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Semiconductor Measurement Technology

:

DISTRIB I, An Impurity Redistribution Computer Progrcun

by

David Gilsinn and Richard Kraft

This report provides docxjmentation of a computer program
which calculates the redistribution of impurities in
silicon during a single oxidation step. The dociomenta-
tion provides: (1) a physical and mathematical descrip-
tion of the redistribution process, (2) a detailed de-
scription of the discretization of the appropriate par-
tial differential equations, and (3) a complete descrip-
tion of the FORTRAN program for computing the solution.

Key Words: Diffusion; electronic technology; impurity
distribution; material transport; segregation; semi-
conductor technology.

1 . INTRODUCTION

1.1. Main Objectives of the Documentation

The principal objectives of this documentation are:

(1) to give a detailed derivation of the algebraic equations that
are used in the computer program,

(2) to give in detail, a step-by-step description of the way the
computation in each computational block of the progreun is car-
ried^ out, and

(3) to provide a simple example illustrating how to use the pro-
gram.

The format of this documentation is modeled after the partial differential
equation computer prograjn format description in [9] in the FORTRAN IV lan-
guage .

In fabrication processes redistribution of impurities takes place in mul-
tiple oxidation and diffusion steps (each step being characterized by con-
stant process parameters) . DISTRIB is aimed at simulating this complete
process; however, due to the complexity of the total problem, it was de-
cided to only document a fundamental oxidation step here. This ejcplains

the appellation DISTRIB VERSION 1.

The next section introduces the user to DISTRIB VERSION 1.

1.2. Tips on Where to Locate the Key Parts of This Documentation
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Question 1:

Answer 1:

Question 2

:

Answer 2:

Question 3:

Answer 3

:

Question 4:

Answer 4:

Question 5:

Answer 5

:

Question 6:

Answer 6:

Question 7:

Answer 7:

Question 8:

Answer 8:

Question 9:

Answer 9:

Question 10;

Answer 10:

Question 11:

Answer 11:

Question 12:

Answer 12:

Question 13:

What should I do if I have a question about this program
that is not answered in the documentation?

Call Richard Kraft, NBS, Applied Mathematics Division or
Electron Devices Division, (301) 921-3621.

Where is the physical problem explained?

In section 2.1.

Where are the partial differential equations listed in sum-
mary form?

Equations (2.13) to (2.19).

Where are the computational procedures outlined?

In section 3.1.

Where are the discretized equations derived?

In chapters 5 and 6

.

What machine has the program run on?

UNIVAC 1108.

Where are the flow diagrams?

In chapter 8.

Where are the detailed explanations of the computational
steps?

In chapter 7.

Where are the input and output and a description of how to
work a simple problem?

In chapter 9.

Where is the listing of the computational blocks?

In chapter 11.

Suppose I want to know where to go in the documentation to

learn about some quantity in the listing?

Go to the glossary in chapter 12.

What is the basis for the program's validity and what are

its limitations?

See chapter 10.

What about the "deck cards" and the statements in the list-

ings that are not dociomented in VERSION 1?



Answer 13: Completely ignore them. Everything needed to understand
VERSION 1 is explained in this documentation and is in the
computational blocks (see listing, chapter 11)

.
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2. DESCRIPTION OF THE PROBLEM

2.1. Physical and Mathematical Description of the Problem

The problem considered here [4] deals with the redistribution of dopant
impurities found in silicon as the silicon is oxidized and converted
into silicon dioxide. For the sake of specificity, we consider the im-
purity to be boron and have studied the following ideal situation.

Suppose the entire half space lying to the right of the x-z plane, see
figiire la, to be occupied by silicon while the region on the left-hand
side of this plane is filled with oxygen at some elevated temperature.
Also, suppose that the silicon is doped with boron and that the density
distribution of this impurity is constant in planes parallel to the x-z
plane so the distribution is essentially only a function of the y-
dimension.

The time evolution of an initially uniform boron distribution (for appro-
priate conditions at the oxygen-oxide interface) is illustrated in figure
lb. When the oxygen contacts the silicon, it begins to react to form
silicon dioxide, and a sharply defined moving boundary which separates
the pure silicon from that previously converted into silicon dioxide be-
gins to move into the pure silicon. The position of this moving boundary
is known empirically, see [1] and section 4.2, and is denoted by

where t is time.

Inside the silicon and oxide, the transport of boron is governed by or-
dinary Fickian diffusion but with different diffusion coefficients Dj

and D2 in the oxide and silicon, respectively.

The more complicated physical processes take place at the moving oxide-
silicon interface. The boron has a preference to be dissolved in the
oxide rather than the silicon. Hence, as the moving boundary moves into
the silicon, the boron's preference to be in the oxide depletes the bo-
ron density in the vicinity of the moving boundary. The preference of
the boron to be in the oxide rather than the silicon is quantitatively
expressed by requiring that the moving boundary segregation condition be
satisfied.

y = y (t) , for t > 0 (2.1)

C2(y (t) ,t) =
o

m Ci (y^(t) ,t) (2.2)

where m is a given constant (the segregation coefficient) and eq (2.2)

must be satisfied for all time t > 0. In eq (2.2) Ci(y,t) and C2(y/t)
represent the boron densities in the oxide and silicon, respectively.



X

MOVING BOUNDARY

0- SiO:

I
1 Y

Yo(t)

Figure 1. The problem geometry.

In addition to the condition eq (2.2) holding at the moving boundary, it
is also assumed that there is conservation of boron atoms. Mathematical-
ly, this condition is expressed by the requirement that

i y ^
+ (a-^-l)y Ci

y=yjt)

= DoS Co
y

^

y=y^(t)

(2.3)

y=y^(t)

In order to understand the origin of the convective flux (a~ '-1) yQCj , it
is necessary first to understand a second complicated physical effect oc-
curring at the moving oxide-silicon boundary. When silicon is converted
into oxide, its volume expands by a factor a~^, where a 0.45. In the
model chosen here [4] , it is assumed that all the oxidation of the sili-
con takes place entirely at the moving oxide-silicon interface. In this
case, the expansion tends to push the previously formed oxide backwards
at a certain velocity into the oxygen, creating another moving boundary
between the oxygen and oxide, see figure 2. The velocity with which the
oxide is being convected backwards is assumed to set up a convective
drift transport in the oxide's boron atoms. The magnitude of the veloci-
ty of this convective flux of boron atoms is determined in the following
manner

.
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BORON REDISTRIBUTION DURING OXIDATION

TIME

0

OXYGEN SILICON

+ 1

+ 2

OXYGEN

+ 3

OX DE SILICON

GOVERNS ELECTRONIC
PROPERTIES OF SILICON

DEVICES

Figure 2. A hypothetical redistribution process,

Consider a thin slab with width Ay of pure silicon located exactly at

the moving oxide-silicon interface at some time just before it is con-

verted into oxide. After some time At, the moving boundary has trav-

eled from one side of this thin slab to the other

Ay = y (t + At) - y (t ) ,

o o o o
(2.4)

converting it into a thin slab of pure oxide of width a~-^Ay. The differ-
ence between this new larger width and the original width is assumed to

be the distance that the previously formed oxide (i.e., prior to t^) is

moved backward. Therefore, this rate is

lim g-^Ay - Ay _ ^
At->0 At ^ ' dt

(2.5)

t=t

and the backward velocity of the oxide is -(a ^-Dy^ where y^ =
dt

Thus, the full equation describing the transport of the boron in the ox-
ide is

6



) Ci(y,t) = Di9"Ci + (a-l-l)y (t)8 Ci , (2.6)

where the last term in eq (2.6) represents the convective boron trans-

port.

By introducing a coordinate system (see figure 3) , moving with the ori-
gin at the oxygen-oxide interface,

z = y + (a-^-l)y (t)
o

or (2.7)

z = y + z^(t) - y^(t) ,

where

z (t) = a-^y (t) ,o o
(2.8)

eq (2.6) simplifies to

3 Ci = D.a^Ci for 0 < z < z (t) .

t-^ -^z-^ — — o
(2.9)

Moreover, in the z-frame there is no longer a moving boundary at the
oxygen-oxide interface to contend with.

The moving boundary conservation condition in the z- and y-frame is

Di3 Ci(z ,t) + z Ci(z ,t) = D29 C2(y ,t) + y C2 (y ,t) . (2.10)
^ z ^ o 0^0 y o 0 0

In this model we assume the transport of boron across the oxygen-oxide
interface to be governed by

Di 9 Ci = C (Ci (0,t) - C J ,
i-~> out

(2.11)

OXYGEN-^ OXIDE- •SILICON

Figure 3. The moving z-coordinate frame.
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where Cp and Cout assumed to be known constants. Finally, at y = oo

we assume the concentration to be stationary and equal to a "bulk" value

B

C2(~.t) = Cg . (2.11')

Since we intend to solve the above equations on the computer, it is manda-
tory to truncate the infinite y-domain by selecting some point y = BDRY
far from the y-origin and requiring there that

C2(BDRY,t) = C .

B
(2.12)

Finally, at time t = 0 it is assumed that the silicon slab is completely
unoxidized [y (0) = 0] and that the concentration has a step function dis-

tributxon

:

C2(y,0) = C

C2(y/0) = C

max y <_ NH

NH < y < BDRY

(2.13)

where C , NH > 0 are parameters,
max

In summary, we will solve eq (2.13) and

a Ci = Di3 ^Ci for 0 < z < z (t) ,

t ^ i 2 ^ — — o

) Co = Do9 ^Co for y (t) < y < BDRY ,t^ Y o — —

Di3 Ci + z Ci
^ z ^ o ^

= DoB Co + y Co

z=z (t)
o

y=y (t)
o

(2.14)

(2.15)

(2.16)

C2 (y /t) = mCi (z ,t) ,
o o

Di3 Ci - C (Ci - C )

,z

= 0 , and

(2.17)

(2.18)

(2.19)

z=0

C2(BDRY,t) =
,

where the moving boundary yr,(t) or z (t) = a~V (t) is a specified mono-
tonic curve, see section 4.2.

8



2.2. The Partial Differential Equations in Their Equivalent Integral
Form

The usual procedure for the numerical solution of partial differential
equations like eqs (2.13) to (2.19) comes through solving the system of

algebraic equations that results from replacing the partial derivatives
in these equations by their approximating difference quotients. When
this standard procedure was tried (see [10-13] for other approaches) , it

did not lead to a very accurate solution. The discretization of the fol-

lowing system of equations equivalent to the partial differential equa-
tions and which involves integrals in place of partial derivatives does
lead to a system of algebraic equations that can be solved readily to
yield an accurate solution of the original system.

The system of equivalent equations is

:

Ci (z,t)dz = -Di3^Ci + Di9 Ci
^ z ^

z=z. =2B

(2.20)

for every pair of points z^ < Zg such that 0 <_ z^, Zg <_ z^{t) ,

d_
dt/ C2(y,t)dy = -029^02 + Co

^ y
^

y=yA y=yB

(2.21)

for every pair of points y^^ < yg such that yo(t) f_ y^/ Y-q — BDRY,

Ci(z,t)dz + /t)dz + / C2(y,t)dy = -Di9^Ci

yo(t)

+ DoS Co
y

Z=Z7

, (2.22)

y=yB

C2(y ,t) = m Ci (z ,t) ,
o o

DiS Ci - C (Ci (0,t) - C ^) = 0 ,

z p out

C2(BDRY,t) = Cg , and

(2.23)

(2.24)

(2.25)

C2(y/0) = C^(y) (2.26)

9



where

C^(y) =
'max y <_ NH

:^ NH < y < BDRY .

To see that eq (2.14) is equivalent to eq (2.20) , first cariry out the
differentiation on the left-hand side of eq (2.20) under the integral
sign and substitute for 9^Ci by employing eq (2.14) . One gets

d_
dt I ci (z,t)dz = / D^a^^c^ dz (2.27)

and

/ DiS^ Cldz = -Di9^Ci

z=z. z=z.

(2.28)

yielding the right-hand side of eq (2.20).

By reversing these steps starting with the right-hand side of eq (2.20),
one finds

/
B

O^Ci - Di9 2c,)dz = 0
t ^ ^ z ^ (2.29)

for every 0 1. < Zg <_ ZQ(t) . Therefore, the integral of eq (2.29) must
vanish (it is assumed to be continuous) and eq (2.14) results. By using
trivial modifications of these same techniques, the remaining equations
can be shown to be equivalent to eqs (2.13) to (2.19).
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3. THE COMPUTATIONAL PROCEDURE

3.1. General Description of the Computational Procedure

The numerical approach to the solution of the partial differential equa-
tions in the integral form, eqs (2.20) to (2.26), replaces the problem of
finding the continuous functions Ci(z,t), C2(y,t) with the problem of de-
termining the functions Ci(z, tj^) , 02(7, tMM) which are only defined at
discrete points on a finite difference grid. The time coordinates of
these grid points are specified through the definition of a sequence of
discrete times for MM = 1 , MME where MME is some given positive
integer and the first discrete time, t^, is zero. The spatial coordinates
of the "fixed" grid points (see sec. 4.1 and fig. 4 for further details)
are

z = (J - l)Az for J = 1,2,... ,

(3.1)

y = (I - l)Ay for I = 1,...,N2 ,

where N2 is some given integer index. The mesh widths Az, Ay are also

given quantities whose magnitudes like those of MME and N2 need not be

considered now. In addition to the fixed grid points in eq (3.1) , there

are two grid points located at the moving boundary (see sec. 2.1). One

is at the moving boundary bordering the z-region and the second is at
the moving boundary bordering the y-region , see figure 4. The space
and time coordinates of these two moving boundary grid points are, re-
spectively, (Zq ( tMM) ' ^mm) (yo(tMM) '^MM) • addition to seeking the
concentrations at the fixed grid points C^ (J,tMM) / C2(I,tMM)/ we also de-
sire to find the concentrations at the two moving boundary grid points,

^1 (^^^^^mm) '^MM^ ' C2(y^(t ),t ) forMM=l,..., MME.
o MM MM o MM MM

Because of the initial condition eq (2.26), these concentrations are
known at time t^ =0.

Let us assume that we have already determined the concentrations at the

fixed and moving grid points up to some arbitrary time t^n; then we will
proceed to describe how these same concentrations at the next time t^M +

At = t^M+i (where At = tj^^j. ~
''^MM^ ^® found by performing the opera-

tions in the following three steps.

Step #1: Discretize the equations.

By discretizing the equivalent description of the partial differential
equations in eqs (2.20) to (2.26) , we derive a system of linear alge-
braic tridiagonal equations that couple the concentrations at time tj^
with those at t^M+l* Specifically, with each of the fixed grid points
in the z-region, we derive and associate an equation of the form

ZiCl(J - 1,TTMMP1) + Z2CI (J,TTMMP1) + ZsCKJ + 1,TTMMP1) = Z14 (3.2)

11



Yaxis

Z axis

1/3 and

Table 1: FORTRAN Version of Symbols in Eqs (3.2) to (3.4) in the Y-

and Z-Regions.

Cl((P - l)Az,t^_^^) = CI (P, TTMMPl)

= C2(P, TTMMPl)

t = TTMMPl
MM+1

o MM+1 MM+1
= CB(1, TTMMPl)

'^2(yo^Wi^'Wi^ E CB (2, TTMMPl)

POSITION OF MOVING BOUNDARY

-H Ayh-3456 789 N2
I 2

Y = 0

Z = 0

MOVING BOUNDARY
GRID POINTS

-t 1-

2 3 4 5 6 7 8 9 10

Figure 4. Finite difference grids with a

NZO = 3.

for J = 1,..., NL and where the FORTRAN notation is defined in table 1.

Similarly, with each of the fixed grid points in the y-region, we derive
and associate an equation of the form

YlC2(I - 1, TTMMPl) + Y2C2 (I, TTMMPl) + Y3C2(I + 1, TTMMPl) = Y^ (3.3)

where I = NR, . . . , N2 and table 1 contains the FORTRAN symbol definitions.
The coefficients Zi,...,Zn, Yi , . . . ,Y^. are composed of the mesh width
quantities At, Az, Ay and hence are known. In addition, the quantities
Zi^,Yi^ contain, respectively, (z , tj^^jyj) and C2(y,tj^^) and therefore these
equations couple the concentrations at the two successive time steps
t and t ,

.

MM MM+1

At the moving boundary grid point in the z-region, there is an addition-
al equation called the preliminary equation (for reasons explained in
step #3) which expresses the value of (zq (tf^+j) , tj^+l) in terms of
the concentrations at the neighboring grid points, at time t^+i.
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DM1 CB{1,TTMMP1) = DM2 CI (NL,TTMMP1)

+ DM3 C2 (NR,TTMMP1) + DM4 CI (NL - 1,TTMMP1) (3.4)

+ DM5 C2 (NR + 1,TTMMP1) + DM6

where the FORTRAN symbols are defined in table 1. In this equation
DM1,..., DM6 are composed of known mesh quantities and DM6 contains con-
centrations, at time tj^^ (at the grid points coincident and adjacent to
the moving boundary grid points) , which are of course assumed to be
known

.

Step #2: Put the tridiagonal equations into "P,Q" form.

By algebraically manipulating eq (3.2), it is possible to put it in
the form

C1(J,TTMMP1) = P1(J) C1(J + 1,TTMMP1) + Ql (J) (3.5)

for J = 1,..., NL - 1 and

CI (NL,TTMMP1) = PA(1) CB(1,TTMMP1) + QA(1) . (3.6)

By similar manipulations, eq (3.3) can be put into the form

C2(I,TTMMP1) = P2(I) C2(I - 1,TTMMP1) + Q2 (I) (3.7)

for I = NR + 1,...,N2 and

C2 (NR,TTMMP1) = PA(2) CB(2,TTMMPl) + QA(2) . (3.8)

The "P, Q" coefficients in these equations, i.e., PI ( J) , Ql ( J) , P2(I),
Q2(I), PA(L), QA(L) for L = 1,2 are algebraic combinations of the quanti-
ties Y^,..., Yi^, Z^,..., Zi^ and are hence known.

Step #3: Determination of the concentrations at time TTMMPl = t
MM+1

The first important use of eqs (3.5) to (3.8) is that it is possible
using these equations with J = NL - 1 in eq (3.5) and I = NR + 1 in
eq (3.7) to eliminate with the help of eq (2.23) all the unknown concen-
trations on the right-hand side of the preliminary eq (3.4). Thus, we
obtain the value of the concentration at the moving boundary in the z-

region in terms of known quantities,

CB(1, TTMMPl) = "Some function of (DMl , , , . ,DM6 , Zi,...,Yi^)" . (3.9)

Since eq (3.4) leads directly in this way to what will turn out to be
the most important concentration at time TTMMPl in the sense that with
this value of CB(1, TTMMPl) all the other concentrations are simply cal-
culated, we call eq (3.4) the preliminary equation for distinction pur-

13



poses. From this result and the segregation boundary condition eq

(2.23) with SEG = m, we can find DB (2 ,TTMMP1)

.

CB(2,TTMMP1) = SEG • CB(l,TTMMPl) . (3.10)

By using these two concentrations at the moving boundary and back sub-
stituting in eqs (3.6) and (3.8), we can find C1(NL,TTMMP1) and

02 (NR,TTMMPL)

.

Finally, by using these two quantities and by back substituting in eq

(3.5) starting with J = ML - 1 and by back substituting in eq (3.7) be-
ginning with I = NR + 1 , we can successively generate all the concentra-

tions at the fixed grid points at time t . . TTMMPl

.

MM+i

By repeating steps one through three starting at time tj^ = 0 when the

concentrations are known in the y-region (there is no z-region since
the moving boundary starts at z = 0 at time t - 0) , all the concentra-
tions at all the grid points at the discrete times t , MM = 1,...,MME

MM
can be found.

3.2. Short Guide to the Following Chapters

In this documentation, the derivation of the tridiagonal linear eqs

(3.2), (3.3), and (3.4) is carried out in Chapter 5. The manipulation
of these equations into the form eqs (3.5) to (3.9) is carried through
in Chapter 5. The computational procedure is described in detail in
Chapter 7, and Chapter 8 contains flow diagrams of the listing in Chap-
ter 11. Chapter 9 contains a worked example and a compact and precise
description of the input and output for the program. Chapter 10 de-

scribes the validation and limitations of the program, and Chapters 12

and 13 contain a glossary for FORTRAN symbols and references. The ap-
pendices collect finite difference approximations used in Chapter 5 and
an "in-house" plot documentation.

The next chapter collects material needed in Chapter 5 and gives a de-
tailed description of the finite difference grid, moving boundary mo-
tion, equation dimensionalization , and plotting description.

14



4. DESCRIPTION OF AUXILIARY COMPUTATIONAL PROCEDURES

4.1. A Detailed Description of the Finite Difference Grid

In this section we describe more fully the finite difference grid al-
ready introduced in section 3.1, see eq (3.1). We (see fig. 4) begin
by describing how the magnitudes of the mesh widths Ay, Az, At and the
number of grid points, N2, on the y-axis are determined.

The mesh width Ay is calculated in DISTRIB by dividing the program
input quantity BDRY [see above eq (2.12)] by an integer input NYO, i.e.,

BDRY
Ay = . (4.1)^ NYO ^

'

Consequently, placing the grid point index 1 at y = 0 and calling the
index of the y-grid point at y = BDRY, N2 , implies that

N2 = NYO + 1 . (4.2)

In order to understand the motivation for the way we define the magni-
tude of the mesh width Az, imagine the width of an interval of size Ay
of silicon after it has been converted into oxide. It swells to a size
[see sec. 2,1] a~-^Ay. Since in DISTRIB a is an unrestricted input and
is possibly very small, this latter quantity, a~-'^Ay, could be very large.

We want to choose the magnitude of Az in such a way that there are
enough Az intervals in this width to describe any concentration varia-
tion in it. Therefore, we introduce another program input integer NZO
and use it to define

Az = a" ^ Ay/NZO (4,3)

in such a way that a~VNZO % 1 so that Az and Ay are approximately the

same magnitude. Another very important advantage of this choice of Az
is that it implies that when the moving boundary sweeps through a mesh
width of magnitude Ay in the y-region NZO mesh widths of magnitude Az
are swept out in the z-region.

In order to explain the reasoning behind the definition of At, we re-
mark that the computer program's numerical stability seems to be af-
fected if the moving boimdary moves too rapidly between successive grid
points. Therefore, At is defined in such a way that the moving boundary
does not travel more than a fraction WFRC (real program input) of a Az

mesh width between the times t = 0 and t = At. Thus, we solve the
equation

WFRC • Az = z (At) - z (0) (4.4)
o o

for At and then define At as this solution. This is how At for the
first iteration (see sec. 3.1) when t^ = 0 and Zq(0) = 0 is chosen. In

computational blocks #16 and #20 (see sec. 7.1), it is explained how At
is increased during later iterations of the main loop 78 in DISTRIB.
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Figure 5 : Motion of the moving boundary in the z-region

.
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GRID POINTS
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time = twMf I
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time = tMM

Figure 6. Motion of the moving boundary in the y-region.

Before leaving the description of the finite difference grid, it is im-

portant and convenient to introduce special names for certain indices
of special grid points. Figure 5 shows the motion of the moving boun-
dary starting at time t|yjj,,j and ending at time t]\^+i in the z-region. We
denote the index of the z-grid point which is at or immediately to the
left of the moving boundary at time by NL and the next grid point
to its left by NLMI (= NL - 1) , Similarly (see fig. 6) , the index of
the first grid point in the y-region greater than the position of the
moving boundary at time tj^^ is denoted by NR, and the index of the next
point to its right is NKPl (= NR + 1) . Of course, the values of NL and

NR change with t,„ .

MM

4.2. The Description of the Moving Boundary

In DISTRIB the user can choose between two different formulas for the

moving boundary. These are the two motions related to the wet and dry

oxidations in [1]. In both cases there are three parameters A, B, and

T (each with values that are temperature dependent) in the equations

that describe the motion of the moving boundary.

Case I: Wet oxidation, t = 0.

The equation is [see 1, eq (13)]

A r 4tBll/^
- 1 for t > 0 (4.5)
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The equation expressing t in terms of is

t = (z^^ + Az^)/B . (4.6)

Table 1 in [1] gives the values of A and B for different temperatures.

Case II: Dry oxidation, t > 0.

For times t > x [1]

/2
= -

I 1 + ipr-\ ~ ^ ^ >. - ('i-'^)

When t < T , we use [1]

A r 4tBl^'

where

ZCRIT ^z = — • t , 4.8
O T

jl/2
ZCRIT = CNSTX = ^ 11 + - 1 . (4.9)

A r 4tBT

CNSTX is a duplicate name for ZCRIT. Table II in [1] gives the values
of A, B, and T for different temperatures.

The FORTRAN symbols for the constants in the previous equations are
given in table 2.

Table 2: FORTRAN Version of Symbols Used in the Moving Boundairy Equa-
tion and Finite Difference Grid.

A = CNSTA

B = CNSTB

. 5A = CNA

T = CNTAU = TLIN

ZCRIT = CNSTX

Az = DZ

Ay = DY

At = DT

a = ALPHA
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4.3. Dimensionalization

Although the physical input in DISTRIB is required to be in units of
micrometers and hours, it is computationally more efficient to solve
the partial differential equations with the physical quantities ex-
pressed in other units. For the kinds of problems of interest in im-
purity redistribution, a convenient basic length is BLTH = 0,02 ym.
Given the basic length unit, a basic time is frequently introduced in
diffusion theory by defining

2

BTM = BLTH_
j^Q^j^g (4.10)

D
o

where Dq is some diffusion coefficient in the problem. In our program,
Dq is chosen to be D2, the diffusion coefficient in silicon. When these

new units are used to dimensionalize the diffusion equation in the sili-
con, one finds the new equation has a diffusion constant of unity. That

is , making a change of independent variables

/ _ t / _ y , / ^ z
^ - BTM' ^ ~ BLTH' ^ BLTH

transforms eq (2.14) into

8 , C2 = C2 - ° / ^2
t y

and eq (2.15) into

\' ^1 = 'I' ^1 •

The rest of the dimensionalizations carried out in block #4 of section
7.1 are standard conversions from micrometers and hours to the new
units BLTH and BTM.

4.4. The Description of the Way Arrays CI and C2 Are Plotted

The plotting is really a peripheral item and not described in as much
detail as substantive parts of the program. All the quantities un-
defined are defined or referenced in the glossary and their definition
in the glossary makes their function clear. First, the way CI is

plotted is described. Let NC be the integer part of (NL - 1)/NM0D.
When NC > 0, we plot the concentrations CI and z-coordinate (in units
of ZOPl) at every grid point K = V • NMOD + 1 for V = 1,... , NC. When
NC = 0, we plot the concentrations at z = 0 and at the moving boundary
Zq. The quantities XlS, YlS determine the largest abscissa and ordi-
nate on the graph of CI versus z.

18



The graph of array C2 is plotted in the following way. All abscissa
are in units of UN2 (which is essentially SCALE2, since y is still in

units of BLTH) . The first C2 concentration plotted is CB(2) at the
moving boundary. The next concentration is C2 (NR) with abscissa S(2)DY
Next, we plot ND - 2 concentrations with the indices KS = NR + (V - 2)

NMODl for V = 3,..., ND. Next, we pass these grid points through a

filter which eliminates those with an abscissa greater than X2S/2 =

X2SCT. The quantities X2S and Y2S determine the largest abscissa and
ordinate that appear on the C2 versus y plot. Note: The specific
scales used as the ordinates and abscissa for these plots were chosen
in order to make the resultant graphs identical in size to those ob-
tained from the equipment which experimentally determined the concen-
tration data. This also accounts for the elimination of points beyond
X2S/2. Both conditions may be changed to accommodate the user.

The smallest abscissa and ordinate are determined in both graphs by

(0,0)

.

The plot subroutine is an NBS "house program" that is documented in Ap-
pendix 2.

This plotting procedure has worked well in all cases, the only adjust-

ments needing to be made being in NMOD and NMODl (see table 20 in

sec. 9.22).
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5. DERIVATION OF THE DISCRETE ALGEBRAIC EQUATIONS

5.1. The General Prescription for Obtaining the Tridiagonal Equation
Associated with a Fixed Grid Point

This section, which should be read casually, gives a rough description
of the precise derivations in the following sections.

Each particular tridiagonal equation in eqs (3.2), (3.3) [and (3.4)

also] associated with some particular grid point is derived by discre-
tizing some integral form of the conservation of number eqs (2.20) to

(2.22) over the "flux cell" (to be described below) that contains that
particular grid point. The flux cells are intervals that arise by par-
titioning the z- and y-regions in a certain way. That is, both the z-

region and the y-region are broken up into nonoverlapping intervals
called flux cells or concentration cells in such a way that the inter-
vals completely cover the regions [0,Zo(t)] and [yo(t),BDRY] at every
time t; and each grid point is contained in at most one cell except for
the grid points with indices NL and NR. Each of these grid points is

contained in both the irregular sized cell with which it is associated
and the "moving boundary cell"; these statements will be explained more
completely later. The two boundaries of each of the concentration cells
are called the flux boundaries of the cell. We interpret the concentra-
tion, C1(J,TTMMP1) = C1((J - l)Az,ti4M+i), at some grid point J to repre-
sent the average number density in the cell at time t^^+j.

The flux boundaries for the cells in the y-region are shown in figure 7

by the vertical lines located halfway between successive grid points.
Notice that all the cells in the y-region that contain fixed grid points
(see sec. 3.1) are of width Ay except the irregular one of width 0.5 Ay
that contains and leads to the tridiagonal algebraic equation associated
with the grid point with index NR at (NR - l)Ay. This cell has one flux
boundary at (NR - l)Ay and the other is at (NR - 1/2) Ay. Similar re-
marks apply to figure 8.

The significance of the flux cell containing some grid point, with in-
dex I in the y-region (see fig. 7) is that it leads to a linear alge-
braic equation containing the concentration C2(I,TTMMP1) as an unknown
when the conservation eq (2.21) defined on this cell is discretized.

NR NRPI I-l

lime = t^M + i

time = tMM

Itl N2•—

Trrr 1

'
1

1

—

1 N2
f 1 1 1 1 1 1

IRREGULAR FLUX CELL
t

REGULAR FLUX CELL

Figure 7: Flux cells and flux boundaries in the y-region for fixed
grid points.
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time = tMM+i

Figure 8. Flux cells for fixed grid points in the z-region when NL >

In particular, let yj^ and yg in eq (2.21) be at (I - 3/2) Ay and
(I - 1/2) Ay, respectively. Make now the following approximations in

eq (2.21) (with t = t^^. ) :

MM+1

d

dtf C2(y,t)dy ^ C2(y,t )]dy/At
MM

^2(y'Wl^^^ '^^ C2((I

/ C2(y't^)dy C2((I - l)Ay,t^)Ay ,

Do8 Co
y

D2[C2((I - l)Ay,t^^^ ) - C2((I - 2)Ay,t^^^ )] , and

y=yA

C2 Z D2[C2(lAy, t^^^) - C2((I - DAy, t^^^^ ) ] .

MM+1

y=yB

Then eq (2.21) becomes, up to terms of higher order, the linear tridi-

agonal equation in eq (3.4) associated with the grid point with index I

C2((I - 2)Ay,t^^^) - |2 -H C2((I - l)Ay,t^^i)

+ Co(lAy,t ) = - C2((I - l)Ay,t )

MM+1 n^A-i- ^ MMD2At
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The important fact this example illustrates is that, by evaluating

the fluxes in eq (2.21) at the flux boundaries of the flux cell and
evaluating the integrals by a quadrature approximation with a "node"
located at the grid point in the flux cell, one ends up with a tridi-
agonal (i.e., an equation involving the concentrations at three con-
secutive grid points) equation for the unknown concentration at time

''^MM+1
that grid point. Thus, with the help of these flux cells one

can in a natural way associate with each unknown at a fixed grid point
an algebraic equation.

The flux cells of the points in the z-region depend on the values of NL.

There are three cases depending on whether NL = 1, NL = 2, or NL > 2.

The cell configuration for the case NL > 2 can be visualized from figure
8. In the case NL = 2 (see fig. 9) , there are just two irregular cells

each of width 0.5 Az. The flux cell associated with the grid point with
index NL has its right side flux boundary located coincident with the

grid point. The flux cell associated with the first z-grid point with
index 1 has its left-hand flux boundary coincident with the first grid
point. These facts also hold when NL > 1, but in this case there are
regular grid cells, i.e., with width Az in between the irregular ones
at the outer boundaries. The case NL = 1 is special because there are
no grid points in the z-region between the moving and fixed boundaries.

Finally, we point out that for all values of NL the conservation formula
eq (2.22) (conservation across the moving boundary) is discretized to
derive the preliminary eq (3. 4), and in this derivation the flux cell is

as shown in figure 10 with the flux boundaries at z^ = (NL - l)Az and

yg = (NR - l)Ay. The trapezoidal rule is used to evaluate the integrals
in eq (2.22) with the nodes at NL, NR and the moving boiindary grid
points at S(l)Az + (NL - l)Az and (NR - l)Ay - S(2)Ay, see figures 5

and 6.

These different cases, which arise because we have flux cells with dif-
ferent widths and with different orientation of grid points relative to
the flux boundaries for different values of NL, explain the slight vari-
ations, classified in tables 3 and 15, in the way the tridiagonal alge-
braic equations and their "P,Q" coefficients (see sec. 3.1) are derived
in the following sections.

NL=2

1^ \ f time = +1

time = t MM

Figure 9. Flux cells for fixed grid points in the z-region when NL = 2.
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Figure 10. Schematic description of the flux cell associated with the
discretization of the conservation equation across the moving
boundary

.

Table 3: Guide to the Sections Where the Tridiagonal Algebraic Equations
Associated With the Grid Points are Described and Derived.

Case I: The moving boundary has not reached the second z-grid point or
NL < 2.

(a) The index of the z-grid point is 1 (see sec. 5.9)

(b) The index of the y-grid point is greater than NR (see sec.

5.3)

(c) The index of the y-grid point is NR (see sec. 5.5)

(d) The grid point is at the moving boundary (see sec. 5.7)

Case II: The moving boundary has reached the second z-grid point or
NL ^ 2.

(a) The index of the z-grid point is 1 (see sec. 5.8)

(b) The index of the z-grid point ranges from 2 to NL - 1 (see

sec. 5.2)
(c) The index of the z-grid point is NL (see sec. 5.4)

(d) The grid points are at the moving boundary (see sec. 5.6)

(e) The index of the y-grid point is greater than NR (see sec.

5.3)
(f) The index of the y-grid point is NR (see sec. 5.5)

5.2. The Index of the Z-Grid Point Ranges from 2 to NL - 1 When NL > 2.

In this case we suppose the index, J + 1, is such that 2<J+1<NL-1,
and begin with the formula, see eq (2.20)
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t)dz = - Di 3 Ci
z ^ (5.1)

For the z-grid point, J + 1, we assume zp^ and Zg "the flux boundaries"
to be at (J - 1/2) Az, (J + 1/2) Az, respectively. We speak of these grid
points as regular grid points because the distance betv/een the cell flux
boundaries is Az.

The left-hand side of eq (5.1) is discretized by employing the backward
time difference formula (A7) in Appendix 1 between the times t =

and t = tiyu4 + At. Here, At is some small positive time increment that

sometimes depends on the index MM. After the derivative has been re-
placed by the backward difference quotient, the integrals are approxi-

mated by the midpoint quadrature rule (A2)

.

Finally, after further algebraic manipulation we have

• z

^
Ci(z,t)dz =

II [Ci(JAz,t^ + At)

z.

- Ci(JAz,tj^)] + 0(Az2 + At2)/At . (5.2)

Since all the expressions in eq (5.1) are assumed to be evaluated at

t = t]yiM + At, the approximation of the derivatives on the right-hand

side of eq (5.1) gives

9 Ci
z

and

9 Ci
z ^

= [Ci (JAz,t + At) - Ci((J - l)Az,t,^^ + At)]/Az + 0(Az) (5.3)
J- MM MM

z=ZA

= [Ci((J + l)Az,t,,, + At) - Ci(JAz,t^„ + At)]/Az + 0(Az) .(5.4)
MM MM

Z=Zt

By substituting eqs (5.2) to (5.4) into eq (5.1) and further rearranging,

we obtain up to higher order terms the discrete version of eq (5.1) in

tridiagonal form,

DiCi((J - l)Az,t^ + At) - (2 • D + Az2/At) Ci(JAz,tj^ + At)

+ DiCi ( (J + l)Az,t^ + At) = ^-^^^ Ci (JAz,t^)
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After introducing the FORTRAN quantities in table 4, eq (5.5) becomes

DFl • C1(J,TTMMP1) - (2 • DFl + DZ**2/DT) • CI ( J + 1, TTMMPl)
(5.6)

- (DZ) **2
+ DFl • C1(J + 2), TTMMPl) • CI ( J + 1,TTMM)

Table 4: FORTRAN Version of Quantities in Eq (5.5).

Di = DFl

Cl( , ) = Cl( , )

= TTMM
MM

t + At = TTMMPl
MM
At = DT

Az = DZ

Ci(JAz,t.„) = CI (J + 1,TTMM)
MM

Ci (JAz, t + At) = C1(J + 1, TTMMPl)MM

In the FORTFIAN program, the following intermediate quantities in table 5

have been introduced for convenience and computational efficiency.

Table 5: Intermediate Quantities Used in Eq (5.7).

DFl = A2L

-(2 • DFL + (RAl)"^) = A2M

DFl ^ A2R

- (RA1)~^ = AIM

AF(J + 1) = AIM • C1(J + 1,TTMM)

In terms of these intermediate quantities, eq (5.6) can be written in

the compact tridiagonal FORTRAN form

A2L • CI (J, TTMMPl) + A2M • Cl (J + 1, TTMMPl) + A2R • CI ( J + 2, TTMMPl)
(5.7)

= AF (J + 1) .

As has been explained in more detail in section 3.1, the quantities
A2L,..., AF(J) are used in computing the values of the arrays PI, Ql,

and Dl. Specifically, the quantities A2L, . . . , A2R, AIM are computed in
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subroutine INTER. The subroutine INTER is called by subroutine TRIDNL

when this latter subroutine is calculating the arrays PI, Ql. The array

AF(J) is computed in block #25 of the main program, see section 7.1.

SUMMARY

Schematic summary of the derivation of the tridiagonal FORTRAN equation

for z-grid points with indices between 1 and NL:

(5.1) -> (5.5) (5.6) (5.7) .

Summary notes:

(1) Quantities in table 5 except for AF are computed in subroutine

INTER.

(2) The array AF (J) is computed in block #25 of the main program.

5.3. The Index of the Y-Grid Point is Greater than NR

The derivation of the tridiagonal FORTRAN form of the algebraic equa-

tions associated with these grid points is almost entirely analogous

to the derivation of the equations in siibsection 5.2 once the substitu-
tions z for y, for D^, for C^, etc., are made. However, there is

one exception; in the y-region we have divided the equivalent of eq
(5.5) by D2 so that the equivalent of that equation is

C2((J - l)Ay,t _ + At)
MM

2 +
Ay2_]

D2AtJD2At

+ C2((J + l)Ay,t

C2(JAy,t„„ + At)

MM

MM

+ At) = 5f^C2(JAy,t^)

(5.8)

Table 6 is the equivalent of table 4.

Table 6: FORTRAN Version of Quantities in Eq (5.8).

D2 = DF2

Ay = DY

C2(-,-) = C2(-,-)

Az = DZ

C2(JAy,t,,) = C2(J + 1,TTMM)
MM

C2(JAy,t + At) = C2(J + 1,TTMMP1)
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When the quantities in table 6 are introduced into eq (5.8), it becomes

[DY**2 "I
2 + ^ff~r~^ \

C2(J + 1,TTMMP1) + C2(J + 2,TTMMP1)

(5.9)
DY**2= C2 (J + 1,TTMM) .

DF2 • DT

This form of the equation is further simplified by introducing the inter-

mediate quantities in table 7.

Table 7: Intermediate Quantities Used in Eq (5.10).

DT
^ = RA2

DY2

1 = B2L

-(2 + RA2~VdF2) = B2M

1 = B2R

-RA2"VdF2 = BIM

BF(J + 1) = BIM • C2 ( J + 1,TTMMP1)

In terms of the intermediate quantities in table 7, eq (5.9) assumes
the form

B2L C2(J, TTJ4MP1) + B2M C2 (J + 1, TTMMPl) + B2R C2 (J + 2, TTMMPl)

(5.10)

= BF(J + 1) .

The quantities RA2 , B2L,...,B1M are computed in subroutine INTER. This

subroutine is called by subroutine TRIDNL and in this routine the quan-

tities RA2,...,B1M are used to compute arrays P2 , D2. The quantity

BE (J) is computed in block #25 of the main program.

SUMMARY

Schematic siammary of the derivation of the tridiagonal FORTRAN equations

for y-grid points with indices greater than NR:

(5.8) —> (5.9) —> (5.10) .

Sammary notes:

(1) Quantities in table 7 except for BE are calculated in sub-

routine INTER.

(2) The array BE (J) is compuced in block #26 of the main program.
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5.4. The Index of the Z-Grid Point is NL and NL > 1

In this subsection we derive the FORTRAN tridiagonal form of the equa-

tion associated with the z-grid point with index NL which is located at
z = (NL - l)Az.

The derivation begins with the integral conservation equation

d

dt/-— / Ci(z,t)dz -

A

-Di9 Ci
^ z ^

Z=Z7

Di9 Ci (5.11)

Z=Zt

In this equation, Zg = (NL - l)Az, Zji^ = (NL - 3/2) Az are the "flux
boundaries"; notice the flux boundary at Zg coincides with the location
of the grid point associated with the cell (see fig. 9). Also, the

cell width, the distance between the flux boundaries, is Az/2 , and
therefore this grid point is called an irregular grid point, see sec-
tion 5.1.

By using the backward difference quotient approximation in eq (A7) to

approximate the time derivative on the left-hand side of eq (5.11) be-

tween the times tjyuyi and ty^j^ + At and the right end point quadrature ap-
proximation in eq (A3) to approximate the resulting integrals, the
left-hand side of eq (5.11) becomes equivalent to

d_
dt/

(NL-1) Az

Ci(z,t)dz =
ff^ ]ci[(NL - DAz, + At]

(NL-3/2) Az (5.12)

- Ci[(NL - l)Az, t^] + 0(At + AzVAt)| .

The spatial derivative on the right-hand side of eq (5.11) at z = z^ is
approximated by the central difference approximation

'd Ci

z=z

|^|ci[(NL -DAz, t^ + At] - Ci[(NL - 2)Az, t^ + At]|

A (5.13)

+ 0(Az) .

To approximate the derivative at z = zg on the right-hand side of eq
(5.11), we use the three point derivative approximation given in eq
(A9) . Setting in that formula
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XI = z (t + At)
o MM

X = (NL - l)Az = z

X2 = (NL - 2)Az

h - Az

B

we obtain the sought-after result

1 (

9 Ci
z ^

S (1)

Al )- 1 + S(l) ^1^^^^ - 2)^-' + At]

z=zB

+ [(S(l) - 1)/S{1)] Ci[NL - DAz, t^^^ + At]
MM

(5.14)

where

+ —7T-^

—

rr^ TTTT Ci [z (t + At) , t + At] } + 0(Az2)
S(l) [1 + S(l)] ^ o MM MM I

S(l) = [z (t^^^ + At) - (NL - l)Az]/Az
o MM

(5.15)

When eqs (5.12), (5.13), and (5.14) have been substituted into eq (5.11)
and the expression simplified, it becomes up to terms of higher order

DiS(l)

-
1 + S(l) ^1^^^^ - 2)^^' + At]

r^i • s(i)

R(l) Ci [ (NL - l)Az, t + At]
MM

(5.16)

(1 + S(l)) ^if^o^^MM ^MM
+

S(l) Ci [(NL - DAz, t^^]
MM

R(l)

where

R(l) =
2At

Az2
(5.16')

After introducing the FORTRAN notation in table 8 into eq (5.15), it
becomes
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DFl DFl DFl
C1(NL - 1, TTMMPl) + ,\ + ,\ CI (NL,TTMMP1)

1 + S(l) R(l) S(l)

(5.17)

DFl
CB(1) - CKNL, TTMM)

S{1) (1 + S(l)) R(l)

Table 8: FORTRAN Version of Quantities in Eq (5.16).

Di = DFl

t = TTMM
MM

t. . + At = TTMMPl
MM

At = DT

Az = DZ

Z • DT
R(l) -

DZ**2

Ci((NL - 2)Az, t + At) = CKNL - 1, TTMMPl)
^ MM

Ci((NL - l)Az, t + At) - CKNL, TTMMPl)
L MM

Ci((NL - l)Az, t^) = CKNL, TTMM)

Cl(z (t + At), t + At) = CB(1)
L o MM MM

Equation (5.17) will be used to obtain the "P, Q" quantities PA(1),
QA(1) for z-grid point NL, i.e., quantities such that

CKNL, TTMMPl) = PA(1) • CB(1) + QA(1) , (5.18)

in section 6.6.

SUMMARY

Schematic summary of the derivation of the tridiagonal FORTRAN equation
for the z-grid point with index NL when NL >_ 2

,

(5.11) —^ (5.16) —> (5.17) .

Summary note

:

Equation (5.17) is used in section 6.6 to obtain quantities PA(1)

,

QA(1) .

5.5. The Index of the Y-Grid Point is NR

The derivation of the tridiagonal FORTRAN formula for this grid point
is analogous to the derivation in section 5.4 for the irregular z-grid
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point at NL so the user should refer to that section if more details
concerning the following derivation are desired.

Again, we start with the integral conservation equation.

•4
B

C2(y,t)dy = -D23 C2
y

+ Do9 Co
y

y=yA

(5.19)

y^yB

where y = {NR-l)Ay and y = (NR - i)Ay.

By using the same approximation procedure that led from eq (5.11) to eq

(5.12) (except for using the left end point quadrature approximation),
we find

dt /
^ C2(y^t)dy = 1^ jC2[(NR - l)Ay, t^ . At]

- C2 [ (NR - 1) Ay, t ]
^ MM

(5.20)

The spatial derivative on the right-hand side of eq (5.19) at y = yB is

approximated by the central difference approximation (see eq (A8)

,

with h = Ay/2)

3 Co
Y

^ Ay
C2(NRAy, t^^ + At) - C2 [ (NR - l)Ay, t^^ + At])-+ 0(Ay)

MM

y=yB ;5.2i)

The spatial derivative at y = y^ on the right-hand side of eq (5.19) is
approximated by using the three point formula eq (A9) with:

We find

8 <Z.

XI = NRAy

X = (NR - l)Ay

X2 = y (t^„ + At) .

o MM

T- It-^-^^W C2((NR)Ay, t + At)AyJl + S(2) ^ ^ MM

y=yA

. -(2)'^^ C2((NR- DAy, t^ . At) (5.22)

S(2)(l ^ S(2)) ^^(^o^^MM ^ ^MM ^ ° ^'^^ '
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where

S(2) = -[yo(t^ + At) - (NR - l)Ay]/Ay . (5.23)

When eqs (5.20), (5.21), and (5.22) have been substituted into eq (5.19)
and the resulting expression is simplified, it becomes

-
1 /s(2) ^2[y^(t^^ At), t^ -f At]

(S (2) \— + ij C2[(NR - DAy, t^ + At] (5.24)

2(2) S (2)
-

1 + S(2)
C2(NRAy, t^ + At) =^ C2[.(NR - l)Ay, t^ + At] ,

where

2 D2At

After introducing the FORTRAN notation in table 9 into eq (5.24), it
becomes

1 + S(2) ^^^^^ TTMMPl)
+(^^Jjj-+

Ij C2(NR, TTMMPl)

(5.26)
S ( 2 ) ^ ( 7)

-, ,
'(^s C2(NR + 1, TTMMPl) = C2 (NR, TTMM) .

Table 9: FORTRAN Version of Quantities in Eq (5.24).

D2 = DF2

t = TTMM
MM

t.„, + At = TTMMPl
MM

At = DT

Ay = DY

2 • DF2 • 03?
R(2) =

DY**

C2(Y (t„^ + At), t + At) = CB(2)
o MM MM

C9((NR - l)Ay, t + At) = C2 (NR, TTMMPl)
^ MM

C2((NR - l)Ay, t^^) = C2 (NR, TTMM)
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Equation (5.26) will be utilized later in section 6.9 to find the quan-
tities PA(2), QA(2) such that

C2(NR, TTMMPl) = PA(2) CB(2) + QA(2) (5.25')

Schematic summary of the derivation of the tridiagonal FORTRAN equation
for the y-grid point NR,

(5.19) —> (5.24) —> (5.26)

Summary note

:

Equation (5.26) is used in section 6.9 to determine the quantities
PA(2), QA(2) associated with grid point NR.

5.6. The Grid Points Lie at the Moving Boundary and NL > 1 (The Pre-
liminary Equation)

The main equation associated with the two unknowns Ci [z^iti^ + At) , t^M
+ At], C2[yQ(tf4j4 + At), tf42^^ + At] located at the grid points which form
the interior boundary of the z- and y-regions, respectively, is derived
from the integral form of the conservation of number boundary condition
eq (2. 22) , namely

.z.(t,,,,+At) ^y,

^ ' — - C2(y,t)dy
/o MM r^B

Ci(z,t)dz + /

^A "^^o^W^t)
(5.27)

- Di3 Ci + Co
y

where z = (NL - l)Az and y = (NR - l)Ay.

Furthermore, it is assumed that the moving boundary z^{t) is such that
(NL - l)Az ^ Zq (t) <_ NLAz, for all times t between and tj^jyi + At.

Similarly, for times in this same interval the moving boundary yQ(t) is
assumed to satisfy

(NR - 2)Ay <_ y^(t) <_ (NR - l)Ay .

With these restrictions, eq (5.27) is equivalent to the differential
boundary condition eq (2.16).

Before proceeding with the discretization of eq (5.27), it is convenient
to introduce immediately the FORTRAN notation in table 10.
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Table 10: FORTRAN Symbols Used in Eq (5.28).

Ci((NL - l)Az, t... + At) = C1(NL, TTMMPl)

Ci({NL - l)Az, t ) = CKNL, TTMM)
J- MM

C2((NR - l)Ay, t..,. + At) = C2(NR, TTMMPl)
MM

C2((NR - l)Ay, t„) = C2 (NR, TTMM)
^ MM

Ci (z (t + At) , t + At) = CB(1, TTMMPl)
^ o MM MM

Co(y (t + At) , t + At) = CB(2, TTMMPl)
o MM MM

^l^^o^^MM^' ^MM^ = ™^

By using the backward difference quotient approximation in eq (A7) to
approximate the time derivatives on the left-hand side of eq (5.27) and
using the trapezoidal rule to approximate the integrals in the result-
ing expression, we find (using the notation introduced in table 10) that

the left-hand side of eq (5.27) is equivalent to

S (1) Az S (2) Ay
C1(NL, TTMMPl) + CB(1, TTMMPl) + CB(2, TTMMPl)

SM (1) Az
+ C2(NR, TTMMPl) - Cl(NL, TTMM)

(5.28)

+ CB(1, TTMM) -
^^2At^'^

CB(2, TTMM) + C2 (NR, TTMM)

+ higher order terms in Ay, Az, At ,

where

S(l) - iz (t^, + At) - (NL - l)Az]/Az
o MM

SM(1) = [z (t ) - (NL - l)Az1/Az
o MM

S(2) - [(NR - DAy - Y^it^ + At)]/y (5.29)

SM(2) = [(NR - DAy - y (t,,J]/Ay .

o MM

These are consistent with previous definitions of S(l) and S(2),

When eqs (5.14) and (5.22) (re-expressed in the FORTRAN notation of ta-
ble 10) are employed to approximate the spatial derivatives on the
right-hand side of eq (5.27) and these approximations along with eq
(5.28) are substituted into eq (5.27), there results after simplifica-
tion and up to terms of higher order
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^-^^C1(NL, TTMMPl) + CB(1, TTMMPl) + ^——^-^CB(2, TTMMPl)
R(l) R(2)

+ C2(NR, TUVIMPl) - ^^,1]^ CKNL, TTMM) + CB(1, TTMM

)

R ( 1

)

- ^ ' CB(2, TTMM) + C2 (NR, TTMM)
R ( 2

)

^ -Dl
I

-
I Vs\^ )

~ 1' TTMMPl)

+ (S(l) - 1) C1(NL, TTMMPl) (5.30)

where

S(1)(A s(i)) ™""'|

* - S(2)(l t S(2))
'^^''-

^^^^ C2(NR, TTMMPl)
S { 2

)

S (2) )

C2 (NR + 1, TTMMPDJ. ,
1 + S(2)

RM
^ = m

RM = ^ (5.31)
Ay

1
DR = — .

D2

In order to eliminate the division by S(2) (which could have the value
zero) in the last term on the right-hand side of eq (5.30), we eliminate
that term by substituting from the relation

1 1 - S (2)
- S(2)(l + S(2)) ^^^2' ^ S(2)

^2^^^'

S (2)
+ -. + g(2)

C2(NR, TTMMPl)
(5.32)

= C2 (NR + 1, TTMMPl) - C2 (NR, TTMMPl)

1

R(2)
[-C2(NR, TTMMPl) + C2 (NR, TTMM)]

35



This latter equation is just the formula [equivalent before simplifica-
tion to eq (5.24)] that results when eqs (5.20), (5.21), and (5.22) are
substituted into eq (5.19) and the FORTRAN notation of table 9 intro-
duced .

If the terms in the brackets on the right-hand side of eq (5.30) are
eliminated by substitution from eq (5.32) and if the resulting equation
is multiplied through by S(l) (to prevent possible division by zero),
then we obtain [after CB(2, TTMMPl) has been replaced by (m = SEG) •

CB(1, TTMMPl) using boundary condition eq (2.23)]:

S(l)'-

R(l)

Dl SEG S(l) • S(2)

1 + S(l)

S(l)2

R(2)

+ (1 - S(l))

CB(1, TTMMPl)

R(l)

R • S (1) • S (2)

R(2)

C1(NL, TTMMPl)

- R • S(l) C2(NR, TTMMPl)

S(l)^ • Dl

1 + S(l)

S(l) • SM(1)
R(l)

R • SM(2) • SM(1)

C1(NL - 1, TTMMPl) + R • S (1) C2 (NR + 1, TTMMPl)

R(2)

C1(NL, TTMM) + CB(1, TTMM)

CB(2, TTMM)

(5.33)

+ S(l)
R • SM(2) R \ ^ ,+ —-T— |C2(NR, TTMM)

R(2) R(2)
/

Further FORTRAN notation in table 11 can be introduced into eq (5.33)

and by using intermediate variables, it can be more compactly rewritten:

DM1 • CB(1, TTMMPl) = DM2 • C1(NL, TTMMPl) + DM3 • C2 (NR, TTMMPl)
(5.34)

+ DM4

where

C1(NL - 1, TTMMPl) + DM5 • C2 (NR + 1, TTMMPl) + DM6 ,

DM1 =

DM2

DM3 =^ -

S(l) DFl SEG RT S(l) • S(2)
R(l) 1 + S(l)

S(l)**2

R(2)

R(l)

RT • S(l) • S(2)

DM4 =
DFl

R(2)

S (1) **2

+ DFl • (1 - S(l)) ,

- RT • S(l) 1 +
(2) )

1 + S(l)
(5.34')
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DM5 = RT • S (1) , and

S(l) • SM(1)
DM6 = —r- C1(NL, TTMM) + CB (1 , TTMM)

R ( 1

;

RT • SM(2) • S(l)
+ TT^^ — CB(2, TTMM)

+ S(l) .

• -
. C2(NR, TTMM) ,

R ( 2

)

and where

DF2 • DZ
R = RT =

R(l) =

R(2) =

DY

2 • DT
. DZ**2 '

2 • DF2 • DT

DY**2

S(l) = (ZOPl - (NL - 1) • DZ)/DZ , (5.35)

S(2) = ( (NR - 1)DY - Y0P1)/DY ,

SM(2) = ( (NR - DDY - y„(t ))/DY , and
^ MM

SM(1) = (z (t ) - (NL - 1)DZ)/DZ .

o MM

Table 11: FORTRAN Version of Symbols in Eq (5.33).

At = DT

Ay = DY

Az = DZ

z (t +
o MM

At) = ZOPl

y (t +
-^o MM

At) - YOPl

Di = DFl

D2 = DF2

SUMMARY

Schematic summary of the derivation of the FORTRAN equation for the z-

grid point at the moving boundary, i.e., at (^^(tj^ + At), when NL > 1;

(5.27) —> (5.33) —^ (5.34) and (5.34')
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Summary notes

:

(1) All the concentrations on the right-hand side of eq (5.34),
i.e., C1(NL, TTMMPl) , . . . ,C2 (NR + 1, TTMMPl) will be eliminated
in terms of known quantities and thereby CB(1, TTMMPl) will be
found. This is carried through in section 6.10.

(2) The concentrations in DM6 are known because they are evaluated
at time TTMM.

5.7. The Grid Point Is at the Moving Boundary and NL = 1

The derivation of the preliminary equations for C 1 ( Zq ( tj^j + At), tf^ +

At) is very similar to the derivation of the preliminary equation for
the same quantity in the previous section, so if the user desires more
details than are given below, he should refer to that section.

We again begin with the conservation eq (5.27). However, instead of
approximating the spatial derivative at z = by eq (5.14), we use
boundary condition eq (2.24). Because of this change, we find in place
of eq (5.30)

S (1)—TT-T- [C1(NL, TTMMPl) + CB(1, TTMI4P1) ]R ( 1

)

R • S(2)

R(2)

SM(1)

R(l)

R • SM(2)

[CB(2, TTMMPl) + C2(NR, TTMMPl)]

[C1(NL, TTMM) + CB(1, NR, TTMM)]

[CB(2, TTMM) + C2(NR, TTMM)] (5.36)
R(2)

= - [+ C Az(Cl(l, TTMMPl) - C )]
p out

+ R
1 1 - S (2)

CB(2, TTMi4Pl) + C2(NR, TTMMPl)
S(2) (1 + S(2) )

^
' ' ' S(2)

S(2)

1 + S(2)
C2 (NR + 1, TTMMPl)

When the term in the second parenthesis on the right-hand side of eq
(5.35) is eliminated by using eq (5.32), there results

S (1)
• [C1(NL, TTMMPl) + CB(1, TTMMPl)]

R ( 1

)

+ ^ • ^^^^ [CB(2, TTMMPl) + C2(NR, TTMMPl)]
R(2)
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^^777 [C1(NL, TTMM) + CB(1, TTMM)

]

R ( i

)

R • SM(2)

R(2)
[CB(2, TTMM) + C2(NR, TTMM)] (5.37)

= - [C Az(Cl(l, TTMMPl) - C J]p out

+ R [C2(NR + 1, TTMMPl) - C2 (NR, TTMMPl)]

R
R(2)

[-C2(NR, TTMMPl) + C2(NR, TTMM)]

By rearranging terms and introducing the FORTRAN symbols in eq (5.35)
into eq (5.37), we get

DM1 • CB(1, TTMMPl) = DM2 • Cl (NL, TTMMPl) + DM3 • C2 (NR, TTMMPl)

+ DM4 • C1(NL - 1, TTMMPl) (5.38)

+ DM5 • C2(NR + 1, TTMMPl) + DM6 ,

where

S(l) RT '3(2) • SEG
DMl = + ,

R(l) R(2)

DM2 = - ^-TTT" + CONPRO • DZ ,

R(l)

= - iif - ^(^ ' ^) '

^'-'^'^

DM4 = 0 ,

DM5 = RT , and

DM6 = ^^11^ [C1(NL, TTMM) + CB(1, TTMM)]
R ( X

)

• SM(21fc3(2, TTMM)]
R(2)

RT • SM(2) - RT
[C2 (NR, TTMM)

]

R(2)

+ DZ • CONPRO • CONOUT ,

and where the FORTRAN symbols above are the same as in eq (5.35) with
the addition of the ones in table 12.
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Table 12: Additional FORTRAN Symbols for Eq (5.38).

C = CONPRO
P

C ^ - CONOUT
out

Notice that the quantities DM3, DM5, and DM6 [with DZ • CONPRO • CONOUT
added to it in eq (5.34')] are equal to their counterparts in eq (5.38')

when S (1) - 1. Hence, by setting S(l) to 1 when we are computing these
quantities, i.e., in the case NL = 1, we can use the same FORTRAN expres
sion as is used to compute these quantities in eq (5.34') when NL > 1.

Of course in computing in this way we must leave the S(l) in DMl and
DM2 of eq (5.38') unchanged. This can be done, when NL = 1, by intro-
ducing the quantity SAVE which is equal to S(l) and replacing S(l) where
it appears in DMl and DM2 by the symbol SAVE.

SUMMARY

Schematic summary for obtaining the preliminary equation for the z-grid
point at the moving boundary when NL 1.

(5.27) —> (5.37) --^ (5.38) and (5.38') .

Summary notes

:

(1) Since the coefficients of the concentrations on the right-
hand side of eq (5.38) are the same as those on the right-
hand side of eq (5-34), the concentrations from both of these
preliminary equations can be eliminated by the same procedure
which will be described in section G.IO.

(2) The actual computation of the quantities in eq (5.38') are
carried through as described above in computing block #4 of
subroutine CENTER, see section 7.2.

5.8. The Index of the Z-Grid Point is 1 and NL > 1

The derivation of the tridiagonal algebraic equation that is associated
with the z-grid point 1 (when the moving boundary has reached the sec-
ond z-grid point) begins with the conservation of number eq (2.20)

(5.39)

where z^^ = 0 and Zg = Az/2 denote the positions of the flux boundaries.

d
dt/ Ci (z, t)dz = -Di3 Ci

z ^ + Di9 Ci

z=z.
A
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After approximating the time derivative on the left-hand side of eq
(5.38) by the back difference quotient approximation eq (A7) and the
integrals by quadrature formulas with a node at the left-hand end point,
we find

d

dt

2 (t +At)
o MM

Ci(z,t)dz = —— [Ci(0 • Az, t + At) - Ci (0 • Az, t )]
^ 2At ^ MM ^ MM

Az
(5.40)

+ 0(Az^ + At^/At) .

By substituting from eq (2.24),

C (C1(0 • Az, t.„, + At) - C )

p MM out

for Di 9 Ci
z

on the right-hand side of eq (5.39) and then

z=z.

D, (Ci (Az, t + At) - Ci (0 • Az, t + At)

)

1 1 MM ^ MM

for DiS Ci
z

on the right-hand side of eq (5.39), that equation

z=z
B

yields together with eq (5.40) after simplification

Az^
+ Az • C + Di

P
Ci(0 • Az, t,,, + At) = DiCi(Az, t^,^ + At)

^ MM Mil

+ : + Az • C • C ^
2 • At p out

Az2

(5.41)

After introducing into eq (5.41) the FORTRAN notation in table 13, that

equation becomes

/ 2dt \
^

\DZ2j
+ DZ • CONPRO + DFl

Did, TTMM)

CKy, TTMMPl) = DFl • C1(2, TTMMPl)

(5.42)

2DT
DZ**2

+ DZ • CONPRO • CONOUT
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Table 13: FORTRAN Version of Quantities in Eq (5.41).

At = DT

Az = DZ

C = CONPRO
P

C = CONOUT
out

Di = DFl

Ci(0 • Az, t „ + At) = Cl(l, TTMMPl)
MM

Ci(0 • Az, t,.) - Cl(l, TTMM)
J- MM

Co(Az, t + At) = C2{2, TTMMPl)
^ MM

Equation (5.42) is the FORTRAN tridiagonal equation which will give rise
to the "P, Q" quantities associated with the z-grid point 1 and unknown
Cl(l, TTMMPl). This is carried through in section 6.4.

SUMMARY

Schematic summary of the derivation of the FORTRAN tridiagonal equation
for the z-grid point 1 when the moving boundary is beyond z-grid point 2

,

(5.39) —> (5.41) —> (5.42).

Summary note

:

The FORTRAN eq (5.42) leads to values of Pl(l), Ql(l) that are com-
puted in computational block #24 of the main program. See section
5.4 for the derivation of these "P, Q" quantities.

5.9. The Index of the Z-Grid Point is 1 and NL = 1

This equation is different from all the others in that it is not devel-
oped from an integral conservation equation. It is basically derived
from combining eq (2.14) with a Taylor series expansion.

From a spatial Taylor's formula expansion of Ci (z, tMM + At), we have

Ci (z (t + At) ) - Ci (0, t + At) + 9 Ci
^ o MM ^ MM z ^

z (t + At)
o MM

z=0 (5.43)

+ 1/2 aci (z (t^^ + At))2 + 0(Az3) .

o MM
z=0
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By defining

S(l) = z (t + At)/Az
o MM

and substituting this together with (from eq (2.14))

into eq (5,43), it becomes after rearranging and up to higher order terms

(S(l)Az)DnCi (z (t + At) , t + At) = DnCi (0, t + At) + Di 9 Cii^oMM MM ^^ MM -^z^
z=0

+ 1/2 3^Ci (S(l) • Az)^
(5.44)

z=0

When the backward difference approximation,

3^Ci = (Ci(0, t^^ + At) - Ci(0, t,^))/At + 0(At)
t . MM MM

and the expression from eq (2.24),

Dia^ci = C (Ci (0, t^^ + At) - C , ) ,

p MM out
(5.45)

z=0

are substituted into eq (5.44), it becomes, after rearrangement (ignoring
higher order terms)

,

At • 2 p
Ci(0, t + At)

MM

= DiCi(z (t^ + At), t^^ + At)
o MM MM

(5.46)

+ C, (0, t )

^ MM

(S(l) Az)

2At
+ S (1) • Az • C • C

p out

By transferring the symbols in eq (5.46) through the correspondences in

table 14, that equation becomes

(S(l) • DZ)**2
DFl + ^

2 ' DT
^^"^^ * * ' TTMMPl)

= DFl CB(1, TTMMPl) + Cl(l, TTMM)

+ S(l) • DZ • CONPRO • CONOUT .

(S(l) • DZ)**2
2DT

(5.47)
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Table 14: FORTRAN Version of Quantities in Eq (5.46).

Di = DFl

Az = DZ

At = DT

Cl(0, + At) = Cl(l, TTMMPl)
MM

Cl(0, tj = Cl(l, TTMM)
MM

Ci (z (t + At) , t + At) = CB(1, TTMMPl)
^ o MM MM

C = CONPRO
P
C ^ = CONOUT
out

FORTRAN tridiagonal eq (5.47) will lead to the quantities Pl(l), QKD
in section 6.3. These are the "P, Q" associated with z-grid point 1 when
the moving boundary has not yet reached the second z-grid point.

Notice that when t^j^^ = 0 the quantity Cl(l,0) is unknown, i.e., it is not
given as data in the problem. Thus, the equation we use in place of eq

(5.45) for the first iteration MM = 1 when tj,^ = 0 is

(DFl + S(l) • DZ • CONPRO) • Cl(l, TTMMPl) = DFl • CB(1, TTMMPl)

(5.48)

+ S(l) • DZ • CONPRO • CONOUT .

This is the equation we would have arrived at if we had truncated the
Taylor's formula in eq (5.43) to first order terms and proceeded just as
above, and eq (5.48) is consistent with, i.e., the same as, the formula
we would get by approximating eq (5.45) directly.

SUMMARY

Schematic summary of the derivation of the FORTRAN tridiagonal equation
associated with the z-grid point 1 when NL = 1,

(5.43) —> (5.45) —^ (5.47) or (5.48) (use (5.48) when t^ = 0).

Summary note

:

The "P, Q" terms that result from eq (5.47) or eq (5.48) are de-
rived in sections 6.2 and 6.3.
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6. METHOD OF SOLVING THE ALGEBRAIC EQUATIONS

6.1. The Derivation of the "Double Sweep" "P, Q" Coefficients Associated
with the Grid Points

In this section we put each of the tridiagonal FORTRAN equations associ-
ated with the fixed grid points in "double sweep" form. Specifically, we'
manipulate these tridiagonal FORTRAN eqs (3.2) and (3.3) into the forms

C1(J, TTMMPl) - P1(J) CKJ + 1, TTMMPl) + Ql ( J) (6.1)

for J = 1,...,NL - 1, and

CKNL, TTMMPl) = PA(1) CB(1, TTMMPl) + QA(1) . (6.2)

Also, at the fixed grid points in the y-region,

C2(J, TTMMPl) = P2(J) CI (J + 1, TTMMPl) + Q2 ( J) (6.3)

for J = NR + 1,...,N2, and

C2(NR, TTMMPl) = PA(2) CB(2, TTMMPl) + QA(2) . (6.4)

Once again the specific composition of the double sweep "P, Q" factors
associated with a grid point depends on the location of the grid point
and the position of the moving boundary at time TTMMPl. The following
table 15 completely classifies all the cases that arise. Of course, be-
cause the "P, Q" coefficients for a grid point are obtained from the tri-
diagonal equation associated with that grid point, this table is the
same as table 3 except for Case I (e) and Case II (g) which were not in-

cluded in table 3 (since they are so trivial)

.

Table 15: Guide to the Subsections Where the "P, Q" Coefficients As-
sociated With Each of the Fixed Grid Points Are Derived and
Described.

Case I : The index NL equals 1

:

(a) The first z-grid point, see sections 6.2 and 6.3.

(b) The index of the y-grid point is greater than NR, see sec-
tion 6.8.

(c) The index of the y-grid point is NR, see section 5.9.

(d) The grid point lies at the moving boundary, see section
6. 10.

(e) The largest y-grid point, which has index N2 and is lo-

cated at y = BDRY = NYO • DY, see section 6.7.
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Case II: The index NL is greater than 1.

(a) The index of the z-grid point is 1, see section 6.4.

(b) The index of the z-grid points ranges from 2 to NL - 1,

see section 6.8.

(c) The index of the z-grid point is NL, see section 6.6.
(d) The grid point is at the moving boundary, see section 6.10.

(e) The index of the y-grid point is greater than NR, see sec-
tion 6.8.

(f) The index of the y-grid point is NR, see section 6.9.

(g) The index of the y-grid point is N2 and is at y = BDRY,

see section 6.7.

6.2. The First Z-Grid Point When NL = 1 and t = TTMM = 0
MM

After dividing both sides of eq (5.48) by (DFl + S(l) • DZ • CONRPO)

,

we get

Cl(l, TTMMPl) = Pl(l) • CB(1, TTMMPl) + Ql(l) (6.5)

where

Pl(l) = DM • DFl

Ql(l) = DM • (Cl(l) • DM3 + DM1 • CONPRO • CONOUT)

DM1 = S(l) • DZ

DM2 = 0

DM3 = DM2

DM = (DFl + DM2 + DMl • CONPRO)"^ .

The introduction of the zero quantities DM2, DM3 into the above equa-
tions enables us to use below in section 6.3 the same expression DM but
with DM2, DM3 ^ 0.

SUMMARY

Equations (6.5') are calculated in computational block #23 of the main
program (see sec. 7.1).

6.3. The First Z-Grid Point When NL = 1 and t = TTMM > 0
MM

f S (1) • DZ) **2
When eq (5.47) is divided through by DFl + ^ ^

2 DT
^ ^^^^ *

'

CONPRO, there results

Cl(l, TTMMPl) = Pl(l) CB(1, TTMMPl) + Ql (1)

with

(6.5')

(6.6)
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(6.6')

Pl(l) - DM • DFl

QUI) = DM • (Cl(l, TTMM) • DM3 + DMl • CONPRO • CONOUT)

DM = (DFl + DM2 + DMl • CONPRO)

DMl = S(l) • DZ

DM2 = (DMl) 2/2 • DT

DM3 = DM2 .

SUMMARY

Note that all quantities in eq (6.6') are the same as in eq (6,5') except
for DM2 and DM3. The calculation of the quantities in eq (6.6') takes
place in computational block #23 of the main program (see sec. 7.1).

6.4. The Index of the Z-Grid Point is 1 and NL > 1

(DZ) **2
After dividing eq (5.42) by + DZ • CONPRO + DFl), it becomes

^ ^ 2 • DT

Cl(l, TTMMPl) = Pl(l) • Cl(2, TTMMPl) + Ql (1) (6.7)

where

Pl(l) = DFl • DM
DZ**2

01(1) = DM Cl(l, TTMM) • + DZ • CONPRO • CONOUT (6.7')
2 • DT

DM = ^ £_ + DZ • CONPRO + DFl .

2 • DT

SUMMARY

The quantities in eq (5.7') are computed in computational block #24 of
the main program (see sec. 7.1).

6.5, The Index of the Z-Grid Point is Between 1 and NL - 1 and NL > 2

We begin with eq (5.7) which holds for the indices J - 2,...,NL - 1. As-
sume that for one of the indices in this range

C1(J - 1, TTMMPl) = P1(J - 1) • CKJ, TTMMPl) + Ql ( J - 1) . (6.8)

After substituting this value of Cl (J - 1, TTMMPl) into the left-hand

I

side of eq (5.7) and rearranging the terms, there results

CKJ, TTMMPl) = PI (J) • C1(J + 1, TTMMPl) + Ql (J) (6.9)

where
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PI

Ql

Dl

(J)

(J)

(J)

= -A2R/D1(J)

= (AF(J) - QKJ - 1)A2L)/D1(J)

= A2M = PI (J - 1) • A2L .

(6.9')

Notice that eq (6.8) with J - 2 holds because of eq (6.7). Hence, by in-
duction we get eqs (6.9) and (6.9') for J = 2,...,NL - 1.

Summary notes

:

(1) The arrays Pi (J) , Dl (J) are computed in computational block
#3 of subroutine TRIDNL.

(2) The quantities A2L,...,A1M (see table 5) are computed in sub-
routine INTER which is called by subroutine TRIDNL when Pi (J) ,

Dl(J) are being computed.

(3) The arrays AF(J), Ql (J) are calculated in computational block
#25 of the main program.

6.6 The Index of the Z-Grid Point is NL and NL > 1

When eq (5.17) is multiplied through by S(l) (since S(l) may be zero,

this prevents possible division by zero) and the terms are transposed,
there results

SUMMARY

DM1 C1(NL, TTMMPl) = DM2 CB(1, TTMMPl)

+ DM3 C1(NL - 1, TTMMPl) + DM4 (6.10)

with

DM = 1 + S(l)

DM =

DM2 DF1/(1 + S(l)) = DFl/DM (6.10'

)

DM4

DM3 DFl • S (1)/(1 + S (1) ) = DFl
S (1)

;., : Cl (NL, TTMM) .

DM2

We also have from eq (6.9) with J = NL - 1,

C1(NL - 1, TTMMPl) = P(l) C1(NL, TTMMPl) + Q(l) (6.11)

where we have used the abbreviations

P(l) = P1(NL - 1)

Q(l) = QKNL - 1) 6.11')
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When eq (6.11) is substituted into the right-hand side of eq (6.10) and
the result is simplified, we find

C1(NL, TTMMPl) = PA(1) CB(1, TTMMPl) + QA(1) (6.12)

where

PA(1) = DM2/ (DM1 - DM3 • P(l))
(6.12')

QA(1) = (DM4 + Q(l) • DM3) /(DM1 - DM3 • P(l)) .

SUMMARY

The quantities in eqs (5.10') and (6.12') are evaluated in computational

I

block #3 of subroutine CENTER.

:i 6.7. The Index of the Y-Grid Point is N2 = NYO + 1 and is located at

y = BDRY

I
The boundary condition for C2 ( , ) at the boundary point y = BDRY is

j
(see eq (2. 12)

)

C2(N2, TTMMPl) = CBULK . (6.13)

j

We rewrite this simple equation for use later on in the more convenient
l' form

C2(N2, TTMMPl) ^ P2 (N2) C2 (N2 - 1, TTMMPl) = Q2(N2) , (6.14)

if we assume (and we do)

P2(N2) = 0

Q2(N2) = CBULK .

SUMMARY

||
The quantities in eq (6.14^) are calculated in computational block #13
of the main program. These quantities are used in block #26 of the main
:.rogram (see sec. 7.1) and block #4 of siabroutine INTER (see sec. 7.3).

6.8. The Index of the Y-Grid Point is Between NR and N2

We start with tridiagonal eq (5.10) which holds for J = NR + 1,...,
112 - 1.

Assume for one of the indices in this range that

C2(J + 1, TTMMPl) = P2(J + 1) C2(J, TTMMPl) + Q2(J + 1) . (6.15)

After substituting this value of C2 (J + 1, TTMMPl) into the left-hand
side of eq (5.10), with J in place of J - 1, and rearranging terms, it
becomes for J = NR + 1, . . . , N2 - 1
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C2{J, TTMMPl) = P2(J) C2(J - 1, TTMMPl) + Q2(J) (6.16)

where

1
P2(J) = -

D2 (J)

Q2(J) = (BF{J) - Q2(J + 1) B2R)/D2(J) (6.16')

D2(J) = B2M + P2(J + 1)B2R

or, since B2R = 1 from table 7,

D2 (J) = B2M + P2 (J + 1) .

Notice that eq (6.15) with J = N2 - 1 holds because of eq (6.14). Hence,
by induction we get eq (6.16) and eq (6.16') for J = NR + 1,...,N2 - 1.

SUMMARY

Summary notes

:

(1) The arrays P2 (J) , D2(J) are calculated in computational block
#4 of subroutine TRIDNL.

(2) The quantities B2M, BlM (the other B's equal 1) are computed in

subroutine INTER which is called by subroutine TRIDNL when
P2 (J) , D2 (J) are computed.

(3) The arrays Q2(J), BF(J) are calculated in computational block
#26 of the main program.

6.9. The Y-Grid Point has Index NR

After transposing terms in the tridiagonal FORTRAN eq (5.26), it takes
the form

DM1 C2(NR, TTMMPl) = DM2 CB(2, TTMMPl)

(6.17)

+ DM3 C2(NR + 1, TTMMPl) + DM4

where

DMl = 1 +

DM2

R(2)
1

^ + '^'2> (6.17')

DM3 = S (2)/(l + S (2) )

S (2)
DM4 =

^l^j
C2 (NR, TTMM) .

We also have from eq (6.15) with J = NR + 1
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C2 (NR + 1, TTMMPl) = P(2) • C2 (NR, TTMMPl) + Q(2) (6.18)

where we have used the abbreviations

P(2)=P2WR+1)
Q(2) = Q2(NR + 1) .

When eq (5.18) is substituted into the right-hand side of eq (6.17) and
the result is simplified, we find

C2(NR, TTMMPl) = PA(2) CB(2, TTMMPl) + QA(2) (6.19)

where

PA (2) = DM2/ (DM1 - DM3 • P(2))

QA(2) = (DM4 + Q(2) • DM3) /(DMl - DM3 • P(2))

SUMMARY

(6.19')

The quantities eqs (6.1?') and (6.19') are evaluated in computational
block #3 of subroutine CENTER.

6.10. The Determination of CB(1, TTMMPl) in Terms of Known Quantities

The values of the "P, Q" coefficients in the eqs (6.1) through (6.4) are
determined by the coefficients in the tridiagonal eqs (3.2) and (3.3)

and these in turn are composed of known mesh parameters, material parame-
ters and concentrations evaluated at time TTMM. Hence, by using eqs (6.1)

through (6.4), we can eliminate the concentrations evaluated at time
TTMMPl that occur on the right-hand side of the "preliminary" eq (5.34)

and thereby determine the value of CB(1, TTMMPl) entirely in known quan-
tities .

More precisely, substituting eqs (6.11) and (6.18) into the right-hand
side of the "preliminary equation," i.e., eq (5.34) for NL > 1 (and eq
(5.38) for NL = 1), we get

(6.20)

DMl CB(1, TTMMPl) = DM8 • Cl (NL, TTMMPl)

+ DM9 C2(NR, TTMMPl) + DMlO

where

DM8 = DM2 + DM4 • P(l)

DM9 = DM3 + DM5 • P(2) (6. 20'

)

DMlO = DM6 + Q(l) • DM4 + Q(2) • DM5 .

Finally eliminating the concentrations at the grid point NL and NR on the

right-hand side of eq (6.20) by use of eqs (6.12) and (6.19) leads to the
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expression for CB(1, TTMMPl) in terms of known quantities

DMll
CB{1, TTMMPl) = , (6.21)

with

DM12 = DM1 - DM8 • PA(1) - SEG • DM9 • PA (2)

DMll = DM10 + QA(1) • DM8 + QA{2) • DM9 ,

and where

DM1

DM2

DM3

DM4

DM5

DM6

. eq (5.39) if NL = 1
are given m /c o/in • ,.tt ieq (5. 34) if NL > 1

and furthermore.

PA(2)

QA(2)
are given in eq (6.19')

^^2)
given in eq (6.18 )

PA(1) . . ,„/.
are given m eq (6.12 )

QA(1)

P(l)

Q(l)
are given in eq (6.1l')

(6.21')

(6.22)

R(l) is given in eq (5.16 )

R(2) is given in eq (5.35)

RT = R is given in eq (5.31)

SUMMARY

The quantities in eqs (6.21), (6.2l') and all the quantities listed below
eq (5.2l') are computed in computational block #4 of subroutine CENTER to

find the value of CB(1, TTMMPl).
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7. DETAILED DESCRIPTION OF THE PROGRAM

7,1. Block-by-Block Detailed Description of the Calculational Procedure
in the Main Program

As is shown in the program listing (Chapter 11) , the overall calculations
in DISTRIB: VERSION 1 are broken down into a set of consecutive blocks.

The computations in each of these blocks have a unified purpose which is

described with pertinent comments for each of these blocks #1 through
#36 in this chapter. In Chapter 8, the logic in these blocks is flow
charted. The precise calculations carried through in each of these
blocks are shown in the program listing in Chapter 11, and the material
in the following blocks is intended to illuminate the contents by orga-
nizing and elaborating on the material in the listing rather than to re-
describe the contents in a different language.

IMPORTANT : Quantities with names which appear in the program listing
v

but do not appear in the glossary are not needed or used in DISTRIB:
VERSION 1 and therefore should be ignored, i.e., all material in the
listing that is not in a block or glossary.

Block #1: Input Declaration, Type Statements, Dimensionalize Arrays
and Common Blocks

The arrays SRL{ ) and YRL( ) are declared real because of certain con-

straints in the plotting routines where these arrays are employed. The
fact that they are dimensionalized by 200 means that only 200 data points
can be plotted in a single call of the plot routine.

Arrays that have an element associated with each grid point, e.g., C2 ( J)

(see glossary) are dimensionalized by 2000. This means the maximum num-
ber of grid points is 2000 and the maximum number of mesh widths in ei-

ther region must be less than 2000.

Since the number of cells of the array Cl ( ) actually used is, at time
TTMMPl, equal to NR • NZO, the input quantities NZO and TFINAL (which

together with the equation of the moving boundary determine the largest
possible value NR takes) must be constrained so that the product NR •

NZO is always less than the dimension of Cl ( ).

Many of the arrays are dimensionalized in common blocks because they are

also used in subroutines.

Block #2: Input the Proper Problem and Material Parameters with Accom-
panying Format Declarations

The definition of each of the input quantities is to be found in the

glossary, where references are given to places in the main body of this

documentation which contain more elaborate descriptions of these quan-
tities. The list of input and output is given in section 9.2 in a sys-
tematic fashion and in classified form.
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Real input is read under format 4 and real output printed under format
5. Integer input and output are under format 1.

A table listing the input data is found in section 9.2 along with ranges
of values for the input parameters that have worked well in trial runs.

The units for the input data are micrometers, hours. The problem with
CONOUT = 0 is homogeneous in the concentrations, and therefore the in-

put concentrations are normalized to CBULK =1. By homogeneous is meant
the value of C. (x,t) for CBULK = A is equal to C. (x,t) [for CBULK = 12

1 1
txmes A.

Block #3: Store Input in Terms of Their Original Dimension Units

In the next block certain input parameters are dimensionalized (rescaled)

Consequently, these input quantities are stored in their original units
in the array PARAM so they can be printed out later in block #34 in their
original units. Also, before its defining quantities are changed, the
quantity SCALE2 (in micrometers which is used to scale the distaTice along
the y-coordinate system, i.e., in the silicon, in the plots that are
printed in block #34 is calculated and stored for later output. The rea-
son SCALE2 does not appear in the plot routine is that its role there is

played by UN2 which represents the same physical quantity as SCALE2 but

is in units of BLTH rather than micrometers. The fact that DY, YOPl,
etc., when they appear in the plot routines are in BLTH units requires
the use of UN2 instead of SCALE2. A detailed description of the dimen-
sionalization procedure is given in section 4.3.

Block #4: Redimension the Input Data by Introducing Computationally
Efficient Units

The dimensionalization carried out here is described in section 4.3 in
detail. Note that, in Version 1, DFC is set equal to 1 in a declare
card. Thus, during the calculations, DF2 will have the value 1 and DFl
will be the ratio DF1/DF2. The computational formula for BTM is given
in eq (4. 10)

.

Block #5: Compute the Values of the Grid Mesh Widths

This is the step described in section 4.1 where DY and DZ, the mesh
widths in the y- and z-regions, respectively, are calculated. The com-
putational formula for DY is eq (4.1) and eq (4.3) for DZ.

Block #6: Compute the Value of ZCRIT = CNSTX.

In this step CNSTX, which is another name for ZCRIT, is calculated, see
section 4.2. The quantities CNA and CNB are just two intermediate vari-
ables used in computing DNSTX and ZOPl, Z0P2 later on.
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Block #7: Compute the Time Increment DT for the First Iteration of the
Main Loop 78

In this block the main purpose is to compute the initial value of At
(= DT) . Recall, from section 4.2, that in the "wet oxidation" Case I
the time TLIN = CNTAU = x = 0, so the motion of the moving boundary is
always parabolic. In this case DT is defined as the time it takes the
moving boundary to move the distance DM = WFRC • DZ, having started at
Z = 0. The number WFRC must be positive, real, and less than 1, for
the program to be stable. In the case of a "dry oxidation," Case II in
section 4.2 which starts at Z = 0 (in VERSION 1) TLIN ='CNTAU = t > 0,
the boundary moves linearly for the time period CNTAU with a speed
SLOPE = ZCRIT/CNTAU. Hence, the time DT the moving boundary needs to
transverse the distance DM (where DM is as above) is DM/SLOPE. Values
of WFRC that have been successfully tested range between 0.01 and 0.33.

We have required TLIN to be less than or equal to 10~^ rather than zero
in order to distinguish between the wet and dry oxidation cases. This
does not seem now to be necessary, but we have left this as it is be-
cause in all practical cases TLIN is always much greater than 10~^ when-
ever it is greater than zero, so no harm is done.

The quantity DTS is used to store the quantity DT for recall at a later
step, see computational block #17.

When CNTAU = t = 0, the quantities ZCRIT = CNSTX and SLOPE which are not
used but still appear in later formulas are assigned the values 0 and 1,

respectively, which do not foul up these formulas, for example by caus-
ing division by zero.

In case x > 0 (i.e. , dry oxidation) , WFRC must certainly be chosen so

that DM < ZCRIT for the above prescription for DT to make sense. In
all the cases we have run, this has been naturally satisfied when data
in the literature are satisfied.

Block #8: Computation and Storage of Initial Value DT in Hours

The quantity DT just calculated in the previous block is multiplied by
BTM (the unit in which time has been rescaled) to determine its magni-
tude in units of hours. It is stored in the array PARAM for printout
in block #34.

Block #9: Calculation of Initial Values of NL, NR and Value of N2 for
the First Iteration of the Main Loop 78

The quantity Nl is another name for the index, NL, of the first grid
point with a z-coordinate less than or equal to the z-coordinate of the
moving boundary at the beginning time of the main iteration loop 78.

Because YOl , ZOl are zero in Version 1, Nl has the value 1, as it should
since at this point in the program the moving boundary is at z = 0 (re-

call we are computing here NL for the first iteration of loop 78) NR
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(which is the index of the. first grid point that has a y-coordinate
greater than the y-coordinate of the moving boundary at the start of

the iterations in loop 78) has the value 2,

The quantity N2 is the index of the last grid point on the y-axis and

since NYO is the number of grid mesh widths in the interval (0, BDRY)

(see below eq (2.11) for the definition of BDRY) N2 = NYO + 1 (see com-

putational formula eq (4.2)).

Block #10: Calculation of Initial Values of C2 ( )

The initial values of array C2 ( ) at all the grid points are determined
from the prescription in eq (2.13) of C2(y,0). Because of this prescrip-
tion, the grid points from NR through NR + NH (NH is an input integer)

are assigned the value CMAX (input value) while all the following grid
points are assigned the value CBULK (input value)

.

Since in VERSION 1 no oxide is initially present, there is no necessity
to assign array Cl ( )

.

Notice that C2 (1) is essentially assigned through the assignment of
CB(2). This is because CB(2) denotes by definition the concentration
in the silicon at the position of the moving boundary and initially the
moving boundary is located at the position of the first y-grid point.

Block #11: Calculation of the Value of TTMM for MM = 1

This is the step in which TTMM, the time at the beginning of the MMth
iteration of loop 78, for the first iteration is calculated. Since ZOl
in VERSION 1 has been assigned the value zero, in a- declaration card,

this quantity obviously has the correct value which is zero.

Block #12: Calculation of the Initial Values of SM( )

The quantities SM(1), SM(2) are, respectively, the distance between grid
point NL and ZOPl (the position of the moving boundary in the z-
coordinate system at time TTMMPl) and the grid point NR (for more de-
tails see figs. 5 and 6)

.

The quantity FNL represents the niamber of mesh widths between z-grid
point 1 and z-grid point NL, and FNR is the number of mesh widths be-
tween y-grid point NR and y-grid point N2 (the last grid point on the
y-axis in the domain of the silicon)

.

Since ZOl and YOl are declared zero in VERSION 1, SM(1) = 0 and SM(2) =

1 as they should be when we are calculating these quantities for the
initial iteration of loop 78.
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Block #13: Calculation of the "P, Q" Coefficients for Grid Point N2

As has been explained in section 6.7, the satisfaction of the boundary
condition C2(N2) = CBULK (see eq (2.12)) at y = BDRY is equivalent (in
the way this problem is being solved) to assuming P2(N2), Q2(N2) are
assigned in such a way that C2(N2) = P2(N2) C2 (N2 - 1) + Q2(N2) [see
eqs (6.14) and (6.14') ]

.

The values of P2(N2), Q2(N2) are used in subroutine TRIDNL.

Block #14: Beginning of the Main Loop which Calculates Concentrations
at Time = TTMMPl

At the beginning of this loop, 78, the quantities in the arrays CI ( ),

C2 ( ) representing the concentrations in the z- and y-regions at each
grid point have their values at time TTMM. At the end of the MMth itera
tion, these same quantities will have their proper values at time TTMMPl

Before the main loop begins, certain starting values for quantities used
in the loop are set. The definitions and use of these quantities ZOPS,
TJ, etc., are explained in later steps.

The overall manner in which the new concentrations are calculated is

explained in section 3.

Block #15: Setting the Print-out Control Parameter

The integer KW controls print-out in block #30. This data will be
printed out after the first iteration, then skip KPRINT - 1 iterations
of loop and print out the data again, and so on.

Block #16: Increasing the Distance that the Moving Boundary Travels
in an Iteration of Loop 78

During the MMth iteration of loop 78, the quantity ZOACEL measures that
fraction of the mesh width DZ that the moving boundary transversed dur-
ing the previous iteration of loop 78. (If MM - 1, ZOACEL = 0 since
ZOPl = 0. and ZOPS = 0. In this case, see block #14.) If ZOACEL is

less than 0.2 and KPOW (defined below) is greater than 100, then the
magnitude to DT is increased by 0.05 in order to accelerate the distance
the boundary moves during the MMth iteration of loop 78. This accelera-
tion is put into the algorithm in order to decrease the number of itera-

tions that are required in order to compute the solution to a problem in

which the moving boundary moves a certain specified distance.

Of course, subroutine TRIDNL, which computes and stores quantities that
depend on DT, has to be recomputed and the new value of DT is placed in

DTS. When leaving the loop in which DT has been increased, the value of

the control parameter KPOW is increased by 100 so that DT will not be

increased again for at least another 100 iterations of loop 78.
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The quantities 0.2 and 100 mentioned above are, of course, somewhat
arbitrary, but the above values have worked satisfactorily in a great
number of trial runs.

Block #17: Adjustments Required When Moving Boundary Reached New Z-Grid
Point on Previous Iteration of Loop 78.

The quantity TJ will be computed in a later step, block #20, in such a

way that when and only when the moving boundary reached a new z-grid
point during the previous step will TJ have a value greater than or
equal to 1. Hence, assuming TJ >_ 1 , NL, which is the first grid point
less than or equal to the position of the moving boundary at the time

when MMth iteration of loop 78 starts, has to be increased in value by
one. The quantity FNL (the number of mesh widths to the left of NL)

also must be increased by 1 and NLMl = NL - 1, NLM2 = NL - 2, increased
accordingly.

Also, CI at the new grid point, NL, must be defined.

Furthermore, since DT has been adjusted (see block #20) during the pre-
vious iteration of loop 78, this quantity is reset to the value it had
during the (MM - 2)th iteration, specifically DTS. Also, TRIDNL, the

subroutine computing the arrays PI, Ql, etc., depends on DT (besides a

new PI, Dl being added in the y-region) and hence needs to be recomputed.

The value SM(1) (see sees. 5.6 and 5.7 for its meaning) must be set
equal to zero because during the (MM - l)th iteration the moving boun-
dary reached a new grid point in the z-region.

All these changes are effected when TJ > 1. Of course, in the contrary
case the implication is that the moving boundary had not yet reached a

new z-grid point and the above changes are not required.

Block #18: Computing the Time and Position of the Moving Boundaries at
the End of the MMth Iteration of Loop 78

In this step we are simply computing what the value of the time will be
at the end of the MMth iteration of loop 78. Since at the beginning of
the loop, t has the value TTMM by definition and since time is made to
increase by DT during the loop, the time at the end of the loop TTMMPl
is given by TTMM + DT. After this value of TTMMPl is computed, the lo-
cation of the moving boundary in the z- and y-regions, respectively,
ZOPl, YOPl can be computed through the use of formulas in section 4.2
and eq (2.8). Remember, ZW and TW equal zero in VERSION 1.

Block #19- Adjustments Required When Moving Boundary Reached New Y-
Grid Point on Previous Iteration of Loop 78

The quantity SES is the fraction which the signed distance between NR
and YOPl is of the mesh width DY = AY. If YOPl is beyond the y-grid
point NR (during the MMth iteration of loop 78) , then SES is negative
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and NR, FNR, and NRPl = NR + 1 have to be increased by 1. When SES is

negative at the beginning of the MMth loop, it means (see the next block)
the moving boundary is located at time TTMM on a grid point, and hence
SM(2) should be set equal to 1.

Block #20: If the Moving Boundary Moves for a Time 2DT, Will It Reach
a New Z-Grid Point?

During the MMth iteration of loop 78, we look at where ( ) is at time
TTMMP2 = TTMMPl + DT. This position is denoted as Z0P2. Then we com-
pute TJ which is that fraction the signed distance between grid point
NL and ZOPl is of the mesh width AZ = DZ . If this fraction is less

than one, it means that during the (MM + l)th iteration of loop 78 the
moving boundary will not reach a new z-grid point, and we proceed with
the MMth iteration. On the other hand, if TJ is greater than or equal
to 1, we know that the moving boundary will reach or cross grid point
NL + 1 on the next iteration (MI'I + 1) . Therefore, we decide to change
the value of DT so that while still in the MMth iteration of loop 78,

Zq travels all the way to the next grid point. At the time TTr4MPl when
this happens, i.e., Zo(TTr4MPl) = (FNL +1), DZ is calculated (as shown

in the listing) for the two cases CNTAU = 0 or CNTAU > 0. (Remember
that ZW = TW = 0 in VERSION 1.) Finally, we calculate the new value of

DT that will take the moving boundary Zq ( ), starting at time TTMM, to

its new position. .Lastly, we recompute TRIDNL because the arrays Pi,

P2, etc., computed there depend on the value of DT.

Block #21: Calculation of the Parameters S(l), S(2) Needed for Subrou-

tine CENTER

The quantities FNL, FNR, etc., have now been reset (if it was necessary).
These quantities S.(l) and S(2) (see sees. 5.4 to 5.7 for details) are

used in computing the coefficients of the unknowns in the algebraic
equations that will be solved later in subroutine CENTER.

Block #22: For the First Iteration of Loop 78, Call TRIDNL

In the first iteration of loop 78, the arrays P2, D2 that are needed
later and which are calculated in subroutine TRIDNL have not been cal-

culated before in the program.

Notice that whenever a new NL occurs, and hence the quantities in TRIDNL

need to be updated, this is done in step #20.

Block #23: Calculating of Pl(l), QKD When the Moving Boundary Zq

Has not Yet Reached Grid Point Two

In the case NL = 1, the moving boundary at time TTMMPl has still not

reached the, second z-grid point. Therefore, Pl(l), Ql(l) must be cal-

culated using formulas in sections 6.2 and 5.3, specifically eqs (6.5')

when TTim. = 0 and (6.6') when TTMM > 0.

Of course, DM, DMl, etc., are just intermediate variables.
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For the computational significance of Pl(l), Ql (1) , see again sections
5.2 and 6.3. Pl(l) is not calculated in subroutine TRIDNL like the rest
of its elements, and Ql(l) is calculated here rather than with the other
elements of Ql in block #25.

Block #24: Computation of Pl(l), Ql(l) When Zq Has Moved Beyond the
First Grid Mesh Widths

In this case (NL > 1) , the moving boundary has traveled through the

first z-mesh width and Pl(l), Ql(l) are to be calculated by the formulas

in section 6.4, specifically eq (6.7'). Pl(l) is not calculated in sub-

routine TRIDNL like the rest of its elements, and Ql(l) is calculated
here rather than with the other elements of Ql in block #25.

Block #25: Calculation of Arrays AF ( ), Ql ( ) VJhen There are Regular
Points in the Z~Region

When NL > 2, there are grid points with cell widths (see sec. 5.1) of
magnitude DZ in the z-region, and the arrays AF and Ql associated with
these points are therefore computed. [This amounts to saying that the
arrays AF ( ), Ql ( ) that are associated with these points are calculated
by using the formulas in table 5.2 and eq (6.9'). ]

E*or the significance of the array Ql in the computational procedure,
see chapter 3. The array AF plays the role of the quantity Zi+ in eq
(3.2); see also eq (5.7). Array AF is used to compute array Dl in sub-
routine TRIDNL. The array Ql, which is composed of AF and Dl, is used
in block #29.

Block #26: Calculation of Arrays BF and Q2 Associated with the Grid
Points in the Y-Region

The array BF is used to compute Q2 later in this block.

For further elucidation of the computational significance of these ar-
rays, see the references to BF in section 5.3, table 7, and eq (5.10).
See section 6.8 and eqs (6.16) and (6.16') for the significance and
definition of Q2(J). Notice P2 (N2) , Q2(N2) are calculated in block
#13. Arrays P2, Q2 are used in block #28.

Block #27: Calculation of CB(1), CB(2), CI (NL) , C2 (NR) at Time TTMMPl

The quantities above at the end of the MMth iteration of loop 78 (i.e.,
at time TTMMPl) are computed in subroutine CENTER which is documented
in detailed block form in section 7.2.

Block #28: Computation of C2 ( ) at Time TTMMPl

By making use of C2 (NR) that was computed in subroutine CENTER in block
#27, we can carry out the backward sweep; see steps #2 and #3 in chapter
3 that generate C2(J) for J = NR + 1 to N2 - 1.
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Block #29: Computation of Array CI ( ) at Time TTMMPl

In this case NL = 1, the value of Cl(l), which is the only grid point
besides CB(1) in the y-region, is already known, since it has been com-
puted in subroutine CENTER as CI (NL) . However, when NL is greater than
one, the calculation of CI (J) for J = 1, NL - 1 must be completed by a
backward sweep, as described in section 3.1, steps #2 and #3.

Block #30: Print-out Concentrations When KW = 0

The integer KW is zero when (MM - 1) is divisible by KPRINT,

The concentrations are printed under a time TTMMPl which is in units of
BTM (see sec. 4.3). The user is advised not to print out every concen-
tration in each region because there are so many, especially in the y-
region (i.e., the silicon).

Also printed out are the values of the concentrations at the boundary
and CI (NL) . (Note that C2 (NR) will always be printed with the other con-
centrations in the y-region.

)

Block #31: Reset Quantities in Preparation for Next Iteration of Loop
78

Unless a new grid point is reached by the moving boundary in the next
iteration, the new values of SM(1), SM(2), TTMM are as given (see figs.
5 and 6) . If in the next iteration of loop 78 a new grid point is

reached, the values are corrected appropriately at that time, in blocks
#17 and #19.

Block #32: Test to Determine Whether TTMMPl Has Reached TFINAL

The quantity TFINAL (INPUT) is the time we want to stop the problem
and TIMEND is the value of TFINAL in units of BTM which is the unit of

TTMMPl. Hence, as long as TIMEND is greater than TTMMPl, we proceed to

the next iteration of loop 78. If MME is not large enough to reach
TFINAL, a diagnostic to this effect is printed before control shifts to

statement 79 and then the end card.

Block #33: Shift Program to Statement 800 in VERSION 1

The time is greater than or equal to TFINAL and in VERSION 1 the value
of JSTOP is set equal to 1 in a data card. Hence, control sends the
program to statement 800 where printing and plotting occur prior to the

end of the program.

Block #34: Print-out of Data and Plot of Concentrations at the Final

Value of TTMMPl

The detailed description of the plotting subroutine is given in Appendix
2 and section 4.4.
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Block #35: Redimensionalize Parameters to Original Units

Parameters such as ZOPl and TTMMPl (at the last iteration of loop 78

that occurs) are changed into micrometer and hour units and printed out
with other pertinent parameters.

Block #36: Control in VERSION 1 Sends Program to Its End

The integers JSTOP and JSAVE have the values one and zero (see below
data cards) in VERSION 1; consequently, in this case the program is sent

to the end.

If TIMEND has not been reached by TTI-lMPl before the number of itera-
tions MME of loop 78 is completed, a diagnostic message to this effect
is printed out.

Block #37: This Block Contains Statement 79 and Ends Program.

7.2. Block-by-Block Description of Subroutine CENTER

This subroutine, which is called in computational block #27 of the main
program, is where the quantities CB(1), CI (NL) , CB(2), C2 (NR) are evalu-
ated at time TTMMPl.

Block #0. Insert Input Through COMMON

The following input for the subroutine passes in through COMMON: S( ),

SM( ), N2M1, N2, NLMl, NL, NR, CI ( ), C2 ( ), CB ( ), DFl, DF2 , CONPRO,
CONOUT, DT, DZ, DY, PI, P2, Ql, Q2

.

The output is fed to the main program through COMMON.

Block #1: Computation of the Quantities P(2), Q(2)

These quantities defined in eqs (5.18) and (6.18') are used to deter-
mine PA(2), QA(2) in computational block #3.

Block #2: Compute P(l), Q(l)

These quantities [see eqs (6.11) and (6.11^)] are used when NL > 1 to
determine PA(1), QA(1). When NL 1, the role played by PA(1), QA(1)
in linking the value of CB(1) to the value of Cl(l) is played by Pl(l),
Ql(l), which are computed in block #23 of the main program. Therefore,
at the end of block #3, we set PA(1) = Pl(l), QA(1) = QKD when NL - 1.

Block #3: Computation of PA(L), QA(L) for L = 1,2

The computation formula for these quantities when L = 1 is described
in eqs (6.10'), (6.1l'), and (6.12'). [See eqs (5.16') and (5.25) for

the definition of R(l) and R(2); also see tables 7 and 8.] The compu-
tation formulas of the above quantities in the case L = 2 are described
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in eqs (6.17'), (6.18'), and (6.19'). The significance of PA(L), QA(L)
is seen from eqs (5.26') and (5.18) or eqs (6.12) and (6.19).

Block #4: Computation of CB(1), CB(2) at Time TTMMPl in Terms of Knovm
Quantities

The concentration at the moving boundary in the z-region CB(1, TTMMPl)
CB(1) is computed by using formula eqs (6.21) and (6.2l') and the aux-
iliary eq (6.22). To find CB(2) = CB(2, TTMMPl), we just use the boun-
dary condition in eq C2.23). For the significance and explanation of
how SAVE is used, see the end of section 5,7, before SUMMARY.

Block #5: Calculation of CI (NL) , C2 (NR) at Time TTMMPl

We introduce the abbreviations

C(l) = C1(NL, TTMMPl) = CI (NL)

C(2) = C2(NR, TTMMPl) = C2 (NR)

and compute these desired quantities from CB(1), CB(2), PA(L), QA(L)
known from blocks #1 to #4 by employing eqs (6.12) and (6.19).

7.3. Block-by-Block Description of Subroutine TRIDNL

The input for this subroutine is the output of subroutine INTER, DT,
DZ, DY, DFl, DF2, and CONPRO. The arrays Pi, Dl, P2, D2 in contrast
to the Ql, Q2 arrays do not depend on concentrations. The output of
this subroutine is used both in the main program blocks #25, #26, #28,

and #29 and subroutine CENTER (see blocks #1 and #2) . The output of

the subroutine is PI (J), Dl(J) for J = 2, NL - 1 and P2 (J) , D2(J) for

J = NR + 1, . . . , N2 - 1.

Block #1: Call Subroutine INTER

By calling this subroutine, we input A2L, AIM, B2L, BIM

through COI-IMON. These quantities are used in blocks #3 and #4 here.

Block #2: Calculation of Pl(l) when NL > 1

When NL > 2, this value of Pl(l) is used in the next block. Calcula-
tion formulas of the above quantities are found in eqs (6.7) and (6.7')

(This is a duplication of Pl(l) calculated in block #24 of the main pro
gram and is not necessary in VERSION 1.)

Block #3: Calculation of Arrays Pi (J) , Ql(J)

The calculation formulas for these quantities when J = 2, NL - 1 is

eq (6.9'). These quantities are used in blocks #25 and #29 of the main
program.
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Block #4: Calculation of Arrays P2 (J) , D2(J)

The calculation formulas for these arrays when J = NR + 1, . . . , N2 - 1

are given in eq (6.16'). Notice that P2 (N2) is calculated in block #13
of the main program and used here.

7.4. Description of Subroutine INTER

This subroutine is so trivial we only describe it briefly.

The routine uses the value of DT, DZ, DY, DFl, DF2 to compute the value
of A2L, A2M, A2R, B2L, B2M, B2R, AIM, BlM for use in subroutine TRIDNL
(see blocks #3 and #4)

.

Since the values of A2L, BlM depend on DT, every time this quan-
tity changes these quantities need to be recomputed. This explains why
subroutine TRIDNL is called whenever DT changes in the main program,
i.e., because TRIDNL calls INTER (see block #1 in TRIDNL) and thereby
corrects the values of A2L, BlM for the new DT and, consequently,
simultaneously corrects the values of the arrays PI, Dl, P2, D2 for the
values of the new DT.
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8. FLOW DIAGRAMS

8.1. Flow Diagram of Main Program in DISTRIB
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MAIN LOOP 78
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#15
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#22 CALL TRIDNL
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8.2. Flow Diagram for Subroutine CENTER
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8.3. Flow Diagram for Subroutine TRIDNL.
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9. HOW TO USE DISTRIB

9.1. A Brief Description of DISTRIB: VERSION 1

The intent of this section is to give a quick general introduction to
DISTRIB: VERSION 1.

The meaning of the undefined terms in this chapter is explained in the
glossary, chapter 12. A more detailed description of the physical as-
pects of the redistribution problem is given in chapter 2. Chapter 3

contains a more detailed description of the overall computational pro-
cedure.

DISTRIB: VERSION 1 calculates a redistributed initial impurity profile
in a crystal wafer that has undergone an oxidation at a constant tem-
perature for an input time t = TFINAL. The impurity concentration in
the oxide Ci (2,t) is calculated at time t = TFINAL. Here, z denotes
(fig. 3) the distance measured into the oxide from the interface be-
tween the ambient oxygen and the oxide at time t = TFINAL. (The z-
coordinate system changes with time.) Also calculated at time = TFINAL
are the impurity concentrations in the silicon C2(y/ t) where y repre-
sents (fig. 3) distance into the oxide-silicon composite measured from
the position of the oxygen-silicon interface at time t = 0. At this
initial time, the silicon is completely unoxidized. The principal out-
put quantities are the concentrations CI (L) = C^ ( (L - 1)DZ, TFINAL) for
L = 1, NL where NL represents the index of the first grid point to
the left of the position of the moving oxide-silicon interfacial boun-
dary, Zo(t), at t = TFINAL (fig. 3). Also computed are C2(K) = C2 ( (K - 1)

DY, TFINAL) for K = NR + 1 , . . . , N2 where NR is the index of the first
grid point to the right of the moving boundary, yo(t) , at time t - TFINAL
(fig. 3) and N2 represents the number of grid points in the original sili-
con wafer. The quantities DZ and DY above are uniform grid widths in the
z- and y-coordinate systems. Besides the concentrations CI ( ) and C2 ( ),

DISTRIB computes CB(1) = Cj (Zq (TFINAL) ) and CB(2) = C2 (Yq (TFINAL) ) , the
impurity concentrations in the oxide and silicon at the moving oxide-
silicon interface at time TFINAL. All of these concentrations are also
plotted

.

9.2. Definitions and Other Information Related to Input and Output

In section 9.21 the real input quantities are briefly defined. A table
follows the definitions giving further information about the previously
defined input, such as: the computational block number in the listing
that contains the read and format cards, format information, data
sources, and numerical ranges for which the parameters have been suc-
cessfully tested, etc. This same procedure is used to describe the in-
teger input in section 9.22. The same procedure is also used to describe
the real and integer output in sections 9.23 and 9.24. Consult the
glossary for information concerning undefined quantities and places in
the documentation where more thorough definitions are given. All physi-
cal quantities must be entered in units of hours and micrometers.
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9.2.1. Real Input

The real input is defined in table 16 in the same order they are read
(see computational block #2 in the listing, chapter 11, for the read
and format card)

.

Table 16: Brief Definitions of the Real Input

Card 1

CBULK The program handles automatically piece-wise constant initial
concentrations in the silicon. The grid points in the silicon
beyond the input grid point NR are assigned the value CBULK
representing the concentration in the bulk of the silicon.

CMAX The grid points 1 through NH are assigned initial concentrations
of magnitude CMAX.

ALPHA A given voliime of silicon swells to a volume (ALPHA) times
(the original amount of silicon at the oxide-oxygen interface)

.

TFINAL The total time that the wafer is to undergo redistribution.

SEG The redistribution coefficient.

Card 2

DFl The diffusion coefficient of boron in the oxide.

DF2 The diffusion coefficient of boron in the silicon.

WFRC The fraction of a mesh width distance, DZ , that the moving
boundary moves in the first iteration of loop 78, i.e., in the
first time step.

BDRY A positive number representing the width of the wafer.

CONPRO A proportionality constant representing the evaporation rate of

boron from the oxide into the oxygen ambient.

Card 3

CONOUT A constant representing the concentration of boron in the oxygen
at the oxygen-oxide interface. (In our testing CONOUT was al-
ways set equal to zero.)

CNSTA

1

CNSTB

[

CNTAU

)

Constants appearing in the defining equation of the moving boun-
dary, section 4.2.

YIS Same definition as Y2S, etc., below.

Card 4

Y2S
I

Quantities that are used to scale the concentrations that are
X2S > outputted in the plotting routines, section 4.4, and computa-
XIS) tional block #34.
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Runs of DISTRIB have been successfully completed using data in the ranges
shown in table 17. Sources for the data and formal information are also
given.

Table 17: Real Input (4 F0RI4AT (5 F 10.5)) (see block #2 in listing,
chapter 11) . Physical quantities are assumed to be in units
of micrometers

.

VARIABLE RANGE (Note 4)

(1) CBULK 1. (Note 4)

(2) CMAX 1. (Not tested with other values)

(3) ALPHA 0.44

(4) TFINAL 0.1 to 4.

(5) SEG

(6) DFl Qop> [41 rfii r7i [Ri

(7) DF2

(8) ^'JFRC \J * \J J- L-SJ W.JO ^i>J^^Uti

(9) BDRY o . uo o •

(10) CONPRO n 1 t-r-i 1 non

(11) CONOUT All vnnQ Vi^^7(^ }~if^^n wi t'h 'Zf^T'O Vif^f^^ncioL J- Lillo LLCLVKIZ XJ^dl WXl^ii ^K^d-\J JOC^^QLiow

of our experimental conditions.

(12) CNSTA See tables in [1]

(13) CNSTB ^ :

(14) CNTAU II

(15)

1

YIS 5.

(16) Y2S 2.

(17)

_
1

X2S 4.

(18) XIS 2.

Notes : (1) The ranges in the subsections are values from successful runs
and are not to be interpreted as precise limitations.

(2) This relationship is cited in [4]

.

(3) WFRC must be chosen small enough so that DM = WRRC*DZ <

ZCRIT. For an explanation of this restriction, see the

comment at the end of block #7 of the main program in chap-

ter 7.

(4) The problem with CONOUT =0. is homogeneous in the concen-

trations and therefore all runs have been made with CBULKl.
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9.2.2. Integer Input

Table 18 contains brief definitions of DISTRIB's integer input.

Table 18: Brief Definition of Integer Input

Card 5

NZO A parameter used to determine the magnitude of DZ, eq (4.3).

MME The concentrations are calculated at times ti, tjyuyu^. MME
must be large enough for tjvjME > TFINAL or the program will stop

before calculating the concentrations at TFINAL. (See table and

sec. 9.3 for guidance in choice of MME.)

ND This integer determines how many grid points in the silicon ad-

jacent to the moving boundary will be plotted.

NYO The number of mesh widths of length DY that equal BDRY.

NH The grid point on the y-axis at which the initial boron concen-
tration changes from CMAX to CBULK, eq (2.10) and section 7.2,

block #10.

KPRINT The concentrations and a few other integer parameters such as

MM, NL, NR will be printed out, whenever MM = 0 modulo (KPRINT).

The range of values of integer data successfully calculated in DISTRIB
is given in table 19.

Table 19: Integer Input Information
Integer Input (1 FORMAT (616)) (see block #2 of listing)

VARIABLE RMvIGE

(1) NZO 2. to 8.

(2) MME up to 4000

(3) ND 20. to 30.

(4) NYO 100 to 800

(5) NH 10. to 20.

Certain constants that can be used to control various aspects of how
DISTRIB runs but do not have to be changed from run to run (and conse-
quently, are not entered formally) are listed in the next table.
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Table 20: Constants Used in Program But Not Made Part of Input.

(1) 0.2 and 100 used in block #16 in the listing of the main program
(see sec. 7.1., block #16).

(2) NMQD and NMODl (sec. 4.4.) and block #34 of listing of the main
program. These quantities need to be changed frequently to get
plotted points nicely spaced. We recommend starting with NMOD - 8,

NMODl = 4.

(3) BLTH (sec. 4.3). The value 0.02 micrometers has worked all the
time

.

(4) In printing out CI, C2 in blocks #30 and #34, certain indices are
skipped. Of course, this is something one changes from run to run
routinely, in order to find the values at the grid points that in-

terests one.

9.2.3. The Real Output of DISTRIB

Table 21: Brief Definitions of the Real Output. See Tables 24 and 25.

DISTRIB calculates concentrations in the oxide and silicon for

a sequence of iterations of loop 78 with indices MI^l = 1,

I'lME . The time at the end of the MMth iteration of this loop
is TTi-UlPl (in units of BTM) .

The concentrations of boron in the oxide and silicon at the

moving boundary

.

These are the concentrations in the oxide and silicon at the

Jth grid point (for the specific values of J see below) at

time TTMMPl.

Cl(l) The concentration at the oxide-oxygen interface.

See table 25.

PARAM is an array that contains material constants (diffusion

constants, etc.) in the original units of micrometers and

hours. SEG is the redistribution (= segregation) coefficient.

The swelling constant ALPHA represents the reciprocal of the

factor that a given volume of silicon swells when converted to

oxide at the moving boundary. TFINAL is the length of time of

oxidation. ZOCR is the position of the moving boundary in the

z-coordinate frame in micrometers. SCALE2 is a scale factor

used in the plots.

Further specific information about the previously defined output is

given in table 22.

PARAM
SEG
ALPHA
TFINAL
ZOCR
SCALE

2
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Table 22: Real Output (5 FORMAT (7F14.8)) (see blocks #30 and #34).

Whenever MM = 1 modulo (KPRINT) , we print out

(1) C1(J) for J = 1, NL, 15.

(2) C2(J) for J = NR, N2 , 20.

(3) TTMMPl (in units of BTM)

.

(4) Cl(l). CB(1), CB(2), and DTS (in BTM units).

In addition, when TIMEND < TTMMPl, we print out

(5) Array PARAM, SEG, ALPHA, TFINAL, ZOCR, and SCALE2 (all in mi-
crometers and hours)

.

9.2.4. The Integer Output

Table 23: Definitions of Integer Output. See tables 24 and 25.

NL is the index of the grid point in the oxide that is nearest
NL, NR the moving boundary grid point. NR is the grid point in the

silicon that is nearest the grid point at the moving boundary.

MM
The index of loop 78 that calculates the solution at time t

TTMMPl from the known solution at time t = TTMM.

See table 25.

NZO
MME
ND
NYO
NH
KPRINTJ

These quantities were defined in table 11

9.3. A Simple Example

In this section we illustrate how DISTRIB: VERSION 1 is used to com-

pute the redistribution of an initially uniform distribution of boron
under wet oxidation conditions . The material constants used in this
sample calculation were chosen to obtain the best fit to the experimen-
tal data shown in figure 13. For further comments about the proper val-
ues for these material constants, see the end of this section.

The first card in computational block #2 reads the real input under for-
mat four. (This format card is also in computational block #2.) Since
the initial boron distribution is uniform, the value of CMAX which is

the concentration at the first NH grid points in the silicon (y-region)
is equal to CBULK which represents the initial concentration in the
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bulk of the silicon and is the value assigned in the program to the
grid points NH + 1, NH + 2, . . . , N2 , Because the partial differential
equations are homogeneous in the concentrations when CONOUT (sec. 2.1)
is zero, as in this example, we normalize the input quantities CMAX,
CBULK by the value of CBULK (atoms per cubic micrometer); therefore,
these two input quantities have the value 1 and the output concentra-
tions of these quantities should be multiplied through by CBULK to ob-
tain the true concentrations. Once again, the glossary is for answering
these questions. The next parameter read is the swelling ratio ALPHA
(sec. 2.1) and it is assigned the value 0.44 [4].

We desire to find the concentration of the redistributed profile after
TFINAL = 0.3 h. When TTMMPl (T^mpi) is greater than TFINAL, the program's
control is shifted to the output printing blocks #34 and #35. The segre-
gation coefficient SEG (dimensionless) is chosen to be 0.2, in order to
obtain the fit shown in figure 13. The diffusion coefficients DFl, DF2
for the boron in the oxide and silicon, respectively, were specifically
assigned the values 0.001 and 0.13 3 in order to obtain the fit shown in
figure 13, and these values are within the range of the reported values
for these quantities (see the end of this section) . (Note that the ra-
tios of the diffusion constants used in the program, see [7] , were re-
laxed in order to obtain the fit in this example.) The meaning of the
real grid input parameter WFRC = 0.5 is explained in section 7.1 in the
material concerned with block #7.

The meaning of the next parameters read, CONPRO (micrometers per hour)

and CONOUT (atoms per cubic micrometer) , are related to the flux of boron
between the ambient and oxide (sec. 2.1, eq (2.11)). As mentioned al-

ready, CONOUT = 0 in this example and CONPRO is chosen to have the value
1; other calculations show that results are not sensitive to the choice
of CONPRO including the value zero. The next three parameters read,

CNSTA (micrometers) , CNSTB (square micrometers) , CNTAU (hours) , relate
to the moving boundary motion (sec. 4.2, eq (4.5)) . The wet oxidation
is assumed to take place at 1100°C and therefore from table 1 in [1]

CNTAU(t) = 0.0, CNSTA(A) = 0.11, and CNSTB(B) = 0.51. The real input
read next, YIS , Y2S, X2S, and XlS (sec. 4.4.), are parameters that as-

sign maximum abscissa and ordinates that are plotted in regions one and

two, i.e., the oxide and silicon regions, respectively, in the graphical
output in computational block #34. The values YIS = 5, Y2S = 2, X2S = 4,

and XlS = 2 have always yielded good graphical output, and we recommend
their use.

The integer input for DISTRIB is read following the real input in com-

putational block #2 under format number 1 (also in computational block

#2). The integer NZO = 3, whose significance is explained in section

4.1 below, eq (4.2), is read first. The quantity MME = 1500 represents

the number of iterations we a priori assign to the loop 78 (computational

block #14). In this example, only 595 iterations of loop 78 occur before

"^I^MPl
^ TFINAL = 0.3 h and the program stops after printing the output

in computational blocks #34 and #35. Integer ND represents the number

of grid points in silicon to the right of the moving boundary point in
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the silicon that are plotted in computational block #34 (see DO LOOP 234)

The integer NYO - 350 is read next and its function in defining DY(Ay)
is explained by eq (4.1). The integer NH = 12 (sec. 2.1, eq (2.13))
signifies that the initial concentration value CMAX is assigned to the
first twelve grid points in the silicon region at time zero. Since in
this example CMAX = CBULK, it makes no difference what the value of NH
is except NH should be less than NYO in order for the problem to make
sense. The print-out parameter KPRINT = 1000 signals (in block #30) the
program to print out CI ( ) , C2 ( ), the concentrations in the oxide and
the silicon, respectively, at the end of the iterations (1 + L*KPRINT)
of loop 78 where L = 0, 1, etc. Since the largest value of MM is,

for this example, 595, the only values of arrays CI ( ), C2 ( ) printed
out are those at the end of the first iteration of loop 78.

These are certain constant parameters that are not read into the program.
These are described in section 9.2 (table 20).

For various literature references for material constants , we recommend
[1,3,4,5,5,7,9,12,13] in the supplemental bibliography in chapter 13.

The output of DISTRIB is listed and described in section 9.2. The print-
out in block #30 is effected after every MM = (1 + L'KPRINT)th iteration
(for L=0, 1, 2, ...) of loop 78, which is the loop computing the con-
centrations at the successive times t^M. Since KPRINT - 1000 for this
example and only 595 iterations of loop 78 are required to compute the
concentrations at time = TFINAL = 0.3 h in this example, the only
concentrations printed, under block #30, are those after the first itera-
tion and are shown in table 24. From this table and computational block
#30, we see printed out the values of

CI (J) , J = 1, NL, 15

C2 (J) , J = NR, N2, 20.

Since, at time t^^ = 0.0389 (BTM units) , there is only one fixed grid
point in the oxide, the only value in the oxide that is printed is the

grid point at the oxide-oxygen interface. However, between the values
of Cl ( ) and C2 ( ) that we have printed out in table 24, there appear
the values of boron concentration at the moving boundary grid points in

the oxide and silicon CB(1), CB(2). Also printed in the same row with
these quantities are DTS (in BTM units) and the mesh width lengths in

the oxide and silicon, respectively, DZ and DY in units of BLTH = 0.02

ym. In the final print-out (table 26), BTM = 0.0030 h is printed. Also,

table 24 shows the last index MM of loop 78 and index NL of the first
fixed grid point to the left of the moving boundary in the oxide. Final-

ly, in the same line appears the index NR of the first grid point to the

right of the moving boundary in the silicon.

The printout from block #34 is shown in table 25. The main output are

the concentrations

Cl (J) , J = 1, NL, 15

C2 (J) , J = NR, N2, 20.
:.
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These are the concentrations at the first time that TTMMPl (= 99.756).
is greater than TFINAL (in BTM imits) . It is seen from table 25 that
this occurs at the end of the MMth = 595 iteration. The meaning of the
other output in table 25 is similar to the corresponding output in table
24 that has already been described (see also sec. 9.23).

The concentrations at time TTMMPl = 99.756 (in BTM vmits) or TTMMPl ~

TFINAL = 0.3 h in the oxide are plotted in figure 11. The distances
from the oxide-oxygen interface (scaled in ZOPl units which is the
length of the oxide region at time TTMMPl ~ TFINAL) are plotted on the
X-axis. The concentrations at the positions of the first and (1 +

L*NMOD)th grid points (for L = 1, 2, ...) are plotted on the y-axis, in

this example, NMOD = 8. The value of ZOPl (in micrometers) is computed
in the last table (26) . At the same time that the concentrations in the
oxide are plotted in figiare 11, the concentrations in the silicon are
plotted in figure 12. The x-axis in this figure represents distance in

the unit UN2 = 2SQRT (DF2 'TTI-^MPl) (where TTMMPl is very nearly equal to
TFINAL) from the oxide-silicon moving boundary. The concentrations at

the moving boundary (in the silicon) and at the location of the grid
point with index NR are plotted. After this, the concentrations at the

grid points with the successive locations (NR - 1) DZ + (J - 2) 'NMODl'DZ,
for J = 3, . . . , ND (with NMODl =^ 4 in this particular example) are
plotted. The lanit length of the abscissa, UN2 (micrometers), is com-
puted in table 26 from computational block #35. In addition, in table
26 are shown all the input quantities in units of micrometers and hours
as printed out in computational block. #35. Besides the input data that
are printed out, the quantities ZO (TFINAL) (this is the same as ZOPl,

when TFINAL = TTMMPl) and 2 'SQRT (DF2 'TFINAL) in micrometers which, as

we have already explained, are used as quantities to scale the x-axis

in the oxide and silicon concentration plots in figures 11 and 12. Also

printed is the value of BTM in hours; hence, the times in tables 24 and

25 which are in units of BTM, can be converted to hours, if so desired.
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Table 24. Example of output of concentration in oxide and silicon at end of
iteration MM = (1 + L*KPRINT) in loop 78 for L = 0.

C I < . ) AT T IME
2. 52280046

NL
1 1

CI ( I )

2 .522eC046
) AT TIME
. 9a4e'*473

1 .OOCCCOOG
1 .oocooooo

MM

C2( ,

.038^98095

CB ( I )

3. 68795223
.033996095

1 . 00 cooooo
I. cooooooo
1.00000000

CB( 2)
.77759045

1 .00000000
1 .00000000
1. ocoooooo

DTS
. 03899809

1 .00000000
1 . 00000000
I .00000000

DZ
.541 12554

1 .00000000
1 .00000000

DV
.71428571

1 .00000000
1 .00000000

I . 00000000
1 . 00000000

Table 25. Example concentrations in oxide and silicon when TTMMPl = TFINAL.

C l( . ) AT T IME
.03302989

UH NL
595 32

C 1 ( 1 )

.03302989
C2< . ) AT TIME

. 189 53686
1 .00000000
1 .00000000

99.756364064
.8754271

7

NR
12

CB( 1 )

.813071 12
99.756364064
. 844 37386

1 .00000000
1. OCOOOOOO

, 83500469

CB( 2)

.16261422

. 98733067
1 .00000000
I .00000000

. 82 160333

DTS
. 28899809

. 99958049
1 .00000000

.81678325

OZ
,541 12554

.99999438
1 .00000000

81453516

DY
.71428571

.99999997
1. OOOOOOOO

.81331455

1 .00000000
1 . OOOOOOOO

Table 26.

ITA FOH STEP
OF 1

. 00 1 0000 0

SEG
.20000000

CB< 1 )

.81 3071 1

2

CMAX
1 .OOOOOOOO

Nzc fue
3 1500

Listing of input physical data (micrometers,

computational data.

liours) and important

NO
30

1

DF2
. 1 33000 00
ALPHA
.44000000

CB( 2 )

. 1626 1422
CBULK
1.00000000
NYO
350

CONPRQ
1 .OOOOOOOO
WFRC
.05000000

FI RST+DT
. 0008691

7

VIS
5.00000000
KPR I NT
1000

CONOUT
.OOOOOOOO
TFINAL

. 30000000
REAL TIME

. 30001914
y2S

2.00000000

CN5TA
. I 1 000000

ZO ( TF I NAL

)

. 34001 236
BDRV

5 .OOOOOOOO
X2S

4 .OOOOOOOO

CNSTB
. 5 1 000000

2*SQRT{ DF2*TF INAL

)

.39949969

CNTAU
, OOOOOOOO

XI S

2. OOOOOOOO
BTM
.00300752
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Figure 13 . Comparison of three calculated impurity concentration

distributions in silicon with experimentally determined concentra-

tion data.
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10. VERIFICATION OF PROGRAM

10.1. Validation of the Program

A solution calculated by DISTRIB for a problem with the specified con-
centration C2^(0,t) = Cq at the oxygen-oxide interface has been compared
with an analytic similarity solution given in [4] . The calculated boun-
dary concentrations C2^(zQ(t), t) agree with the similarity solution [5]

to within a few percent for a variety of problems with differing segrega-
tion constants. The calculated solutions also have qualitative proper-
ties possessed by the similarity solution such as moving boundary con-
centrations that are constant with time. There is also an analytic solu-
tion to special problems with zero flux at the oxygen-oxide interface.
In this problem, the concentration in the oxide or z-region is constant
and DISTRIB 's calculated solution is constant also for these conditions.

10.2. Limitations of the Program

The previous remarks must all be qualified for very short times, up to
5At [5] . The difficulties in obtaining the solutions for the first few
iterations are similar to those described in [2] for analogous problems.
The problem with the inaccuracy of the first few iterations can be some-
what mollified, however, by choosing smaller and smaller values of WFRC.
Our recommendation for obtaining a solution at small times is to calcu-
late solutions using a series of decreasing values of WFRC and then use

those solutions to extrapolate the solutions to time zero.
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11. PROGRAM LISTINGS

1. DISTRIB: VERSION 1 MAIN PROGRAM

1

5

41
1+3

8
9

26
27
36

32
39
4b

*+0

38
28
29
30
31
33

35

20
21
22
23

24
25
19
lb

START COVPUTATIOM BLOCK f^UMBEP 1

IMPLICIT POUBLE PRECISION (A-H»0-Z)
REAL XPL(200) »YPL(200)
DIMENSION TT(2000)»ZO(20no)»AF(200n)rRF(2ono)»PARAM(21)
DIMENSION BT(20) » DFA(2C) »nFB(?0) »CONPR(20) fCNST] {2Q) »CMSt?(2o) »

1 CNTA(2C) .TFIfNlN(20) »ZONEW(?n) rTNEW(20)
COMMOM/RL?0/DT»nY»DZ»THETA
C0r^M0N/PL21/DFl »DF2
C0'^M0N/eL22/DZP rPYP
C0MMGN/BL23/ 82M » RiiR » P2L » A2L » A2fw , A2R ' A I L » A 1 M » ftlP»PlL»RlMrPlP
C0MM0N/PL2'+/C2L»C2M»C2R»CIL»C1'^»C1R
C0MM0N/BL25/P(2) »0(2)»PA(2)»QA(2)»C(2)fCP(2)»P(?)»S(2)»SM{P)
C0MM0M/FL26/P1 (2000) »P2 (2000) fOl (2000) »Q2(?00n)»Dl (2000) 'D9(2nno)
C0N'M0N/PL2B/N2M1 »NLM1 rM2 f NRPl»NL»NR
C0MM0rVBL29/Cl (2000) C2 (2000)
COMMON /BL30 / CO f CK » TZERO » JEE » ALPHA f C AP A » SeG » CWY
COMMON /BL31 / PIST(100)» SOL (100)
C0MM0N/PL32/C0MPRO»C0N0UT
END COMPUTATION BLOCK ^lUMBER 1

START COVPUTATIOM~BLOCK NUMBER 2
~

READ ( 5r4) CRULK »CMAX» ALPHA »TFlNALfSEG»DFl »DF2»wFPC»nDRY»C0NnR0»
1C0N0UT»CNSTA»CNSTR»CNTAU» Y1S» Y2S»X2S»X.1S
PEA0(5» 1 )NZ0»MME»MD»NY0»NH»KPRIr|T
FORMAT (616)
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (16H Cl(.) AT TIME »1F14.9)
FORMAT (16H C2(.) AT TIME »1F14.9)
FOPMAT( IHl )

FORMATCiOH TLIN CMTAU TT^^'v SLOPeZCRIT CnSTX )

(5F10.5)
(7F14.8)
( 4 OH MM ML NR
(40H MME MUST BE INCREASED
( 16H CI ( . ) AT TIME

) AT TIME

FORMAT
FORMAT
FORMAT
FORMAT

C/CB VS Z/ZO— STEP NO flI5 )( 45H PROFILE IN OxIPE
(IHl )

( 40H TIMENO TNEW(J) BTM CNTAU TLIN BT(J) )

(lOlH CKl) CP(1) CR{2)
DZ OY

COMPUTATION BLOCK NUMBER 2

( 52H Z0Pl»0F2»UN2»nYfnZfFNC» (NL-1) fTTMMpi,c;cALE2»XPSCUT
( 19H DATA FOP STEP NO »1I5)
33H NZO MME ND NYO NH JSTOP
43H S(l) ST STM El E2 E3 ERROR

)

)

)

)

CONPRO CONOUT

DTS
)

END
FORMAT
FORMAT
FORMAT(
FORMAT

(

FORMAT( 33H LIST OF Z0( ,

)

FORMAT( 33H LIST OF TT(.)
FORMAT (lOOH DFl DF2

1 CMSTA CNSTB CNTAU )

FORMAT{ 67H PROFILE IN SILICON C/CP VS ( Y-YO ) / ( 2*SQRT ( DF2*TF INaL)
1) — STEP NO »1I5 )

FORMAT (21H LIST AF ( . ) )

FORMAT (21H LIST PF(.) )

FORMAT ( 30H COXIDE CBULKZOl ALPHA TFINAL )

FORMAT (103H SEG PRINT DFl DF2 WFRC BDPY CMA^ CONPRO CONOUT
1 CNSTA CNSTB CNTAU YIS Y2S X2S )

FORMAT ( 33H LIST N2 NH Nl NR NL )

FORMAT( 33H LIST OZ DY OT TT(1) SM(1) 5M2) )

FORMAT (21H LIST PK.) 02(.) >

FORMAT ( 33H LIST tJ2L B2P P2M PlL RlR ^IM )
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17 FORMAT ( 33H LIST A2L A2M AlL AIR AIM )

15 FORMAT( 20H LIST OF PlOfQK.) )

It^ FORMAT (60H VALUES OF RM R7 RY B C F CMVl CMV2 PIS P?5 AT m=
1 »1I9 )

13 FORMAT (61H VALUES OF FNL 07P DYP TES ZOPl FN" TT(MMPl) SFS AT
1 MM= fllB)

12 FORMAT (28H DIVIDE FAULT AT MOV. RDRY. )

11 FORMAT (28H DIVIDE FAULT AT LOOP 107 )

10 FORMAT (2PH DIVIDE FAULT AT LOOP 105 )

34 FORMAT (lOlH SEG ALPHA WFRC TFlNAL
1 ZO(TFINAL) 2*S0RT(nF2*TFINAL) )

6 FORMAT ( 7F10.5 )

37 FORMAT( 80H CBd) CB(2) FIRST+DT
1 BDRY

41 FORMAT (lOlH CMAX CBULK YIS
1 X2S

42 FORMAT ( 50H NH KPPINT

REAL TIME
)

Y2S
)

)

CMAX CBULK
XIS BTM

NZO MME ND NYO
C DATA FIXED IN VERSION 1

DATA DFACl) »DFP(1) » CONPR ( 1 ) » CNSTl ( 1 ) » CNST2 ( D ^ CNTA ( 1 ) » TF IMN { 1)

1 /.0001D0» .OOOIDO^ .OlDOf . 027D0 » . IDO » . iDO » . 0 IDO/
TW=0,
ZW=0.
JSAVE=0
JSTOP =1
ZOl=0.
C0XIDE=1.

C JSTOP TELLS NUMBER OF DRIVE IN STEPS
JSTM1=JST0P-1

C START COMPUTATION BLOCK NUMBER 3

5CALE2 = 2.* SQRT(DF2*TFINAL)
C THESE MATERIAL PARAMETERS ARE RESCALED THUS WE HAVE TO STO^E
C THESE GIVEN PARAMETERS IN UNITS OF MICRONS ANP HOURS

PARAM(1)=DF1
PARAM(2)=nF2
PARAM{3)= CONPRO
PARAM(a)=CONOUT
PARAM(5)=CNSTA
PARAM(6)=CNSTB
PARAM(7)=CNTAU

C END COMPUTATION BLOCK NUMBER 3

C START COMPUTATION BLOCK NUMBER 4
BLTH= .02

C DEC MODIFIES PROGRAM TO DIMENEnTIONALISE ABOUT DFC+DF2
DFC= 1.
DF2=DF2*DFC
BTM=(RLTH**2)/DF2
C0NPR0=C0NPR0*(BTM/BLTH)
CNSTA=CNSTA/BLTH
CNSTB=CNSTR/DF2
CNTAU=CNTAU/BTM
BDRY=RDRY*(1./BLTH)
Z01=Z01* (1 ./BLTH)
DF1=DF1/DF2
DF2=1 ./DFC
TIMEND=TFINAL*(1./BTM)

C END COMPUTATION BLOCK NUMBER 4
C ZOl IS POSITION ON Z-AXIS WHERE THE NON DEGENERATE {Z0{2ER0)
C NOT EQUAL TO ZERO ) MOVING BOUNDARY BEGINS
C ZCRIT IS The position on the Z-AXIIS where the moving BOUNDARY
C CHANGES FROM LINEAR TO PARABOLIC
C CALCULATE DY»DZ»DT AND AUXILLARY QUANTITIES

Y01=ALPHA*Z01
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C START COMPUTATION BLOCK MUI^BER 5

DY=BDRY/NYO
FNZO=FLOAT(NZO)
DZ=DY*(1 ./( ALPHA*FNZO)

)

C END COMPUTATION BLOCK NUMBER 5
C ================r==========r=r==r====r==========r=========r===r===

C START COMPUTATION BLOCK NUMBER 6
CNA=,5*CN5TA
cnb=cnstb

c take out following card if cnstx is known
CNSTX=SORT (CNA**2+CNB*CnTAU) -CNA

C END COMPUTATION BLOCK NUMBER 6
CNTaU=CNSTX* (CNSTX+CNSTA) /CNSTb

C START COMPUTATION BLOCK NUMBER 7
DM=DZ*WFRC

C INSERT IF MOVING BDRY IS LINEAR AND THEN PARABOLIC
TLlNrCNTAU

C IF MOVING BOUNDARY STARTS AT Y»0. THESE CARDS TAKE CARE OF STTUaTIO
C N THAT LINEAR PART OF MOVING BOUNDARY IS MOT PPESFNT

IF( TLIN .LE. .00000001 ) DTr ( DM* ( DM+CNSTA )) /CNSTB
IF( TLIN .LE. .00000001 )nTS=DT
IF{ TLIN .LE. .00000001 )ZCRIT=0.
IF( TLIN .LE. .00000001 )SL0PE=1.
IF(TLIN .LF. .00000001 ) GO TO 216
ZCRITrCNSTX
SLOPE=ZCRIT/CNTAU
DT=DM/SLOPE
DTS=DT

216 CONTINUE
C END COMPUTATION BLOCK NUMBER 7

C START COMPUTATION BLOCK NUMBER B
PARAM( 10)=DT*BTM

C END COMPUTATION BLOCK NUMBER 8

C START COMPUTATION BLOCK NUMBER Q

C CALCULATE INITIAL INITIAL DISTRIBUTIONS
DUM=Y01/DY
NR=INT(DUM)+2
N1=INT{Z01/DZ)+1
NL=N1
N2=NY0+1
N2M1=N2-1

C END COMPUTATION BLOCK NUMBER 9

DO 98 J=1»N1
CI ( J)=COXIDE

98 CONTINUE
CB{1)=C0XIDE

C ===r===============r==r===r=====r=r===r========r=======rr===r===r=
C START COMPUTATION BLOCK NUMBER 10

N1P1=M1+1
NH=NH +rJR

NHP1=NH+1
DO 96 J=NR »NH
C2( J)=CMAX

96 CONTINUE
DO 97 J=NHP1»N2
C2( J)=CBULK

97 CONTINUE
CB(2)=CMAX

C END COMPUTATION BLOCK NUMBER 10
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START COMPUTATION BLOCK MUMBER 11
IF(Z01 .LF. ZCRIT) TTMM = 701/5L0PE
IF{Z01 .GT. ZCRIT) TTMM- ( ZOl* ( ZOl+CMSTA ) ) /CNSTR
END COI^PUTATION BLOCK ^)UlV!BER 11
- ------
START COMPUTATION BLOCK NUMBER

^^37 — — — — — r^ — — — — — — ^ — — ~ —

FNL=FLOAT (ML) -1

.

FNR=FL0AT(NR)-1.
5M{1)=(Z01-FNL*DZ)/DZ
SM(2)=(FNR*DY-Y01 ) /DY
END COMPUTATION BLOCK NUMBER 12

START COMPUTATION BLOCK NUMBER 13
MAIN LOOP
P2(N2)=n.
Q2(N2)=C2(rJ2)
END COMPUTATION BLOCK NUMBER 13
================================
START COMPUTATION BLOCK NUMBER

— — — — — — — — —— ~— — ~ — Z. ——~— — — —— ——~ — — — —— —

—

ZOPS=0,
ZOP1=0.
TJ=0.
N0RUN=1
KPOW=0
JSAVE=0
DO 78 MM=1»MME
END COMPUTATION BLOCK NUMBER 1*+

START COMPUTATION BLOCK NUMBER 15
KW=MOD(MMrKPRINT)
END COMPUTATION BLOCK NUMBER 15
^—ZZ~^—~— —— ~ — —~~~~ — ~— — — — — ~ — —— — — — —
START COMPUTATION BLOCK NUMBER

— —————~~——~~—~— — — ————————————————

—

16
SPEEDS UP MOVING BOUNDARY
ZOACEL=(ZOP1-ZOPS)/DZ
IF(ZOACEL .GE. .2 ) GO TO 88
KP0W=KP0W+1
IF(KPOW .GT. 100 )DTS=DTS+,05
IF(KPOW .GT. 100 )DT=DTS
IF(KPOW .GT, 100 )CALL TRTDNL
IF(KPOW .GT. 100 ) KPOW=KPOW-100
CONTINUE
ZOPS IS ZO(TTMM)
ZOPS=ZOP1
END COMPUTATION BLOCK NUMBER 16
================================
START COMPUTATION BLOCK NUMBER 17
IF(TJ .GE. 1.) NL=NL+1
IF(TJ .GE. l.)Cl(NL)=CP(l)
IF(TJ .GE. 1. )FNL=FNL+1

.

NLM1=NL-1
NLM2=NL-2
IF(TJ .GE. l.)DT=DTS
IF(TJ .GE. 1.) CALL TRIDNL
IFCTJ .GE.l. ) SM(1)=0.
END COMPUTATION BLOCK NUMBER 17

START COMPUTATION BLOCK NUMBER 18
MMP1=MM+1
TTMMP1=TTMM+DT
IF( TTMMPl .LE. TLIN ) ZOPl = ( TTMMPl - TW)* SLOPE +ZW
IF(TTMMP1 .GT. TL IN ) Z0P1=SQRT ( ( CNA**2 ) +CNB* ( TTMMP l-TW ) )-CNfl+ZW
Y0P1=ALPHA*Z0P1
END COMPUTATION BLOCK ^IUMBEP 18
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C START COMPUTATION BLOCK NUMBER 19
C CHECK IF NEW CELLS ARE ADDED

SES= ( FNR+DY-YOPl) /DY
IF(SES .LT. 0.) NR=NR+1
IF(SES .LT. 0.) FNR=FNR+1,
IF(SES .LT. 0.)SM(2)=1.
NRP1=NR+1
NRP2=NR+2
NRM1=NR-1

C END COMPUTATION BLOCK NUMBER 19

C START COMPUTATION BLOCK NUMBER 20
MMP2=MMP1+1
TTMMP2=TTMMP1+DT
IF( TTMMP2 ,LE. TLIN ) Z0P2=(TTMMP2 -TW )* SLOPE + ZW
IF( TTMMP2 ,6T, TLIN ) zOP2=SQRT { { CNA**2 ) +CNB* ( TTMMP2-TW ) ) -CNA+zW
TJ= (Z0P2-FNL*DZ) /DZ
IF(TJ .LT. 1.) GO TO 219
Z0P1=(FNL+1. )*DZ
IF( ZOPl .LE. ZCRIT)TTMMP1=(Z0P1-ZW)/5L0PE + TW
IF( ZOPl .GT. ZCRIT)TTMMP1=( (ZOPl-ZW)*( ZOPl-ZW+CMSTA ) ) /CNSTB +TW
DT=TTMMP1-TTMM
CALL TRIDNL
Y0P1=ALPHA*Z0P1

219 CONTINUE
C END COMPUTATION BLOCK NUMBER 20
C CONSERVATIOfJ OF NUMBER CALCULATION

S1M=C1 (rJL)*DZ*.5+(Cl(NL)+CB(l) )*SM{1)*.5*DZ
IF(NL .EQ. 1) S1M=(C1<1>+ CB ( 1 H *SM ( 1 ) * . 5*0Z
IF(NL .GE. 2)51rv'=SlM+.5*nz*Cl (1)

IF(NL .LE. 2) GO TO 222
DO 111 J=2»NLM1
S1M=S1M+DZ*C1 ( J)

111 COrJTINUE
222 52M=C2(NR) *DY* . 5+ ( C2 ( NR ) +CB ( 2 ) ) * SM ( 2 ) * . 5*DY

DO 112 J=NRP1»N2M1
S2M=S?M+C2( J)*DY

112 CONTINUE
C ======r==========r====r================rr=======r=====r===r==r==r=

C START COMPUTATION BLOCK NUMBER 21
5(1 )=(Z0P1-FNL*DZ)/DZ
5{2)=(FNR*nY-Y0Pl )/DY

C END COMPUTATION BLOCK NUMBER 21
C =r=======r=====r==z==r===========r======r===r==rr==r==============

C START COMPUTATION BLOCK NUMBER 22
IF(MM .EQ. 1) CALL TRIDNL

C END COMPUTATION BLOCK NUMBER 22

C START COMPUTATION BLOCK NUMBER 23
IF(NL.GT, 1) GO TO 223
IF(NL .EG. 1)DM1=S(1)*DZ
IF(NL .EQ. l)DM2rDMl*DMl/(2.*DT)
IF(NL .EQ. 1 .AND. MM .EG. 1) DM2=0.
IF(NL .EG. 1)DM3=DM2
IF(NL .EG. l)DM=l./( DF1+0M2+DM1*C0NPR0)
IFCNL .eg. 1 )P1(1)=DM*DF1
IF(NL .EG. 1)Q1{1)=DM*(C1(1)*DM3+DM1*CONPRO*CONOUT)

C END COMPUTATION BLOCK NUMBER 23
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C START COMPUTATION BLOCK NUMBER 24
223 IF(NL .6T. 1 ) DM=1 . / {DZ*DZ/ (2

.

*DT ) +DZ* CONPRO+DFl )

IF{NL .GT. 1 )P1(1)=DF1*0M
IF(NL .GT. 1 )Q1(1)=(+C1(1)*(DZ**2)/(2.*Ot)+DZ*CONPRO*COMOUT1*Dm

C ^ END COMPUTATION BLOCK NUMBER 24

C START COMPUTATION BLOCK NUMBER 25
IF(NL .LE. 2) GO TO 213
DO 203 J=2»NLM1
AF( J)=A1M*C1( J)

203 CONTINUE
DO 205 J=2»NLM1
JM1=J-1
Q1U) = (AF( J)-Q1( JM1)*A2L)/D1 ( J)

205 CONTINUE
C END COMPUTATION BLOCK NUMBER 25

IF(MM .EQ. KD) WRITE( 6»15)
IF(MM .EQ.KD) WR ITE ( 6 » 5) ( Pi ( J) » J=l f NLMl » 1

)

IF(MM .EQ.KD) WRITE(6»5) (Ql ( J) » J=l rNLMl » 1

)

IF( MM .EQ. KD ) WRITE(6,20)
IF(MM .EQ. KD) WRITEC6»5) (AF(J) »J=2»NLMlfl)

C ======================r==============r======r========r==r===r=====
C START COMPUTATION BLOCK NUMBER 26
213 CONTINUE

DO 204 d=NRPlfN2Ml
BF( J)=B1M*C2( J)

204 CONTINUE
NE=N2-NRP1
DO 207 J=1»NE
K=N2-J
KP1=K+1
Q2(K)=(BF(K)-Q2(KP1) )/D2(K)

207 CONTINUE
C END COMPUTATION BLOCK NUMBER 26

C ==============================r====r========r===========r===rrr=r=
C START COMPUTATION BLOCK NUMBER 27

CALL CENTER
C END COMPUTATION BLOCK NUMBER 27

C START COMPUTATION BLOCK NUMBER 28
DO 209 J=NRP1»N2M1
JM1=J-1
C2( J)=P2( J)*C2( JMl)-«-G2( J)

209 CONTINUE
C END COMPUTATION BLOCK NUMBER 28

C START COMPUTATION BLOCK NUMBER 29
IF(NL .LE. 1) 60 TO 215
DO 210 K=1»NLM1
J=NL-K
JP1=J+1
C1(J)=P1{J)*C1(JP1)+Q1(J)

210 CONTINUE
215 CONTINUE

C END COMPUTATION BLOCK NUMBER 29

C START COMPUTATION BLOCK NUMBER 30
IF(KW .EQ. 0 .OR. KW .GT. 1) GO TO 799
WRITE(6»32)
IF(KW .EQ. 1) WRITE(6»8) TTMMPl
IF(KW .EQ. 1 )WRITE(6»5) (CKj) »J=lrNL»l5 )

WRITE(6»41)
IF(KW .EQ. 1) WRITE(6»1) MM»NL»NR
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WRITE(6»45)
WRITE (6» 5) Cl(l) »C6(1) »CR(2) »DT5»DZ»DY
IF(KW .EQ. 1) WRITE{6»9) TTMMPl
IF(KW .EQ. 1)WRITE(6»5) (C2(J)»J=NR »M2'?0)

799 CONTINUE
C END COMPUTATION BLOCK NUMBER 30

C START COMPUTATION BLOCK NUMBER 31
SM(1)=S(1)
5M(2)=S(2)
TTMMrTTMMPi

C END COMPUTATION BLOCK NUMBER 31
C SHIFT TO NEW MOVirJG BOUNH-VRY AND CALC NEW PA^AMETFRS

C START COMPUTATION BLOCK NUMBER 32
IF ( TIMEND .GT. TTMMPl ) GO TO 78

C END COMPUTATION BLOCK NUMBER 32
C ==r====r==r=r=====:r=r===rr==============r===r=rr======rz=r======

C START COViPUTATION BLOCK NUMBER 33
IF(JSTOP .EQ. 1 ) GO TO 900

C END COMPUTATION BLOCK NUMBER 33
MTIME=MTIME+1
TT(MTIME)=TTMMP1
Z0(MTIME)=70P1

C CALCULATE CQNeRVED QUANTITIES AND GRAPH Op STANDARD S DIMENSION
IF(KW .LT. 1) GO TO 800
AF(1)=Y0P1
DM=S(2)
Af(2)=AF(1)+DM DY
BF(1)=CP(2)
BF(2)=C(2)
DO 8O3 J=3»ND
AF(J)=AF(2)+( J-2. )*DY*1G.
K=NR +(J-2)*10
PF( J)=C2 (K

)

803 CONTINUE
DO 250 J=lrND
XRL( J)=AF( J)

YPL( J)=HF( J)

250 CONTirjUE
WRITE(6»26)
CALL PLOT (ND»XPL»YRL)

C CONSERVATION OF NUMBER CALCULATION
Si =C1(NL)*DZ*.5+(C1(NL)+CR(1) )* S(l)*.5*nz
IF(NL .EQ. 1) SI =(C1(1)+CP(1) )*S(1)*.5 *DZ
IF(NL .GE. 2)S1 =S1 +.5*DZ*C1(1)
IF(NL .LE. 2) GO TO 221
DO 113 J=2»NLM1
51 =S1 +DZ*C1(J)

113 COUTirJUE
221 S2 =C2(riR) *DY*.5+(C2(NR)+CB(2) )* S(?)*.5*DY

DO 11*+ J=MRP1»N2M1
52 =52 +C2(J)*DY

114 CONTINUE
5TM= S1M+S2M
ST=S1+S2
E1=ST-STM
RY={DF2*DT) / (DY+*2)
E2=-DT*(C0rjPR0) * (CI (l)-CO^lOUT)
E3=RY*{C2(N2)-C2(N2Ml) )*DY
ERR0R=E1-(F2+E3)
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C START COMPUTATION BLOCK NUMBER 31
800 CONTINUE

WRlTE(6r26)
WRITE(6f8) TTMMPl

WRITE(6»5) (C1(J) »J=1»NL» 5

WRITE(6»41)
WRITE(6fl) MMfNLrNR

WRITECeft+S)
WRITE (6» 5) CI (1) »CB(1) »CB(2) »DTSrDZ»DY

WRITE(6»9) TTMMPl
WRITE(6»5) (C2(J)»J=NR »N2»20)

NM0D=8
NM0D1=U
UN1=1./Z0P1
UN2=2.*SQRT(DF2*TTMMP1)
UN2=1./UN2
EZ=DZ*UN1
NLP1=NL+1
NLP2=NLP1+1
NLP3=NLP2+1
AF{1)=0.
BF(1)=C1(1)
NC=INT( (NL-D/NMOO)
FNC=FLOAT(NC)
IF(NC .LT. 1 ) GO TO 231
DO 230 J=1»NC
K=J*NMOD +1
JP1=J+1
BF( JP1)=C1(K)
AF( JP1)=(K-1)*EZ

230 CONTINUE
231 NCPl=NC+2

NCP2=NC+3
NCP3=NC+i+
AF(NCP1)=Z0P1*UN1
BF(NCP1)=CB(1)
BF(NCP2)=Y1S
AF(NCP2)=X1S
AF(NCP3)=0,
BF{NCP3)=0.
DO 252 J=1»NCP3
XRL( J)=AF( J)
YRL(J)=BF(J)

252 CONTINUE
WRlTE(6r26)
CALL PLOT (NCP3rXRL»YRL)
WRITE (6» 36) NORUN
EY=DY*UN2
AF(NLP2)=0.
BF(NLP2)=CB(2)
BF( NLP3)=C2(NR)
AF(NLP3)=AF(NLP2)+S(2)*EY
DO 232 J=3»ND
K=NLP3+J-2
KS=NR+( J-2)*NM0ni
BF(K)=C2(KS)
AF (K ) =AF (NLP3) + ( J-2) *EY*NM0D1

232 CONTINUE
DO 234 J=1»ND
K=J+NLP1
AF( J)=AF(K)
BF(J)=BF(K)
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23** CONTINUE
X2SCT=X2S/2.
NDE=0
DO 235 J=lrND
IF(AF(J) .LT. X2SCT) NDE=NDE+1

235 CONTINUE
NDP1=NDE+1
AF(NDP1)=X2S
BF(NDP1)=Y2S
NDP2=NDP1+1
AF(NDP2)= 0.
BF{NDP2)=0.
DO 251 J=1»NDP2
XRL( J)=AF( J)

YRL(J)=BF(J)
251 CONTINUE

WRITE(6»26)
CALL PLOT (N0P2»XRL»YRL)

C END COMPUTATION BLOCK NUMBER

C START COMPUTATION BLOCK NUMBER 35
WRITE (6f35) NORUN
PARAM{8)=CP(1)
PARAM(9)=CB(2)
PARAM(10)=DT*BTM
PARAM (11) =TTMMP1*BTM
PARAM( 12)=BDRY*BLTH
Z0CR=Z0P1*BLTH
WRITE(6»32)
WRITE(6»38) NORUN
WRITE(6»33)
WRITE(6»5) (PARAM( J)

»

J=1.7 )

WRITE (6»34)
WRITE(6»5) SEG» ALPHA»WFRC» TFINaL»Z0CR »scale?
WRITE(6»37)
WRITE(6»5) {PARAM(J) » J=fl»12 )

PARAM{12)=CMAX
PARAM( 13)=CBULK
PARAM(14)=Y1S
PARAM(15)=Y2S
PARAM(16)=X25
PARAM(17)=X1S
PARAM(18)=BTM
WRlTE(6r4'+)
WRITE(6»5) (PARAM(J)» J=12»18 )

WRlTE(6»'+2)
WRITE(6»1) NZO»MME »ND »NYO»NH tKPRINT

C END COMPUTATION BLOCK NUMBER 35

C EtaRT COMPUTATIOn'bLOCK NUMBER 36
J5AVE =JSAVE +1
IF( JSTOP .EG). JSaVE ) GO TO 79

C END COMPUTATION BLOCK NUMBER 36
J = JSAVE
DF2= DFB(J)*DFC
BT (J) =( BLTH**2)/ DF2
WRlTE(6»5)nFB{l) »DFC»DF2»3LTH»BT(

D

TNEW(J)= TTMMPl* BTM/BT (J)

CONPRO = CONPR (J)* ( BT (J)/ BLTH)
CNSTA = CNST1(J)/BLTH
CNSTB = CNST2(J)/DF2
CNTAU = CNTA (J)/BT (J)

DFl = DFA(J)/DF2
DF2 = l./DFC
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WRlTE(6»5)nFB{l ) » DFC r DF?

»

rLTH » RT ( 1 ) »DFl,nFA(l)
CNA = .5 * CNSTA
CNB = CMSTB
CN5TX = SORT ( CNA**2 +CmP*CnTAU )-CNA
TLIN = CNTAU + TNEW(J)

: CALCULATE DT SLOPE ZCRIT
DM=DZ*WFRC
IF( CNTAU .LE. .00000001)DT= (DM*(Dm+ CnSTA) )/CNSTR
IF( CNTAU .LE. . 0000000 1 ) DT5 =DT
IF( CNTAU .LE. .00000001) ZCRIT = ZOPl
IF( CNTAU .LE. .00000001) SLOPE =1.
IF( CNTAU .LE. .00000001) GO TO 316
ZCRIT = ZOPl + CN5TX
SLOPE = CNSTX/CNTAU
DT = DM/SLOPE
DTS=DT

316 CONTINUE
ZONEW(J) = ZOPl
TTMM= TNEW(J)
N0RUN=N0RUN+1
WRITE{6»27 )

WRITE(6»5)TLIN»CNTAU»TTMM, SLO^E »ZCRIT» CNSTV
TW =TNEW(J)
TIMEND = TFINN(J) * l./BT (J)
WRlTE(6r39)
WRITE(6f5) TIMEMD»TNEW( J) » PTM

»

CnTAU » TLT N » BT ( J)

ZW= ZONEW(J)
SCALE2 = 2.* SQRT(DFB( J)*TFINN(J)

)

BTM=BT( J)
TFINAL=TFINN( J)
CALL TRIDNL
PARAM(1)=DFA( J)
PARAM(2)=DFB{ J)
PARAM(3)= CONPR(J)
PARAM(U)=CONOUT
PARAM(5)=CNST1 (J)
PARAM(6)=CNST2( J)

PARAM(7)=CNTA( J)
C ===r=====r===z=r===rrrr===r===rr=======-==r====r:r=r===:
C START COMPUTATION BLOCK NUMBER 37

78 CONTINUE
IF(TIMEND .GT. TTMMPl) WRITE(6»43)

79 CONTINUE
STOP
END
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11.2. Subroutine CENTER

C START COMPUTATION BLOCK NUMBER 0
IMPLICIT DOUBLE PRECISION (A-H»0-Z)
COMMON/BL20/DT»DYf DZrTHETA

C0MM0N/BL21/DF1 »0F2
C0MM0N/BL25/P(2) » Q ( 2 ) » PA ( 2 ) » QA ( 2 ) » C ( 2 ) » CB ( ? ) » R ( 2 ) f S ( 2 ) » SM ( ?

)

C0MM0N/BL26/P1 (2000) »P2(2000) »Q1 (2000)

»

Q2 ( 2000 ) r DK 2000 )» D? ( 2000

)

C0MM0N/BL28/N2M1»NLM1»N2 f NRPl»NL»MR
COMMON/BL29/C1(2000) »C2(2000)
COMMON /BL30 / CO » CK » TZERO » JEE » ALPHA » CAPA » SE6 » CMVY
C0MM0N/RL32/C0NPR0»C0N0UT

C END COMPUTATION BLOCK NUMBER 0

5 FORMAT (7Flt|.5)

30 FORMAT ( '+3H S(l) SU SUM FL FR ERR )

C CONSERVE CALCULATION
SUM= DZ* (CI (NL)+CB(1) )*.5 *5M(1) +DY*

1SM(2) *(C2(NR) +CB(2) ) * . 5+C2 ( NR ) DY* .

5

C rr=====r===============r======r=r======r===r===============r=====
C START COMPUTATION BLOCK NUMBER 1

P(2)=P2(NPP1)
0(2)=Q2(NRP1)

C END COMPUTATION BLOCK NUMBER 1

C ==rr=========:=r=====r=i:=============rr==rr===rr======r===rr===r=
C START COMPUTATION BLOCK NUMBER 2

IF(NL .EQ. 1) GO TO 84°
P(1)=P1 (NLMl)
Q{1)=Q1(NLM1)

C END COMPUTATION BLOCK NUMBER 2
C ===r======rr===rr=====r=r=rr======r=====r========r====~=========

C START COMPUTATION BLOCK NUMBER 3

8U9 R(l)= 2.*DT/(DZ**2)
R (2)=2.*DF?*DT/ (DY**2)
DO 850 L=l»2
IF(NL .EG. 1 .AND. L .EQ. 1 ) GO TO 850

C COMPUTE P AND Q FOR HALF CELL
DM=1. +5(L)
IF(L .EO. 2 ) GO TO 847
DM1=DF1+S(L)/R(L)
DM2=DF1/DM
DM3=DM2*S(L)
IF(L .EO. l)DMt|=(S(L)/R(L) )*C1(NL)
IF(L .EG. 1) GO TO 848

8i+7 DM1 = 1.+S(L)/R(L)
DM2=1 ./DM
DM3=S(L)/DM
IF(L .EQ. 2)DM4=(S(L)/R(L) )*C2(NR)

848 PA(L)=DM2/(DM1-DM3*P(L)

)

GA(L)=(DM4+Q(L)*DM3)/(DM1-DM3*P(L)

)

850 CONTINUE
IF(NL .EQ. 1)PA(1)=P1(1)
IF(NL .EQ. 1)QA(1)=Q1(1)

C END COMPUTATION BLOCK NUMBER 3

C START COMPUTATIOn'bLOCK NUMBER 4

C CALCULATION OF BOUNDARY DENSITIES
IF(NL .EQ. 1)SAVE= S(l)
IF(NL .EQ. 1)S(1)=1.
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DM=1.+S(1)
D11=S(1)**2
D12=S{1)*S(2)
RT={DZ*DF2)/(DY)
DMl=Dll/R{ 1)+ (SEG*RT*D12)/R(2) +^^f^/n^
IF(NL .EG. 1)DM1=SAVE/R(1) + (SEG*RT*S(2) )/R(2.)

DM2=-Dll/R(l)-»-(l.-S(l) )*DF1
IF(NL .EQ. 1)DM2=-(SAVE/R(1)+DZ*C0NPR0)
DM3=-RT*D12/R(2)-RT*S(1)*(1,+1,/R(2)

)

DM4=D11*DF1/DM
IF(NL .EQ. 1)DM4=0.
DM5=RT*S(1)
DM6=S(l)*SM(l)*(Cl (NL)+C3(1) ) /R ( 1 ) +RT*SM ( 2 )S ( 1 ) *cB ( 2 ) /R ( 2

)

1 +S(1)*(RT*SM(2)/R(2)+RT/R(2) )*C2(NR)
IF(NL .EQ. 1)DM6=DN'6+DZ*C0NPR0*C0N0UT
IF(NL .EQ. 1)S(1)=SAVE
DM8=DM2+DMt+*P(l)
DM9=DM3+DM5*P(2)
DM10=DM6+G{1 ) *DMt++DM5*Q(2)
DM11=DM10+QA(1)*DM8 +QA(2)*DM9
DM12=DM1-DM8*PA ( 1 ) -SEG*DMq*P A ( 2

)

CB(1)=DM11/DM12
CB(2)=SEG*CB(1

)

C ^ END COMPUTATION BLOCK NUMBER U

C START COMPUTATION BLOCK NUMBER 5
DO 855 L=i»2
C(L)= PA(L)*CB(L)+QA(L)

855 CONTINUE
Cl(NL)=C(l)
C2(NR)=C(2)

C END COMPUTATION BLOCK NUMBER 5
C CONSERVE CALCULATION

SU= DZ*S(1)*(C1(NL)+CR(1) )*.5 + .5* DY*
1S(2)*(C2(NR)+CB(2) ) +C2 ( NR ) *DY* .

5

IF{NL .GT.l) FL=-R(1)*(-(S{1)**2)* Cl ( NLMl ) / ( 5 ( D +1 . ) +Cl ( ML)
1*{S(1)-1. )+CB(l)/(S(l)+l. ) )*DZ *.5*DF1
IF(NL .EQ.1)FL=-DT *CONPRO* (C 1 ( 1 ) -CONOUT

)

IF(NL .EQ. 1)FR=R(2)* ( C2 (NRPl ) -C2 (NR ) ) *DY* .

5

IF(NL .EQ. 1)ERR=SU-SUM-{FL+FR)
IF(NL .EQ. 1)60 TO 860
FR=R(2)*S(1)*{C2(NRP1)-C2(NR) ) *DY *.5
ERR=S ( 1 ) * ( SU-SUM ) - ( FL+FR

)

860 CONTINUE
RETURN
END
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.3. Subroutine TRIDNL

OFORrlS TRIDNL
SUBROUTINE TRIDNL
IMPLICIT DOUBLE PRECISION (A-H»0-Z)
COMMON/RL20/DT » DY » DZ » THETa
C0MM0N/BL21/DF1 »DF2
C0MM0N/BL23/ B2M » B2R

»

B2L » A2L » A2M » A2R » AlL » A 1 M f A IP f B1 L ' RlM r R1

R

C0MM0N/BL25/P(2) »Q(2)»PA(2)»QA(2)»C(2)»CB(2)»o(2)»S(2)»5M(2)
C0MM0N/BL26/P1 (2000) »P2(2000) »Q1(2000)

»

q2 ( ?00n )» Dl ( 2000 )» D? ( 2000

)

C0MM0N/PL28/N2M1 f NLMl »N2 » NRPl»NLfMR
COMMON/BL29/C1(20 00) »C2(2000)
C0MM0N/RL32/C0NPR0»C0N0UT

5 FORMAT (TFll.S)
C CALC. P»S AND DUMMIES
C START COMPUTATION BLOCK NUMBER 1

CALL INTER

C END COMPUTATION BLOCK NUMBER 1

IF(NL .EQ. 1)0M1=S(1)*DZ
IF(NL .EG. 1)OM2=Dm1*DM1/(2,*DT)
IF(NL .EQ. l)DM=i./( DF1+DM2+0M1*C0MPR0)
IFCNL .EQ. 1 )P1 (1)=DM*D'='1

C START COMPUTATION BLOCK NUMBER 2

IF(NL .GT. 1 )DM=1./(DZ*DZ/(2.*DT) +D7* CONPRO+DFl )

IFCNL .GT. 1 )P1 (DrDFl+n-^
C r============r=rr=====r======r=r========r=r==r=========rr=r=======

C END COMPUTATION BLOCK NUMBER 2

C START COMPUTATIOrj BLOCK NUMBER 3

IF(NL .LE. 2 )G0 TO 106
DO lOS J= 2fNLMl
JM1=J-1
DKJ) =A2M+P1 ( JM1)*A2L
PI ( J)=-A2R/D1 ( J)

105 CONTIrjUE
106 CONTINUE

C END COMPUTATION BLOCK NUMBER 3

C START COMPUTATION BLOCK NUMBER 4

DO 101 J= 1»N2M1
K=rJ2-J
KP1=K+1
D2(K)=R2M+P2(KP1)
P2(K)=-1./D2(K)

101 CONTINUE
C END COMPUTATION BLOCK NUMBER 4

RETURN
END
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Subroutine INTER

SUBROUTINE INTER
IMPLICIT DOUBLE PRECISION (A-H»0-Z)
IMPLICIT DOUBLE PRECISION (A-H»0-Z)
COMMON/BL20/DT»DY»DZ»THETA
C0MM0N/BL21/DF1»DF2
C0MM0N/BL23/ B2M r B2R r B2L f A2L » A2M » A2R r A IL » AIM » AlR » BIL » RIM » BIR

5 FORMAT (TFU.S)
RA1=DT/(DZ**2)
RA2=DT/(DY**2)
A2L= DFl
A2R=A2L
A2M=-(2.*DF1+1./RA1)
A1L=1.
A1R= AIL
A1M=-1 ,/RAl
B2L=1.
B2R=B2L
B2M=-(2.+l./(DF2*RA2) )

B1L=1.
BIR =B1L
BIM = -l./(DF2*RA2)
RETURN
END
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12 . GLOSSARY

See eqs (5.6) and (5.7) and table 5.

An array that stores the inhomogeneous terms in the tridiago-
nal equations for the z-region (table 5)

.

Swelling ratio a [eq (2.5)].

See eqs (5.10) and table 7.

The point representing infinity in the y-region [eq (2.11^)].

The unit being used to dimensionalize lengths (sec. 4.3).

The unit being used to dimensionalize time (sec. 4.3).

An array that stores the inhomogeneous terms in tridiagonal
equations in the y-region [eq (5.10) and table 7].

Material parameters [eqs (2.11), (2.12), and (2.13)].

Arrays representing concentrations at the grid points in the
z- and y-regions, respectively. At the beginning of an itera-
tion of loop 78, CI ( ) represents Ci ( , TTMM), and at the end
of an iteration, CI ( ) represents C^ ( , TTMMPl) . Likewise,
C2( ) .

These represent C^ (zq (TTMMPl) , TTMMPl), i = 1, 2, i.e., the
concentrations in the oxide and silicon at the moving boun-
dary.

The concentration in the bulk of the silicon and at y = 0

[eqs (2.13) and (2.19), Cg = CBULK]

.

A subroutine for calculating CI (NL) , C2 (NR) , CB(1), CB(2)

(sees. 7.2 and 8.2).

The value of C2(y,0) for y £ NH in eq (2.13).

By definition, A/2.

Another name for CNSTB.

The constants A and B, respectively, in eqs (4.5) to (4.9)

(table 2)

.

Defined in eq (4.9) and FORTRAN name for ZCRIT.

The constant t in eqs (4.8) and (4.9).
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CONOUT

CONPRO

Dl

D2

DFl

DF2

DFC

DM1
I

through >

DM4 '

DM1 1

through >

DM10 J

DT

DTS

DY

DZ

EY I

EZ '

FNL

FNR

FNZO

JSAVE

JSTOP

KPOW

KPRINT

LOOP 78

m

- A constant in eq (2.18) representing the boron concentration
in the oxygen at the oxygen-oxide interface (sec. 5.7);
CONOUT = Cout-

- A proportionality constant in eq (2.18) representing the
evaporation rate of boron from the oxide into the oxygen
ambient (sec. 5.7); CONPRO = Cp.

- An intermediate array used to compute the arrays Ql , PI
[eq (6.9') and sec. 7.3, computational block #3].

- An intermediate array used to compute arrays P2, Q2 [sec.

7.3, block #4, and eq (6.16')].

- The diffusion coefficient Di in the oxide or z-region.

- The diffusion coefficient D2 in the silicon or y-region.

- A normalizing factor set equal to one in VERSION 1.

- For these quantities used in computational block #3 of siib-

routine CENTER, see eqs (6.I0M and (6.17').

- For these quantities used in computational block #4 of sub-
routine CENTER, see eqs (6.20), (6.21), and (6.22).

- The time mesh width At (sec. 4.4)

.

- A value of DT that is stored before the moving boundary zq

crosses a grid point (sec. 7.1, computational block #20).

- The mesh width Ay in the y-region (sec. 4.1)

.

- The mesh width Az in the z-region (sec. 4.1).

- Scaled value of DY, DZ used in plot output.

- The real value of NL - 1.

- The real value of NR - 1.

- The quantity NZO floated, i.e., made real.

- A parameter used to shift control in the program (computa-
tional block #36, sec. 7.1). JSAVE = 0 in VERSION 1 to
begin with.

- In VERSION 1, JSTOP equals 1.

- A signal to increase the value of DT when KPOW = 100 and
ZOACEL <_ 0.2 (computational block #16, sec. 7.1).

- The concentrations and certain other integer parameters are
printed out when MM = 0 modulo (KPRINT)

.

- Each iteration of this loop calculates the concentrations at
one time. At. (Later see computational block #14, sec. 7.1).

- Another symbol for segregation coefficient SEG [eq (2.2)].
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This is the "DO" index in loop 78.

This integer specifies the number of iterations in loop 78
(computational block #14, sec. 7.1).

The value of NL at time t = 0 in VERSION 1 (computational
block #9, sec. 7.1)

.

The number of fixed grid points in the y-region, N2 = NYO +

1 [computational block #9, sec. 7.1, and eq (4.2)].

Tells how many y-grid points to the right of NR will be
plotted in output graph (block #34, sec. 7.1).

A loop limit index in block #26, sec. 7.1.

The point on the y-axis where the initial concentrations in
the silicon changes from CMAX to CBULK [eq (2.13) and sec.

7.1, computational block #10].

See end of section 4.1.

The z-grid points are plotted modulo NMOD (block #34, sec.

7.1) .

The y-grid points from NR to the right are plotted modulo
NMODl (block #34, sec. 7.1).

In VERSION 1. NORUN = 1.

See end of section 4.1.

The number of mesh widths of length DY that cover (0, BDRY)

(sec. 4.1) .

A parameter used in the definition of DZ [eq (4.3)].

These are the arrays whose functions are described in eqs

(3.5) and (3.7). The quantities with the exception of Pl(l)

are computed in subroutine TRIDNL. See eqs (6.5'), (6.5'),

and (6.7') for Pl(l) and (6.9') for P1(J), J > 1. See com-

putational blocks #23 and #24 for computation of Pl(l).
See eq (6.16') for the derivation of (6.16).

Alternate names for Pl(NLMl), P2 (NRPl) [see eq (6.18')].

Coefficient linking CI (NL) with CB(1) and C2 (NR) with CB(2)

calculated in subroutine CENTER, block #3 [eqs (6.19') and

(5.12')]. Function of this array is explained in section
3.1, steps #2 and #3.

An array containing various material input constants and
computer program constants of possible interest that are

program output (computational blocks #2 and #35, sec. 7.1.

An NBS "in-house" plotting program available from NBS Applied
Mathematics Division. Documented in Appendix 2.

Everything to do with these arrays is explained in the same

places as Pi and P2

.
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Q(l)l
Q(2)»

R

R(l))

R(2)>

RAl)

RA2'

RT

S(l)i

S(2)!

SAVE

SCALE2

SEG

SES

SLOPE

SM(1))

SM(2)

'

TFINAL

TIMEND

TJ

TLIN

TRIDNL

TTMM

TTMMPl

- Alternate names for Ql(NLMl), Q2 (NRPl) [eq (6.18')].

- Another name for RT.

- These are quantities that are defined in eqs (5.35) and
calculated in computational block #3 of subroutine CENTER.
[See also eqs (5.25) and (5.16, 5.16')].

- Combinations of mesh widths used in subroutine INTER (tables

5 and 7)

.

- This combination of mesh quantities is defined in eq (5.35)

and appears also in eqs (5.38) and (5.34) (computational
block #4 of subroutine CENTER)

.

- See eqs (5.35), (5.29), (5.22), (5.15) and figures 5 and 6.

These quantities are computed in computational block #21,

section 7.1.

- See computational block #4 of subroutine CENTER; see remarks
at the end of section 5.9 before the SUMMARY.

- Essentially the same as UN2 , a scale factor used in plotting.
(See sec. 4.4)

.

- The FORTRAN symbol for m, the segregation coefficient [eq

(2.2) ] .

- A signal which when negative implies the moving boundary yo
reached a new y-grid point during the previous iteration of
loop 78 (computational block #19, sec. 7.1).

- The speed of the moving boundary in dry oxidations [eq (4.8)]

- See the same equations and figures cited in description of

S(l), S (2) . These quantities are computed in computational
block #12 and #31, section 7.1.

- This is the time in hours that is inputted into the program.

- When TTMMPl is greater than TIMEND (which is TFINAL in BTM
units) , the program stops and control is shifted to printing
output (computational blocks #32 and #4, sec. 7.1).

- A signal which, when its value is greater than or equal to

1 , indicates that the moving boundary Zq has reached a new
z-grid point during the previous iteration of loop 78-.

- The quantity T in dry oxidations (table 4.1); also called
CNTAU.

- The subroutine where arrays PI, Dl are calculated (sees.

7.3 and 8.3)

.

- The time at the beginning of the MMth iteration of loop 78

in units of BTM (computational block #18, sec. 7.1).

- The time at the end of the MMth iteration of loop 78 (in BTM
units)

.
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This quantity is always zero in VERSION 1.

Scaling factors used in the plot output (computational block
#34, sec. 7.1, and sec. 4.4).

The fraction of DZ that the moving boundary Zq moves in the
first iteration of loop 78 [eq (4.4) and computational block
#7, sec. 7.1] .

Quantities used in setting scales for plots of concentrations
(computational block #34, sec. 7.1, and sec. 4.4).

A cutoff for points with large abscissas (sec. 4.4).

An array for abscissas used in plotting (sec. 3.4).

The position at time t in the y-coordinate frame, calculated
by using eq (2.8).

Quantities used in setting scales for plots of concentra-
tions (computational block #34, sec. 7,1, and sec. 4.4).

Always zero in VERSION 1.

Position in y-region of moving boundary at time, TTMMPl (com-

putational block #18, sec. 7.1).

An array for ordinates used in plotting (sec. 3.4).

The position of the moving boundary in the z-coordinate
frame at time t (sec. 4.2).

Same as CNSTX.

Always zero in VERSION 1.

When the moving boundary is moving slowly, this parameter is

small and the value of DT is increased in order to speed up

distance the boundary moves in a given iteration of loop 78

(computational block #16, sec. 7.1).

ZOPl in units of micrometers (computational block #34, sec.

7.1) .

Position in z-region of moving boundary at time, TTMMPl (com-

putational block #18, sec. 7.1).

See computational block #20, sec. 7.1.

See computational block #16, sec. 7.1.

Always zero in VERSION 1.
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Appendix 1

FORMULAS USED IN DERIVATION OF DISCRETE ALGEBRAIC EQUATIONS

We collect here for convenience some standard finite difference approxi-
mations used in the discretizations effected in chapter five. The deriva
tions of these formulas can be found in a text book on numerical analysis

1. TAYLOR'S SERIES

f (x+Ax) = f (x) + f ' (x) Ax + Ax2 +. . .+ Ax" +. . . (Al)
2 nl

2. QUADRATURE APPROXIMATIONS

a. Midpoint rule

f (x)dx = f(^) (b-a) + 0[(b-a)3] (A2)

b. Right end point

f(x)dx = f(b)Ax + 0[(b-a)2] (A3)

c. Left end point

/ f(x)dx = f(a) (b-a) + 0[(b-a)2] (A4)

a

d. Trapezoid rule

f(x)dx = ^^^^^^^^^ (b-a) + 0[(b-a)3] (a5)

3. DERIVATIVE APPROXIMATIONS

a. Forward differences

df (x) ^ f(x+Ax) - f(x)

dx Ax
+ 0[Ax] (A6)

116



Backward differences

df(x) f(x) - f(x-Ax)
dx Ax

Central differences

+ 0[Ax] (A?)

df (x) f (x+Ax)-f (x-Ax ) ^ 2i—:; - — + 0[Ax^]
-, _ . - . (A8)
dx 2Ax

4. THREE-POINT APPROXIMATIONS

Let X2 , X, X]^ be three points such that xj > x > X2 ; then a three-point
approximation to the derivative of t(x) at point x is

,^ Ax. f(x-Ax„) (Ax -Ax^)f(x)
df _ _ 1 2 _^ 1 2

^
dx Ax^ (Ax^+Ax^) Ax^ Ax^

(A9)

Ax^ f (x-Ax^)

Ax^ (Ax^+Ax^)

where Ax^ = x^^ - x and Ax^ = x - x^
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APPENDIX 2

Plotting vuhroutines

B. L. Joiner and S. T. Peavy

Five FORTRAN subroutines for producing plots similar to the

one shoun in Figjre 1 are now available on the NBS UNIVAC 1108
FASTRAND file named PLOTS.

Questions related to the operation of these subroutines may-

be directed to:

Brian L. Joiner or Sally T. Peavy
A337 Administration Bldg.

National Bureau of Standards
Washington, D. C. 20234

921-2315

Task numbers for the IINIVAC 1108 may be obtained from the

Ccmputer Services Division
A238 Adninistration Bldg.

National Bureau of Standards
Washington, D. C. 20234

921-3364

General Remarks

Except as specified below, the suLx-outines automatically
figure out limits for the plots based on the smallest and largest
data points. A new page is not called by any of these
subroutines. This allows the user to label the top of the page
before calling for tl^e plot. These subroutines do not change
any of the values of tlie arguments. Plotting is done by

repetitively seardung the arrays rather than by sorting them.

The resolution of the plots is 51 characters high by 101

characters v.ide and each plot consumes 54 lines counting borders
and scale labeling. The length and v,ldth of the actual plotting
area are Sh inches and 10 inches respectively, and the overall
dimensions including borders and scale labeling are 9 inches
and 11'4 inches respectively.
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These five subroutines may be called in from FASTRAND by inserting
the follov/ing pair of cards after the RUN card:

e XQT CUR
INF PLOTS

viiere @ means a 7 and 8 punched in card column one.

Subroutines

I. PLOT (N, X, Y)

Plots the data in one column versus that in another column.

N : -The number of points to be plotted.

X : A vector (one dimensional array) containing the
values of the abscissa.

Y : A vector containing the values of the ordinate.

Example of main program.

DIMENSION X(10), Y(10)
DO 2 I = 1,5
X(I) = I

2 Y(I) = SIN(X(I))

N = 5

CALL PLOT CN, X, Y)

STOP

II. PLOTS G^^GS, X, Y, NRMX, NROW)

Plots the data in up to 5 pairs of columns. The symbols
used are . * +

,
- respectively for the 5 curves.

NARGS : The number of curves to be plotted.

X : A matrix (t\co dimensional array) having up to

5 coluTjis and containing the values of the
abscissa.

Y : A matrix having the sa-ne dimensions as X and
containing the values of the ordinate. The
first colunm of Y is plotted versus the first
column of X, etc.

NRMX : A vector (one dimensional array) containing the

number of points to be plotted in each of the

(5 or less) column pairs.

NROW : The number of rows specified for X and Y in their

dimension statement (s) in the main program.

(An example is given on the following page.)
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Example of main program.

DINENSION XC85,4), YC85,4), NRNKC4)
DO 5 I = 1,20
X(I,1) = I-IO

-5 Y(I,1) = ABS(X(I,1))
DO 10 I = 1,37
X(I,2) = 1-20

10 YCI,2) = 20. - X(I,2)**2
NARGS = 2

NR^IX (1) = 20

NRMX (2) = 37

NROW =85
CALL PLOTS OIARGS, X, Y, NRMX, NRO'.V)

STOP

III. PLOTL (N, X, Y, IT)

Plots the data in one column versus that in another column
using the symbols specified in the IT column.

N : The number of points to be plotted.

X : A vector (one dimensional array) containing
the values of the abscissa.

Y : A vector containing the values of the ordinate.

IT : A vector containing numbers bet\veen 1 and 26

which dictate the letter of the alphabet to
be used as a plotting symbol.

number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

letter: ABCDEFGHI J K L M N 0

16 17 18 19 20 21 22 23 24 25 26PQRSTUVWXYZ
Example of main program.

DIMENSION X(IOO), Y(IOO), ITClOO)

DO 20 I = 1,5
X(I) = I

Y(I) = SIN(XCI))
20 IT(I) = 19

DO 30 I = 6,10
X(I) = 1-5

Y(I) = coscxci))
30 ITCD = 3

CALL PLOTL (10, X, Y, IT)

STOP
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IV. PLOTIA CN, X, Y, IT, YMINS, YMAXS)

This subroutine is the same as PLOTL except that the
limits for the Y axis (ordinate) are specified in the call
Statement. If any points fall outside the specified limits,
the limits are stretched so as to include all points.

Example of main program is same as for PLOTL except for call.

CALL PLOTLA (10, X, Y, IT, -1., 1.)

V. PLOTLF (N, X, Y, IT, XMIN, XMOX, YMIN, YMAX)

This subroutine is also similar to PLOTL except that here
the limits for both X and Y are specified in the call statement.
Any points falling outside. the specified limits are omitted but
a talley is kept and the number of offending points is printed
below the plot.

Exaiiple of main program is same as for PLOTL except for call.

CALL PLOTLF (10, X, Y, IT, 0., 5., -1., 1.)
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