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PREFACE

This was presented as an invited paper by M. G. Buehler at the
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The work was conducted as part of the Semiconductor Technology
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work were supported by the Defense Nuclear Agency (lACRO 75-816),
Advanced Research Projects Agency (Order No. 2397), U.S. Navy
Strategic Systems Project Office (IPR SP-75-4) , and the NBS.

In the semiconductor industry it is common practice to design
photomasks in English units. The photomasks used in this study
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PLANAR TEST STRUCTURES FOR CHARACTERIZING IMPURITIES IN SILICON

by

M. G. Buehler, J. M. David, R. L. Mattis, VJ. E. Phillips, and W. R. Thurber

Abstract : Various test structures such as sheet
resistors, p-n junctions, and MOS capacitors and their
associated physical models have been developed to
characterize dopants and defects in silicon. These
structures address various needs within the semiconductor
industry for (a) well-designed and miniaturized test
structures such as an orthogonal van der Pauw sheet
resistor, (b) simple and economical measurements such
as the oxide window width of a diffused layer, (c) up-
dated values for the resistivity versus dopant density
relation, and (d) improved detection methods for identi-
fying defect centers which control the lifetime and
leakage currents of devices.

Key Words: MOS capacitors; p-n junctions; resis-
tivity of silicon; semiconductor devices; semiconductor
process control; sheet resistors; test patterns; ther-
mally stimulated currents.

1. INTRODUCTION

The kinds of planar test structures discussed here consist of sheet resistors,
p-n junctions, and MOS capacitors. These structures were used to determine
the sheet resistance of diffused layers, the dopant density and resistivity
of bulk collector regions, and the identity of defect centers such as gold.

The discussion of diffused layers involves the intercomparison , design, and
over-etch of sheet resistors. Simple and economical sheet resistance measure-
ments are shown to lead to values for the width of diffused layers.

For device design, it is essential to have a correct resistivity versus dopant
density relation, and various structures were designed to update this relation
in both n- and p-type silicon. Dopant density values were obtained from gated
diodes and MOS capacitors, and resistivity values were obtained from collector
four-probe resistors fabricated on wafers with a variety of resistivities.
The measured values were combined into a resistivity versus dopant density
plot and compared with existing relations. For p-type silicon the tradition-
ally used Irvin curve [1] differs significantly from the more recent Wagner
curve [2] which also differs from our experimental data.

The important device characteristics, lifetime and leakage current, are degraded
by defect centers such as gold. This defect center was studied in n-type MOS
capacitors and in both p'^n and n'^p junctions. From thermally stimulated current
measurements, the current response is very different for gold doped p'^n as com-
pared with n+p junctions. But the responses of gold doped n-type MOS capacitors
and gold doped p'^n junctions are essentially the same. These thermally stimu-
lated current responses can lead to rapid identification of gold contamination
in silicon devices.

The thrust of this work emphasizes well-designed and miniaturized test struc-
tures and the development of the associated mathematical models. Once devel-
oped, these test structures could become part of a process control test pattern.
The test structures used in this study are included in test pattern NBS-3 [3]

.

This pattern, which is shown in figure 1, was designed primarily for use in the

1



evaluation of the resistivity versus dopant density relation. The overall size
of the pattern is 200 mil (5.08 mm) on a side, and it is repeated every 200 mil
(5.08 mm) over a wafer. The pattern contains diodes, transistors, MOS capacitor
sheet resistors, contact resistors, etch-control structures, and a surface
profilometer structure. The large blank area is intended for Kail effect
measurements once the wafer is scribed and broken into chips. The structures
discussed in the following sections are the large base-collector gated diode
(3.10),* the small base-collector gated diode (3.14), the collector MOS capaci-
tor (3.8), the collector four-probe resistor (3.17), and a variety of sheet
resistors (3.11, 3.22, 3.28, and 3.30).

2. DIFFUSED LAYER SHEET RESISTANCE

Four sheet resistors in each of the patterns across a wafer were measured and
the results displayed in figure 2. Sheet resistance values obtained from the
van der Pauw [4] structures (3.11, 3.22, and 3.30) are comparable, which is ex-
pected since sheet resistances determined from symmetrical van der Pauw struc-
tures are independent of geometry. Values obtained from the bridge structure
are low because, in the computation of the sheet resistance, the width was
assumed to be the same as the photomask dimension, W(mask) = 1.50 mil (38.1 um)

This point was explored further by combining sheet resistance measurements
from the bridge (3.28) and van der Pauv; (3.22) structures which are depicted
in figure 3. The effective width of the bridge structure is given by

Wg = W(mask) + aXj +

where aX-; accounts for lateral diffusion and Wqq accounts for lateral over-etch
The van der Pauw measurement yields the sheet resistance directly. This was
combined with the nearest-neighbor bridge measurement to obtain Wg . The base-
diffusion-window width, W, was calculated from VI = VIq - aXj . Values for W are
shown in figure 4 as a function of position across a v/afer for three different
etch times. For these measurements aXj = 0.02 mil (0.5 ym) where a = 0.3 [5].
The width of the bridge structure was also determined from photomicrographs,
and the results, shown as solid data points, are in good agreement with the
values derived from electrical measurements. The effective width, Wg , of the
bridge structure for the 3 min etch equals the window width, W = 1.57 mil
(39.9 ym) , plus aXj or 1.59 mil (40,4 ym) . This value is 6 percent larger than
the photomask dimension, W mask). The difference between Wg and W(mask) is
important in the design of diffused integrated circuit resistors. Also appar-
ent in figure 4 is the fact that electrical measurements can resolve dimensions
smaller than 10 yin (0.25 ym) . In addition these electrical dimensional mea-
surements are inexpensive, especially when acquired by automatic probing
machines. These measurements are discussed more fully elsewhere [6].

The orthogonal van der Pauw structure (3.22) shown in fiqure 3 is depicted in
greater detail in figure 5. A mathematical model was developed for this
structure to determine if a geometrical correction factor is needed in calcu-
lating the sheet resistance from the van der Pauw formula. The Laplace equa-
tion was solved with the use of finite-difference methods for the geometry
shown in the lower part of figure 5 where the bonding pad areas were replaced
by shorts on the ends of the arms. For this structure the measured sheet
resistance differs from the van der Pauw value by less than 0.1 percent as
indicated in figure 6. Here Rg(TRUE) is the true sheet resistance and Rs(VDP)
is the sheet resistance determined from measurements with the use of the van
der Pauw formula, which appears at the top of figure 6, The curves shown in
figure 6 reveal that the side arms may be surprisingly short and wide compared
to the active region without requiring as much as one percent correction to
the van der Pauw formula. The active region is considered to be a square whose
side is S. This study also allows the design of new structures whose active

*
The number following the decimal point refers to a structure shown in
figure 3; the number 3 is the test pattern designation.
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regions are typical of device geometries. For example, the cross structure
(D/S = A/S = 1) has a small error and can be fabricated with the use of minimum
line width.

3. BULK DOPANT DENSITY

Dopant densities were determined in the collector (or bulk) region of a base-
collector diode with the use of the junction C-V method [7]. As shown in
figure 7, the diode (3.10) is gated and contains an inversion stop (labeled
emitter) . The dopant profiles for the gated diode are shown in figure 8 where
incorrect profiles appear if the gate bias is improper. The proper gate bias
is -5.5 V which corresponds to the flat-band condition for an equivalent MOS
capacitor structure. This allows the peripheral junction capacitance to be
approximated by a quarter toroid. The diode used in this study was 17 mil
(430 ym) in diameter. Profiles can also be obtained with the use of a smaller
diode (3.14) such as shown in figure 9 where again the base contact is confined
within the base diffusion. This allows the measurement of correct capacitance
values. An intercomparison of profiles for large and small diodes is shown in
figure 10 where the peripheral correction brings the profiles of both diodes
into agreement.

Dopant densities were also determined in the collector region of a collector
MOS capacitor (3.8) as depicted in figure 11 with the use of the MOS capacitor
C-V deep depletion method [8] . A dopant profile shown in figure 12 indicates
the presence of phosphorus pile-up at the surface. The dopant density derived
with the use of the MOS capacitor Cn^ax~*^min inethod [9] is indicated as
1.04 X 10^^ cm" ^ . This value is considerably different from the bulk value
of 6.28 X 10^ ^ cm"^

.

The resistivity of bulk collector regions was determined [10] with the use
of the collector four-probe resistor (3.17) shown in figure 13 where current
points are denoted and I2 and voltage points are denoted V^^ and V2 • The
structure is essentially a piped-transistor where the emitter is connected
to the collector through a hole in the base. The base, which surrounds the
structure, effectively shuts off surface currents forcing currents to flow
in the collector region. The probe spacing is 2.25 mil (57 ym) which is small
compared to the wafer thickness ["^ 10 mil (25 ym) ] so that back-side shorting
effects are negligible.

The resistivity versus dopant density relation is depicted in figure 14 for
n-type silicon in terms of the normalized difference between the Irvin curve
and the Caughey-Thomas [11] closed-form formula. It is seen that the Caughey-
Thomas formula fits the Irvin curve to within +6 percent over the dopant density
range from 10^"* to 10^° cm~^. Experimental data, which were determined
by the above described methods, were compared to the Caughey-Thomas relation
as shown in figure 15. If one ignores the high MOS capacitor values, where
experimental difficulties were experienced, the data are within +6 percent of
the Caughey-Thomas relation.

For p-type silicon the situation is much less satisfactory. The nature of
the resistivity versus dopant density problem is shown in figure 16 for the
case of p-type silicon. The traditionally used curve is that developed by
Irvin [1]. More recently Wagner [2] developed another curve to fit ion implanta-
tion data. In the range of dopant densities between 10^^ and 10^® cm~\ these
curves differ in resistivity by more than 50 percent. The data points represent
experimental results based on junction C-V, Hall effect, and four-probe measure-
ments taken in conjunction with the American Society for Testing and Materials
(ASTM) , Committee F-1 on Electronics. These data tend to follow the Wagner curve.
The impact of the different curves shown in figure 16 on device design is shown
in figure 17 where the surface density for a Gaussian diffusion is calculated
from a knowledge of the background density, the sheet resistance, and the junc-
tion depth. It is seen that the surface density near lO'^ cm" ^ differs by a

factor of two depending on the choice of the resistivity versus dopant den-



sity relation. The data of figure 16 are replotted in figure 18 to point up
the need for additional work in p-type silicon. Even though the data agree
better with the Wagner curve than with the Caughey-Thomas closed-form formula
of the Irvin curve, significant discrepancies are observed.

4. DEFECT CENTERS

Defect centers, which cause lifetime and leakage current degradation in devices,
were measured by the same kind of structures used to determine dopant density
profiles. These structures (3.8 and 3.10) are shown in figures 7 and 11, and
the class of measurements used to detect the defects is the thermally stimulated
current measurements. This measurement method [12] is outlined in figure 19
where the upper curve indicates that a diode is cooled to near liquid nitrogen
(LN2) temperature and then warmed back to room temperature (RT) . While the
diode is at liquid nitrogen temperature the middle curve indicates that the
diode is zero biased which charges defects with majority carriers (electrons
for n-type or holes for p-type) . Reverse bias is applied before the diode is
warmed up. The lower curve indicates that during the warm-up cycle, certain
defects emit majority carriers which are detected as a current pulse before the
diode goes into steady-state leakage.

The thermally stimulated current response of various defect centers is shown in
the following figures. In figure 20 the gold donor current peak [13] occurs
near 130 K. The exact peak temperature depends on the heating rate. The gold
acceptor current peak [14] occurs near 220 K as shown in figure 21. This re-
sponse is quite different from the gold donor response. As indicated by the
rapid rise .in the current at higher temperatures, the gold acceptor center is the
source of junction leakage. The response of the gold acceptor shown in fig-
ure 21 was observed in a p'^n junction. A similar response [14] was observed
in an n-type MOS capacitor as shown in figure 22. In addition to the peak at
220 K a second peak occurs near 290 K. This higher temperature peak occurs as
the MOS capacitor depletion region changes from its deep depletion width to its
steady-state inversion width. From a theoretical model of the thermally stimu-
lated current, the shape of the gold acceptor response depends on the fraction,
G, of the depletion region over which defects are charged. This is illustrated
in figure 23 where for G = 1 all defects in the depletion region are initially
charged and for G = 0 none of the defects are charged.

5. CONCLUSIONS

As part of a project to provide the semiconductor industry with well-designed
and miniaturized structures for use in process control, various test structures
and associated measurement methods were studied. Measurements of large and
small van der Pauw structures and gated diode structures were shown to yield
the same result. The geometrical design criterion for the orthogonal van der
Pauw structure was established. Combination of electrical measurements from
bridge and van der Pauw structures yields values for the base-diffusion-window
width with high spatial resolution.

The resistivity-dopant density relation for silicon is being up-dated for use in
device design. Initial preliminary results suggest that for n-type the Caughey-
Thomas formula and for p-type the Wagner formula appear to be the best avail-
able in the current literature.

Simple test structures can be used to detect and identify lifetime and leakage
centers. The thermally stimulated current response of gold in silicon leads
to its rapid identification as a contaminant in p-n junctions and MOS capacitors.
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Figure 1. Test pattern NBS-3 [3] fabricated with base (B) , emitter (E)

,

contact (C) , and metal (M) masks. The length of the pattern along one
side is 200 mil (5.08 mm).
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Figure 3. Base bridge and van der Pauw sheet resistor
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are indicated. The voltage points are denoted and
V2, and the current points are denoted 1^ and I2. The
van der Pauw structure was laid out with orthogonal
boundaries to aid automatic pattern generation.
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;

POSITION ACROSS WAFER

Figure 4. Base-diffusion-window width across three silicon wafers
etched for three, six, and nine minutes and measured by electrical
and photographic methods.
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VAN DER PAUW SHEET RESISTOR (3.22)

MATHEFIATICAL MODEL EQUIVALENT GEOMETRY

Figure 5, The orthogonal van der Pauw sheet
resistor structure and its mathematical equiva
lent geometry. The dimension S = 1.5 mil (38
A/S = 1/3, and D/S = 1/6.
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TT AV

Figure 6. Influence of geometrical factors on the
orthogonal van der Pauw sheet resistance measurement as
determined by a theoretical calculation. In the van der
Pauw formula, Rg(VDP), AV is V]_- V2 for a current I

passed into and out of I2 as shown in the van der
Pauw structure of figure 3.
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Figure 7. Cross sectional view of the large base-collector diode
(3.10)

.
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DISTANCE FROM JUNCTION. B (ym)

Figure 8, Junction C-V apparent dopant profiles taken with the
use of the gated diode (3.10) shown in figure 7 biased with vari-
ous gate voltages, Vq.
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h6
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(150 m)

Figure 9. Cross sectional view of the small base-collector gated
diode (3.14)

.
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14

3 X 10
14

• SMALL DIODE (3.14)

O LARGE DIODE (3.10)

Xj ~ 1.7 m
Nq = 1.7 X 10^^

Rg = 116«/

UNCORRECTED

CORRECTED

2 4 6 8 10

DISTANCE FROM JUNCTION. B M
12

Figure 10. Junction C-V dopant profiles taken with the large and
small base-collector gated diodes shown in figures 7 and 9. The
corrected profiles illustrate the importance of the peripheral
capacitance correction (wafer B12Ph-l)

.
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(380 Mm)

15 mil

I I

COLLECTOR
EMITTER

Figure 11. Cross sectional view of the collector MOS capacitor (3.8)

GO
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K 2:X = 0.15 m
. iij I

1 2

DISTANCE FROM INTERFACE (m)

Figure 12. MOS capacitor C-V dopant profile taken with the use of the
collector MOS capacitor (3.8) shown in figure 11 (wafer 702). The
depletion depth in the silicon for the inversion condition is Xq, and
the Debye length is Aq.
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EH I TIER

COLLECTOR

Figure 13. Top view and cross sectional views of
the collector four-probe resistor (3.17). The
center-to-center metal pad spacing is indicated
on the upper photomicrograph.
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Figure 14. Normalized resistivity difference versus dopant density for
n-type silicon (300 K) which compares the work of Irvin [1] and Caughey-
Thomas [11]

.
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PHOSPHORUS DOPANT DENSITY IN SILICON (300 K), (cm-3)

Figure 15. Normalized resistivity difference versus dopant density
for n-type silicon (300 K) which compares experimental data deter-
mined by NBS to the Caughey-Thomas [11] formula.
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IONIZED OR TOTAL ACCEPTOR DOPANT DENSITY (cm'S)

Figure 16. Resistivity versus dopant density relation for p-type
silicon (300 K) . The curves are taken from the work of Irvin [1]
and Wagner [2]. The data points are explained in the text.
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SHEET RESISTANCE'JUNCTION DEPTH PRODUCT (^i M"")

Figure 17. Surface dopant density of a p-type Gaussian dif-
fused layer in uniformly doped rz-type silicon as a function
of the product of the sheet resistance (300 K) and junction
depth for various background dopant densities, Ng.
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[(9-9w>/ew](^>

o

BORON DOPANT DENSITY IN SILICON (300 K). (cni-3)

Figure 18. Normalized resistivity difference versus dopant density
for p-type silicon (300 K) which compares experimental data to the
Wagner formula [2] . Also shown is a comparison between the Caughey-
Thomas [11] and Wagner [2] formulas.
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TEMPERATURE (K)

Figure 20. Thermally stimulated current response of the gold
donor located on the n-side of an n'^p silicon junction for
various heating rates [13]

.
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Figure 21. Thermally stimulated current response of the gold accep-
tor located on the n-side of a p'^n silicon junction for various
heating rates [14].

1.0 r 1 1 100

TEMPERATURE (K)

Figure 22. Thermally stimulated current response of the gold acceptor
in an n-type silicon MOS capacitor for various heating rates [14].
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180 200 220 240 260

TEMPERATURE (K)

Figure 23. Thermally stimulated current response of the
gold acceptor in n-type silicon for a heating rate of 10 K/s
and for various G-factor values (explained in the text) [14]
The current is divided by a factor which includes the elec-
tronic charge, the area of the junction, the depletion width
and the gold density.
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