi f i ed 25;:05 -1.1% 89,903 -3.9% 85,,12% 3 .48% 11 .40%

P69ALB Basel ine 21

;

:33 NA 85,525 NA 84,.46% .89% 14 .57%

Modi f i ed 18;:02 -16.3% 89,525 +4 . 7% 72,.76% 5 .48% 18 .15%

P22ALB Basel ine 2:27;:17 NA 85,651 NA 64..20% 28 .14% .58%

Modi f i ed 2:06;:43 -14.0% 91 ,859 +7.3% 67,.78% 31 .91% .31%

P23ALB Baseline 1 :22;:23 NA 89,951 NA 63.48% 35 . 58% .90%

Modi f i ed 1:16;:40 -6.9% 97 ,723 +8.6% 65,.59% 34 .20% .48%

P50ALB Basel ine 1 :00;:52 NA 85,525 NA 53,.58% 37 .33% 7 .85%

Modi f i ed 41

:

:23 -32.0% 89,525 +4.7% 84,.97% 1 .90% 11 .42%

P72ALB Basel ine 1 5::08 NA 82,095 NA 91,.27% 1 .)l% 6 .88%

Modi f i ed 10;:14 -32.4% 73,825 -10.1% 89,.15% 3 .68% 6 .98%

P27ALB Basel ine 43;:16 NA 12,098 NA 97,.58% 1 .06% 2 .29%

Modified 3;:35 -91 .7% 10,034 -17.1% 41

,

.60% 38 .94% 18 .80%

PIOALF Baseline 22;;39 NA 69,751 NA 34,.76% 62 .95% 2 .26%

Modif i ed 12;:52 -43.2% 85,549 +22.7% 74,.40% 20 .61% 4 .87%

PllALF Basel ine 1 :48;:19 NA 96,761 NA 16,.73% 10 .51% 72 .76%

Modified 1 :38;:48 -8.8% 97,609 + .9% Not Monitored •

FIGURE 3 Summarization of Results

SUMMARIZATION OF RESULTS

360/40 Benchmark Tests 3i0/30 Verification Tests

PROGRAM
I'M MODIFIED
RUN TIME

MODIFIED
RUN TIME % REDUCTION

UNMODIFIED
RUN TIME

MODIFIED
RUN TIME % REDUCTION

P08ALB 27: 10 25::05 7.,7% 47: 36 45;:50 3.7%

P69ALB 21::33 18;;02 16;:3% 35:;31 26;:50 24.5%

P22ALB 2:27:;17 2:06;:44 14,.0% 3:46:;30 3:16::47 13.1%

P23ALB 1 :22;;23 1:16;:40 6,.9% 2:01

:

:00 1 :52;:46 6.8%

P50ALB 1 :00;:52 41

;

:23 32..0% 1 :28;:38 1 :07;:19 24.1%

P72ALB 15;:08 10;:14 32,.4% 22;:06 15;:07 31.6%

P27ALB 43;:16 3;:35 91

,

.7% 1 :30;:05 3;;27 96.2%

PIOALF 22;;39 12 :52 43,.2% 36;:46 21 ;:01 42.8%

PllALF 1 :48;:19 1 :38 :48 8,.8% 2:06;:28 2:05;:13 0.6%

TOTAL 8:48;:37 6:53 :23 21,.7% 13:14;:40 10:14;:20 22.7%

FIGURE 4 Test Profile - Run Time,

Core Usage, CPU Activity, Wait Time

60



Verification that each modified program had per-

formed correctly during the tests consisted of

comparing input and output record counts between
the benchmark test cycle and the respective pro-
gram test. In addition to control count compar-

isons, one program was further verified by an

automated tape comparison of output files between
the baseline and test runs.

Analysis and Findings . A review of the selected

programs revealed many cases of inefficient COBOL
usage. It should be noted, however, that this

situation is not unusual or unique to this part-

icular system or organization. Very often,

application programmers have little exposure to

efficient COBOL implementation. Although numerous

alternative optimizing techniques exist, for this

study only a few of the many available ones were
utilized. Only those techniques which were pot-
ential candidates for large scale benefits with a

minimal expenditure of effort were employed. To

assess the merits of various techniques and select

the most appropriate ones, a knowledge of the

efficiencies/inefficiencies inherent in the COBOL
language, the compiler, the operating system and

the hardware itself was applied. Major modific-
ation areas for this study included;

o Buffering and Blocking. In the SAILS
system, core limitation necessitated
single buffering several key files. Since
this system runs in the background part-
ition with only SPOOLing processed in the

foreground, the use of double buffered
files in place of single buffered files
to reduce file oriented wait greatly
improves total system performance. In

those cases where core was available or
could be made available, files were
double buffered on a priority basis accord-
ing to the amount of wait time indicated
by DPPE. Reducing the block size of key
files required an impact analysis of

possible external interface problems or

possible degradation to other programs
in the SAILS system which also accessed
the key files.

o Table Handling. Many tables processed by

the SAILS system, were searched using
iterative subscripted loops. To reduce
program execution time, three alternative
searching techniques were employed; serial
search, partition scan, and binary search.
Depending upon the number of entries and
the table organization, the most approp-
riate one was selected.

o Subscript Usage. The misuse of subscripts
was identified as a contributor to excess-
ive run time. Techniques employed to

either eliminate or reduce the number of
subscripts in a particular program included
serial coding, use of intermediate work
areas, use of literal subscripts and com-
bining multiple subscripts to a single
level by redefining the matrix as one
dimension and applying a mapping function.

o Data Patterns Analysis. Data patterns
occurring within the problem program were

identified and depending upon their frequen-
cy of execution were altered. The import-
ance of testing with representative data
cannot be overstated when tuning a system
through the rearrangement of data patterns.

o Data Definition and Usage. Special attent-
ion was given to assigning the most effic-
ient usage for data item representation in

core storage for those cases where the

applicable item had a significant impact on
CPU activity. Also steps were taken to

eliminate or at least reduce to a minimum
mixed mode usage in both arithmetic express-
ions and data move statements.

o Console Messages. It was found that a

considerable amount of time was being
consumed printing console messages. Those
messages that required no monitoring or
response by the operator were diverted to

the SYSLST in lieu of the console printer.
To even further eliminate console printout,
it was suggested that eventually the system
be modified so that simple comparisons and

checks of control counts become as integral
part of the system logic and not the respons-
ibility of an operator.

In general, the modificiations employed during this
study were concentrated in the areas listed above.
At Figure 3 is a summarization by program of both
the baseline and modified program run time for the
benchmark test on the IBM 360/40 and the verific-
ation test on the IBM 360/30. Notice that for the
benchmark test the degree of success ranged from
6.9% to 91.77,. The net result was a 21.77=, reduction
in the processing time of the nine selected prog-
rams. Resources used to accomplish this effort
were 114 man days and 135 hours of computer time.

The chart at Figure 4 is a test profile showing
run time, core usage, CPU activity and wait time
for each program before and after modifications
were made.

For three of the selected COBOL programs, some

examples of the analysis, techniques employed and

results achieved is presented.

P50ALB. This program originally ran 1:00:52.
The initial DPPE analysis showed 37.337. of the

total run time attributable to File Oriented Wait
(FOW) of which 8:42 or 14.107. was wait time on the

input Document History (DH) file and an additional
9:43 or 15.747„ was wait time on the output DH file.

The DH file contained variable length records
ranging from 175 to 2100 characters with an orig-
inal block size of 8400 characters. Due to core

limitations, both the input and output files were
single buffered. To reduce the high FOW, the DH
file was reblocked from 8400 characters to 6300

characters; thereby, permitting both files to be

double buffered. Active CPU time was recorded at

53.587, of the total run time. A review of the

DPPE histogram showed two areas where a consider-
able amount of this time was being consumed. One

of these areas was attributable to a routine which

moved individual segments of the DH file to a work
area via an iterative subscripted loop. A routine
was substituted which accomplished the movement
of these segments in mass. The second large time

61



consuming area was identified as the processing
time of two IBM modules used for handling variable

length records. Since these modules, which accoun-

ted for 12% of the total processing time, were not

accessible to the application programmer, no action
was taken.

The first test after these modifications were made
ran 46:12 which showed a 247„ reduction from the

unmodified version's run time. Total FOW time had
decreased to 5:37 or 12.19% of the run time and

the CPU time attributable to processing the DH
segment move had decreased significantly. Still

more areas for possible improvement were identif-
ied. Two single buffered files which previously
had no FOW, now had wait time of 4:23 or 9.51%
of the total run time. Consequently, both files
were double buffered for the second test. After
analyzing the impact of block size modification
on 14 other programs using the DH file, it was
decided to further decrease the block size to

4200 characters. By cutting the block size in

half, all programs using the file could double
buffer it without any alteration of core require-
ments. The second test ran 41:23, a net decrease
of 23% from the unmodified versions run time.

FOW had diminished to a level of 1.90% or less

than a minute of the total run time. Active CPU
time was reported as 84.97% of the total run time.

Active CPU time was reported as 84.97% of the

total run time. The IBM variable length record
modules now accounted for 197o of the time. The

remainder of CPU active time was spread across
numerous small routines. Because of the amount

of time required to research each item, additional
changes, which could bear heavily on CPU active
time, were not pursued during this study.

P22ALB. In the baseline cycle, this program ran

2:27:17. The initial DPPE analysis showed FOW
at 28.14% of the total run time. The bulk of FOW
was on disk resident master files, all of which
are accessed by a Command written Data Management
Routine (DMR) . SELECT clauses, data descriptions
and the actual reads and writes of these files
are not part of the problem program and therefore,
opportunities for optimization were limited. To
reduce FOW, three single buffered tape files,

which constituted 2.5% or 4 minutes of the wait
time, were double buffered. Also some nonresponse
type console messages were diverted from SYSLOG
to SYSLST. Active CPU time was recorded at 64.20%
or 1 hour, 21 minutes. A breakout of the CPU
time revealed that 35.43% or 53 minutes was spent
in an IBM Direct Access logic module. An analysis
of the CPU active time spent in the problem prog-
ram showed that the three most time-consuming
routines accounted for only 1.94% of the total
processing time. In other words, practically all
processing which was affecting the run time was
taking place outside the problem program. There-
fore, only minor changes were made to improve
computational efficiency. The first modified test

ran 2:11:15 an 11% reduction from the baseline
test. As already stated, the fact that the
routines causing the most wait or most CPU act-
ivity fell outside the realm of the problem
program, made short range modifications difficult.
To help identify possible improvements in the area

of disk organization, P22ALB was rerun using DCUE.
Information obtained from the DCUE analysis was

then used to reallocate disk extents in an attempt
to reduce arm contention. The results of this
second test, which ran in 2:06:43, showed only
a 4 1/2 minute reduction. This reduction was
somewhat less than expected. At this time, it

became increasingly clear that the DMR currently
in use was extremely costly in terms of total SAILS
processing time. As a result, no additional tests
were made and a major study of available file

accessing routines was recommended,

P27ALB, During the baseline cycle run, the execu-
tion time of this program was 43:16; however, it

had run as long as 6 hours during prototype testing,
A review of the most frequently executed routines
revealed that 95%, or 40 minutes of the total proc-
essing time was spent in a single routine which was
designed to clear an array of 324 counters via a

subscripted loop, "PERFORMED VARYING," This
routine was replaced by straight-line coding a

series of conditional statements and moves to

clear 9 counters. When P27ALB was tested with the

new routine, the results were startling. It ran
only 3 minutes, 35 seconds, a reduction of 92%.

The routine which previously had caused the excess-
ive run time (40 minutes) was reduced to a total
of 35 seconds. This test provided a classic examp-
le of the resulting differences between simple

straight forward coding and usage of the more
complex COBOL options with all their inherent
inefficiencies.

Conclusions ;

This study was successful in reducing the process-
ing time requirements for the SAILS system. It

also provided a good example of effective utiliz-
ation of performance monitors. At the completion
of the study, management could actually see the

practicality of using monitors. It also served as

the catalyst to initiate action on some ADP related
problems, specifically, the need for a tutorial
document providing programer guidelines and conven-
tions and the need for a reappraisal of the Command
Data Management Routines. As verified by benchmark
testing, the 21.7/!, average reduction in processing
time for the nine programs studied actually elim-
inated three hours from the daily cycle processing
time. This savings when multiplied by the number
of systems affected (41 Army bases) represents a

substantial savings to the Army.

An optimization effort such as the one just descr-

ibed is not a simple task. It requires extensive
planning, encompassing a review of the entire
system, both software and hardware. In order to

operate in the most expeditious manner and perform
the greatest service, an independent group of
qualified personnel with training and experience
in all phases of optimization is necessary.
Provisions for a dedicated and controlled test

environment assure the highest reliability and

predictability of results. As evidenced by this

study, a substantial investment and management
commitment is necessary to successfully complete
an optimization effort.

62



A COMPUTER DESIGN FOR MEASUREMENT—THE MONITOR REGISTER CONCEPT

Donald R. Deese

Federal Computer Performance Evaluation and Simulation Center

Introduction . This paper is divided into
two parts - in the first part I will des-
cribe (on a fairly hiah-level basis) the
Monitor Register Concept; in the second
part, I will describe a specific imple-
mentation of the Monitor Register Concept
within the TRIDENT Submarine Fire Control
System.

I. DESCRIPTION OF MONITOR REGISTER CON-

CEPT .

A. Hardware Monitor Concept . First,
a bit of background on the concept of
hardware monitoring so that the desira-
bility of the Monitor Register Concept
will be apparent. (I will not try to
describe the justification for computer
performance monitoring or the reason for
using a hardware monitor; these subjects
are adequately addressed in numerous pub-
lished work.

)

From a simplistic view, the hardware
monitoring concept is as illustrated in
Slide 1. When using a hardware monitor,
very small electronic devices (called
sensors or probes) attach to test points
or wire-wrap pins on the back planes of
computer equipment. These electronic
devices use a differential amplifier
technique to detect voltage fluctuations
at the locations to which they are
attached. (The voltage fluctuations re-
present changes in the status of computer
components - Busy/Not Busy, True/False,
etc.) The signal state, as detected, is
transmitted by the electronic device over
a cable to the hardware monitor. The
hardware monitor measures the signal in
one of several ways: it counts the oc-
currance of a signal stati (e.g. , count
instructions executed, count seek com-
mands, etc.); it times the duration of a
signal state (e.g. time CPU Busy, time
Channel Busy, etc.); or, it captures the
state of one or more signals (e.g., cap-
ture contents of Instruction Address
Register, capture contents of Storage
Data Register, etc.). Many variations on
this basic concept are commercially
available.

B. Operational Problems with Hardware
Monitors . There are a number of opera-
tional problems (Slide 2) which have
plagued hardware monitor users

:

1. Locating Test Points . There
are thousands of test points on a computer
system.. It is often difficult for users
to determine which test point (or combin-
ation of test points) reflects precisely
the signal desired for measurement.

2 . Signals Not Available at Test
Points . Some signals - especially those
involved with more esoteric measurements -

are not available at test points.

3 . Signals Not Synchronized . As
users of hardware monitors begin measuring
"logical" aspects of their computer system
(e.g. program activity, file activity,
operating system activity, etc.), the si-
multaneous measurem.ent of many signals is
frequently required. The desired signals
are not always synchronized; sophisticated
measurement techniques are required to
synchronize the signals - and frequently
the measurement strategy must be abandoned
because of synchronization failure.

4. Attaching probes . The process
of attaching probes entails a risk of
crashing the computer system and prudance
requires a dedicated system; the process
disrupts operation and ala^-ms management.

5. Changing probes . When mea-
surement ob j ectives change , often probes
must be changed. The problems caused by
changing probes are the same as initial
probe attachment.

6 . Large Number of probes re -

quired . An increasinaly large number of
probes is required with measurem.ent stra-
tegies. This is especially true with the
more sophisticated strategies v.'hich re-
quire the capture of data register or
address register contents.

C. Monitor Pegister Concept . The
Monitor Register Concept solves these
problems

!

63



° Slide 1 --- HARDWARE MONITORING CONCEPT

LOCATING TEST POINTS

SIGNALS NOT AVAILABLE AT TEST POINTS

SIGNALS NOT SYNCHRONIZED

ATTACHING PROBES

CHANGING PROBES

LARGE NUMBER OF PROBES OFTEN REQUIRED

o Slide 2 --- OPERATIONAL PROBLEMS

64



1. Data Flow. Before specifically
discussing the Monitor Register Concept, let us
consider the flow of data values within a com-
puter system. Although actually quite complex,
the data flow may be considerably simplified by
considering only those registers containing the
data or address values which reflect the internal
operations of the computer. If the contents of
these registers could be captured, and properly
sequenced, the internal operation of the computer
could be duplicated. (If these registers could
be captured, all of the important computer
functions could be measured, all the data could
be captured, all addresses could be recorded,
etc.

)

Attaching hardware monitor sensors
to each bit in these registers would re-
quire a large number of sensors (at least
one sensor to each bit in every signifi-
cant register) and the problem of sianal
synchronization would still exist.

2. Monitor Register . I"That is
needed to solve these problems is some
sort of funnel which would collect the
contents of all of these registers-of-
interest and funnel them to a common
register which could be easily monitored.
This is the essence of the Monitor Regis-
ter Concept. As shown by Slide 3, with
the Monitor Register Concept, the contents
of a number of registers are collected
and funneled to a single "interface"
register. As each register value changes,
the contents of the register are presented
(one register at a time) to the interface
register.

Of course, there really isn't a fun-
nel inside computers. But there is some-
thing which is the electronic equivalent.
I'll discuss that when I discuss a speci-
fic implementation of the Monitor Regis-
ter Concept. To illustrate the concept,
however, let us shrink the funnel in
Slide 3 and place it inside a CPU (Slide
t) where it funnels register contents to
a Monitor Register Interface. A hardware
monitor can then be attached to this sin-
gle common interface (Slide 5 ) and acquire
the contents of all of the registers which
are input to the "funnel."

The Monitor Register Concept eliminates
the operational problems listed earlier.
The test points are replaced with a speci-
fic Monitor Register Interface. All rele-
vant signals are available at the Monitor
Register Interface. The signals are syn -
chronized when presented to the Monitor
Register Interface. There is no need to

change probes since all relevant signals
are made available at the Monitor Register
Interface, and, since all relevant signals
are available at the Monitor Register
Interface, a large number of probes is not
required .

This is a simple concept. What about
implementation of the concept into a speci-
fic computer design? The second part of
this paper describes an implementation of
the Monitor Register Concept under a pro-
ject FEDSIM performed for the Naval Weapons
Laboratory, Dahlgren, Virginia.

II. IMPLEMENTATION OF THE MONITOR REGISTER
CONCEPT .

The Naval Weapons Laboratory (NWL) is
located at Dahlgren, Virginia. One of NWL's
Missions (Slide 6) is to develop and check-
out the Fire Control System software for
the TRIDENT submarine.

A. Fire Control Svstem Software . The Fire
Control System softv/are must perform a num-
ber of complex tasks associated with the
preparation for missile launch. Some of
these tasks are computation of missile tra-
jectory, missile alignment and erection
computation, and guidance computer shadow-
ing. These are just a few of the many
functions performed by the Fire Control
System software.

The Fire Control System software v/ill
operate in a real-time tactical system.
This system has specific and critical time-
dependent requirements; if the software
does not respond to the external stimuli
within a certain time, input data may be
simply lost, or output may no longer be
accepted. Further, real-time systems, by
the very fact that time is a central fac-
tor, present unique problems. Real-time
systems encounter unpredictable sequences
of unrelated requests for system services.
Since the timing interactions often are
difficult to predict and may be impossible
to consistently duplicate, program errors
will frequently mysteriously and errati-
cally appear.

Compounding the real-time problems
facing NWL are the implications of the new
systems for the TRIDFNT submarine. When
some problem occurs in the Fire Control
System software, it may be difficult to
determine whether the problem is caused
by the application program or caused by
the new computer system or the new opera-
ting system. The new computer system,

might have insufficiently documented fea-
tures or pecularities , design problems, or
actual hardware failure. The new operating
system might have coding errors, logic
errors, insufficiently documented features,
and so forth. Even the assembler and com-
piler are new; these could generate

65



ALU
PSW

IBR
OAR

MDR

1
1

EOR

UPC

° Slide 3

Slide 4 --- MONITOR REGISTER INTERFACE
MONITOR REGISTER INTERFACE

66



o Slide 5

HARDWARE MONITOR

y

MONITOR REGISTER INTERFACE

THE NAVAL WEAPONS LABORATORY

ONE MISSION

DEVELOP AND CHECK-OUT FIRE CONTROL SOFTWARE



erroneous code or data, they could have
poorly documented features, etc.

In this difficult environment, NWL
must develop the TRIDENT Fire Control
System software. The software must
undergo extensive test and debug. Fince
timing is often critical, the software
must be efficiently tuned.

B. Performance Measurement of the TRIDFNT
Basic ProcessoF! In this environment and
with these tasks, NWL decided that perfor-
mance measurement tools and techniques
are needed. As a result, NWL asked FEDSIM
to assist them with the design of appro-
priate performance measurement features
for the TRIDENT Submarine Basic Processor.

As you might imagine, a nuclear sub-
marine is not the typical place to find
a hardware monitor. The environment poses
some rather unique problems.

There are unique problems even when
the Basic Processor is located in the Test
Berth environment at the Naval Weapons
Laboratory in Dahlgren. (For example,
the computer will be ruggedized; it will
be surrounded by the "bathtub enclosure"
and there will be no possibility of con-
necting hardware monitor probes to the
processor. If any signals are ever to
be monitored, the signals must be made
available to some external interface.)
When we were considering the computer de-
sign approach to solving the problems of
monitoring the TRIDENT Basic Processor,
we quickly realized that the environment
was ideal for the Monitor Register Con-
cept .

C. Monitor Register Concept in the TRI -

DENT Submarine r As you know, computers
do not really have a funnel into which
data can be poured. However, the compu-
ter logic does have something very much
like a funnel: the multiplexor. For the
TRIDENT Basic Processor, we selected a
multiplexor (Slide 7) having eight inputs
and one output. Under microprogram con-
trol, at every minor cycle, the multi-
plexor selects one of the eight input
registers and presents it to the output
register.

The microprogram control is facilitated
by five "performance monitoring" bits in
the microprogram control word. At each
minor cycle, three of these bits (value
000 to 111) are provided to the multi-
plexor. The multiplexor uses these three
bits as a binary address to select the
appropriate input register and provides
the register bits, in parallel, to the
Monitor Register.

The other two bits of the five in
microprogram control word are used to
identify certain unique characteristics
of the specific data contained in the
selected register. (For example, the

Program Status Word (PSW) has a three-bit
address of "001"; a two-bit characteristic
code of "00" indicates a normal PSW, a code
of "01" indicates an instruction-string-
terminator PSW, a code of "10" indicates a
successful-branch PSW, a code of "11" indi-
cates an interrupt PSW.)

The programmer writing the microprogram
does not have to continually worry about
the "performance monitoring" bits in the
microprogram control word; normally, these
bits wili be set to zero. The bits will
be set to non-zero only at those few easily
identified points in the microprogram rou-
tines where the appropriate registers are
being altered.

The eight registers which are input to
the multiplexor are identified in Slide 7.

The Program Status Word provides the vir-
tual"TnstructTorT'aS^ress , task identifier,
condition designator, machine state, and
interrupt status. The Memory Data Register
provides operand values from either the
memory or local processor registers. The
Operand Address Register provides inter-
mediate and final operand address values
(both virtual and absolute) . The Look-
Ahead Program Counter provides the absolute
instruction address. The Instruction Buf -

fer Register provides the instruction word
at the initial stage, intermediate stages
and final stage of instruction execution.
The Executive Input/Output Register pro-
vides the port and device address for all
input and output. The Interrupt Register
provides the interrupt level, interrupt
conditions, etc. The CPU Timer Register
provides the means of time stamping various
events at the resolution of the Basic Pro-
cessor minor cycle clock.

D. Uses of Data Available at Monitor Reg-
ister^ How can all of the data provided
by these registers be used?

1. Program Debug (Slide 8 ) . Prac-
tically all of the data provided at the
Monitor Register could be used to debug
programs. The Program Status Word could
be used to debug programs. The Program
Status Word could be used to trace program
logic steps and module execution, and to
identify non-executed program legs. The
Operand Address Register could be used to
identify references to specific program
variables or data areas and the Memory
Data Register could be used to analyze the
values contained in the variables. Or,
for example, the instruction address in
the Program Status Word could be captured
whenever selected variables were referenced.
This could be used to determine which in-
structions were referencing certain vari-
ables .

2 . Program Tuning (Slide 9 ) . The
data provided at the Monitor Register could
be used to "tune" or optimize specific user
programs. The Program Status Word could
be used to obtain a distribution of

68



o Slide 8

r.icRO

PROGRAM

COIITROL

INTERNAL CPU REGISTERS

8:1 MULTIPLEXOR

3?-BlT DATA REGISTER

PROGRAM DEBUG

•PROGRAM TRACE

•MODULE TRACE

•IDENTIFY NON-EXECUTED INSTRUCTION

•RECORD VALUES OF SELECTED VARIABLES

•RECORD ADDRESS OF INSTRUCTIONS REFERENCING

SELECTED VARIABLES

CREATE DETAILED PROGRAM PROFILE

REGISTERS

PROGRAM STATUS WORD

MEMORY DATA REGISTER

OPERAND ADDRESS REGISTER

LOOK-AHEAD PROGRAM COUNTER

INSTRUCTION BUFFER REGISTER

EXECUTIVE INPUT/OUTPUT REGISTER

INTERRUPT REGISTER

CPU TIMER REGISTER

o Slide ^

" Slide 7

PROGRAM TUNING

•CPU EXECUTION BY AREA OF CORE

USE OF SUPERVISOR SERVICES

PAGING ACTIVITY

CODING TECHNIQUES

INDEXING LEVELS

o Slide 10

INSTRUCTION ANALYSIS

•OP-CODE ANALYSIS

'INSTRUCTION PATTERNS

I. -INSTRUCTION SEQUENCES

•INSTRUCTION STRING LENGTH ANALYSIS

69



COMPUTER COMPONENT MEASUREMENTS"

'CPU BUSY/WAIT

EXEC BUSY

•INPUT/OUTPUT TIMING. BY CHANNEL AND DEVICE

DEVICE ERRORS

•INTERRUPT

•RACE CONDITIONS DURING PEAK I/O

•MEMORY CONFLICTS

o Slide 12

THE MAJOR POINT

EVERY SIGNIFICANT ADDRESS. INSTRUCTION OR

DATA VALUE IS AVAILABLE AT THE MONITOR

REGISTER INTERFACE. IF ALL THIS DATA WERE

RECORDED. THE COMPUTER PROGRAMS' EXECUTION

COULD BE SYNTHESIZED!

o Slide 13 --- TEST BERTH MODE — INTERACTIVE MONITORING

70



instruction execution by area of core, so
that highly used segments of code could
be examined for optimization potential.
The Instruction Buffer Register could be
used to analyze programmer coding techni-
ques, the use of supervisor services by
module, and the number of levels of indi-
rect indexing. These two registers could
be used together to analyze paging acti-
vity.

3 . Instruction Analysis (Slide lo ) .

The data provided at the Monitor Register
could be used to analyze the instructions
executed by the computer. The Instruction
Buffer Register contains the instruction
as it was fetched from memory, and reflects
any modification made to the instruction
because of, for example, indirect address-
ing. This data could be used for op-code
analysis, examining instruction patterns,
analyzing instruction sequences, and so
forth. The Program Status Word is uniquely
identified whenever program control is
transferred; this feature facilitates
instruction string length analysis.

4 . Computer Component Measurements
(Slide 11) . Finally , the data provided
at the Monitor Register could be used to
measure the utilization of the computer
components. The Program Status Word could
be used to measure the amount of time the
CPU is in Busy or Wait States, and the
amount of time that the CPU is executing
in Executive Mode or in a User Program.
The Executive Input/Output registers con-
tain I/O channel and device addresses when
input or output is initiated or terminated.
Therefore it is easy to determine the chan-
nel and device busy times, overlap times,
CPU Wait on Channel or Device, and so
forth. The Interrupt Register could be
used to determine interrupt levels, inter-
rupt types, device errors, and so forth.
A combination of registers associated with
memory, along with the CPU time, could be
used to determine memory conflicts.

These are just examples of the uses
for data available at the Monitor Regis-
ter. The major point (Slide 12) which
these examples tried to illustrate, is
that every significant address, instruc -

tion or data value is available at the
Monitor Register. If all this data were
recorded, the computer programs' execution
could be synthesized!

For a normal monitoring session, it
is unlikely that all of the possible data
would be actually captured or analyzed.
The massive amount of data would preclude
this except for very unusual measurement
objectives. Each monitoring session likely
would be collecting data to solve a parti-
cular problem.

E. Test Berth Configuration . Hov; is NWL
going to use this design? Slide 13 is a
simplification of the Software Development
System components which will be in the Test
Berth at Dalhgren.

A hardv/are monitor is attached to the
Monitor Reaister and interfaces between the
TRIDENT Basic Processor and a mini-computer.
The hardware monitor provides a high-speed
electronic filtering, decoding, comparison
and buffering capability. The main reason
for the hardv/are monitor is that the mini-
computer would not, of course, keep up with
the rapid flow of register data provided at
the Monitor Register. The hardware monitor
passes on to the mini-computer only the
data required for a specific measurement
objective. In this way, the mini-computer
can effectively process the data it receives.

The mini-computer processes data from
the hardware monitor in a number of v;ays

,

depending on the specific measurement ob-
jectives (program debug, program tuning,
and so forth) . The mini-computer has its
own peripherals - tapes, disks, and a CRT;
the mini-computer is connectef^ directly to
the TRIDENT Basic Processor by an I/O chan-
nel .

Programmers at NWL will use the mini-
computer, via the CRT, for interactive mon-
itoring. On command from a programmer, the
mini-computer will load programs from its
disks into the TRIDENT Basic Processor via
the I/O channel. The mini-computer will
set up control information for the Monitor
Register logic and for the hardware monitor.
Then, the mini-computer will initiate exe-
cution of the program just loaded. The
programmer can have monitored data dis-
played on the CRT and/or have it written
to one of the mini-computer's tapes for
later analysis.

F. At-Sea Monitoring . When the TRIDENT
submarine goes to sea, the Fire Control
System software has been exhaustively de-
bugged. However, we all know that soft-
ware is never really completely debugged
("debug" means that all known errors have
been corrected.); the best software usually
eventually fails. Therefore, it is desir-
able to have some sort of monitoring capa-
bility at sea so that when the software
does fail, the personnel at the Naval Wea-
pons Laboratory have something to aid them
in finding the error. This is especially
important in that, since the software has
been exhaustively debugged, error causes
are difficult to determine.

There is a dual configuration in the
TRIDENT submarine (to accomodate preventive
maintenance, etc.). Slide 1'* shows the
implications of this dual configuration

71



from a monitoring view - the two systems
are cross-connected and monitor each other

^

When the TRIDENT is configured for
cross-connected monitoring, a port of the
independent I/O control processor ("intel-
ligent channel") would be connected to
the Monitor Register of the other Basic
Processor.

In the primary basic processor, con-
trol logic would be initialized such that
only selected registers would be presented
to the Monitor Register. In the secondary
Basic Processor, a utility program would
be leaded, request allocation of memory,
and issue a Read I/O to its I/O port con-
nected to the Monitor Register of the pri-
mary Basic Processor. Conceptually, the
Read I/O would have two Data Control Words
(DCWs) chained together. The first DCW
would be a Read I/O operation with a data
length the size of the memory allocated
to the utility program. The second DCW
would be a transfer to the first DCW. In
operation, data would be read from the
Monitor Register of the primary Basic
Processor and placed in the memory area.
When the memory area was full, the second
DCW would transfer I/O control to the
first DCW to begin the Read I/O again.
The memory area would serve as a circular
queue containing history data from the
primary Basic Processor Monitor Register.
Whenever some problem occurred with the
primary Basic Processor, the memory in
the back-up Basic Processor would be
dumped to some external device for trans-
mission to the Naval Weapons Laboratory.
(As an illustration of this method, the
utility program might be allocated 50,000
words of memory; control logic would be
initialized such that only successful
branch operation addresses would be pre-
sented to the primary Basic Processor
Monitor Register; the history data avail-
able would be a record of the last 50,000
program logic legs executed.)

If information about the performance
of future systems is to be available to
the ''outside world," specific design is
required to make the information available,

The Monitor Register concept is one
method whereby a variety of information
about the internal computer performance
can be made available at a common location
and in an easily defined interface mechan-
ism. I believe that the Monitor Register
Concept has a place in future computer
systems

.

o Slide 14 TACTICAL MODE — CROSS - CONNECTED MONITORING

72



THE USE OF SIMULATION IN THE SOLUTION OF HARDWARE ALLOCATION PROBLEMS

Major W. Andrew Hesser, USMC

Headquarters, U.S. Marine Corps

INTRODUCTION

During the past year, Marine Corps personnel have been concerned with the redistribution of

Marine Corps owned computer hardware at five major installations. This paper discusses the results of

simulations of these installations.

All simulation models involved were created directly from hardware monitor data gathered wi th the

SUM. The simulation language is a proprietary product, SAM, leased by the Marine Corps; the use of

SAM in constructing simulation models was presented at the Spring, 1973 CPEUG Conference.

THE PROBLEM

The problems facing the Marine Corps were:

(1) A major installation presently has two System/360 Model AO's. QUESTION: Can the workloads
of both be combined onto a System/360 Model 65?, a Model 50? Will there be sufficient capacity on

each to process proposed wargaraes?

(2) A System/360 Model 651 was procured for the use of the operating forces of the Marine
Corps in the Far East. The present computer, also a Model 651, will be used only for garrison forces
and all jobs currently being processed for the Fleet Marine Forces (about 607o of the present workload)
will be shifted to the new computer. QUESTION: What size computer will be needed to process the

remaining workload?

(3) The Marine Corps central supply center is being closed and relocated to another installa-
tion. The center has two System/360 Model 501 ' s , and the new location presently has a Model 501.

QUESTION: Can a Model 65J process the workloads of all three Model 50' s combined? What size Model 65

can process the workload of the two Model 50' s at the present supply center?

These questions were answered using simulation models.

QUANTICO

There are two installations at Quantico, Virginia, each of which has a System/360 Model 40. In

October of 1972, a hardware monitoring team measured the Model 40 HGF with 448K bytes of core memory
at the Computer Sciences School. Peripherals included eight CD- 12 (2314- type) disk drives and six

2420 tape drives. Table 1 contains the results of the system measurement and the simulation validation.

TABLE 1

CSS QUANTICO VALIDATION

ACTIVITY MEASURED SIMULATED

CPU ACTIVE 76.1% 78.2%

SUPERVISOR 48 . 77„ 51.0%

PROGRAM 27 . 47o 27.2%

CHANNEL 1 38 . 37o 37.7%

CHANNEL 2 6.0% 7.0%

MPX .4% .37.

TIME 160 MIN 160.1 MIN

In early 1973, another team measured the Automated Services Center at Quantico. This Model 40 HQ

with 384K bytes of core memory has eight 2314- type disks and eight tape drives. Table 2 contains the

results of the system measurement and the validated simulation results.

73



TABLE 2

Asc QUA^^TIC0 validation

ACTIVITY MEASURED SIMULATED

CPU ACTIVE 70.5% 69 . 1%

SUPERVISOR 54.37„ 52 . 5%

PROGRAM l6.27o 16.6%

CHANNEL 1 (DISK) 46.9% 45 . 6%

CHANNEL 2 (TAPE) 6 . 8% 6.8%

MPX .6%, .8%

TIME 150 MIN 149 MIN

To determine what size system would be required to process the combined workload of the two
installations, simulations were done on a Model 501, then a Model 651. The simulated configuration
contained two banks of eight disks and one of eight tapes. The simulation results are contained in

Table 3. The Tjj^O notation means synthetic jobs arrived throughout the simulation. Tj=0 implies all
jobs were in the job queue at time zero.

TABLE 3

COMBINED WORKLOADS OF THE CSS AND ASC

MODEL 501 MODEL 6bl MODEL 651

ACTIVITY TjTto Tjjto Tj=0

CPU ACTIVE 45..7% 17,.6% 34,.0%

SUPERVISOR 30,.6% 12,,2% 22,.3%

PROGRAM 15., 1% 5,.4% 10,.7%

CHANNEL 1 (D) 33,,0% 33,,3% 67.,7%

CHANNEL 2 (D) 30,.4% 30,.7% 60,.2%

CHANNEL 3 (T) 13,,7% 13..9% 27.,3%

MPX 1,,4% ,5% 1.,1%

TIME 148 MIN 147 MIN 76 MIN

It was concluded from these results that a Model 501 CPU would be adequate for processing the

combined Model 40HG and Model 40 HGF workloads. There would be unused CPU capacity available for

processing small war games. A Model 651 would have considerable unused capacity available for process-
ing large scale war games. However, additional processor storage would be required for either 512K
byte machine if war games were to be added.

OKINAWA

During November of 1972, the existing system at the Automated Services Center on Okinawa was

measured. The system consisted of a System/360 Model 651, (512K bytes of core storage), with two

banks of eight disk drives and two banks of eight tapes on four separate channels. The measurement
and validation results are contained in Table 4.

74



TABLE 4

OKINAWA VALIDATION

ACTIVITY MEASURED SIMULATED

CPU ACTIVE 24 . 4% 23.8%

SUPERVISOR 14.2% 14.2%

PROGRAM 10.2% 9 . 6%

CHANNEL 1 (D) 34 . 4% 41.3%

CHANNEL 2 (D) 26.5% 21.5%

CHANNEL 3 (T) 32.5% 28.2%

CHANNEL 4 (T) 25.4% 29.0%

MPX 1.7% 1.3%

TIME ,'' 180 MIN 182 MIN

There were four approaches taken toward the problem of matching a hypothetical computer to the
workload which would be reduced by an estimated factor of 607o.

(1) Simulate using the total SUM measurement figures (entire existing workload).

(2) Simulate with the SUM results reduced by some constant percentage proportionate to the
amount of workload which was to be diverted to the new computer.

(3) Simulate with the present SUM results reduced in a more sophisticated manner to reflect
probable changes in processing characteristics.

(4) 'Conventional' simulation using SAM Language to build detailed models of all remaining
processes

.

For all simulations the currently installed peripherals were attached to the simulated CPU. The
results of simulating the total workload on a Model 501 are shown in Table 5.

TABLE 5

SIMULATION OF 100% WORKLOAD ON A MODEL 501

ACTIVITY

CPU ACTIVE

SUPERVISOR

PROGRAM

CHANNEL 1 (DISK)

CHANNEL 2 (DISK)

CHANNEL 3 (TAPE)

MPX

TIME

b4 . 1%

38.7%

25.4%

30 . 2%

39.9%

24.9%

2.9%

206 MIN

66.8%

39.3%

27 . 5%

32.8%

43.7%

27 . 1%

3.2%

189 MIN

75



The results show that the Model 501 would be capable of handling the total present workload within
almost the same amount of time the Model 651 requires now. Considering that a highly active period
was selected for input, the Model 501 certainly would be able to process the reduced workload.

The next two approaches were used to simulate the workload on a Model 40HGF (448K bytes) with two

channels. Channel one had all sixteen 2314- type disks, and channel two had the sixteen 2420 tape
drives.

The Data Processing Officer at the installation verbally indicated that the removal of jobs would
leave about 407o of the total workload to be processed at the Automated Services Center (ASC). Using
this information, models of the remaining ASC workload were created by reducing each hardware monitor
input by 60%. Thus, each synthetic job made CPU and channel demands on the system equal to 407o of the

originally measured data. It was realized that this did not represent the real world situation be-

cause some activity (like disk) may be reduced more than 607o. Nevertheless this method would provide
an estimate of the effect of removing the Fleet Marine Force processing.

The ASC provided SMF statistics for all jobs processed during September and October 1972. This
data, coupled with a listing of the Job Names of all jobs that would remain at the ASC, was used to

reduce the SUM data that created the synthetic jobs. In this reduction instead of a 607o reduction in

all activity, each of CPU, Disk, Tape and MPX activity was reduced in accordance with the actual
amount of activity that would be shifted as determined by SMF.

The formula for the reduction percentage is shown in Table 6.

Table 6

smf reduction technique

7„ cpu activity remaining = asc job cpu time
asc cpu time + fmf cpu time

7o CHANNEL ACTIVITY REMAINING ASC ACCESSES
FMF ACCESSESASC ACCESSES

The final reduction figures were:

(1) CPU activity reduced 67.7%

(2) Disk activity reduced 68.27o

(3) Tape activity reduced 65.27,,

(4) MPX activity reduced 72.67.

Considering these figures with the 607. reduction above, it appears that the estimation of the Data

Processing Officer was high for the processing that would remain at the ASC. The results of these two

techniques are summarized in Table 7.

TABLE 7

SIMULATION OF REDUCED WORKLOAD ON MODEL 40HGF

ACTIVITY

CPU ACTIVE

SUPERVISOR

PROGRAM

CHANNEL 1 (DISK)

CHANNEL 2 (TAPE)

MPX

TIME

b07o REDUCTION

90 . 67o

58.87o

3 1 . 87„

23.47„

21.47o

1.37,

193 MIN

SMF REDUCTION

79.97.,

53 . 2%

26.77,

18.87.

19.07o

.9%

187 MIN

76



It is concluded that the Model 40 could process the reduced workload in about the same tirae that

is required to process the total workload on the Model 501 now. The system would be CPU bound and

would have little excess capacity for growth or contingencies.

The final step in the simulation analysis of the ASC workload was to be the construction of a

model of each program that would be processed at the ASC. The bases for the models were the AUTOFLOW
charts of the individual programs. Personnel at the ASC also provided probabilities of transaction
flows for major decision points and file sizes and characteristics for the files used by the programs.
Models were then constructed in the SAM language using detailed coding techniques.

The final simulations of each of the daily models were not completed due to software problems,
excessively large (700K bytes) core requirements, and limited computer time. The models of the
individual systems however can be used in future simulation applications.

The overall conclusions of the Okinawa study were that a Model 40 HGF would be adequate for
processing the reduced workload but there would be little excess capacity for growth or contingencies.
A Model 501 could process the reduced workload without difficulty.

PHILADELPHIA AND ALBANY

In June of this year, a monitoring team visited the Marine Corps Supply Activity at Philadelphia.
The installation had two System/360 Model 501 CPU's which share most of the eighty-eight disk drives
and twenty-two tape drives. The measurement and simulation validation figures are summarized in

Table 8 below.

TABLE 8

PHILADELPHIA VALIDATION

ACTIVITY
MEASURED
CPU "A"

SIMULATED
CPU "A"

MEASURED
CPU "B"

SIMULAT
CPU "B"

CPU ACTIVE 63.4% 59.6% 90.1% 87.9%

PROGRAM 22.5% 22.4% 21.3% 20.3%

SUPERVISOR 40.9% 37 . 2% 68.8% 67 . 6%

CHANNEL 1 29.5% 16.6% 23.9% 29 . 5%

CHANNEL 2 51 . 1% 51.5% 13.2% 13.1%

CHANNEL 3 8.7% 20.2% 29.7% 26.8%

MPX .9% 1.2% .97. .8%

TIME (SECONDS) 14400 14550 14400 15222

Simulations were then done on two Model 65' s, an IH (778KI and a J (1024K). Each had two sei

lector subchannels and 3 selector channels. The twenty-two tapes were accessible via either *e->

lector subchannel anri all disk control units had a two channel switch. The results of the simulation

using the combined workloads are summarized in Table 9 below.

MODEL 65

J

TABLE 9

PHILADELPHIA SIMULATION
MODEL 651H

ACTIVITY Tj?tO TjjtO

CPU ACTIVE 47 . 1% 47 . 1%

PROGRAM 15.6% 15.6%

SUPERVISOR 31.5% 31.5%

CHANNEL 1 45.2% 54.6%

CHANNEL 2 22.1% 12.7%

CHANNEL 3 30.2% 32.0%

CHANNEL 4 27 . 8% 26.4%

MODEL 651H

Tj=0

60.5%

20.0%

40.5%

61.7%

24.8%

40.0%

33.7%

77



TABLE 9 (CONTINUED)

ACTIVITY

CHANNEL 5

MPX

TIME (SECONDS)

These results indicate;

MODEL 65J

TjfO

31.6%

2.4%

14352

MODEL 65IH

Tj^O

31.2%

2.4%

14356

MODEL 65IH
Tj=0

41 . 3%

3.0%

11164

(1) That with jobs arriving throughout the interval, the larger 1024K byte Model 65J has no

advantage over the 768K byte Model 65IH. Both machines could process four hours of input data without
difficulty in the same time. The activity levels of system components do not indicate any serious
processing bottlenecks. It is noted that Channel 1 is the primary data path to the 22 tape drives
and is used by the model whenever it is free. The channel imbalance between channels 1 and 2 therefore
is of little significance.

(2) That the Model 65IH would have some excess capacity available as indicated by the results
of having four hours of synthetic jobs all queued at the start of the simulation. The Ti=0 simulation
does not C-onsider job and job step interdependencies and file contention, however, and therefore
represents the shortest possible processing time. Nevertheless, even with all partitions filled and

jobs making maximum use of the system resources, there are no significant system bottlenecks. This
simulation indicates that the Model 65IH processing the combined workload would not be a saturated
system.

In February of 1973, a team of analysts measured the computer system at the Marine Corps Supply
Center, Albany, Georgia. The Model 501 at that installation has forty disk drives supported by a two

channel switch between channels one and two. Channels two and three have a total of fifteen tape
drives. Table 10 below summarizes the results of the measurement and the simulation validation.

TABLE 10

ALBANY VALIDATION

ACTIVITY MEASURED SIMULATED

CPU ACTIVE 72.0% 69.6%

SUPERVISOR 53.2% 50.0%

PROGRAM 18.7% 19.5%

CHANNEL 1 53.5% 48.1.%

CHANNEL 2 34.7% 48.4%

CHANNEL 3 6.1% 9.6%

MPX 1.1% 1.6%

TIME (SECONDS) 14400 14093

The workloads of Philadelphia and Albany were then combined into one workload to be simulated on

a Model 65J with jobs arriving throughout and with jobs queued. The results of the two runs are

summarized in Table 11.

TABLE 11

COMBINED ALBANY AND PHILADELPHIA

ACTIVITY Ij^O Tj=0

CPU ACTIVE 70.7% 74,7%

SUPERVISOR 48.5% 51.3%

PROGRAM 22.2% 23 . 4%

78



TABLE 11 (CONTINUED

ACTIVITY lj£0

CHANNEL 1 (T) 61

.

21 60 . 67,,

CHANNEL 2 (T) 34.07o 40.17o

CHANNEL 3 (D) 58.1% 57 .07.

CHANNEL 4 (D) 55. 5Z 62.77,

^^^^ 0°/

MULTIPLEXOR 3.87c 4.17,

TIME (SECONDS) 14406 13630

These results Indicate that a Systeiii/360 Model 65J would be saturated If it were to try to process
the total combined workload. The disk channel activity is higher than could be reasonably expected
and is higher than any total channel activity ever measured in the Marine Corps. For example, the

activity on the HQMC disk channels seldom exceeds 40 percent. The simulation with all jobs queued
shows only a 67. improvement over the Tj^O simulation with regards to throughput time. It is

emphasized that this is the best that could ever be expected and clearly indicates a saturated system.

RECOMMENDATIONS

There were four events recommended for 1973 and 1976. For 1973, the first event was the actual
installation of the Model 651 at the Third Marine Amphibious Force on Okinawa. Next was the shifting
of al

1

processing presently at Camp Butler, Okinawa to the 111 MAF system. The third event was to

ship the Model 651 CPU/CHANNELS from Camp Butler, Okinawa to the Marine Corps Supply Activity,
Philadelphia and install the Model 651 CPU/CHANNELS with no other changes. One of the Model 501'

s

would then be moved from Philadelphia to Okinawa and installed.

In 1976, the target date for most of the changes, the four events would be as follows: First,
shift some processing from Philadelphia to Albany, Georgia; then ship the System/360 Model 651 with

% of the peripherals to Albany and install it with 256K additional core. The Model 501 at Philadelphia
would continue to process. The third event for the year would be the shifting of the remainder of the
processing from Philadelphia to Albany, Finally, the remaining Model 501 from Philadelphia could be

installed at Quantico, Virginia. This would then release the two Model 40' s there for re-utilization
elsewhere.

SUMMARY

The Marine Corps has been able to use simulation as an effective tool for determining equipment
allocation. The capability of building models from hardware monitor data has allowed models to be

built in a short period when a considerably longer time would have been required otherwise.

79





HUMAN FACTORS IN COMPUTER PERFORMANCE ANALYSES

A. C. (Toni) Shetler

The Rand Corporation

ABSTRACT

The results of computer performance
experiments executed in a normal work en-
vironment can be invalidated by unexpect-
ed activities of the people involved
(operators, users, and system personnel).
Human behavior during an investigation can
confound the most careful analyst's re-
sults unless this behavior is considered
during experimental planning, text execu-
tion, and data analysis. Human actions
need not thwart efforts and can, in some
instances, be used profitably.

In general, an analyst can design an
experiment that precludes dysfunctional
human behavior, can collect data to in-
dicate when it occurs, or can plan the
experiment so the behavior is useful.

INTRODUCTION

This paper considers human behavior
during experimental planning, test execu-
tion, and data analysis for computer per-
formance evaluation. Human problems in
the testing environment during a computer
performance evaluation effort can be lik-
ened to a field test for a product veri-
fied in a laboratory. That is, a hypo-
thesis that explains user behavior or
system relationships is usually first ex-
amined in a controlled environment. Once
a hypothesis has been explained in the con-
trolled environment, it is usually neces-
sary to expand the explanation to the nor-
mal environment; this involves exposing
the hypothesis to the variability of human
reactions. A computer performance experi-
ment using the normal system environment
requires that an analyst be aware of the
human problems associated with testing
hypotheses

.

Five suggestions to consider when
conducting such experiments include:

o Ensuring participant awareness,

o Defining the measures,

o Testing for objectivity,

o Validating the environment,

o Using multiple criteria.

The format of this paper is to identify
each consideration and present a brief
illustration.

ENSURING PARTICIPANT AWARENESS

When an experiment relies on overt
actions of people other than the analyst,
it is critical that their orientation in-
clude an awareness of the experiment's
relationship to the hypotheses; lack of
awareness can lead to inconclusive re-
sults. The negative effect was clearly
illustrated in an experiment where normal
operations were required to validate sys-
tem specific hypotheses.

The investigation involved increasing
the peripheral capacity of an IBM 360/65
MVT system. The workload processed by the
computer system indicated that projected
workloads would saturate the system. A
channel was available to attach additional
peripheral devices to validate a hypothesis
that suggested a solution to this problem.

The hypothesis was stated as follows:
Adding peripheral devices to the available
channel and directing spooled data to
those devices will result in an increased
capacity; proving and implementing this
solution should result in an increased
machine capacity. The experiment in-
cluded 1) testing the hypothesis using a
specialized job stream that led to stat-
ing the hypothesis; 2) if these control-
led tests were positive, following them
with a modified environment for normal
operations; and 3) then verifying a capac-
ity increase by examining accounting data.
This test could only be executed once
because a special device hookup was re-
quired which was borrowed from another
computer system and had to be returned at
the conclusion of the experiment - the
time frame was a 15-hour period.

The first part of the experiment, to
verify the hypothesis in a controlled en-
vironment, was dramatic in its conclusive-
ness. Therefore, we prepared for the
second part, to validate the new periph-
eral configuration the following morning.
The operators had modified start-up pro-
cedures and were told an experiment re-
quired them to use these procedures until
10:00 o'clock. The users were not inform-
ed of the experiment because their partic-
ipation included submitting jobs — a

task they performed normally. The results
were examined after the 10:00 o'clock

81



completion and were very positive. In
fact, substantially more work, in terms of
jobs processed and computer resources used
(CPU time, I/O executions, etc) had been
accomplished with the modified peripheral
configuration when compared to the equiva-
lent time period of the previous week
(morning start-up to 10:00 AM). Only
later did we discover that the operators,
in an attempt to "help" the experiment,
got started much faster than they had the
previous week and thus made the system
available for 25% more elapsed time than
is usual during the time prior to 10:00 AM.
The test results were invalidated; nothing
could be said about the effect of a mod-
ified peripheral configuration for the nor-
mal environment, and the addition of peri-
pheral devices could only be based on the
non-system specific testing in the con-
trolled environment using the test job
stream.

This experience most emphatically
demonstrated the problem of active partic-
ipants not being aware of their role in
the experiment -- help from the operators
invalidated the experiment. This problem
is termed the "Hawthorne effect", and it
must be considered whenever it may in-
validate results.

DEFINING THE MEASURES

When using people to measure the
results of an experiment, the measures
should be selected to require the least
overt action on their part. A particularly
vivid illustration of this occurred in an
experiment to test the resolution of pri-
orities among on-line users.

The on-line user jobs locked each
other out for long periods (5-10 minutes)
and these users were extremely vocal in
their concern that something be done to
eliminate the lockout. The problem reso-
lution constraints were:

o No user was to be singled out as the
culprit and prevented from executing;

o No user program should require modi-
fication to implement a solution;

o No job could lockout other jobs for
a prolonged period (greater than 5

to 10 seconds) ;

o The solution must be simple to imple-
ment and inexpensive to run -- the
available time-slicing facilities
were not acceptable.

The measure defined was quite simple:
the intensity of the on-line users' com-
plaints about lockouts — these users
would complain until their problem was
solved. The procedure for testing the
hypothesized solution was also very simple
— a system modification to the interrupt
logic that rotated jobs of the same pri-

ority preventing any one job from gaining
control for a prolonged time. The system
modification was first tested in a control-
led environment with special tests to ver-
ify its execution characteristics, and was
then used for several days in the normal
work environment.

Aside from verifying that on-line users
were actively using the system (through
accounting and observation) , the validity
of the hypothesis was confirmed by noting
the abrupt end to the complaints about lock-
out. This experiment emphasized the need
for an appropriate measure that was easy
to collect from the users.

TESTING FOR OBJECTIVITY

Users are not always good subjective
evaluators of system changes, and the ana-
lyst should not trust them. An experiment
to evaluate the effects of reducing the
memory dedicated to an on-line system re-
quired soliciting user evaluation to
identify the effect of reducing the avail-
able memory. The users were told that
reduced memory configuration would be avail-
able Monday, Wednesday, and Friday, and
standard memory would be available Tuesday
and Thursday. Following the experiments,
the users claimed that the Monday/Wednesday/
Friday service was unacceptable and the
Tuesday/Thursday service was very good.
Only subsequently were they informed that
Monday/Wednesday/Friday service was based
on the reduced memory configuration. Self-
interest, combined with changed perceptions
of reality, make users poor subjective
evaluators of system modifications.

VALIDATING THE ENVIRONMENT

Test periods can coincide with a par-
ticular event and can invalidate the experi-
ment. Spurious workload changes can also
invalidate experimental results. If a test-
ing period coincides with a particular
event, such as annual accounting and re-
ports, the results can be deceiving when
applied to the standard working environment.
Normal fluctuations in workload over short
periods (one or two days) can result in
the same effect.

One short test (one-half day) was
seriously affected by a user who had just
completed debugging several simulations and
submitted them for execution. The execu-
tion of these simulations resulted in
extraordinary CPU utilization (approximately
double) , definitely out of proportion to
the workload characteristics when data over
a longer period were examined. Fortunately,
this workload shift was discovered, though
many analysts forget that a computer system
seldom reaches a "steady state". The work-
load characteristics of a system during a

short test period must be compared with
characteristics over a longer period. A
formal comparison period with appropriate

82



controls should be used to reduce the pro-
bability of invalid results caused by au-
tonomous workload changes.

Accounting data should be verified to
validate the normalcy of the environment.
The measures that can be included are:

CPU utilization

Mass store channel utilization

Tape channel utilization

Memory requested per activity

Memory-seconds used per second

Average number of activities per
job

Activities initiated per hour

Tape and disk files allocated per
activity

Average number of aborts per 10 0

activities

Cards read and punched per activity

Lines printed per activity

If the objectives, hypotheses, and pro-
cedures for an experiment are clearly
defined, many of the metrics listed above
may be irrelevant and the analyst can ig-
nore them.

USING MULTIPLE CRITERIA

Validating hypotheses about major
changes to the computer system presents a
serious problem. The magnitude and direc-
tion of the proposed modification usually
dictate the level of investigation to the
impact on the users. This level is usu-
ally quite high, particularly if the ob-
jective of an investigation is to reduce
the availability of resources. People
appear to accept results more readily when
a number of different indicators all point
toward the same conclusion.

An investigation to remove a memory
module, at a savings of $7,500.00 per
month was definitely desirable from the
computer center's viewpoint if the fol-
lowing could be validated:

o Batch turnaround would not increase
beyond one hour for the majority
of the jobs.

o On-line system response time would
not increase significantly.

o The quality of response to on-line
systems would permit them to still
be viable.

The experiment involved collecting mea-
sures from the system, systems personnel,
and a hardware stimulator. Measurements
from a three week period were analyzed.
The test plan called for the first and

third week to be used as a control period,
while the second week provided a test en-
vironment that simulated the less expensive
hardware configuration. The results of
the experiment were:

o Batch turnaround had increased from
0.5 to 0.7 hours, with 60-80%,
rather than 90% of the work being
accomplished within an hour (deter-
mined from statistics on batch turn-
around) .

o On-line system response time had no
statistically significant change; a
variety of on-line system commands
were tested using a special purpose
hardware stimulator.

o BIOMOD, a full vector graphics sys-
tem, was used by systems personnel to
evaluate the quality of the on-line
response -- the quality was found to
be degraded, but not disabled. The
users of these services could still
function.

o CPU utilization had gone up 5-10%
above the 6 0-65% level it had been
operating at previously (data from
system accounting)

.

By combining the different criteria it was
established, with reasonable certainty,
that the memory module could be removed
without imposing on the productivity of
the users of that system. Virtually no
one complained that the conclusion was
incorrect although several users (including
one experimenter) vehemently argued against
the core reduction until the multiplicity
of unanomous indicators v/as known.

CONCLUSIONS

Introducing human variability into the
arena of computer performance evaluation ex-
perimentation requires that the analyst
take more than the usual precautions, as
illustrated above. In addition, the gener-
al procedures to validate hypotheses about
a particular system requiring testing in
the uncontrolled environment should include
verifying the hypotheses in a controlled
environment and then, exposing the hypo-
theses to the uncontrolled environment.
The normalcy of the environment should be
validated through checks on the accounting
data and through use of a control period,
as appropriate. The inclusions of these
should result in more accuracy in testing
hypotheses involving people interactions.

REFERENCES

Bell, T.E., B.W. Boehm, and R.A. Watson,
"Computer Performance Analysis: Frame-
work and Initial Phases for a Performance
Improvement Effort," The Rand Corp.,
R-549-1-PR, November, 1972.

83



Bell, T.E., "Computer Measurement and Eval-
uation — Artistry, or Science?", The
Rand Corp., P-4888, August, 1972.

Bell, T.E. , "Computer Performance Analysis:
Measurement Objectives and Tools," The
Rand Corp., R-584-NASA/PR, February,
1971.

Kolence, K.W. , "A Software View of Mea-
surement Tools," DATAMATION, Vol. 17,
No. 1, January 1, 1971, pp. 32-38.

Lockett, J. A., A.R. White, "Controlled
Tests for Performance Evaluation," The
Rand Corp., P-5028, June, 1973.

Mayo, E. , THE HUMAN PROBLEMS OF AN INDUS-
TRIAL CIVILIZATION, Macmillan, New York,
1933.

Roethlisberger , F.J., and W.J. Dickson,
MANAGEMENT AND THE WORKER, Cambridge,
Mass., Harvard University Press, 1939

Seven, M.J., B.W. Boehm, and R.A. Watson,
"A Study of User Behavior in Problem
Solving with an Interactive Computer,"
The Rand Corp., R-513-NASA, April, 1971.

Sharpe, William F, , ECONOMICS OF COMPUTING,
Columbia University Press, 1969.

Watson, R.A. , "The Use of Computer System
Accounting Data to Measure the Effects
of a System Modification," The Rand
Corp., P-4536-1, March, 1971.

84



DOLLAR EFFECTIVENESS EVALUATION OF COMPUTING SYSTEMS

Leo J. Cohen

Performance Development Corporation

ABSTRACT
Our technical evaluations of comput-

ing system performance tend to concentrate
on specific aspects of capability or capa-
city. The dimensions for such measure-
ments that are involved are scientific
in nature; CPU-seconds, byte seconds, and
so ono Generally speaking, these dimen-
sions are incompatible and must be con-
joined via analysis into a synthezised
view of the whole. Of particular interest
to this paper, is the problem of creating
a dollar evaluation that is related to
the configuration as a capacity, and to
the use of that capacity by loads in all
equipment categories.

The approach adopted is the develop-
ment of the concept of dollar use of the
various configuration equipments relative
to the dollar capacity that these equip-
ments make available. The use dollars
are developed from observed measures of
technical performance, and the method
conjoins these various measures into a

set of dollar related measures of overall
performance

.

The measures of overall performance
in dollar value terms leads naturally to
a set of figures of merit that are re-
ferred to as dollar effectiveness. It is
then shown, with a 3-system example, that
these dollar effectiveness measures pro-
vide absolute measures of comparability
between different systems in terms of the
value of technical performance relative
to total dollars of cost.

INTRODUCTION

In dealing with the CPU, the measure-
ment dimension is often the CPU-second,
CPU-minute, and so on, depending on the
load unit that is most convenient. For
the peripheral equipments, we measure data
transfer load in terms of device-minutes,
etc., while for the memory the dimensions
are usually of the form word-second, or
byte second. That is, the dimensions
chosen for measurements made in each of
the equipment categories best serves
those Categories without overt concern
for their compatibility. This means that
there is no direct approach available,
based on these dimensions, that will allow
us to unify the performance figures for
each of the equipment categories into a

homogeneous measurement that is capable
of providing a scale of performance suited
to comparative evaluation. Therefore, we
seek a new dimension which subsumes perfor-
mance measurements in all equipment cate-
gories and conjoins them into a single

measurement value that can then be com-
pared. As a consequence, on such an "ab-
solute" scale of performance the relative
capabilities of two systems can be evalu-
ated. To accomplish this the dimension
required is "dollars". Thus we cast
dollars - the universal measure of mater-
ial value - in the role of performance
measurement unit for the entire system.
In the broadest view we will say that the
"dollar capacity" of our system is its
total cost per hour, per month, or as de-
preciated, and we will distribute that
capacity into "use" categories. We will
then measure the useful work obtained from
these dollars against the totality of
dollars involved.

Use Categories

The three major categories of a com-
puter configuration are the CPU, the me-
mory, and the peripheral equipments. For
the CPU there are four load categories
into which we can distribute the total CPU
capacity. These categories are applica-
tion operating system, cycled and idled
CPU load. Thus, in a particular instance
of CPU utilization there will be, in each
of these categories, a certain load repre-
senting a portion of this capacity. We
define this load, determined after the
fact, as a "use". For example, suppose
that in a period of observation of sixty
seconds, 25 seconds was given over to the
execution of application programs. We
will then say that the application use of
the CPU was 25 seconds. Similarly, there
will be an operating system use of the CPU,
and so on, for each of the four CPU cate-
gories .

Memory use will be defined in an anal-
gous fashion. If 120 kilobyte seconds of
memory load are observed for, say, appli-
cation programs over a given performance
period, then the application use of the
memory was 120 KBS. Thus, the notion of
use is after the fact, whereas the concept
of load appears as a specification of a
requirement on the system given in advance.
This is precisely the context in which the
notion of equipment use should be under-
stood. That is, we seek to determine ways
in which the dollars of the system are
used, and the implication is that the de-
termination can only be made after an

85



observation of the system has occurred. The Distribution Matrix

Each of these equipments can be asso-
ciated with a capacity and the loads im-
posed on them can be distributed over the
four use categories described above. The
discussion of dollar effectiveness that
follows is dependent on this distribution
of loads by equipment type and usage, and
in the appendix a detailed accounting of
the usage categories is made for the vari-
ous equipments. However, the discussion
of the dollar effectiveness techniques
should provide a suitable contextual defi-
nition of these elements, and it is there-
fore recommended that the reader reserve
his review of their formal specifications.

DOLLAR USE

The equipments of the computer confi-
guration can be associated with a cost
per unit of time. Since the load for each
of these elements is already distributed
over the four load categories, it follows
that an equitable distribution of the in-
dividual costs would be on the basis of
proportional load in each category. Thus,
that proportion of the total CPU load
which is due to execution of application
programs will be said to account for a
proportionate amount of the cost for the
CPU itself. For example, suppose that 50%
of the total CPU load is due to applica-
tions, 20% due to the operating system,
5% due to cycling, and 25% to idling. If
the total cost for the CPU were $90 per
hour, then this cost would be distributed
into four "dollar use", categories; appli-
cation use, operating system use, cycle
use, and idle use. In the present example,
the $90 would therefore be distributed
into $45 of application use, $18 of operat-
ing system use, $4.50 of cycle use, and
$22.50 of idle use. It should be noted
that just as the four load categories are
all-inclusive and mutually exclusive, so
also are the four use categories. This
means that these use categories must have
their individual dollar values summing up
to the total cost per unit time for the
equipment

.

It should be obvious that the tech-
nique described above can be extended to
all of the equipments of the configuration.
This follows directly from the fact that
for each type of equipment a definition of
each of the four load categories has been
established. Dividing the load observed
by the period of the observation results
in the load rate, and it is this rate
that then gives rise to associated dollar
use for the equipment.

Figure 1 is an example of a distri-
bution matrix. In the left hand column
of the matrix the various equipments of
the configuration have been listed. In
this example, the configuration consists
of the CPU and memory, two channels, a
disk, and three tapes. For the sake of
simplicity the controllers for the de-
vices have been excluded from the example.

The next column of Figure 1 gives the
total cost per hour for each equipment
listed in column one. This is then
followed by four column pairs, one pair
for each of the rate and use categories.
The data of the first row thus represents
the distribution of the $90 per hour total
cost for the CPU into the application,
operating system, cycle and idle dollar
use categories. The second row shows the
distribution of the $110 per hour cost
of the memory. Here the distribution ma-
trix indicates that $33 of this total cost
was used in the execution of application
programs, or equivalent ly , by users in
solving their problems. Of the total cost
per hour $2,20 was spent on the operating
system, and $30,90 represents the cost of
cycling of the total $110 cost per hour
for the memory, 40% of the memory was un-
used, and as a consequence $44 of that
expense represents the price paid for this
idle capacity.

Looking at the two rows associated
with channels one and two, it can be seen
that their individual cost per hour is
$25, Channel one evidently connects both
application and operating system files to
the core memory since there are rates
shown in both of these categories. As a
result, there is an operating system use
as well as an application use for the em-
ployment of channel one. These figures
are 75(J and $4.50 respectively. On the
other hand, channel two apparently connects
no operating system files to the core
memory, and therefore the operating system
rate and associated operating system dollar
use for this channel are both zero. The
figures indicated in the row for the disk
show that the operating system and appli-
cation files are both resident on that
device, whereas the tape equipments all
indicate that only application programs
make reference to tape files.

Overall, each equipment of the con-
figuration is associated with a total cost,
a portion of which is attributed to appli-
cation use. In one sense, the best possi-
ble system is that one in which the user,
through applications programs, derived a
maximum dollar benefit. To measure the
degree of dollar benefit derived by users
from the system, all dollar use values
in the application category are added

86



per Hour

AppI.

Rate

AppI.

$ use Rate $ use

Cycle

Rate

Cycle

$ use

Idle

Rate

Idle

$ use

CPU 90 .60 54.00 .20 18.00 .05 4.50 ,15 13.50

MEMORY 110 .30 33.00 .02 2.20 .28 30.80 .40 44.00

CHANNEL 1 25 .18 4.50 .03 .75 .54 13,50 ,25 6.25

CHANNEL 2 25 .26 6.50 0 0 .34 8.50 .40 10.00

DISK 40 .18 7.20 .03 1.20 .54 21.00 .25 10.00

TAPE 1 40 .11 4.40 0 0 .15 6.00 .74 29.60

TAPE 2 40 09 3.60 0 0 11 4.40 .80 32.00

TAPE 3 40 .06 2.40 0 0 .08 3.20 .86 34.40

TOTALS $410 $115.60 $22.15 $92.50 $179,75

THE DISTRIBUTION MATRIX

FIGURE 1

together. In the example this is $115.60.
Thus, of the total $410 per hour cost for
the system, application jobs use these
dollars to the extent of $115.60 for pro-
blem solving. Adding up the operating
system dollar use values we see that
$22.15 of the $410 cost per hour is nec-
essary to produce the results of applica-
tion program execution. Furthermore, the
example shows that a total of $92.50 was
expended in cycling the various facilities
of the system. This must be accounted as
a cost for producing user results as well.
Finally, the total cost of the idle faci-
lities is $179.75.

A CONFIGURATION EXAMPLE

As mentioned earlier, the concept of
dollar effectiveness is to be applied
system wide. In order to derive measures
that conjoin the effects of each of the
equipment categories over each of the load
ing categories, we demonstrate the appli-
cation of the dollar effectiveness tech-
nique to a system configuration problem.

We will first consider a system hav-
ing the "Model A" mainframe, with two
channels, a disk set consisting of a num-
ber of disk packs on a common controller,
and two tapes. The configuration is
shown in Figure 2. It also includes a
multiplexor connecting a printer and a
card reader. As the figure shows, both
the application programs and the operat-
ing system have files on the disk set,
and therefore there will be a degree of
conflict between the application jobs
and the operating system for references
to the disk set. On the other hand,
channel 2 connects the two tapes through

the common controller and thereby makes
application program files available. In
particular it should be noted that the
operating system has no files on these
tapes and therefore makes no reference to
them

.

For the second configuration the same
mainframe will be employed but an addition-
al disk set and channel will be added.
These additional equipments will be used
for files associated with the application
programs only. In the third configura-
tion these two channels and associated
disk sets are retained, but the mainframe
is changed from a Model A to the slower
"Model B".

APPLICATIONS
0/S

DISK SET 1

CH 1

MODEL A
MPLX PRINTER

READER

CH 2

APPLICATIONS

T 1 T 2

SYSTEM #1

FIGURE 2

87



We will consider the distribution
matrix for each of these configurations.
However, for the sake of simplicity we
have excluded all details of controller
performance, assuming instead that since
there is one controller per channel, the
controller performance is sufficiently re-
presented as part of the channel cost.
The figures for the multiplexor and its
attached devices have also been left out
of the examples. This is done in the
interests of simplicity and economy of
discussion. However, in a formal analysis,
all equipment categories should be repre-
sented, particularly where their indivi-
dual costs may be a significant fraction
of the whole. Finally, the several disk
packs of a unit have been brought toge-
ther under a single heading and desig-
nated as a disk set. That is, in the
discussions that follow they are to be
treated as a composite entity. A more
accurate analysis would, of course, sepa-
rate these, but this simplifying repre-
sentation is sufficient for our purposes
here

.

Benchmark Loads

If a comparison of performance be-
tween systems is to be conducted, a stan-
dard load characterizing the installation's
activities must be imposed on both of them.
Such loads are usually referred to as
benchmarks

.

Benchmarks are most often in the form
of programs. However, in (1) a rather
different technique is put forward that
involves CPU, memory and data transfer
loads. Whichever the method, the basic
objective is the same; namely, to establish
a standard load that is reasonably de-
scriptive of the way in which the computer
is employed.

It is just such a benchmark load that
is required for a dollar effectiveness
evaluation. This benchmark will be the
same for all systems studied and when im-
posed will create loads in all of the
equipment categories.

System 1

The first configuration, shown in
Figure 2, is referred to as System 1, and
Figure 3 is the distribution matrix for
this system. In this figure all equip-
ments of the configuration with the excep-
tion of the controllers, multiplexor,
printer and card reader are listed in the
left hand column. The next column lists
all of the costs for these equipments,
showing them as monthly figures. Thus,
the CPU cost is $6740.00 per month, the
memory $10,060.00 per month, the channels

$700.00 per month and so on. The total
monthly cost is $21,964.00.

The next four column pairs represent
each of the four use categories for these
equipments. For example, the rate at
which the CPU was employed for application
jobs is .432. Therefore, of the total
$6,740.00 cost for the CPU, application
jobs have gotten .432*6740=2912 dollars
of use per month.

With the operating system rate (0/S)
at ,212, the operating system use of the
total CPU dollars is $1429.00. In the
last two column pairs, we see that the
cycle use and idle use of the CPU, in
dollar terms, are $613.00 and $1786.00
respectively

.

The distribution for $10,060.00 per
month cost of the memory is along the
same lines, based on the rate figures
shown. It might be noted that the operat-
ing system memory use is particularly high,
suggesting that the operating system is of
extreme size. The next largest of these
is for cycle use, followed by the appli-
cation and idle use, in that order. The
size of the cycle figure in fact, suggests
that users are requesting larger blocks
of storage than they can employ.

Consider now the figures for channel 1

and disk set 1. In the application cate-
gory the rate at which application jobs
employed the disk was .297, However,
channel 1 was employed at a rate of ,231.
The disparity in these rates can be
accounted for in terms of seek operations
on the disk packs. That is, during seek
activity there were periods when no data
was being transferred over the channel and
therefore the application rate for the
channel in that period is zero. It should
be noted that the operating system rate
for disk set 1 is .126 and that there is
also a reduction in the operating system
rate for channel 1 as well. Now consider
the cycle rate for disk set 1, This indi-
cates that 31.2% of the time, files on
this disk set were active but unused.
Looking at the cycle rate for channel 1,
the figure ,382 represents an increase
over the cycle rate for the disk set that
is equal to the decrease in the channel
rates for application and operating system
together. Thus, the decreased utilization
of the channel in data transfer activities
has turned up as increased cycle rate.

It should be noticed that the idle
rate for channel 1 and its disk set is
equal to the idle rate for the CPU. The
implication is that whenever an applica-
tion job was present in the system the
programs executed by that job had active
files on the disk set. This is not the
case with tapes 1 and 2, however, since



Cost

Application

Rate Use

OVERHEAD

Rate

Idle

Use
0/S

Rate Use

Cycle

Rate Use

CPU 6740 .432 2912 .212 1429 .091 613 .265 1786

MEMORY 10060 .248 2495 .375 3772 .261 2626 .1 16 1 167

CHANNEL 1 700 .231 162 .120 84 .384 269 .265 185

CHANNEL 2 700 .205 144 0 0 .203 142 .592 414

DISK SET 1 2624 .297 779 .126 331 .312 819 .265 695

TAPE 1 570 .091 52 0 0 .076 44 .833 474

TAPE 2 570 .114 65 0 0 .127 73 .759 432

TOTALS 21964 6609 5616 4586 5153

DISTRIBUTION MATRIX

SYSTEM 1

FIOJRE 3

their idle rates are both a good deal
higher than the idle CPU rate. This means,
of course, that some jobs did not execute
application programs having active files
on the tapes. On the other hand, the
idle rate for channel 2 is .592 and this
is significantly lower than the idle
rates for either of these tapes. The rea-
son for this becomes clear if we consider
the application rates for the channel and
the two tapes. The channel 2 application
rate is .205 and is the sum of the two
application rates for the tapes. Thus,
the tapes were necessarily utilized sequen-
tially since there is only a single chan-
nel. However, the cycle rate for channel
2 is .203, and this is the sum of the cy-
cle rates for these two tapes. This means
that files were active but unused on these
tapes "sequentially"; i.e., at no point
did any job execute requiring the files on
both tapes, and furthermore at no time
were there two tape jobs executing con-
currently. Thus, the cycle rate for
channel 2 is maximum while its idle rate
is minimized.

Now consider the ratio of the total
application use of $6609.00 to the total
monthly cost of $21,964.00. Expressed
as a percentage, we have that 30,0% of
the total cost was used for application
job execution. On the other hand, the
$10,202.00 of overhead cost, combining
operating system and cycle use dollars,
represents a 46.4% use of the total
monthly dollars expended. And, by simi-
lar calculation, 23.5% of the total dollars
of system cost idle.

We will refer to the ratio of appli-
cation use to total cost as the system's
"dollar effectiveness". The ratio of
the sum of operating system and cycle
dollars to the total cost will be referred
to as the "effectiveness cost", and the
ratio of the total idle dollars to total
cost as the "excess capacity cost". We
will develop from these effectiveness
figures a basis for comparison of systems,
or configurations of a given system. It

is toward this objective that we are work-
ing in the sections to follow.

Measures of Effectiveness

By summing each of the dollar use
columns in the distribution matrix for
System 1, we arrive at total dollar use
figures in each of the four categories.
Thus, of the total $21,964.00 per month
cost for the system, $6609.00 of appli-
cation use is obtained. Operating sys-
tem use is $5616.00, and the cycle is
$4586.00. These two together represent
an overhead dollar use of $10,202.00.
Finally, out of the $21,964.00 of month-
ly cost, a total of $5153.00 is idle.

System 2

The configuration for System 2 aug-
ments that of System 1 by the addition of
a second disk set and an associated
channel. Figure 4 shows this configura-
tion. Note that the mainframe remains a

Model A, and that disk set 1 is now de-
voted entirely to the operating system
files, while all application program files
have been moved to disk set 2. The new
channel is referred to as channel 3, and
the configuration retains channel 2 and
attached tapes, as well as the multiplexor
and printer/reader combination.

89



0/S APPLICATIONS

DISK SET 1 DISK SET 2

CH 1 CH 3

MPLX
MODEL A

PRINTER
READER

CH 2

SYSTEM #2

FIGURE 4

The distribution matrix for System 2

is shown in Figure 5. The equipment list
in the left hand column has been modified
to include the new channel and disk set
along with the additional cost of these
requirements. More specifically, the
equipment costs have increased by the
$700.00 for the third channel and the
$2624.00 for the disk set 2, to a total
of $25,288.00. But this column of figures
is not the only place where there is an
effect in the distribution matrix. The
addition of data transfer capability will
also have a general effect that will be
reflected in the dollar effectiveness fi-
gures .

The first observation is with regard
to the cycle rate for the CPU. With the
installation of the additional peripheral
devices there is a reduction in data trans-
fer conflicts between the operating sys-
tem and the application jobs, and this
results in a lower cycle rate. As the
figures show, the cycle rate goes from
.091 down to .087. However, since the
test is made while executing the same set
of jobs as used in System 1, and since
the period of observation is kept con-
stant, it is clear that the CPU rates for
both the application and operating system
jobs in System 2 must be the same as that
in System 1. Therefore, the decrease in
the cycle rate from System 1 to System 2
appears entirely as an increase in idle
rate in System 2.

The effect on the cycle rate of the
equipment reconfiguration is rather small
because the application jobs executed for
these experiments do not create a high
volume of data transfer. In fact the

positive effect of lower cycle rate for
the CPU is lost to higher cycle rates and
associated cycle dollars for the peripheral
equipment. This can be seen by looking
at Figure 5 for disk set 1. The effect
of the reconfiguration has been to make
the operating system files available to
the operating system jobs without inter-
ference from application jobs. On the
other hand, the only activity on this disk
set is with respect to operating system
files in order to operate the application
jobs. Thus disk set 1 is idle only when
there are no application jobs in the
system, and therefore the idle rate is
.269. Note that the data transfer load
for this disk set remains at .126, repre-
senting the data transfer load created
by the operating system in making refer-
ence to its files. Since there is no
application job reference to this disk set
in the configuration, it follows that the
remaining load appears in the cycle cate-
gory, and as the distribution matrix shows,
the cycle rate for this disk set is .605.

Now consider disk set 2. This disk
set is devoted entirely to the files for
programs executed by application jobs, and
therefore the data transfer load created
on this disk set will be the same as in
System 1 since these are the same jobs.
The rate for the application jobs is there-
fore .297. However, the absence of
operating system data transfer load on
this disk set means that the remainder of
this capacity must be distributed between
cycle and idle loads. For this configu-
ration, the cycle rate for disk set is
.481. Thus we see that the reduction in
cycle rate of the CPU, as a consequence
of the addition of the new disk set and

90



Application
OVERHEAD

Idle

Cost

Rate Use
0/S

Rate Use

Cycle

Rate Use
Rate Use

CPU 6740 .432 291 2 .212 1429 .087 586 .269 1813

MEMORY 10060 246 2474 .375 3771 .259 2605 120 1210

CHANNEL 1 700 0 0 .121 85 .610 427 .269 188

THANNEL 2 700 .205 144 0 0 203 142 .592 414

CHANNEL 3 700 .233 163 0 0 .222 155 ,546 382

DISK SET 1 2624 0 0 .126 331 .605 1588 .269 705

ni<5K SET 2 2624 .297 779 0 0 .222 583 .481 1262

TAPE 1 570 .091 52 0 0 .076 43 .833 475

TAPE 2 570 .114 65 0 0 .127 72 .759 433

TOTALS 25288 6589 5616 6201 6882

DISTRIBLITION MATRIX

r
SYSTEM 2

FIGURE 5

attendant channels, must be associated
with some increases in both the cycle and
idle rates of these equipments, and as the
figures of the distribution matrix show,
with significant additional costs in these
categories

,

A similar situation applies to the
channels of this configuration. As the
distribution matrix shows, there is no
longer an application rate for channel 1,
while there is a ,121 operating system
rate, and an idle rate of .269. This means
that the remaining capacity for the chan-
nel is concentrated in its cycle rate,
and that is .610, It should be noted that
the idle rate for the channel is equal to
the idle rate for the CPU. This channel
is associated with the operating system
files which are active whenever there is
an application job in the system.

Channel 3, the new channel of the con-
figuration, is associated with disk set 2

and the files of the application jobs.
We see that the application rate is .233
for this channel, with the difference be-
tween this rate and that for disk set 2
being attributed to seeking activity on
the disk in which the channel is not in-
volved. The cycle rate for this channel
is .222 and its idle rate is .546. Thus,
the reconfiguration has added dollars in
the cycle and idle categories for the
channels as well.

The overall effect of the reconfigu-
ration can be appreciated in terms of the

dollar effectiveness measures. By summing
each of the dollar use columns in our four
categories and making the effectiveness
calculations that were applied earlier to
System 1, we find that the dollar effec-
tiveness is 26.1% and that the effective-
ness cost is 46.7%. This is derived from
the sum of the operating system and cycle
use figures, and is significantly differ-
ent for System 2 simply because the im-
provement in the mainframe cycle rates
and associated dollars is more than off-
set by the increase in the cost of cycled
peripheral equipment. The indication is,
of course, that too much of the increased
dollar capacity of the system has gone
into overhead use, while the application
use of these dollars has remained al-
most the same. To put it differently,
the dollar effectiveness has dropped
while the effectiveness cost has increased.
Finally, our calculations also show that
a significant portion of the increased
cost of the system has gone into idle
dollars, since the cost of the excess ca-
pacity is computed to be 27.2%.

System 3

It was stated earlier that the amount
of CPU activity relative to the data
transfer activity is high. Yet, as the
distribution matrix figures show, there
is a significant amount of idled CPU load
remaining in the period of observation.
Let us suppose that our long range in-
terests are potentially satisfied by an

91



excess storage capability represented by
the configuration of System 2. On the
other hand, if our processing load at the
CPU is not expected to rise appreciably,
it is reasonable to consider changing the
configuration of System 2 to the extent
that it involves a slower but less expen-
sive CPU. We refer to this configuration,
shown in Figure 6, as System 3. The slow-
er CPU is referred to as the "Model B",
but the remainder of the configuration is
unchanged from that of System 2, That is,
we retain the two disk sets and the tapes
with their associated channels. The appli-
cation and operating system files are se-
parated on the disk sets as before.

The major property of System 3 is,
of course, the change in the CPU from a
Model A to a Model B. There will conse-
quently be a number of effects since the
CPU for Model B is approximately one half
as fast as the one for Model A, and its
cost is approximately 1/3 less. This
gives a total cost of $23,368.00 as com-
pared to $25,288.00 for System 2.

0/S APPLICATIONS

DISK SET 1 DISK SET 2

CH 1 CH 3

MODEL B

CH 2

PRINTER
READER

APPLICATIONS

0
SYSTEM #3

FIGURE 6

Both the rate and the dollar effects
are immediately apparent in the first
line of Figure 7, showing the distribu-
tions for the CPU. As can be seen, the
total monthly cost for the CPU is
$4,820.00. The application rate has
jumped to .603, the operating system rate
to .296, while the cycle rate has fallen
to .013. The idle rate, representing the
remainder capacity for the CPU, is nearly
at zero.

As a consequence of the slower CPU
there will be an extension in the execu-

tion time of applications jobs, so that
there will also be a corresponding in-
crease in the memory loads associated
with the application jobs. Thus, the
memory application rate is .270, the
operating system rate .412 and the cycle
rate .284. These increases have been de-
rived from the remainder capacity of the
memory so that the memory idle rate is
at .034.

The data transfer loads and asso-
ciated rates for the application jobs
have remained the same in this configu-
ration. This is also true for the
operating system data transfer load rela-
tive to disk set 1 and the associated
channel. However, because the application
jobs are present in the system for a
greater execution time, the files asso-
ciated with these jobs are active for a
correspondingly greater time period. Be-
cause the application load has remained
the same, however, this implies an in-
crease in the cycled load and associated
cycle rates. The distribution matrix
indicates that these cycle rate increases
are significant.

Again, each of the dollar use figures
are totaled at the bottom of the distri-
bution matrix. This shows the dollars of
application use at $6,825.00 while the
total overhead dollars are $13,968.00,
and the total idle dollars are $2,575.00.
Our effectiveness calculations then show
that the dollar effectiveness is 29.2%,
the effectiveness cost 59.8%, and the
idle cost 11.0%.

ABSOLUTE EFFECTIVENESS

The sense in which we have been pur-
suing the concept of dollar effective-
ness is related to the degree of effec-
tive use, or application, that is derived
from the total dollars spent on the sys-
tem. Thus, the dollar effectiveness fi-
gure that was defined earlier is a measure
of the percentage of these total dollars
that are effective in problem solving.
But to compare the performance of two sys-
tems on a dollar basis requires that we
take into account not only the effective-
ness of the system's cost, but also the
specific cost to achieve that effective-
ness. That is, a high dollar effective-
ness at a high effectiveness cost implies
a low excess capacity cost. If the two
systems under consideration have equal
total cost, then clearly the higher the
dollar effectiveness and lower the effec-
tiveness cost, the better the effective-
ness per unit cost. We can formalize
this expression by dividing the dollar
effectiveness figure by the effective-
ness cost figure for each of the computing

92



Cost

Application

Rate Use

OVERHEAD

Rate

Idle

Use
O/S

Rate Use

Cycle

Rate Use

CPU 4820 .603 2906 .296 1427 .013 63 .088 424

MEMORY 10060 .270 2716 .412 4145 .284 2857 .034 342

CHANNEL 1 700 0 0 .121 85 .791 553 .088 62

CHANNEL 2 700 .205 144 0 0 .616 431 .179 125

CHANNEL 3 700 .233 163 0 0 .597 418 .170 119

DISK SET 1 2624 0 0 .126 331 .786 2062 .088 231

DISK SET 2 2624 .297 779 0 0 .552 1449 .151 396

TAPE 1 570 .091 52 0 0 .096 54 .813 464

TAPE 2 570 .114 65 0 0 .165 93 .721 412

TOTALS 23368 6825 5988 7980 2575

DISTRIBUTION MATRIX

SYSTEM 3

FIGURE 7

systems under consideration. We can then
normalize their different total costs to
derive a measure that shall be referred to
as "absolute effectiveness", which is use-
ful in the comparative evaluation of sys-
tems .

Sample Comparisons

To demonstrate the absolute effective-
ness idea, we have listed the three effec-
tiveness computations for each of the three
systems in Figure 8. This shows dollar
effectiveness, effectiveness cost, and
excess capacity cost foreach of the systems
and with these figures, several other fi-
gures that are derived from them. Let us
first, however, recapitulate some of the
evaluation parameters that we established
in the development of this configuration
problem

.

We began with a given load of jobs
which was seen to be relatively "compute
bound", and with a significant amount of
idled load available in our first system,
designated as System 1. We then adjusted
the configuration to System 2 and stated
that an excess data transfer capability
was desirable for future requirements.
It was presumed that the CPU requirement
would not appreciably increase, and we
considered a lower cost configuration hav-
ing a slower CPU that was designated as
System 3. For the scope of the present
problem, we will consider the requirement
for increased data transfer capability,
used to justify the configuration of

System 2 as being of critical interest,
so that we now seek to evaluate the re-
lative merits of System 2 and System 3

in dollar effectiveness terms.

Note first that the dollar effective-
ness for these two systems is 26.1% and
29.2% respectively, while their respec-
tive effectiveness costs are 46.7% and
59.8%, By inspection of these figures
one can see that the improvement in
dollar effectiveness in System 3 is more
than off-set by a coincident increase in
effectiveness cost. For System 2 this
means that for every dollar spent to run
the system (overhead), 55.8 cents were
employed in problem solving. On the
other hand, for System 3, only 48.8 cents
of each dollar was employed in problem
solving. To put this another way, the
ratio of dollar effectiveness to effective-
ness cost is best when maximum. This
occurs when the dollar effectiveness is
maximum and the effectiveness cost is
minimum. Hence the effectiveness per unit
cost represents a measure of application
use relative to the cost of system opera-
tion. However, effectiveness per unit
cost does not take into account the total
cost of the system. That is, the dollar
effectiveness and effectiveness cost
values are both derived relative to total
system cost, so that their ratio removes
this cost factor. If, therefore, the
effectiveness per unit cost is divided by
the total cost, we will get a figure that
is referred to as "unit effectiveness per
dollar", or more simply as "unit effec-
tiveness". This unit effectiveness is

93



System #1 System #2 System #3

DOLLAR EFFECTIVENESS (A) 30.0% 26.1% 29.2%

EFFECTIVENESS COST (B) 46.4% 46.7% 59.8%

EXCESS CAPACITY COST 23.5% 27.2% 1 1.0%

EFFECTIVENESS/UNIT COST (C=A/B) .646 .558 .488

TOTAL COST (D) $21 ,964 $25,288 $23,368

EFFECTIVENESS/DOLLAR (10,00 C/D) .294 .220 .208

ABSOLUTE EFFECTIVENESS

FIGURE 8

actually the dollar effectiveness divided
by the product of the effectiveness cost
and the total cost. Thus the higher the
dollar effectiveness and the lower the
effectiveness and total costs, the great-
er will the unit effectiveness figure be.

More broadly, if unit effectiveness
represents the number of dollars of use
relative to the dollars of cost, then unit
effectiveness measures this on a per
dollar basis, and as such it is a figure
of merit that is directly comparable for
two systems of differing total cost.

employed by the current job load, employ-
ment of the available data transfer capa-
city, represented by cycled data transfer
loads will have to be realized by in-
creasing the data transfer loads created
by the current jobs. This means chang-
ing the nature of these jobs, which pro-
vided one of the parameters of our evalua-
tion problem as stated earlier. This
would not be the case for System 2, how-
ever, since the excess CPU capacity implies
that we might run our current jobs, plus
new jobs that create additional data
transfer load.

In the table of Figure 8, effective-
ness per unit cost for System 2 is ,558
and for System 3, .488. Dividing these
by their respective total costs and multi-
plying the result by 10,000 to place the
dividend on a convenient scale, gives the
unit effectiveness value 220 for System 2,
and .208 for System 3. Thus, the cheaper
system does not provide as much perfor-
mance for the dollar as the more expensive
one. However, we may not interpret this
as meaning that for accomplishing the same
job as represented by the CPU and the data
transfer loads exerted by application jobs
on the two systems, the performance of
System 2 relative to its total cost of
$25,288.00 is better than that for System
3 at its total cost of $23,368.00. That
is, the total number of dollars that are
unused, and which is referred to in Figure
8 as the excess capacity cost, is signifi-
cantly higher in System 2 than in System 3.
This means that in System 2, 27.2% of the
total cost of the system is unused, and
represents dollars that are available for
employment. Of course not all of these
dollars can be turned into application
dollars. However, the greater this ex-
cess cost figure is, the greater the po-
tential for conversion into application
dollars. This implies then, that for
System 3 the 11.0% excess capacity cost
figure leaves little room for such con-
version. Furthermore, since the CPU ca-
pacity of System 3 is almost entirely

Lost Dollars

In order to be able to employ idled
peripheral equipment load we must have
some idled CPU load available. That is,
to use the peripheral equipments it is
necessary to first execute instructions
on the mainframe. Therefore what of the
case where the rate of utilization of the
CPU leaves the idled CPU load at or near
zero? This is effectively the circum-
stance in Figure 7 where the idled CPU
rate is only 8.8%. For all intents and
purposes we may say in this situation
that there is virtually no more CPU "room"
for the execution of additional jobs, and
as a consequence the various idled rates
for the peripheral equipment represent
wasted assets and their associated idled
dollars are wasted as well. We will re-
fer to these as "lost dollars".

Of course the same may be said for
the memory loads that cannot be utilized
because there is no more available CPU
capacity. This is hardly a question in
the example of Figure 7 since the idled
memory rate is only 3.4% and this suggests
that even if there were an available idled
CPU rate there is no room in the memory
for the execution of any further jobs.

This question of lost dollars can be
given a somewhat broader scope if one

94



raises the argument that even though
idled load isn't available at the CPU for
the introduction of additional jobs, there
may be a significant cycle load available.
That is, by increasing the average degree
of multiprogramming we might indeed be
able to have its CPU load requirements
satisfied by the available cycled CPU
load. Of course for this to have any
effectiveness whatsoever it is necessary
that the new jobs introduced be CPU only,
or highly CPU bound. Such jobs do not
use the peripheral equipments and as a
consequence we will still have our idled
load and again the same lost dollars.

In summary then, once the idled CFTJ

rate gets particularly low (and/or the
idled memory rate) we can expect that
idled capacity in the peripheral equip-
ment translates into lost dollars.

The significance of lost dollars is
that they represent money paid for the
configuration which can never be utilized.
If tuning has been accomplished so that
both the main frame and peripheral equip-
ments are operating optimally for the
loads we impose, then it follows that
little short of a juggling of the job
schedule can do much to recover any of
these lost dollars. In fact, it is most
likely the case that modification of a
current schedule that produces satisfac-
tory thruput and turnaround will modify
these performance figures of merit as
well, so that in exchange for fewer lost
dollars the installation pays the price
of lesser technical performance.

CLOSING REMARK

The dollar effectiveness approach to
performance analysis is designed to give
performance management a means by which
the total effectiveness of the system
over all equipment categories - CPU,
memory, channel, controllers, and peri-
pheral devices can be measured. It
furthermore can be thought of as an
overview approach to technical performance
in that it relates performance in all of
these equipment categories in terms of
distribution of the various loads im-
posed on the system by applications, and
the loads that occur as a result. This
therefore provides an opportunity for
performance management to gauge the value
of future needs; i.e., growth capability,
and to take this into account when plan-
ning the acquisition of new equipment to
modify the current system, or a complete
system to replace it.

APPENDIX

In this section we turn our atten-
tion to a more detailed investigation
of the data transfer characteristics of
the equipment in the data transfer chain.
These equipments will include the channels,
the controllers, and the devices. The ob-
jective is to define categories of use for
these equipments so that these categories
are compatible with the application, opera-
ting system, cycled and idled categories
defined for the CPU and memory.

Channels and Active Files

The channel is considered as a
necessary connector between file and core
memory. This implies a connection to a
particular device or set of devices. We
define the channel as being idle when
either one of two conditions exist. The
first of these is that there are no jobs
at all in the system; the second condi-
tion is that no job currently present in
the system executes a program that makes
reference to any file on any device con-
nected by the channel. The condition for
an idle channel is of course obvious when
the device has a removable media, such as
a magnetic tape or disk pack. In such
cases, when no media is mounted, the de-
vice clearly has no file present that will
be referenced by a program execution. For
devices with permanently mounted media,
however, such as a drum, the files carried
by the device are permanently available.
In this case, the criteria is whether or
not that availability is of interest to
any job currently executing in the system.
When some job in the system executes a

program making reference to a given file,
we assume that a data transfer reference
to that file is potentially likely and
that the job could not run with out the
presence of the file on the device. By
extension, then, the job could not run
without the presence of the channel for
communicating the data of that file to
the core memory. Thus the channel is
deemed necessary when a file associated
with a given job execution is present on
the associated peripheral device, and
unnecessary otherwise. It is the time
period over which the latter condition
exists that is referred to as "idled
channel" time, and we will call such
files "inactive". On the other hand,
files associated with current jobs will
be called "active".

Consider now the case where the
channel connects core memory to a device
holding a file referenced by one of the
jobs currently executing in the system;
under these conditions the channel is
not idled. To distinguish between a

channel's active time, that is the time
it is transferring data, and its inactive

95



but non-idled time, we shall refer to the
latter as "cycled channel" time. The
non-idled, non-cycled time for the chan-
nel can then be distributed into two cate-
gories. The first of these is the "appli-
cation channel" time, which applies when-
ever data is transferred between core
memory and the device for an application
job. The second category is "operating
system channel" time, and is applied
whenever the data transferred across the
channel is associated with an operating
system file.

Thus, we have distributed the total
time of channel availability into four
categories: When the channel is trans-
mitting data associated with an applica-
tion file, application channel time is
accumulated; when a file associated with
the operating system is employing the
channel to transfer data, operating sys-
tem channel time is accumulated; if no
jobs are present in the sys tem or no file
on the device connected by the channel is
associated with any job currently in the
system, the channel is idled; all time
remaining in the period of observation
is therefore cycled channel time.

Suppose now that the channel is
associated with not just one device, but
with a set of devices. Such a situation
occurs when the channel leads to a set
of disk packs or a set of magnetic tapes.
It is then sufficient for the purpose of
channel load definition to consider all
of the devices that are accessible by
the channel as a single device. That is,
if no device of the group is associated
with any job currently active in the sys-
tem, we will also say that the channel
is idled.

Multiple Channels

The same definition of idled channel
load also applies to the case where more
than one channel is associated with a
common group of devices. Thus, suppose
that with a suitable controller design,
two channels could connect to the same
group of disk packs. Then both channels
are idle whenever no disk pack is mounted
or when no files on any of the mounted
disk packs pertain to any jobs currently
operating in the system. This parallel
configuration, however, does present some
minor difficulty in the definition of
cycled channel load. That is, suppose
that the level of activity in the system
is sufficiently low so that only one of
the two channels to the set of devices it
is also inactive. Therefore, we must de-
fine this unused channel capacity as
cycled load. The argument here is that
the definition of cycled load is indepen-
dent of the degree of activity at a device,
or relative to the files held by the de-

vice. In fact, if there were a second,
separated group of devices, with only a
single channel connection and a much
higher activity, the meaning of cycled
load on the unused channel relative to
the device group with very low activity
is reasonably clear. That is, in this
case the allocated but unused channel
facility is not only wasted but mis-
placed, and designation of this unused
facility time as cycled load rather than
idled load underlines this situation.

Floating Channels

A possible configuration for data
transfer channels in a system is as
"floating" channels. This means that
any channel not currently involved in
a data transfer activity may be assigned
to any specified device in the confi-
guration. Under such circumstances all
channels are creating idled load when
there are no jobs in the system or no
files mounted on any devices reachable
by the floating channels. Suppose now
that there are C floating channels, and
that there are F active files in the
system. If the number of active files
is less than the niomber of floating
channels, we will say that C - F channels
are idled. Otherwise, if the number of
active files is greater than or equal
to the number of floating channels, no
channels will be inactive and no idled
channel load is created. Figure 9 de-
picts floating channels under different
usage conditions.

Rather than define cycled load di-
rectly in an environment involving
floating channels, it is better to com-
pute the cycled load for all channels
as the remainder after the application,
operating system, and idled loads have
been accounted for. Thus we can think
of channel capacity in terms of, say,
so many "channel-seconds". The distri-
bution of this capacity must then be over
each of the four load categories, leaving
one of them, in this case cycled load, to
be calculated from the rest.

Multiplexors

Multiplexor sub-channels operating
in a non-burst mode can be considered as
a collection of individual floating
channels relative to the devices that they
connect. The distribution of the load
on the multiplexor channel is then propor-
tional to the utilization of its sub-
channels in the four load categories.
When the multiplexor operates in a burst
mode, however, it acts as if it were a
selector channel. That is, for the period
of burst mode operation the entire set of
sub-channels of the multiplexor is con-

96



ACTIVE FILES

F1 F2 F3

3 ACTIVE CHANNELS

9 INACTIVE CHANNELS

ACTIVE FILES

ALL CHANNELS ACTIVE

FLOATING CHANNELS

FIGURE 9

nected to, or are available for, data
transfer to one specific device. All
sub-channels, therefore, accrue either
application or operating system load.
Otherwise the cycled and idled loads
accumulated by the multiplexor are the
same as those defined for its non-burst
operation.

The Controllers

activity over all channels will be asso-
ciated with the controller, each in its
own load category. Furthermore, a con-
troller may be busy throughout the period
of certain operations, while the asso-
ciated channel is cycling. An example
is a controller for a disk pack that is
busy through the time of arm movement.
Over this time however, the attached chan-
nels may be inactive and cycling.

A controller for a single device or
group of devices that is connected to a
single selector channel defines its idled
and cycled loads in exactly the same way
as the channel. The application and
operating system loads to be associated
with a controller are, of course, defined
during the periods of their respective
activities. Thus, a controller is idled
when all devices with which the controller
is associated are either unmounted or con-
tain no active files. It is, of course,
idled when there are no jobs in the sys-
tem. The controller is active, but un-
used, when there are active but currently
quiescent files on its devices. In this
case the controller is creating cycled
load

.

The Devices

The distribution of loads for a peri-
pheral device follows the same pattern as
that for the other equipments in the data
transfer chain between file and core
memory. As before, we will say that the
device is idled if no media is mounted on
it, or if no jobs are currently present
in the system. The device is also idled
if it holds no active files.

When the device holds active files
the load on the device is distributed
into application, operating system and
cycled categories, according to the same
criteria applied to the channels and
controllers

.

It should be noted that the con-
troller and the channels to which it
connects might not have identical load
distributions. That is, the controller
may connect several channels to a group
of devices and therefore the sum of the

REFERENCE

Leo J. Cohen, System Performance Measure-
ment and Analysis , Performance Develop-
ment Corp., Trenton, N.J., May, 1973.

97





COMPUTER SCHEDULING I

Daniel A.

U.S. Army Mate;

INTRODUCTION

Modern day business data processing systems have
changed dramatically over the past ten years.
With the advent of third-generation machine
power, sophisticated data management and opera-
ting systems, and with more extensive use being
made of teleprocessing, the modern systems are
impressive, indeed. But, along with these
advances, a problem has appeared that is signi-
ficantly different from the early days of data
processing. That problem is efficient and
effective machine scheduling. The difficulty
lies in the fact that it is not a simple matter
to translate human requirements and human thought
processes into complex machine requirements in
such a way so as to realize the maximum utiliza-
tion of expensive machine resources. The problem
is most often solved by simply allowing the compu-
ter to accept jobs on a first-come, first-serve
basis or by utilizing an unsophisticated software
job selection procedure. An example of the
former is the practice of loading the job queue
with the jobs that are to be executed over a

given period of time and executing these jobs in
a first-in, first-out manner. An example of the
latter is utilization of a feature of the IBM
360/Operating System (OS) termed HASP (Houston
Automatic Spooling & Priority) . This feature is

primarily used in those installations that pro-
cess large quantities of relatively independent
jobs; it is unsuitable for long running mutually
dependent processes that access integrated files.
The intent of the following discussion is not to
pursue the pros and cons of the various schedul-
ing methodologies; rather, it is to describe a

program which helps greatly to eliminate many of
the problems associated with scheduling of the
AMC Commodity Command Standard System (CCSS).

AUTOMATED PRODUCTION SCHEDULER DESCRIPTION

The Automated Production Scheduler (APS) is a
COBOL program incorporating many of the basic
principles of PERT (Program Evaluation and Review
Technique) . The scheduler applies these princi-
ples to descriptions of computer jobs to evaluate
the relationship between a variety of activities
that compete for resources and time. A computer
job in IBM terminology is defined as "a total
processing application comprising one or more
related processing programs, such as a weekly
payroll, a day's business transactions or the
reduction of a collection of test date." There-
fore, in order to apply the principles of PERT,
it is necessary to describe the workload for the
computer in terms of computer jobs, i.e., job
profiles must be constructed.

Within the APS data base, each job to be
scheduled is identified by a name that is
compatible with the IBM job control language
naming conventions (See Appendix A) . For each
name, important operational and scheduling
parameters are provided. These are: £ore

AN MVT ENVIRONMENT

Verbois

•iel Command

requirement, run time (calculated, estimated or

observed), the earliest time the job can be

started and the latest allowable time for job

completion, percentage of CPU time, devices re-

quired to support the job, predecessor jobs that

must be completed prior to the beginning of each

job, number of disk tracks that will be required

to support transactions into and out of each job,

number of disk tracks that will be free at the

successful completion of the job and any special
conditions that must be considered, such as:

restrictions on updating the same file by two

programs simultaneously or the physical mounting
of a given file before job initiation. The job
profile can be established at any level preferred.
For jobs that will be processed on computer
systems running under an MFT (Multiprogramming
with a Fixed number of Tasks) operating system, it

is sufficient to define the profile at the job

level as opposed to the step level (jobs are

comprised of one or more job steps which are

defined as that unit of work associated with one

processing program) . For those jobs that are to

be processed on machines which operate under an

MVT (Multiprogramming with a variable number of

Tasks) operating system, it may be convenient to

define the profile at the step level. In either

case, the job profiles can be collected in such a

manner that one or more jobs may be scheduled by

using an indexing technique. For example, suppose
a given application. Weekly Billing, comprises
five separate jobs. In building the APS data base
the five jobs would be individually described,

each with a separate name. In addition, the five

job profiles could be "collected" under a separate
name to facilitate their manipulation in a remote

environment

.

Jobs may be scheduled for completion in any period
up to 24 hours in length by entering the job names
(or collection names) into the computer via a

terminal (see Appendix B) . The APS program will
mix and match the job profiles in such a way so as

to produce the optimum sequence of execution.

Those jobs that cannot be scheduled within the

time frame established are indicated on a separate

APS report.

APS REPORTS

Several reports are provided by the scheduler.

Each report is optional in the sense that, when

operating the terminal in interactive mode, the

opportunity is provided to print or suppress

printing of each report. The basic reports are:

-Status Report (Appendix C) . This report is

essentially an extract from the APS data base and

reflects major parameters assigned to describe

each job selected for scheduling. The option is

provided to change any parameter for any job on

either a temporary (one time usage) or permanent

(physical data base change) basis.

99



-Unscheduled Runs (Appendix D) . As previously
indicated, all jobs that cannot be scheduled with-
in the time frame or hardware configuration
provided will be shown on a separate report.

-Release Sequence (Appendix E) . This report
lists the optimum sequence of job release along
with estimated start time (SETUP) estimated time
of completion (REMOVE) and jobs that must complete

prior to release of a given job (PRED) . A message

is printed at the end of this report which
indicates the degree of multiprogramming that can

be expected.

-Resource Map (Appendix F) . A listing of

resources remaining for each time increment is

provided by this report, along with a theoretical
multiprogramming map. Column headings refer to

resources remaining available after assignment

of those required to support the scheduled jobs.

TERMINAL CONSIDERATIONS

There are a number of commercial scheduling
systems available in the market-place that will
perform in a manner similar to APS; however, APS

is believed to be the only scheduling system that

operates from a terminal. The primary advantage

in having capability to operate the scheduler

from a terminal is the ability to dynamically

reschedule on an as-required basis without
interruption of the host computer.

Before discussing the scheduling/rescheduling
aspect of APS, it would be beneficial to discuss

general advantages and disadvantages of auto-

matic scheduling. First, it is perhaps
unfortunate that the term "scheduler" is used
to describe the subject system. A more accurate

term would be "pre-scheduler" because, basically,

that is precisely what happens. By utilizing
automated scheduling (pre-scheduling) we can

determine the best job start sequence to most

effectively utilize equipment resources. Auto-

mated scheduling will also allow determination of

the best time to start "one-time job" after a

normal production day has been scheduled. This

is readily accomplished by examining the resource

map to choose the time frame wherein resources

are available for "one-time jobs." If described

in the APS data base, it can automatically be

fitted into the current schedule by simply

entering its name through the terminal, thereby

providing the dynamic rescheduling capability.

A secondary benefit of automatically pre-
scheduling a periodic computer workload is the

forced attention to detail necessary to properly

utilize APS. All too frequently a given work
period is scheduled in a most cursory manner. By

identifying the requirement to the scheduler,

more assurance is given that the proper homework

is done before a job is entered into the computer

for execution. For example, one of the uses made

of the APS system is to simulate a given

scheduling period to determine whether more work
has been planned than can actually be performed.

Of course, as with all planning, the real world

frequently will not allow exact execution. Un-

expected job failures, equipment failures or

changes in processing priority tend to disrupt
the best of schedules. Operational environments
that are basically unstable may find that pre-
scheduling has limited value in defining optimum
job sequence. This is because of the bias thrown
in by unpredictable run times. Although this is
a disadvantage, it can be compensated for in part
by the workload simulation aspect and in part by
the ease in which rescheduling can be accomplished
APS retains the last schedule produced so that it

is possible at any time to enter, through the
terminal, the specific conditions at a point in

time and obtain a new schedule in a few minutes
(3-5).

CURRENT APS USAGE

The USAMC Automated Logistics Management Systems
Agency presently utilizes the APS system in two
ways. The first way was addressed briefly above;
i.e., used as a pre-scheduling planning tool to

insure preproduction considerations are honored.
A second and growing use of the scheduler is in
the area of "simulation" (Appendix G) . In this

latter role the scheduler plays an increasingly
important role in the area of equipment configur-
ation predictions. These predictions are made in

the following manner:

-The workload requirements of a given program
are described in terms of transaction type and
volume, disk storage requirements and master file
activity estimates. These basic statistics are

utilized to produce program run time estimates.

-The run time estimates are entered into an

APS data base along with other job profile para-
meters described earlier. Model schedules are
then produced which attempt to show a theoretical
sequence of work that can occur on a given equip-
ment configuration.

-The reports produced by the scheduler are

analyzed to determine whether additional hard-
ware is required or too much hardware is provided
for an estimated workload at a given location.
For example, if the estimated workload cannot be
accommodated on a given configuration, the sched-
uler reports will show all jobs that can be run

and will further list the jobs that cannot be
scheduled under the constraints provided. A
quick analysis of the output reports will reveal
that, perhaps the reasons scheduling cannot occur
are a limitation or inavailability of some system
resource (i.e., core, tape drive, disk drives,
etc.). The overall effect of the "simulation"
is a quick look at the impact of additional work-
load on a given equipment configuration. This
methodology has proven to be extremely accurate
and effective to date with the qualification
that, as with a "normal simulator", the results

are only as accurate as the input provided.

APS DATA BASE CONSIDERATIONS

As may be noted in Appendix G, a powerful
feature of the automated scheduler is the

capability to update the scheduling data base
with actual history data. Update is accomplished
by using data generated by the System Management
Facilities (SMF) feature of the IBM OS. This

ioo



APS AVAILABILITY
feature automatically records operational para-

meters for each job and job step executed. It

provides all of the basic information included in

the APS data base except the predecessor con-

siderations. Not only is the capability to up-

date the data base to reflect actual history on

a recurring basis important, but in addition,
those installations that must build the job pro-

file from scratch will find the SMF data a

valuable source of information. Since SMF is the

source of the machine utilization accounting and

billing reports, a secondary benefit is obtained.

The APS data base can be used to serve not only

the scheduler, but also as the repository of

utilization statistics

.

The APS program described in this paper is a
proprietary package of Value Computing, Inc.
of Cherry Hill, New Jersey. In October 1972,
the USAMC ALMSA acquired a license for this
package. Provisions in the license include the
use of the package throughout the Department of
the Army without additional charge.

The program as it stands under the licensing
arrangement was designed around the requirements
of the cess. In this respect, it is built to
operate under the IBM MVT operating system
Release 20.6 and higher. The access method
specified is TCAM (telecommunications access
method)

.

101



H CM

J

O -H

CN CM

< < Onow

o H
l-J Pu
M MM «

cn

CM h-l MO 'X) r-l O
m 1 I zW iH W BhO 3 W
O O O- Hm w w w cq

O K P2 OS <
t-3 fi< D-i ;s

< «

COM M
M iJ

CM 1-1 l-l

(-) i-H O fi-,

u3 r I sW tH r- w PS
« P w
P O O- H

CQ W U U
O « M P5 <
•-3 CL, fL, ^

<H CNl CN
< < oO O c/5

W iJ
CM M M

isw PSp w
I

cn

iH CM CN
< < O
O O cn

t/D IW .H
Q
O

CP W
O PS
-1 P^ p-1

CM M M
I ^ >W PS

O CD- H

iH CM CM
< < PP P C/2

W
W iJ

CM M M
O VO ,H U PuW I I 2 ^W t-H W PSO 3 W
P R C H

CQ W W W CO
O 03 pd P3 <
>-> Oh Oj S

I P
f i-I0 u
z >M P
1 \W iJO CJ
M
>w >
p p

I ^
I ij
I o

o

102



HO Pi
O

X PL,

•H W
t3 pci

C
<U M
P. I=»

< <H

cn
I

Q
<U O

CN

a

r-1

t ?s

<u

O

trm

1

o
'-I

QM §

C3 O
P-l ^o
<u
1-4 O
o rH mU K tN

0) in
H tH
•H
H

o
HI <r
4-1 n)

n) 4-1 m
tN

-u in
o

l-l n)

CO 4J o
w CO o

^ ^ ^
u-1 00 <r
.-1 O o
Q Q Q Q

X X
PQ ca w

<r
o o O« « 3

(1>

XI X
ca Q

§
in

o .H
OS Q Q

X X
ca o Q

<! <r <r -a- <
O o o o O
Q « Q Q a

103



w

d w
a. u
<!

w w
•H Oa Q

p. o
<;

AX
X X X!
O CQ U a

lO iri <J-o o rH o o Oo o o o Q Q o

J CO
to w« ww o
3C Oo ai
CO cu

CO J

I

104



lOS



106



PERFORMANCE EVALUATION OF TIME SHARING SYSTEMS

T. W. Potter

Bell Telephone Labs

Introduction

One of the most severe problems we face today in a new in-

house time sharing system is that it becomes overloaded and

degraded overnight. If It were possible to determine under

what load conditions time-sharing performance degrades

beyond acceptance then one could estimate when to

upgrade. More important than knowing when to upgrade

is knowing what to upgrade in order to obtain the most

cost-effective performance possible. This paper presents

techniques that have helped to solve these problems. It

begins by describing methods of analyzing how the user is

using the time-sharing system. Through these methods one

can create reasonable synthetic jobs that represent the user

load. These synthetic jobs can be used in benchmarks under

elaborate experimental design to obtain response curves.

The response curves will aid in determining under what load

conditions the time-sharing system will degrade beyond

acceptance and the most cost-effective method of upgrading.

This information together with a reasonable growth study,

which is also discussed, will keep the time sharing system

from severe performance degradation.

The response data obtained from benchmarks can be used to

create an analytical model of the time-sharing system as well

as validating other models. Such models and their usefulness

will be discussed.

Some new in-house computer systems can provide batch,

remote batch, transaction processing and time-sharing ser-

vices simultaneously. These sophisticated systems do not

lend themselves properly to performance analysis. There-

fore, the task of keeping the time-sharing system tuned to

maximum performance or minimum response time is dif-

ficult. In order to standardize more stringently the tech-

niques available to keep time-sharing response minimal we
must separate time-sharing from the other environments or

dimensions and present the resulting techniques in this

paper. These techniques can then be extended to the

multi-dimensional case.

Concurrent

Users

80

Figure 1

Jan

Response

Time (sec)

20

April July

Figure 2

Oct Jan

No. of concurrent

Users

Suppose that the curve in Figure 2 is based upon a system

with processor P-j, memory M-j and disk D-]. Then we re-

benchmark using the same processor P-] and memory Mi but

change disk Di to Now we obtain curves like Figure 3.

Techniques

Let us assume we are given the task of creating a five-year

growth plan for an existing in-house time-sharing system.

If we know what kind of users are on the system and how
they are using it we would know the usage characteristic or

user profiles of the time-sharing system. Now given the

estimated growth of time-sharing we could determine the

systems reaction to these users.

Therefore if we know the growth (Figure 1) and we know
how the time-sharing users are using the system at this time

(user profile) then by benchmarking we can determine the

system reaction at higher loads and obtain a response curve

(Figure 2). This assumes of course we can define response

time. If we re-benchmark using different configurations we
can then see the effect on performance of alternate con-

figurations.

Response Figure 3

Time (sec)

1 1 1
1

40 60 80

No. of concurrent

Users

We could re-benchmark again changing any number of possi-

ble hardware or software factors. Hardware factors are dis-

cussed in this paper.

107



The hardware monitor can collect information relating to

the instruction mix which can be very helpful in reproducing

the processor requirement. The monitor can also collect

information relative to the terminal user in terms of

average number of characters received/transmitted per user

interaction. Since the monitor can also collect information

relative to the peak periods of utilization we can determine

when to study the log files. In order to guarantee per-

formance one needs to reproduce the peak period loads and

therefore information on non-peak periods need not be

used in most cases.

Typically the log files give information relative to average

memory requirement, average processor time and average

disk and terminal I/O. Most log files account for the time-

sharing processor time, disk and terminal I/O and number of

commands or languages requested. For example, if Fortran

was used then those resources used by Fortran during the

sample period would be recorded. Typically by studying

the commands or languages we can find a small number of

them that account for the majority of the resource utiliza-

tion. A user survey is very helpful in determining the most

frequent programming languages, the program size in arrays

versus code, and the types and sizes of disk files. The
console log usually gives an indication of the number of

concurrent users during different periods for an entire day.

Console log information can be used to make sure that the

time-sharing system is relatively consistent from day to day.

This can be done by graphing the maximum number of

concurrent user during each hour of a day and comparing the

daily graphs. (See Figure 4C). If large fluctuations do occur

then one must compare the user profiles that are created

during the different peak periods and determine which

profile to use as a pessimistic representation of the user load

(a harder load on the system).

Number
Concurrent Figure 4C
Users

Day 1

1 I

Day 2

1 1 1 1 1

1

8 9 10 11 12 13 14 15 16 17

TIME

Let us assume that a hardware monitor has been connected

to the processor(s), channel(s), and communication con-

troller or processor. This monitor should at least collect

utilization data to determine peak periods of resource

utilization. The monitor should also collect or sample the

instructions (op codes) executing within the processor(s).

The monitor could also collect terminal related data by
sampling a register within the communication processor

which contains information on each terminal I/O. This

information could consist of the terminal number; whether

the terminal was presently sending or receiving data; and

the number of characters transferred. The terminal data

could also be collected via a software monitor. Now let us

assume that there is only one synthetic job which will

represent the entire load. What might we observe as typical

hardware monitor data?

In creating the synthetic job we need to determine not only

the amount of processor time used but also the type of

instructions executed (scientific or data processing). We
might observe the following hardware monitor data for in-

struction mix.

OP Code Usage in Percentage

OP Code Day 1 Day 2 Day 3

Load 29.6 28.7 30.7

Store 19.7 19.9 19.4

Compare 13.5 10.0 12.1

Transfer 25.5 24.0 24.9

Arith 7.8 7.9 7.1

MISC. 3.9 9.5 5.9

This data might indicate to the analyst that the users are

data processing oriented as opposed to scientific.

Schematically, we have used the monitor to collect data

on the instruction mix:

Hardware

Monitor

Instruction

Mix

These four major tools (monitors, log file, surveys and

console logs) now allow us to create one or more synthetic

jobs that reasonably represent the user load. A synthetic

job is like any other job in that it requires a programming

language, processor time, disk and terminal I/O, and memory
requirements. If more than one programming language has

large usage then more than one synthetic job is required.

Let us work through an example on how these tools are

used to create synthetic jobs. Data contained within this

example are purely hypothetical.

Now by obtaining terminal data we could collect the fol-

lowing distributions on each terminal:

Percent

of

Input

10 20 30 40 50

Characters per input on Terminal 1

108



Let us assume that disk D2 produces the desired minimum
response time. Response time is defined as the time it takes

the system to respond with the first printable character

after the user returns the carriage on his terminal. We shall

assume that the system was originally engineered for

minimum response time of say 2.5 seconds. This assumption

creates a number of unanswered questions. What expenses

are associated with the best response time as compared to

'good' response time (2.5 seconds vs. 5 seconds)? At what

response time does the user become irritated? The answers

to these questions might allow the system to be engineered

in a more cost-effective manner.

From Figure 1 we see that the additional module of memory
should be on the system by January.

This process of benchmarking and considering alternative

configurations can be continued over and over until a reason-

able five-year plan takes shape.

Therefore given the usage characteristics of the present

in-house time-sharing users and the grovrth estimates we
can find the systems reaction and produce a rgowth plan.

This can be represented schematically as:

Let us assume that an average response of ten (10) seconds

or greater irritates the users. Our goal then in this five-year

growth plan is to keep average response time below ten

seconds. Note that human factor methods must be utilized

in order to obtain the unknown irritation level.

This irritation level would indicate in Figure 4A that at 45

terminals the configuration needs upgraded possibly from

disk D-) to disk This decision to upgrade is based only

on performance. One could base a decision to upgrade on

cost-performance, in other words it might be cheaper to

accept a penalty in dollars for responses beyond 10 seconds

up to say 15 seconds before replacing the D-j with a costly

disk This assumes of course one can attach a price to

degradation.

Response

Time
Figure 4A

No. of concurrent

Users

Now given the magic number of 45 (the point to upgrade).

Figure 1 indicates that the disk D2 should be on the system

in October.

Let us assume that the in-house time-sharing system will

perform adequately with the new disk D2 until the growth

exceeds 72 concurrent users (Figure 4A). In order to keep

response time below ten seconds when the number of users

exceed 72 we must reconfigure the hardware and re-bench-

mark. We might find that an additional module of memory
M2 provides the needed response time as in Figure 4B.

Response Figure 4B
Time

20

User

Profile

Growth

Estimate

Find

System

Reaction

The major limitation to such an ideal scheme as outlined

above is that we usually are not given the usage characteris-

tics or the growth estimates.

Therefore, we must determine the user profile and growth

estimate and then proceed finding the systems reaction.

User Profile

The user profile or characteristic can be obtained via

hardware monitors, log files, survey data and console logs.

Note that software monitors can also be used but are not

addressed in this paper. These tools interrelate in the

following manner:

40 60 80

No. of concurrent Users

100

109



Percent

of

Output

_L _L

50 100 150 200
Characters per output

on Ternninal X

These distributions could be summarized as follows:

Avg. Avg.

Term No. Input Output Percent In Percent Out

18

29

100

76

3.58

2.93

4.97

6.11

Total Input - 30%

Total Output - 70%

Weighted Avg Input - 30 characters

Weighted Avg Output - 90 characters

Collecting this data over three or more days would allow the

analyst to conclude that the terminal user is data processing

or report writing at his terminal.

In order to obtain detailed data for the synthetic program

we need to determine the peak periods of resource utiliza-

tion. Here we might find that the peak period is from 2:00

p.m. to 3:00 p.m. each day. We could average the synthetic

job characteristics over the sample days or create the job

characteristics from the day where most resources were used.

Assuming the latter case, we could then extract from the log

files the peak period data.

We need to determine how large the synthetic program

should be and how much peripheral I/O is generated. Schem-

atically the log file and hardware monitor relate as follows:

On some log files the average program size for each language

processor can be obtained while on other log files only the

overall average program size exists for time-sharing jobs.

If Fortran and Basic are the most frequently used languages

then an average size Fortran and Basic job needs to be

created as synthetic jobs. Let us assume the log files indicate

that the average Fortran programs object code is 12K words

(K=1024) on some machine and the average BASIC pro-

gram's object code is 4K words. We might find that Fortran

is executed n times during the peak period and Basic is

executed m times according to the log file. With this

information and the number of disk l/O's performed per

execution of Fortran or Basic we might find that Fortran

has 30 disk I/O and Basic has 50 disk l/O's on the average.

If possible we should separate disk l/O's into input and

output.

In time-sharing we often find that program execution only

occurs a small percentage of the time (30%) whereas com-

mand execution occurs most frequently (70%). Therefore,

we must study all the possible commands (old, new, list,

etc.) and select a subset which will account for a large

percentage of resource utilization. In many time-sharing

systems where the users are data processing oriented the

three commands: request a file; edit a file; and list a file,

account for the majority of command related resources.

This, however, forces the analyst to create three synthetic

jobs for the commands and one for each language used.

Therefore, if Fortran and Basic are highly used then there

are two more synthetic jobs or five in all.

Typically, the time-share commands process file and the

files can be reproduced. For example listing a file by the

LIST command can be reproduced by obtaining an average

file size (to recreate the terminal and disk I/O) and the

average processing time required to list the file. Each

command is studied in order to reproduce it as closely as

possible. Let us assume that five synthetic jobs are created

which are data processing oriented then the next question is

how are these five synthetic jobs mixed together? In order

to determine how the synthetic jobs are mixed together we
use the log files to determine how often each command or

language is executed. We sometimes see that these five

jobs account for 90% of all system resources but are only

referenced 40% of the time. If we assume that these five

are the only jobs on the system and adjust the 40% figure to

100%) we obtain the frequency of executing the various

jobs. For example, we might find:

Instruction

Mix

Hardware

Monitor

Basic 14%

Terminal

Characteristic

Peak

Period

Log File

Fortran - 10%

List - 20%

Edit - 10%

Old - 46%

This percentage can represent the steady state probability

of being in any one synthetic job and as such represents

this job mix. This assumes we can define steady state.

From a hardware monitor and the log files we can reasonably

create synthetic jobs and determine their mix. There are

110



still a few unanswered questions like what kind of files do

the programs use (random or sequential)? This question

and others can be reasonably answered via the user survey.

The survey helps to fill gaps with synthetic jobs and should

be designed to find out what the user thinks his program

does.

different problem. This is the problem of predicting an

initial cutover load on a new time-sharing system when all

users are outside on commercial service bureaus. Since we
assume the in-house system already exists we will present the

methods required to determine the above regulatory per-

centage.

The console log allows the analyst to determine how consis-

tent the users are from day to day and how often the system

goes down. The later item is important because a false peak

period is usually observed when a system regains conscious-

ness and as such should be ignored.

After creating the synthetic jobs by studying the usage

characteristics we now must determine the anticipated

growth.

Growth Study

An in-house time-sharing system grows because: new appli-

cations are created on the system; more users become

familiar with the in-house system; and outside users (com-

mercial service bureaus) are requested by company policy

to move in-house whenever possible. In the first two

cases the anticipated growrth of time-sharing is directly

related to the amount of money in the budget. Actually we
assume that increased budget money means increased usage

but we do not actually know whether a $2000/month in-

crease equals 10 concurrent users or 2 concurrent users. For

this reason we must collect past budget estimates and relate

them to past usage. For example we might find a 10%
increase in dollar usage in the past year (hopefully budgeted)

and a real time-share growth like Figure 4D which might

indicate a 20% growth in concurrent users.

Concurrent
Users

100

Figure 4D

J FMAMJ J ASOND
Months

Now our anticipated growth without service bureau users

moving inside is estimated at 20%. What happens to this

anticipated growth if outside users are requested or desire to

move inside?

If this in-house system is regulated in such a manner that the

outside users can only move in-house by going through desig-

nated channels then a regulatory body can control the per-

centage of outside users to move inside. This percentage

would be based upon the number of concurrent users from

your company on each of the service bureaus. Once this

percentage has been obtained then the regulatory body can

limit the number of outside users to move inside or plan the

move over a period of time. The techniques used to obtain

the above percentage can be used to solve an entirely

First, obtain past bills for time-sharing services charged to

your company. Some of these bills will contain information

on log-on/log-off time by user-id. Other bills will only have

dollar resources used and each billing unit will be different.

If we were to graph the number of connects on each (if

possible) of the time-sharing service bureaus by days within

each month (Figure 5) we can obtain peak days within each

month. A connect is where a user logs onto the time-sharing

system.

Total Number
Of Connects

100

lb —

50 —

Figure 5

25

1 2 3 4 5 . . .

August

Vendor X

Now by observing, which day in the month was the peak day

we can graph the total number of connects by hours on that

day (Figure 6).

Total

No. of

Connects

20 —

15 —

10 -

5 —

Figure 6

I
10 11 12 13 14 15 16 17

Hours - Busy day - August

Vendor X

The hour given on Figure 6 with the largest number of con-

nects should be studied in more detail. If we are given the

log-on time and elapsed time we can compute the log-off

time and create the following time diagram:

111



10:45

11:00

11:15

11:30

11:45

12:00

12:15

log-on

1
2

log-off

concurrent

users

This now says that for the month of August we could see as

many as six concurrent users from your company on this

system at one time.

We can obtain reasonable estimate of current outside growth

like Figure 7 for each vendor by studying their billing data

over a four to six month period.

Number of

Concurrent

Users

Jan

This might indicate that your company has an estimated

outside growth of 25% on vendor X.

We could now tabulate the outside growth in the following

manner:

Present

Service Bureau Concurrent Users

Predicted

Growth

Xi 5 25%

X2 10 10%

Xp 7 1 5%

If the regulatory group (limits outside to inside moves) has

two people to help move the outside users inside then they

must be scheduled according to some predetermined plan.

This plan might indicate that two concurrent users from
vendor X-], one from vendor X2 and so on can be moved
inside per month according to available manpower. If all

time zones are the same we can assume that our in-house

peak number of concurrent users will increase by the two
users from vendor X^, one from vendor X2, etc. which move
inside per month. The number of concurrent users moving
inside now allows us to determine the regulatory percentage

discussed earlier as say 20%. We now conclude our growth

estimate with the following growth chart:

Concurrent

Users

100

80

60

40

20

Inside &
outside growth

y

J L J L

Inside growth

only

I I I

F M A M J J

Months

A S 0 N D

This chart indicates that if the outside growth moves

inside and the inside system observes some regular increase

then the system soon gets out of hand. This could mean that

the schedule of moving outside users inside namely the

regulatory percentage of 20 is too progressive.

One of the main reasons for discussing outside time-sharing

usage is that a company which has inside time-sharing

probably has some outside usage. This outside usage usually

grows as does the inside usage since more computer users

seem to be turning to time-sharing. For this reason any

growth plan for in-house time-sharing would be incomplete

without some consideration of outside users migrating inside.

The growth procedure discussed above will give us a

reasonable estimate of growth in the immediate future.

However what happens in the long term is never known.

Setting up this procedure will allow you to follow your

growth and at least estimate out at three to six month
intervals.

System Reaction

We can find the systems reaction by setting up experiments

on a controlled machine and collecting performance data like

response time. Experiments to collect response time data

can be set up using a terminal emulator which makes another

computer look like 'n' terminals. This of course assumes that

we can recreate the load via synthetic jobs in a mix (20%

job 1, 10% job 2, etc.). For example we can start 20terminals

executing jobs for say one hour during which we can force

synthetic job one to execute 20% of the time.

The terminal emulator is designed to time stamp and store

all data sent or received onto a magnetic tape for later

analysis. During the one hour period to run 20 termianis we
must allow the system to stabilize. This stabilization can be

U2



defined in a number of ways, however I find it convenient

in data analysis to run the system long enough for the jobs

to reach a minimum variance on their individual response

times. For example synthetic job one has a mean response

time and a variance. Once the system is stable the variance

on response time for synthetic job one is minimal. The time

required to reach minimal variance for synthetic job one

will differ from the other synthetic jobs assuming of course

steady state exists. Note of course the difficulty in observing

a running variance and deciding on steady state.

It is extremely hard to analyze the effect of five synthetic

jobs and 20 terminals with a measurement criteria like

response time unless one analyzes each synthetic jobs

response time as a function of the mix. The raw data should

always accompany the analysis in the following manner:

Synthetic Job No. 1

Observation

2 3 4 NTerminal

1

2

3

20

Ml

Measurement Criteria

This table of raw data indicates that we observed the

response time or measurement criteria for synthetic job one

on each terminal a number of times. Keep in mind that at

the same time synthetic job one is running it is possible for

the other jobs to be running.

Let us assume we have determined a growth estimate and a

user profile. By benchmarking alternate configurations

with varying number of concurrent users up to the maximum
predicted by the growth estimate we can obtain various

response curves. These curves will then be useful in

determining when to upgrade. Since the growth estimate

may only be reliable from three to six months in advance

then these curves should be very accurate for that period.

Now if we can be assured that as the growth increases the

user profile stays reasonably the same then the curves can be

useful throughout the entire growth period.

One should not benchmark every time the user profile or

growth estimate changes. Typically a by-product of bench-

marking will be an awareness of how sensitive the response

curves are to certain factors (e.g., processor requirement).

Those factors that make up the synthetic jobs should be

tracked or followed on the in-house time-sharing system so

as to observe any great change. This usually can be done via

a log file analysis program. If the user profile changes

greatly and there is not a clear cut alternative for a system

upgrade then re-benchmarking is usually required. There-

fore by determining a user load and growth estimates we can

analyze the systems reaction and as a result upgrade our
system based on cost-effectiveness. There are a number of

problems not yet addressed in this paper, for instance if

there are five synthetic jobs (three commands, two jobs)

what is response time? Another interesting problem is how

do we determine how much better disk D2 is than disk

Di in Figure 3? One way is to eye-ball the curves and esti-

mate, but this does not account for the variance on each

point on the two curves. For example, we will not find at

40 terminals on disk D2 a response of exactly 4.5 seconds.

We will find a mean of 4.5 plus or minus some deviation.

Since some variance exists for 40 terminals of D2 some vari-

ance also exists for 40 terminals of disk D-]. Could this

Indicate that there is no difference between disk Di and

2 at 40 terminals? It depends on the variance of the two
means typically referred to as statistical significance testing.

How do we take into account the variance on D2 at 40
terminals and at the same time 60 terminals since the

variances will also differ? One way is to create an adequate

statistical experimental design for the benchmark so that a

regression analysis or analysis of variance can be performed

on the data . The advantage of regression analysis is that

it can relate the difference between the two curves in terms

of additional terminals at the same response. For example,

disk D2 in Figure 3 may give 40 more terminals at the same

response time than the disk D-]. The 40 more terminal figure

is plus or minus say 2 terminals. This is very useful informa-

tion because if disk D2 cost $100 more than disk D^
per month then it cost $2.50/terminal to replace disk D^
at 40 terminals with D2. Comparing the S2.50/terminal

for the disk to say $5.00/terminal for a memory increase

we would find the disk enhancement to be more cost-

effective. This regression analysis can be very useful in

comparing curves but it completely depends on the bench-

mark and how well the experiment was designed. I recom-

mend reviewing your design with statisticians prior to

running the benchmark. Therefore by creating a user load, a

growth estimate and an adequate experimental design we can

make a reasonable growth plan for a time-sharing system.

This procedure for a growth plan is repetitive and must be

so in order to be reasonably approximate.

The techniques presented in this paper to recreate the load,

estimate growth and find the system's reaction were not

designed to be totally encompassing primarily because the

methods of data analysis and decision making in performance

evaluation are barbaric.

The remainder of this paper addresses the real life problems

associated with using response time as a measurement of

time-sharing performance. In this we shall assume that the

load can be reproduced via synthetic jobs and accurate

growth forecasts can be made. With these assumptions we
can design experiments in order to collect response curves

like Figure 3. A terminal emulator or load driver would be

used to implement these experiments. The real problems are

in the benchmark results. Let us study the curves in Figure

3.

First give response time a simple definition. Create a

synthetic job written in Fortran with a 'DO' loop in which a

terminal read statement is placed. In program execution

data is requested from the user; the user inputs his data and

hits a carriage return, then the program requests more data.

This may be viewed on a time scale as:

Request Response Request

Data Input &CR Time Data Input &CR

113



Therefore response time is the time from a carriage return

'CR' to the time the system responds with a printable

character. We know as a fact that if the 'DO' loop requests

ten entries of data from the terminal then we will have ten

different response times. Now if this one terminal executes

the synthetic program over and over we will obtain yet

different response times. Ten different terminals all exe-

cuting separate copies of this synthetic program will also

observe different response times.

Three separate sources of variability exist: within the syn-

thetic job; across executions of synthetic jobs within

terminals; and across terminals. Yet this is the simplest

definition of response time possible. Now Figure 3 looks

like Figure 7 where with each mean response time plotted

we have also plotted a window or variance around the

mean. Therefore Figure 7 looks like Figure 8.

Figure 7
Response

Time

20 40 60 80

Concurrent Users

Response „
^. Figures
Time ^

20 40 60 80

Concurrent Users

The problem is that we usually show our management how
different curve Di and D2 are from Figure 3, when in fact

the real difference between D-j and D2 is shown in figure 8.

If we were to base a decision to upgrade on Figure 3 we
could really make a mistake. Instead we should consider

mean response time and variance. Curve D-] in Figure 8 is

now a very fat curve or interval. This interval comes about

because we want to be sure that the mean at Y terminals is

in fact within the interval a certain percent of the time.

For example if we want to guarantee 95% of the time that

the mean response time at 40 terminals is a certain amount

we could create an interval in which this mean would lie

95% of the time. The more you want to guarantee a

mean response time the wider the interval. Therefore in

order to guarantee a difference between the curves in Figure

8 we must use both the mean and variance at each possible

point on the X-axis. We are now faced with comparing

intervals. Now the problem of determining when to upgrade

and what to upgrade is more complex. We could compare

alternative curves via regression analysis and if given the cost

of various alternatives we could create econometric models to

determine the most cost effective upgrade. In addition, if a

95% guarantee is not needed then one might be willing to

risk an 80% or 51% guarantee in which case risk analysis or

statistical decision theory becomes useful. Keep in mind we
have defined response time in the simplest way possible but
it really doesn't represent the real world because a single

synthetic job usually cannot recreate the load. What
then . . . multiple synthetic jobs?

If we have more than one synthetic job or multiple synthetic

jobs how is response time defined? If we are to recreate

the real load on the system then these synthetic jobs must
have different response times. For example one program
may accept data, compute and then respond where as

another may accept a command and immediately respond.

This source of variability between different jobs is usually so

large that response time has no real meaning. One could

create a graph like Figure 8 for each of the synthetic jobs.

Now the response at twenty terminals would mean that

when twenty terminals were connected to the system

running the mix of synthetic jobs we obtained a mean
response time of x for synthetic job number one with a

variance of Y. We are now faced with the problem of

determining with not one synthetic job but many synthetic

jobs when to upgrade and what to upgrade. One might find

for synthetic job one that a new disk is required after 40
concurrent users whereas synthetic job two indicates more
memory at 35 concurrent users. Well we could get around
this problem by some cost trade-offs but we immediately

land into another pit. We assumed that the multiple

synthetic job recreated the load, today. What about
tomorrow? Will our decisions be good if synthetic job one
changes in its compute requirements? How good?

All these problems because we used response time as our

measurement criteria in time-sharing. We can't use processor

utilization as the measurement criteria so what now?
Most of us will ignore variances and return to the simple

definition of response time with one synthetic job and
results like Figure 3. If this is the case then the technique

outlined for a time-sharing growth plan are quite adequate.

If we wish to use variances and multiple synthetic jobs then

we must first decide how to use the data. Then we can pro-

ceed to make the growth plans more rigorous.

114



A CASE STUDY IN MONITORING THE CDC 6700 -

A MULTI-PROGRAMMING, MULTI-PROCESSING, MULTI-MODE SYSTEM

Dennis H. Conti, Ph.D.

Naval Weapons Laboratory

ABSTRACT

The complexity of many present day computing systems has posed a special challenge to existing
performance measurement techniques. With hardware architectures allowing for several independent
processors, and with operating systems designed to support several classes of service in a multi-
programming environment, the problem of measuring the performance of such systems becomes increasingly
difficult. The architecture of the CDC 6700 poses such a challenge.

With two CPU's and twenty peripheral processors (independent, simultaneously-executing processors),
monitoring the CDC 6700 becomes an exceptionally difficult task. With the operating system supporting
four modes of service - batch (local and remote), graphics, time-sharing, and real-time - all in a

mult i -programming environment, the monitoring task becomes even more complex.

This paper presents a case study of an on-going effort to monitor the CDC 6700. The goals,

approach, and future plans of this monitoring effort are outlined, in addition to the benefits already

accrued as a result of this study. Several software monitors used in the study are discussed, together
with some proposed hardware monitoring configurations.

The performance measurement study described here has proved to be an extremely worthwhile venture,

not only in terms of its direct impact on improved system performance, but also in terms of "spin-off"

benefits to other areas (benchmark construction, measurement of operator impact, feedback to on-site

analysts and customer engineers).

I, Background

As a large R&D center with requirements for
batch, interactive, and real-time computing, the
computational needs of the Naval Weapons Labora-
tory (NWL) are particularly demanding. A CDC
6700 computer with a modified SCOPE 3.3 operating
system is currently in use to support these needs.
In order to fully appreciate the complexity of
monitoring such a system, a brief description of
its hardware and software architecture is in order.

The CDC 6700 consists of two CPU's (CPU-A
approximately three times faster than CPU-B) , and
twenty peripheral processors (PP's). The periph-
eral processors are virtual machines with their
own CPU and memory, operating independently of
each other and the two CPU's. The PP's may
access both central memory and their own 4K of
core. Central memory consists of 131,000 60-bit
words. Twenty-four 841 disk drives, three 844
disk units, and two 6638 disks account for over
970 million characters of permanent file space
and over 360 million characters of temporary
scratch space.

The modified SCOPE 3.3 operating system sup-
ports four concurrent modes of service - batch
(local and remote), graphics, time-sharing, and
real-time. The time-sharing subsystem, INTERCOM,
provides both a file-editing and a remote batch
capability. The graphics subsystem supports two
graphic terminals via a pair of CDC 1700 com-
puters. The real-time subsystem provides a
hybrid computing capability in addition to other

real-time applications.

Up to fifteen jobs may be active at one time.

Each active job is said to reside at a "control
point" and may be in one of five stages of

execution (executing with one of the CPU's, wait-
ing for a CPU, waiting for some PP activity to

complete, waiting for an operator action, or
rolled out). Both CPU's may never be assigned to

the same control point at the same time (i.e.,

the operating system does not support parallel-
processing of a single job).

The system monitor, MTR, resides in one of the

PP's and oversees the total operation of the system
(scheduling the CPU's, scheduling the other PP's,

honoring CPU and PP requests, advancing the clock).

As there are no hardware interrupts in the system,

all requests for system resources are done through

MTR. Of the remaining nineteen PP's, some have

fixed tasks assigned to them (e.g., one is dedi-

cated to driving the operator's display), while

the others are available for performing a wide

range of tasks (input-output, control-card pro-

cessing, job initiation). A PP program may re-

side either on the system device or in central

memory. When an available PP is assigned a task

by MIR, the relevant PP program is loaded into the
PP memory and execution begins. Upon completion,
the PP is again available for a system task.

Clearly, the complexity of both the hardware

and software architectures of the 6700 poses a

tremendous challenge to existing performance

115



measurement techniques. In light of the "multi"

aspects of the system (multi-programming, multi-
processing, multi-mode), not only is the acqui -

sition of monitoring data difficult, but its

interpretation is even more so.

In spite of these seemingly overwhelming
difficulties, such a monitoring effort was under-
taken at NWL in the fall of 1972. The goals of
this effort were to:

1) determine any existing bottlenecks in
the system;

2) provide a day-to-day "thermometer" with
which any abnormal aberrations could be

detected;

3) aid in the planning of equipment con-
figurations

;

4) aid in determining the need for and in the

selection of new equipment.

What follows is a description of: (1) the

sequence of events leading up to the monitoring
effort; (2) the monitoring effort itself; and (3)

the results and future plans of the effort.

II. The Pre-monitoring Analysis

Prior to the monitoring effort, serious
consideration was given to: (1) available mon-
itoring tools; and (2) the system activities to
be monitored. Several software monitors were
considered. Due to its flexibility, scope, and
availability, the software monitor ISA written at

Indiana University was chosen as the primary
software monitoring tool. ISA resides in a

dedicated PP and samples various system tables

and flags. Due to some basic design differences
between the hardware and operating system at

Indiana University with that at NWL, approximately
three man-months of effort was required to imple-
ment ISA and make its data collection and analysis
as automatic as possible.

A second software monitor was written to

extract information from the system dayfile (a

detailed, running log of major system events).
And finally, a third software monitor which
records individual user CPU activity was acquired.

Termed SPY, this routine resides in a PP for the

duration of a user's job, while continually
"spying" on his control point.

Choosing the type of system activities to

monitor was one of the more difficult parts of

the pre-monitoring analysis. Without knowing a

priori what the bottlenecks in the system were
(if, indeed, any existed at alll), the choice of

activities to monitor was based primarily on an

intuitive feeling (on the part of several systems
personnel) as to the major points of contention
in the system, backed up by some rough empirical
data. Some of the activities to be monitored
were determined in part by the particular mon-
itors chosen. Other activities were found to be

best monitored by hardware monitoring.

Before software monitoring could take place,

changes were required of ISA and its associated
analysis program to record information on: two

CPU's; 131K of central memory; 29 mass storage
devices; additional control point activity; and

finally, the number of absolute, CPU program (e.g.,
the FORTRAN compiler) loads. Due to limitations
in the size of PP memory, several Items recorded
in the original ISA had to be deleted in order to
facilitate the above changes. In addition, the
output medium of ISA data was changed from
punched cards to mass storage files.

Because several critical items in the system
could not be software monitored (e.g., memory
conflicts), a feasibility study was undertaken to
employ a hardware monitor to capture some of the
data. Relevant probe points were acquired, with
details of the following hardware monitoring
experiments completed by 1 April 1973:

1) CPU state;

2) CPU idle vs. I-O activity;
3) number of seeks, number of transfers,

average seek time, average length of
transfers for all mass storage devices;

4) CPU and PP wait time due to memory
contention.

III. The Monitoring Effort

Full scale use of ISA began in May, 1973.
The following describes the data collection and
analysis procedures of ISA as they were and still
are being used.

ISA is automatically loaded Into a PP each
time the system is brought up - whether the first
time each day or after a system malfunction. The
system is normally up 24 hours a day, six days a
week with two hours a day allocated for software
maintenance and two hours for hardware maintenance.
Input parameters to ISA allow for n batches of
data to be dvraiped, where each batch represents m
minutes worth of monitoring data. After some
experimentation, n and m were set to 24 and 50
respectively - thereby minimizing the number of
dumps, but yet still maintaining a reasonable
sampling period.

A GRAB program is run once a day to collect
the dumped batches of data and consolidate them
into one large file. An ANALIZE program then
reads this file and produces a listing of mean-
ingful statistics. Some system activities
recorded by ISA as a function of time are:

1) percent of time Interactive users were
editing text vs. executing a program;

2) average and maximum central memory used by

interactive users;

3) central memory utilization;

4) CPU utilization (for both CPU-A and CPU-B)

;

5) control point activity (e.g., percent of
time n control points were waiting for

a CPU);

6) percent of free space on each of the mass
storage devices;

7) average and maximum number of 1-0 requests
outstanding for each mass storage device;

8) PP activity;

9) number of PP program loads;

10) number of absolute CPU program loads.

An additional option was subsequently added to

ANALIZE to summarize all ISA data collected with-
in a given hourly time frame between any two given
dates.

116



The dayflle analysis program was and still is

being run daily. Data collected by the dayfile
analyzer includes: turnaround time and load
statistics for the various batch classes, fre-
quency of tape read and write errors, abnormal
system and user errors, frequency of recoverable
and unrecoverable mass storage errors.

The SPY program was made available to the
general user population in December, 1972.
Although its use was originally limited to a few
users, others immediately began to see its worth.
Requiring only two control cards to execute and
produce a CPU distribution map, SPY became
extremely easy for the average programmer to use.

After some initial problems with mating probe
tips to probe points were overcome, several
system activities (CPU state, memory contention)
were successfully hardware monitored and their
respective probe points verified. This verifi-
cation procedure required two weekends of dedi-
cated machine time. As a result of this feasi-
bility study, an effort was immediately undertaken
to acquire a dedicated, on-site hardware monitor.
At the time of this writing, attempts to acquire
such a monitor are still proceeding.

IV. Results

The number and type of benefits accrued as a

direct result of the monitoring effort unquestion-
ably proved its worth. Some of these benefits
were expected, while others were rather pleasant
surprises.

The dayfile analysis program proved to be an
especially worthwhile tool for detecting abnormal
hardware and software errors. Upon noticing such
abnormalities, the personnel monitoring the data
would immediately notify the on-site analysts or

CE's, who then undertook corrective actions.
Each week the daily turnaround time and load
statistics would be summarized and compared with
data from previous weeks. A relative increase in
turnaround time and decrease in number of jobs
run per day was usually directly proportional to

the number of system interruptions. These numbers
were thus good indicators of the relative "health"
of the system.

The SPY program did provide some dramatic
results. One particular CPU-bound program, for
example, was found to be spending over 25% of its
execution time in the SIN and COS routines.

The hardware monitoring study demonstrated the
feasibility of an expanded hardware monitoring
effort. In addition, it emphasized the need for
the cooperation of local CE's in helping to

develop and verify probe points, and for an exten-
sive pre-monitoring analysis period.

The most fruitful results of the monitoring
effort undoubtedly came from the ISA software
monitor. At least seven major benefits were
directly attributable to ISA data collection:

1. After the first two weeks of running ISA,
it became apparent that a number of PP
programs were continually being read from
disk and loaded into a PP (some on the

order of 8 times a second). These most
frequently loaded PP programs were
immediately made central memory resident,
thereby significantly reducing traffic
on the channel to the system device, in
addition to decreasing the PP wait time.

2. With the daily runs of ISA indicating the
amount of free permanent file space, a
means existed for assessing the permanent
file space situation. When space appeared
to be running out, appropriate measures
were taken before space became so critical
that all operations ceased (as was some-
times the case in the past),

3. Two situations arose which dramatically
showed the merit of ISA as a feedback
mechanism to on-site analysts and CE's.
Immediately after the introduction of a
new mass storage driver, ISA data indicated
that a certain PP overlay was being loaded
on the average of 74 times a second -

almost as frequently as the other 400 PP
routines combinedl The analyst who imple-
mented the driver was easily persuaded to

incorporate the overlay into the main body
of the driver, thereby eliminating unneces-
sary loads.

On another occasion ISA data indicated
that one particular scratch device was
being used half as much as its identical
counterpart. In discussing this situation
with one of the CE's, it was learned that
he had installed a "slow speed" valve in
the unit while waiting for a "high speed"
valve to be shipped. He had neglected
mentioning this action to any of the

operations' personnel.

4. Several times throughout the monitoring
period the effect of operator interaction
on the system was clearly reflected in the
ISA data. One specific example which
occurred intermittently was an operator
error in configuring the scratch devices.
Specifically, the operator was told to

'OFF' a particular scratch device. How-
ever, ISA data showed that scratch was
being allocated to that device. The
operator was notified and corrective action
was taken.

5. A few months into the monitoring effort
three 844 disk drives were installed. With
a storage capacity and transfer rate
approximately three times that of an 841,
their impact on system performance was
anxiously awaited. Summary runs of ISA
data collected before and after the intro-

duction of the 844' s showed, in fact, a

107o increase in CPU utilization.

6. With the introduction of the 844' s, a

method was also needed for determining
where to put the system device. Should it

reside on an 841 and compete with seven
other 841 's for channel use? Should it

reside on a dedicated 844 with its faster
transfer rate, but compete with t-wo other
844 's and take up only a small portion of

117



available disk space (with the remaining
space on the pack wasted)? Or should it
reside on a 6638 \-7ith its dedicated
channel, but yet even more wasted space?

ISA has proved to be an invaluable tool in
helping to make the above decision. Full
configuration testing using ISA is still
continuing at the time of this writing.

7. Finally, ISA has been a useful tool in the

design of a representative benchmark. In
benchmarking the SCOPE 3.4 operating
system, a one-hour job mix was desired
whose resource requirements matched as

closely as possible those of a "typical"
one-hour period of everyday operation.
ISA data averaged over a random two-week
period was used as a "standard". Next, a

random mix of jobs was obtained from the

input queue and run with ISA monitoring
the system's performance. Monitoring
data from this mix was then compared with
the "standard". Noting that the random
mix was too CPU bound, several synthetic
I-O bound jobs were included. This new
mix was run and its ISA data was compared
with the "standard". This iteration
process continued until a mix was obtained
whose ISA data matched as closely as

possible that of the "standard". This
final mix was then declared a "repre-
sentative benchmark" and was used in the

benchmarking studies.

V. Future Plans

As the monitoring effort at NWL is a contin-
uing one, enhancements to the monitoring tools are

constantly being made. Future plans call for:

full-scale hardware monitoring; implementation of

a new, more flexible version of SPY; provisions
for graphical output from the ISA data analyzer;

a parametric study of system resources based on
data collected from ISA; dynamic interaction
between the various monitors and the system
resource allocators, A combination of the latter
two efforts would effectively eliminate the human
from the data-collection —^ human-interpretation
—> system-modification sequence. The performance
monitors, observing the state of the machine at

time t, could appropriately set various system
parameters in order to optimize the allocation of
resources at time t + At. An effort is currently
underway to employ this technique in order to

balance scratch allocation among the three dif-
ferent types of mass storage devices.

VI. Conclusions

This paper summarized the monitoring effort
.at the Naval Weapons Laboratory, the pre-monitor-
ing analysis required for this effort, and its
resultant benefits and future plans. Three soft-
ware monitoring tools were discussed: a dayfile
analysis program, the SPY program, and the ISA
monitor. In addition, several hardware monitor-
ing configurations were proposed. Of all the

monitoring tools used to date, the ISA software
monitor was shown to be the most rewarding.
Several concrete benefits directly attributable
to the use of ISA were discussed.

Results of the monitoring effort at NWL show
that the previously stated goals have been
achieved and that, for a minimum investment in
m^n-effort, a computer system as complex as the
CDC 6700 can be reasonably measured with existing
monitoring tools. In addition, the future incor-
poration of feedback from the monitors to the
operating system should make the system even more
responsive to the resource requirements of its
dynamically changing workload. A machine capable
of "learning" from its own internal monitors
would indeed be an important innovation.

118



FEDSIM STATUS REPORT

Michael F. Morris and Philip J. Kiviat

FEDSIM

FEDSIM

FEDERAL COMPUTER PERFORMANCE

EVALUATION AND SIMULATION CENTER

FEDSIM is the Data Automation Agency's newest
and, by far, smallest center. Government-wide
interest in this center is evidenced by the fact

that FEDSIM' s full name was changed from the

Federal ADP Simulation Center to the Federal

Computer Performance Evaluation and Simulation

Center— a change made in response to a request
from Congressman Jack Brooks to make FEDSIM'

s

name better fit its mission.

MISSION

Provide reimbursable technical assistance,

support, and services throughout the Federal

Government for simulation, analysis, and

performance evaluation of computer systems.

FEDSIM is unusual in many respects. It provides
consultant services throughout the Federal Gov-
ernment to improve the performance of computer
systems—both existing and proposed--on a fully

cost-recoverable basis. FEDSIM has no budget-
ary impact on the USAF. All services provided
are charged for at a rate that enables FEDSIM to

meet its payroll, rent, utility, and contracted
costs. FEDSlM's mission addresses a pressing
need within the government computer community.
This need has been so well recognized by com-
puter managers that FEDSIM is now in an "over-
sold" condition based almost entirely on customer
demands without a "marketing" effort in any

formal sense.

FEDSlM's goals and the criteria under which it op-
erates are aimed specifically at fulfilling its mis-
sion.

GOALS AND CRITERIA

* Minimize cost of procuring/utilizing com-
puter systems. Maximize productivity of

computer systems--efficiency

.

* Act on request of user agencies. Maintain
confidential FEDSIM-Customer relationship.

* Provide responsive service.

* Cost recovery.

* Provide centralized information/advisory
service

.

In projects involving proposed systems, FEDSIM
strives to make the cost of both acquiring and of

using the new computer as low as possible, while

meeting all system requirements. This is done
through detailed design testing using simulation

and mathematical modeling to examine the system
as proposed, and the system as it might be im-

proved--before committing resources to creation

of any system. Examination of existing systems
involves use of devices and techniques that make
the fit of resources and demands clear, so that

alternate methods may be proposed and tested

that will enable the installed equipment to accom-
plish more work in the same time or the same work
in less time

.

FEDSIM responds to requests of government com-
puter users; FEDSIM cannot go into an installation

without an invitation. To insure that FEDSIM will

help and not hurt its customers, a confidential

relationship is maintained. This encourages the

customer to give FEDSIM analysts all of the in-

formation about their problem(s) without fear that

any practices will be "reported" to higher auth-

orities. As reports prepared are the property of

the customer, they are not released by FEDSIM
without prior written customer approval.

Because of the nature of FEDSlM's mission, cus-

119



tomers usually have a significant problem before

they call for FEDSIM assistance. The FEDSIM
goal has been to respond to every call as quickly

as possible. To do this without an extremely

large staff requires that FEDSIM maintain con-

tracts with private companies with specialized

computer performance evaluation capabilities

that can provide analyst support to meet peak

demands. Costs of this support are passed on to

customers at the prices paid by FEDSIM. Over-
head costs are recovered out of the hourly rate

charged for FEDSIM analysts. This insures that

no government agency pays more for contractor

support through FEDSIM than this same support

would cost if purchased commercially. Also in-

cluded in FEDSIM' s overhead is the cost of pro-

viding information and advice to Federal agencies

on the availability, price, and usefulness of par-

ticular performance evaluation techniques and

products.

MILESTONES

Sept. 1970 - GSA requests USAF to act as

as Executive Agent.

May 1971 - USAF agrees.

29 Feb. 1972 - FEDSIM activated.

1 July 1972 - Initial operational capability.

This availability of technical expertise on an "as

needed" basis for improving the use of govern-

ment computer systems was one of the reasons

behind the General Services Administration's ef-

fort to establish FEDSIM and other Federal Data
Processing Centers. GSA recognized the need

for special skills and experience necessary to

provide computer performance evaluation se»rvices

to all agencies of the government. Because of

the record of achievement in this specialty with-

in the Air Force, GSA asked that the Air Force

operate FEDSIM. After examining the impact of

this unusual offer made in late 19 70, the Air

Staff agreed in mid- 19 71 to assume the executive

agent role for GSA. To insure that FEDSIM had

the necessary authority, GSA made a full dele-

gation of procurement authority for CPE products

to the USAF for FEDSIM to exercise. The initial

FEDSIM cadre started work towards establishing

the needed CPE capability in February 19 72; its

initial operational capability was achieved on
1 July 19 72. This is a remarkably short time for

the establishment of a new government agency.
The earlist record of a suggestion that there be
such an agency places the seed of the idea in

early 1969. This rapid step from idea to reality

suggests that the "time was ripe" for the birth

of this type of organization.

ORGANIZATION & POLICY GUIDANCE

FEDSIM Joint

Policy Comm.
DOD; GSA;

NBS; USAF;
Other Federal

Users

Chief of Staff

U.S. Air Force

Commander
AFDAA

Customer

AFDSDC AFDSC FEDSIM

Along with the establishment of FEDSIM, the Air

Force organized its centralized computer support

activities into the Air Force Data Automation

Agency. In recognition of FEDSIM' s different

mission, a Joint Policy Committee with members
from Air Force, the Department of Defense, GSA,
and the National Bureau of Standards was estab-

lished. This committee sets FEDSIM policy, ap-

proves capital asset acquisitions, and resolves

any priority disputes that may arise between
FEDSIM users, FEDSIM is allowed to interact

directly with its customers so that no intermediate

organizational barriers will be encountered that

might decrease FEDSIM' s responsiveness to cus-

tomer demands.

ORGANIZATION

L Commander

Technical
Director

Program
Development

Applications

Administration

Models Analysis

Internally, FEDSIM is organized by natural diff-

erences in performance evaluation tools. The

three operational divisions are each comprised of

particular types of specialists: The Applications

Division deals with problems that tend to occur

at every computer installation--problems that can

be handled with package simulators capable of

replicating most commercially available computers

running typical data processing workloads; the

Models Division creates special simulation mod-

els for analysis of unusual computer systems or

applications; the Analysis Division performs pro-

120



jects that require special data collection tech-

niques and mathematical analysis. The staff

positions are few at FEDSIM. The Technical

Director, aided by the Program Development Of-

ficer, insures that FEDSIM methods and products

represent state-of-the-art use of available tech-

nology, and that projects undertaken by FEDSIM
are within FEDSIM' s capability and jurisdiction.

Administration performs the usual administrative

tasks and the unusual task of insuring that all

project-related time is properly billed to FEDSIM
customers

.

PROJECTS CURRENT FOR :

General Services Administration (3)

U.S. Coast Guard

U.S. Air Force (ACDB/DSC)
Joint Technical Support Agency
Department of Interior

Federal Communications Commission
U.S. Navy (Naval Weapons Laboratory)

U.S. Army (Military Personnel Center)

Department of Transportation

Tennessee Valley Authority

RESOURCES

*Simulators

COMET (SCERT)

CASE

*Hardware Monitors

Microsum
Dyna probe 7900

X-Ray

* Simulation Languages ^Software Monitors

ECSS SUPERMON
SIMSCRIPT 11.5 PROGLOOK
GPSS CUE

PPE

* Skilled People

Analyst

Programmers
Technicians

Model Builders

Statisticians

FEDSIM' s resources include most of the commer-
cially available performance evaluation products.

However, FEDSIM' s greatest resource is the

skilled people that use these products.

PROJECTS COMPLETED FOR:

General Services Administration

Atomic Energy Commission
Department of Commerce
Internal Revenue Service

Social Security Administration

U.S. Navy (Naval Technical Training Center)

Civil Service Commission
Housing and Urban Development
U.S. Postal Service

National Bureau of Standards
Department of Labor
U.S. Air Force (Accounting & Finance Center)

Through careful use of these resources, FEDSIM
had completed projects for 12 Federal Departments
and agencies by the end of its first year in opera-
tion.

At that time, FEDSIM had computer performance

evaluation projects underway for 10 agencies that

would result in an income during FY 74 of over $1

million.

TYPICAL PROJECT OBJECTIVES

Technical Evaluation of Proposals

Equipment Reconfiguration

Program Performance Improvement
Facility Study

Computer Sizing/Measurement
Computer System Design
Present and Future Capacity Study

FEDSIM' s projects have generally fallen into 7

areas: Technical evaluation of proposals. Equip-

ment reconfiguration, Program performance improv-

ment. Facility study. Computer sizing and measure-

ment. System design, and Studies of existing and

future capacity. Hence, FEDSIM is addressing

problems of computer performance throughout the

life cycle of computer systems from the examina-

tion of vendors' proposals to projection of an in-

stallation's future computer needs.

AGENCY RELATIONSHIPS

GSA
(ADP FUND)

Project

Reimburse-
ments

Operating

Expenses

Capital

Expenditures

Customers
project

FEDSIMServices

Operating

Expenses
'Manpower USAF

121



The relationships between FEDSIM and the cus-
tomer are usually the only visible activities asso-
ciated with FEDSIM support to a customer. How-
ever, the full mechanism of relationships is shown
in this diagram. The GSA ADP Fund Serves as the

"financial accumulator" in this system. The Air

Force furnishes operating manpower and funding

and charges these at cost to the GSA Fund on a

monthly basis. GSA reimburses the Air Force each
quarter. FEDSIM provides project services to its

customers and reports all manhour and other costs

by project to GSA. GSA bills these services to

customer agencies to reimburse the GSA Fund.

Capital expenditures for equipment are normally

billed directly to GSA for payment from the Fund.

To re-emphasize the simplicity of the FEDSIM-
customer relationship, the procedure for obtaining

support normally starts by a telephone contact and
briefing on FEDSIM' s capability and discussion of

the customer's problem.

PROCEDURES

T
Contact

?
Preliminary Project Plan

Y
Signed Agreement

T
Project

Y
Deliverables

Y
Follow-up

Based on this contact, FEDSIM works with the

customer to prepare a "preliminary project plan"

which spells out the problem, service and sup-
port, deliverables, and any special arrangements

necessary to conduct the project. Once mutual

agreement is reached on the plan, it is signed by

both FEDSIM and the customer and becomes an
"agreement." At this point, the project is begun

and periodic reports are made during the project

to inform the customer of project status and costs

until the work is completed. Deliverables are

presented on a schedule that is spelled out in the

agreement. FEDSIM has begun a follow-up pro-

cedure that involves contacting the customer 30

days after a project is completed to insure that all

information has been understood, and to give the

customer an opportunity to ask any questions that

may have come up relative to the project. A sec-
ond follow-up approximately 180 days after a pro-

ject is completed is made to determine the value

of the project to the customer, and to find out

what actions resulted from FEDSIM' s recommen-
dations. This second contact is also intended to

encourage any suitable additional projects that may
have come up in the interim. These follow-ups
serve to insure that the customer got what he ex-
pected, and aid FEDSIM's marketing effort.

SERVICES

*Computer performance evaluation consultant

services and technical assistance.

*Contractual assistance for purchase, lease,

or use of computer performance evaluation

products

.

*Training in the application of computer per-

formance measurement and evaluation

techniques

.

To summarize, FEDSIM provides service in com-
puter performance evaluation that is specifically

tailored to each individual customer's needs. These
services are available for existing installation in

the form of technical assistance of consultant ser-

vices and for the purchase or acquisition of CPE
products. FEDSIM also provides training at both

the management and technical level to encourage

wider use of computer performance evaluation tech-

niques to improve computer usage throughout the

Federal Government.

122



DATA ANALYSIS TECHNIQUES APPLIED TO PERFORMANCE MEASUREMENT DATA

G . P . Learmonth

Naval Postgraduate School

ABSTRACT

The methodology of system performance measure-
ment and evaluation generally requires statistical

analysis of data resulting from benchmarking,
on-line measurement, or simulations. This

paper will survey the pertinent topics of statis-

tical analysis as they relate to system perform-
ance measurement and evaluation.

INTRODUCTION

The purpose of this conference is to bring togeth-
er people with the common interest of measuring
and evaluating computer system performance. We
have been forced into measuring and evaluating
computer system designs by the ever increasing
complexity of both hardware and software systems.
A quick survey of documented performance studies
reveals that nearly every study uses a different

approach, usually based on a mixture of experi-
ence and intuition. In order to make performance
measurement and evaluation a viable discipline,

we need to replace experience with theory and
intuition with standard research methodology.

The two divergent approaches to computer per-
formance evaluation are the analytic modelling
approach and the empirical measurement and
evaluation approach. The first approach relies

on mathematics
, queuing, theory, and probability

theory to provide both the theoretical framework
and the necessary methodology to perform an
analysis. We are concerned here, however, with
the second approach. Empirical experiments lack
both a theory and a methodology and hence we
find ourselves proceeding along tangents making
little or no headway.

The theoretical framework of empirical perform-
ance evaluations can be defined as soon as our
collective experience is filtered and assembled
into a cohesive body of knowledge. For a re-
search methodology, we may do as many other
sciences, both physical and behavioral, have
done; that is, use the existing methods and tools

of statistical analysis.

Present day statistical analysis provides two
broad areas which may be exploited for perform-
ance evaluation. Classical statistical inference
techniques require distributional assumptions
before data collection takes place. When the

data is on hand, systematic application of statis-

tical methods enable the testing of a broad range
of hypotheses which may be specified. In the
absence of a well-defined theory, this area of

statistical methodology is somewhat limited in

application to performance measurement problems.
Recent developments in the area of exploratory

data analysis, however, are extremely promising.

In data analysis we are more concerned with in-

dication rather than inference. Data analysis

techniques are very flexible and will enable us to

incorporate our experience and intuition into an
iterative process of analyzing performance data.

This paper intends to survey some pertinent topics

in statistical analysis as they might apply to com-
puter system performance measurement and
evaluation.

BENCHMARKING: THE CONTROLLED EXPERIMENT

Perhaps the most widely used method of perform-

ance measurement and evaluation is benchmarking
This form of experiment is employed to make rela-

tive judgments concerning the performance of two
or more hardware and/or software configurations.

The experiment is accomplished by running either

a standard mix of programs or a synthetic mix
through each configuration and comparing the

results on several criteria.

A critical area in benchmarking is the selection

of the job mix. The wrong mix will obviously

invalidate any conclusions made. A so-called

standard mix consists of a selection of real

programs deem.ed to be representative of the

installation's work load. A synthetic job mix

123



involves the use of a highly parameterized pro-

gram which essentially does nothing constructive

but can be tuned to behave in any desired fashion
Any theory of performance evaluation must nec-
essarily contain a precise definition of work, load
characterization

.

Setting aside the problem of proper workload
characterization, we may concentrate on the

problem of data collection. Pertinent system
performance data may be gathered externally via

hardware monitors at no system overhead or in-

ternally via software monitors with varying
degrees of overhead. In most benchmarking ex-
periments, copious data is recorded for later

analysis. However, this "shotgun" approach
to data collection is generally wasteful and un-
necessary. In general, one carefully chosen
measure will suffice to answer any single ques-
tion, for example, throughput, elapsed time,

number of page faults, response time, etc.

Typically, a benchmark experiment aims to

measure and assess system performance under
varying system parameters. These system para-
meters are controllable by the experimenter and
are set to the desired levels of comparison.
After all combinations of system parameter
settings are subjected to the benchmark, the

experimenter must make conclusions regarding

the relative performance of the system under
these varying conditions.

The description of benchmarking given above is

conducive to formal statistical analysis under
the category of the Design of Experiments and
Analysis of Variance. The properly designed
statistical experiment encompasses the proper
choice of measured, or dependent variable; the

settings of levels of the controlled, or independ-
ent variables; the control of external influences;
the analysis of the remaining variance; and the

testing of the hypotheses under consideration.

The measured variable should be the one which
will be directly affected by the choice of inde-
pendent variables . Similarly, the independent
variables should be set at levels which will en-
able the effect of alteration to be readily deter-

mined . Control of external variation should be
accounted for in the experimental design in order

to balance out these effects which may unknow-
ingly influence the results. For example, con-
sider the problem of determining the effect of

main store size and page replacement algorithm
on the page replacement rate. Three different

benchmark job mixes are to be used. One mix
represents, say, batch jobs running in the

background, another represents interactive user
tasks, and the third, a mixture of both batch and

interactive tasks. The controlled variables are

main store size and page replacement algorithm.

The three different job mixes will influence the

response variable, namely, the page replacement
rate. However, for this experiment we are not

concerned with this effect. In order to compensate
for the extraneous variance induced by the job

mixes, the following design is adopted.

Assuming three levels of main store, 100, 150,

and 200 pages and three replacement algorithms,

first-in first-out (FIFO), least recently used
(LRU), and a predetermined optimal (BEST), we
have nine combinations. We establish the design
as follows:

FIFO LRU BEST

100 Jl J2 J3 Jl = job mix 1

150 J2 J3 Jl J2 = job mix 2

200 J3 Jl J2 J3 = job mix 3

Rather than submit each job stream to each com-
bination of variables thereby performing 27 ex-
periments, we assign each mix once and only

once to each row and column. In this way each
level of independent variable is subjected to all

three job mixes and by virtue of the arrangement,

any external influence of the job mix has been
balanced-out over the design.

Analysis of variance techniques are available to

compute the necessary test statistics. With
these statistics the effect of different store sizes

may be tested independently of replacement
algorithm. Similarly, replacement algorithm may
be tested independently of store size. Lastly,

any interaction effect between store size and
replacement algorithm may also be tested.

Tests on the design of experiments and analysis

of variance are available and go into greater

detail than has been done here. See, for ex-

ample. Kirk and Cox. For a very thorough

designed experiment in performance analysis

see Tsao, Comeau, and Margolin and Tsao and
Margolin.

This classical statistical inference technique

can be seen to be quite useful. It suffers,

however, from the lack of an underlying theory

in performance evaluation, particularly in work-
load characterization and in the necessary dis-

tributional assumptions associated with the

response variable. However, in the data

analysis sense, where the experiment might lack

inferential value, it certainly provides great

124



indicative value. The results of an analysis as

described above may turn out to be inconclusive,

but most certainly they will indicate the direc -

tion in which further analysis should be taken.

By systematic and orderly design of experiments,

much unnecessary and fruitless labor can be

avoided

.

ON-LINE MEASUREMENT

Benchmarking is widely used but in many in -

stances an installation cannot afford the time and

resources to perform stand-alone experiments

like those described above. An equally popular

measurement technique involves the on-line coll-

ection of system data through either hardware or

software monitors. Vast amounts of data are

collected and stored on tape or disk during normal
operating hours.

The stored data is usually treated in two differ -

ent ways. First, data is edited and reduced for

simple description and presentation. Most
everyone has seen tabulated data from computer
centers listing the number of batch jobs, number
of terminal sessions, breakdown of programs by
compiler, etc. Elementary statistics such as
means, standard deviations, and ranges usually
accompany these reports.

It is sometimes desired to assess the impact of

major system changes such as operating system
releases, addition of hardware, or the rewriting

of a major application program. Statistical tech-

niques are available to analyze this impact when
sufficient data has been gathered after the change
has been made. Classical statistical methods en-
able the comparison of means and variances to

test whether changes in selected variables are

significant.

An example of this kind of measurement analysis
is given in Margolin, Parmalee, and Schatzoff.

Selected on-line measurements automatically re-

corded by a software monitor within the CP/67 op-
erating system were used to assess the impact on
supervisor time of changes to the free storage

management algorithm. The authors were careful
to design their experiment according to the meth-
ods outlined in the preceding section. Their ex-
periment consisted of changing the free storage
management algorithm on successive days. The
system was not altered in any other way during
the experiment and normal user activity took
place. To avoid a possible source of extraneous
variation, the two-week experiment was designed
to have different versions of the free storage man-
agement algorithm randomized over the days of the
week. It was known that user activity varied over
the days of the week with low usage on Fridays

and weekends.

While a formal analysis of variance was not per-
formed, the authors did rely on classical as well
as data analysis techniques to guide their research
effort.

A second way of treating collected on-line measure-
ments is to use the data to uncover interrelation-

ships among system parameters. In this way, the

impact of changes in the system may be predicted
based on knowledge of these interrelationships.

A statistical method which can be applied in this

area of evaluation is regression analysis. As an
inferential tool, regression analysis does impose
certain assumptions beforehand. However, as in

the statistically designed experiment, these prior

assumptions may not be strictly met, but we still

use regression as an indicative tool.

In general, regression analysis attempts to form a

functional relationship between a response, or de-
pendent variable and a set of one or more independ-
ent variables. The function is most often taken to

be a linear one, thereby keeping the mathematics
relatively straight- forward

.

In the field of performance measurement, the work
of Bard at the IBM Cambridge Scientific Center is

the most noteworthy application of regression anal-
ysis. In his paper Bard specifies all of the meas-
urements taken by the CP/67 System at the Scien-
tific Center. In four separate sections, he pre-
sents the results of four regression analyses. The
first application is an attempt to relate system
overhead (CPTIME) to other measured variables in

the system. The second analysis expresses
throughput as a function of the number of active

users. The third analysis is concerned with the

saturation of the system. Having constructed a

regression function for throughput as a measure of

overall system performance, it was possible to de-
fine the points at which an increase in one variable

could only be made at the expense of some other

independent variable. The last analysis of his

paper is a regression study of the free storage man-
agement data previously analyzed by Margolin,

Parmalee, and Schatzoff.

While these are only a few examples of the anal-

ysis of data measured on-line, the potential use-
fulness of statistical methods and data analysis

are evident.

SIMULATION

Performance measurement and evaluation studies

which involve simulation of the computer system
are generally undertaken either (P because analytic

125



models are too complex, or (21 because the system
under investigation is not yet operational.

Analytic modelling requires a great number of fac-

tors to be expressed and their interrelationships

defined in a concise mathematical form. Often

this is impossible or simply too complicated and

simulations are built which try to mimic the sys-
tem. Simulations are subject to many possible

difficulties concerning the level of detail which
will be incorporated into the model. Additionally,

the job mix which is run through the simulation

must also be properly characterized to cause the

model to behave as the real system would.

The lack of proper theory as to how one builds a

model and how to characterize workload constitute

the difficulties with simulations. For the reasons

stated above, however, simulation is often the

only recourse available to derive estimates of sys-

tem performance

.

But for the lack of realism, performance measure-
ment and evaluation studies are conducted using

the simulation model much as they would be con-

ducted on a real system. The arguments advanced
in the two preceding sections for the use of sta-

tistical methods and data analysis techniques are

equally valid when analyzing the output from a

simulation of a computer system.

CONCLUSIONS

We began this paper by pointing out that com-
puter performance measurement and evaluation

lacked an underlying theory and research method-
ology. It was not the aim of the paper to propose

a theory, but to call attention to an existing re-

search methodology which has found wide spread

use in other disciplines.

It is hoped that convincing arguments have been
made to support the assertion that performance

measurement and evaluation may find great poten-

tial in the application of the statistical and data

analytic methods. We feel that by its inherent

flexibility, data analysis is perhaps the prom.ising

tool.

When adequate theory is available, the inferen-

tial methods of classical statistical analysis may
be used to test whether what has been observed

conforms to that theory.

REFERENCES

Bard, Y. , "CP/67 Measurement and Analysis: Over-
head and Throughput, " in Workshop on System
Performance Evaluation , New York, Association
for Computing Machinery, March 19 71.

Cox, D. R. , Planning of Experiments , New York;

John Wiley & Sons, Inc. , 1958.

Kirk, R. E., Experimental Design Procedures for

the Behavioral Sciences, Belmont, California,

Brooks/Cole Publishing Company, 1968.

Margolin, B. H., R. P. Parmalee, and M.
Schatzoff, "Analysis of Free Storage Algorithms"
in Statistical Computer Performance Evaluation,

Walter Frieberger (Ed.), New York, Academic
Press, 1972.

Tsao, R. H. , L. W. Comeau, and B. H. Margolin,
"A Multi-factor Paging Experiment- I The Ex-
periment and Conclusions," in Statistica 1

Computer Performance Evaluation, Walter
Frieberger (Ed.), New York, Academic Press,

19 72.

Tsao, R. H. , and B. H. Margolin, "A Multi-factor
Paging Experiment: II Statistical Methodology"
in Statistical Computer Performance Evaluation ,

Walter Freiberger (Ed.), New York, Academic
Press, 1972.

126



A SIMULATION MODEL OF AN AUTODIN AUTOMATIC
SWITCHING CENTER COMMUNICATIONS DATA PROCESSOR

LCDR Robert B. McManus

Naval Postgraduate School

I . INTRODUCTION

As part of my thesis for a Master's Degree at the

Naval Postgraduate School, with the assistance
of Professor Norman Schneidewind , my advisor,

I developed a simulation model of the AUTODIN
Automatic Switching Center (ASC) Communications
Data Processor (CDP) located at McClellan Air

Force Base, California.

This paper presents a brief network description

focusing on the CDP, in order to give an idea of

the operation of the AUTODIN as a whole and how
the CDP fits into the overall picture. This net-

work description will be followed by a discussion
of the simulation program construction, including

the more important restrictions required. Next
will be highlighted some of the anticipated uses
of this and like simulation models. Finally, some
conclusions will be drawn concerning the AUTODIN
as a result of experiments conducted using the

model

.

II. BACKGROUND

A. General Network Description

The Automatic Digital Network (AUTODIN) is a

switched network, which along with the Auto-
matic Voice Network (AUTOVON) constitutes a

major portion of the worldwide Defense Communi-
cations System (DCS). The AUTODIN processes
95% of the Department of Defense record traffic,

which amounts to about one million messages a

day. It currently costs about $80 million a year
to operate this system for over 1300 subscribers
located throughout the world

.

The AUTODIN is made up of Automatic Switching
Centers; ASC tributaries, which comprise the

1300 subscribers; and the interconnecting cir-

cuits, trunks, transmission links, and terminal
facilities

.

The ASC's are the interconnected message and
circuit switching points of the AUTODIN, each
originally designed to accommodate 250 message
switching users and 50 circuit switching users.

There are eight leased ASC's in the United States

and eleven government owned ASC's overseas.

The geographic location of each ASC is shown in

Figure 1, While viewing this figure, it should be

pointed out that each ASC is not connected to

every other ASC in the network. Rather, the ASC
is connected by trunks to the closest five or six

ASC's with relay capabilities through these ASC's
to the other units in the network.

B. ASC Major Functions

The four major functions performed by the ASC are:

message switching, circuit switching, message
processing, and message bookkeeping and pro-

tection. The message switching function is the

only one to be covered in this paper in that it is

by far the most important function performed and
is the only one dealt with in the simulation model.

The message switching function involves taking

the received message from the various incoming

channels of the ASC, converting the code and

speed as necessary to conform with the intended

outgoing channel, and delivering the message to

the proper outgoing channel. The message trans-

mitted by the system conforms to certain specified

formats, all messages being composed of a

header, text, and ending.

Message switching employs the store-and-forward

concept of transmission, in which each message
is accumulated in its entirety at each ASC on its

route, then routed and retransmitted as outgoing

channels become available. Selection of

messages for retransmission over available out-

going channels is made on a first-in-first-out

(FIFO) basis, according to message precedence.

127



>-

_l

5 5

2
o

<O
o

o

o
o

u- u.

< < ^ Z
</) t/) CI (/)

3 3 3 3

5 -

<<<<<<
l/T </J </5 01 Ol
3 3 3 3 3 3

'a

<

Z uj

25
= o

_• ^ u. S o c:

a." < <
. . I- H

ci lu n i/i

< iii 2 ^
V < o o
c: p- o cj

< o > >
-) o. < <
o u 2 i:

S o i:
< r: cc
H ^ O >•

C 3: 2

O t UJ

'^- K t ,
vu) Q (/I to
en i_ r-i

y o
< re o

5 <

u. u_ u_ u. u. u.
2:<<<«f <:=!<<<
t/1 t/1 CO (/) '.T (/) (/I VI </>3333333333

9 o -,
< u-
O ~

a <
a. O
<

>

O
^ u. ?(J < ti.

»i CO — ^
^. 2 c: iLi

< S o ^-

-J t_ UJ
< < u. O

<j O

^ <

<

O

2
O
3
CO

«/>

U
CO
<

o

o
•H
M
Ctt

O
o
*A

o

u*

O

3

128



C. ASC Major Equipment

The major functions of the ASC are accomplished

by utilizing several special purpose computers,

related peripheral devices and necessary com-

munications equipment. A block diagram of the

major components of an ASC operating system is

provided in Figure 2, which will be a helpful

reference in the following discussion of some of

the more important pieces of equipment and their

operation.

The message arrives at the ASC over incoming

channel lines from the ASC tributaries or inter-

connecting trunks. The message transmission

along these circuits is in a carrier form up to the

MODEM and a low level D. C. signal thereafter.

The MODEMS are also used to convert this analog

signal used for transmission in the voice frequency

band back to digital signals for ASC internal pro-

cessing. The purpose of monitoring and measuring

instruments is to indicate communication line con-

tinuity and signal quality. The cryptographic

devices provide communication channel traffic

security protection, and the switching facilities

connect buffering equipment to the corresponding

communication channels.

The Buffer System links the Technical Control

facility with the Accumulation and Distribution

Units (ADU), provides temporary storage for

speed matching and contains the controls neces-

sary to interface the ADU with the communication

channels

.

The Accumulation and Distribution Unit is a

special purpose computer operating with combined
wired-in and stored programs. Its purpose is to

provide the necessary controls and storage for

data both being received from and transferred to

the communications channels. Each ASC has
three ADU's, with two being on-line and one in

stand-by. The ADU holds the messages destined

for the CDP in one of three ADU zones, which are

the terminus of the input transfer channels and

starting point for outgoing transfer channels.
These zones have been labeled as High, Medium,
and Low Speed Zones. The ADU transfers

messages from and to the CDP, translates receiv-

ed message characters into Fieldata code for use

in the CDP and stores the lineblocks in the ADU
core memory until the complete message is for-

warded to the CDP. For outgoing messages, the

ADU translates the message from Fieldata to an

appropriate code to match the recipient's equip-

ment, and passes the message to the line termina-

tion buffer, where it passes out of the ASC.

The Communications Data Processor (CDP) is a

large-scale digital computer designed especially
to perform and control communications functions.

The CDP controls the flow of data through the ASC
and processes the data according to the AUTODIN
program and commands from the system console.
The CDP receives the message one lineblock at a

time from the ADU. The CDP, upon receipt of the

first lineblock, validates the message header and
determines proper routing for the message. The
lineblocks are then accumulated in memory one
lineblock at a time, with an acknowledgment
returned after each, until the end of the message
is received. Acknowledgment of message receipt

is then transmitted to the sender. The message
is then linked in the appropriate address queue to

await channel assignment and movement on a

FIFO basis, subject to message precedence and
line availability. There are two CDP's at each
ASC with one on-line and the other in stand-by or

utilized for off-line work. The CDP is made up of

a Basic Processor Unit (BPU) , a High-Speed
Memory (HSM) , a Processor Operator's Console,
and a series of Transfer Channels which interface

various peripheral devices with the BPU. Two of

the most outstanding features of the CDP are its

simultaneity and interrupt features. The CDP has

the ability to operate several of the peripheral

devices asynchronously with internal processing.

At the termination of each peripheral device opera-
tion, the current CDP program is automatically

interrupted, and all register settings are stored.

The interrupt feature enables return to this point

in the program at a later time without loss of con-
tinuity. These features allow the system to initi-

ate peripheral device operation and continue with

other tasks with a resulting reduction in message
transit times and increase in computer throughput.

Of the many peripheral devices contained in

Figure 2, the Intransit Storage Unit or Mass
Memory Unit (MMU) and Overflow Tape (OVT) are

the two most important to the message switching

function. The MMU is the temporary storage area

where messages received at the ASC reside until

outgoing channels become available and complete

retransmission out of the ASC is effected. The

MMU consists of disc or drum storage units.

The OVT is used to hold messages when "over-

load" conditions exist, i.e., when the capacity

of the MMU storage has been exhausted.

III. SIMULATION PROGRAM CONSTRUCTION

A. Simulation Model Coverage

The portion of the message switching operation

129



MODEM

/^ /

1

1

INPUT
TRIE/
TRUNK

TECHNICAL
CONTROL -ENCRYPTED

1

I
.

MODEM

CRYPTO
TECH.

CONTROL

-

CLEAR

JL

'A
CRYPTO

CIRCUIT
SWITCH
UNIT

OUTPUT
TRIE/
TRUNK

BUFFER

Circuit Switching Path

Message Switching Path

Figure 2. ASC Major Components.

130



covered by the simulation model is contained in

Figure 3. Messages are transferred from the

three ADU zones via the ADU/CDP transfer

channel into the HSM of the CDP. Input process-

ing of the message is performed, which includes

interpretation of the destination from the Routing

Indicators contained in the heading, acknowledg-

ment of receipt of the message to the sending ASC
or tributary, plus other administrative functions.

Upon completion of Input Processing, the message
is transferred to Intransit Storage on the MMU via

the CDP/MMU transfer channel. Upon availa-

bility of the proper channel for the outgoing

message, the message is transferred to the HSM
again for Output Processing via the MMU/CDP
transfer channel. Upon completion of Output

Processing, the message is transferred out of the

CDP to the appropriate ADU zone via the CDP/ADU
transfer channel.

queues, transit times , storage and facility utili-

zations, and message sizes. A factor derived from
actual system through-put was computed to measure
the degree of simultaneity which is present in the
CDP. This factor is the ratio of through-put using
multiprogramming to through-put using monoprogram-
ming. The simulation times were modified by this

factor so that the model does in fact approximately
reflect simultaneity of operation. The simultaneity
feature of the CDP was incorporated so that mean
service times computed by the simulation model
would be accurate representations of those actually
experienced by the ASC.

In the simulation model, messages were generated
at the actual mean arrival rate of messages at the

McClellan ASC, calculated over a four- month
period. The mean message size was ascertained
in the same way.

The characteristics of the actual CDP functions
and values assigned are summarized below. See

ndB. Characteristics of the Simulation Model

The simulation model was written in the General

Purpose Simulation System (GPSS) language and

run on the IBM 360/67 located at the Naval
Postgraduate School.

The characteristics of the CDP are treated in this

simulation model from the functional point of

view. This reduced the level of detail to within

manageable limits, enabled the use of the GPSS
language, and, in fact, made the simulation

effort feasible at all. The individual instructions

are not simulated, but times required to perform

the various functions are calculated and appropri-

ate delays utilized. If the simulation had been
formulated to the level of detail of the individual

instruction, the use of GPSS would not have been
possible and the CDP simulation program execu-
tion would have run slower than the actual in-

struction execution time. Even with this simpli-

fication, one day of real time required over 30

minutes of computer time to execute.

In addition, as was pointed out in the background
section, one of the important features of the CDP
is its simultaneity of operation and multiprogram-
ming ability. The result of this is that messages
are not actually handled serially through the sys-
tem, but rather, many operations occur simultan-
eously on different messages throughout the sys-
tem. The approach taken in the simulation is

again a departure from the way things actually
happen in the system. Messages are generated
and flow serially through the steps of the simula-
tion, with statistics gathered on such items as

Figure 4, which shows the model components a

processing steps, in conjunction with the belo
description:

1. Messages were generated at the rate

of .35 messages per second under normal
conditions. In the absence of specific

information on the distribution of inter-

arrival times, an exponential distribution

was assumed

.

2. The mean message length was 33 line-

blocks. An exponential distribution was
assumed. Messages vary in length, but

a lineblock is standardized at 80 informa-

tion carrying characters, plus 4 framing

characters. Each character is 8 binary
digits in length.

3. The transfer channel between ADU and
CDP has a transfer rate of 1240 lineblocks

per second

.

4. Input processing consists of a mean of

20 thousand computer instructions, expo-
nentially distributed; with from 1 to 77

cycles per instruction, uniformly distri-

buted; and from 1.2 to 2 microseconds of

execution time per cycle, uniformly dis-

tributed. Input processing is carried out

in the HSM which has a capacity of 6461

lineblocks

.

5. The transfer between the CDP and MMU
has a transfer rate of 4166 lineblocks per

second

.

131



1

1
1 ^
1 <, k;
I [-1 o

< < s:

1

^

1

>-

1 <H O
< • < S.

Q W

1

"

QU
O

H

o
u

H
:2

O
rH

+j

Q
0)

bO
cd

w
in

to

•H
H4

132



w

o
H
CO

wo

o
H
CO

w

^ 12: §002
H
CO

i-i m
t-l rH
U LO -5
< CO

VO 2;< J

W s w <
:3
w Cl< Pi

Q :=) <C U pq

Csl CO
E-t CO
W

< d. CJ
2 0

cm

CO
CO

w H W X <
^ :d u u
w a, 0 0 ci
:=> 2 ^ <
cy

;

O W
rH Q W
< CO

o \2 2:
< Ph <; <
[X, o cs^ n:U H CJ

CO
E-i CO
!ID (-U

CJ Ph CJ
< H 0

0 o,

CO
CTi H CO

:3 w N^; <w CJ Cti w
H 0 0 Di

w ^3 ^ <
:3 0 P-(

cy

Ph
Q
CJ

W
CJ

o
H
CO

Ph

CJ W <
:r> Ph p::

s ;=) <

H CO
^~^ r-A

CJ \0 —)
< "^a- m
cm LO 2
< -3
u

Ph
C5
CJ

Ph W W
CO C5 Ph J?;

CJ CO z
CJ \2: <
< p < =
Uh 2 U

cm

u w <\ Ph W
3 Ph Pi
Q 3 <

>-

t—

I

CJ
<
Ph
<
CJ

CO

Ph Pi
rH C5 W WU Ph
u \co ;^
< P S2 <
tL. cri <; x:
< CJ

133



6. The MMU has a capacity of 112896
lineblocks, of which 75% Is allocated to

intransit storage. When 80% of the space
allocated to intransit storage is filled,

emergency procedures are initiated and

low precedence traffic is diverted to the

Overflow Tapes. Therefore, the actual

capacity of the intransit storage under
normal conditions is 64512 lineblocks.

Three user chains were constructed in the

MMU to correspond with the three ADU
zones. Time delays in each chain and

the amount of traffic which occupied each
chain was determined by calculating the

actual percentage of traffic which was
handled by each tributary in that zone.

The high speed zone has a capacity of

28 lineblocks and is the terminus of all

4800 and 2400 baud circuits and trunks.

A total of 74.3% of the traffic occurs on
these lines. The medium speed zone has
a capacity of 18 lineblocks and is the

terminus of all 1200 and 600 baud lines.

A total of 18.6% of the traffic handled by
the ASC occurs on these lines. The low
speed zone has a capacity of 6 lineblocks

and is the terminus of all 300, 150, 75,

and 45 baud lines. A total of 7.1% of the

traffic occurs on these circuits.

7. Output processing consists of a mean
of 10 thousand computer instructions with

the same characteristics as for input pro-

cessing .

With regard to the simulation output, the

GPSS automatically provides an output

which contains the number of transactions

which occupied each block of the simula-

tion, plus a number of performance measure-
ment criteria for items in the simulation.

Other items are available, but must be

programmed separately. See Figure 5 for

a sample of the GPSS output. The more

important performance measurement
criteria include: mean service times,

mean input and output processing times,

utilization percentages, mean wait times

and average storage contents.

IV. ANTICIPATED USES OF THIS AND LIKE

SIMULATIONS

A. Aiding Problem Definition

The analysis necessary to construct the simulation

model forces the manager and programmer to state

clearly and explicitly his understanding of his

system

.

B. Isolation of Critical Areas

Systematic testing of the model provides valuable
insights into the most sensitive and critical areas
of system performance . By using the available
data the model can be tested and examined for

errors in data values, logic, and functions. Upon
satisfactory completion of the model, actual sys-
tem testing with data values ranging from optimis-
tic to pessimistic can give indications of areas
where system performance is weak and where
changes are needed or additional analysis is

required

.

C . Ascertaining Configuration Possibilities

Since the AUTODIN is a relatively complex real-

time computer system, there is a variety of design,
equipment and configuration possibilities available.

Once a model is developed, it can be used to

evaluate possible configuration changes. This is

vastly superior to actually carrying out the mod-
ification of the system and then ascertaining the

effect.

V. CONCLUSIONS

A. Experiments Conducted and Their Results

The various experiments conducted using the sim-
ulation model were combinations and variations

of two basic experiments. First, the rate of in-

putting transactions was varied. This had the

effect in this simulation of changing the system
traffic loads into the ASC. Second, the ability

of the tributary to receive traffic was varied by
modifying the values in the three user chains
within the MMU

.

From these experiments the following conclusions
were drawn:

1. The present CDP is more than adequate
to handle even drastic increases in traffic

volume

.

2. Tributary caused backlogs are going to

build up in the CDP and the available

storage on the MMU may well be exhausted.

3. The need for an upgrade of the ASC tribu-

taries, on an as-required basis, is indicated.

134



Figure 5

COMPUTER OUTPUT

»- >r >r o ^ <

O f^J fN'r- r- r- r- r*- r-

t- ^-
HOOOOOOOOOO ZOOOOO
UJ
en

UJ
se

a: a: (->/)

rj 21-
o O UlZ

UJ Or-.UJ

^.-^f^Jrr|^JlA'Or-coc^o iilf-irsiro^in otl-
-J- ^ ^ «r 5:</) 32

o o 3>-mc^c^ < <jo
-J -J > 0
OJ CD -.ui^srrg

<2
3e:o
o UJCC

—J0*co in in iTMA ir> j>00-0«0-0-00<J^O _IUJ
com

H-OOOO^OOOO <E
OOOOfNJrslPsjrsjnorNJrvj CjOO'Oc:j'~»oo'^o (-3

2 2
t-HUJ HW>
XH- zi- r-
<z UJZ o
zo OCUJ (N(

t- o 0:1- rvj

ZOOOOOOOOOo 20000000000 . 32 UJZCOom
KJ UJ 00 Ul o<i>f -OO
C£ C£ 3 <QC0O.t CO
o: o: _J CCH- t • I

< ui^iHr-im
O o > >ujcr 0

19 a <>-^ .H
St;^ rgm in^ CO o ^i-)r\jro^in^^-cDchO 20

—

Z

O o 1-
-J _l CL • UlZ
m CD UJi/nooO 0<inm^

0^—ooo U.Z<zooo UJ< oil-—< '-I in -
OCUJ • • • a-.cc UJ^ . « • a: Luz (Mom

>uji-iaJC7' 2 0<i oo^-
JO^o^c^(7^y^oc^lJ'^c^ >z <Zinooo <a-Ooc~
< CNJ fM(M rsj (N) rJ f\j I\J (N (\J <o «m cct- • • •

\—r-lr-*'-i^<-t'-tf^'-l-~<t--l -0000(~io0000 o 1- 0 OIV^O^ (NJ

OOOOOOOctjOOO c,oooo'->t:jOooo o 00 >UJ
OZ "5 3:

z •-t

M • UJ t-
lsll/> 3

_l

i- UK 1/1 <20000000000 zoooooooooo Ul >
UJ Ul ooa^ t_ Ul

u: C£
a: cc 1- rgOsJO UJO • •

(-1/) 2 coooco
<J u Zl- Ul (^o^cr aujCMJ-O-2

OIZ UIM Ol
^^fvjf*i4-inof^cE)oo ^^fMrn^J-in^r--a3Cro auj a.

O orsjogrsjosjrijfNifNjrsKMro 0
O O o OZ a:

O -1 -1 oo Z rsjO fM <om rsj CO^ 2 UJ
O CD ID Uj<C^-Ocon-ioocoi^O
O Occ CD O CNlin -O 0^ fNJ^ 00 1/1

• 2 Ouj^^cmO
o 0 or-— J- -102
CO UIUJ r<\ r^cT^CD o ujo: 1^

jininsooo •o>ooo>o Ol- *sji— coOl/^Q
^irsIfsifMfNjrvaojrMiNjtMrM <<I04-0 Ul Z(M(^fM3

t— nT-TOOOOOOOO aiNio—iO 3 UJ _J
o'^ooc^oooo-->o o ooooo^oo UJ~0OO _J 0

pn mn ri .V|nm m >_j . . . < X
:^ (/I > UJ
o uiz-t rjo 1-
O 0<in'no ZJ 0
_i <a:>otJ^O CC jiLi0^cro2
O 1- t- a>- • • • UJ <.-(M'NJ'0<

200000000*^0 zoooooooooo (-Qf-'-'Oc:
UJ Ut UJ >ujraij^ UjU-TgnjfsjO ^cc O o O 1 Oh-OOOl-
t- QC cc Z
O a of 3:crooofM(^ oo*^ Q - UJ l::

y- UJI/IOO ^ CD Set
o o u 22 Ol— (D — 2

lU
CD 5<:'^(Nim>f in^r-ooo^o Ctuj • . • i/l

UJH-—#^ UJ uji/ir^lO OUJ
o o >2 w 3 ci-oooo
-J _i <o 0» —

'

<2000<
O <Q CD 0 < aui . . .ct

O 2 UJ30 >z >
O ^UfCC o O >_HM «c <
o UJ>— «1<<VJ 0

Jc cr cr cr cr -JO>o-ommLiu"Mninin trt-or-ocrcc--'Cfn'~*
^ <1 (M rsj nj (M ^i CM ^^ t\j Cl- <<0^00000(N-0 >. ^CM—

>-z o^^sIOoooooooo 1- ,0 — -0 0ClOOOOOOOOOO Ul >j-inNr oc 2
K- c**.m PI n 1^1 ro rn 0 inNtm a El/1 — r<-.«i

< *o 3 31- OC

a. _i zz >-

<i _i ^U- ^
u 3 . x>- u.

u.ccc^ <Z I
Oi/^ZOOOOCCOQCO 20000OOC000 z 10 —

u IL U •-

uzq: of 2
a Ul u

u-o:: < CQ.O > ^(^-^m^o^-ocao {N. -J C
u t- •-' U <

u i/:c I'. 2<
— U.C < u > U <S 0"u

ui^mirminirmiriT'C -U. 3 >
c u. I- c r> u <

U. -J_J V t~
—

3 U. V. O

135



In the final analysis, the simulation program

developed and discussed in this paper permits

a limited analysis of the ASC and its CDP.

As follow- on efforts provide tools for analyzing

additional portions of the AUTODIN ASC, more

comprehensive analyses can be made. Hope-

fully, one day all segments will be completed

and can be put together so that their interaction

can give some indication of overall system

performance

.

BIBLIOGRAPHY

AUTODIN System and Equipment Configuration ,

Technical Training Manual 4ALT 29530-1-1-1
,

Department of Communications Training,

Sheppard AFB, Texas, February 1971.

Boehm, B. W., Computer Systems and Analysis

Methodology Studies in Measuring, Evalua-

ting, and Simulating Computer Systems , Rand

Corporation Report R-520-NASA September

1970.

Computer Sciences Corporation Report R41368I-2-

1, DIN Simulator Program Reports, May 1972.

DCA AUTODIN CONUS-System Instruction Manual ,

RCA/DCS Division, Defense Electronics

Products, Camden, N. J. , 1 August 1969.

DCS AUTODIN Switching Center and Tributary

Operations

,

Defense Communications Agency
Circular 3I0-D70-30, 10 June 1970.

DCS Traffic Engineering Practices , Defence
Communications Agency Circular 300-70-1,

May 1971

.

Martin, James, Design of Real-Time Computer
Systems , Prentice-Hall Inc . , Englewood
Cliffs, N. J. , 1967.

Martin, James, Programming Real-Time Computer
Systems , Prentice-Hall Inc . , Englewood
Cliffs, N. J. , 1965.

Martin, James, Telecommunications Network

Organization , Prentice Hall Inc., Englewood
Cliffs, N. J. , 1970.

Nabb, Alan, Captain, USAF, Norton ASC Com-

munications Operating Performance Summary ,

Norton AFB, California, May 1972.

Norman, Eugene and Lloyd Rice, "Research Report-

AUTODIN and its Naval Communications Inter-

face," Management Quarterly , May 1972.

Reddig, Gary A, , Captain, USAF, Communications
Operating Performance Summary , McClellan
AFB, California, 13 October 19 72.

Reitman, Julian, Computer Simulation Applications ,

John Wiley and Sons, Inc., New York, 1971.

Rubin, Murry and Haller, C. E. , Communications
Switching Systems , Reinhold Publishing Corp. ,

New York, 1966.

Sasieni, Maurice and Yaspan, Arthur and Lawrence,
Friedman, Operations Research— Methods and

Problems

,

John Wiley and Sons Inc. , New York,

1959.

Schulke, H. A., BGEN/USA, "The DCS Today and

How it Operates," Signal , July 1971.

Seaman, P. H., "On Teleprocessing System
Design--The Role of Digital Simulation,"

IBM Systems Journal, Vol. 5, NR 3, 1966.

Study Guide, AUTODIN Switching Center Opera -

tions--General Description of the AUTODIN
Program, Sheppard AFB, Texas, 15 July 1970.

Wagner, Harvey, Principles of Management
Science with Applications to Executive

Decisions

,

Prentice-Hall, Inc., Englewood
Cliffs, N. J. , 1970.

. Personal Interview with R. A. Ondracek,

Western Union Maintenance Analyst, ASC
McClellan AFB, California, 3 November 1972.

. Personal Interview with LCDR Hansen,
OINC, Naval Message Center, Naval Post-

graduate School, Monterey, California,

18 January 19 73.

. Personal Interview with Alan Nabb,
Captain/USAF, OINC ASC Norton AFB,

California, 14 July 19 72.

Schriber, Thomas J. , General Purpose Simulation

System/360: Introductory Concepts and Case
Studies

,

The University of Michigan, Ann Arbor,

Michigan, September 1968.

136



ATTENDEES

EIGHTH MEETING OF

COMPUTER PERFORMANCE EVALUATION USERS GROUP

Marshall D. Abraras

National Bureau of Standards

Technology B216
Washington, D.C. 20234

PFC Edward B. Allen

US Army Computer Systems Command

CSC S -AT STOP H-14
Ft. Belvoir, Va. 22060

Russell M. Anderson
1900 Lyttonsville 1002

Silver Spring, Md. 29010

Philip Balcom
US Army Computer Systems Command

STOP H-6
Ft, Belvoir, Va. 22060 .

•

Dr. N. Addison Ball
National Security Agency
Ft. Meade, Md, 20755

Rudie C, Bartel
HQ USAF (ACDC)

Washington, D.C. 20715

Merton J. Batchelder

US Army Computer Systems Command
7719 Bridle Path Lane
McLean, Va, 22101

T, K. Berge
FEDSIM/CC
Washington, D.C. 20022

Bob Betz
Boeing Computer Services
12601 SE 60 St.

Bellevue, Wash. 98006

Raymond S. Blanford
Defense Supply Agency
Cameron Station Rm. 4A-612
Alexandria, Va. 22314

John A. Blue
US Navy ADPESO
Crystal Mall
Washington, D.C. 20376

John J, Bongiovanni
AFDSDC/SYO
Gunter AFB, Al. 36114

Jim N, Bowie
AMC ALMSA
210 North 12th Street
St, Louis, Mo. 63188

N , J . Brown
NAVCOSSACT
Code 10.1 Wash Navy Yd.

Washington, D.C.

Richard A. Castle

US Army Computer Systems Command
Ft, Belvoir, Va, 22060

John F. Cavanaugh
NAVORD SYSCOM CENO
US NAV ORD STA
Indian Head, Md. 20640

Dr, Yen W. Chao
FEDSIM US Air Force
9724 Eldwick Way
Potomac, Md, 20854

Dennis R. Chastain
USGAO
441 G St. NW RM 7131

Washington, D.C. 20548

Leo J. Cohen
Pres., Performance Development Corp.

32 Scotch Rd.

Trenton, N.J. 08540

Dr. Dennis M. Conti
Naval Weapons Lab
Code : KPS
Dahlgren, Va. 22448

L. J. Corio
Western Electric Co.

222 Broadway
New York, N.Y. 10038

Joe M. Dalton
Control Data Corp.

5272 River Road
Washington, D.C. 20016

137



Jim Dean
Social Security Administration
6401 Security Blvd.
Baltimore, Md. 21235

Donald R. Deese
FEDSIM/AY
HQ USAF
Washington, D,C. 20330

Jules B. Dupeza
DOT
11900 Tallwood Ct.

Potomac, Md. 20854

Gordon Edgecomb
Chemical Abstracts Service
Ohio State University
Columbus, Ohio 43210

Emerson Eitner
Chemical Abstracts Service
Ohio State University
Columbus, Ohio 43210

Richard B. Ensign
FEDSm
Washington, D.C. 20330

Joseph Escavage
Dept of Defense
9800 Savage Rd. C403
Ft. Meade, Md. 20755

Robert H. Follett
IBM
1401 Fernwood Road
Bethesda, Md, 20034

Dr. K. E. Forry
USACCOM-COMPT-SA
Ft. Huachuca, Ariz. 85635

E. A. Freiburger
Senior Marketing Engineers
3718 Tollgate Terrace
Falls Church, Va. 22041

Robert Gechter
Dept of Interior, CCD
19th & C Sts NW
Washington, D.C. 20242

CPT Jean-Paul Gosselin
DND Computer Centre, Tunney's Pasture
Ottawa, Ontario
Canada KIA0K2

James M. Graves
USAMSSA
Room BD1040 The Pentagon
Washington, D.C. 20330

Donald A. Greene
DSA-DESC-AST
1507 Wilmington Pike

Dayton, Ohio 45444

Lowell R, Greenfield
NASA FRC
Box 273

Edwards, California 93523

Robert A, Grossman
NAVCOSSACT
Bldg. 196 Washington Navy Yard
Washington, D.C. 20374

Vincent C. Guidace
Dept of AF FEDSIM
Washington, D.C. 20330

Col Michael J. Bamberger
DSA, Cameron Station
11207 Leatherwood Dr.

Reston, Va. 22070

I. Trotter Hardy
General Services Administration, CDSG
Rm. 6407 R0B3 7th & D Sts SW

Washington, D.C. 20407

Norman Hardy
PR:SD Room 3137 IRS
1111 Constitution Ave. NW
Washington, D.C, 20007

MAJ W. L. Hatt
, CAF

USAF/ESD/MCST-2
L, C, Hanscom Field
Bedford, Mass. 01730

CPT Harry A. Haught
Navy Annex
Arlington, Va.

Herman H. Heberling
Fleet Material Support Office
Mechanicsburg, Pa, 17055

MAJ Andrew Hesser
USMC
HQTRS (ISMDS)
Washington, D.C. 20380

138



William J. Hiehle Lt. Raymond S. Jozwik
Defense Electronics Supply Renter USAMSSA
1102 E. Linden Ave. 2500 N. Van Dorn St.

Mlamisburg, Ohio 45342 Alexandria, Va. 22302

Dr. Harold J. Highland
Chairman SIGSIM
562 Croydon Road
Elmont, N.Y. 11003

Lt. Donald W. Hodge, Jr.

HQ SAC (ADISE)
Offutt AFB, NE 68113

B. A. Ketchledge
Bell Laboratories
Piscataway, N.Y. 08704

Philip J. Kiviat
FEDSIM
Dept of Air Force
Washington, D.C. 20330

John N. Hoffman
Boeing Computer Services
955 L'Enfant Plaza North SW
Washington, D.C. 20024

John T. Klaras
Dept of Air Force
Rm 1D118, Pentagon
Washington, D.C. 20330

John V. Holberton
GSA
10130 Chapel Road
Rockville, Md, 20854

Marjorie E. Horan
MITRE
1820 Dolley Madison Blvd.
McLean, Va, 22101

Larry G. Hull
NASA-GSFC
Code 531.2 Goddard Space Flight Center
Greenbelt, Md. 20771

George Humphrey
Naval Underwater Systems
Newport Naval Base
Newport, R.I. 02871

Frank S. Hunter
US Army Computer Systems Command
7704 Random Run Lane, Apt. 104
Falls Church, Va. 22042

Jau-Fu Huoang
NAVCOSSACT, Dept of Navy
Bldg. 196, Washington Navy Yard
Washington, D.C.

LT Robert L. James
USAF-AFDSC
AFDSC/GMJ The Pentagon
Washington, D.C. 20330

W. Richard Johnsen
US Army Computer Systems Command
CSCS-ATA-S, Stop H-14
Ft, Belvoir, Va. 22060

Ronald W. Korngiebel
Connecticut General Life
Bloomfield, Connecticut 06002

Mitchel Krasny
NTIS
5285 Port Royal Rd,
Springfield, Va. 22151

David W, Lambert
Mitre Corporation
P, 0, Box 208
Bedford, Mass 01730

John H, Langsdorf
HQ USAF (ACD)

Washington, D,C. 20330

Don Leavitt
Computer World
797 Washington St.

Newton, Mass. 02160

William J. Letendre
HQ ESD/MCDT Stop 36

Hanscom AFB, Ma. 01730

William P. Levin
Defense Supply Agency
Cameron Station, Rm. 4B587
Alexandria, Va, 22314

Jack R. Lewellyn
HQ NASA
Code TN
Washington, D.C. 20546

139



Allen LI
Federal Hwy Adm
400 7th St. S.W.
Washington, D.C. 20590

MAJ J. B. Lloyd
AFDSC
The Pentagon
Washington, D.C. 20330

Alex Machina
CENG
P.O. Box 258
Indianhead, Md. 20640

Neil Marshall
Pinkerton Computer Consultants
8810 Walutes Circle
Alexandria, Va. 22309

Sally Mathay
Central Nomix Ofc

NAVORDSTA
Indianhead, Md, 20640

CPT Norm Hejstrik
Air Force Comm Service/L-93
Tinker AFB, Okla 73145

Ann Melanson
USAF
Hanscom Field
Bedford, Mass 01730

CPT Kenneth Melendez
USAF, ESD, L. G. Hanscom Field
ESD/MCI
Bedford, Mass 01730

Anne Louise Moran
Dept of Defense
Ft. Meade C403
Ft. Meade, Md.

Michael F. Morris
FEDSIM
1919 Freedom Lane
Falls Church, Va. 22043

Deanna J. Nelson
DOD Computer Institute
Washington Navy Yard
Washington, D.C. 20374

George R. Olson
Control Data Corp.
8100 34th Ave SO Box 0 HQNIOU
Minneapolis, Minn. 55440

W. J. O'Malley
Internal Revenue Service
1111 Constitution Ave NW
Washington, D.C.

J. P. O'Rourke
NAVCOSSACT
Washington Navy Yard
Washington, D.C. 20374

Chris Owers
Social Security Administration
6401 Security Blvd.
Baltimore, Md. 21235

Charles W. Pabst
NAVCOSSACT
Washington Navy Yard
Washington, D.C. 20374

Frank J. Pajerski
NASA - Goddard
Code 531 NASA-Goddard SFC
Greenbelt, Md. 20371

Frank V. Parker
US Navy (NAVCOSSACT)
819 Duke St.

Rockville, Md, 20850

Richard D. Pease

IBM Corp.
10401 Fernwood Rd.

Bethesda, Md. 20034

Emery G. Peterson
USATRADOC-DPFO
Fort Leavenworth, Kansas 66027

MAj Ernest F. Philipp
USAF/SAC
7910 Greene Cir.

Omaha, Ne 68147

Charles Pisano
Fleet Material Support Office
Mechanicsburg, Pa, 17055

Terry W. Potter
Bell Telephone Laboratories
Box 2020 Rm. 4A1105
New Brunswick, N,J, 08903

Marvin D, Raines
US Army Computer Systems Command
513 Shelfar Pi,

Oxon Hill, Md, 20022

140



Mr. C. D. Ritter
US Geological Survey
4615 Gramlee Circle
Fairfax, Va, 22030

G. F. Rizzardi
Dept of Air Force

AFDSC/SF, Pentagon
Washington, D.C. 20330

E. E, Seitz
US Army RSJ)

3205 Plantation Pkwy.

Fairfax, Va, 22030

William Selfridge
US Army Computer Systems Command
Stop H-6
Ft, Belvoir, Va. 22060

A. C. Shetler
The Rand Corporation
1700 Main Street
Santa Monica, Wash. 90406

Ronald L. Shores
Atomic Energy Commission
Washington, D.C. 20545

Eileen Silo
Dept of Defense
9800 Savage Rd.

Ft, Meade, Md. 20755

George J, Skurna
Defense Elect, Supply Ctr,
1507 Wilmington Pike
Dayton, Ohio 45444

Charles L. Smith
The Mitre Corporation
Westgate Research Park
McLean, Va. 22101

George M. Sokol
Deputy for Engineering
US Army Computer Systems Command
Ft, Belvoir, Va, 22060

David V, Sommer
NSRDC
Annapolis, Md, 21401

John W. H. Spencer
Bureau of the Census
Statistical Research Division
Washington, D.C. 20233

James Sprung
FEDSIM
5240 Port Royal Rd.

Springfield, Va. 22151

Don W. Stone
TESDATA Systems Corp.

235 Wayne Street
Waltham, Mass, 02154

Hal Stout
COMRESS
2 Research Ct.

Rockville, Md, 20850

Herbert D, Strong
Jet Propulsion Laboratory
4800 Oak Grove Dr.

Pasadena, Calif. 91011

COL. H.J. Suskin
Defense Electronics Supply Center
Wilmington Pike

Dayton, Ohio

Marvin Sendrow
Fed, Home Loan Bank Board
101 Indiana Ave, N,W.
Washington, D.C. 20552

Kay Shirey
US Army MILPERCEN
DAPC-PSB-B Hoffman II Bldg,
200 Stovall St,

Alexandria, Va, 22332

Nora M. Taylor
Naval Ship R6J) Center
Code 189.1
Bethesda, Md. 20034

Harold J. Timmons
DSA, Data Systems Automation Office
c/o Defense Construction Supply Ctr.
Columbus, Ohio 43215

Terry L. Traylor
NAVCOSSACT Bldg 196, Code 101

Washington Navy Yard
Washington, D.C,

John B. Trippe
OA-914, The Pentagon
Washington, D.C, 20330

Ray G. Tudor
SAC HQ (USAF)
814 Matthies Dr.

Papillion, Ne 68046

141



Ralph R. Turner
US Army Tradoc - DPFO
Bldg 136

Ft. Leavenworth, Kansas 66027

Daniel M. Venese
The Mitre Corporation
Westgate Research Park
McLean, Va, 22101

Daniel A. Verbois
USAMC - ALMSA
P.O. Box 1578 AMXAL-TL
St, Louis, Mo. 63188

H, C, Walder
Western Electric Co.
222 Broadway
New York, N.Y, 10038

F. C. Warther
TESDATA
7900 Westpark Dr.
McLean, Va. 22101

Michael E. Wentworth, Jr.

Social Security Administration
6401 Security Blvd.
Baltimore, Md, 21235

David P. Wheelwright
GSA/ADTS/CDSD
7th & D Sts. S.W.
Washington, D.C, 20407

Brian R. Young
Informatics, Inc.
1502 Kennedy Plaza
Bellevue, Ne . 68005

142



NBS-114A (REV. 7-73K

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR RKPORT NO.

NBS Special Publ. 401

2. Gov't Accession
No.

3. Rc-cipient'.s Acccs.sion No.

4. TITLE AND SUBTITLE

Computer Performance Evaluation

5. Publication Date

September 1974

6. Performing Organization Code

7. AUTHOR(S) Various: Edited by Dr. Harold Joseph Highland,
State University Agricultural and Technical College: N. Y.

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

FIPSCAC, National Bureau of Standards, Room B264,

Building 225, Washington, D.C, 20234

13. Type of Report & Period
Covered

final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Number: 74-13113

16. ABSTRACT (A 200-word or less factual summary of most si^ificant information. If document includes a significant

bibliography or literature survey, mention it here.)

The Eighth Meeting of the Computer Performance Evaluation Users Group
[CPEUG], sponsored by the United States Army Computer Systems Command
and the National Bureau of Standards, was held December 4-7, 1973 at NBS,
Gaithersburg. The program chairman for this meeting was Merton J.

Batchelder of the US Army Computer Systems Command at Fort Belvoir VA
22060 [ CSCS-ATA Stop H-14 } .

About 150 attendees at this meeting heard the 17 papers presented on com-
puter performance, evaluation and measurement. Among the papers pre-

sented were those dealing with hardware and software monitors, workload
definition and benchmarking, a report of FIPS Task Force 13, computer
scheduling and evaluation in time-sharing as well as MVT environment, human
factors in performance analysis, dollar effectiveness in evaluation, simulation

techniques in hardware allocation, a FEDSIM status report as well as other

related topics.

These proceedings represent a major source in the limited literature on com-
puter performance, evaluation and measurement.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first lett'-r of the first key word unless a proper

name; separated by semicolons)

Computer evaluation; computer performance; computer scheduling;
hardware monitors; simulation of computer systems; software monitors;
systems design and evaluation; time-sharing . systems evaluation

18. AVAILABILITY [x] Unlimited

1
' For Official Distribution. Do Not Release to NTIS

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF PAGES

155 pages

Ix ' Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402. SD Cat. No. C13. 10:401

1 !
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$1.80

USCOMM-DC 29042-P74





NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. Comprehensive scientific

papers g"ive complete details of the work, including

laboratory data, experimental procedures, and theoreti-

cal and mathematical analyses. Illustrated with photo-

graphs, drawings, and charts. Includes listings of other

NBS papers as issued.

Published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of physi-

cal and chemical research, with major emphasis on

standards of physical measurement, fundamental con-

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math-
ematician and theoretical physicist. Topics in mathe-
matical statistics, theory of experiment design, numeri-
cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer
systems. Short numerical tables. Issued quarterly. An-
nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul-

ktin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS.
DIMENSIONS/NBS highlights and reviews such

issues as energy research, fire protection, building

technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, DIMENSIONS/NBS reports the results of

Bureau programs in measurement standards and tech-

niques, properties of matter and materials, engineering
standards and services, instrumentation, and automatic
data processing.

Annual subscription: Domestic, $6.50; Foreign, $8.25.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional
organizations, and regulatory bodies.

Special Publications—Include proceedings of high-level
national and international conferences sponsored by
NBS, precision measurement and calibration volumes,
NBS annual reports, and other special publications
appropriate to this grouping such as wall charts and
bibliographies.

Applied Mathematics Series—Mathematical tables,
manuals, and studies of special interest to physicists,
engineers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National .Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
tics of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

See also Section 1.2.3.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the .structural and environmen-
tal functions and the durability and safety character-
istics of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-
ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other
government agencies.

Voluntary Product Standards—Developed under pro-

cedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations.
The purpose of the standards is to establish nationally

recognized requirements for products, and to provide
all concerned interests with a basis for common under-
standing of the characteristics of the products. The
National Bureau of Standards administers the Volun-
tary Product Standards program as a supplement to

the activities of the private sector standardizing
organizations.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. The purpose of the Register is to serve

as the official source of information in the Federal Gov-
ernment regarding standards issued by NBS pursuant
to the Federal Property and Administrative Services

Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717

(38 FR 12315, dated May 11, 1973) and Part 6 of Title

15 CFR (Code of Federal Regulations). FIPS PUBS
will include approved Federal information processing
standards information of general interest, and a com-
plete index of relevant standards publications.

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological

marketplace.

NBS Interagency Reports—A special series of interim

or final reports on work performed by NBS for outside

sponsors (both government and non-government). In

general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Infor-

mation Service (Springfield, Va. 22151) in paper copy
or microfiche form.

Order NBS publications (except Bibliographic Sub-
scription Services) from: Superintendent of Documents,
Government Printing Office, Washington, D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey
bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service
(Publications and Reports of Interest in Cryogenics).
A literature survey issued weekly. Annual subscrip-
tion: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quar-
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature
survey issued quarterly. Annual subscription: $20.00.
Send subscription orders and remittances for the pre-

ceding bibliographic services to the U.S. Department
of Commerce, National Technical Information Sen--

ice, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service

(Abstracts of Selected Articles on Measurement
Techniques and Standards of Electromagnetic Quan-
tities from D-C to Millimeter-Wave Frequencies).

Issued monthly. Annual subscription: $100.00 (Spe-

cial rates for multi-subscriptions). Send subscription

order and remittance to the Electromagnetic Metrol-

ogy Information Center, Electromagnetics Division,

National Bureau of Standards, Boulder, Colo. 80302.



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20P34

OFFICIAL BUSINESS

Penalty for Private Use. S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-2 1 5


