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Semiconduatop Measurement Technology

:

A WAFER CHUCK FOR USE BETWEEN -196 and 350°C

R. Y. Koyama and M. G. Buehler
Electron Devices Division

National Bureau of Standards
Washington, DC 20234

ABSTRACT

This report describes the design and characterization of a variable-
temperature wafer apparatus for use in the detection of electrically
active defects which produce deep levels in the band gap of silicon.
In its present form, the wafer chuck can heat and cool wafers as large
as 51 mm in diameter over the temperature range from -196 to 350°C; heat-
ing rates as high as 7°C/s have been achieved. The uniformity of the

temperature across the chuck under static conditions is estimated to

be better than ±0.4°C. Construction details of the chuck are given in
an appendix. The use of this apparatus is illustrated by wafer mapping
the gold defect density in diodes fabricated across a silicon wafer.

Key Words: Deep level measurements; defect mapping; hot/cold wafer
chuck; thermal wafer chuck; thermally stimulated measurements; wafer
chuck, variable temperature.

INTRODUCTION

The detection of electrically active defects
which produce deep levels in the band gap of

semiconductors is an important aspect of ma-
terial and device characterization in the

semiconductor industry. Techniques such as

transient capacitance and current measure-
ments [1], thermally stimulated current and
capacitance measurements (TSM) [2], and deep
level transient spectroscopy (DLTS) [3] are

extremely sensitive and useful for establish-
ing energy levels, emission rates, and den-
sities of deep level defects. These tech-
niques depend on the manipulation of the

specimen temperature during some portion of

the measurement; typically, temperatures in

the range from -196 to as high as 300°C are
required, depending on the semiconductor band
gap energy.

Traditionally, deep level measurements have

been performed in cryostats on test devices

which have been scribed from wafers and in-

dividually packaged [2]. Great advantage
could be derived by the ability to perform
these deep level measurements on devices
which can be probed in wafer form. This

would eliminate operations such as scribing,

dicing, die bonding, wire bonding, and pack-
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age sealing in the processing, and shorten
the time from wafer completion to deep level
test measurements. Because the wafer stays
intact, variations of parameters such as de-
fect density and electrical device character-
istics across the wafer could easily be de-
termined. In addition to being a useful re-
search tool in the laboratory, the wafer
handling capability would allow these mea-
surements to be used as a routine production
diagnostic tool. The use of these tech-
niques at intermediate points in the process-
ing of wafers to determine the effect of par-
ticular processing steps on the activation
or introduction of defect centers has parti-

cular application in the processing of power
devices [4] and solar cell devices in which
the lifetime of minority carriers is an es-
pecially important concern.

In this paper, a variable-temperature wafer
apparatus capable of performing deep level*
measurements on wafers is described. By us-
ing liquid nitrogen as the coolant , the ap-
paratus covers the temperature range between
-196 to over 350°C with heating rates as high
as 7°C/s. Sensitivity for electrical measure-
ments is sufficient to allow current measure-
ments as low as 0.2 pA or capacitance changes

(1 MHz) as small as 5 fF.

THE VARIABLE-TEMPERATURE WAFER CHUCK

The thermal and electrical requirements of

deep level measurements led to the design
and construction of the thermal chuck shown
in figure 1. It shows an isometric view of

Figure 1. Isometric view of the major ther-
mal chuck components

.

the component parts of the chuck with the
various parts identified. A nickel-plated
copper top plate (3) has vacuum grooves for

holding the test wafer in place, a hole for
thermocouple insertion, and mounting holes
for a wafer index-stop (2) . This top plate
is isolated from the chuck body (5) by an

insulator plate (4) which must provide good
electrical isolation as well as good thermal
conduction; a circular sapphire plate (0.25

mm thick by 67 mm in diameter) has been
found to perform satisfactorily. The heart
of the assembly is the chuck body (5) which
is also fabricated from copper and plated
with nickel. The chuck body consists of an

integral cooling cavity and holes for four
heater cartridges (10) . An inverted view
of this part with the heaters exposed is

shown in figure 2. A stainless steel cover

plate (6) encloses the cooling cavity and
attaches to the manifold (9) for the cool-
ant fluid. The 150-W heater cartridges (10)

are silver soldered into the chuck body (5)

which is subsequently heli-arc welded to the

cover plate (6) and the stainless steel
mounting ring (7) . Since the mounting ring

(7) is attached to supporting hardware, it

has been designed with a thin rib (0.25 mm
thick) on the circumference to minimize heat

" This apparatus would also be useful and
has been used for bias-temperature stress
(BTS) measurements on metal-insulator-
semiconductor (MIS) structures. BTS mea-
surements with thermal stress of 300°C
have been utilized to detect mobile ion
contamination in silicon dioxide MIS ca-

pacitors .



transfer to the support; this is necessary
in order to minimize mechanical motion of

the chuck due to differential thermal expan-
sion and contraction of the support hardware.
The power leads for the heater cartridges
are shielded along their entire length with
either solid (11) or flexible metal shields
(not shown) . The top surface of the chuck
body (5) is identical (including vacuum
grooves) to the top plate (3) ; for measure-
ments which do not require electrical isola-
tion, this feature allows faster thermal re-
sponse by mounting the wafer directly on the

chuck body. Figure 3 shows a photograph of

the assembled thermal chuck. The numbers
are keyed to those in figure 1; in addition,
the two thermocouples (12) , the two chuck
vacuum supply pipes (13) for wafer hold-down.

Figure 2 . Inverted view of the chuck body
with the four 150-W heater cartridges ex-
posed (see fig. 1 for number key to compo-
nents )

.

and one pair of three sets of locking and
leveling screws (lA) are indicated. Each of
the two type K [5] thermocouples has dual
elements and is mounted to the chuck body
and top plate by inserting it into holes
drilled in the chuck body (5) or the top
plate (3) . To eliminate possible electrical
interference, the thermocouple in the top
plate is an isolated type.

Figure 3. Photograph of the assembled ther-
mal chuck (see fig. 1 and text for number
key to components )

.

AUTOMATIC PROBING APPARATUS

To build in the capability for automation of

measurements, the thermal chuck assembly was
adapted to a modified automatic wafer prober
(Teledyne - TAG, PR-100) . This prober has a

probe-ring assembly which can accommodate as

many as 60 individually adjustable probes.
Once mounted and adjusted, the probes remain
fixed. Automatic probing is accomplished by
moving the chuck-mounted wafer to the appro-
priate position relative to the probes.
Movement in the x-y plane is accomplished by
a table on which the chuck is mounted; after
reaching the desired position, a small verti-
cal motion (z) raises the chuck to make con-
tact between the wafer and the measurement
probes. After initial alignment of first the
wafer to the prober axes and then the measure-
ment probes to the contact pad geometry, the

prober can automatically index the wafer from

die to die at a preset index interval. In

addition, a computer interface is utilized to
control and execute a variety of electrical
parameter measurements of devices fabricated
on the wafer.

The low temperature requirements of the
deep level measurements dictate the use of

a cryogenic fluid for the thermal chuck
coolant. Since it is important to maintain
a low relative humidity to minimize or elimi-
nate the condensation of water vapor on the
wafer at low temperatures , the thermal chuck
and the wafer prober were enclosed in a

sealed box. The enclosure is continuously
purged ('^^2.5 L/min) with dry nitrogen.

The main features of the box are shown in

figures 4, 5, 6, and 7. (Refer to table 1
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Figure 4. Front view of the box enclosing Figure 5, Back view of the box enclosing
the automatic wafer prober (see table 1 for the automatic wafer prober (see table 1 for
number key to components ) . number key to components )

.

Figure 6. Inside view of the box with the top cover removed (see table 1 for number key to

components and figs. 1-3 for details of the thermal chuck).
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Table 1. List of the Major Components.

A. Thermal chuck components

1. 51-mm diameter wafer
2. Wafer index stop (stainless steel)

3. Top plate (nickel-plated copper)
4. Insulator plate (0.25-mm by 67-mm

diameter sapphire)
5. Chuck body (nickel-plated copper)
6. Cover plate (stainless steel)
7. Mounting ring (stainless steel)
8. Base plate (stainless steel)

B. Prober and enclosure components

15. Probe ring height manipulator
16. Stereo microscope
17. Prober control panel
18. Top viewport
19. Wafer transfer probe
20. Wafer 6-alignment manipulator
21. Microscope mounting post
22. Wafer transfer slide
23. Front viewport
24. Prober control connector
25. Liquid nitrogen feed-throughs (2 eacl

C. Instrumentation

35. Digital voltmeter
36. Voltage source

9. Coolant manifold (2 each, stainless
steel)

10. Heater cartridge (4 each)
11. Electrostatic shields (4 each, stain-

less steel)
12. Thermocouple (2 each)
13. Chuck vacuum supply (2 each)
14. Leveling and locking screws (3 pairs)

26. Dry nitrogen feed-throughs (2 each)

27. Heater power, thermocouples, etc.
28. Prober bridge assembly
29. Probe ring height micrometer
30. Probe ring support
31. Multiprobe assembly
32. Probe ring
33. Probe and manipulator (6 each)
34. Telescoping tubes/stainless steel

bellows (1 pair)

37. Capacitance meter
38. Electrometer

for the numerical listing of the compo-
nents.) All sealing surfaces utilize gas-
kets or "0" rings. Utilities are inter-
faced at the back of the box; these include
the prober control (24), liquid nitrogen
feed-throughs (25), dry nitrogen feed-
throughs (26), heater power, and thermo-
couples (27) . Figure 6 shows an inside
view of the prober box. The thermal chuck
assembly is seen in the foreground. In
operation, a wafer is loaded into the box
by the wafer transfer slide (22); once in-
side the box, the wafer is picked up with
the vacuum-operated wafer transfer probe
(19) and placed on the surface of the ther-
mal chuck. Specimen wafers can be changed
in a matter of seconds without having to

open the box; the wafer slide assembly (22)

which is sealed to the box in both the fully
open and fully closed positions, minimizes
penetration of room air into the box. (Ad-

ditional details of the chuck and the wafer
slide mechanism are given in Appendix A.)
Wafer alignment to the prober axis is ac-
complished by rotating the chuck assembly

about an axis perpendicular to its center
with the e-manipulator (20) ; this is done
while viewing the wafer with the microscope
(16) through the top viewport (18) . The
bridge structure (28), which supports the
probe ring (32), is shown displaced toward
the rear for clarity; the probe ring is nor-
mally in the region above the thermal chuck.
Mounted on the probe ring (32) are six in-
dividually adjustable probe manipulators
(33), and a 6 by 6 multiprobe array (31).

The multiprobe is a fixed array of 36 indi-
vidually biasable probes which can be used
for simultaneous probing of 36 devices
spaced at the appropriate interval on the

wafer; this multiprobe is usable to at least
300°C.* Neither the individual probes (33)

nor the multiprobe array (31) is externally
adjustable or accessible after the box is

* The multiprobe array was designed to al-
low BTS on 36 devices simultaneously dur-
ing one thermal cycle of the chuck.
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closed. However, fine adjustment on the

probe contact pressure is available with the

height micrometer (29) which is accessible
externally through the probe ring height
manipulator (15) . Under measurement condi-
tions, the top and front viewports (18, 23)

are covered to prevent light from entering
the box. The x, y, and z positions of the
thermal chuck are controlled externally from
the control panel (17) . Figure 7 shows a

view of the prober box along with its asso-
ciated complement of commercially available
instrumentation for the TSM technique.

Liquid nitrogen is circulated to the movable
chuck from the feed-throughs (25) at the

back of the box through a pair of stainless
steel welded bellows. Except for extension
and compression, these bellows are confined
within a pair of telescoping tubes (34) to

minimize vibrational motion of the bellows
caused by expansion of the liquid nitrogen.
These tubes also serve to insulate the met-
al bellows from the box ambient. Excessive
cooling of the box ambient, and eventual
cooling of the prober mechanism under pro-
longed liquid nitrogen use was found to

cause mechanical malfunction of the x-y
translation mechanism.

Figure 7. Typical experimental setup with
instrumentation (see table 1 for number key
to components )

.

THERMOMETRY

In order to realize useful information from
any variable-temperature measurement system,
appropriate attention must be given to the

thermometry. In this case, there are two

aspects: (1) measurement of the actual wa-
fer or device temperature and (2) the uni-
formity of the chuck temperature. Each of

these aspects needs to be considered under
both static (isothermal) and dynamic condi-
tions of the chuck. In addition, for dynam-
ic temperature measurements, the heating
rate must be established. The importance of

each particular aspect depends on the mea-
surement that is being made. For example,
in order to measure the energy level of an
unknown deep level defect, it is necessary
to know the specimen temperature accurately
when using the DLTS [3] technique; for TSM

[2], one needs to know both the temperature
and the heating rate. On the other hand,
when the objective is to simply measure the

density of a deep level defect by the ther-

mally stimulated capacitance technique, an

accurate knowledge of the temperature or

heating rate is not required.

The temperature of the top plate is moni-
tored by an isolated thermocouple which is

inserted into a hole from the side. The
temperature-sensitive junction is positioned
at the center. The thermocouple itself was
checked for absolute calibration at -195.66°C

[6], and a measurement of the thermocouple
output voltage against temperature over the

range from -196 to 20°C confirmed that its

characteristics conformed to published ther-
mocouple calibration charts [5].

Figure 8 shows a set of typical heating and

cooling cycles for two different measurement
sequences (the temperatures were measured
with the thermocouple in the top plate). The

upper curve represents heating from room tem-

perature to over 300°C and back to room tem-

6



perature.* Heating to 300°C requires about
70 s and cooling back to room temperature re-
quires less than 2 min. The lower curve rep-
resents a temperature cycle required for TSM.

Cooling to liquid nitrogen temperature is ac-

complished in less than 4 min. The increase
in cooling rate just prior to reaching -196''C

is due to the complete filling of the chuck
with liquid nitrogen. Heating back to room
temperature requires about 45 s . (Although
TSM of mid-gap defects in silicon are com-
pleted at room temperature, higher band gap
materials may require heating above room tem-
perature.) Figure 9 shows a detailed heat-
ing curve and a heating rate curve from liq-
uid nitrogen temperature. This typical heat-
ing curve was obtained with approximately 75

percent of full power applied to the chuck
heaters . Although high heating rates are re-
quired for good signal-to-noise ratios in TSM,

the nonlinearity of the heating rate is of no
consequence [2] as long as the rate at the
emission temperature is known. With this ap-
paratus, heating rates as high as 7°C/s can

be obtained.

0 100 200 300

TIME (s|

Figure 8. Typical heating and cooling re-

sponse curves for the chuck: a) above room

temperature, and b) below room temperature

(t5^ical for TSM).

Under dynamic conditions as illustrated in
figures 8 and 9, the indicated thermocouple
temperature and the actual chuck/wafer tem-
perature can be significantly different. Be-
cause the thermocouple junction is isolated
from the chuck top plate, it has a thermal
time constant approaching several hundred
milliseconds. During a typical TSM scan
(heating from -196 to 23°C) the device tem-
perature is higher than the theirmocouple in-
dicates. Temperature calibration for a TSM
scan is accomplished by calibrating the for-
ward voltage drop of a junction diode (fab-

ricated on the wafer) against the thermocou-
ple temperature under static isothermal con-
ditions (assuming that there is no tempera-
ture gradient between the fabricated junction
and the thermocouple) . Under dynamic condi-
tions, the diode response is much faster than

the thermocouple; thus, the measured forward
voltage drop of the diode gives the actual
device temperature.

The nonuniformity of the chuck temperature
under "isothermal" conditions was determined
by measuring the variation of the forward
.voltage drop, Vp, of an array of gold-
diffused r&p diodes spaced at 2.54-mm inter-
vals on a 51-mm diameter wafer [7]. Static
temperature conditions were maintained at the

center of the chuck by a temperature control

0

'
1 ' 1

1 1 1 1
1

1

-50

-100

/ HEATING RATE

-150
TEMPERATUBE

-200

1 1 1 1 . 1 .
1

6.0

4 0

2.0

TIME |sl

Figure 9 . Typical temperature and heating

rate curves for a thermally stimulated mea-

surement with approximately 75 percent of

full power applied to the heaters

.

" This cycle would be typical of that used

for a BTS test, except that the stress

period at 300° C was omitted. It should

also be noted that the actual temperature

during BTS is an important parameter and

should be accurately known.
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system which monitored the thermocouple out-

put. At a given temperature set point, the

control system provides enough heating power

to balance the cooling input from the liquid

nitrogen. Under these conditions, the uncer-

tainty of the set point temperature was about

±0.1°C. The forward voltage drop of the di-

ode array (at a fixed forward current) was

recorded as a function of wafer position for

a sequence of temperatures between liquid

nitrogen temperature and SO'C. The measured
variation of the voltage drop with position
is due to both the inherent differences of

the diodes as a result of their fabrication
and the possible nonuniformity of the chuck
temperature.

The forward voltage characteristic for a

single device near the center of the wafer
is shown in figure 10. The measurements
were made with stationary temperatures at a

forward current of 10 uA. There are two

well-defined linear regions of the character-
istic described by

V^, = 0.415 - 2.77 X 10-3t (1)

-196°C <_ T < -40°C

= 0.432 - 2.12 x lO'^T (2)

-WC < T £ 35°C

where T is the temperature in °C; Pearson's
correlation coefficients for V^i and Vp2 ^re
0.99996 and 0.99991, respectively. As ex-

plained by Sclar and Pollack [8], an extrapo-
lation of Vpi to absolute zero (-273°C) gives

Vpi (-273''C) = 1.171 V which corresponds to

the intrinsic band gap of silicon at -273°C.

If all devices on the wafer had identical
forward voltage characteristics, temperature

profiling would simply be accomplished by
measuring the voltage drop as a function of

wafer position. Unfortunately, due to the
nonuniformity of the gold diffusion process
in the fabrication of the wafer, each device
has a unique slope; however, all characteris-
tics intersect Vp = 1.171 V at -273°C. Fig-
ure 11 is a map of the forward voltage drop
at 24''C of approximately 300 devices spaced
at 2.54-mm intervals on the wafer. The total
variation from light regions to dark regions
is 0.3664 to 0.4091 V, respectively. Rota-
tion of the wafer on the chuck causes rota-
tation of the pattern indicating that the im-
age is due to the wafer and not the chuck.

In fact, at 24*'C, it is fair to assume that
the chuck is in equilibrium with its sur-
roundings (no heater power or cooling ap-
plied) and thus that a true isothermal condi-
tion exists.

For the purpose of this temperature nonuni-
formity determination, high and low outliers
were removed from the array (not measured)
and only a select group consisting of 170 de-
vices with fairly uniform characteristics
was measured. At each temperature, "isother-
mal" conditions were established by the con-
troller and the 170 devices were probed to

measure the forward voltage drop. The data
points (a) of figure 12 show the measured
difference

0.8

ST 0.6

0.4

01- J__r

200 100 SO

TEMPERATURE {°Z\

Figure 10. Forward voltage drop characteris-

tic for a specific n+p gold-diffused diode.

Figure 11. Wafer map of the forward voltage
drop of the n+p diodes. Approximately 300

data points are plotted with the dark-to-
light shading representing a forward voltage
variation from 0.4091 to 0.3664 V, respec-
tively. (A quadrant of four squares repre-
sents one data point . )
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^\ ^Fmax ^Fmin *

where Vfj^iax ^Fmin respectively, the
largest and smallest forward voltage drop of
the measured group at each temperature. The
spread in the measured voltage drops ranges
from 2.5 mV at liquid nitrogen temperature
(-196°C) to 11.5 mV at 58°C. The vertical
height of each data point represents the
measurement uncertainty as determined from
several measurements at each temperature.
The measured spread, AVj,j, is due to two con-
tributions: (1) the "natural" spread of
voltages (AVd) as a result of nonuniformity
of device characteristics, and (2) the nonuni-
formity of the local wafer temperature (AT),
resulting in a deviation of AVj^ from AVq.

The line labeled (b) in figure 12 represents
an estimate of the temperature dependence of
the natural spread, AVq. It was established
by drawing a straight line through the room
temperature data point (24°C) and the point

AV = 0 at -273°C. The reasonable assumption
that the chuck is isothermal at 2^°C means
that the measured spread is due only to the
natural variations in the individual devices
In addition, since all devices have an ex-
trapolated forward voltage drop of 1.171 V
at absolute zero (-273°C) [8], then the nat-
ural spread, AVj) (-273°C) = 0. Hence, the
two points on the line AVj) are fixed; the as
sumption of linearity is justified in Appen-
dix B.

In the region above -20''C, the data points
of the measured spread essentially follow
the straight line of the natural spread;
this suggests that there is no contribution
to the measured spread from nonuniformities
of the chuck temperature. The largest devia
tions between the measured spread and the
natural spread occur between -160 and -SO^C.
Assuming that this deviation is due only to
variations in the chuck temperature , and
that the measured spread is the sum of the
two independent contributions (i.e., AVj^ =

1
'
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Figure 12. Curves representing: a) the spread of the forward voltage drop of a selected
group of 170 diodes as a function of temperature, b) a linear plot representing the "natural
spread of the forward voltage drop due to device variations, and c) the deduced spatial vari
ation of the chuck temperature as a function of the temperature.



AVj) + AVj, where AV'j is the contribution due

to variations in the chuck temperature uni-

formity) , then the nonuniformity of the chuck
temperature can be calculated. This is

shown plotted in figure 12 as curve (c) and

was determined from the difference between
AV^ and AVq, divided by the slope of a typi-

cal diode characteristic given in eq (1)

.

The largest deviation is about 0.8°C near
-65**C, resulting in an uncertainty of ±O.A°C

at a given temperature set point. Where this

uncertainty is critical, it would be neces-
sary to make a specific calibration at the
location of interest rather than rely on the
indicated thermocouple temperature.

A curious consequence of these results is

the fact that the measured spread, AVj^, can
be smaller than the natural spread, AVd.

This is explained by the location of parti-
cular devices. In general, the shading of

figure 11 reveals that the low voltage de-
vices are near the center and the high volt-
age ones are near the edge of the wafer.

Thus, a situation where the edge region is

warmer than the center region would cause a

decrease in the measured voltage spread. In-

tuition might suggest that the central re-
gion would be warmer than the edge due to

the presence of the heaters. However, a

study of the forward voltage wafer maps
failed to reveal the "image" of the heaters
and corroborates the interpretation given
above

.

A direct measure of the uniformity of the

chuck temperature under dynamic conditions
was not made. However, an indirect measure
was obtained from the analysis of a series
of TSM scans which were made as a function
of wafer position under the same dynamic
heating conditions. The location of the mea-
sured emission current peak or the deple-
tion capacitance change in a junction diode
caused by the discharge of a specific deep
level defect is a function of both the heat-
ing rate and the temperature [2]. With the

heating rate fixed at approximately 7°C/s
by maintaining a constant heating power, any
variations in the temperature at which the
emission occurs can be interpreted as being
due to variations in the chuck temperature
with position. This analysis was performed
at two different temperatures utilizing the
gold donor level (which discharges at about
-135°C) [9] and the gold acceptor level
(which discharges at about -45°C) [9]. The
results are represented in the two histo-
grams of figure 13 which plot the number of

devices on the wafer versus the temperature
at which the emission occurs ; the tempera-
ture was measured with the top-plate thermo-
couple and corrected for the heating rate
lag. These results suggest that the varia-
bility of the chuck temperature with posi-
tion under dynamic conditions is on the or-
der of tS^C. Where these variations are im-
portant to a measurement, it would be neces-
sary to correct or account for them.
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Figure 13. Histograms showing the variation
of the temperature at which emission from
the gold donor (-135°C) and the gold accep-
tor (-45°C) occurs; the nonuniformity of the

chuck temperature under dynamic conditions
of approximately 7°C/s is inferred from this
variation

.

DEFECT MAPPING

As an example of the use of this apparatus

,

a wafer map of the defect distribution across
a gold-diffused silicon wafer was made. Ther-
mally stimulated measurements were made on an
array of n^p gated diodes fabricated by a

2-Mm phosphorus diffusion into <111>, 5 to

10 n«cm, p-type silicon wafers. The gold de-

fect center was introduced by evaporating
gold on the back surface of the wafer and
diffusing at 825 °C for 24 h. Figure 14 shows
the thermally stimulated response from a typi-
cal diode on the processed wafer. The upper
curve is the capacitance response and the
lower is the current response. In each case.



the response was measured by first cooling
the device to near liquid nitrogen tempera-
ture. Zero bias was applied to the diode to

charge all defects with majority carriers
(holes); a reverse bias of 15 V was then ap-
plied to form a depletion region. The cur-

rent or capacitance was measured with the de-
pletion bias maintained while the wafer was
heated with a heating rate of about 7°C/s.

At the appropriate temperature, the gold de-

fect emits its trapped hole causing a mea-
surable current, a slight collapse of the de-
pletion region, and a measurable capacitance
increase. In this example, the emission is

due to the gold donor level located at 0.35
eV above the valence band [9]. The system
noise in the x-y recorder tracings was ap-
proximately 2 fF and 0.1 pA for the capaci-
tance and current, respectively.

The gold donor density was determined by
measuring the thermally stimulated capaci-
tance response as a function of wafer posi-
tion. Following the work of Buehler [2],

the defect density is given by

N 2(C^ - C^)

^A-^D
(3)

Nj-/(N^ - Nj)) is the ratio of the defect den-
sity to the net background acceptor density;

Cf and C-j^ are given in figure 14a. This ex-

pression is valid for the case when only one
9 9

charge carrier is emitted, and C-^ » Cj^^

where C^, is the zero bias diode capacitance.

These conditions are satisfied here. Note

3.24
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Figure 14-. The thermally stimulated a) ca-

pacitance and b) current responses of a gold-

diffused n^-p diode; the heating rate is about

7°C/s.

that in this measurement, only the total
charge flow as evidenced by the change in

capacitance is important; the result is in-
dependent of the heating rate and also does
not depend on an accurate knowledge of the
temperature. An independent measure of the
average acceptor density of the depletion
region is required and was determined from
a measurement of the capacitance-voltage
characteristic of the sam.e junction used for

the TSM. The net acceptor density, - Np,

was calculated from the standard Schottky
relation:

2Ci2c22(V2 - Vi)

q e (Ci2 - C22)
s

(4)

Ci, Vj and C2, V2 are the capacitance-
voltage pairs taken from the diode C-V char-
acteristic; q is the electronic charge, and

Eg is the dielectric constant for silicon.
The values of depletion capacitance were
measured with = 5 V and V2 = 15 V. These
data were used to calculate the defect den-
sity from eq (3) . Figure 15 displays the

gold donor defect density as a function of

position on the wafer. The darker areas rep-

resent regions of higher density, and the

variation is from 2.34 to 3.61 x 10

"

13 cm
-3

The system noise (2 fF) suggests that donor
defect densities in the range of 1 x 10^^

cm~^ would be detectable in this wafer.

Figure 15. Wafer map of the gold donor de-

fect density. The variation from light to

dark regions is 2.3 to 3.6 x 10^3 cm" 3. (Ap-

proximately 70 data points are plotted on a

grid corresponding to the 5.08-mm spacing of

the devices on the wafer. Shading at inter-

mediate points is derived by interpolation.)
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AUTOMATIC WAFER PROBING

A further aspect of this system which has

not been discussed in detail is its utility
as an automated wafer probing system. This

feature in itself is similar to many commer-

cial wafer probing systems; the unique fea-

ture of this system is that measurements un-

der static temperature conditions can be
made at any temperature in the range of -196

to 300"C* For example, the wafer maps of

forward voltage drop (e.g., fig. 11) for the

temperature uniformity measurements were
made under computer control at a series of

temperatures from -196 to +58°C. The mea-

surement of the data for the map at each
temperature requires about 6 min. In addi-
tion, such device parameters as diode re-
verse leakage current [10], reverse recov-
ery lifetime, and open circuit voltage decay
lifetime have been mapped and have been seen
to correlate with the measured defect den-
sity. This instrument can utilize the fact
that most semiconductor properties are tem-
perature dependent and provides a new dimen-
sion to measurements for diagnostics of fab-
ricated wafers.

SUMMARY

A variable-temperature wafer chuck capable
of excursions from -196 to 350°C has been
designed, constructed, and evaluated. The
chuck is part of an automatic wafer probing
apparatus which is housed in a sealed enclo-
sure to provide a dry environment. The ap-
paratus can be used for a variety of measure-
ment functions but was primarily designed for
detection of deep levels in processed silicon

wafers. As an example, the gold donor defect
density in p-type silicon was mapped as a

function of position on the wafer and graph-
ically revealed the nonuniform defect distri-
bution. The use of such apparatus as a diag-
nostic tool for monitoring defects during wa-
fer fabrication should greatly enhance the
process engineer's ability to control his
process

.
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APPENDIX A

Mechanical Drawings for Parts

Given in figures Al through A4 are the mechanical drawings for the basic components of the
variable-temperature chuck and the wafer transport slide mechanism.

0-80 TAP 2 HOLES

Figure Al. Mechanical drawings for the top plate, wafer index stop, and the index stop pin.
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Figure A2. Mechanical drawing for the chuck body.
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Figure A3. Mechanical drawings for the cover plate and mounting ring.
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APPENDIX B

The Linearity of AV

In the region below ACC, assume a general-
ized form for eq (1)

:

V„ = A + BT
F

(Bl)

where A and B are constants, and T is the tem-

perature in "C, Two specific equations which
represent the highest and lowest voltage de-
vices of the group can, respectively, be writ-

ten as

:

V = A + B T
FH H H

FL

(B2)

(B3)

Hence, an equation for the "natural" spread
of the forward voltages of this group of de-
vices can be written as:

AV (T) = V - V
FH FL

(BA)

Therefore, the assumed linear form for eqs

(B2) and (B3) result in a linear equation for

AVqCT), and hence the assumption made earlier
is justified.

The two boundary conditions required to evalu-
ate eq (B4) are : 1) the observed spread at
liquid nitrogen temperature, AV])(-196), and
2) the fact that the intercept at -273°C for

both Vpjj and VpL are identical [10], V-pyi

Vpj, or AVj^(-273) = 0. Hence,

AV^(-196)
AVj^(T) = D

77
[273 + T]

(B5)

-196°C < T < -40°C .

In the temperature range for Vp2 [eq (2)],
similar reasoning and the application of boun-
dary conditions at 24''C and -273°C yield the
following equation:

AV (2A)

AVjj(T) = [273 + T]

-10°C < T < 35°C

(B6)

From figure 12, it can be seen that AVj)(-196)
= 2.5 mV and AVd(24) = 10.0 mV; the slopes
calculated from eqs (B5) and (B6) then give
3.25 mV/°C and 3.37 mV/°C, respectively. A
straight line through the liquid nitrogen
data point (-196°C) with a slope of 3.25
mV/°C would be a reasonable representation
for AVq in the range -196 £ T <_ -40°C; the
same can be said for a line of slope 3.37
mV/^C through the data point at 24°C. Al-
though coincidental for this case, the slopes
of eqs (B5) and (B6) are virtually identical,
and hence, either line is a good description
for AVq over the entire temperature range of

interest.
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