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Semiconductor Measurement Technology:
Spreading Resistance Analysis for Silicon Layers

with Nonuniform Resistivity

by

David H. Dickey and James R. Ehrstein

Abstract

A simple mathematical algorithm is developed for the
calculation of resistivity depth profiles from spread-
ing resistance measurements on sectioned silicon de-
vice structures. It is applicable to structures con-
sisting of one or more layers of the same or differing
conductivity types. The algorithm accounts for modi-
fication of the sampling volume of the spreading re-
sistance probes arising from nearby variations, in

depth, of specimen resistivity whether resulting from
graded dopant distribution or electrical boundaries,
either insulating or conducting.

The algorithm is based on limiting case one- and two-
dimensional models of the conduction between the
probes. Compared with the traditional spreading re-
sistance analysis algorithm based on the three-
dimensional boundary value solution of Schumann and
Gardner, the present work offers greatly reduced
execution times even with a microcomputer, making
real time analysis for process control possible.

An experiment to test the accuracy of one of the
limiting models used is described. Profiles of
several diffused layers generated from spreading
resistance measurements analyzed by this algorithm
are compared with profiles obtained on replicate
specimens using another electrical technique. In

addition, computer experiments are used for simple
layer models to compare results based on this algo-
rithm with results from the Schumann-Gardner approach.

Key Words: Dopant profiles; resistivity; resistivity
profiles; semiconductor; silicon; spreading resistance.

1 . INTRODUCTION

The spreading resistance technique is a powerful method for deter-
mining dopant distributions in silicon device structures. Much of the
usefulness of the technique can be attributed to the relatively small
sampling volume involved. However, modern silicon devices commonly have
dimensions within their structure which are smaller than even this sam-
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pling volume, so it is often necessary to make calculations which remove

the effect of specimen boundaries or large resistivity gradients from the

measurements. Such calculations can be made only approximately and
generally rely on various simplifying assumptions about the structure
being considered. Of the approaches used for these calculations, that
given by Schumann and Gardner (SG) [1] is most generally applicable
because it is based on an approximate solution to the full three-
dimensional boundary value problem. Although several schemes [2-5] have
been presented to reduce the complexity and computation time of the cal-
culations associated with the SG approach, computer size and time re-
quired are still factors which inhibit its widespread usage.

In cases where the structure can reasonably be modeled in one or
two dimensions, other approaches allowing vastly simpler calculations
are possible. The work reported here is an investigation of the via-
bility of some simpler approaches and has culminated in a scheme for
making very rapid sampling volume corrections to spreading resistance
measurements. The scheme is applicable to all commonly encountered
structures and, in many cases, has an accuracy with reference to SG-based
results which exceeds the reproducibility of the basic measurements.
Briefly stated, the scheme uses differences between successive measure-
ments on a profile as a basis for calculating sampling volume correction
factors. During the course of the work, the theoretical relation between
profile slope (difference in successive measurements) and required cor-
rection factor was developed. For the general case, there is not a

one-to-one correspondence between slope and correction factor; but, for
limiting cases, the relation can become exact. Computer exercises have
been performed to test the "accuracy" of the theoretical results as de-
fined by comparison with the SG approach. Laboratory experiments have
been performed to test the slope-based scheme by comparing corrected
spreading resistance profiles with profiles as measured by the tech-
nique of anodic oxidation-incremental sheet resistance. The limiting-
case theoretical results have been combined in an empirical relation
which in turn has been incorporated into a BASIC computer program for
use in on-line data reduction.

The scheme presented here has a shortcoming which is shared by all
other known methods: it does not account for bevel-angle and bevel-edge
proximity effects [6] . These effects are sometimes important, yet vir-
tually impossible to deal with theoretically. This report describes one
brief theoretical consideration of the effect of the bevel angle and
also includes the results of an experimental investigation of the bevel-
edge proximity effect. Together, these results provide an estimate of
the possible errors one makes by ignoring the effects.

2 . THEORY

2.1 The Boundary Value Problem

The physical model assumed for a two-probe spreading resistance ex-
periment consists of two circular equipotential regions on one surface

2



of an infinite slab of resistive medium. The -disks have radius, a;

their centers are separated by a distance, s; and they are held at equal
but opposite potentials, +V and -V. The problem is to find the current
between the disks. The most general case considered is that of a resis-
tive slab having a variation in resistivity but only in the direction
normal to its surface. The slab may have infinite thickness, or it may
be bounded below by a layer of either infinite or zero resistivity.

For a slab of uniform resistivity and infinite thickness, the re-
sistance R between the disks is given in terms of measured voltage, V,
between the disks, and current, I, by the well-known relation [7]:

R = 2V/I = p/2a , (1)

where p is the electrical resistivity of the slab. If the slab has fi-
nite thickness, eq (1) must be corrected by a factor, F, which depends
on thickness and contact separation, so that the resistance is given by

R = pF/2a . (2)

In the following sections, discussion will be in terms of conductance as
well as resistance, so it is convenient at this point to write the equiv-
alent of eq (2) for the conductance between the disks:

G = 2aaH = 2aa/F , (3)

where a is the (uniform) conductivity of the slab and H is the recipro-
cal of the factor F

.

Exact calculation of the factor F (or its reciprocal) for a uniform
slab requires the solution of a potential-theory problem having mixed
boundary conditions. Moreover, it is a two-center problem; but this as-
pect can be safely handled by superimposing the potential distributions
around each disk treated alone as long as their separation is a few
times the disk radius. The mixed-boundary-condition aspect formally
requires the solution of a pair of dual-integral equations which do not
have a general analytical solution. With the assumption of a particu-
lar current distribution under each disk appropriate to a semi-infinite
specimen, SG used a known solution to the dual-integral equations to
evaluate F. Although their assumption is not generally valid, its use
introduces errors which (see Appendix A, sec. A. 4) do not exceed a few
percent. It should be noted that even the most streamlined version [5]

of their approach requires at least one numerical integration over a

fine scale grid with an integrand involving several transcendental func-
tions .

It is desirable to make certain simplifying assumptions in the model
used in order to formulate a sampling volume correction scheme which is

operationally simpler than that resulting from the boundary value solu-
tion of SG.

3
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Figure 1. Reciprocal of sampling volume correction
factor for an isolated uniform slab plotted vs. nor-

malized slab thickness. Probe spacing equal to 40
contact radii.

The method of images (detailed in sec. A. 2 of Appendix A) was used
to find numerical values of F for a two-layer structure to a very high
accuracy. This is done for a more general current distribution under the
contact than that assumed by SG, but one that is shown to come much
closer to meeting their assumed boundary condition of constant potential
under the contact. The image calculation results in the dependence of
H, the reciprocal of the correction factor F, on slab thickness shown in

figure 1.

For a slab consisting of a large number of layers of differing re-
sistivities, the method of images approach becomes very complicated.
The solution can be simplified in cases which can be modeled in fewer
than three dimensions.

In practice, there are a great number of structures in which the
total effective thickness is less than the contact radius. In these
cases, models can be constructed in which current is exclusively parallel
to coordinate directions . The most common case is that of a shallow dif-
fusion or implant where a p-n junction isolates the material being probed
from the substrate. In such cases, the current is two-dimensional and
predominantly parallel to the surface of the layer. A useful model is
one in which the equipotential contacts are cylinders extending through
the thickness of the layer. This model is used in section 2.2 as a

starting point to derive a more general solution according to the prin-
ciple of parallel superposition. Another limiting two-dimensional cur-
rent is approximated by a thin, relatively high resistivity structure on
a low resistivity substrate. Although the substrate may be very thick.
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the dominant contribution to measured resistance in this case is in the
high resistivity layers where current is predominantly normal to the sur-
face. A simple solution involving differences in successive measurements
is obtained from this model in section 2.3. Because the concepts to fol-
low are developed in terms of removing physical layers, a process which
normally proceeds from the top of the structure, a position coordinate
system is defined whose origin is at the original specimen surface and
which increases into the depth of the specimen's structure; see figures
2 and 3.

2.2 An Isolated Layer — Parallel Superposition of Conducting Sublayers

For a thin slab with uniform conductivity on an insulating sub-
strate, the conductance between two circular contacts on the surface
is given by eq (3) , where H depends on slab thickness t as derived in
Appendix A and shown in figure 1. For thickness less than the contact
radius, H(t) is always less than unity, see figure 1, and has for an
asymptotic limit at very small thicknesses [8]+

H(t) = -
/ ^

•

2a ln(s/a)

In this asymptotic region, the current is predominantly in the plane
of the slab and the model is equivalent to one in which the contacts
are cylinders extending throughout the thickness of the slab. If a

thin slab having nonuniform resistivity with depth is now subdivided,
as shown in figure 2a, into N layers each with different conductivity,
the conductance between the cylindrical contacts is given by

N

G, = —/ , > a. At ,

1 ln(s/a) 1

i=l

where At is the common thickness of each sublayer. In keeping with
the position coordinate convention above, the index, i, increases into
the depth of the structure. Equation (5) is the extension of eq (3) us-
ing eq (4) for H(t) . To fit the assumption of independent layers con-
ducting in parallel, one may consider the layers separated by virtual
insulators. Therefore, H is evaluated for the thickness to the nearest
insulator, namely. At. If the top sublayer is now removed, the conduc-
tance becomes

N

Go =
-, // N

a. At (6a)
2 ln(s/a) Z—/ i

i=2

= G - . /, ,
a. At . (6b)

1 ln(s/a) 1

t ITt
The result stated in the reference incorrectly gives H(t) = ;

— — r- .2a ln(2s/a)



(a)

Oti tN

Depth

(b) (c)

Figure 2. Multilayer model appropriate for isolated slab, showing con-
tacts (a) extending through total slab thickness, (b) at the surface -

parallel superposition, and (c) at the new surface after removal of layer
thickness At - parallel superposition.

Pi^

00

Pn

Ps

DISTANCE FROM SURFACE,!

Figure 3. Multilayer model for slab over con-

ducting substrate - series superposition.
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Rearranging eq (6b) , one finds for this limiting case of small total
thickness that the surface conductivity is

ln(s/a)
^1 = —

The conductivity of the next sublayer can be similarly found by remov-
ing that layer and measuring a third conductance. Thus, the entire slab

can be profiled by successively removing each sxablayer and using the

difference in measured conductance before and after removal of the sub-
layer to calculate each conductivity according to the generalized form
of eq (7) . This equation is closely analogous to the relation used with
a four-probe incremental sheet resistance experiment [9].

The preceding analysis assumed a thin slab so that eq (4) would be
valid. For thicker slabs, where probes cannot be represented as extend-
ing through the structure, a similar analysis can be made by subdividing
the slab not into sublayers of equal thickness but into layers of frac-
tional conductivity and incrementally increasing thickness as depicted
in figure 2b. As before, the layers are separated by virtual insulators

to assure conduction in parallel. Although the layers act as resistors
conducting in parallel, parts of the resistors happen to occupy the same

physical space. This model is then a mathematical construction utilized
to investigate the ramifications of extending the concept of parallel
superposition beyond the limiting case of very thin layers. Writing the

conduction of the slab as the sum of N individual conductances:

- G,

At
(7)

N

s = E K - ^i+1
i=l

H(t.) , (8)
1

where H{t.) is the uniform-layer correction factor for thickness t. . In

this model, each layer extends to the surface so the assumption of con-

tacts extending through the slab is no longer needed. If a physical layer

of thickness At is now removed from the top of the slab, the top layer

(t. = At) of the mathematical representation disappears and all other

layers become smaller by At; see figure 2c. The new conductance is then

N

^2 = 2^ E pi - ^i+l] «^^i - '

i=2

where t. is retained as the original thickness of the ith layer. Since

t. - At''"is just t. , eqs (8) and (9) can be rewritten in equivalent

form after shifting the indices on the terms involving cr :

7



N

^ = O. H(t.) + V a. fH(t.) - H(t. .)
2a 1 1 1 iL^ 1 [ 1 1-1

- a , H(t )

N+1 N
(10)

i=2

N

2a 2 2

i=2

The first term on the right in eq (11) is included for algebraic accura-
cy to balance an equal term included in the sum, although both terms are
zero because t^ is zero. Similarly, in the model (fig. 2b) is zero,
so these terms are dropped and the difference in conductance is taken as:

N

^ (G - G„ ) = a. H(t.) + a. [H(t.) - 2H(t. .) + H(t. .

2a 1 2 11 1 [ 1 1-1 .
1-.

. (12)

i=2

If the thickness of the top layer, t^ (= At) is small enough that H(t^)

is in the asymptotic region, H(t ) can be replaced with its value as
given by eq (4) and eq (12) can Be rearranged to find a ^:

G - G
^

^ln(sA). _1_ 2 _ 2a ln(s/a) y, ,2^^^^ , , (13)
IT At uAt

i=2

where the symbol A^^H denotes the second difference appearing in the
square brackets in eq (12) [10]

.

This second difference is always negative (note from fig. 1 that
H(t) is concave downward for the case of insulating substrate), but it
approaches zero for either very small or very large values of t. Equa-
tions (7) and (13) are thus seen to agree for the case of small total
slab thickness. The second term in eq (13) may be regarded as a correc-
tion to account for the contribution from subsurface layers in a thick
slab. To use this formula for a thick slab, one must first apply it to
the deepest points on a profile, and then work out toward the surface.
For more detail see Appendix B. When used in this way, the formula
gives the correct result (at least for points far from the insulating
substrate) even for a very thick slab of uniform conductivity. In this
case, the first term is negligible and the second can be shown to sum
to a since the a.'s are constant and can be taken outside the summation.
The exact form o^ H (t) has not been specified at this point because it
is not critical: H(t) needs only to asymptotically approach unity for
large thickness and the value given by eq (4) for small t.

The analysis leading to eq (13) is based on the concept called
Parallel Superposition: that the conductance of a nonuniform slab can
be written as a suiu of parallel conductances. This model was expected

8



to work well for thin layers with insulating substrates; but at the
time this work was begun, it was not known whether the concept would
yield exact results for intermediate cases of thicker slabs having a
wide variation in conductivity. A computer experiment was performed to
test the concept for a few of these intermediate cases with the conclu-
sion that it is not exact for the general case. The results of the com-
puter experiments are described in Appendix A.

2.3 Layer over Conducting Substrate — Series Superposition of Sub-
Layer Resistances

For a thin, high resistivity structure on a low resistivity sub-
strate, most of the resistance measured between two disk contacts on
the surface arises in the high resistivity layers. In the limiting case
where the total thickness of this region is much less than the contact
diameter, the current through the region is predominantly normal to the
surface of the structure. Figure 3 is an illustration of such a struc-
ture. The resistance measured at the surface in this case can be writ-
ten, approximately, as the sum of the incremental resistances in the
cylinders below each contact disk and the spreading resistance between
virtual contacts on the substrate:

(t. - t. ) p

R = 2 > p . <r + —
1 Z-< 1 TTa^ 2a

i=l

where p is the resistivity of the siabstrate. This formula would be a

closer approximation if the radii used in each term in the sum were pro-
gressively larger to account for slight spreading with depth, but the
equation is quite exact for the limiting case of small t. 's and large
values of p./p • If the layer nearest the surface is removed, the new
resistance wilf be smaller by just the first term in the siam, and the
resistivity at the original surface can be found from

Pi
= TTa'

R, - R^

At
Tra' AR

At
(15)

where R is the measured resistance after removal of the layer and At
is the (positive) thickness of the removed layer.

The important conclusion reached from this limiting case analysis
is that the surface resistivity can be found from the difference in suc-
cessive measurements, just as it was for the case of current parallel to

the surface . In the parallel case , the measurements were in terms of

conductance, and in the present case resistance measurements are made.
In actual practice with common spreading resistance electronics, mea-
surements are made in terms of the logarithms of resistance. In the

following section a convenient transformation is described which puts
both eqs (13) and (15) in terms of logarithms of measured resistance.

9



2 . 4 The Logarithmic Transformation

The basic spreading resistance equation for a two-probe experiment
is given in eq (2) , if F in that equation is the sampling volume correc-
tion factor. Formulas for F can be extracted from eqs (13) and (15)

since they both contain factors of the type AY/At. If AY and At are

both small so that the differential limit may be assumed, these factors
can be replaced as follows:

AY/At Y Aln(Y)/At .

With this substitution, eq (13) and eq (15) become:

N
a ^ ln(s/a) AlnG 2a

G IT At
i=2

(13a)

and

R

P

At

TTa2 AlnR
(15a)

The following is then extracted from eq (3) and eq (13a)

:

N

F = 2a ln(s/a) | AlnG 2a

At G At
V a. A2H(t. J/ 1 1-1

i=2

and from eq (2) and eq (15a)

F = 4 At
TTa AlnR

(16)

(17)

Further substitutions in eq (16) are made. In G = - In R and G =

1/R, to make eq (16) comparable in form with eq (17), i.e., based on the
directly measured quantity, log of resistance. This has the effect of
formally changing the sign of the first term in eq (16) and then cancel-

^ , . I- • ^ .1 -,
^In G ^ Aln Rmg the effect of this change, since for the same data —— and

have opposite signs:
At At

F = -2a ln(s/a)
IT

Aln R 2 aR
AtAt Sa.A2H(t. J

1 1-1

i=2

(16a)

In practice, it is preferable to establish the relationship be-
tween spreading resistance and resistivity with a calibration curve
rather than with a calculation based on eqs (2) , (13) , or (15) . An ap-
pealing feature of the logarithmic transformation is that it preserves
the linear relation between resistance and resistivity so that the cali-

10



bration curve can still be used. Equations (16a) or (17) can be used
to find the correction factor, and resistivity can then be found from
the calibration curve using the corrected resistance, R/F . Note that
without the logarithmic transform, eqs (13) and (15) relate resistivity
to terms such as AR/At which are not necessarily linear in R.

Converting the results of the initial derivation to a form compati-
ble with data as measured requires several transformations or changes
of reference point, each entailing possible sign changes. Remembering
that the correction factor, F, must be positive since it is the ratio of
positive quantities R, a, and p, it is useful to consider the effect of
sign convention on the component terms. Because of the definition of
the coordinate, t, in the derivation of eqs (13) and (15) , At = t. - t.

^
is positive although it corresponds to the removal of a physical iayer'l"

The differences AG = G
. ^

- G^ and AR = R. ^ ~
^i'

constructed, are

also positive because ^or the'^physical situations described: those of

parallel conductances and series resistances, respectively, the respec-
tive total conductance and resistance are larger for positions near the

surface than for positions into the depth of the structures. The ratios,
AG AR-— [from eq (16)] and — [from eq (17)], are positive as defined for the

AR
the coordinate t starting at the top surface; also, — [from eq (16a)] is

negative. It is to be noted, however, that AG and AR are defined in the

opposite sense from At for the interval being considered, -for example,
G — G

_ initial final , -, ^ ^- AG ^ AR
AG = —

. As a result, the ratios, —- and —- are the
t^. - t. .. , . 'At At
final initial

AG AR

negative of the ratios —^ and -r— taken from the slopes of the measured
^ At At

conductance, G vs. t, and the measured resistance, R vs. t, relations

as. they would Be taken directly from acquired data, see figure 4. The

equations for F are rewritten using R to reflect the evaluation of the

AR interval in the same sequence as tRe At interval, the top surface

still being taken as the origin:

2a ln(s/a)

F =
Aln R

m
At

2a R

At
m

N

a. A2H(t. J
1=2

(16b)

F =
- 4 At
Tra AlnR

(17a)

For the parallel superposition model, illustrated in figure 4a, the

first term in eq (16b) is positive; the second is the negative of a term,

A^H, itself negative, as discussed subsequent to eq (13). The value for

F in eq (17a) appropriate to the series superposition model, is the nega-

tive reciprocal of the slope of the R v-s. t relation in figure 4b, it-

self negative. Hence, in both cases,^ is clearly positive as it must

be, since it is the ratio, 2aR/p of positive quantities.

11



0 Distance from top surface, t Q Distance from top surface, t—
a. Case of isolated slab: parallel b. Case of conducting substrate
superposition model. not insulated from slab: series

superposition model.

Figure 4. Schematic dependence of conductance and resistance on depth
at which measurement is made below original surface of the structure.
Reverse coordinates, referenced to layer-substrate interface also shown.
Slopes, tangent to curves, as shown, are referred to coordinates origi-
nating at top surface. Schematic values of Rq and Rg are shown for ref-
erence in interpreting the substrate factor K.3

.

2.5 Local Slope

The equations developed in the preceding section provide limiting
case descriptions of the behavior of the sampling volume correction fac-
tor. In both cases the behavior is governed by the slope of the spread-
ing resistance data profile. The local slope of the measured resistance
profile, AlnR /At, is written as m, and the thin layer limiting forms
for F become:

and

where

and

F = K^m, for m >> 0 (18)

F = -K^/m, for m << 0 (19)

. 2a ln(s/a)
^^O)

1 TT

K = — . (21)
2 fra

12



— <»—— 0 Local slope, m —-l-^

Figure 5. Schematic representation of slope-dependent terms for the cor-
rection factor F, as derived from limiting case analysis: solid lines —
regions where the terms are applicable; dashed lines — regions of ques-
tionable validity; dotted line — hypothesized form for F in region of
intermediate slope.

It is to be noted that the natural unit for the local slope, m, is de-
cades (of resistance change) per micrometer of depth into the specimen.

In the asymptotic form for large positive slope, the second term in

eq (16) is ignored because it is always negligible relative to the slope
term under these conditions. Since the second difference of H(t) is al-
ways negative (or zero) , this second term will always make a positive
(or zero) contribution to F.

For near zero slope, indicative of remote lower boundary, nearly
uniform material, or both, F should be on the order of unity and neither
of the above forms is realistic. Figure 5 illustrates the asymptotic
forms given above and the expected approximate form of F for intermedi-
ate values of m. The two asymptotic forms above can be combined into a

single hypothesized form which displays the correct asymptotic behavior
for large positive and negative slope

F = K^m/2 + /(K^m/2)2 + K^K^ • (22)

When the slope is zero, this equation reduces to a value near unity.

F = /k^K^ = /8 ln(s/a)/7T2 . (23)

Equation (22) is a reasonable approximation to the sampling volume
correction factor for any profile, regardless of whether the slope is

positive, zero, or negative. The error resulting from the formula is

largest for profiles on bulk samples of uniform, resistivity, for which



«

the slope is zero and the sampling volume correction factor should be

unity. For example, with a probe spacing, s, equal to 40 contact radii,

a, the factor K^K^ on a profile with zero slope is approximately 3.0

which results in a value for F of about 1.7, as opposed to unity. How-
ever, for either large positive or large negative slope, eq (22) rapidly
approaches the correct limiting value.

An improvement can be made in the overall applicability of the

local-slope formula in the range of intermediate m values by replacing
the constant K in eq (22) by a variable factor which depends on the
measured resistance approximately one contact radius deeper on the pro-
file. This variable factor is called the substrate factor, K . For the
bulk specimen case mentioned above, the resistance one contact radius
deeper is equal to the resistance at the point being corrected, so for
this condition the variable factor K should have the value of unity.
The formula tentatively adopted for the substrate factor is

where R and R are the measured, i.e., uncorrected, resistances at the
o s

point being corrected and at a point approximately one contact radius
deeper on the profile, respectively; the arctan function is expressed in
radians. This form, admittedly arbitrary, was chosen because it is a

continuous , monotonic function in the interval O < R /R < °° and because
9 OS

it contributes to F in the same sense that the A'^H term does in eq (16) .

This formula gives values for the substrate factor of

= K for R /R >> 1 (conducting substrate, m << 0),
3 1 2 o s

= 1 for R /R =1 (bulk specimen, m - 0) , and
3 OS

= 2-K, for R /R << 1 (insulating substrate, m >> 0).
3 12 o S

The values for the first two conditions lead to accurate sampling vol-
ume correction factors, and since the value of has negligible influ-
ence on the magnitude of F in the case of large positive slope (the

third condition above) , acceptably accurate results are expected for all
conditions if the term K^K^ in eq (22) is replaced by . (See also the
discussion in Appendix B and Appendix D for operational application to

real data.)

The final operating equation for F which is expected to have gener-
al application in depth profiling by spreading resistance is, therefore,

assuming the data are analyzed from the near surface side of the layer
working into its depth, as was done in the derivation. However, since
the form K requires evaluation of the resistance at point below the one

= 1 + (K K - 1) (2/tt) tan ^ [log (R /R ) ] ,

3 12 OS (24)

(22a)

14



for which the factor F is being evaluated, it becomes more convenient to
proceed with the analysis from the bottom of the structure. For analysis
starting at the deepest part of the layer and working towards the shal-
lowest, as is done in Appendix B, the computed slope has the opposite
sense from the foregoing, resulting in:

Km /UnV
^ = - — " J\-r) * S <22'='

3 . EXPERIMENT

3.1 The Probe Spacing Experiment

For the case of a uniform layer, thin enough that H(t) is in the
asymptotic region, on an insulating substrate, the resistance measured
between the two contacts is [from eqs (2) and (4)]:

R = p ln(s/a)/TTt = ^ [ln(s) - ln(a)] . (25)
ut

If ln(s) is the independent variable, this is an equation of the type

y = m(x-b) (26)

where the slope, m, is p/rrt and the x-axis intercept, b, is ln(a). The
experiment suggested by this equation is to measure spreading resistance
on a thin layer at various values of probe spacing and to plot the re-
sults with R on a linear scale and s on a logarithmic scale. The plotted
points should fall on a straight line with slope 2.3 p/TTt (ohms per dec-
ade) and with an intercept on the horizontal axis (R = 0) , at an extrapo-
lated spacing equal to the contact radius. This experiment was performed
with various layers and probe loadings, with consistent results. Typical
results for three thin p-type diffused layers with different junction
depths are shown in figure 6a and results are summarized in table 1. The
resistivity in these layers is not uniform, but if p/t is interpreted in

eq (25) as being the sheet resistance, close agreement is found between
the slopes in figure 6a and sheet resistances measured on the specimens
by four-probe, see table 1. Note that in figure 6a the same value of in-
tercept is found for all three p-type layers, indicating a common value
of the contact radius, a. Figure 6b and table 2 show the results of a
similar experiment performed on both n- and p-type diffusions with two

probe loads. Note that the value of slope does not depend on probe load

for either p- or n-type specimens, and consistent values of sheet resis-
tance are obtained. The difference in intercepts for n- and p-type layers

at a given load implies either a difference in contact radius for the two

types of material or the presence of a type dependent series resistance.
Values of a, derived from the x-axis intercept. In (a), eq (25), in such

probe spacing experiments, were used in calculating correction factors,

F, used in profile analyses in section 3.2.

The important result of these experiments is that the measured
spreading resistance on an isolated, thin, nonuniform layer is indeed

15
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Figure 6. Spreading resistance vs. probe spacing for junction-isolated
layers. Layer-type and four-probe sheet resistance values are: (a)

O, p-type, 284 fi/D; p-type, 126 S^/D; a, p-type, 56.4 f^/D; (b) O and A,
p-type, 76.4 ,- and O, n-type, 52.0 fi/o . All data for figure 5a and
for triangle and diamond in figure 6b taken at 20-g probe load; data for
circle and square in figure 6b taken at 10-g load.

16



Table 1. Comparison of Diffused Layer Sheet Resistance Values for
Three Boron Diffusions.

Specimen
Sheet

Four Probe

Resistance, Q,/n

Two Probe
ln(s) Dependence^

Boron diffusion. X .

J

0. 7 ymb 284 250

Boron diffusion, X .
= 1. 6 ym^ 126 126

Boron diffusion.
J

X .

J

= 4. 3 ym*^ 54.6 52

Two-probe data are shown in figure 6a.

Profile data for this diffusion are shown in figure 7.

Profile data for this diffusion are shown in figure 8.

Profile data for this diffusion are shown in figure 9.

Table 2. Comparison of Diffused Layer Sheet Resistance Values for One

n-Type Diffusion and One p-Type Diffusion.

Sheet Resistance, Q/o

Specimen
Four Probe

Two Probe, ln(s) Dependence^
(average of 10 g and 20 g data)

Boron diffusion'^ 76.4 81.9

Phosphorus diffusion^ 52.0 53.3

Two-probe ln{s) dependence is shown in figure 6b.

Profile data for this diffusion are shown in figure 10.

Profile data for this diffusion are shown in figure 14.
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found to be closely related to the sheet resistance of the layer. The

result is a verification of eq (8), and by implication, the difference
equations which lead to eq (16)

.

It should be noted that the consistency of the data down to the

smallest spacing shown corresponding to s/a ratios as small as 7 or 8, im-
plies that the basic model for isolated layers is valid down to s/a ratios
of this order. Hence, any volume correction factors derived from the mod-
el should be applicable to data taken with such s/a values. However, pre-
liminary data, not shown, indicate a breakdown of the linear dependence
of R on ln(s) when using probe spacing on the order of 6 to 8 ym, corre-
sponding to s/a values as small as 4 or 5. Use of volume correction fac-

tors as derived here are questionable under such s/a measurement condi-
tions .

3.2 Diffusion Profiles

The sampling volume correction schemes described above were tested
in a series of experiments. Test specimens containing relatively shal-
low diffusions were prepared, and spreading resistance profiles of the
diffused regions were generated. Two sets of specimens were used in
these experiments, each prepared to test a particular volume correction
equation. The conductivity profiles corrected as discussed below were
then compared with profiles generated using the incremental sheet resis-
tance method, ISR, on adjacent sections of the same specimens. The re-
sults generally substantiate the validity of the correction schemes, but
a number of experimental effects (primarily angle effects, see sec. 2.3)

not accounted for in the theory here are evident in the comparisons

.

The first set was a series of boron diffusions having a wide range
of junction depths (0.7, 1.6, and 4.3 ym, as measured by angle lap and
stain) and nominally constant surface concentration (about 1 x 10^^

atoms cm~^) , the substrate being 10 ^'cm n-type silicon. This set was
intended to provide a range of conductivity gradients and layer thick-
nesses to test the range of validity of the concept of parallel super-
position .

The conductivity profiles obtained on this set of specimens are
shown in figures 7 to 9 . The points shown were derived from spreading
resistance data using the parallel superposition formula, eq (16) . The
procedure is to first estimate the slope at the deepest point still
above the junction, calculate a correction factor using only the first
term in eq (15) , adjust the measured resistance at that point by the fac-
tor F, and look up the conductivity corresponding to the adjusted resis-
tance on the calibration curve generated from a sequence of bulk silicon
specimens with known resistivity (conductivity) , having the proper crys-
tallographic orientation. The conductivity value thus obtained is plot-
ted on the final graph for the datum in question and is also used in the
second term of eq (16) when the correction factor is calculated for each
succeeding shallower point. For each succeeding point (working toward
the surface) , an additional term appears in the summation term of eq
(16) , so when the point at the surface is considered, the summation is

18
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Figure 7. Conductivity profile for boron diffusion into
nominal 10-fi*cm n-type substrate. Nominal surface density
of boron, 10-^^ cm~^; junction depth by lap and stain, 0.7
ym. Open circles, spreading resistance data corrected using
parellel superposition, eq (16b); solid circles, uncorrected
spreading resistance data; solid line, smoothed incremental
sheet resistance data.
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Figure 8. Conductivity profile for boron diffusion into
nominal 10-^2 •cm n-type substrate. Nominal surface density
of boron, 10-^^ cm~^; junction depth by lap and stain, 1.6

ym. Open circles, spreading resistance data corrected using
parallel superposition, eq (15b); solid circles, uncorrected
spreading resistance data; solid line, smoothed incremental
sheet resistance data.
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Figure 9. Conductivity profile for boron diffusion into
nominal lO-fi'cm n-type siibstrate. Nominal surface density
of boron, 10^^ cm~^; junction depth by lap and stain, 4.3

ym. Open circles, spreading resistance data corrected using
parallel superposition, eq (16b); solid circles, uncorrected
spreading resistance data; solid line, smoothed incremental
sheet resistance data.
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over all points between the junction and the surface. Appendix B con-
tains further details of the calculations. Simple analytic expressions
are used as approximations for H and its second derivative and are de-
scribed near the end of Appendix A.

In each case for these first three specimens, the spreading resis-
tance profile lies below the incremental sheet resistance (ISR) profile
near the surface but coincides closely at deeper points. The discrepancy
is thought to be related to bevel-angle effects [5]. Such effects, which
are absent in the ISR experiments, are not accounted for in the data re-
duction scheme used here. The general agreement between the two methods
is taken as proof of the viability of the superposition scheme for speci-
mens with an isolating junction.

The second set of diffusions was prepared on substrates of widely
different resistivity but with nominally constant profile shape and
depth. This set was used to determine what effects the presence of a

low resistivity substrate below the junction would have on the corrected
profiles. Profiles for this set of specimens are shown in figures 10 to

17 and a summary of profile parameters is given in table 3. This set of
specimens consisted of four boron-diffused wafers and four phosphorus-
diffused wafers. The boron diffusions were made under the same diffu-
sion conditions into three n-type substrates of nominal 0.03, 1.0, and
150 fi'cm resistivity and into one p-type substrate of nominal 100 Q,'cm

resistivity. The phosphorus diffusions were made under the same diffu-
sion conditions into p-type substrates of nominal 0.03, 1.0, and 100 f2*cm

resistivity and into one n-type substrate of nominal 150 f2*cm resistiv-
ity. Each of the spreading resistance-based profiles was generated, using
the local slope formula, eq (22) . This formula yields results almost in-
distinguishable from those obtained from parallel superposition, not
shown, particularly for points less than one or two contact radii from a

junction. The agreement with the ISR profiles was generally the same as

was found with the first set of specimens: the spreading resistance pro-
files tend to be low near the surface, especially on p-type layers. The
depth scales do not coincide exactly in all cases, owing to experimental
error in both measurements and to the fact that slight variations in
junction depth occurred in the different regions of the specimen analyzed.

Comparing figures 10 and 13 for boron diffusions, and figures 14 and
17 for phosphorus diffusions, a very good agreement is seen in each pair
for profile shape and absolute value from the surface to within a few
points of the junction. This is taken as an indication that the local
slope method works quite well even when the substrate does not approach
one of the limiting cases in the starting models.

The computer program used for reduction of the spreading resistance
data is described and listed in Appendix B. It incorporates both eqs
(16) and (22) as separate routines and includes data logging and cali-
bration curve look-up routines . The program does not include raw data
smoothing so the results may suffer from random variations in the data.
Execution times for the local slope routine are on the order of three
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DEPTH iMm)

Figure 10. Conductivity profile for boron diffusion
into nominal 150-J^*cin n-type substrate. Nominal boron
surface density, 10-^^ cm~^. Open circles, spreading
resistance data corrected by the local slope method,
eq (16b); solid circles, uncorrected spreading resis-
tance data; solid line, smoothed incremental sheet
resistance data.
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Figure 11. Conductivity profile for boron diffusion
into nominal 1.0-fi*cm ri-type substrate. Nominal boron
surface density, 10-^^ cm~^. Open circles, spreading
resistance data corrected by the local slope method;
solid circles, uncorrected spreading resistance data;

solid line, smoothed incremental sheet resistance data.
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Figure 12. Conductivity profile for boron diffusion
into nominal 0.03-^2 •cm n-type substrate. Nominal
boron surface density, 10^^ cm~'^. Open circles,
spreading resistance data corrected by the local
slope method; solid circles, uncorrected spreading
resistance data; solid line, smoothed incremental
sheet resistance data.

10°
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Figure 13. Conductivity profile for boron diffusion
into nominal 100-^2 • cm p-type substrate. Nominal boron
surface density, 10^ cm . Open circles, spreading
resistance data corrected by the local slope method;
solid circles, uncorrected spreading resistance data.

Compare with figure 10 for effect of noninsulating
boundary on profile interpretation.
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Figure 14. Conductivity profile for phosphorus diffu-
sion into nominal 100-f^*cm p-type substrate. Nominal
phosphorus surface density, 10^ cm" . Open circles,
spreading resistance data corrected by the local slope
method; solid circles, uncorrected spreading resistance;
solid line, smoothed incremental sheet resistance data.
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Figure 15. Conductivity profile for phosphorus diffu-
sion into nominal 1.0-J^*cm p-type substrate. Nominal
phosphorus surface density, 10^^ cm~^. Open circles,
spreading resistance data corrected by the local slope
method; solid circles, uncorrected spreading resistance;
solid line, smoothed incremental sheet resistance data.
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Figure 16. Conductivity profile for phosphorus diffu-
sion into nominal 0.03-J^*cm p-type substrate. Nominal
phosphorus surface density, 10^^ cm~^. Open circles,
spreading resistance data corrected by the local slope
method; solid circles, uncorrected spreading resistance
solid line, smoothed incremental sheet resistance data.
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Figure 17. Conductivity profile for phosphorus diffu-
sion into nominal 150-fi*cm r2-type substrate. Nominal
phosphorus surface density, 10-^^ cm~^. Open circles,
spreading resistance data corrected by the local slope
method; solid circles, uncorrected spreading resistance,
Compare with figure 14 for effect of noninsulating
boundary on profile interpretation.
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seconds per point for the Hewlett-Packard Model 9830A programmable cal-
culator. For the parallel superposition routine, times run as high as

10 s for the last few points on a 40-point profile. As can be judged
from the simplicity of the program listed in Appendix B, a relatively
inexpensive machine can be used for data reduction and so can be con-
sidered as a dedicated accessory to the spreading resistance probe.

3.3 Bevel-Edge Proximity Effect

When the original top surface of a beveled specimen is probed, an
increase in measured spreading resistance is often noted as the bevel
edge is approached. The effect is most noticeable on shallow diffusions
and depends on the spacing between the two probes. The effect is an ob-
vious illustration of asymmetry introduced by beveling away one side of
the specimen. A theoretical treatment of the effect is an extremely
complicated task involving conductivity gradients below the surface,
bevel angle and location, and probe spacing. The interrelation of angle
and spacing was investigated briefly on one of the specimens used for

the profiling experiments. The results are shown in figure 18 where
spreading resistance on the original surface is plotted versus dis-
tance from the bevel edge for two bevel angles and two values of probe
spacing

.

A partial understanding of the bevel-edge proximity effect can be
gained by considering the simple case of a uniform-resistivity wedge-
shaped specimen. A theoretical treatment of this problem is given in
Appendix C. The results of this investigation show how the uniform-
layer correction factor is affected by nonparallel top and bottom sur-
faces of the classic infinite slab. As in the experimental investiga-
tion above, the effect is minimized with small probe spacing and, of

course, vanishes as the bevel angle approaches zero.

4. CONCLUSIONS

The exact solution of the boundary value problem associated with a

spreading resistance experiment is an exceedingly difficult task. Ex-
perimental problems, such as barrier resistance effects, probe calibra-
tion, and probe stability, introduce errors which make the accuracy of
computations difficult to verify. This work has shown that simplifying
the theoretical model can accrue computational savings which far out-
weigh the loss of accuracy involved. The mathematical treatments of
limiting-case parallel and series models have served to provide propor-
tionality constants which tie the empirical local slope scheme to a

physical model.

The probe spacing experiment has two main values: it demonstrates
that spreading resistance on a thin, insulated structure is closely re-
lated to sheet resistance , and it provides an experimental value for
contact radius which is a necessary parameter in the calculations.

The diffusion profile experiments, while demonstrating the viabil-
ity of the correction schemes, serve better to illustrate the need for
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Figure 18. Spreading resistance in the vicinity of the bevel edge.
Specimen same as shown in figure 10. Original top surface extends to
left of demarcator. Step size is 10 ym.
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further understanding of bevel-angle effects. A recent investigation

[5] has shown that if spreading resistance data are taken on an anodical-
ly sectioned (rather than beveled) specimen, much of the discrepancy of

the type observed near the top of the layer will disappear.
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APPENDIX A

COMPUTER EXERCISES TO COMPARE CORRECTION FACTOR METHODOLOGIES

A.l Introduction

The exercises described here were designed to test the two schemes
developed: parallel superposition for isolated layers only and local
slope for general layer configurations

.

In Exercise I, section A. 2, the correction factor from parallel su-
perposition is compared with factors calculated using the method of im-
ages. Here a single thin layer of uniform conductivity on an infinitely
thick substrate of lower conductivity is considered. In Exercises II
and III, section A. 3, both parallel superposition and local slope are
compared with the results from the Schumann-Gardner (SG) approach. In
Exercise II, they are compared for two uniform layers on an infinite sub-
strate and, in Exercise III, for three layers on an insulating siibstrate

.

(The second exercise, wherein the bottom-layer thickness is taken as
very large, is a special case of the third.)

A. 2 Exercise I — Parallel Superposition versus Image Solution — Based
on Current Admixture

For this exercise, the correction factor evaluated using the paral-
lel superposition formalism is compared with a correction factor derived
directly from the method of images. This latter correction incorporates
finite size contacts and a more general current distribution than used by
SG. This more general current distribution allows calculations that
reasonably guarantee, not merely assume, constant potential value under
the contacts. In this way, parallel superposition is tested with the most
generalized physical parameters yet developed which meet the basic boundary
conditions. In order to keep the image solution tractable, however, the
model is limited to two layers.

The image solution using current admixture is constructed as follows:

the radial potential distribution for one of the contact disks is derived
for two types of current distribution over the disk, one being a ring-
shaped distribution in which the current is a delta function at the pe-
riphery of the disk (correct for a very thin, isolated single layer) , and

the other being the classical distribution appropriate for a semi-infinite
uniform solid. The radial potential for unit current of each distribution
is calculated and admixed to achieve an approximately constant radial po-
tential. The model used for this first exercise is shown in figure Al

.

By taking the substrate conductivity as zero in this model, the result

is the correction factor for an isolated slab of arbitrary thickness,

and subsequent results (for various thicknesses) are then used to cal-

culate factors for arbitrary substrate conductivity from parallel su-

perposition .

Given a ring-shaped current of radius, a, imbedded in a medium with

uniform resistivity and located a distance, z, above the origin, the po-
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Figure A2 . Radial potential distribution on a spreading resistance con-
tact. Structure of figure Al with t = 0.3a and 6 = 0.5 (ai = 302).
Curve A: from the ring-shaped delta function current distribution, eq
(A3); curve B: from current distribution appropriate to semi-infinite
substrate, eq (A4) (this is the distribution used by SG) ; curve C: from
admixture of current distributions above. The admixture coefficient is

chosen to force V^(0) to equal (r/a = 0.9) with the result for this
structure = (1 - 0.659) + 0.659 Vg

.
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tential V(r,z) on the z = 0 plane may be written in terms of Legendre
polynomials [11]

:

V(r,0) =

Tr/a^

(Al)

For a ring-shaped current on the surface of the model of figure Al , the
potential inside the ring can be written as a sum of terms, each of the
same form as eq (Al) , where each term of the sum corresponds to an im-
age source. If the real source has strength I, the first image pair
(at a distance z = ±2Nt) will have strength 31/ where

(A2)

Each succeeding image pair will be weaker by the factor 3. If the sub-
strate has zero conductivity, 3 is unity and each image has the same
strength as the source. The second contact, displaced a distance s, also
has a series of images of similar strength associated with it. For sim-
plicity, using s = 40a, the second contact and its images can be assumed
to be point-like and a constant potential is subtracted to account for
them. The radial potential then, inside the first current ring, is given
by

V(r,0) = IP

27Ta

1=0 L J

(A3)

^ /a2 + (2Nt)2 f-'V/a2 + (2Nt)2/ \^ 7^2 + (2Nt)2/
N=l )i=0 ^N=l

/s2 + (2Nt)2

This expression has been summed numerically for various values of r, t,

and 3. The results for t = 0.3a and 3 = 0.5 are shown as curve A in fig-

ure A2.

The second current distribution to be considered is that appropri-

ate to an equipotential disk contact on a semi-infinite uniform solid,

namely:

J(r) =
2-na'

1 - (r/a)

]-l/2

(A4)



Given this distribution, the potential at any point in the solid is [11]

V(r,z) =
2Tra

sin
- i 2a

_/(r-a) 2 + z2 + /(r+a)2 + z2_

(A5)

This current distribution is applied to the two-layer model structure,
using the same image strengths as before; the radial potential on the
first contact, z = 0, is written as

V(r,0) = 12.
4a

Sin-

N=l

_ 2a _ 2

ITS TT y -t

N=l

2a

/(r-a)2 + (2Nt)2 + /(r+s)2 + (2Nt)2

/s2 + (2Nt)2

(A6)

where the second contact and its images are again assumed to be point
sources. This expression has also been summed numerically; the results
for t = 0.3a and 3 = 0.5 are shown as curve B in figure A2 . (It is this
radial potential which is averaged over the surface of the disk in the
SG approach .

)

There is not a linear current admixture, using the two types of cur-

rent distribution considered above, which will result in a constant radi-

al potential under the contact for any particular values of t and 3

•

Nevertheless, the requirement of constant potential can be approximated:
mixtures of the two (keeping unit total current) have been taken which
force the potential at r = 0.9a to equal the potential at r = 0 . The
result of such admixture for t = 0.3a and 3 = 0.5 is shown as curve C in

figure A2 . The difference between curve B, the SG distribution, and
curve C suggests that noticeable errors may occur in the SG procedure as

a result of considering only the current distribution appropriate to a

semi-infinite solid, when evaluating more general structures. As will
be shown in section A. 4 of this appendix, this error is small, at least
for the representative structure chosen.

A more complete representation of the results of the above current
admixture procedure is given as the "exact" entries in table Al for vari-
ous values of top-layer thickness, t, normalized to contact radius, a,

and of the conductivity ratio, 3- To derive the values in the table,
after determining the admixture coefficients in each case for which
V(r = 0) equals V (r = 0.9a), the potential at r = 0 was taken as the ef-

fective potential on the disk contact. An equal but opposite potential
was assigned to the second contact. The reciprocal correction factor H

was then determined for selected cases using appropriate admixtures of
eqs (A3) and (A6) to calculate the resulting differences, AV, of the
potential between the probes, with H being given by:
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pi

2aAV (A7)

The results for 3=1 (corresponding to a = 0) are the most accurate
values known for the isolated single layer correction factor and are
therefore referred to as exact in this appendix. These results are used
in section A. 4 of this appendix to compare with the results of the SG
assumptions on current distributions and are used below to calculate
values for nonzero substrate conductivity using parallel superposition.

Table Al — Reciprocal Correction Factor, H, for a Single
Layer of Thickness t on Lower-Conductivity, In-
finite Substrate

t/a

0.1
exact

approx

1.016173

1.016173

0.1 0.5 0.9

0.874233

0.839153

0,442556

0.367099

0.134553

0.093805

1.0

0.042562

0.042562

1.0
exact 1.016173 0.963419

approx 1.016173 0,898496

0.745523 0.478176 0.363947

0.584689 0,403011 0.368947

10
exact 1,016173

approx 1,016173

1,012463 0.995510 0. 972602 0.964729

1,006820 0.981877 0.967437 0.964729

To derive the results of parallel superposition analysis of the
structure in figure Al for comparison with the foregoing, the reciprocal
correction factor H for measurements on the top of the structure is taken
from eq (3)

:

H = Gi/2aoi (A8)

Note that H is shown with no layer thickness dependence when it is the
correction factor for the entire underlying structure. By parallel su-
perposition analysis of the structure

G = 2a [(01 - 02) H(t) + a2H(«>)] , (A9)

where H(t) and H(°°) are the values of H appropriate to the two layers of
the structure, see figure Al. Then, combining eqs (A8) and (A9) , the

factor, H, for the entire structure is given in terms of the individual
H values for the two component layers by:

Oi - O2 ^2
H = H(t) + — H(°°) (AlOa)
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Each component term, H(t) and H(oo), is most accurately evaluated, in

turn, as a case of the isolated single layer, using the current admixture

formalism above. The factor H from parallel superposition is thus evalu-

ated for the same values of t and 6 and current admixture formalism as

was the image-derived solution for H above; the results from parallel
superposition are given as the "approx" entries in table Al

.

Table Al compares values of the correction factor, H, derived from
an image calculation, with values of H calculated by assuming that the

structure could be represented as independent parallel conducting layers

.

Both calculations feature the same treatment of the boundary value poten-

tial under the contacts as determined from the generalized current dis-

tribution used in this work, and appropriate to the same infinite thick-

ness of the top layer. The discrepancies seen in table Al between the re-

sults from parallel superposition and the "exact" results obtained by ad-

mixing eqs (A3) and {A5) are not serious, and yet they provide proof that
the parallel superposition concept is not in general valid.

A. 3 Exercises II and III — Parallel Superposition and Local Slope versus
the Schumann and Gardner Boundary Value Solution

The model used for the following calculations consists of two uni-
form layers of differing conductivity on a third layer of still different
conductivity. In Exercise II the third layer has infinite thickness,
and in Exercise III the third layer has a thickness equal to that of
the first two and is bounded below by an insulating surface. The struc-
ture is shown in figure A3. The SG method is used to calculate refer-
ence two-probe correction factors for the structures , and then the par-
allel superposition and the local slope methods are employed to calcu-
late equivalent factors for comparison.

The correction factors calculated in the SG approach are found by
numerical integration of the expression, [1]

:

F = — 26 (k)

Jl(k) Jo(sk)

"k^ 2k
sin(k) dk (All)

The integrals were evaluated using a trapezoid method with an interval
dk = 0.01 and are truncated at the upper limit k = 10.* A probe spacing.

* An interval dk = 0.005 and an upper limit k = 20 were used for several
integrations, with insignificant change in the results.
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Figure A3. Schematic conductivity profile for
Computer Exercises II and III. The layer with
conductivity 03 is infinitely thick for Exercise
II

.

(A13)

s, equal to 40 contact radii was assumed for all the calculations. The
integration factor for the first structure (Exercise II) is

1 + 3 E + ^ E + B^a^E/E

and for the second structure, it is

1+26 (K) =

(1 + E3)E^E^ + B^E^(E3 + E^^) + B^E^ (E3 + e/) + B^B^ (e/ + E^^E^)

(1 - E3)E^E2 . 3^E^(E3 - E^^) , ^^^^^^^ _ ^^2) ^ 3^3^ (^^2 _ ,,^2^^)

where

E. = e~^^^^ (A14)
1

and
(a. - a._^,)

B. =
,

"
, . (A15)

1 (a. + a.^^)

The correction factors obtained from the SG technique for the various
combinations of thickness and conductivity ratios are listed in table A2
for the first structure and in table A3 for the second structure. These
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Table A2 — Sampling Volume Correction Factors for Exercise II*.

^1

6,z
0.9 0.6 0.3 0.0 -0.3 0.6 -0.9

0.9 34.532 19.355 12.401 8.008 4.878 2 .495 0.601
= 0. 05a 0.6 21.488 8.875 4.976 2.959 1.708 0 .851 0.225

0.3 15.078 5.298 2.805 1.622 0.927 0 .467 0.141
= 0. 10a 0.0 10.669 3.326 1.704 0.976 0.560 0 .291 0.103

-0.3 7.210 2.042 1.029 0.591 0.346 0 .190 0.081
= 00 -0.6 4.286 1.128 0.570 0.335 0.206 0 .124 0.067

-0.9 1.683 0.438 0.235 0.152 0.106 0 .077 0.057

0.9 19.499 12.277 8.326 5.601 3.533 1.879 0 509
= 0 10a 0.6 13.846 6.652 3.996 2.493 1.502 0.791 0 253

0.3 10.525 4.360 2.474 1.502 0.899 0.486 0 185
= 0 20a 0.0 8.008 2.959 1.622 0.976 0.591 0.335 0. 152

-0.3 5.866 1.970 1.062 0.644 0.402 0.244 0 132
— CO -0.6 3.901 1.217 0.659 0.412 0.272 0.182 0 119

-0.9 1.990 0.614 0.354 0.241 0.178 0.138 0. 109

0.9 7.335
= 0. 30a 0.6 6.157

0.3 5.237
= 0. 60a 0.0 4.424

-0.3 3.650
= oo -0.6 2.872

-0.9 2.045

5.372 3.980 2.831
3.703 2.513 1.738
2.820 1.846 1.265
2.202 1.417 0.976
1.717 1.102 0.773
1.310 0.854 0.619
0.955 0.651 0.496

1.966 1.179 0.487
1.173 0.734 0.379
0.866 0.571 0.340
0.686 0.477 0.319
0.563 0.415 0.305
0.472 0.370 0.295
0.401 0.335 0.288

0.9 2.245
= 1.2a 0.6 2.137

0.3 2.025
= 2.4a 0.0 1.906

-0.3 1.774
-0.6 1.623
-0.9 1.444

0.9 1.138
= 5a 0.6 1.132

0.3 1.126
= 10a 0.0 1.118

-0.3 1.108
= oo -0.6 1.096

-0.9 1.081

1.918 1.633 1.376
1.690 1.394 1.170
1.523 1.247 1.055
1.386 1.138 0.976
1.267 1.051 0.916
1.160 0.978 0.867
1.061 0.915 0.826

1.097 1.058 1.020
1.081 1.039 1.002
1.066 1.023 0.988
1.052 1.009 0.976
1.037 0.996 0.966
1.023 0.984 0.958
1.009 0.973 0.950

1.143 0.927 0.727
0.988 0.835 0.703
0.909 0.791 0.693
0.857 0.763 0.686
0.818 0.743 0.681

0.788 0.727 0.678
0.763 0.714 0.675

0.984 0.949 0.915
0.969 0.940 0.913
0.958 0.933 0.911
0.950 0.929 0.910
0.943 0.925 0.909
0.938 0.922 0.908
0.933 0.919 0.908

* Obtained using the method of Schumann and Gardner for two uniform layers
on an infinite substrate.
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Table A3— Sampling Volume Correction Factors for Exercise III*.

^2 0.9 0.6 0.3 0.0 -0.3 -0.6 -0.9

0.9 45.483 38.847 31.329 23.926 16.636 9.457 2.385
= 0 05a 0.6 46.031 37.390 29.344 21.834 14.808 3.221 2.032

0.3 45.337 35.449 26.860 19.363 12.762 6.905 1.674
= 0 10a 0.0 44.393 32.732 23.659 16.398 10.455 5.502 1.309

-0.3 42.660 28.660 19.378 12.774 7.835 4.001 0.940
= 0 15a -0.6 38.878 21.880 13.363 8.247 4.834 2.394 0.564

-0.9 24.142 8.347 4.289 2.428 1.361 0.668 0.183

0.9 23.270 19.460 15.709 12.015 8.378 4.795 1.266
= 0 10a 0.6 23 . 046 18 . 736 14.722 10. 975 7.469 4 .180 1 .091

0.3 22.725 17.772 13.488 9.746 6.451 3.526 0.912
= 0 ,20a 0.0 22.233 16.424 11.898 8.273 5.304 2.828 0.731

-0.3 21.376 14.407 9.775 6.475 4.003 2.082 0.547
= 0 .30a -0.6 19-516 11.058 6.796 4.229 2.512 1.283 0.360

-0.9 12.373 4.404 2.312 1.346 0.788 0.426 0.171

0.9 7.854 6.609 5.382 4.174 2.984 1.811 0.656
= 0.30a 0.6 7.783 6.378 5.068 3.842 2.694 1.615 0.600

0.3 7.682 6.073 4.676 3.452 2.370 1.406 0.543
= 0.60a 0.0 7.528 5.650 ^.175 2.986 2.006 1.184 0.485

-0.3 7.264 5.024 3.511 2.419 1.593 0.947 0.426
= 0.90a -0.6 6.707 3.999 2.586 1.715 1.123 0.693 0.366

-0.9 4.631 2.008 1.211 0.817 0.580 0.421 0.306

0.9 2.278 2.014 1.753 1.496 1.242 0.992 0.745
= 1.2a 0.6 2.265 1.970 1.693 1.433 1.187 0.954 0.734

0.3 2.246 1.913 1.620 1.359 1.125 0.914 0.723
= 2.4a 0.0 2.218 1.336 1.527 1.272 1.057 0.872 0.712

-0.3 2.172 1.724 1.406 1.167 0.979 0.827 0.701
= 3.6a -0.6 2.079 1.546 1.241 1.039 0.892 0.779 0.689

-0.9 1.772 1.215 1.002 0.877 0.792 0.728 0.678

0.9 1.140 1.101 1.063 1.026 0.989 0.953 0.916

= 5a 0.6 1.138 1.096 1.056 1.018 0.982 0.948 0.915

0.3 1.136 1.089 1.047 1.009 0.975 0.943 0.914

= 10a 0.0 1.133 1.080 1.037 0.999 0.967 0.938 0.912

-0.3 1.128 1.068 1.023 0.987 0.957 0.932 0.911

= 15a -0.6 1.119 1.050 1.005 0.972 0.947 0.927 0.910

-0.9 1.097 1.020 0.981 0.955 0.936 0.921 0.908

* Obtained using the method of Schumann and Gardner for three uniform layers
on an insulating substrate.
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factors are taken as a point of reference and assumed to be accurate;
the factors calculated using the parallel superposition and local slope
approaches are compared with them in succeeding tables

.

For the parallel superposition calculations, eq (8) is combined with
eq (A8) to derive an expression for F, the reciprocal of H, for the en-
tire structure:

F = — =

S Pi/^1
H(t. )

1

(A16)

where the terms H(t.) are those appropriate to component sublayers of
thickness t.. In contrast to Exercise I where the sublayer H(t) values
were evaluated from the current admixture formalism, eq (AlO) ff., here

they are evaluated from the SG formalism applied to single isolated lay-
ers of thickness t. . The results of the calculations based on eq (A16)

are listed for the two structures in cables A4 and A5 . They are shown
there, for each combination of thickness and conductivity ratio, as the
ratio of F derived from parallel superposition, eq (A16) , to the F de-

rived directly from the SG approach, using eqs (A12) or (A13) , as appro-
priate „ Note that for all tables (A2 to A7) in Exercises II and III the

values for t^, t^, as listed are cumulative thickness values, in keep-

ing with the formalism of SG [1], and not single layer thickness values.

Comparisons of the results of local slope calculations for F with
the SG values for F on the same two structures are given in tables A6
and A7 . To generate these results, one needs to simulate real data so
as to calculate local slopes. To do this, one calculates "true" factors
(using SG) for values of t slightly smaller and larger than nominal.
For example, in the case for t = 0.1a, SG factors have also been gener-
ated using t^ = 0.09a and t^ ='^0.11a (keeping t = 0.2a and t^ = 0.3a or
°°, as appropriate) . The "local slope" is then round from

d(logF) logF(t = 0.11a) - logF (t = 0.09a)
m = = ——

. (A17)
dt 0.02a

Having defined a profile slope for each case, one uses eq (22) to calcu-
late correction factors for the two structures. The substrate factor,
K K , in eq (22) is replaced by unity for the purpose of these calcula-
tions. This modification should improve the comparison based on eq (22)

in the vicinity of = Q = 0 where the structure resembles a large
uniform slab, but it simultaneously causes poorer comparison with SG in
the direction of lower values for F (from local slope) for cases of 3^
and Q^, both negative, where the structure resembles the conducting sub-

strate limit.

* The substrate factor given in eq (24) was developed subsequent to the
generation of tables A6 and A7

.
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Table A4 — The Ratio of Correction Factor from Parallel Superposition to that
from Schumann and Gardner for Exercise II .

Q
^2 U.y U . D n 0U . J A AU . 0 A O-0 . J A C

-\J • D C\ Q— u . y

u. y 1 . ID J 1 . JU / 1 . JJZ 1 o o c1 . 3z5 1 O A ij1 . jUo 1 0 Q Ai . zoO 1 1

= 0.05a 0.6 1.318 1.281 1.219 1.173 1.133 1.080 0.874
A 'iU . J 1 n A1 . J20 1 1 OQ1- lyy 1 • 12.5 1 ATQ1 • 0 1 A 1 C1 . OJb 0 • yD4 u . D /y

= o.lUa U . (J 1 .26d 1 1 AC1-105 1 f\ AC
1 •04b 1 AAA

1 . 000 A A j4 T0 . y4 /
A OC 10 . obl A CIAU . DiU

A D-U . J 1 ITT1.1/2 1.015 A OCT0* yb / 0 • yob A O O "7 A T 1 A A 0 c: 0U • jDZ
= 00 A C-O.D 1 . 018 A 0"7A0.879 0.81 /

f\ TC 10. 751 0.661 A C 1 10. bil A 1 QQu.iyy
A Q 0.592 0.486 A jl A 10.421 A 1 C A0. 352 A ATT0.2/2 A y 1 A0.1/4 A A >! Qu . U4y

A Qu . y 1.082 1.244 1 . 307 1.330 1 . 330 1 A 1
1 . 301 1 1 A 11 . lUl

= 0.10a 0.6 1.264 1.344 1.305 1.255 1.195 1.098 0.743
U.J 1 111

1 . 331 1 '^'7*71.2// 1 1 0*7
1 . ly /

1 1 T71 • Iz /
1 A y! Oi . U4y A nu • y/u n CI 7

— u.^ua A n 1.325 1 . 173 1 A"? Q1 . 0 /y 1 AAA1 . OOU A QACu . yoo A Tc: 1U. /Di U . JJZ
A T 1.248 1.03 /

A QO T
(J . yj /

A O AQ0. o4y A ~i A nU. /4U U • J /i n 0 9 7u . ZZ J

—U.o 1 ACT
1 . Ob /

A OOO U. /ZD A "3 1 u • bi / U • JDU n 117u • i i /

A Q—u. y r\ CIA0.510 A 0£ A0. 360 A O Q 0 A ATI A 10- loy A 1 niU . iUi n no7U . Uz /

A Qu.y 1.024 1.136 1.203 1 ^ O "7

1.23 /
1 AAA1.223 1 IOC1.135 U . Dbb

= 0.30a 0.6 1.149 1.333 1.362 1.321 1.215 0.997 0.438

0 . J 1.246 1.368 1 . 308 1 1 A >!

1 . iy4 1 A 0 O1 . 02o A TT\U • / /i U . zo4
= O.oOa 0.0 1.312 1.298 1.158 1 AAA1.000 A 0 1 O0.812 A ceoU . bb J A 1 QO

A O-O.J 1.319 1.124 /^ A^ A0.934 A Id O0. IbZ 0 . 584 U . J /b n 1 nou . iuy
= oo A ^-O.D 1.175 0.813 A C\ A0.624 U . 4 /o A 0 VI J(U. j44 U . ZUd U . U J J

-0.9 0.534 0.270 0. 187 A 1 O 00.133 A AOQu . UBy A AX Qu . U4y n ni 7

0.9 1.019 1.070 1 .093 1.0/3 0.9/8 A Tc: A0 • /bU A 0U . zb J

= 1.2a 0.6 1.061 1.171 1.197 1.141 0.984 0.693 0.215

0.3 1.106 1 A O C1 . 235 1 • III 1 1 AQ u . oyo U . joo n 1 (\iU . J.D /

= 2.4a 0.0 1.152 1.257 1 - 1 /b 1 AAA1 - OUO A Tc: Q U . 4D^ n 1 7Tu . IZ J

-0.3 1.195 1 .210 1 A O O
1 . 038 A O 1 C0 . OlD U . J /D n 0 TOU . J ju n r»R7U . UoZ

= CO -0.6 1.201 1.016 0. /53 A C yl O0 o b4 J A 0 c: /IU . J j4 u . i yu U . Ul J

-0.9 0.863 0.424 0.254 r» 1 c A0.159 n A A c0 . 095 A A <1 QU • U48 r» miU . Uii

0.9 1.021 1.032 1.033 1.013 0.955 0.807 0.364

= 5a 0.6 1.025 1.044 1.045 1.019 0.950 0.786 0.340

0.3 1.030 1.054 1.050 1.016 0.933 0.753 0.309

= 10a 0.0 1.036 1.060 1.048 1.000 0.900 0.702 0.269

-0.3 1.042 1.059 1.031 0.962 0.837 0.621 0.217
= CO -0.6 1.045 1.037 0.974 0.866 0.708 0.481 0.147

-0.9 1.005 0.849 0.672 0.499 0.337 0.185 0.045

* Two uniform layers on an infinite substrate,
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Table A5 - The Ratio of Correction Factor from Parallel Superposition to that

from Schumann and Gardner for Exercise III*.

t, =

t^ =

t, =

t-, =

t^ =

0,9 0.6 0.3 0.0 -0.3 -0,6 -0 .9

0.9 1.000 1.000 1,000 1.000 0.999 0.997 0. 981
= 0.05a 0,6 1.000 1.000 1.000 1.000 0.999 0.997 0. 978

0.3 1.000 1.000 1.000 1.000 0.999 0.996 0. 973
= 0.10a 0.0 1.000 1.001 1.001 1.000 0,999 0,994 0. 964

-0.3 1.000 1.000 1,000 0.999 0.997 0,991 0. 949
= 0.15a -0.6 1.000 0.999 0.998 0.996 0.992 0.981 0. 911

-0,9 0.993 0.984 0.977 0.953 0.951 0.912 0. 703

0.9 1.000 0.993 0.997 0.994 0,990 0.981 0. 921
= 0.10a 0,6 1.000 0.999 0.998 0,996 0.992 0,982 0. 913

0.3 1.000 1.001 1.000 0.998 0.994 0.982 0. 899
= 0.20a 0.0 1.001 1.002 1.002 1.000 0.995 0.979 0. 875

-0.3 1.001 1.003 1.003 1.000 0,991 0.969 0. 830
= 0.30a -0.6 1.002 1.003 0.999 0,991 0.975 0.936 0. 730

-0.9 0.984 0,957 0.932 0.893 0.845 0.738 0. 391

t^ =

t^ =

0.9 1.001 1,004 1.004 0.998 0.980 0,924 0.639
= 0.30a 0.6 1.002 1,008 1,008 1.002 0.980 0.915 0.604

0.3 1.004 1.011 1.012 1.003 0.976 0.898 0.557
= 0,60a 0.0 1.005 1.015 1.014 1.000 0.962 0,864 0.492

-0.3 1.007 1.016 1,009 0.982 0.926 0.800 0,403
= 0.90a -0.6 1.008 1.002 0.972 0.917 0,827 0,662 0.276

-0.9 0.941 0.796 0.684 0.572 0,446 0.290 0.085

t, =

to =

t, =

t^ =

0.9 1.008 1.025 1.025 0.996 0.911 0.712 0.261
= 1.2a 0.6 1.011 1.035 1.033 1.004 0.903 0.693 0.243

0,3 1.015 1.047 1.050 1,008 0.894 0.662 0.221
= 2,4a 0,0 1.021 1.061 1.059 1,000 0.862 0,611 0.191

-0.3 1.030 1.075 1.054 0.962 0.790 0,527 0.153
= 3,6a -0,6 1.044 1.070 0.988 0.836 0.631 0,384 0.102

-0,9 1.013 0.775 0.555 0,333 0.244 0,129 0.030

0,9 1.006 1.020 1.025 1.016 0.974 0.851 0.419
= 5a 0,6 1.007 1.022 1.027 1.015 0.956 0.832 0.394

0.3 1.008 1.025 1.028 1.010 0.952 0.804 0.363
= 10a 0.0 1.009 1.027 1.027 1.000 0.928 0.761 0,323

-0.3 1.011 1.028 1.019 0,976 0.831 0.691 0.267
= 15a -0.6 1.013 1,020 0.935 0,903 0.776 0.560 0.186

-0.9 0.995 0.893 0.747 0.585 0.414 0.238 0.060

Three uniform layers on an insulating substrate,
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Table A6 - The Ratio of Correction Factor from the Local Slope Method to that
from Schumann and Gardner for Exercise II*.

t, =

t^ =

t, =

t^ =

0.50a

0.10a

t^ =

0.10a

0.20a

t^ =

t^ =

0.30a

0.60a

t^ =

^2 0.9 0.6 0.3 0.0 -0.3 -0.6 -0.9

0.9 1.031 1.197 1.308 1.384 1.416 1.302 0.509
0.6 1.234 1.577 1.711 1.709 1.447 0.737 0.435
0.3 1.414 1.795 1.830 1.551 0.888 0.513 0.425
0.0 1.595 1.931 1.707 1.000 0.579 0.458 0.420

-0.3 1.804 1.945 1.204 0.629 0.483 0.436 0.417
-0.6 2.105 1.573 0.662 0.493 0.445 0.426 0.415
-0.9 2.921 0.683 0.484 0.443 0.428 0.419 0.413

0.9 0.986 1.082 1.156 1.202 1.200 1.021 0.494
0.6 1.107 1.368 1.478 1.459 1.203 0.684 0.457
0.3 1.237 1.563 1.601 1.362 0.851 0.542 0.448
0.0 1.384 1.709 1.551 1.000 0.629 0.493 0.443

-0.3 1.570 1.787 1.257 0.717 0.534 0.469 0.440
-0.6 1.861 1.679 0.830 0.569 0.490 0.456 0.438
-0.9 2.631 1.081 0.595 0.502 0.467 0.448 0.437

0.9 0.943 0.965 0.979 0.972 0.916 0.766 0.585
0.6 0.981 1.091 1.131 1.086 0.931 0.719 0-577
0.3 1.036 1.205 1.217 1.087 0.863 0.676 0.571
0.0 1.110 1.310 1.249 1.000 0.791 0.645 0.567

-0.3 1.216 1.410 1.227 0.935 0.733 0.624 0.564
-0.6 1.392 1.504 1.151 0.847 0.689 0.608 0.561
-0.9 1.777 1.579 1.036 0.773 0.657 0.596 0.559

t, =

t^ =

t-, =

t, =

t^ =

t^ =

0.9 0.844 0.847 0.856 0.874 0.902 0.943 1.003
= 1.2a 0.6 0.850 0.879 0.910 0.940 0.968 0.995 1.020

0.3 0.861 0.917 0.958 0.987 1.007 1.020 1.027
= 2.4a 0.0 0.877 0.958 1.001 1.000 1.034 1.036 1.031

-0.3 0.903 1.003 1.042 1.055 1.055 1.046 1.033
= 00 -0.6 0.945 1.054 1.081 1.081 1.070 1.054 1.035

-0.9 1.019 1.113 1.119 1.104 1.083 1.059 1.036

0.9 0.926 0.945 0.966 0.989 1.014 1.042 1.071
= 5a 0.6 0.929 0.955 0.979 1.004 1.027 1.051 1.074

0.3 0.932 0.964 0.991 1.015 1.037 1.057 1.075
= 10a 0.0 0.936 0.974 1.002 1.000 1.044 1.061 1.076

-0.3 0.942 0.984 1.012 1.033 1.050 1.065 1.077
= 00 -0.6 0.949 0.994 1.021 1.040 1.055 1.068 1.073

-0.9 0.959 1.005 1.030 1.047 1.060 1.070 1.079

* Two uniform layers on an infinite substrate,
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Table A7 - The Ratio of Correction Factor from the Local Slope Method to that
from Schumann and Gardner for Exercise III .

t, =

t^ =

t. =

t. =

t^ =

t, =

t, =

t-, =

t. =

t-. =

t^ =

0.9 0.6 0.3 0.0 -0.3 -0.6 -0.9

0. y 0 - 969 0 . 965 0 962 0. 958 0. 954 0.943 0.765
= 0. 5a 0.6 0 . 969 0 . 964 0 . 961 0. 957 0. 953 0. 938 0.715

0. 3 0 968 0 . 963 0 . 960 0 . 955 0. 950 0. 930 0.650
= 0.10a 0.0 0. 968 0 . 962 0 - 958 0. 954 0. 946 0. 915 0.574

-0.3 0. 967 0 . 951 0 . 956 0 . 950 0. 937 0.879 0.501
= 0.15a -0.6 0-965 0-958 0.951 0.939 0.903 0.768 0.447

A Q 0 . 959 A A >l 10 . 943 0 . 896 0 781 A CAT0. 593 0 . 463 0.420

u . y 0 . 958 9 . 956 0 • 954 0 . 949 0 - 940 0 . 905 0. 585
= 0.10a 0.6 0 . 958 A AC el0 . 956 A AC 10. 953 0 . 943 A A "5 C

0 ~ 93b 0 . 889 0.549
0 .

3

0 958 0 . 955 0 952 0 . 945 0.928 0 . 865 r\ c 1 "7

0. 517
= 0.20a A A0.0 0 . 958 0 . 954 0 . 949 0 - 940 A A1 C

0 • 915 0.822 0 . 488
-0.3 0 . 957 0 . 953 0 . 945 0.929 0 . 886 A 1 A0 . 742 0 . 465

= 0.30a -0.6 0.956 0.949 0.934 0.396 0.800 0.597 0.449
-0.9 0. 955 0 . 925 0. 818 A C A C0.545 0.520 A A ^

0 462 0.439

0.9 0.933 0.931 0.920 0. 900 0 . 859 0 . 760 0 . 582
= 0.30a 0.6 0. 933 0. 930 0 . 917 0 . 893 0. 344 0 736 0 . 577

0.3 0.937 0.928 0 . 912 0 . 883 0.824 0 . 708 0 . 572
= 0.60a A A0.0 0 . 937 0 925 0 - 904 0 . 867 0. 796 0 . 675 A C ^ O

0 . 568
A T-0 .

3

0 . 936 0 . 920 0.893 0 . 842 A T C C
0 - 755 A e: A

0 - 543 A C A0 . 554
-n 6 U . 7 J 4 U . -7 J. *1 . O U W 0 701 U . U J. 0 . 561
-0.9 0.952 0.975 0.746 0.652 0-595 0-559

0.9 0.843 0.839 0.839 0.847 0.868 0.910 0.983
= 1.2a 0.6 0.843 0.840 0.843 0.855 0.879 0.924 0 995

0.3 0.843 0.842 0.849 0.866 0.895 0.939 1.002
= 2.4a 0.0 0.843 0.846 0.859 0.883 0.916 0.958 1.009

-0.3 0.844 0.855 0.879 0.911 0.946 0.981 1.017
= 3.6a -0.6 0.847 0-881 0.922 0.960 0.990 1.011 1.024

-0.9 0-883 0.994 1.041 1.057 1.056 1.048 1.033

t, =

t., =

t., =

0.9 0.925 0.943 0 . 963 0.9P5 1-010 1.038 1.070
= 5a 0.6 0.926 0.946 0.967 0.991 1.016 1.042 1.071

0.3 0.927 0.949 0.973 0.997 1.022 1.047 1.073
= 10a 0.0 0.928 0.955 0-980 1.005 1.029 1.052 1.074

-0.3 0.931 0.962 0.990 1.014 1.037 1-057 1.075
= 15a -0.6 0.935 0.974 1.003 1.027 1-046 1.063 1.077

-0.9 0.948 0.996 1.024 1-043 1.057 1.069 1.078

* Three uniform layers on an insulating substrate.
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A. 4 An Empirical Expression for H(t)

In Exercise I, above, the method of images was used to find correc-
tion factors for a single isolated layer by admixing two possible cur-
rent distributions on the contacts. In Exercise II, equivalent single
isolated layer factors were found using the SG approach [by setting

3^^
= 1

and ~ 0-in eq (A12) ] . Both of these methods require lengthy calcu-
lations. For the purpose of making rapid calculations of correction fac-
tors using parallel superposition, an empirical expression for H(t) has
been developed. The expression used is hyperbolic, having asymptotes
for small and large slab thicknesses which coincide with the exact form
of H(t) calculated by the admixture of currents and subsequent applica-
tion of the method of images as done in Exercise I above. The hyperbolic
expression, having an easily calculated second derivative for use in the
parallel superposition method, is:

Numerical values given by this empirical expression are listed in table
A8 for a single isolated slab with various values of t, using s = 40a.

The same table lists values, for these same cases calculated using admixed
current distributions under the contacts, i.e., the exact results from
A. 2 of this appendix and, additionally, values for H calculated using the
SG method. Ratios of empirical to exact values, and of SG to exact
value are also given. It is here seen that the results from the SG as-
sumption regarding current distribution under the contact are not signifi-
cantly different from those with the more general current distribution
used in section A. 2 to better satisfy the requirement of equipotential
under the contact. The values listed for admixed current distributions
(the first column of table A8) were used to plot figure 1 of this report.

H(t) (A18)
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Table A8 — Reciprocal Correction Factors for a Single Iso-
lated Layer of Thickness t*.

loq, n ( t/a) exact

-0 ft 0 0673
-0.6 0.1058
-0.4 0-1645
-0.2 0.2503
0.0 0.3689
0-2 0 5166
0.4 0-6726
0.6 0 8084
0.8 0.9058
1.0 0.9647

SG empir

0 0407 0.0425
0 0644 0-0673
0.1016 0.1064
0.1590 0.1672
0.2450 0.2597
0.3656 0.3927
0 5162 0.5622
0.6753 0.7367
0.8134 0.8716

0 9125 0.9505
0.9723 0.9884

Ratios

/ SG \ /empir
exact

/

V '
1 exact
\

0.9569 0.9996
0.9572 1-0007
0.9598 1.0052
0.9669 1.0168
0.9788 1.0377
0.9909 1.0645
0.9993 1.0883
1.0039 1-0953
1.0062 1.0782
1.0074 1-0493
1.0079 1 0246

* Factors are calculated: exact - from admixed current distributions
using eqs (A3) and (A6) , SG - from eq (All) , and empir - from eq (A18)

.
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APPENDIX B

Universal Data Reduction Program

A general program utilizing both the parallel superposition and lo-
cal slope techniques for interpreting spreading resistance data is listed
at the end of this appendix. Also provided is the list of variables for

the program. As listed, the program is written for the Hewlett-Packard
9830A programmable calculator. The program contains three semi-
independent subprograms: a data logging routine, a data reduction rou-
tine, and plotting and graph scale subroutines for deriving the associ-
ated printer/plotter. The function of the program is to log raw spread-
ing resistance values as they appear at the digital output of the
spreading resistance probe; correct them for sampling volume if desired;
convert them to either carrier concentration, resistivity, or conductiv-
ity; and plot them on a profile graph. (The plotting and graph scale
subroutines are not included in the listing because they are specific

*
to the graph format and plotter used, but are available on request. )

The program requires interaction from the operator; when it is run, the
calculator display shows a prompt, or message, whenever an input is re-
quired from the keyboard.

The normal flow of the program begins with the loading of carrier
concentrations and resistivities for 32 standard calibration specimens
(through line 50) . Lines 50-220 read five standard resistances and up
to 140 data points from the digital output of the spreading resistance
probe. If fewer than 140 points are run, the data logging loop must be
interrupted by pressing the STOP key, and the program must be continued
at line 230. Lines 230-250 determine and execute a branch to a number
of different places in the program.

The data reduction section begins at line 260. Prestored spreading
resistance values appropriate to the probe loading and specimen surface
orientation are loaded through line 300. Lines 310-350 define the contact
radii to be used in the following calculations . The values given are
those used for data reductions contained in this report. They were ob-
tained from the probe spacing experiment on diffused specimens. New val-
ues as appropriate would be inserted by the user. Lines 380-430 input
experimental parameters, including bevel angle and location information.
A loop begins at line 440 which is cycled for each layer of different
conductivity type in the profile. Conductivity type, correction scheme,
and last (shallowest) point for the layer in question are specified
through line 510, and three constants needed later are precalculated at
lines 520-540. At line 550 another loop begins which is cycled for each
point in the layer. The uncorrected spreading resistance is calculated
from raw data at line 560, and line 570 temporarily sets the sampling
volume correction factor to unity (in the event that no correction has
been specified) . The local slope of the profile is determined at line

* Available from D. H. Dickey, Solecon Laboratories, 3001 Red Hill
Avenue, Bldg. 3, Suite 106, Costa Mesa, California 92626.
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590, and the desired correction subroutine is called out at line 600.
The spreading resistance is corrected for sampling volume at line 620,
and the calibration curve look-up subroutine is called at line 640. This
subroutine returns interpolated values of resistivity, carrier concentra-
tion, and conductivity based on the corrected spreading resistance of
the point in question. The depth for the point is calculated at line
660, and the plot subroutine is called out at line 570. After data for
each point specified in the layer is reduced and plotted, a test is made
at line 720 to determine whether the bevel edge has been reached. If not,
the program branches back to line 440 to input the conductivity type of
the next layer. When the bevel edge is reached, the graph scales are
printed (line 750), and the program branches back to line 230. From line
230, the operator can branch to the data logging routine or can restart
the data reduction from the same data after changing some of the parame-
ters. When line 230 is accessed after logging new data, the operator can
branch directly to line 360 in the event that the same probe load and ori-
entation are appropriate.

I

In the local slope subroutine, lines 800-860, the substrate point
number is first calculated at line 820. It is the shallower of the deep-
est point in the layer or a point N3 increments deeper than the point in
question. The uncorrected spreading resistance for the substrate point
is calculated from raw data at line 830, and the substrate factor is cal-
culated [according to eq (24)] at line 840. The value of the sampling
volume correction factor is calculated [according to eq (22) , using
for K^K^] at line 850 and is returned to the main program.

In the parallel superposition subroutine, lines 880-940, the second
term of eq (16) is first calculated. The second derivative of H(t),

from eq (A15) , is multiplied by the conductivity of each point and
summed through line 920. The sum Si is multiplied by its coefficient to

complete the second term of eq (16) , and this is added to the slope term
to give the sampling volume correction factor at line 930.

For routine use, the local slope scheme is used almost exclusively
except when no correction is desired. The parallel superposition scheme
is only used as a check on simple diffusions, where surface resistivity
is lower than subsurface or substrate resistivity. It cannot be used in

cases where subsurface resistivity is lower than that at the surface,
whereas the local slope scheme handles these cases easily. The accuracy
of the local slope scheme is not particularly sensitive to the choice of

substrate factor except in a few special cases, but an improved formula
for it is probably desirable. The substrate point has been specified
N3 points deeper on the profile because the second derivative of H(t)

peaks at this depth. In effect, the substrate factor approximates the
summation in eq (16) with a single point.
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10 DIM AS[2,2] ,NS[2,16] -PS [2,16] ,RS[2,16] ,SS[140] .UI[5] , VI [140] ,YS(3]

20 LOAD DATA 21,

P

30 REM P ARRAY CONTAINS LOGS OF CALIBRATION SAMPLE RESISTIVITIES
40 LOAD DATA 22,

N

50 REM N ARRAY CONTAINS LOGS OF CALIBRATION SAMPLE CCff^CENTRATIONS

60 FOR 1=1 TO 5

70 REM READING PROBE OUTPUT FOR 5 STANDARD RESISTANCES
80 DISP "PRINT FOR R=10'~ "2*1-2

90 WAIT 1000
100 ENTER (1,*)A,V
110 U[I]=V*lE+04
120 DISP I,U[I]
130 miT 1000
140 NEXT I

150 FOR 1=1 TO 140

160 REM READING PROBE OUTPUT FOR DAtA POINTS
170 REM INTERRUPT LOOP AND CONTINUE AT LINE 230 IF LESS THAN 140 POINTS RUN
180 ENTER (1,*)A,V
190 V[I]=V*lE+04
200 DISP I,V[I]
210 WAIT 1000
220 NEXT I

230 DISP "WHAT NEXT";
240 INPUT D
250 GOTO D OF 60,260,360,440,750,780
260 DISP "PROBE LOAD, ORIENTATION";
270 INPUT L1,Q
280 L=INT(L1/10)
290 LOAD DATA {L+2*Q+22),R
300 REM R ARRAY CONTAINS LOGS OF CALIBRATIC»I SAMPLE RESISTANCES
310 A[l,l]=l.l
320 A[l,2]=2.1
330 At2,l]=0.5
340 A[2,2]=l.l
350 REM A(T,L) IS CONTACT RADIUS FOR TYPE(T) AND LOAD(L)
360 Fl=l
370 Rm Fl IS A FLAG USED IN PLOT SUBROUTINE
380 DISP 'PROBE SPACING";
390 INPUT S

400 DISP "BEVEL ANGLE, X-STEP";
410 INPUT A,B
420 DISP 'BEVEL EDGE, START PT^';

430 INPUT N0,N2
440 DISP "TYPE(P OR N)";
450 INPUT B$
460 T=POS(B$, "P")+2*P0S(B$, "N ')

470 IF T=0 THEN 230
480 DISP "CORRECTION";
490 INPUT C
500 DISP "STOP POINT';
510 INPUT Nl
520 Kl=2*A[T,L]*L0G(S/A{T,Ll )/PI

530 K=K1/A/B
540 K4=(1-2*A[T,L]/PI/S)~2
550 FOR N=^2 TO Nl STEP -1

560 R0=4+4*(V[N]-U[3] )/(U[4]-U[2]

)

53



570 F=l
580 IF C=0 THEN 620

590 M=4.6/A/B*(1+(N^1) + (N^2) )*(V[N-1+(N=4^1)I-V[N+1-(N^2)] )/(U(41-U[2] )

600 G0SU3 C OF 800,880
610 REM BRANCHING TO EITHER LOCAL SLOPE OR PARALLEL SUPERPOSITION SUBROUTINE
620 R=RO-LGTF
630 REM RO HAS NOW BEEN CORRECTED FOR SAMPLING VOLUME
640 GOSUB 960

650 REM BRANCHING TO CALIBRATION CURVE LOOK-UP SUBROUTINE
660 X=(N-N0)*A*B
670 GOSUB 1120
680 REM BRANCHING TO PLOT SUBROUTINE
690 NEXT N
700 N2=N1-1
710 REM SET NEW START POINT TO (OLD STOP POINT - 1)

720 IF N2 <= NO THEN 750

730 GOTO 440
740 REM RETURN TO REDUCE NEXT LAYER
750 GOSUB 1620
760 REM BRANCHING TO SCALE GRAPH
770 GOTO 230
780 END
790 REM
800 RET'l LOCAL SLOPE
810 N3=INT(K)
820 N4=(N+N3)*( (N+N3) <= N2)+N2*( (N+N3)>N2)
830 R1=4+4*(V[N4]-U[3] )/(U[4]-U[2]

)

840 K3=l+(8*I;OG(S/A[T,L] )/PI/PI-l ) *2/PI*ATN (RO-Rl

)

850 F=-Kl*M/2+SQR(Kl*M*Kl*M/4+K3)
860 RETURN
870 REM
880 REM PARALLEL SUPERPOSITION
890 S1=0
900 FOR 1=1 TO N2-N
910 S1=S1+3*I*K*K*K4*S[N+I]/(K4*I*H-K*K)~2.5
920 NEXT I

930 F=-K1*M+0.0002*A[T,L]*10"RO*K*S1
940 RETURN
950 REM
960 REM CALIBRATION CURVE LOOK-UP
970 J=16
980 IF R>R[T,J] THEN 1020
990 IF J=l THEN 1020
1000 J=J-1
1010 GOTO 980
1020 IF J=16 THEN 1060
1030 Y[1]=(R-R[T,J] )*(N(T,J+l]-NtT,J] )/(R [T, J+1] -R [T, J] )+N[T,J]
1040 Yt2]=(R-R[T,J] )*(P[T,J+1]-P(T,J] )/(R[T,J+l]-R[T,J] )+PtT,J]
1050 GOTO 1080
1060 Y[l]=RlT,16]-R+N[T,16]
1070 Y[2]=R-R[T,16]+P[T,16]
1080 Y[3]=-Y[2]
1090 S[N]=10'-Y[3]

1100 RETURN
1110 REM
1120 REM PLOT SUBROUTINE BEGINS
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Variable List

Units

I. Dimensioned Variables — Integer Precision

U(5) - Digital voltmeter reading at output of
probe, for five standard resistances 10~^ V

V(140) - Digital voltmeter reading at output of
probe, for data points 10"^ V

II. Dimensioned Variables — Split Precision

A (2, 2) - Contact radius, for two conductivity
types and two probe loadings ym

N(2,16) - Logarithm of carrier concentration for
calibration sample, for 15 specimens of
each conductivity type

P(2,16) - Logarithm of resistivity for calibration
sample, for 16 specimens of each conduc-
tivity type

R(2,16) - Logarithm of spreading resistance for
calibration sample, for 16 specimens of
each conductivity type

S(140) - Conductivity for each data point (^^•cm)"-'-

Y(3) - Logarithm of (1) carrier concentration,
(2) resistivity, and (3) conductivity,
for data point

III. Simple Variables

A - Bevel angle rads

B - X-step ym

F - Sampling volume correction factor

K - Defined constant (see program line 530)

Kl - Defined constant (see eq (20) ) ym

K3 - Substrate factor (see eq (24)

)

K4 - Defined constant

Ll - Probe loading g

M - Profile slope (decades) /ym

NO - Bevel edge point number

Nl - Stop point number

N2 - Start point number
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III. simple Variables (continued)

Units

N3 - The number of points to substrate point

N4 - Point number for substrate point

R - Logarithm of corrected spreading resis-
tance

RO - Logarithm of uncorrected spreading resis-
tance

Rl - Logarithm spreading resistance for sub-

strate point

S - Probe spacing ym

Si - Sum of conductivity x A^H (see eq

(16)) (n-cm)

IV. Flags and Pointers

C - Correction scheme pointer

0 - no correction

1 - local slope

2 - parallel superposition

D - Branching pointer, range 1-5

Fl - Flag used to set up plot scales

T - Conductivity type flag

1 - p-type

2 - n-type

L - Probe load flag

1 - 10-g load

2 - 20-g load

Q - Orientation flag

0 - (100) orientation

1 - (111) orientation

56



APPENDIX C

CORRECTION FACTOR FOR UNIFORM-RESISTIVITY WEDGE

The effect of bevel angle on spreading resistance measurements has
been explored by solving the potential distribution problem represented
by two disk contacts on one surface of an infinite homogeneous wedge. If

the wedge angle is taken as an odd-integral submultiple of tt , the problem
can be solved using the method of images with a finite array of images.
The solution is approximated by taking the images as point sources rather
than disk-like, although it is straightforward (though laborious) to

write the exact solution in terms of Legendre polynomials. The model as-

sumed is shown in figure CI, where the two contacts are aligned parallel
to the axis of the wedge at a place where the local thickness is t. The
correction factor in the point-image approximation is

F = 2a

(2N+1)

N-1

M=0
COS

(CI)

where X is given by

A
ITS

2(2N+l)t '

and N is the number of images, related to the wedge angle according to

(C2)

2N+1
• (C3)

Correction factors were computed from eq (Cl) for a variety of wedge an-

gles, for two values of local thickness, and two values of probe spacing,

The results are shown in figures C2 and C3.

* *

*

Figure Cl. Image array for infinite homogeneous wedge.
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0.10

Figure C2 . Sampling volume correction factor for uniform wedge with
local thickness equal to contact radius. Curve A, probe spacing equal
to 400 contact radii; curve B, probe spacing equal to 40 contact radii.

OO

0.02 0.04 0.08 0.08

WEDGE ANGLE (radj

0.10

Figure C3. Sampling volume correction factor for uniform wedge with

local thickness equal to 0.1 contact radii. Curve A, probe spacing

equal to 400 contact radii; curve B, probe spacing equal to 40 contact

radii

.
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APPENDIX D

SPECIAL OPERATIONAL PROBLEMS OF THE LOCAL SLOPE METHOD
AND SUGGESTED ALTERNATIVES

A problem was encountered when using the local slope method for
analyzing seemingly anomalous data which occurred near the bevel edge of
isolated layers. The problem was the calculation of nonphysical (nega-
tive or imaginary) values for F. It is shown below that the anomalous
data are not the prime cause of the unacceptable values for F, but they
do complicate analysis of the problem. The existence of such anomalous
data, which are more obvious on thin isolated layers, is believed due
to the asymmetry in the conduction path between the probes when in prox-
imity to the bevel edge. This same asymmetry in potential distribution
near the bevel edge should cause similar, if less recognizable, data
anomalies in other layer structures and will affect the accuracy of analy-
sis for any correction factor algorithm chosen [5]

.

Whatever the cause of such anomalous data, they are typically seen
on measurements of a thin isolated layer as nonmonotonic or turnaround be-
havior for data near the bevel edge. Abnormally high spreading resistance
values are seen at the bevel edge, followed by decrease to some minimum
value, then rapidly increasing values of spreading resistance following
the normal behavior for thin isolated layers as shown in figure Dl . This
data turnaround is generally found to increase with increasing s/a values
in a manner similar to that shown in figure 18 for the uniform top sur-
face of a layer. The result of the nonmonotonic data is that local slope
values, calculated for coordinates beginning at the bevel edge, are
negative for a few points, then increase through zero to normal positive
values

.

It is noted that for thin isolated layers such nonmonotonic data are
contradictory to the assumptions of the parallel superposition model upon
which the isolated layer limit of the local slope model is founded. Ac-
cording to the parallel superposition model, as supported by the results
of the probe spacing experiment in section 3.1, the spreading resistance
measured at any point on a sectioned isolated layer is proportional to

the sheet resistance of the layer beneath the point of measurement.

Since the concept of parallel superposition is supported by the ex-
perimental results of section 3.1, it was necessary to question whether
the anomalous data or the local slope extension of parallel superposi-
tion was responsible for the nonphysical values for F. Tables Dl to D5

were constructed for various values of local slope. Equation (22a) us-
ing the function K was used to calculate F for various values of s/a

and of R /R . For the same values of local slope and of s/a, F was also
o s

calculated using K^K^ or unity in place of K^.

Two features found in the tables indicate that anomalous data are

not the primary cause of nonphysical F values. The first is that use of
K^K^ or unity always results in positive F values regardless of local
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0 12 3

DISTANCE FROM SURFACE |Mm|

Figure Dl . Spreading resistance data for junction-isolated implanted
specimen illustrating the type of local slope behavior near the top sur-

face which gives nonphysical values for the correction factor when ana-
lyzed by eq (22a) or (22b)

.

slope value. The second is that use of results in some nonphysical F

values even for small positive local slope values.

The only exception to the general pattern of nonphysical F values,
when using the form K. with small R /R in eq (22a) , occurs for very

3 OS
small values of s/a. This result, only seen near the limit of physical-
ly attainable s/a values, is regarded as an accident. It is noted that
the values for F under such circumstances, although positive, are no-
ticeably different from values calculated using the forms K^K^ or unity.

The fact that nonphysical values can be calculated for F for certain
combinations of local slope and measurement condition does not invalidate
the derivations or algorithm construction embodied in this work. For many
layers of this type, the strict formalism of parallel superposition, eq
(16) , could always be used as outlined in Appendix B; no such spurious re-
sults are encountered for this formalism. However, it is assumed that the
local slope formalism is more appropriate for multilayer structures, even
if slight modifications must be made for application to isolated layers.

It must be remembered that the term K was originally hypothesized as a

replacement for K^K^ in eq (22) to make the equation for F more generally
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Tables D - Correction Factor F Based on Local Slope Using K3 for Various Values
of Rq/Rj and Also Using K^K2 and Unity to Replace K^: Case of a = 2 ym.

Table Dl

:

Case of Local Slope, m = -0.5

V. Rp/Rs

1 0.5 0.1 0,01 0.001 0.0001 K1K2 1

10 .51 .44 .32 .23 .19 .14 . 3 \

20 .43 .32 .14 0 -.03 -.17 .87 .43

40 .37 .23 0 -.18 - 29 -.41 . 0 /

60 .34 .19 -.05 -.26 -.39 -.52 .94 .34

80 .32 .17 -.10 -.32 -.44 -.59 .95 .32

Table D2: Case of Local Slope, m = -0.1

sRq/Rs

s/a\^ 1 0.5 0.1 0.01 0.001 0.0001 1

10 .86 .77 .62 .49 .42 .34 1 .23 .86

20 .83 .68 .38 0 i 1 .38 .S3

40 .79 .57 .01 i i 1 .51 .79

60 .77 .52 i i i 1 .58 .77

80 .76 .47 i i i 1.62 .76
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Table D3: Case of Local Slope, m = 0

1 0.5 0.1 0.01 0.001 0.0001 KiK2
1

1

10 1 .91 .75 .52 .55 .47 1 .35

20 1 .34 .54 0 i 1.55

40 1 .78 0 i i 1 .73

60 1 .73 i i i 1.82

80 1 .70 1 i i 1.86

Table D4: Case of Local Slope, m = 0.1

1 0.5 0.1 0.01 0.001 0.0001

10 1.15 1 .07 .92 .79 .72 .64

20 1.21 1.06 .76 .33 1

40 1.27 1.05 .49 i i

60 1.29 1.04 i i i

80 1.32 1.03 i i i

K1K2 1

1.53 1 .16

1 .76 1 .21

1 .99 1 .27

2.10 1 .29

2.18 1 .32
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Table D5: Case of Local Slope, ni
= 0.5

1 0.5 0.1 0.01 0.001 0.0001 K1K2 1

in
I . 30 1 . /U 1 . 00 1 .61 2.23 1 .97

? '-id 1 Ql
1 . y 1 1 .00 1 . /4 2.73 2

40 2.72 2,57 2.35 2.17 2.05 1.94 3.25 2 .71

60 2.95 2.79 2.55 2.35 2.22 2.09 3.54 2 .94

80 3.11 2.97 2.69 2.47 2.35 2.20 3.74 3 .12

applicable. In particular, it was intended to make the local slope for-
malism applicable to a wider variety of layer and substrate resistivities
and thicknesses than were embodied in the two limiting forms used as

starting points. The term in R /R had the effect of smoothing the transi-
tion between the limiting (large negative slope and large positive slope)
forms for F. In addition, for the case of a general isolated layer, the
term in R /R was intended to incorporate the contribution due to sublay-
ers lying deeper than one contact radius as was done by the second term
in the pure parallel superposition formalism [eq (16) ]

.

Accounting for such deep sublayer effects is clearly not necessary
for thin, t < a, isolated layers, and it makes only a small difference in

the analysis of moderately thicker layers. Hence, the added flexibility
built into is clearly expendable for analysis of many well-defined
isolated layers and the use of a form other than in eq (22) is ad-
visable .

For moderate to large positive values of local slope, little differ-
ence results from use of , K^K^ , or unity as the second term under the

radical sign in the equation for F. A meaningful difference among these
choices only occurs for small values of local slope, i.e., near the

bevel edge of an isolated layer. Since no analytical model is available
for bevel-edge effects, the correct manner of analyzing data taken near
a specimen bevel edge is not established. Any procedure used to calcu-
late the sampling volume factor, F, will be an approximation. This limi-
tation also occurs for all other methods of calculating the sampling vol-
ume factor which are based on models with lateral symmetry, including
the method of SG.

Some manner of calculating F, other than that using the term must
still be chosen. The choices mentioned, K^K^ and unity, are not the only
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possible replacements, but they are seen to be reasonable choices. As
mentioned, for moderate to large local slope values, little difference re-
sults from any of the choices. For small values of local slope, use of
either K^K^ or unity gives values for F near unity. Such a value is ap-
propriate since, when the true correction is uncertain, the least correc-
tion possible, i.e., unity, is the safest. Further, the tendency of the

data to show a near zero value of local slope near the surface indicates
that the effect of the underlying junction is no longer dominant in the
conduction between the probes. Hence, a correction near unity is not un-
reasonable. It is noted from the tables that attempts to retain in

the equation for F and to modify the data set instead, as by replacing
negative values of local slope by zero or by extrapolating the minimum
measured resistance to the surface, simply result in replacing a nega-
tive F, for m < 0, by an imaginary F, for m = 0. When correct near-
surface data analysis is particularly important, replacement of K also
appears preferable for somewhat thicker isolated layers despite the pos-
sible need to account for the deeper layer contributions that are built
into . Such a case exists when the sheet resistance of moderate depth
diffusions needs to be evaluated from the integration of the resistivity
profile, where near-surface data make the dominant contribution to the
sheet resistance calibration. Then replacement of results in rela-
tive differences ranging from a fraction of a percent to about 15 per-
cent for data on the steeper part of the profile where m > 1. The ef-
fect of these changes on the contribution to the layer sheet resistance
will generally be small compared to the contribution from reasonably de-
termined values of near-surface points, particularly if m < 0 is en-
countered .

Since the terms K^K^ and unity come from hybrid forms more general
than the simple isolated layer model, neither is strictly correct. ^1^2
gives somewhat larger values for F than does unity; the difference in-
creases with increasing s/a values. The volume correction factor for

an isolated layer is normally greater than unity to account for an in-

crease in measured resistance resulting from a foreshortened conducting
volume. Near the bevel edge, the measured resistance again increases,
apparently due to a missing portion of the specimen, as seen in figure

18, and a correction factor greater than unity can again be argued. It

is perhaps judicious, then, to choose the form K^K^ as a replacement for

K^, since it seems to give a scale of volume correction factors in rea-

sonable agreement with what is expected from consideration of the physi-
cal problem.

One possible exception to the recommendation for replacing occurs
in the analysis of isolated layers of thyristors and related deep struc-

tures. Here the cumulative effect of the loss of deeper layer considera-
tions built into may be more severe than the advantage gained from

better interpretation of a few points near the surface. A possible re-

course here is simply to retain in the calculation for F until and un-

less negative or zero values are calculated for F. If zero pr negative
values are calculated for F for a few points near the surface, the re-
sistivity of those affected points is replaced with the value extrapo-
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lated from points just below the affected region. Again, the strict
parallel superposition formalism could be used instead.

The discussion in this appendix assumes ideal, or noise-free, data
so that the local slope evaluated from successive pairs of data is a

smoothly varying function. In the event of noisy data, it is possible
to encounter difficulties of the type described if given pairs of data
result in local slope values which run counter to the trend in that part
of the profile. Data smoothing is advisable for most effective use of
these algorithms if data tend to be noisy.
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