Semiconductor Measurement Technology:

The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in N-Type Silicon
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of available technology; cooperates with public and private organizations in developing technological standards, codes, and test methods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of the following divisions and centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consist of the following divisions:

- Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process to facilitate technological change in the private sector by examining and experimenting with Government policies and practices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede the innovation process.

THE OFFICE OF INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

2 Located at Boulder, Colorado 80302.
Semiconductor Measurement Technology:
The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in N-Type Silicon

Sheng S. Li

Electronic Technology Division
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

Jointly supported by:
The Defense Advanced Research Projects Agency
and
The National Bureau of Standards

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued March 1977
Li, Sheng S. 1938-
The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon.

(Semiconductor Measurement Technology) (NBS Special Publication; 400-33)
Supt. of Docs. No.: C 13:10:400-33
QC100.U57 No. 400-33 [QC611.8.S5] 602'.1s [546'.683]
76-608381

National Bureau of Standards Special Publication 400-33
CODEN: XNBSAV
TABLE OF CONTENTS

1. Introduction ... 1

2. Scattering Mechanisms and Mobility Formulations 2
 2.1. Lattice Scattering 2
 2.2. Ionized Impurity Scattering 3
 2.3. Neutral Impurity Scattering 5
 2.4. Effect of Electron-Electron Scattering 7

3. Calculations of Electron Mobility and Resistivity in N-Type Silicon 7
 3.1. Electron Mobility Calculations 7
 3.2. Ionization of the Donor Impurity 9
 3.3. Resistivity Analysis 9

4. Results and Discussions 10
 4.1. Electron Mobility vs. Dopant Density and Temperature .. 10
 4.2. Resistivity vs. Dopant Density and Temperature 10

5. Conclusions ... 15

Appendix A. Comparison of the Existing Models for Ionized Impurity Scattering 21

Appendix B. Dielectric Screening Length and Degeneracy Temperature vs. Dopant Density 24

References ... 27
LIST OF FIGURES

1. Lattice scattering mobility as a function of temperature for \(n \)-type silicon calculated by Long and Norton et al. .. 4

2. Neutral impurity scattering mobility as a function of donor density computed from eq (2.11) and eq (2.12) .. 6

3. Electron mobility versus total donor density for \(n \)-type silicon at 300 K .. 12

4. Electron mobility of \(n \)-type silicon versus temperature for dopant densities from \(10^{13} \) to \(5 \times 10^{18} \) cm\(^{-3} \) .. 13

5. Electron mobility of \(n \)-type silicon versus total donor density with temperature as a parameter .. 14

6. Percent of ionized phosphorus density versus total phosphorus density with temperature as a parameter .. 16

7. Resistivity versus total donor density for \(n \)-type silicon at 300 K .. 17

8. Resistivity versus temperature for seven phosphorus-doped silicon slices .. 18

9. Theoretical calculations of resistivity versus temperature for \(n \)-type silicon with donor densities from \(5 \times 10^{13} \) to \(10^{19} \) cm\(^{-3} \) .. 19

10. Theoretical calculations of resistivity versus total donor density for \(n \)-type silicon with temperature as a parameter .. 20

A-1. Ionized impurity scattering mobility versus total donor density as computed from different theoretical models at 300 K .. 22

B-1. Dielectric screening length versus donor density for \(100<T<500 \) K for phosphorus-doped silicon .. 25

B-2. Degeneracy temperature as a function of electron density for \(n \)-type silicon .. 26

LIST OF NOTATIONS*

\(E \) electron energy
\(E_C \) conduction band edge
\(E_D \) donor energy level
\(E_F \) Fermi energy
\(E_N \) Binding energy of neutral donors
\(h \) Planck's constant (\(= 6.625 \times 10^{-34} \))
\(k \) Boltzmann's constant (\(= 1.38 \times 10^{-23} \))
\(m \) free electron mass (\(= 9.1 \times 10^{-31} \))
\(m^* \) conductivity effective mass

*Unless stated otherwise, all units are in MKS.
density of states effective mass
longitudinal effective mass
transverse effective mass
electron density (cm$^{-3}$)
effective density of conduction band states (cm$^{-3}$)
total donor density (cm$^{-3}$)
ionized donor density (cm$^{-3}$)
net ionized impurity density (cm$^{-3}$)
neutral donor density (cm$^{-3}$)
electronic charge (= 1.6 x 10$^{-19}$)
absolute temperature
free space permittivity (= 8.854 x 10$^{-12}$)
permittivity of silicon (= 11.7 x ε_o)
donor ionization energy (= $(E_C - E_D)/q$ eV)
lattice scattering mobility (cm2/V·s)
ionized impurity scattering mobility (cm2/V·s)
neutral impurity scattering mobility (cm2/V·s)
combined lattice and ionized impurity scattering mobility (cm2/V·s)
total electron mobility (cm2/V·s)
electrical resistivity (Ω·cm)
relaxation time along the transverse direction of the ellipsoidal energy surface
relaxation time along the longitudinal direction of the ellipsoidal energy surface
relaxation time due to acoustical phonon scattering
relaxation time due to ionized impurity scattering
This work was conducted as a part of the Semiconductor Technology Program in the Electronic Technology Division of the National Bureau of Standards (NBS). This program serves to focus NBS efforts to enhance the performance, interchangeability, and reliability of discrete semiconductor devices and integrated circuits through improvements in measurement technology for use in specifying materials and devices in national and international commerce and for use by industry in controlling device fabrication processes. Its major thrusts are the development of carefully evaluated and well documented test procedures and associated technology and the dissemination of such information to the electronics community. Application of the output by industry will contribute to higher yields, lower cost, and higher reliability of semiconductor devices. The output provides a common basis for the purchase specifications of government agencies which will lead to greater economy in government procurement. In addition, improved measurement technology will provide a basis for controlled improvements in fabrication processes and in essential device characteristics.

The Program receives direct financial support principally from two major sponsors: The Defense Advanced Research Projects Agency (ARPA) and the National Bureau of Standards (NBS). Portions of this work were supported by ARPA.*

A concise version of this technical note is to be published in Solid-State Electronics.

This work was carried out while the author was on his sabbatical leave from the University of Florida, Gainesville, Florida. The author's permanent address is: Department of Electrical Engineering, University of Florida, Gainesville, Florida 32611.

The author would like to thank Drs. W. M. Bullis and M. G. Buehler for their critical review of the manuscript and their encouragement during the course of this study. Special thanks are due to W. R. Thurber for his various contributions during the course of this work and to Dr. W. E. Phillips for his assistance in using the cryogenic system for resistivity measurements. He is also grateful to the technical staff of the Electronic Technology Division for their cooperation.

*Through ARPA Order 2397, Program Code 6D10.
The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon

by

Sheng S. Li

Abstract: Traditional analysis of electron mobility in n-type silicon neglects the effects of electron-electron scattering and scattering anisotropy in the mobility calculations. As a result, theory fails to conform with experiment when dopant density exceeds $2 \times 10^{16} \text{ cm}^{-3}$.

In this work, an improved theoretical model for computing mobility and resistivity as functions of dopant density and temperature has been formulated for n-type silicon. The model has been applied to phosphorus-doped silicon for dopant densities from 10^{13} to 10^{19} cm^{-3}, and temperatures between 100 and 500 K.

The electron mobility was calculated analytically by appropriately combining lattice, ionized impurity, and neutral impurity scattering contributions. The effect of electron-electron scattering on both lattice and ionized impurity scattering mobilities was incorporated empirically for dopant densities greater than $2 \times 10^{16} \text{ cm}^{-3}$. Additionally, the anisotropic scattering effect was also considered in the mobility calculations.

Theoretical calculations of resistivity and ionized donor density were made for phosphorus-doped silicon for temperatures between 100 and 500 K.

Resistivity measurements on seven phosphorus-doped silicon slices with dopant densities from 1.2×10^{14} to $2.5 \times 10^{18} \text{ cm}^{-3}$ were carried out for temperatures between 100 and 500 K. Electron mobility at 300 K was deduced from resistivity and junction C-V measurements for dopant densities from 10^{16} to 10^{18} cm^{-3}.

Agreement between theory and experiment for both electron mobility and resistivity of phosphorus-doped silicon was within ±7 percent in the range of dopant densities and temperatures studied.

Key Words: Dopant density; electron mobility; ionized impurity scattering mobility; lattice mobility; neutral impurity scattering mobility; n-type silicon; resistivity; scattering mechanisms; temperature.

1. INTRODUCTION

Although a considerable amount of work has been published which deals with electrical properties and mobilities for silicon, it is evident that traditional analysis of electron mobility in n-type silicon fails to predict correctly the mobility values when dopant densities exceed $2 \times 10^{16} \text{ cm}^{-3}$. The discrepancy may be attributed to the inadequacy of the existing theoretical models in the high dopant density range. For example, the effects of electron-electron collisions and scattering anisotropy on both lattice and ionized impurity scattering mobilities have been neglected in the traditional analysis.

In this work, an improved theoretical model for computing electron mobility and resistivity as functions of dopant density and temperature for phosphorus-doped silicon is described. The calculations cover the range of dopant densities from 10^{13} to 10^{19} cm^{-3}, and temperatures between 100 and 500 K. Detailed comparison of the existing scattering theories and mobility formulations for n-type silicon is made in section 2 and Appendix A. Calculations of electron mobility and resistivity for phosphorus-doped silicon are described in section 3. Results and discussions are given in section 4. Section 5 presents the conclusions from this work.
2. SCATTERING MECHANISMS AND MOBILITY FORMULATIONS

In this section, a general review of the existing scattering theories and mobility formulations for \(n \)-type silicon is given. Scattering processes due to lattice, ionized impurity, and neutral impurity that contribute to the total electron mobility in \(n \)-type silicon are described. The mobility formulation for each of these scattering processes is described. Quantitative comparison among the mobility values calculated from the different theoretical models for lattice, ionized impurity, and neutral impurity scattering is made. The effects of electron-electron collisions and scattering anisotropy on both lattice and ionized impurity scattering mobilities are discussed.

2.1. Lattice Scattering

Calculations of lattice scattering mobility for \(n \)-type silicon have been reported by Long [1], Norton et al. [2], and others [3,4]. All these calculations are based on the general treatment developed earlier by Herring and Vogt [5] for multivalley semiconductors such as silicon and germanium. The lattice scattering mobility for \(n \)-type silicon is mainly due to the intravalley acoustic phonon and the intervalley phonon scattering (i.e., the so-called \(f \)-type and \(g \)-type phonon scattering) [2]. The lattice mobility due to acoustical phonon scattering has been discussed by Brooks [4], using the concept of deformation potential introduced first by Shockley and Bardeen [6], for semiconductors with spherical energy surfaces. The reciprocal relaxation time for this case is [4].

\[
\tau_{La}^{-1} = \frac{(8\pi^3/h^4)}{(2m*)^{3/2}} \left(\frac{kT}{\rho u_k^2} \right) E_{IC}^2 T^{1/2} \tag{2.1}
\]

which predicts that \(\tau_{La} \) is proportional to \(T^{-1/2} \). The lattice mobility derived from eq (2.1) is [4]

\[
\mu_{La} = \frac{\Phi}{m^*} <\tau_{La}> = \frac{2(2\pi)^{1/2} q^2 h^2 \rho u_k^2}{3m^{5/2} (kT)^{3/2} E_{IC}^2} \tag{2.2}
\]

Equation (2.2) predicts that \(\mu_{La} \) varies as \(T^{-1.5} \) for acoustical phonon scattering. For silicon, \((m*)^{-5/2} \) is replaced by \(\frac{1}{3} (m_e^* m_t^*)^{-1/2} (m_e^* m_t^* + 2m_e^* - 1) \) and \((m_e^*/m*)^{5/2} = 20.4 \); \(\rho u_k^2 = 1.97 \times 10^{12} \) dynes/cm\(^2\); \(E_e = 12.80 \) eV is the deformation potential constant [4]. Lattice mobility described by eq (2.2) assumes that all the scattering events are due to dilation, and that scattering between different ellipsoidal energy surfaces (i.e., the intervalley phonon scattering) has been neglected. The experimental observations of electron mobility for intrinsic silicon, however, shows a stronger temperature dependence of the lattice mobility (i.e., \(\mu_T \sim T^{-2.3\pm 0.2} \)) than that predicted by eq (2.2). To correct this discrepancy, Herring [7] has also considered the optical mode and the intervalley phonon scattering for \(n \)-type silicon. Long [1] has extended the expression to a general case in which there are several intervalley phonons of different energies and scattering strengths and in which the acoustic phonon scattering may be anisotropic. Herring and Vogt [5] have shown that it is legitimate to describe the scattering by a relaxation time tensor diagonal in the principal axes of an energy spheroid. There are two relaxation times for \(n \)-type silicon, \(\tau_t \) and \(\tau_k \). The reciprocal relaxation time component for this case is thus given by [1]:

\[
\tau_{La}^{-1} = W_{La} \left(\frac{E}{kT} \right)_0^{1/2} \left(\frac{T}{T_0} \right) + \sum_i W_i \left(\frac{T}{T_0} \right)^{3/2} \left(\frac{(E/kT_{ci}) + 1}{\exp(T_{ci}/T) - 1} \right)^{1/2} \tag{2.3}
\]

\[
\frac{(E/kT_{ci} - 1)^{1/2}}{1 - \exp(-T_{ci}/T)}
\]

*The average relaxation time \(<\tau> \) for the nondegenerate case is \(<\tau> = \int_0^\infty \tau E^{3/2} \exp(-E/kT) dE/\int_0^\infty E^{3/2} \exp(-E/kT) dE \) where \(\tau \) is given by (2.1).
The W_1 and W_2 measure the strength of coupling of the electrons to acoustic and to intervalley phonons, respectively, and the subscript i ranges over all the intervalley phonons of different energies. The subscript α is to be replaced by "t" or "k" depending on the direction relative to the spheroid axis. The temperatures T_1, T_2, and T_3 are, respectively, the temperature at which the relaxation time is to be determined, the characteristic temperature of the ith phonon, and a reference temperature chosen to fix the magnitude of τ. The lattice scattering mobility for n-type silicon can be calculated from eq (2.3), by use of the following expression:

$$\mu_L = \frac{q}{3} \left[\frac{2<\tau_{t^*}>}{m_t} + \frac{<\tau_{k^*}>}{m_k} \right]$$ \hspace{1cm} (2.4)

The procedure for computing μ_L from eq (2.4) is to substitute eq (2.3) into eq (2.4) and to adjust the intervalley coupling constants W_i to give the best fit of the resulting expression to the observed μ_L versus T curve. To simplify the theoretical calculations of μ_L by eqs (2.3) and (2.4), Long [1] has assumed that the possible contributions by all of the various intervalley phonons can be approximated by just two phonons of energies equivalent to temperatures of 630 to 190 K. This approximation is reasonable, since all of the intervalley phonons lie within two rather narrow energy ranges, and these phonons approximately represent average energies of the two ranges. The scattering anisotropy due to the anisotropic effective masses m_t and m_k is handled by properly choosing the ratio of coupling constants W_i and $W_{\alpha\beta}$ in the mobility calculations. Long [1] has found that choosing the ratio of $W_i/W_{\alpha\beta}$ = 2.0 and $W_2/W_{\alpha\beta}$ = 0.15 yields the best overall fit. The dashed line in figure 1 shows the results of his calculations for temperatures between 100 and 500 K. Norton et al. [2] have recently reported a similar calculation (but assuming four intervalley phonons with phonon temperatures T_1 = 540 K, T_2 = 690 K, T_3 = 190 K, and T_4 = 307 K) for phosphorus-doped silicon. Their results are also shown in figure 1 by the solid line. It is noted that both curves are in good agreement (within ±3 percent) for temperatures between 100 and 500 K. For a more detailed discussion of their individual treatments, the readers are referred to the original papers by Long [1] and Norton et al. [2], respectively. We have used the lattice mobility data of Norton et al. [2] for the present mobility calculations.

2.2. Ionized Impurity Scattering

For lightly-doped n-type silicon the main contribution to the electron mobility comes from lattice scattering. As the dopant density increases (or temperature decreases), the role of impurity scattering becomes more important. Theories for ionized impurity scattering in semiconductors have been developed by Brooks [4] and Herring [7], Dingle [8], Samoilovich et al. [9], and Luong and Shaw [10].

The Brooks-Herring formula is based on the important assumptions that the Born approximation applies, the relaxation time is scalar, the energy surfaces are spherical, electron-electron interactions are negligible, and impurity cell effects can be ignored. The expression for the relaxation time derived from these assumptions, is [7]:

$$\tau_i = \frac{(2m_n^*)^{1/2} \varepsilon_s^2 E_3^{3/2}}{\pi q^4 N_i G(b)} \times 10^{-6}$$ \hspace{1cm} (2.5)

where $G(b) = \ln (b + 1) - [b/(b + 1)]$, \hspace{1cm} (2.6)

$$b = \frac{24\pi m^*_n \varepsilon_s (kT)^2}{q^2 h^2 n'} \times 10^{-6}, \text{ and}$$ \hspace{1cm} (2.7)

$$n' = n + n (1 - n/N_D), \text{ for } N_A = 0$$ \hspace{1cm} (2.8)

Equation (2.5) predicts that τ_i is proportional to $E_3^{3/2}$. The ionized impurity scattering mobility may be derived from eq (2.5) with the result that [7]

3
Figure 1. Lattice scattering mobility as a function of temperature for n-type silicon calculated by Long [1] (dashed line) and Norton et al. [2] (solid line).
\[\mu_{\text{BH}} = \frac{27/2 \varepsilon_s^2 (kT)^{3/2}}{\pi^{3/2} q^3 m^*_{n}^{1/2} N_i \cdot G(b)} \times 10^{-2} \]

(2.9)

Equation (2.9) takes no explicit account of any anisotropy in the ion scattering. As a result, it usually overestimates the mobility values, particularly in the high dopant density range where impurity scattering is dominant.

The difficulty in using eq (2.9) for computing the ionized impurity scattering mobility lies in the choice of proper electron effective mass in eqs (2.7) and (2.9) when energy band structure is nonspherical. For silicon, the anisotropic scattering effect comes from electron mass anisotropy (e.g., \(m_t = 0.192 m_0 \) and \(m_r = 0.98 m_0 \)) due to the ellipsoidal conduction band structure. Long [14] has made an extensive study of the validity of Brooks-Herring formula for \(n \)-type silicon for dopant density less than \(10^{16} \text{ cm}^{-3} \) and temperatures below 100 K. He concluded that if the electron effective mass in eq (2.9) was used as an adjustable parameter, then good agreement between theory and experiment can be obtained. In the present study [12], we have also made a detailed comparison among the theoretical models developed by Brooks-Herring [4,7], Conwell-Weisskopf [13], and Samoilovich et al. [9], and have found that the mobility values calculated from these models for \(n \)-type silicon are generally too large for \(10^{13} < N_n < 10^{19} \text{ cm}^{-3} \) and \(100 < T < 500 \text{ K} \). To correct this discrepancy, we have made use of the results of Long [14], and Norton et al. [2], and obtained a mobility expression, similar to that of eq (2.9), for ionized impurity scattering:

\[\mu_I = 7.3 \times 10^{17} T^{3/2}/N_i \cdot G(b). \]

(2.10)

Here \(G(b) \) is identical to eq (2.6) with the exception that \(b \) is replaced by \(b^* \), and \(m^*_n \) is used in eq (2.7) to obtain \(b^*_k \). The numerical coefficient in eq (2.10) was obtained directly from reference [14] for \(n \)-type silicon when the anisotropic scattering effect is included. The reader is referred to the original paper [14] for a complete description.

When electron-electron scattering effect is included in eq (2.10) for \(N_n > 2 \times 10^{16} \text{ cm}^{-3} \), the formula appears to yield the best theoretical fit to the measured mobility in the range of dopant density and temperature studied here.

2.3. Neutral Impurity Scattering

Because of the analogy between a neutral donor atom and a hydrogen atom, the mobility for scattering by the neutral donors can be obtained by proper modification of the results for scattering of slow electrons by hydrogen atoms. Erginsoy first predicted a temperature-independent mobility given by [15]:

\[\mu_{\text{NE}} = \frac{2\pi^3 q^3 m^*_{n}}{5N_N^e \varepsilon_s h^2} \times 10^{-2} \]

(2.11)

This equation fails to predict the temperature dependence of neutral impurity scattering mobility observed for \(n \)-type silicon at low temperatures [2]. Sclar [16] sought to improve eq (2.11) by including the possibility of bound states in the electron-hydrogenic impurity scattering problem. He obtained the following expression for the neutral impurity scattering mobility [16]

\[\mu_N = 0.82 \mu_{\text{NE}} \left[\frac{2}{3} \left(\frac{kT}{E_N} \right)^{1/2} + \frac{1}{3} \left(\frac{E_N}{kT} \right)^{1/2} \right], \]

(2.12)

where

\[E_N = 1.136 \times 10^{-19} \left(\frac{m^*_{n}}{m_o} \right) \left(\varepsilon_o / \varepsilon_s \right)^2 \]

(2.13)

†For details see Appendix A.
Figure 2. Neutral impurity scattering mobility as a function of donor density computed from eq (2.11) (due to Enginsoy) - eq (2.12) (due to Sclar).
and \(\mu_{\text{NE}} \) is given by eq (2.11).

Equation (2.12) predicts that \(\mu_n \) varies as \(T^{1/2} \) for \(kT \) above the binding energy, \(E_B^0 \). The experimental data given by Norton et al. [2] for \(n \)-type silicon show such a dependence up to 50 K. Our mobility and resistivity calculations using eqs (2.11) and (2.12) show that the latter produces a better fit with the experimental data than the former. For comparison, the neutral impurity scattering mobilities computed from eqs (2.11) and (2.12) are shown in figure 2 for \(T = 300 \) K. Note that the mobility values predicted by eq (2.11) are somewhat smaller than those of eq (2.12).

2.4. Effect of Electron-Electron Scattering

The mobility formula given in eq (2.10) neglects the effect of electron-electron (e-e) scattering on the ionized impurity scattering mobility. Although e-e scattering does not affect the current density directly since it cannot alter the total momentum, it tends to randomize the way in which this total momentum is distributed among electrons with different energy. When the scattering mechanism is such as to lead to a nonuniform distribution, e-e scattering gives rise to a net transfer of momentum from electrons which dissipate momentum less efficiently to those which dissipate more efficiently, resulting in an overall greater rate of momentum transfer and lower mobility.

On the basis of the above argument, it is obvious that the size of the effect of e-e scattering on the mobility is a function of the energy dependence of the relaxation time. Thus, for neutral impurity scattering where the relaxation time is independent of energy, the mobility is not affected by e-e scattering. Ionized impurity scattering would be expected to be much more affected than lattice scattering since in the former case \(\tau_l \) is proportional to \(\tau_{\text{e-e}} \), while in the latter it is proportional to \(\tau_{\text{e-e}}^{-1/2} \).

Luong and Shaw [10] have analyzed the effect of e-e scattering on the ionized impurity mobility using a single-particle-like approximation from the time-independent Hartree-Fock theory. They have shown that with the correction for e-e scattering, the Brooks-Herring formula is reduced by a factor which can be expressed in closed form as [10]

\[
\mu_I'' = (1 - e^{-n/N_I}) \mu_I
\]

(2.14)

where \(N_I \) is the ionized impurity density, \(n \) is the electron density, and \(\mu_I' \) is given by eq (2.10). For uncompensated \(n \)-type silicon, the density of ionized donor impurities, \(N_I' \), is equal to the density of conduction electrons, \(n \). Thus, eq (2.14) reduces to

\[
\mu_I'' = (1 - e^{-1}) \mu_I = 0.632 \mu_I
\]

(2.15)

The factor in eq (2.15) is in good agreement with a previous prediction [17] based on the Boltzmann theory. For \(n \)-type silicon, the effect of e-e scattering on the ionized impurity scattering becomes important for \(N_D > 2 \times 10^{16} \text{ cm}^{-3} \), as will be discussed later.

The effect of e-e scattering on the lattice mobility has also been discussed in several classical papers [4,18,19]. It can be shown [18,19] that e-e scattering reduces the lattice scattering mobility by a maximum of 12 percent. This factor will be used in the present calculations.

3. CALCULATIONS OF ELECTRON MOBILITY AND RESISTIVITY IN \(n \)-TYPE SILICON

3.1. Electron Mobility Calculations

We now discuss the mobility calculations for \(n \)-type silicon in the range of dopant density from \(10^{13} \) to \(10^{19} \text{ cm}^{-3} \) and temperature from 100 to 500 K.

The combined mobility due to both lattice and ionized impurity scattering contributions can be calculated according to the mixed-scattering formula [18]:

\[
\mu_{\text{li}} = \mu_l [1 + x^2 (C_iX \cos X + \sin X (S_iX - \frac{\pi}{2}))]
\]

(3.1)
where μ_L is the lattice mobility,

$$X^2 = 6\mu_L / \mu_I,$$ \hspace{1cm} (3.2)

and μ_I is given by eq (2.10).

$\cos X$ and $\sin X$ are the cosine and sine integrals of X, respectively. Note that eqs (3.1) and (3.2) are applicable for donor densities less than 2×10^{16} cm$^{-3}$ where the effect of e-e scattering is negligible. For dopant densities greater than 2×10^{16} cm$^{-3}$, the effect of e-e scattering is incorporated empirically in eq (3.2) as follows:

(i) High dopant density range ($2 \times 10^{17} < N_D < 10^{19}$ cm$^{-3}$).

In this dopant density range, experimental evidence indicates that the full effect of e-e scattering should be taken into account in the mobility calculations, and eq (3.2) is replaced by:

$$X' = 6 \mu'' / \mu''_I ,$$ \hspace{1cm} (3.3)

where

$$\mu''_L = 0.88 \mu_L ,$$ \hspace{1cm} (3.4)

and,

$$\mu''_I = 0.632 \mu_I .$$ \hspace{1cm} (3.5)

(ii) Intermediate dopant density range ($2 \times 10^{16} < N_D < 2 \times 10^{17}$ cm$^{-3}$).

In this dopant density range, the effect of e-e scattering on both lattice and ionized impurity scattering mobilities is increased gradually with increasing dopant density. To obtain the best fit to the measured mobility at 300 K in this transition range, the mobility reduction factors $R(N_D)$ and $S(N_D)$, for both μ_L and μ_I, were derived empirically, assuming a linear dependence on the donor density. The results are given by:

$$\mu'_L = R(N_D) \mu_L ,$$ \hspace{1cm} (3.6)

where

$$R(N_D) = 1.013 - 6.62 \times 10^{-19} \times N_D$$ \hspace{1cm} (3.7)

and

$$\mu'_I = S(N_D) \mu_I ,$$ \hspace{1cm} (3.8)

where

$$S(N_D) = 1.04 - 2.04 \times 10^{-18} \times N_D .$$ \hspace{1cm} (3.9)

The mobility ratio in eq (3.2) is now replaced by

$$X'^2 = 6 \mu'_L / \mu'_I.$$ \hspace{1cm} (3.10)

Note that the mobility reduction factors, $R(N_D)$ and $S(N_D)$, in eqs (3.7) and (3.9) decrease linearly from 1 to 0.88 and 0.632, respectively, as the dopant density, N_D, increases from 2×10^{16} to 2×10^{17} cm$^{-3}$.

Equations (3.1) through (3.10) allow the calculations of μ_L for $10^{15} \leq N_D \leq 10^{19}$ cm$^{-3}$, and $100 < T < 500$ K. When neutral impurity scattering is included, the total electron mobility may be computed from the expression
\[\mu_n = (\mu_{LI}^{-1} + \mu_{N}^{-1})^{-1} \]

(3.11)

where \(\mu_{LI} \) is given by eq (3.1) and \(\mu_{N} \) is the mobility due to neutral impurity scattering as given in eq (2.12). A sum of the reciprocal mobilities for this case is expected to yield a considerably better approximation than it does for the reciprocal sum of \(\mu_n \) and \(\mu_{I} \) because neutral impurity scattering, being energy independent, does not affect any contributions from \(\mu_L \) and \(\mu_{I} \).

3.2. Ionization of the Donor Impurity

In this section, formulations are given for computing the ionized donor density (or electron density) as a function of the total donor density in uncompensated \(n \)-type silicon. In order to compute the electron mobility and resistivity, it is necessary to know the amounts of ionized and neutral impurity atoms so that their scattering contributions can be calculated.

The ionized donor densities for \(n \)-type silicon were computed by solving the charge balance equation for the Fermi energy by an iteration procedure. Since the minority carrier density (i.e., hole density in \(n \)-type silicon) is negligibly small for this case, the charge balance equation is simply

\[n = N_D^+ \]

(3.12)

where

\[N_D^+ = \frac{N_D}{1 + 2 \exp((E_F - E_C + E_D)/kT)} \]

(3.13)

and the electron density, \(n \), is given by [20]

\[n = \frac{N_C}{\exp(E_C - E_F)/kT + 0.27}, \text{ for } E_F < 1.3 \text{ kT} \]

(3.14)

where \(N_C = 2 \left(\frac{2\pi m^* d}{\hbar^2} \right)^{3/2} \) is the effective density of conduction band states (\(N_C = 3.22 \times 10^{19} \text{ cm}^{-3} \) for \(n \)-type silicon at 300 K). The temperature dependence of the density of states effective mass was taken into account in accordance with the results of Barber [11].

Experimental evidence exists which shows that the donor ionization energy, \(\varepsilon_D \), is not constant, but decreases with increasing dopant density. Hall coefficient measurements by Pearson and Bardeen [21] and more recently by Penin et al. [22] in heavily-doped silicon from 4 to 300 K show no evidence of an ionization energy at impurity densities greater than \(3 \times 10^{18} \text{ cm}^{-3} \). For \(n \)-type silicon doped with phosphorus impurities, the dependence of donor ionization energy on the dopant density is [18]

\[\varepsilon_D = \varepsilon_D(0) - \alpha N_D^{1/3} \]

(3.15)

where \(\varepsilon_D(0) = 0.045 \text{ eV} \) is the ionization energy of the phosphorus donor; with \(\alpha = 3.1 \times 10^{-8} \), eq (3.15) gives a zero ionization energy for \(N_D = 3 \times 10^{18} \text{ cm}^{-3} \).

3.3. Resistivity Analysis

Measurements of resistivity in silicon have been reported by previous investigators [23-35]. Irvin [25] first showed complete resistivity versus dopant density curves for both \(n \)- and \(p \)-type silicon at 300 K, using mostly previously published data. Recently Mousty et al. [26] reported the resistivity versus phosphorus density in \(n \)-type silicon. The electrical properties of heavily-doped silicon were also reported by Chapman et al. [28]. Most of these efforts focused on resistivity measurements near room temperature. A theoretical analysis of the resistivity as a function of dopant density for \(n \)-type silicon has been reported by Rode [3] and Norton et al. [2]; their calculations of resistivity were also confined to room temperature. In this work, we have extended the theoretical calculations of resistivity as a
function of dopant density for n-type silicon for $10^{13} < N_D < 10^{19}$ cm$^{-3}$, and $100 \leq T \leq 500$ K. The resistivity is calculated from the expression
\[\rho = \frac{1}{q n \mu_n} \] (3.16)
If both ρ and n are measured independently, then the electron mobility may be deduced from eq (3.16). On the other hand, if μ_n and n are computed from the theoretical expressions discussed above, it is then possible to compare between theoretically computed and experimentally measured resistivity. We shall discuss this further in section 4.2.

4. RESULTS AND DISCUSSIONS

In this section, calculations of partial mobilities, electron mobility, electron density, and resistivity as functions of dopant density and temperature, based on the theoretical formulas discussed in the preceding section, are described. Results of the resistivity measurements and electron mobility data for phosphorus-doped silicon are presented.

4.1. Electron Mobility vs. Dopant Density and Temperature

The mobility formulas used in the present calculations are listed in table 1. As noted in this table the mobility calculations carried out in three distinct dopant density ranges are based on our analysis of the electron mobility data versus dopant density at 300 K and the resistivity data for phosphorus-doped silicon taken at temperatures between 100 and 500 K. The mobility formulas in column (I) of table 1 may be referred to as the traditional mobility formulations which neglect the effect of electron-electron scattering. The mobility calculations from these formulas for n-type silicon are in good agreement (within ±5 percent) with experimental data for dopant densities up to 2×10^{16} cm$^{-3}$, but for greater dopant densities the calculated mobility is larger than the measured mobility. By including the effect of e-e scattering in the mobility formulas shown in columns (II) and (III), we were able to bring into accord (within ±5 percent) the theoretical calculations and the experimental data at 300 K for dopant densities between 10^{13} and 10^{19} cm$^{-3}$.

Figure 3 shows the electron mobility as a function of donor density computed at 300 K, along with experimental data for phosphorus-doped silicon. The solid dots are taken from the mobility data of Mouyst et al. [26], and Baccarani and Ostoja [29], corrected to 300 K, and the open circles are data obtained by Buehler et al., [30,31] on processed phosphorus-doped silicon slices. A planar four-probe structure was used for resistivity measurements [30] and a diffused diode near the four-probe test structures was used for junction C-V measurements of donor density [31]. The theoretical calculations (curve 3) are within ±5 percent of the experimental data for dopant densities from 10^{14} to 10^{19} cm$^{-3}$. For comparison, the Irvin mobility curve (curve 2) which was calculated from the Caughey and Thomas [32] empirical formula for n-type silicon is also shown by a dashed line in figure 3. To illustrate the important effect of e-e scattering, we have also shown in figure 3 the theoretical calculations of electron mobility as a function of dopant density (see curves 1 and 4) with and without inclusion of e-e scattering effect over the entire range of dopant density from 10^{13} to 10^{15} cm$^{-3}$. It is clearly demonstrated that the mobility values predicted in curve 1 are smaller than the measured mobility for $N_D < 2 \times 10^{17}$ cm$^{-3}$ when e-e scattering is included in this dopant density range. On the other hand, the mobility values predicted in curve 4 are larger than the measured mobility for $N_D > 2 \times 10^{16}$ cm$^{-3}$ when e-e scattering is neglected. Thus, a transition region (i.e., $2 \times 10^{16} \leq N_D \leq 2 \times 10^{17}$ cm$^{-3}$) exists in which the effect of e-e scattering increases gradually with increasing dopant density. The mobility formulas in table 1 were also applied to compute the electron mobility as a function of dopant density for temperatures between 100 and 500 K. The results are displayed in figures 4 and 5. Mobility was not determined directly at temperatures other than 300 K so no attempt has been made to compare theory with experiment.

4.2. Resistivity vs. Dopant Density and Temperature

Electrical resistivity as a function of dopant density for phosphorus-doped silicon was calculated using eq (3.16). Values of μ_n were obtained from the results of section 4.1., and the electron density was computed by solving eqs (3.12) through (3.14) using the iteration
<table>
<thead>
<tr>
<th></th>
<th>(I) $10^{13} \leq N_D \leq 2 \times 10^{16}$ cm$^{-3}$</th>
<th>(II) $2 \times 10^{16} \leq N_D \leq 2 \times 10^{17}$ cm$^{-3}$</th>
<th>(III) $2 \times 10^{17} \leq N_D \leq 10^{19}$ cm$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Lattice Mobility [2]: μ_L</td>
<td>Lattice Mobility: μ''_L</td>
<td>Lattice Mobility: μ''_L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Values of μ_L are obtained from Norton et al. [2] (1a)</td>
<td>$\mu'_L = R(N_D) \cdot \mu_L$ (1b)</td>
<td>$\mu''_L = 0.88 \mu_L$ (1c)</td>
</tr>
<tr>
<td></td>
<td>(See figure 1 of this paper.)</td>
<td>where $R(N_D) = (1.013 - 6.62 \times 10^{-19} \times N_D)$</td>
<td></td>
</tr>
<tr>
<td>(2) Ionized Impurity Mobility [10]: μ_I</td>
<td>Ionized Impurity Mobility: μ'_I</td>
<td>Ionized Impurity Mobility: μ''_I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\mu_I = 7.3 \times 10^{17} \times T^{3/2} / \mu_I \cdot G(b_k)$ (2a)</td>
<td>$\mu'_I = S(N_D) \cdot \mu_L$ (2b)</td>
<td>$\mu''_I = 0.632 \mu_I$ (2c)</td>
</tr>
<tr>
<td></td>
<td>where $G(b_k) = \ln(b_k + 1) - b_k / (b_k + 1)$</td>
<td>where $S(N_D) = (1.04 - 2.04 \times 10^{-18} \times N_D)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_k = 1.52 \times 10^{15} \times T^2 / n^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Mixed Scattering Formula for μ_{LI} [15]:</td>
<td>Mixed Scattering Formula for μ'_I</td>
<td>Mixed Scattering Formula for μ''_I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\mu_{LI} = \mu_L \cdot f(X)$ (3a)</td>
<td>$\mu'_I = \mu'_L \cdot f(X')$ (3b)</td>
<td>$\mu''_I = \mu''_L \cdot f(X'')$ (3c)</td>
</tr>
<tr>
<td></td>
<td>where $f(X) = 1 + X^2 \cdot (C1X \cos X + \sin X / 2X)$</td>
<td>where $X' = 6 \mu'_L / \mu'_I$</td>
<td>where $X'' = 6 \mu''_L / \mu''_I$</td>
</tr>
<tr>
<td></td>
<td>and $X^2 = \mu_L / \mu_I$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Neutral Impurity Mobility [2]: μ_N</td>
<td>Neutral Impurity Mobility: μ_N</td>
<td>Neutral Impurity Mobility: μ_N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\mu_N = (3 \times 10^{20} / N_N) \cdot (0.1495 T^{1/2} + 1.482/T^{1/2})$ (4a)</td>
<td>same as (4a) (4b)</td>
<td>same as (4a) (4c)</td>
</tr>
<tr>
<td>(5) Total Electron Mobility: μ_n</td>
<td>Total Electron Mobility: μ_n</td>
<td>Total Electron Mobility: μ_n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\mu_n = (1/\mu_{LI} + 1/\mu_N)^{-1}$ (5a)</td>
<td>$\mu_n = (1/\mu'_L + 1/\mu'_N)^{-1}$ (5b)</td>
<td>$\mu_n = (1/\mu''_L + 1/\mu''_N)^{-1}$ (5c)</td>
</tr>
</tbody>
</table>
Figure 3. Electron mobility versus total donor density for n-type silicon at 300 K. (Curve 1 is the theoretical calculation with e-e scattering included for $10^{13} < N_D < 10^{19}$ cm$^{-3}$, curve 2 is the Irvin curve calculated from the Caughey and Thomas empirical formula [30], curve 3 is the exact theoretical calculation using mobility formulas in Table 1, curve 4 is the theoretical calculation with e-e scattering neglected. Open circles are NBS data [27], and solid dots are from Mousty et al. [24] for phosphorus-doped silicon.)
Figure 4. Electron mobility of n-type silicon versus temperature for dopant densities from 10^{13} to 5×10^{18} cm$^{-3}$.
Figure 5. Electron mobility of p-type silicon versus total donor density with temperature as a parameter ($77\leq T\leq 500$ K).
procedure mentioned in section 3.2. The results are displayed in figures 6 through 10.

In figure 6, the theoretical curves are shown for the percent ionization of phosphorus atoms versus total phosphorus density for temperatures between 100 and 500 K. The electron density was obtained from eq (3.12), which is a valid approximation for the uncompensated case. Figure 7 shows the resistivity versus donor density for n-type silicon at 300 K; the solid line is our theoretical calculation, and the dashed line is the Irvin curve [25]. The calculated resistivity is 5 to 10 percent smaller than the resistivity given by the Irvin curve for the same value of dopant density; this is consistent with recently published resistivity data [26,31].

In order to compare theory with experiment for temperature other than 300 K, resistivity measurements were made between 100 and 500 K on seven phosphorus-doped silicon wafers with densities from 1.2×10^{14} to 2.5×10^{18} cm$^{-3}$.

The resistivity measurements were performed using a planar four-probe test structure which was designed for bulk resistivity measurements and was fabricated using the bipolar transistor process. The test cells used for the resistivity measurements were obtained from the same silicon wafers fabricated for the mobility measurements at 300 K (see figure 3). For temperature dependent measurements, the test cell containing the four-probe structure was mounted on a TO-5 header, and a temperature-sensing diode was also mounted next to the cell for measuring the temperature. The TO-5 header was then mounted inside a specially-designed cryostat where temperatures can be varied from -191 to 400°C with a maximum heating rate of 7 K/s [32].

Figure 8 shows the plot of resistivity as a function of temperature for phosphorus-doped silicon with dopant densities from 1.2×10^{14} to 2.5×10^{18} cm$^{-3}$; the solid lines are the theoretical calculations and the solid dots are the measured resistivity. Figure 9 displays the calculated resistivity versus temperature for dopant densities from 5×10^{13} to 10^{19} cm$^{-3}$ in more regular steps. Figure 10 shows the calculated resistivity curves as a function of dopant density for temperatures between 100 and 500 K. The results show that the resistivity depends strongly on temperature for $N_D < 10^{16}$ cm$^{-3}$ where lattice scattering is dominant. However, the resistivity is nearly independent of temperature for $N_D > 10^{18}$ cm$^{-3}$ where mixed scattering prevails.

5. CONCLUSIONS

An improved theoretical model has been formulated for computing electron mobility in n-type silicon as functions of dopant density and temperature. In addition to considering the contributions from scattering by lattice phonons, ionized impurities, and neutral impurities, this model takes into account the effect of electron-electron scattering on both lattice and ionized impurity scattering mobilities for dopant densities greater than 2×10^{16} cm$^{-3}$.

From this study, it was found that the influence of e-e scattering is negligible for $N_D < 2 \times 10^{16}$ cm$^{-3}$, but is significant for $N_D > 10^{17}$ cm$^{-3}$. To allow a smooth change in the calculated mobility values across the boundaries of the transition region (i.e., $2 \times 10^{16} \leq N_D \leq 2 \times 10^{17}$ cm$^{-3}$), the effect of e-e scattering is assumed to increase linearly with dopant density in this region. The theoretical predictions, based on such an assumption, are within ±5 percent of the measured mobilities for $10^{13} \leq N_D \leq 10^{19}$ cm$^{-3}$, and $T = 300$ K.

Resistivity analysis for phosphorus-doped silicon shows that for dopant densities less than 3×10^{18} cm$^{-3}$, the calculated resistivity values are within ±7 percent of the experimental data for temperatures between 100 and 500 K.
Figure 6. Percent of ionized phosphorus density versus total phosphorus density with temperature as a parameter (100<T<500 K).
Figure 7. Resistivity versus total donor density for n-type silicon at 300 K. (The solid line is the theoretical calculation and the dashed line is from the Irvin curve [23].)
Figure 8. Resistivity versus temperature for seven phosphorus-doped silicon slices. (Solid lines are the theoretical calculations and dots are the experimental data.)
Figure 9. Theoretical calculations of resistivity versus temperature for n-type silicon with donor densities from 5×10^{13} to 10^{19} cm$^{-3}$.
Figure 10. Theoretical calculations of resistivity versus total donor density for n-type silicon with temperature as a parameter (100<T<500 K).
APPENDIX A: COMPARISON OF THE EXISTING MODELS FOR IONIZED IMPURITY SCATTERING

In addition to the Brooks-Herring (BH) mobility formula already discussed in section 2.2. of the main text, we now proceed to discuss other existing models for computing the ionized impurity scattering mobility in n-type silicon. These include the Conwell-Weisskopf (CW) formula [13] and the formulas derived more recently by Samoilovich, Korenblit, and Dakhovskii (SKD) [9].

(i) Conwell-Weisskopf (CW) Formula:

Using the Born approximation and assuming that the impurity potential is a bare Coulomb potential (i.e., $V(r) = -\frac{q}{r}$), Conwell and Weisskopf derived a mobility expression which reads [13]:

$$\mu_{I}(CW) = \frac{128(2\pi)^{1/2} \varepsilon_s^{2}k^{3/2}}{q^{3}m^{*1/2}N_{I}} \ln \left[1 + \frac{12\pi \varepsilon_{s}kT^{2}}{q} N_{I}^{-2/3} \right]^{-1}$$

$$\mu_{I}(CW) = \frac{4.55 \times 10^{17} T^{3/2}}{N_{I}} \ln \left[1 + \frac{4.42 \times 10^{8} T^{2}}{N_{I}^{2/3}} \right]^{-1}$$

(A.1)

The numerical values in the brackets of eq (A.1) are obtained by substituting $m^{*} = 0.26 m$ and $\varepsilon_{s} = 11.7 \times 8.852 \times 10^{-14}$ F/cm in the above equation. The theoretical values of μ_{I} calculated from eq (A.1) are shown in figure A.1 (see curve 4).

(ii) The SKD Formula:

Samoilovich et al. [9] have derived a theoretical model for computing ionized impurity scattering mobilities in n-type silicon taking into account the effect of scattering anisotropy. The results of their mobility formulations can be summarized as follows.

The average relaxation times along the transverse and longitudinal axis of the ellipsoidal conduction band valley of silicon are given, respectively, by [2]:

$$<\tau_{t}> = 5.48 \times 10^{11} \left(g_{t} + 1 \right)/\left[N_{I} \times \left[\ln(b_{t}) - 2.34 + 7.88/b_{t} \right] \right]$$

(A.2)

and,

$$<\tau_{L}> = 1.98 \times 10^{12} \left(g_{L} + 1 \right)/\left[N_{I} \times \left[\ln(b_{L}) - 1.75 + 4.64/b_{L} \right] \right]$$

(A.3)

where

$$g_{t} = 0.03 \times \left[\log_{10} \left(b_{t} \right) \right] - 1$$

(A.4)

$$g_{L} = 0.192 - 0.335/\log_{10} \left(b_{L} \right)$$

(A.5)

$$b_{t} = 1.52 \times 10^{15} T^{2}/n'$$

(A.6)

$$n' = n + n' \cdot \left(1 - n/N_{A} \right)$$

for $N_{A} = 0$

(A.7)

The mobility is then computed from the following expression:

$$\mu_{I}(SKD) = \frac{q}{3} \left(\frac{2<\tau_{t}>}{m_{t}} + \frac{<\tau_{L}>}{m_{L}} \right) = 5.86 \times 10^{8} \left(10.4 <\tau_{t}> + 10.2 <\tau_{L}> \right)$$

(A.8)

Here $<\tau_{t}>$ and $<\tau_{L}>$ are the Maxwellian average relaxation time components given by eqs (A.2) and (A.3), respectively. The mobility versus dopant density, as calculated from eq (A.8),
Figure A-1. Ionized impurity scattering mobility versus total donor density as computed from different theoretical models at 300 K. (Curve 1 is calculated from eq (2.10), curve 2 from eq (2.9), curve 3 from eq (A-8), and curve 4 from eq (A-1).)
is shown in figure A.1 (i.e., curve 3). For comparison, the mobility curves calculated from the Brooks-Herring formula (i.e., eq (2.9)) and the modified formula (i.e., eq (2.10)) discussed in the main text are also included in figure A.1 (see curves 2 and 1). Note that corrections due to e-e scattering for \(N_D > 2 \times 10^{16} \text{ cm}^{-3} \) have also been taken into account for all four curves shown in figure A.1. The results show that for \(N_D < 10^{18} \text{ cm}^{-3} \) the mobility values predicted by the three existing models are in reasonable agreement (within ±20 percent), but are 25 to 50 percent larger than those predicted by the modified formula (i.e., eq (2.10)). However, for \(N_D > 10^{18} \text{ cm}^{-3} \), the mobility values calculated by both the SKD and BH formulas are considerably larger (about 50 to 100 percent) than those from eq (2.11).

In conclusion, the present results suggest that the mobility formulations for ionized impurity scattering derived by Conwell-Weisskopf, Brooks-Herring, and Samoilovich et al. appear to overestimate the mobility for \(n \)-type silicon, particularly for \(N_D > 10^{18} \text{ cm}^{-3} \). One possible reason for this discrepancy may be attributed to the anisotropic scattering effect resulting from electron mass anisotropy in \(n \)-type silicon, as pointed out in the main text. For \(p \)-type silicon where hole effective masses are nearly isotropic, the above mentioned difficulty would not be expected to occur.
In this appendix, we calculate two important physical parameters which are relevant to the mobility calculations discussed in the main text and Appendix A. These two parameters are the dielectric screening length, R_s, and the degeneracy temperature, T_d. For the sake of simplicity, we consider here the case of phosphorus-doped silicon in which one extra electron is provided by each phosphorus donor atom which then becomes positively charged when ionized. Let n be the density of electrons in the conduction band, and $V(r)$ the electrostatic potential. In the presence of the self-consistent field due to $V(r)$, the ordinary space-independent Fermi energy, E_F, must be replaced by $E_F + qV(r)$, and $V(r)$ can be obtained by solving Poisson's equation. The result is given by [7]:

$$V(r) = \left(\frac{q}{\varepsilon_S} \right) \exp\left(-\frac{r}{R_n}\right)$$ \hspace{1cm} (B.1)

where

$$R_n = \left(\frac{1}{q} \right) \left(\frac{\varepsilon_S kT}{4\pi n} \right)^{1/2}$$ \hspace{1cm} (B.2)

For n-type silicon, eq (B.2) reduces to

$$R_n = 23.6 \, T^{1/2} \, n^{-1/2} \, (\text{cm})$$ \hspace{1cm} (B.3)

which shows that the dielectric screening length is inversely proportional to the square root of the electron density. Equation (B.3) was used to calculate the dielectric screening length versus dopant density for n-type silicon for temperatures between 100 and 500 K. The results are shown in figure B.1. For comparison, the interatomic spacing of the silicon lattice is also included in this figure. Note that the dielectric screening of conduction electrons may be considered "complete" if $R_n \gg d_s$, where d_s is the spacing of silicon atoms. For n-type silicon, this condition is satisfied for $N_D < 3 \times 10^{18}$ cm$^{-3}$ and $T > 100$ K. Thus, calculations of ionized impurity scattering mobility by the Brooks-Herring formula, as discussed in the main text, should be valid for $N_D < 3 \times 10^{18}$ cm$^{-3}$ and $T > 100$ K. However, for higher temperatures (e.g., $T \geq 250$ K), the validity of the Brooks-Herring formula may be extended to $N_D \sim 10^{19}$ cm$^{-3}$, since the dielectric screening length also increases with increasing temperature.

The degeneracy temperature of the electron system in n-type silicon is calculated from the following expression [7]:

$$T_d = \left(\frac{\hbar^2}{8\pi n \varepsilon_n} \right) \left(\frac{3n}{8\pi} \right)^{2/3}$$ \hspace{1cm} (B.4)

Equation (B.4) was used to compute the degeneracy temperature as a function of electron density for n-type silicon, and the result is shown in figure B.2. The curve may serve as a demarcation line which separates the degenerate region (i.e., above the curve) from the non-degenerate region (i.e., below the curve) as shown in the figure. This plot is useful for identifying the validity of the statistics used in the mobility calculations. For example, at $T = 100$ K, nondegenerate statistics may be used in the mobility calculations for dopant densities up to 3×10^{18} cm$^{-3}$ and this may be extended to 7×10^{18} cm$^{-3}$ for $T = 300$ K.
Figure B-1. Dielectric screening length versus donor density for $100 < T < 500$ K for phosphorus-doped silicon.
Figure B-2. Degeneracy temperature as a function of electron density for \(n \)-type silicon.
REFERENCES

Semiconductor Measurement Technology: The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in N-Type Silicon

Sheng S. Li

Library of Congress Catalog Card Number: 76-608381

Traditional analysis of electron mobility in n-type silicon neglects the effects of electron-electron scattering and scattering anisotropy in the mobility calculations. As a result, theory fails to conform with experiment when dopant density exceeds 2×10^{16} cm$^{-3}$.

In this work, an improved theoretical model for computing mobility and resistivity as functions of dopant density and temperature has been formulated for n-type silicon. The model has been applied to phosphorus-doped silicon for dopant densities from 10^{13} to 10^{19} cm$^{-3}$, and temperatures between 100 and 500 K.

The electron mobility was calculated analytically by appropriately combining lattice, ionized impurity, and neutral impurity scattering contributions. The effect of electron-electron scattering on both lattice and ionized impurity scattering mobilities was incorporated empirically for dopant densities greater than 2×10^{16} cm$^{-3}$. Additionally, the anisotropic scattering effect was also considered in the mobility calculations.

Theoretical calculations of resistivity and ionized donor density were made for phosphorus-doped silicon for temperatures between 100 and 500 K.

Resistivity measurements on seven phosphorus-doped silicon slices with dopant densities from 1.2×10^{14} to 2.5×10^{18} cm$^{-3}$ were carried out for temperatures between 100 and 500 K. Electron mobility at 300 K was deduced from resistivity and junction C-V measurements for dopant densities from 10^{14} to 10^{18} cm$^{-3}$.

Agreement between theory and experiment for both electron mobility and resistivity of phosphorus-doped silicon was within ±7 percent in the range of dopant densities and temperatures studied.

Keyword: (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Dopant density; electron mobility; ionized impurity scattering mobility; lattice mobility; neutral impurity scattering mobility; n-type silicon; resistivity; scattering mechanisms; temperature.
Announcement of New Publications on
Semiconductor Measurement Technology

Superintendent of Documents,
Government Printing Office,
Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Bureau of Standards Special Publication 400—.

Name __

Company __

Address __

City ___________ State ___________ Zip Code __________

(Notification Key N-413)
PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

- Physics and Chemistry (Section A)
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $17.00; Foreign, $21.25.

- Mathematical Sciences (Section B)
 Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulletin)—This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, $12.50; Foreign, $15.65

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS; NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlets for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash. D. C. 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s technological marketplace.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, $20.00; Foreign, $25.00.

Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.