The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

- Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences
- Applied Radiation
- Quantum Electronics
- Electromagnetics
- Time and Frequency
- Laboratory Astrophysics
- Cryogenics.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

- Building Environment
- Technical Evaluation and Application
- Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

- Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
4 Part of the Center for Building Technology.

Kenneth L. Kelly

Building Environment Division
Center for Building Technology
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

"Special publication no. 393

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary
NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued April 1974
COLORIMETRY AND SPECTROPHOTOMETRY:
A BIBLIOGRAPHY OF NBS PUBLICATIONS
JANUARY 1906 THROUGH JANUARY 1973

Kenneth L. Kelly

This bibliography of publications will serve as the key to the large amount of research into color measurement and specification, and color vision carried out by the staff of the National Bureau of Standards (NBS) in colorimetry and spectrophotometry. These 623 publications appeared in NBS publications and outside scientific and technical journals between January 1906 and January 1973. This material has been in constant demand by Bureau members as well as by outside individuals and organizations. The practical value of this wealth of information lies in its ready accessibility to the scientific and technical fraternity by title, by key words or by author, in the Library of Congress and in depository libraries such as large public and university libraries. A short organizational chronology of the colorimetry and spectrophotometry program is included.

Key Words: Bibliography; color; color codes; color measurement; colorimetry; spectrophotometry; vision.

1. INTRODUCTION

This paper lists the 623 publications on colorimetry\(^1\) and spectrophotometry\(^2\) authored by members of the staff of the National Bureau of Standards published during the years 1906 to 1973. (There were no relevant papers between 1901, the year the Bureau was founded, and 1906). This listing, made necessary by the constant demand for this information, also contains the publications of Research Associates and Guest Workers in these fields. In addition to the chronological list\(^3\), it contains an Author\(^4\) and a Subject Index\(^5\). The reference numbers appearing in these indexes refer to the entries in the chronological listing. A short organizational chronology of the colorimetry and spectrophotometry program is included.

2. HISTORY

Soon after the founding of the Bureau of Standards in 1901\(^6\), studies in photometry and colorimetry were undertaken by members of the staff at the request of business, science and industry. The results of these studies appeared as papers in the Bulletin of the Bureau of Standards and in other scientific and technical journals. Among the projects undertaken in these formative years were those in the fields of length, electricity, spectroscopy, fibers

\(^1\) Colorimetry - the study of color measurement, specification, designation, tolerances, blindness, color-order systems, vision.

\(^2\) Spectrophotometry - the spectral measurement of reflecting or transmitting samples, including reduction of the data.

\(^3\) See Sections 9.

\(^4\) See Section 11.

\(^5\) See Section 10.

\(^6\) Name changed from Bureau of Standards (BS) to the National Bureau of Standards (NBS) in 1934.
and clinical thermometers in addition to the work in photometry and colorimetry. The challenges to these "pioneers" were tremendous as shown by the diversity of fields studied by so few men. Standardization of colors was the field of research which attracted the most interest and concern in industry as well as in the scientific community [1]. Requests for assistance in color measurement and standardization were received from the fields of cottonseed oil, margarine, butter, from glass (in signal lamps, headlights and spectacles for eye protection), to petroleum oil, turpentine, resin, paper and textiles, from flour, sugar, eggshells, egg yolks, dyes and water to chemical solutions, paints, portland cement, tobacco, to porcelain, enamels and even blood and human skin -- the latter of concern to biologists and anthropologists.

The list of authors of these papers reads like an early Who's Who in Science. Some of these men later rose through the ranks at the Bureau, while others went to scientific or industrial organizations where they carried on the high-level and imaginative research which characterized their early developmental years at the Bureau. Many of the early papers listed in this report formed the cornerstones of all photometry and colorimetry, such as the one on the standard visibility curve [2] by Gibson (1916) and Tyndall (1919), and the paper defining the International Commission on Illumination (CIE) Standard Observer and Coordinate System [3] by Judd (1927).

It can be seen from the chronological listing that the early colorimetry work was carried on by Hyde (1902), Nutting (1903) and Ives (1908); Nutting was in charge in 1911. In 1913 Mr. Irwin G. Priest (1907) was Chief of the Section on Colorimetry in the Optics Division, and he continued in that capacity until his death in 1932, when he was followed as Chief by Dr. K. S. Gibson. In 1948 the Optics Division was merged with the Electricity Division to form the Division of Electricity and Optics, and by reorganization the Division of Optics and Metrology in 1950. In 1955, on Dr. Gibson's retirement, Mr. L. E. Barbrow became Chief of the Photometry and Colorimetry Section which in 1960 became part of the Metrology Division. In 1966 the Colorimetry and Spectrophotometry Section was reformed with Mr. I. Nimeroff as Chief. When the Metrology Division was combined with the Division of Atomic and Molecular Physics in 1969, the colorimetry program was transferred into the Institute for Applied Technology and designated as the Office of Colorimetry. The Spectrophotometry part of the old Colorimetry and Spectrophotometry Section became the Spectrophotometry Section of the new Optical Physics Division. Most of the Office of Colorimetry was transferred in 1970 to the Applied Acoustics and Illumination Section of the Building Research Division. Now the colorimetry program is in the Sensory Environment Section of the Building Environment Division. Dr. Judd, one of the world authorities on color, remained with the colorimetry program until his death in 1972, although assigned as consultant to the Director of the Institute for Applied Technology. Despite the organizational changes identified above, significant work continued on color standards, tolerances, measurement, specification and color vision.

These changes reflect new demands from rapidly expanding fields of research. Among these, for instance, are challenging new problems arising from the fast growing fields of aerospace (heat balance between solar radiation and cold in space craft), color standards and tolerances (specify color and acceptable variation in purchase specifications) and safety (one safety color code for marking physical hazards and highway traffic signs, adapted to help color blind).

3. CONTRIBUTIONS FROM PRIVATE INDUSTRY

A considerable source of inspiration and support to the Colorimetry Section in its early days came from Mr. A. H. Munsell, a noted artist from Boston. Mr. Munsell realized that there was no practical and scientific method of teaching color either in art schools or in the grade schools where most students get their first color instruction. He worked toward the realization of "a simple and practical notation, or method of writing (designating)

7Figures in brackets [] indicate the literature references in the Bibliography (Section 8).
8Year each joined the Bureau of Standards.
9Now the Center for Building Technology.
color" [4] by the use of a system that "portrays the three dimensions (hue, value or lightness and chroma or saturation) of color, and measures each by an appropriate scale" [5], each scale to consist of colored samples separated by visually equal steps. The clarifying phrases in parentheses are the author's.

Mr. Munsell's first contact with the Bureau of Standards was in 1901, just after the formation of the Bureau when he wrote Dr. Stratton, the Director, "asking about color" [6]. He visited the Bureau in 1911 where he met Dr. P. G. Nutting who was in charge of the work that included colorimetry. Mr. Munsell's son, Mr. A.E.O. Munsell, met Mr. Priest in 1921 and from this meeting a very close relationship developed from which the Colorimetry and Spectrophotometry Section has benefited materially throughout the years. An indication of the degree of cooperation, is the fact that the Munsell Color Company has placed seven Research Associates at the Bureau. By 1940, 23 papers covering this work had been presented to the Optical Society of America [7]. In addition, a good deal of unpublished work was performed which contributed "to the development of basic information necessary, if (the) Munsell (color-order system), or any other color system was to be critically studied or standardized" [8].

This work funded by the Munsell Research Laboratory was conducted both at NBS and at the Munsell Research Laboratory in Baltimore. In addition to the regular Munsell Color Company staff, seven persons were employed at one time or another in the strictly scientific work at the Baltimore Laboratory. These were: Miriam O'Brian, Louise Sloan (Rowland), Geraldine Walker (Haupt), employed by NBS in 1927, I. H. Godlove, Carl Boechner, Prentice Reeves and Willard Valentine. The seven Research Associates placed at NBS were: Casper L. Cottrell, I. G. Priest, D. B. Judd, F. H. Harris (retired later as Section Chief in the Electricity Division), F. G. Brickwedde (retired later as Division Chief of the Heat and Power Division), E.P.T. Tyndall and W. Greenberg.

A significant contribution of the Colorimetry and Spectrophotometry Section to the designation of color in art, science and industry came through research funded by the American Pharmaceutical Association. This work led to a simple, easily understood and accurately defined method of designating colors "in which the color-name boundaries were specified in Munsell notation" [9]. It also provided the impetus for many of the papers listed here, culminating with the Color Names Dictionary (NBS Circular 553) [10] published by the Inter-Society Color Council (ISCC) and the National Bureau of Standards (NBS) in 1955, the ISCC-NBS Centroid Color Charts (NBS Standard Sample #2106) [11] in 1965 and the Universal Color Language [12] in 1965. In addition, this research played a vital role in the formation of the Inter-Society Color Council (ISCC) [10] in 1931 and the Color Marketing Group (CMG) [11] in 1962.

The close cooperation between NBS and the Munsell Color Company has continued through the years. This has resulted in such landmark developments as the Munsell Renotation System in 1943, in which the spacings in the three scales of hue, value (lightness) and chroma (saturation) were smoothed and each color was specified in the 1931 CIE system, and facilitated Munsell's significant contribution to the development of the ISCC-NBS Centroid Colors in 1965. The Munsell Color Company in 1967 funded a cooperative study to develop an improved, visually uniform, color spacing technique based on the work of the Optical Society of America (OSA) Committee on Uniform Color Scales (1966).

10 The founding of the Inter-Society Color Council was a direct outgrowth of the early work on the color-names project. It exists as a medium for interchange of information and development of basic concepts on color-related problems.

11 The Color Marketing Group was a direct outgrowth of the ISCC. Its purpose is the use of color to better market products and services at a profit.
In 1942, the Munsell Color Foundation was formed at the request of the members of the Munsell family. Two of the duties of this non-profit Foundation were to hold the stock of and assume the direction of the Munsell Color Company. A further indication of the continuing close cooperation between NBS and the Munsell Color Company was a stipulation in the formation of the Foundation, that one of the three original Trustees was to be appointed by the Director of NBS. Dr. Judd was so appointed, and was elected President of the Foundation by the other Trustees. He served as President without remuneration from its formation in 1942 until his death in 1972.

Many scientific and technical associations and companies have contributed to the work of the Colorimetry and Spectrophotometry Section, and in so doing, have benefited in return. The Corning Glass Works, for instance, through their Dr. H. P. Gage cooperated with our Dr. K. S. Gibson between 1926 and 1946 in the development and application of colored glass filters to be used as the color standards in railway signaling in this country. Before the development of spectrophotometry and the 1931 CIE Standard Observer and coordinate system [3] as the means of interpreting spectrophotometric data, standard limit glasses were used to control the range of color acceptable for a particular signal application. So successful was this system that it served as the basis of the signaling systems used later for the control of vehicular, marine and aircraft traffic. Only now is this system of colored glass standards being slowly supplanted by photoelectric colorimetry and spectroradiometry, a method by which the color of the whole signal device consisting of a lamp or kerosene flame, reflector and colored lens, can be measured in operating position.

4. IMPACT OF PUBLICATIONS

The papers listed here have had a considerable influence on the development and application of color in science, art and industry. The chronological listing including the Author and Subject Indexes is almost synonymous with the basic work in vision in the first three quarters of the 20th century. Researchers like Nutting, Tyndall, Priest, Gibson, Judd and Hunter (1927) are among those who contributed greatly to the fields of vision as well as color. Judd's basic book on Color in Business, Science and Industry in its two editions, has been "the" textbook in color psychophysics since its publication in 1952. Subjects like the visibility of radiant energy (now the luminous efficiency function), photometry of lamps, color vision, color blindness, color-order systems, the CIE Standard Observer and Coordinate System, spectrophotometry, color measurement and specification, safety color codes, gloss and other surface characteristics, color temperature, color standards and tolerances constitute only a partial listing of the contributions made by NBS to the development and application of color in commerce and industry.

5. COOPERATION WITH OUTSIDE ORGANIZATIONS

Throughout the years, the members of the Colorimetry and Spectrophotometry Section have contributed to and held positions of leadership in many scientific and technical organizations. In several they have been charter members. Among these are:

American Association for the Advancement of Science
American Ceramic Society
American Institute of Physics
American Instrument Society
American Medical Association
American Oil Chemists Society
American Pharmaceutical Association
American Physical Society
Astronomical Society
Association of Physics Teachers
Color Marketing Group
Illuminating Engineering Research Institute

12 Color Psychophysics is the study and application of psychophysical methods to the investigation and measurement of color.
The members have also contributed to and held positions in a number of standardizing organizations, such as:

- American Association of Textile Chemists and Colorists
- American National Standards Institute (first the American Engineering Standards Committee, then the American Standards Association, then the United States of America Standards Institute)
- American Society for Testing and Materials
- Association of American Railroads
- Electronic Industries Association
- Illuminating Engineering Society
- Institute of Traffic Engineers
- International Standards Organization
- National Education Association
- National Joint Committee on Uniform Traffic Control Devices for Streets and Highways
- Technical Association of the Pulp and Paper Industry
- Textile Color Card Association (now the Color Association of the United States)

They have also worked closely with and contributed to programs dealing with color in a number of government agencies including:

- Department of Agriculture
- Department of Defense
- Department of Transportation
- Federal Aviation Administration
- Federal Communications Commission
- General Services Administration
- National Academy of Sciences
- National Research Council
- Occupational Safety and Health Administration
- Post Office Department
- Veterans Administration

Another important contribution of the Colorimetry and Spectrophotometry Section throughout its more than a half-century of existence, has been the sharing of its expertise with those non-professionals as well as specialists seeking information on color and vision. Letters of inquiry and requests for assistance have come from all parts of the United States and cover a wide range of subjects. An indication of the diversity of the requests is provided by the following examples:

Tell me all about color
What colors were the circle and dot of the insignia on the allied planes in World War I?
What color is 31643?
Detailed requests about color vision
Requests for assistance in developing color standards and tolerances for the Federal Government or for industry
Requests for color assistance in books on photogrammetry, flowers, oceanography, mushrooms
6. THE NUMBERING SYSTEM

The individual papers in this list have been arranged according to the year and month of publication. As stated earlier, each paper has been assigned a serial number starting with 1. These numbers are also used to reference individual papers under specific headings and under authors' names in the Author Index and in the Subject Index.

Each reference includes besides the chronological serial number, the author's name(s), the title of the paper or abstract, the abbreviation of the journal or publication in which it appears, the volume number underscored, the beginning page number and the year of publication in parentheses. If the paper is published in more than one journal, subsequent references follow the first and are separated by semicolons.

7. IN APPRECIATION

It is a pleasure to acknowledge the contributions of each of the members of the Colorimetry and Spectrophotometry Section, especially Dr. Deane B. Judd who sponsored this project, and who, with his very broad knowledge and experience, was a constant source of inspiration and guidance.

8. BIBLIOGRAPHY

5. Ibid, p. 42.

7. See 4 above, p. 46.

8. Ibid, p. 47.

9. Ibid, p. 49; also see 6 above, p. 585.

11. See item 517a in Section 9.

12. Kelly, Kenneth L., see item 518 in Section 9.
9. CHRONOLOGICAL LIST OF PUBLICATIONS

1. Hyde, Edward P.
 Talbot's law as applied to the rotating sectored disk.

2. Nutting, P. G.
 A pocket spectrophotometer.

3. Nutting, P. G.
 Purity and intensity of monochromatic light source.

4. Nutting, P. G.
 The complete form of Fechner's law.

5. Nutting, P. G.
 The luminous equivalent of radiation.

6. Nutting, P. G.
 A method for constructing the natural scale of pure color.

7. Nutting, P. G.
 Luminosity and temperature.

8. Ives, Herbert E.
 Daylight efficiency of artificial illuminants.

9. Ives, Herbert E.
 White light from the mercury arc and its complementary.

10. Nutting, P. G.
 The visibility of radiation. A recalculation of Koenig's data.

11. Nutting, P. G.
 A photometric attachment for spectrosopes.

12. Nutting, P. G.
 A new precision colorimeter.

13. Priest, Irwin G.
 Color specifications.

14. Priest, Irwin G.
 A photometric error sometimes accompanying the use of a pair of nicols, and a proposal for its elimination.

15. Coblenz, W. W.
 The diffuse reflecting power of various substances.

16. Priest, Irwin G.
 The quartz colorimeter and its applicability to the color grading of cotton seed oil.

17. Priest, Irwin G.
 A proposed method for the photometry of lights of different colors.
 Phys. Rev. (2), 6, 64 (1915); 9, 341 (1917); 10, 208 (1917).

18. Priest, Irwin G.
 The Bureau of Standards contrast method for measuring transparency.

19. Priest, Irwin G. and Peters, Chauncey G.
 Report on investigations concerning the color and spectral transmission of cotton seed oil.

20. Priest, Irwin G.
 A simple spectral colorimeter of the monochromatic type.
 J. Wash. Acad. Sci. 6, 74 (1916).

21. Gibson, K. S.
 The effect of temperature upon the coefficient of absorption of certain glasses of known composition.

22. Middlekauf, G. W. and Skogland, J. F.
 An interlaboratory photometric comparison of glass screens and of tungsten lamps, involving color differences.

23. Gibson, K. S.
 The effect of temperature upon the absorption spectrum of a synthetic ruby.
23a. Priest, I. G.
Specifications of the transparency of paper and tracing cloth.
ES Circ. No. 63 (May 1917).

24. Priest, Irwin G. and Peters, Chauncey G.
Measurement and specification of the physical factors which determine the"saturation of certain tints of yellow."

25. Howe, H. E. and Gibson, K. S.
The ultraviolet and visible absorption spectra of phenolphthalein, phenolsulphonphthalein and some halogen derivatives.

An "average eye" for heterochromatic photometry, a comparison of a flicker and an equality-of-brightness photometer.

27. Coblentz, W. W. and Emerson, W. B.
Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems.

28. Coblentz, W. W. and Emerson, W. B.
Luminous radiation from black body and the mechanical equivalent of light.

29. Priest, Irwin G.
The work of the National Bureau of Standards on the establishment of color standards and methods of color specification.

30. Priest, Irwin G.
Discussion of Troland's paper "Psychology of Color".
With special reference to determination of standard of white light.

32. Priest, Irwin G.
A precision method for producing artificial daylight.

33. Priest, Irwin G.
The law of symmetry of the visibility function.

34. Coblentz, W. W., Emerson, W. B. and Long, M. B.
Spectroradiometric investigation of the transmission of various substances.

35. Gibson, K. S.
Photoelectric spectrophotometry by the null method.

36. Priest, Irwin G.
A one-term pure exponential formula for the spectral distribution of radiant energy from a complete radiator.

37. Coblentz, W. W. and Emerson, W. B.
Glasses for protecting the eyes from injurious radiations (3rd edition).

38. Priest, Irwin G.
A new formula for the spectral distribution of energy from a complete radiator.

The ultraviolet and visible transmission of eye-protective glasses.

40. Priest, Irwin G. and Gibson, K. S.
Report on the applicability of ultraviolet rays to signaling.

41. Priest, Irwin G. and Tyndall, E.P.T.
Optical and photographic methods for the detection of invisible writing.

42. Priest, Irwin G.
A method for the color grading of red flares.

43. Priest, Irwin G., Meggers, W. F.,
McNicholas, H. J., Gibson, K. S. and Tyndall, E.P.T.
The spectral composition and color of certain high intensity searchlight arcs.
(In cooperation with the Searchlight Investigation Section, Corps of Engineers, USA).

44. Gibson, K. S., Tyndall, E.P.T. and
McNicholas, H. J., The spectral transmission of filters used to detect camouflage or improve visibility.
45. Priest, Irwin G.
The color of soya bean oil as compared with that of cottonseed oil.
Cotton Oil Press 2, No. 9, 37, (1919-20).

46. Priest, Irwin G.
Recommendations in regard to color grading of cottonseed oil.
Cotton Oil Press 2, No. 3, 86 (1919-20).

47. Gibson, K. S., Tyndall, E.P.T. and McNicholas, H. J.
The ultra-violet and visible transmission of various colored glasses.

48. Karrer, Enoch and Tyndall, E.P.T.
Contrast sensibility of the eye.

49. Priest, Irwin G.
Abstract of report on investigation of the color and spectral transmissivity of vegetable oils.

50. Karrer, Enoch and Tyndall, E.P.T.
Relative spectral transmission of the atmosphere.

Color and spectral composition of certain high-intensity searchlight arcs.

52. Priest, Irwin G., Gibson, K. S. and McNicholas, H. J.
An examination of the Munsell color system. I. Spectral and total reflection and the Munsell scale of value.

53. Priest, Irwin G.
Note on the relation between the frequencies of complementary hues.
J. Opt. Soc. Amer. 4, 402 (1920); and 5, 513 (1921).

54. Priest, Irwin G.
Preliminary note on the relations between the quality of color and the spectral distribution of light in the stimulus.

55. Priest, Irwin G. and Frehafer, M. K.
The optical basis of Bittinger's camouflage paintings.

56. Gibson, K. S.
Infra-red absorption spectra of vegetable oils.
Cotton Oil Press 4, No. 5, 53 (1920-21).

57. Priest, Irwin G.
A new study of the leucoscope and its application to pyrometry.

58. Priest, Irwin G.
The application of rotatory dispersion to colorimetry, photometry and pyrometry.

59. Priest, Irwin G.
Report on calibration of sixteen Lovibond red glasses of nominal value 7.6.
Cotton Oil Press 4, No. 9, 43 (1920-21).

60. Priest, Irwin G.
Statement to the color committee, American Oil Chemists' Society meeting at the National Bureau of Standards, Washington, July 30, 1920.
Cotton Oil Press 4, No. 6, 45 (1920-21).

61. Priest, Irwin G.
The spectral distribution of energy required to evoke the gray sensation.

62. Priest, Irwin G.
A direct reading spectrophotometer for measuring the transmissivity of liquids.

63. Priest, Irwin G.
A method of obtaining radiant energy having the visible spectral distribution of a complete radiator at very high temperatures.

64. Priest, Irwin G.
The complete scale of color temperature and its application to the color grading of daylight and artificial illuminants.
65. Coblenz, W. W.
Spectroradiometric investigation of the transmission of various substances, II.

66. Lofton, R. E.
A measure of the color characteristics of white papers.

68. Gibson, K. S., McNicholas, H. J.,
Tyndall, E.P.T. and Frehafer, M. K.
The spectral transmissive properties of dyes. I. Seven permitted food dyes,
in the visible, ultra-violet, and near infrared. (With the cooperation of
W. E. Mathewson, Bureau of Chemistry).

69. Troland, L. T.
Chairman, Optical Society of America
Committee on Colorimetry, Report for
1920-21.
Instrum. 6, 527 (1922).

70. Priest, Irwin G.
Measurement of the color temperature of the
more efficient artificial light sources by the method of rotatory dispersion.
Instrum. 6, 410 (1922).

71. Priest, Irwin G.
Progress on the determination of normal
gray light.

72. Priest, Irwin G. and Cottrell, Casper L.
The effect of various conditions upon
the determination of the normal stimulus of gray.

73. Frehafer, M. Katherine.
New tables and graphs for facilitating the computations of spectral energy distribution by Planck's formula.

74. Priest, Irwin G.
Preliminary data on the color of daylight at Washington.

75. Priest, Irwin G.
Apparatus for the determination of hue sensibility (wave-length differences perceptible by difference in hue) and the visibility of radiant energy.

76. Danielson, R. R. and Frehafer, M. K.
The effect of some substitutes for tin oxide on the opacity of white enamels
for sheet steel.
J. Amer. Ceram. Soc. 6, 634 (1923).

77. Schertz, F. M., The quantitative determination of carotin by means of the spectrophotometer and the colorimeter.

78. Gibson, K. S.
Direct-reading photoelectric measurement of spectral transmission.
Instrum. 7, 693 (1923).

79. Priest, Irwin G.
The colorimetry and photometry of day light and incandescent illuminants by the method of rotatory dispersion.
Trans. Illum. Eng. Soc. 18, 861 (1923);
Instrum. 7, 1175 (1923).

80. Priest, Irwin G.
Review of Peddie's "Colour Vision".
Instrum. 7, 1251 (1923).

81. Gibson, K. S.
4, 737 (1923).

82. Priest, Irwin G., Gibson, K. S. and Munsell, A.E.O.
A comparison of experimental values of dominant wave-length and purity with their values computed from the spectral distribution of the stimulus.
Instrum. 8, 28 (1924). (Abstract).

83. Priest, Irwin G.
Apparatus for the determination of color in terms of dominant wave length, purity and brightness.
Instrum. 8, 173 (1924).
84. Priest, Irwin G., McNicholas, H. J. and Frehafer, M. Katherine.
Some tests of the precision and reliability of measurements of spectral
transmission by the König-Martens spectrophotometers.

85. Appel, W. D.
The elimination of variables in the
dyeing method of testing dyes.

86. Appel, W. D. and Brode, W. R.
Spectrophotometric analysis applied to
chromatopoe 10b.
Ind. Eng. Chem. 16, 797 (1924).

87. Gibson, K. S.
Spectral characteristics of test
solutions used in heterochromatic
photometry.
Instrum. 2, 113 (1924).

88. Tyndall, E.P.T. and Gibson, K. S.
Visibility of radiant energy equation.
Instrum. 2, 403 (1924).

89. Priest, Irwin G.
The computation of colorimetric purity.
(With the collaboration of L. B. Tucker-
man, Herbert E. Ives and F. K. Harris).
Instrum. 2, 503 (1924).

90. Gibson, K. S. and Tyndall, E.P.T.
Visibility of radiant energy.
S475; Trans. Illum. Eng. Soc. 19, 176
(1924).

91. Gibson, K. S.
Some tests on the accuracy of measure-
ment with the rotatory dispersion
colorimetric photometer.
Instrum. 11, 75 (1925).

92. Priest, Irwin G.
Gray skies and white snow.
J. Wash. Acad. Sci. 15, 306 (1925);
Instrum. 11, 133 (1925). (Abstract).

93. Gibson, K. S.
Chairman, Optical Society of America
Progress Committee for 1922-23, Report
on spectrophotometry.
Instrum. 10, 169 (1925).

94. Priest, Irwin G., Gibson, K. S. and
Munsell, A.E.O.
The specification of color in terms
of dominant wave-length, purity and
brightness.

95. Frehafer, M. Katherine and Snow, Chester, L.
Tables and graphs for facilitating the
computation of spectral energy
distribution by Planck's formula.

96. Schertz, F. M.
The quantitative determination of
xanthophyll by means of the spectro-
photometer and the colorimeter.
253, (1925).

97. Lloyd, Morton C.
Traffic signals.
Proc. Int. Ass'n. Municipal Electricians,
30th Meeting, Detroit (Int. Ass'n Munic.
Elec., West New York, New Jersey), p.154
(1925).

98. Optical Society of America Progress
Committee on Radiometry and Photometry,
Report presented October 24, 1924.
Instrum. 11, 357 (1925).

99. Gibson, K. S.
Spectral centroid relations for
artificial daylight filters.
Instrum. 11, 473, (1925).

100. Priest, Irwin G., Gibson, K. S. and
Harris, F. K.
Measurements of illumination and color
temperature at Washington during the
solar eclipse, January 24, 1925.

101. Priest, Irwin G., Gibson, K. S. and
Harris, F. K.
Determination of the time of a solar
eclipse from measurements of relative
illumination.

102. Burgess, George K.
United States Bureau of Standards
eclipse observations.
Sci. Amer. 133, 170 (1925).

103. Brode, Wallace R.
The effects of solvents on the absorption
spectrum of a simple azo dye.
104. Brode, H. D.
A photometric method for measuring the hiding power of paints.

Standardization of agalma black 10B.
Ind. Eng. Chem. 18, 627 (1926).

106. Brode, Wallace R.
The dissociation of potassium iodide and the absorption spectra of iodine and potassium iodide.

107. Brode, Wallace R.
The absorption spectra of benzene-azobenzene.

108. Gibson, K. S.
Spectral filters.

109. Howe, H. E.
The color temperature of gas-filled lamps as a function of time in service.

110. Gibson, K. S.
The production of radiant energy of uniform intensity over the visible spectrum.

111. Priest, Irwin G. and Brickwedde, F. G.
The minimum perceptible colorimetric purity as a function of dominant wavelength with sunlight as neutral standard.

112. Priest, Irwin G.
An experiment bearing on the adoption of a standard neutral stimulus in colorimetry: the choice as between "sun" and "equal energy".

113. Priest, Irwin G.
Blue sky and white snow.

114. Priest, Irwin G.
Standard artificial sunlight for colorimetric purposes.

115. Gibson, K. S. and Harris, F. K.
A spectrophotometric analysis of the Lovibond color system.

116. Jones, L. A.
Chairman, Optical Society of America Committee on unit of photographic intensity, Report.

117. Priest, Irwin G.
The computation of colorimetric purity. II. Application of the purity formula to non-spectral colors.

118. Judd, Deane B.
The computation of colorimetric purity.

119. Bittinger, C.
Chairman, Optical Society of America Committee on color terminology questionnaire, Report.

120. Gibson, K. S.
The relative visibility function.

121. Peters, H. H. and Phelps, F. P.
Color in the sugar industry. I. Color nomenclature in the sugar industry. II. Colorimetric classification of turbid sugar solutions.

122. Gibson, K. S., Harris, F. K. and Priest, Irwin G.
The Lovibond color system. I. A spectrophotometric analysis of the Lovibond glasses.
123. Davis, Raymond and Gibson, K. S.
Reproducible liquid filters for the
production of "white light".

124. Gibson, K. S.
A proposed method for the measurement
of the relative visibility function.

125. Priest, Irwin G. and Gibson, K. S.
Apparatus for the determination of
the visibility of energy and the
fundamental scales of visual
psychophysics.

126. Tyndall, E.P.T.
Sensitivity to wavelength difference as
a function of purity.

127. Priest, Irwin G. and Judd, Deane B.
Sensitivity to wavelength difference and
the precision of measurement of
dominant wavelength for yellow colors
of high saturation.

128. Priest, Irwin G.
An experiment on color discrimination
under commonplace conditions.

129. McNicholas, H. J.
On the use of the integrating sphere
in reflectometry.

130. Winters, S. R.
Colors in relation to business.
Trade Winds (The Union Trust Co.,
Cleveland, Ohio) 6, 16 (1927).

132. Judd, Deane B.
Purity and saturation; a saturation scale for yellow.

133. Judd, Deane B.
The empiric relation between dominant
wavelength and purity.

134. Davis, Raymond and Gibson, K. S.
Reproducible liquid filters for the
determination of the color temperatures of
incandescent lamps.

135. Priest, Irwin G.
Misuse of the name "Leucoscope".
Science 66, 78 (1927).

136. Lofton, R. E.
Study of the windows of window en-
velopes for the purpose of developing
standard specifications.
T343.

137. Priest, Irwin G.
Correction of a prevalent error in
regard to the data on photometric
sensitivity as a function of wave
length at low brightness.
Instrum. 15, 82 (1927).

138. Priest, Irwin G.
Note on the relative comfort in
reading by artificial daylight and
unmodified gas-filled tungsten lamps.
Instrum. 15, 131 (1927).

139. Gibson, K. S.
Fluorescence as a means of detecting
the admixture of refined in unrefined
edible olive oil.
Nov. 1927.

140. American Standards Association, American
Standard colors for traffic signals
(American Standards Association,
29 West 39th Street, New York, N. Y.,
1927).

141. Standardization of Lovibond glasses
(monthly reports from Colorimetry
Section to President of American Oil
Chemists' Society).
Oil Fat Ind. 4, 433 (1927); 5, 27,
58, 92, 114, 152, 184 (there are
many typographical errors in this
report), 220, 247, 278 (1928).

142. Priest, Irwin G.
Tests of color sense of AOCS members
and data on sensibility to change in
Lovibond red.
Oil Fat Ind. 5, 63 (1928).

143. Judd, Deane B. and Walker, Geraldine K.
A study of 129 Lovibond red glasses
with respect to the reliability of their
nominal grades.
144. Judd, Deane B.
Saturation of colors determined from the visual response functions.

145. Appel, W. D.
A method for measuring the color of textiles.

146. Judd, Deane B.
Sensibility to color change determined from the visual response functions; extension to complete and partial dichromasy.

147. Priest, Irwin G. and Gibson, K. S.
Standardizing the red and yellow Lovibond glasses.

Color temperature classification of natural and artificial illuminants.

149. Priest, Irwin G.
Preliminary data on the least perceptible difference in dominant wavelength by the method of right and wrong answers.

150. Davis, Raymond and Gibson, K. S.
Filters for the reproduction of sunlight and the determination of color temperature.

151. McNicholas, H. J.
Equipment for routine spectral transmission and reflection measurements.

152. Davis, Raymond and Gibson, K. S.
Artificial sunlight for photographic sensitometry.

153. Coblentz, W. W. and Stair, R.
Transmissive properties of eye-protective glasses and other substances.

154. McNicholas, H. J.
Absolute methods in reflectometry.

155. Bruce, H. D.
Tinting strength of pigments.

156. Judd, Deane B.
Effect of temperature change on the color of red and yellow Lovibond glasses.

157. McNicholas, H. J.
Use of the under-water spark with the Hilger sector photometer in ultra-violet spectrophotometry.

158. Skogland, J. F.
Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data.

159. Brode, Wallace R.
The spectral absorption of certain monoazo dyes. I. The effect of position isomerism on the spectral absorption of methyl derivatives of benzeneazophenol.

160. Jones, L. A.
Chairman, Optical Society of America Committee on Standard of Photographic Intensity, Report on resolutions dealing with the photographic unit of intensity presented at the 7th Intern. Cong. of Photography,

161. McNicholas, H. J.
Apparatus for the measurement of the reflective and transmissive properties
162. Gibson, K. S.
Apparatus for accurate and rapid measurement of spectral transmission and reflection.

163. McNicholas, H. J.
The absorptive properties of carotin and xanthophyll in the visible and ultraviolet.

164. Judd, Deane B.
Least retinal illumination by spectral light required to evoke the "blue arcs of the retina".

165. Priest, Irwin G., Judd, Deane B., Gibson, K. S. and Walker, Geraldine K.
Calibration of sixty-five 35-yellow Lovibond glasses.

166. Gibson, K. S. and Davis, Raymond.
Methods for determining the color of sunlight and daylight.

168. Crittenden, E. C. and Taylor, A. H.
An interlaboratory comparison of colored photometric filters.

169. Judd, Deane B.
Review of Ladd-Franklin's "Colour and Colour Theories".

170. Thompson, G. W.
The true tinting strength of white pigments.

171. Peters, H. H. and Phelps, F. F.
A technical method of using the mercury arc to obtain data at wave length 560mu in the spectrophotometric analysis of sugar products.

172. Appel, W. D.
Quantitative relation between the spectral reflection of textile dyeings and the amount of dye used.

173. Jones, L. A.
Chairman, Optical Society of America Committee on the unit of photographic intensity, Report.

174. Judd, Deane B.
Reduction of data on mixture of color stimuli.

175. Priest, Irwin G. and Riley, J. O.
The selective reflectance of magnesium oxide.

176. Priest, Irwin G.
Note on the yellowness of commercial magnesium carbonate and the alleged yellowness of magnesium oxide.

177. Judd, Deane B.
Thomas Young's theory of color vision and the hue change by addition of white light.

178. Priest, Irwin G.
Note on the relative sensitiveness of direct color comparison and spectrophotometric measurements in detecting slight differences in the spectral distribution of light.

179. Judd, Deane B.
Precision of color temperature measurements under various observing conditions; a new color comparator for incandescent lamps.

180. Judd, Deane B.
The mixture data embodied in the tentative curves of Hecht's theory of vision.
181. Gibson, K. S.
The use of the photoelectric cell in spectrophotometry. Photoelectric cells and their applications.

182. Davis, Raymond and Gibson, K. S.
Filters for the reproduction of sunlight and daylight and the determination of color temperature.

183. Gibson, K. S.
An illumination sphere for reflectometry and photoelectric spectrophotometry.

184. Judd, Deane B.
Extension of the standard visibility function to intervals of 1 millimicron by third-difference osculatory interpolation.

185. Judd, Deane B.
Comparison of distribution curves embodying Wright's recent results with the OSA "excitation" curves.

186. Judd, Deane B.
A new set of distribution curves for use in colorimetric computation.

187. Judd, Deane B.
Interpolation of the OSA "excitation" data by the fifth-difference osculatory formula.

188. Gibson, K. S.
Spectrophotometry at the Bureau of Standards.

189. McNicholas, H. J.
The visible and ultraviolet absorption spectra of carotin and xanthophyll and the changes accompanying oxidation.

190. Gibson, K. S.
Chairman, Optical Society of America Committee on the photographic standard of intensity, Report on the photographic unit of intensity.
J. Opt. Soc. Amer. 21, 654 (1931); see also Bericht VIII. Internationlen Kongress Photographie, Dresden, 1931 (J. A. Barth, Leipzig, Germany), p. 84 and 424 (1932).

191. Judd, Deane B.
Comparison of Wright's data on equivalent color stimuli with the OSA data.

192. Davis, Raymond
A correlated color temperature for illuminants.

193. Davis, Raymond and Gibson, K. S.
The relative spectral energy distribution and correlated color temperature of the NPL white-light standard.

194. Judd, Deane B.
A general formula for the computation of colorimetric purity.

195. Colors for sanitary ware.

196. Judd, Deane B.
Chromaticity sensibility to temperature change as a function of color temperature.

197. Judd, Deane B.
Chromaticity sensibility to stimulus differences.

198. A report on the spectral reflection of eleven samples of dyed cloth (B. S. Test 64397).

199. Helson, Harry and Judd, Deane B.
A study in photopic adaptation.
J. Exp. Psychol. 15, 380 (1932).

200. Judd, Deane B.
Progress report from the United States of America (Resume of progress in colorimetry since 1927 in America).
Proc. of the Intern. Comm. on Ill., 8th Meeting, Cambridge, 1931

216. Walker, Geraldine K. and Gibson, K. S. Report No. 3. Spectral and luminous transmissions and derivation of new values of ARA transmission for the 22 "limit" glasses selected by Committee VI, ARA, at Corning, Nov. 5-6, 1931 and engraved "J.C.M. 11-6-31". (See 214).

222. Stair, R. and Coblentz, W. W.
Infrared absorption spectra of some plant pigments.

223. Becker, Genevieve and Appel, W. D.
Evaluation of manila-rope fiber for color.

224. Becker, Genevieve
Spectral reflectance of the Philippine Island Government standards for abaca fiber.

225. Davis, Raymond and Gibson, K. S.
Filters for producing the color of the equal-energy stimulus.
J. Res. Nat. Bur. Stand. 12, 263 (1934) RP652. The filters are of the type described in 182, 195, 444.

226. Wensel, H. T., Judd, D. B. and Roeser, Wm. F.
The establishment of a color-temperature scale.

227. Gibson, K. S. and Walker, Geraldine K.
Standardization and specification of railway signal colors.

228. Gibson, K. S., Walker, Geraldine K., and Brown, Mabel E.
Filters for testing the reliability of spectrophotometers.

229. Walker, Geraldine K.
Statistical investigation of the uniformity of grades of 1,000 Lovibond red glasses.

230. Judd, Deane B.
Sources of error in measuring opacity of paper by the contrast-ratio method.

231. Gibson, K. S. and Walker, Geraldine K.
Standardization of Lovibond red glasses.

232. Gibson, K. S.
Visual spectrophotometry.

233. Wensel, H. T., Roeser, Wm. F., Barbour, L. E. and Caldwell, F. R.
Derivation of photometric standards for tungsten-filament lamps.

234. McNicholas, H. J.
Equipment for measuring the reflective and transmissive properties of diffusing media.

235. Judd, Deane B.
Opacity standards.

236. Gibson, Kasson S. and Haupt, Geraldine Walker.
Standardization of Lovibond red glasses in combination with Lovibond 35 yellow.

237. Judd, Deane B.
A Maxwell triangle yielding uniform chromaticity scales.

238. Judd, Deane B.
Surface color.

239. Gibson, Kasson S.
A filter isolating 560 mu.

240. Gibson, Kasson S.
A filter for obtaining light at wavelength 560 mu.

241. Judd, Deane B.
Estimation of chromaticity differences and nearest color temperature on the standard 1931 ICI colorimetric coordinate system.
243. Judd, Deane B.
A method for determining whiteness of paper.

244. Appel, Wm. D.
Fading of dyeings in radiation of different intensities.

245. Hunter, Richard S.
Reflection measurements on pulp and paper.

246. Colors and finishes for cast stone.

247. Brewster, Joseph F.
Simplified apparatus for technical sugar colorimetry.

248. Judd, Deane B.
The dependence of reflectance and opacity on thickness; relation between contrast ratio and printing opacity.

249. Gill, L. M.
Oil Soap 12, 153 (1935).

250. McNicholas, Harry J.
Color and spectral transmittance of vegetable oils.

251. Stair, R. and Coblentz, W. W.
Infrared absorption spectra of plant and animal tissue and of various other substances.

252. Priest, Irwin G.
The Priest-Lange reflectometer applied to nearly white porcelain enamels.

253. Judd, Deane B. and Gibson, K. S.
Note on the effect of a cover glass in reflectance measurements.

254. Hunter, Richard S.
Gloss investigations using reflected images of a target pattern.

255. Coblentz, W. W. and Stair, R.
Distribution of the energy in the extreme ultraviolet of the solar spectrum.

256. Judd, Deane B. and Harrison, W. N.
The specification of light-scattering materials.

257. Judd, Deane B.
A method for determining whiteness of paper, II.

258. Terms used in radiation measurements.

259. Hunter, Richard S.
Identification of five different types of gloss effects.

260. Judd, Deane B.
A subtractive colorimeter for the measurement of small chromaticity differences between surfaces of moderate spectral selectivity of reflectance.

261. Hunter, Richard S.
A null method photoelectric reflectometer.

Colors for bathroom accessories.

Judd, Deane B. with Harrison, W. N., Sweo, B. J., Hickson, E. F., Eickhoff, A. J., Shaw, Merle B. and Paffenbarger, George C.
Optical specification of light-scattering materials.

Gibson, Kasson S.
Note on the spectrophotometric grading of vegetable oils on the N" Lovibond scale.
Oil Soap 14, 286 (1937).

Gibson, Kasson S.

Hunter, Richard S.
Precision and accuracy of apparent reflectance measurements with a photoelectric illumination meter.

Hunter, Richard S.
Development of filters for tri-stimulus and luminosity measurements with barrier-layer photo-cells.

Judd, Deane B.
Uniform tolerances for surface-color specification.

Crittenden, E. C.
A new system of photometric units.

Judd, D. B., Harrison, W. N. and Sweo, B. J.
Optical specification of vitreous enamels.
J. Amer. Chem. Soc. 21, 16 (1938).

Judd, Deane B. and Kelly, Kenneth L.
Scientific color naming of drugs.
J. Amer. Pharm. Ass. 27, 208 (1938).

Gibson, Kasson S., Teele, Ray P. and Keegan, Harry J.
A new luminosity filter.

Hunter, Richard S.
Further study of the use of filters and barrier-layer photocells for tristimulus colorimetry.

Gibson, Kasson S. and Keegan, Harry J.
On the magnitude of the error resulting from fluorescence in spectrophotometric measurements.

Priest, Irwin G. and Brickwedde, Ferdinand C.
Minimum perceptible colorimetric purity as a function of dominant wavelength.

Gobeltz, W. W. and Stair, R.
Spectral-transmissive properties and use of colored eye-protective glasses. NBS Circ. 421 (June 1938). See C471

Judd, Deane B.
Review of Vernon W. Grant's "Psychological Optics".
Rev. Sci. Instrum. 9, 301 (1938).

Schoonover, I. C. and Sweeney, W. T.
Some properties of two types of resins used for dentures.

Gibson, Kasson S. and Keegan, Harry J.
Calibration and operation of the General Electric Recording Spectrophotometer of the National Bureau of Standards.

Judd, Deane B.
Inter-Society Color Council.

Judd, Deane B.
Designation of filters for theatrical lighting.

Haupt, Geraldine Walker.
Departures from additivity among Lovibond red glasses in combination with Lovibond 35 yellow.
Oil and Soap 15, 282 (1938).
305. Coblenz, W. W. and Stair, R.
 Note on the spectral reflectivity of rhodium.
 RP1168.

306. Gibson, K. S., Haupt, Geraldine Walker
 and Keegan, H. J.
 Standardization of railway signal glasses -- Reports on measurements
 and investigations undertaken by the Colorimetry Section of the National
 Bureau of Standards at the request of the Signal Section, AAR, Signal
 Section Proceedings, AAR. 26, 136 (1939).

307. Report No. 6. Examination of 65
 duplicate limit glasses. (See 306).
 (KSG and GWH).

308. Report No. 7. Colorimetric data
 leading to specification 59-38 for kerosene hand lantern glasses;
 comparison of specifications 59-38, 69-38 and 69-35; certification of duplicate
 lantern glasses. (See 306). (KSG & GWH).

309. Hunter, Richard S. and Judd, Deane B.
 Development of a method of classifying
 paints according to gloss.
 Broad Street, Philadelphia, Pa.)
 No. 97, 11 (1939); Paint and Varnish
 Production (Manager (Mills Building,
 (KSG & GWH).

310. Crittenden, E. C.
 Terminology and standards of illumination.

311. Judd, Deane B.
 The Inter-Society Color Council
 tentative system of color names.
 (Abstract).

312. Gibson, Kasson S., Teele, Ray P. and
 Keegan, Harry J.
 An improved luminosity filter.
 (Abstract).

313. Judd, Deane B.
 Definition of artificial daylight.
 (Abstract).

314. Judd, Deane B.
 Definition and tolerances for artificial
 daylight for color matching.
 (Abstract).

315. Hunter, Richard S.
 Progress in developing a photo-electric
 method for measuring color difference.
 (Abstract).

316. Gibson, K. S. and Hickson, E. F.
 Report on the measurement and specification
 of the color designated as National
 School Bus Chrome (1939).
 (Professor Frank W. Cyr, Chairman, Nat.
 Con. School Bus Standards, Teachers
 College, Columbia University, New York,
 N. Y.). (See 434 and 436).

317. Gathercoal, E. N.
 Color names in the botanical, chemical
 and pharmaceutical monographs.

318. Gibson, Kasson S. and Haupt, Geraldine
 Walker.
 Standardization of the luminous-
 transmission scale used in the
 specification of railroad signal glasses.
 RP1209; J. Opt. Soc. Amer. 29, 188
 (1939).

319. MacAdam, Dunlap J., Jr. and Geil,
 Glenn W.
 Rate of oxidation of steels as determined
 from interference colors of oxide films.
 J. Res. Nat. Bur. Stand. 23, 63 (1939)
 RP1221.

320. Judd, Deane B.
 Specification of uniform color
 tolerances for textiles.
 Text. Res. (65 Franklin Street, Boston,
 Mass.) 2, 253 and 292 (1939).

321. Judd, Deane B.
 Specification of color tolerances at
 the National Bureau of Standards.
 Amer. J. Psychol. (Morrill Hall,
 Cornell Univ., Ithaca, New York) 52,
 418 (1939); J. Opt. Soc. Amer. 29, 264

322. Judd, Deane B.
 The physics of color tolerance.
 Amer. Dyest. Rep. (Amer. Ass. of
 Textile Chem. and Colorists, 440 Fourth
 Avenue, New York, N. Y.) 28, 441 (1939);
 (Abstract).

328. Kelly, Kenneth L. Scientific color names in the USP and NF. USP Cir. 24, p. 55-V (1940).

343. Hunter, Richard S.
Photoelectric colorimetry.

344. Judd, Deane B.
Introduction to color.

345. Judd, Deane B.
Introduction to color.

346. Wood, Lawrence A.
The optical properties of rubber.

347. Hunter, Richard S.
Examples of color measurements with the multipurpose reflectometer and tristimulus filters.

348. Moore, Dwight G. and Hunter, Richard S.
Use of liquid surfaces as standards of specular gloss.

349. Judd, Deane B.
Color systems and their inter-relation.
Illum. Eng. 36, 336 (1941).

350. Judd, Deane B.
The definition of black and white.
Amer. J. Psychol. 54, 289 (1941).

351. Hague, John L. and Bright, Harry A.
Colorimetric determination of phosphorus in steel and cast iron.

352. Scofield, Francis, Judd, Deane B. and Hunter, Richard S.
A proposed method of designating color.

353. Rodden, Clement J.
Spectrophotometric determination of praseodymium, neodymium and samarium.

354. Gibson, Kasson S. and Keegan, Harry J.
Use of didymium glasses for wavelength calibration of recording spectrophotometers.

355. Judd, Deane B.
Whiteness of light surface-colors.

356. Hunter, Richard S.
Permissible short cuts in the photoelectric tristimulus measurement of color difference.

357. Teele, Ray P.
A physical photometry.

358. Judd, Deane B.
Methods of designating color.

359. Kelly, Kenneth L.
The success of the ISCC-NBS system of color names in the Chemical Monographs.

360. Lawver, Herbert F.
Reflection-transmission relationships in sheet materials.

361. Wingfield, Baker and Acree, S. F.
Effects of hydrochloric acid and salts on the absorption of light by b-naphthoquinonesulfonic acid.

362. Beek, John, Jr.
The carbohydrate content of collagen.

363. Hunter, Richard S.
The accurate measurement of specular gloss.

364. Judd, Deane B.
Colorimetry of pulp and paper with special reference to "Brightness" and "Whiteness".

365. Crittenden, E. C.
Chairman, Illuminating Engineering Nomenclature and Photometric Standards.
American Standard, approved February 27, 1942 by American Standards Association, ASA 27.1-1942. Prepared under the

376. Chapters from the forthcoming report of the Optical Society of America Committee on Colorimetry, J. Opt. Soc. Amer. as follows:

Chapter 2. The concept of color, 33, 544 (1943).

Chapter 5. Physical concepts: Radiant energy and its measurement, 34, 183 (1944).

Chapter 6. The psychophysics of color, 34, 245 (1944).

for photo-cell photometry.

382. Judd, Deane B.
Small Color Differences, Discussion
Session on, held in conjunction with
the American Association of Textile
Chemists and Colorists and the
Federation of Paint and Varnish
Production Clubs. March 1944.
Amer. Dyest. Rep. 33, 11 (May 1944),
33, 12 (June 1944), 33, 13 (June 1944),
33, 14 (July 1944).

383. Judd, Deane B.
Symposium on the Ostwald color system.
Foreword.

384. Hunter, Richard S.
Methods and standards for gloss
measurement of camouflage materials.
Metal Finish, (11 W. 42nd Street,
New York 18, N. Y.) 42, 519 (1944).

385. Judd, Deane B.
Standard response functions for
protanopic and deuteranopic vision.
(1944) RP1618; J. Opt. Soc. Amer. 35,
199 (1945). (See 416a).

386. Judd, Deane B.
The relation of protanopic to normal
vision.
(Abstract).

387. Keegan, Harry J.
On the measurement of the spectral
apparent reflectance of low reflecting
materials.
(Abstract).

388. Keegan, Harry J. and Gibson, Kasson S.
On the use of working standards of
didymium and vitrolite glasses for
spectrophotometric measurements.
(Abstract).

389. Kelly, K. L.
A new system of color matching fluids.
J. Amer. Pharm. Ass. 34, 59 (1945).

389a. Nickerson, Dorothy, Kelly, K. L.
and Stultz, K. F.
Color of Soils.

390. Maclean, Marion E., Jenks, Priscilla J.
and Acree, S. F.
Comparison of the purity of samples
of organic solvents by ultraviolet
spectrophotometry.
J. Res. Nat. Bur. Stand. 34, 271
(1945) RP1643.

391. Teele, Ray P.
Photometer for luminescent materials.
RP1646; J. Opt. Soc. Amer. 35, 373
(1945).

392. Judd, Deane B.
Color standards for ruby mica.
RP1671.

393. Gibson, Kasson S.
Spectrophotometers.
Proc. Amer. Soc. Test. Mater. 44, 725
(1945).

394. Keegan, Harry J.
Method for the spectrophotometry of
reflection-reducing films on prisms.
(Abstract).

395. Judd, D. B.
Application of the spectrophotometer
to colorimetry.
Engineering Experiment Station News
(Ohio State University) 17, 32
(Dec. 1945).

396. Gibson, Kasson S., Haupt, Geraldine
Walker and Keegan, Harry J.
Specification of railroad signal colors
and glasses.

396a. Judd, Deane B.
Units in the trichromatic system.

397. Reimann, Genevieve, Judd, Deane B. and
Keegan, Harry J.
Spectrophotometric and colorimetric
determination of the colors of the TCCA
standard color cards.
Condensations of this paper appear in
Amer. Dyest. Rep. 35, 323 (1946) and

398. Hunter, Richard S.
A glossmeter for smoothness comparisons
of machine-finished surfaces
399. Reimann, Genevieve and Carmine, Earl J.
A device to facilitate the reading of
spectrophotometric curves.

400. Gibson, Kasson S., Haupt, Geraldine W.
and Keegan, Harry J.
Comparison of railroad, traffic, and
marine signal color specifications.
(Abstract).

401. Keegan, Harry J.
Specification of the colors of the
A.S.A. safety color code.
(Abstract).

402. Reimann, Genevieve, Judd, Deane B.
and Keegan, Harry J.
Color gets fingerprinted.

403. Stair, Ralph and Faick, Conrad A.
Infrared absorption spectra of some
experimental glasses containing rare
earth and other oxides.
RP1761.

403a. Announcement of changes in electrical
and photometric units,
NBS Circ. 459 (May 1947).

404. Gibson, Kasson S. and Balcom, Margaret M.
Transmission measurements with the
Beckman quartz spectrophotometer,
(1947) RP1798; J. Opt. Soc. Amer. 37,
593 (1947).

405. Haupt, Geraldine Walker and Douglas,
Florence Lesch
Chromaticities of Lovibond glasses,
(1947) RP1808; J. Opt. Soc. Amer. 37,
698 (1947).

406. Colors for molded area plastics,
No. 147, 1947; CS147-47. (Sets of
these colors are available from
Manufacturing Chemists' Association,
Woodward Building, 15th and H Streets,
N. W., Washington, D.C. for $2.50 per
set). (HJK & KLK).

407. ASTM proposed method for determination
of color index of petroleum products
by photoelectric colorimeter, report
of Committee D-2 on petroleum products
and lubricants, Appendix IV, Pro-
ceedings.

408. Keegan, Harry J.
Standards of reflectance.
(Abstract); Anal. Chem. 20, 387 (1948).
(Abstract).

409. Launer, Herbert F.
Light-sensitive papers as controls for
testing textile colorfastness and
stability of materials under arc
lamp exposure.
J. Res. Nat. Bur. Stand. 41, 169
(1948) RP1916.

410. Judd, Deane B.
Color perceptions of deuteranopic and
protanopic observers.
J. Res. Nat. Bur. Stand. 41, 247
(1948) RP1922. Condensation of this
paper appeared in J. Opt. Soc. Amer. 39,
252 (1949).

410a. Stair, Ralph
Spectral-transmissive properties and use
of eye-protective glasses,
NBS Circ. 471 (Oct. 1948). Supersedes
C421.

411. Judd, Deane B.
The Bezold-Brücke phenomenon and the
Hering theory of vision.
(Abstract).

412. Florence, Jack M., Glaze, Francis W.,
Hahner, Clarence H. and Stair, Ralph.
Transmittance of near infrared energy
by binary glasses.
RP1945.

413. Teele, Ray P. and Gibson, Kasson S.
A standard luminosity filter.
(Abstract).

414. Judd, Deane B.
Response functions for types of vision
according to the Muller theory.
RP1946.

415. Color perception of the partially
color-blind.
416. Stair, Ralph, Glaze, Francis W. and Hall, Joseph J.
The spectral-transmissive characteristics of some German glasses.
The Glass Ind. (June 1949).

416a. Judd, Deane B.
Standard response functions for protanopic and deuteranopic vision.

417. Granville, Walter C. and Judd, Deane B.
Metameric colors and the macular pigment.

418. ICI (CIE) standard observer for colorimetry.

419. Judd, Deane B.
Current views on colour blindness.
Documenta Ophthalmologica 3, 251 (1949).

420. Judd, Deane B.
A comparison of direct colorimetry of titanium pigments with their indirect colorimetry based on spectrophotometry and a standard observer.

421. Colors for polystyrene plastics.

422. Judd, Deane B.
The 1949 scale of color temperature.

422a. Judd, Deane B.
Colorimetry.

423. Judd, Deane B.
El sistema ICI para la specification del color (The CIE system of color specification).
Anales de la Real Sociedad Espanola de Fisica y Quimica (A) 46, 123 (1950).

424. Gibson, Kasson S. and Belknap, Marion A.
Permanence of glass standards of spectral transmittance.

424a. Gibson, Kasson S.
Spectrophotometry (200 to 1000 millimicrons).

426. Judd, Deane B., Plaza, Lorenzo and Belknap, Marion A.
A suggested relocation and res paceing of the Union colorimeter scale for lubricating oil and petrolatum.

427. Hammond, Harry K. III and Nimeroff, Isadore
Measurement of sixty-degree specular gloss.

428. Projector, T. H.
Report on tests of flicker in color television.
429. Judd, Deane B., Plaza, L. and Balcom, M. M.
Report on the fidelity of color reproduction by the CBS and RCA systems.

429a. Judd, Deane B.
Vision: Color.

430. Judd, Deane B., Plaza, Lorenzo and Farnsworth, Dean.
Tritanopia with abnormally heavy ocular pigmentation.

431. Judd, Deane B.
Ceguera para el color y teorías de la vision chromatica (Color blindness and color theories).
Anales de la Real Sociedad Espanola de Fisica y Quimica (A) 47, 35 (1951).

432. Keegan, Harry J. and O'Neill, H. T.
Spectrophotometric study of autumn leaves.

432a. Keegan, Harry J.
Federal Color Card for Paint.

433. Barbrow, L. E.

434. Keegan, Harry J., Schleter, John C., Kelly, Kenneth L. and Sward, George G.
Standardization of safety colors.

435. Judd, Deane B.
Basic correlates of the visual stimulus.

Standardization of national school bus chrome.

NBS Circ. 505 (July 1951).

438. Hammond, Harry K., III and Nimeroff, I.
Minimizing anomalies in reflectance measurements with the Beckman quartz spectrophotometer.

439. Haupt, Geraldine Walker
An alkaline solution of potassium chromate as a transmittancy standard in the ultraviolet.

440. Nimeroff, Isadore
Analysis of goniophotometric reflection curves.

441. Helson, Harry, Judd, Deane B. and Warren, Martha H.
Object-color changes from daylight to incandescent filament illumination.

442. Judd, Deane B.

444. Davis, Raymond, Gibson, Kasson S. and Haupt, Geraldine Walker.
Spectral energy distribution of the International Commission on Illumination light sources A, B, and C.

464. Judd, Deane B.
Progress report by OSA committee on uniform color scales.

465. Judd, Deane B.
Radical changes in photometry and colorimetry foreshadowed by CIE actions in Zurich,

465a. Kelly, K. L. and Judd, Deane B.
The ISCC-NBS method of designating colors and a dictionary of color names.

466. Keegan, Harry J.
Safety color codes.
Mag. Stand. 27, 21 (1956).

Specular-gloss measurement of ceramic materials.

Extension of the Munsell renotation system to very dark colors,

469. Helson, Harry, Judd, Deane B. and Wilson, Martha
Color rendition with fluorescent sources of illumination.

469a. Judd, Deane B.
Un nuevo punto de vista en la medida de la luz y el color (A new point of view in the measurement of light and color).
Anales de la Real Sociedad Espanola de Fisica y Quimica, Serie A-FISICA.
Tomo LIII (A), pag. 43. Nos. 1-2-Enero-Febrero 1957.

470. Nimeroff, I.
Two-parameter gloss methods.

470a. Keegan, Harry J.
New Federal Standard on Colors.

471. Hammond, Harry K. III
Gloss measurement-past, present and future.
Amer. Paint J. 41, 94 (1957).

472. Judd, Deane B.
Medida del color en la industria.
Boletin Iberoamericano de Cultura 1, 13 (1957).

473. Nimeroff, Isadore
Propagation of errors in tristimulus colorimetry.

475. Judd, Deane B.
Description of color.

476. Keegan, Harry J. and Schleter, John C.
Spectrophotometry and aerial reconnaissance.
(Abstract).

477. Kelly, Kenneth L.
Observer differences in color-mixture functions studied by means of a pair of metameric grays.

478. Judd, Deane B.
A new look at the ... Measurement of Light and Color.

478a. Keegan, Harry J.
Colorimetry from precise spectrophotometry.
(Abstract).

478b. Nimeroff, I.
Review of Book The Measurement of Colour, 2nd Ed., by W. D. Wright,

Digital reduction of spectrophotometric data to Munsell rennotations.
(Abstract).

479a. Nimeroff, I. and Laufer, J. S.
Spectral band-pass determinations by a dynamic approach.
(Abstract).
Gibson, J. C., Judd, D. B. and Keegan, H. J.
Extension of the Munsell renotation system.
(Abstract).

Gibson, Kasson S.

Kelly, Kenneth L.
Central notations for the revised ISCC-NBS color-name blocks.

Judd, Deane B.
Some color demonstrations I have shown.

Hammond, Harry K. III
Color measurement and specification.

Nimeroff, I.
Status of ASTM methods and standards for appearance evaluation. ASTM

Barbrow, Louis E.
Memorandum on a procedure for obtaining spectral radiant intensities of tungsten filament lamps, 400-700 mu.

Keegan, H. J.
Color codes and the red-green confuser.
(Abstract).

Judd, Deane B.
Appraisal of Land's work on two-primary color projections.

Hammond, Harry K. III, Holford, Warren L. and Kuder, Milton L.
Ratio-recording spectroradiometer.

Calibration of photometric devices.
(Abstract).

Keegan, H. J.
Spectrophotometry 190 to 2500 mu.
(Abstract).

Reinboldt, W. C. and Menard, J. P.
Mechanized conversion of colorimetric data to Munsell renotations.

Judd, Deane B.
A five-attribute system of describing visual appearance.

Kelly, Kenneth L.
Review of Book Farver i Farver
by Dr. Andreas Kornerup and

Judd, D. B.
Maxwell and modern colorimetry.

Nimeroff, I., Rosenblatt, J. R. and Dannemiller, M. C.
Variability of spectral tristimulus values.

Hammond, Harry K. III
Accuracy of spectroradiometric measurements.
(Abstract).

Keegan, H. J., Schleter, J. C. and Weidner, V. R.
Ultraviolet wavelength standard for spectrophotometry.
(Abstract).

Kelly, K. L.
Some problems of color identification.

Keegan, H. J.
Reflectance-surface color codes.
(Abstract).
Glass filters for checking performance of spectrophotometer-integrator systems of color measurement.

495. Judd, D. B., Chamberlin, G. J. and Haupt, Geraldine W.
The ideal Lovibond color system.

496. Judd, Deane B.
Blue-glass filters to approximate the blackbody at 6,500\degree K.

497. Kelly, Kenneth L.
Coordinated color identifications for industry.

497a. Howett, Gerald L.
Loci of discrepancy chromaticities for von Kries transformations.
(abstract).

Absorption spectra of the lanthamide series of rare-earth glasses.
(abstract).

499. Kelly, Kenneth L.
Lines of constant correlated color temperature based on MacAdam's (u,v) uniform chromaticity transformation of the CIE diagram.

500. Emara, Sayeda H. and Teele, Ray P.
Development of filters for a thermoelectric colorimeter.

501. Hammond, Harry K., III.
Spectroradiometry by means of modified spectrophotometers.
(Letter to Editor).

Absorption spectra of the first transition series of phosphate glasses.
(Abstract).

Further progress toward development of a single filter for the wavelength calibration of spectrophotometers between 0.25 and 2.6\mu.
(Abstract).

504. Keegan, Harry J., Schleter, John C. and Belknap, Marion A.
Recalibration of the NBS glass standards of spectral transmittance.

505. Kelly, Kenneth L.
Review of Book The Natural System of Colours by Moses Harris (1766).

506. Hammond, Harry K., III.
Gloss standards and glossmeter standardization.
Off. Dig. 36, 343 (1964).

507. Judd, D. B. and Nimeroff, I.

507a. Judd, D. B.
Studies of illuminating and viewing conditions in the colorimetry of reflecting materials.

508. Nimeroff, I.
Field trial of the 1959 CIE supplementary standard observer proposal.

509. Nimeroff, Isadore.
Colorimetry in parafoveal fields. I. Color-matching functions.

510. Nimeroff, Isadore.
Colorimetry in parafoveal fields. II. Additivity failure.

511. Nimeroff, I.

531. Judd, Deane B.
Progress report for O.S.A. committee on uniform color scales.

532. Keegan, Harry J. and Weidner, Victor R.
Infrared spectral reflectance of black materials.
(Abstract).

533. Judd, Deane B.
Reflectance spectrophotometry.

534. Kelly, Kenneth L.

535. Judd, Deane B.
Physiological optics at the National Bureau of Standards.

536. Takasaki, Hiroshi
Chromatic changes induced by changes in chromaticity of background of constant lightness.

537. Goebel, David G.
Generalized integrating-sphere theory.

538. Hammond, Harry K., III.

539. Judd, Deane B.
Review of Book Hermann von Helmholtz by Leo Koenigsberger.

540. Judd, Deane B.
Interval scales, ratio scales, and additive scales for the sizes of differences perceived between members of a geodesic series of colors.

541. Nimeroff, Isadore.
The variability of color measurement.
Color Eng. 5, 24 (1967).

542. Judd, Deane B.
Terms, definitions, and symbols in reflectometry.

543. Kelly, K. L.
"Sand" to "Maize" to "Jasmine" to "Spanish Yellow".

544. Kelly, Kenneth L.
Review of Book Principles of Color Technology by Fred W. Billmeyer and Max Saltzman.

545. Judd, Deane B.
A flattery index for artificial illuminants.

547. Nimeroff, I.
Review of Book Color Science by Wyszecki and Stiles.

547a. Nimeroff, I.
Colorimetry.

548. Caldwell, B. Patrick
Kubelka-Munk coefficients from transmittance.

549. Kelly, Kenneth L.
Review of Book Color Science by Wyszecki and Stiles.

551. Howett, Gerald L.
Variation of absorptance-curve shape with changes in pigment concentration.
552. Munis, R. H. and Finkel, M. W.
Goniometric measurements of infrared
transmitting materials.

553. Judd, Deane B.
Color science and the paint industry.

554. Nimeroff, I.
Metamerism and color-rendering indexes.
(Abstract).

555. Nimeroff, Isadore,
A survey of papers on degree of
metamerism.
Color Eng. 6, 44 (1968).

556. Judd, Deane B.
1964 CIE supplementary observer
applied to the colorimetry of rutile
and anatase forms of titanium dioxide.

556a. Judd, D. B.
Discussion of a paper by A. A. Eastman,
Color contrast vs. luminance contrast.
CIE uniform color space extended to
fields of small angular extent).

557. Nimeroff, I. and Schleter, J. C.
Professor Harry J. Keegan:
Colorimetrists' Spectrophotometrist.

558. Yonemura, G. T. and Kasuya, M.
Color discrimination under reduced
angular subtense and luminance.

558a. Yonemura, Gary T.
Report on literature review and
recommendations on visual aspects of
television viewing.

558b. Howett, Gerald L.
Perception of chromaticness differences
among near-neutral colors.
(Abstract).

559. Nimeroff, I.
Review of Book Human Color Perception
by J. J. Sheppard, American Elsevier,

560. Nimeroff, I.
Review of Book The Rays are not
Coloured by W. D. Wright (American

561. Judd, Deane B.
Ideal color space.
Palette, No. 29 (1968), No. 30 (1968),
No. 31 (1969). Published by Sandoz,
Ltd., Dyestuffs/Chemical Div., CH-4002,
Basle, Switzerland; also Color Eng. 8,

562. Goebel, David G., Poole, Edward W. and
Hartsock, Ronald G.
Instrument for measuring phototube
spectral response.

563. Takasaki, Hiroshi
von Kries coefficient law applied to
subjective color coefficient change induced by
background color.

564. Nimeroff, I.
Color-match classifications assessed
in terms of variable parameters.
(Abstract).

564a. Judd, Deane B. and Yonemura, Gary T.
Target conspicuity and its dependence
on color and angular subtense for gray
and foliage green surrounds.

564b. Balcom, Margaret M.
Influence of red and blue pre-adaption
on hue matching of purple samples.
(See 515).

565. Judd, Deane B. and Yonemura, Gary T.
CIE 1960 UCS diagram and the Müller
theory of color vision.

566. Nimeroff, I.
Metamerism index and color-difference
index of metameric pairs.
(Abstract).

566a. Howett, Gerald L.
Achromatic-point prediction.

567. Nimeroff, I.
The Deuteranopic convergence point.

568. Judd, Deane B.
Introduction to Goethe's Theory of
Colours (Eastlake), MIT Press 1970.
569. Judd, D. B.

570. Yonemura, G. T.
Opponent-color-theory treatment of the CIE 1960 (u,v) diagram.

570a. Howett, Gerald L.
Chromaticness-difference scaling in the Munsell value 6/ plane.
(Abstract).

571. Semmelroth, C. C.
The prediction of lightness and brightness on different backgrounds.

572. Judd, D. B. and Eastman, A. A.
Prediction of target visibility from the colors of target and surround.

573. Semmelroth, C. C.
Adjustment of the Munsell-Value and W*-Scales to uniform lightness steps for various background reflectances.

574. Nimeroff, I.
Psychology of color.

575. Nimeroff, I.
Color-match classification by variable parameters.

575a. Howett, Gerald L.
Scaling of perceived color differences near the limits of the matte-paint gamut.
(Abstract).

576. Judd, Deane B.
Choosing pleasant color combinations. Lighting Design and Application 1, 31 (1971).

577. Nimeroff, I.

577a. Kohayakawa, Yoshimi
Contrast-difference thresholds with sinusoidal gratings.

578. Nimeroff, I.
Instrumental Color Evaluation of Retroreflective Highway Sign Materials.

579. Nimeroff, I.
Editor, Precision Measurement and Calibration.
Colorimetry (includes 43 papers on this subject), NBS SP300, 9, 460 pages (June 1972).

580. Nimeroff, I.
Does the U*V*W* have a spectrum locus?

581. Howett, Gerald L.

582. Judd, D. B.
Color in Visual Signaling.
10. SUBJECT INDEX

AAR transmittance scale 140, 215, 216, 217, 219, 220, 318
Abbot-Priest sunlight 114, 182, 223
Absorptance
curve shape, changes 551
Absorption spectroscopy 538
Acetate plastic tape, infrared reflectance 532
Achromatic point 269, 329, 566a
Achromatopsia 419
Adams theory 435
Adams-Cobb formula 239
Adaptation
chromatic 239, 269, 329, 435, 448, 459, 469, 497a, 515, 530
photopic 201, 207
Additive scales 540
Additivity
chromatic 564b
failure 510
Aerial reconnaissance 476
Age difference 477, 564b
Albumin, infrared transmittance 251
Aluminum, radiant reflectance 15
Anatase-see Titanium dioxide
Animal oils, spectral transmittance 65
Animal tissue
spectral transmittance 153
infrared transmittance 153
ultraviolet transmittance 153
AOCs members, tests of color sense 141, 142
Appearance
aperature mode 488
color 488, 530
evaluation 483a, 579
Army solutions 349
Arons chromoscope (see also rotatory dispersion colorimetry) 16, 19, 42, 43, 46, 49, 54, 60, 141
for calibrating Lovibond glasses 59
ASTM
color index for petroleum products 407
standards 483a
Atmosphere, spectral transmittance 50
Background
fluence 525, 536, 563, 573
Bailey colorimeter 141
Bandpass, spectral width 498
Barium sulfate
spectral reflectance 529
Bathroom accessories, colors for 285
Bausch and Lomb spectrophotometer 98, 206, 336, 393
Becker value of Manila rope 223, 224, 450
Beckman spectrophotometer 375, 390, 393, 404, 438
Beer's Law 159, 551
Benzol, spectral transmittance 65
Benzold-Brucke phenomenon 380, 411, 435
Bittinger camouflage paints 54, 55
Black
definition 350
infrared reflectance, see Infrared reflectance of blacks
Blackbody (see also Planckian radiator, spectral composition)
luminous efficiency 7, 28
spectral composition 36, 38, 73, 98, 173, 234, 255, 496
Blue arcs of retina 164
Blue-wedge daylight photometer 148
Book reviews
Peddie's "Color Vision" 80
Ladd-Franklin's "Colour and Colour Theories" 161
Hardy's "Handbook of Colorimetry" 283
Grant's "Psychological Optics" 299
The Measurement of Colour 478b, 480a, 511
Farver i Farver 488a
The Natural System of Color 505
An exposition of English Insects, with Curious Observations and Remarks 534
Manual on Recommended Practices in Spectrophotometry 538
Herman von Helmholtz 539
Principles of Color Technology 543
Color Science 546, 548
Human Color Perception 558
The Rays are not Coloured 560
Brace spectrophotometer 50
Brightness
determination 94
discrimination 125, 571
of paper 245, 364
Building materials, radiant reflectance 15
Business, color in 442
Butter, spectral reflectance 24
Cacti
infrared reflectance 519
Camouflage
colors 54, 55, 372, 384
filters 44
paint 54, 55
Candle, specification 292
Carbon
arc, spectral composition 51, 70
carbon black, infrared reflectance 532
dioxide, infrared reflectance 526
yellow glass, spectral transmittance 228, 424
Carotin (Carotene)
chemistry 516
infrared transmittance 222
spectral transmittance 77, 163, 191
ultraviolet transmittance 163, 191
Cast stone, colors and finishes 246
Cellophane, infrared transmittance 251
Cenco-Shaer spectrophotometer 393
Centroid, spectral, see Spectral centroid of light
Centroid colors, see ISCC-NBS centroid colors
Cerium, spectral transmittance of glasses containing 498
Chemical constitution and color change 25
Chemical substances, infrared transmittance 251
Chlorophyll chemistry 516
infrared transmittance 222, 516
Chromatic adaptation 239, 269, 329, 435, 448, 459, 469, 497a, 515, 530, 551, 564b, 566a
induction 536
Chromaticity diagram and spacing 373, 435, 457
difference colorimeter 260, 264, 320, 392, 397
scale, uniform, see Uniform chromaticity scales
sensibility 5, 6, 69, 111, 142, 179, 198, 199, 207, 208, 209, 210, 238, 242, 260, 268, 497a
Chromaticness-difference perception 558b, 570a, 575a
Chromium, spectral transmittance of glasses containing 502
Chromoscope, Arons, see Arons chromoscope
Chromotrope 10B, spectral transmittance 86
1964 UCS diagram 508, 570
space 514, 556a, 565, 572
1960 (u,v) diagram 565, 570
1964 U*V*W* system 573
Reports from Colorimetry Committee 202, 205, 425, 433, 437, 463
Supplementary observer 508, 556
Cobalt blue glass, spectral transmittance 228, 424, 502
Coefficient law, v. Kries 448, 459, 469, 528, 530
Coleman spectrophotometer 353, 361, 362, 366, 393
Collagen, spectral transmittance 362
Color aesthetics 574
analyzer, Keuffel and Esser (Model B) 361
appearance 530
application of in business 442
Atlas 488a
attributes 344, 488
blindness (see also Color vision theory) 141, 266, 371, 372, 385, 386, 410, 414, 415, 416a, 419, 430, 431, 435, 483c, 513, 520, 527, 528, 530, 546, 560, 565, 567, 582
cards, see TCCA, Horticultural, Federal Centroid 571a
change by background color 563
charts, see Color systems circle 505, 534
code, safety 401, 434, 466, 483c, 493a
communication 518
comparator 85
constancy 207, 269, 329, 435, 441
contrast 380, 435, 522, 530, 558a, 571
color of paint 553
conversion 269, 435
definition 344, 358, 488
demonstration 482
designations 518, 524, 534, 546
Dictionary of 282, 349, 376, 465a, 475
difference 564a of metamers 566
NBS unit 321
difference perception 558b, 570a, 575a
differences, perceptibility 128, 178, 260, 264, 291, 314, 315, 320, 332, 343, 352, 356, 368, 382, 462, 558, 369a
discrimination 558, 561
fastness 368, 409
foliage 389a
grading 407, 426
grass 389a
harmony 488a, 568, 576
identification 493
insects 534
language 518
of leaves 432
matching 478b, 480a, 509, 511, 528, 530, 544, 547, 549, 564b, 575
classification 564
fluids 389
measurement 16, 341, 449, 455, 472, 474, 478, 483, 483a, 541, 560
mixture data 171, 180, 181, 192, 221, 376, 396a, 514
modes of appearance 329, 344, 358, 376, 488
names 534
dictionary, Dictionary of C553, see ISCC-NBS system of color names
dictionary, ISCC-NBS system of, see ISCC-NBS system of color names
names for drugs 270, 294, 317, 323, 328, 339, 359, 465a
names for interference colors 319, 367
psychology 574, 577
rendering, index 554
rendition of fluorescent lamps 446, 469
roll-up system 493, 497
scales additive 540
internal 527
interval 540
natural, of pure color 6
ratio 540
uniform, see Uniform chromaticity (color)
scales soils 389a
space 540, 561
spacing 579, 580
specification 524
standards 517a
surface 329, 435
systems 69, 282, 294, 340, 342, 349, 376, 383, 405, 495, 505, 517a, 534
teaching 560
television, color reproduction 429, 560
television, test for flicker 428
theory 456, 489, 527, 528, 568
tolerances, specification 291, 314, 320, 321, 322, 478a, 561
transformation 435
of translucent products 460
of transparent products 460
trends 518
volume 435
of water 274
work on. at NBS 29
Color-order systems 518
Color temperature
of artificial illuminants 64
change in lamps 265
correlated 194, 195, 499
by filter 134, 150, 182
measurement 179
meter 63
by rotatory dispersion 58, 70, 79, 91, 100, 109, 114
scale 64, 69, 74, 148, 158, 194, 203, 204, 210, 221, 226, 242, 268, 298, 376, 422
Color vision
reduction forms 513
theory 164, 177, 180, 266, 349, 371, 372, 376, 380, 385, 386, 410, 411, 414, 415, 419, 429a, 430, 431, 441, 515, 559, 560, 563, 564b, 565, 566a, 568, 571, 574, 577, 579, 582
Colorant formulation 553
Colorimeters
general 69, 282, 344, 376
Bailey 141
disk mixture (K&E) 223
Duboscq 77, 96, 238, 247
Evelyn 351
for determining color temperature (see also Rotatory dispersion colorimeter) 179, 226
for determining psychological scales (see also Monochromatic colorimeter) 12, 208
glass wedge 148
Judd subtractive 320, 478a
Klett 247
monochromatic 20, 83
Pfund 66
photoelectric, see Photoelectric colorimeter
pyrotechnic smokes 452
quartz rotatory dispersion, see Rotatory dispersion colorimeter
Stammer 171, 247
subtractive 260, 264, 320, 392, 397, 478a
thermoelectric 500
visual 380
Colorimetric coordinate systems 69, 196, 221, 238, 268
Colorimetric purity, see Purity, colorimetric
Colorimetry
additivity failure 510
angular conditions 507a
general 98, 221, 282, 345, 385, 395, 397, 402, 442, 443, 451, 456, 478, 488a, 489, 507, 511, 524, 527, 544, 547, 549, 558a, 560, 561, 578, 579, 580, 422a, 547a
parafoveal 509, 510
by polar coordinates 349
progress in (1927-1931) 202
statistical evaluation of errors 447, 473, 490
uncertainty 523, 579
variability 541, 579
work at NBS 29
Colors for bathroom accessories, see Bathroom accessories, colors for
Colors for kitchen accessories, see Kitchen accessories, colors for
Commercial standards
for bathroom accessories 285
for cast stone 246
for kitchen accessories 284
for molded urea plastics 406
for polystyrene plastics 421
for sanitary ware 197
Complementary colors 53, 69, 435
Computer
applications 469, 480, 487, 523
program for colorimetric uncertainty 523
Concrete, infrared reflectance 519
Cone blindness 419
Coniferous plants, heat transfer 516
Conspicuity
of targets 556a, 564a, 572, 582
Contrast
color 522, 530, 582
difference threshold 577a
ratio, see under Enamel, Paper, Paint, Tracing cloth, Opacity
sensibility 4, 48, 137, 152
Copper
green glass, spectral transmittance 228, 424, 502
oxide 532
Correlated color temperature 194, 195, 499
Cottonseed oil, colorimetry (See also Vegetable oils) 13, 16, 19, 46
Cover glass, in reflectance measurements 253
Crispening 525, 536, 563, 571, 573
Curve
reader 399
shape
absorptance 551
Daltonism 419
Davis-Gibson filters 123, 134, 150, 152, 160, 166, 173, 182, 192, 195, 221, 225, 444
Daylight
color temperature 64
natural 57, 69, 74, 79, 114, 148, 182, 210, 376, 569
photometer 148
spectral distribution 512
Definitions, see Nomenclature
Definition of color 344, 358
Dental silicate cements, opacity 286
Desert Island experiment 475
Desert plants, heat transfer in 516
Designation of color - see Color designation
Detection
of invisible writing 41
of targets 556a, 572
Deterioration (fading) by illuminants 453, 437a, 445a
Deuteranopia 146, 385, 410, 415, 416a, 419, 431, 435, 567
Dichromatism 146, 419, 431, 513
Dictionary of Color, Maerz and Paul 282, 349, 376, 465a
Dictionary of Color Names 475, 497, 465a
Didymium glass 354, 388
Diffusing media, spectral reflectance and
spectral transmittance 235
Discrepancy chromaticities 497a
Disk mixture colorimeter (K&E) 223
Documents, preservation 437a, 445a, 453, NBS Report 2254
Dominant wavelength
determination 20, 82, 83, 94, 127, 212, 344, 349, 376, 435
least perceptible difference 149
purity relationship 133
Dominator, modulator hypothesis 419, 435
Drugs, color naming 270, 294, 317, 323, 328, 339, 359, 465a
Duboscq colorimeter 77, 96, 238, 247
Dyes
infrared transmittance 68
light fading 244
spectral reflectance 145, 172
spectral transmittance 68, 107
ultraviolet transmittance 68
Dyes, food, spectral, infrared and ultraviolet transmittance 68
Dysprosium, spectral transmittance 366, 498
Eclipse of sun 101, 102
Efficiency of worker, color of illuminant and 138
Enamels, see Paints and pigments
contrast ratio 277
opacity 76, 277, 286, 293
Equal-energy stimulus (filter) 110, 112, 225
Equality of brightness photometry 125, 326
Erbium, spectral transmittance 366, 498
Esthetics 581
Europium, spectral transmittance of glasses containing 498
Evelyn colorimeter 351
Excitation purity, see Purity, excitation
Extinction coefficient 103
Eye-protective glasses, see Glasses, eye-protective
Fading index, Nickerson 320
Fechner's law 4, 5, 155
Federal Color Card 432a
Federal Standard 470a
Films, reflectance-reducing 394
Filters
color-temperature-altering 496
infrared transmittance 108
luminosity 295, 312, 326, 413
photometric 168, 213
spectral 108, 240, 241, 247, 290, 296, 347, 444, 500
stray light 288
for testing spectrophotometers 228, 354, 388, 424, 494
for theatrical lighting 303
for thermoelectric colorimeter 500
ultraviolet transmittance 108
Wratten 116
Flattery index for illuminants 545
Flicker photometer 27, 83, 154, 168, 208, 235, 326
Flicker photometry 125, 326
Fluorescence
for detecting
invisible writing 41
adulteration 139
general 488a
measurement 391
in spectrophotometry 297, 393, 397
Fluorescent lamps
color rendition 446, 469
spectral energy distribution 446
Fluorescent screens, use of in signaling 40
Foliage
color 389a
Food dyes 68
Fresnel reflectance 370
Frost
infrared reflectance 526
Gadolinium, spectral transmittance of
glasses containing 498
Gaertner Scientific Co. spectrophotometer 336, 393
Gelatin
infrared transmittance 251
spectral transmittance 34
General Electric recording spectrophotometer 301, 324, 336, 354, 361, 374, 379, 387, 388, 393, 394, 479a
Geodesic series of colors 540
German glasses, spectral transmittance 416
Gibson 560 mu filter, spectral transmittance 240, 241, 247
41
Glass (see also Lovibond, Signal colors and glasses)
binary, infrared transmittance 412
German, spectral transmittance 416
infrared, transmittance 153, 403, 412
luminous transmittance 22, 87, 216, 217, 219
optical, spectral transmittance 454
spectral transmittance 21, 34, 37, 47, 87, 153, 216, 217, 416, 504
ultraviolet transmittance 47, 153
Glass wedge colorimeter 148
Glasses, eye-protective
spectral transmittance 39, 153, 298a, 410a
infrared transmittance 153, 298a, 410a
ultraviolet transmittance 39, 153, 298a, 410a
Gloss, geometry 467, 470, 471, 506, 579
of paint 309
of paper 245
standards 348, 384, 506
types of 259, 273, 275, 279, 341, 348, 363, 384, 398, 427, 435, 440, 467, 470, 471, 506
Glossmeters 467
Gold, spectral transmittance 34
Goniometry
infrared measurements 552
Goniophotometry, see Gloss, measurement
Graphite, infrared reflectance 532
Grass
color 389a
infrared reflectance 519
Grassman's Laws 419, 435
Gray sensation, stimulus 61, 71, 72, 92, 566a
Ground glass scattering 552
Gutta Percha, infrared transmittance 251
Harris, Moses 505, 534
Haze, measurement 449, 483a
Heat transfer in
coniferous plants 516
desert plants 516
lichens 516
Helmholtz
biography, review 539
theory of vision 419, 435
Hering, theory 349, 411, 419, 435, 528
Hess-Ives tint photometer 171
Heterochromatic photometry, see Photometry, heterochromatic
Hiding power, measurement 104, 455, 483a
Highway marking yellow 434, 488a
Highway signs 578
Hilger sector photometer 25, 93, 103, 157, 159, 190, 336, 379
Holmium, spectral transmittance 366, 492, 498, 503
Horticultural Colour Chart
H. T. yellow glass, spectral transmittance 424
Hue, shift with change in purity 177, 570
Hues of the spectrum colors 377
Illuminant
artificial, color temperature 64
color of, and efficiency of the worker 138
flattery index 545
mode of appearance 488
types 549
Illumination
chromatic 329
geometry 507a
meter, photoelectric 289
standards and nomenclature 310
Incandescent lamps, luminous efficiency 8, 234
Index
color rendering 554
fading, Nickerson 320
Induction, chromatic 536
Industry, color in 442, 472
Infrared
reflectance
acetate plastic tape 532
blacks 532
cacti 519
carbon black 532
carbon dioxide 526
concrete 519
cupric oxide 532
transmittance
albumin 251
animal tissues 153
carotin 222
cellophane 251
chemical substances 251
chlorophyll 222
dyes 68
dyes, food 68
filters 108
gelatin 251
glasses 153, 403, 412
glasses, binary 412
glasses, eye-protective 153, 298a, 410a
Gutta Percha 251
Mother-of-pearl 153
doplastyrene 251
rubber 251
vegetable oils 56, 65
xanthophyll 222
Inorganic salt solutions, spectral transmittance 34
Insects, color 534
Insidedness, invariance 457
Integrating sphere 129, 537
Interference colors, color naming 319, 367
Interval scales 540
Invisible writing, detection 41
Iodine & potassium iodide, spectral transmittance 106
Iron, spectral transmittance of glasses containing 502
ISO-ANSI
Centroid colors 481, 493, 517a, 518
system of color names 294, 311, 317, 323, 325, 328, 334, 337, 339, 349, 359, 369, 374, 376, 377, 389, 475, 481, 493, 497, 517a, 546, 465a
ISO
Safety colors 488a
Judd subtractive colorimeter 320, 478a
Keegan, Harry J.
bibliography 557
biography 557
Keuffel & Esser
disk mixture colorimeter 223
spectrophotometer 86, 98, 105, 159, 361
Kirchoff's law 376
Kitchen accessories, colors for 284
Klett colorimeter 247
Kohl-Marten spectrophotometer (see also Visual spectrophotometer) 43, 60, 76, 77, 84, 86, 96, 122, 151, 156, 191, 200, 206, 213, 223, 324, 336
v. Kries, coefficient law 448, 459, 469, 528, 530
Kubelka-Munk formula 256, 533, 548
Ladd-Franklin theory of vision 380, 435
Lambert-Beer law 121
Lampblack, radiant reflectance 15
Lamps 8, 234
Land, see Two-color projection
Lanthanum, spectral transmittance of glasses containing 498
Lattice sampling of Munsell space 458, 468
Leaves
color 432
infrared reflectance 516, 519
infrared transmittance 516
morphology 516
radiant reflectance 15
spectral reflectance 15, 445, 516
Legibility of targets 581
Lens, yellowing 477
Leucoscope
Leucoscope
application to pyrometry 57, 58
use 58, 135
Lichens
heat transfer 516
infrared reflectance 519
Light
fading of dyes 244
measurement 469a, 478
mechanical equivalent 28
scattering materials (see also paper, enamels, dental silicate cements, paints & pigments, tracing cloth) 248, 256, 277, 286, 293
sources 550
hue names 377
luminous efficiency 8
mercury arc 9
monochromatic 3
Lighting, theatrical, designation of filters 303
Lightness induced by surround 525, 571
Lightness steps 573
Line elements 478b, 480a, 511, 544, 547, 549
Liquid standards of gloss 348
Liquids, spectrophotometer for 62
Lovibond glasses

calibration by Arons chromoscope 59
measurement & specification 115, 122, 141, 143, 147, 156, 165, 229, 232, 237, 276, 304, 405, 495
use 13, 46, 49, 77, 96, 142, 149, 166, 249, 250, 282, 287, 349, 376
Lubricating oils, Union color scale 407, 426
Luminance
effect on chromaticity of perceived neutral point 566a
factor 542
Luminance, measurement & specification 391
Luminosity
curve 5, 7
factors 357, 376
filter 295, 312, 359, 413
function 33, 87, 120, 124, 184, 187, 371, 386, 430, 435
of radiant energy 10, 27, 75, 87, 88, 90, 120, 125, 158, 184, 234, 326, 420
Luminous efficiency
of black body 7, 28
of incandescent lamp 8
Luminous reflectance
of sheet materials 360
Luminous transmittance
glasses 22, 87, 216, 217, 219
sheet materials 360
Lummer-Brodhun contrast photometer 22, 25, 26, 215, 226, 234
Lutetium, spectral transmittance of glasses containing 498
Macular pigmentation 193, 417, 448, 477
Maerz and Paul Dictionary of Color 282, 349, 376
Magnesium carbonate, spectral reflectance 176
Magnesium oxide, spectral reflectance 175, 176, 408, 529
Manganese
spectral transmittance of glasses containing 502
Manila rope fiber, spectral reflectance 223, 224, 450
Marine signals 400
Martens photometer, use 18, 23a, 24, 39, 43, 51,
Maxwell triangle 238, 239, 242, 296, 322a, 343, 345, 349, 352, 419, 435, 457, 460, 464, 489, 369a
McCorquodale Process 432a
Mechanical equivalent of light 28
Mercury arc 9
Metacresolsulfophthalein, spectral transmittance 379
Metals, infrared reflectance 519
Metamerism 54, 55, 417, 419, 435, 469a, 477, 478, 489, 517, 551, 553, 554, 555, 559, 564, 566, 575, 579
Mr. Meter and Mr. Papermaker 338
Mica, ruby 392
Mineral, infrared reflectance 519
Mineral oil, spectral transmittance 65
Mixture data 174, 180, 187, 192, 221, 376
Modes of appearance 329, 344, 358, 376
Modulation transfer function 577a
Molded urea plastics 406
Monochromatic source 121
Monochromatism 419
Mother-of-pearl, spectral, infrared, ultraviolet transmittance 153
Müller theory of vision 380, 414, 419, 435, 528, 565, 570
Multipurpose reflectometer 280, 300, 330, 331, 333, 335, 341, 347, 369a, 397
Munsell, color system 52, 69, 223, 282, 323, 340, 342, 349, 369, 373, 374, 376, 389, 397, 415, 435, 441, 461, 468, 480
Munsell papers, spectral reflectance 52
Munsell space
renotation 373, 479, 480, 487
lattice, sampling 458, 468
Munsell value scale 52, 573
Museum lighting, hazard 437a, 445a, 453
NBS
physiological optics 535
transmittance standards for petroleum products 407
unit of color difference 321
work on color 29
National School Bus chrome 316, 434, 436, 488a
Neodymium, spectral transmittance 353, 498, 503
Neutral stimulus 61, 566a
Nickel, spectral transmittance of glasses containing 502
Nickerson Index of fading 320
Nicols, use 14
Night driving 560
Nomenclature, terminology, definitions
color 30, 119, 369a
colorimetry 69, 83, 199, 221, 278, 329, 369a, 376
colorimetry of sugar 121
color names, see Color naming of drugs, and ISCC-NBS system of color names
gloss 273
illumination 310
photometry 292, 365, 403a, 435
radiometry 258, 278, 435
reflectometry 93, 154
spectrophotometry 39, 47, 93, 159, 182, 247
Nomograph, transmittance-thickness 39
NPL white light source 185, 195
Observer variability 559
Ocular media, spectral transmittance 37, 435
Ocular pigmentation 430
Oleomargarine, spectral reflectance 24
Olive oil, identification 139
Optical glass, spectral transmittance 454
Opacity measurements 483a
of dental cements 286
of enamels 76, 277, 286, 293
of paints and pigments 286
of paper 18, 136, 230, 236, 245, 248, 286
standards 236
OSA "excitation data" 69, 93, 174, 182, 185, 187, 189, 193, 199, 221, 223
OSA Committee reports
colorimetry 69, 376
color terms 119
Munsell spacing 373
photographic intensity 116, 160, 173, 192
photometry 98
radiometry 98
spectrophotometry 93
uniform color scales 531
Oscillatory interpolation
fifth-difference 189
third-difference 184
Ostwald difference 189
Page size 581
Paint contrast ratio 104, 455
fading rate 368
Federal Standard 470a
glass 309
infrared reflectance 519
Paints and pigments
opacity 286
radiant reflectance 15
tinting strength 155, 170
Paper brightness 245, 364
color 66, 337
color ratio 18, 136, 230, 236, 245, 248, 286
gloss 245
light scattering 248
opacity 18, 136, 230, 236, 245, 248, 286
whiteness 243, 257, 364
Mr. Papermaker 338

Perception
 color difference 558b, 570a, 575a, 582
Perceptual attributes 435
Petroleum products, ASTM color index 407, 426
Pfund colorimeter 66
Phenolphthalein, spectral transmittance 25
Phosphorescence 391, 488a
Phosphorus, colorimetric determination 351
Photometric properties of pigments 381, 418
Photometer
 blue wedge 148
 calibration 486
 filter, monochromatic 450
 flicker 27, 83, 154, 168, 208, 235, 326
 Hilger sector 25, 103, 157, 159, 336, 379
 Martens, see Martens photometer
Photometric
 filters 168, 213, 521
 scale
 errors 521
 standards 521
 units 521
Photometry
 blue wedge 148
 calibration 148
 equality of brightness 125, 326
 by filters 252, 271, 341
 flicker 125, 326
 general 98, 376, 478, 478b, 480a, 511, 544, 547, 549
 heterochromatic (see also Luminosity of radiant energy) 17, 22, 26, 79, 87, 91, 148, 168, 213, 326
 by Leucoscope 58
 by nolcs 14
 of paper and pulp 338
 sensibility 4, 45, 48, 137, 152, 155
 Talbot's law 1
 zero resistance circuit 381
Photopigment
 spectral absorptance 530, 551
Photosynthesis 516
Phototube
 spectral response 562
Physiological optics 535
Pigments, radiant reflectance 15
Pigments, tinting strength 155, 170
Planck's law 7, 73, 376, 422
Planckian radiator
 appearing gray 61, 71
 spectral composition (see also Blackbody, spectral composition) 63, 69, 70, 95, 158, 182, 203, 226, 376
Plant pigments
 carotin 77, 163, 191, 222
 chlorophyll 222
 xanthophyll 96, 163, 191, 222, 516
Platinum
 black on gold, infrared reflectance 532
 black on epoxy cement on copper 532
 black, infrared reflectance 15
Pleasantness
 color combinations 568, 576
 Plochere color system 465a
Polarization 376
Polystyrene, infrared transmittance 251
Polystyrene plastics, colors 421
Porcelain enamel 252
Potassium chromate, use as transmittancy standard 439
Potassium p-phenolsulfonate, ultraviolet transmittance 375
Praesodymium, spectral transmittance 353, 498
Priest-Gibson (N") scale for Lovibond glasses 165, 229, 232, 237, 250, 276, 287
Priest-Lange reflectometer 252
Projection, two-color, see Two-color projection
Protagonopia 146, 385, 386, 410, 415, 416a, 419, 431, 435
Purity
 colorimetric, determination 69, 83, 89, 94, 111, 117, 118, 196, 208, 209, 212, 221, 298, 349, 349, 376, 435
 dominant wavelength relationship 133, 298
 excitation, determination 82, 126, 435
 least perceptible 111, 125, 126, 203, 298
 saturation relationship 132, 196
Purkinje effect 5, 435
Pyrometry by means of Leucoscope 57, 58
Pyrotechnic smoke, colorimeter 452
Pyrotechnics, colorimetry 42
Quartz rotatory dispersion colorimeter 16, 17, 32, 46, 57, 58, 61, 63, 64, 70, 74, 79, 91, 109, 135
Radience
 factor 542
Radiant energy
 sources 549
 spectral distribution 69, 70, 110, 182, 195, 225, 327, 376, 444, 483b
Radiant intensity, spectral 483b
Radiometry 376, 485, 491
Ratio scales 540
Rayleigh-Jeans Law 376
Razek-Mulden spectrophotometer 336
Readability 581
 Reading comfort 138
Reduction forms of normal color vision 513
Reflectance
absolute measurement 529
effect of cover glass 253
factor 542, 546
Fresnel 370
general 98
geometry 378
luminous 154
of Manila rope 223, 224, 450
measurement 154, 161, 341, 483a
radiant
aluminum 15
building materials 15
lampblack 15
leaves 15
paint 15
and particle size 15
pigments 15
platinum black 15
silver 15
spectrophotometry 533
standards (see also MgO, MgCO₃) 388, 408, 529
Reflectance-reducing films 394
Reflectometer
multipurpose 280, 300, 330, 331, 333,
335, 341, 347, 369a, 397
photographic 261
Priest-Lange 252
Taylor 154
Reflectometry
symbols 542
terms 542
Repertoire de Couleurs 349
Retina, blue arcs 164
Retinal sensitivity, fluctuations 204
Retroreflectors 488a, 578
Rhodium, spectral reflectance 305
Ridgway color system 69, 349, 376, 465a
Road materials, infrared reflectance 15, 519
Rocks
infrared reflectance 519
Roofing materials, infrared reflectance 15, 519
Rope, Manila, Becker value 223, 224, 450
Rotating sectored disk in photometry 1
Rotatory dispersion colorimeter 16, 17, 32,
46, 57, 58, 61, 63, 64, 70, 74, 79, 91,
109, 135
Rubber
infrared transmittance 251
optical properties 346
Ruby, spectral transmittance 23
Ruby mica 392
Rutile—see Titanium dioxide
Safety color code (ASA) 401, 434, 466, 493a,
520, 546
Samarium, spectral transmittance 353, 498,
503
Sanitary ware, colors for 197
Saturation scale 132, 144, 209
Saturation-purity relationship 132, 196
Scales
additive 540
interval 540
ratio 540
see Color scales
Scaling
color differences 558b, 570a, 575a
Scattering materials 248, 256, 277, 286,
293, 552
Schmidt & Haensch spectrophotometer 336
Science, color 442
Searchlights, spectral composition 43, 51
Selenium orange glass, spectral transmittance
228, 424
Sensibility to hue 75
Shade number for eye-protective glasses 153,
298a, 410a
Shadows, blue, on snow 113
Sheet materials, luminous reflectance & transmittance 360
Signal colors and glasses
marine 400
railroad 214, 306, 318, 396, 400
six-color system 272, 318
traffic 97, 328a, 400
Signaling, by ultraviolet rays 40
Silver, radiant reflectance 15
Silvered mirror, spectral reflectance 50
Skin
infrared reflectance 519
scattering 551
Skylight, spectral distribution 327
Skylight, natural 100
Slit width errors 434, 486a
Snow, blue shadows 113
Soils
color 389a
infrared reflectance 519
Solutions, spectral transmittance 182
Specific absorptive index 121, 159, 171, 191
Specification of color—see Color specification
Spectral
absorptance
photopigment 530, 551
band pass, width 498
centroid of light 54, 60, 70, 79, 99, 194,
198, 207
composition of carbon arc 51, 70
distribution of NPL white light 185, 195
filters 108, 240, 241, 247, 290, 296, 347, 444
line width 3
radiant intensity 483b
reflectance
barium sulfate 529
butter 24
diffusing media 235
dyes 145, 172
lampblack 15
leaves 15, 445
magnesium carbonate 176
magnesium oxide 175, 176, 408, 529
Manila rope fiber 223, 224, 450
Munsell rope fiber 52
oleomargarine 24
paints 15
pigments 15
platinum black 15
rhodium 305
silvered mirror 50
soot 15
titanium pigments 418, 420
response
phototube 562
transmittance
animal oils 65
animal tissues 153
atmosphere 50
benzol 65
camouflage filters 44
carbon yellow glass 228, 424
carotin 77, 163, 191, 222
chromotrope 108, 86
cobalt blue glass 228, 424, 502
collagen 362
copper green glass 228, 424, 502
didymium glass 354, 388
diffusing media 235
dyes 68, 107
dyes, food 68
dysprosium 366, 498
erbium 366, 498
gelatin 34
Gibson 560 mu filter 240, 241, 247
glasses 21, 34, 37, 47, 87, 153, 216, 217, 416, 504
of glasses containing
cerium 498
cromium 502
europium 498
gadolinium 498
iron 502
lanthanum 498
lutetium 498
manganese 502
nickel 502
neodymium 498
platinum 502
tungsten 502
vanadium 502
zinc 502
glasses, eye-protective 39, 153, 298a, 410a
glasses, German 416
glasses, optical 454
gold 34
holmium 366, 492, 498, 503
H.T. yellow glass 424
inorganic salt solutions 34
iodine and potassium iodide 106
measurement 78
metacresolsulfophthalein 379
mineral oils 65
Mother-of-pearl 153
neodymium 353, 498, 503
ocular media 37, 435
phenolphthalein 25
potassium chromate 439
praeseodymium 353, 498
ruby 23
samarium 353, 498, 503
selenium orange glass 228, 424
solutions 182
thulium 366, 498
vegetable oils 45, 49, 56, 65, 249, 250, 287, 304
welding goggles 37
xanthophyll 96, 163, 191, 222, 516
ytterbium 366, 498, 503
Spectrophotometer 393
Spectrophotometers
abridged, see Photometry by filters
genereal 81, 93, 98, 190, 322, 336, 344, 369, 374, 404
for liquids 62
photoelectric 35, 78, 93, 98, 181, 190, 301, 336, 361, 376, 404
photographic 25, 93, 103, 157, 159, 190, 336, 379
thermoelectric 56, 65, 78, 93, 190
visual (see also König-Martens spectrophotometer) 2, 11, 76, 77, 84, 93, 96, 151, 155, 190, 233, 235, 288, 336, 361, 376
with tristimulus integrators 494
Bausch and Lomb 98, 206, 336, 393
Beckman 375, 390, 393, 404, 438, 478a
Brace 50
Cary 478a
Cary-White 90, 519
Cenco-Sheard 393
Coleman 353, 361, 362, 366, 393
Gaertner Scientific Corp. 336, 393
G. E., see General Electric spectrophotometer
Hilger 25, 93, 103, 157, 159, 190, 336, 379
Keuffel & Esser 86, 98, 105, 159, 361
König-Martens, see König-Martens spectrophotometer
Razek-Mulden 336
Schmidt-Haensch 336
Spekker 379
Unicam 478a
Wright 478a
Spectrophotometry
errors in 297, 393, 397, 447, 486a
genereal 376, 395, 397, 402, 478b, 480a, 538, 544, 549, 579, 424a
photoelectric 35, 479
reflectance 533
standards 354, 388, 404, 408, 424, 439, 486a, 492, 498, 502, 503, 511, 533
use in photointerpretation 445, 476
Spectroradiometers 98, 251, 501
Spectroscopy, absorption 538
Spectrum colors, hues of the 377
Spekker spectrophotometer 379
Sphere, integrating 537
Stammer colorimeter 171, 247
Standard
Abaca fiber 223, 224
color 517a, 579
directional reflectance 336
Federal - 595 470a
filters for testing spectrophotometers 228, 354, 388, 424, 494
gloss 348, 384, 506
heterochromatic photometry, glasses 22, 26, 87
illumination 310
IPC illuminant for photographic sensitometry 116, 160, 173, 192
marine 400
National School Bus chrome 316
opacity 236
photometric 234, 403a
Priest-Gibson (N') scale for Lovibond glasses 237
radiant intensity, spectral 483b
railway signal colors and glasses 214, 306, 318, 396, 400
reflectance 388, 408
rudy mica 392
spectrophotometric 404, 424, 439, 492
Textile Color Card 397, 402
traffic signal colors 97, 400
wavelength (didymium) 354, 388
Standard observer (see also CIE standard observer) 261, 508
Stefan-Boltzman law 36, 38, 376
Stillings color blindness test 141
Stone, cast, colors and finishes 246
Stray light
errors 438, 486a
filters 288
Subjective color phenomena 568
Subtractive colorimeter 260, 264, 320, 392, 397, 478a
Sunlight
Abbot-Priest 114, 182, 223
artificial 69, 79, 110, 112, 114, 126, 148, 150, 152, 182, 210, 223
natural 57, 69, 74, 79, 100, 114, 148, 182, 210, 376
Surface
color 329, 435
mode of appearance 488
texture 560
Surround
influence 525, 536, 563, 573, 576
Talbot's law 1, 84, 151, 190
Target
conspicuity 556a, 571
detection 556a, 571
visibility 556a, 571
Taylor reflectometer 154
Television
color contrast 558a
types 429
Temperature, effect on transmittance 21, 23, 141, 150, 156, 182, 228
Terbium, spectral transmittance of glasses containing 498
Terminology, see Nomenclature
Tetartanopia 419, 435
Textile Color Card Association color cards 349, 397, 402
Texture
surface 560
Theatrical lighting, filters for 303
Thermoelectric colorimeter 581
Threshold, contrast difference 577a
Thulium, spectral transmittance 366, 498
Tinting strength of paint & pigments 155, 170
Titanium
dioxide, anatase and rutile 556
pigments, spectral reflectance 418, 420
spectral transmittance of glasses containing 502
Tracing cloth, contrast ratio 23a
Traffic signals 97, 328a, 400
Transformations of tristimulus specifications 349, 457
Translucent products, color 460
Transmittance
gometry 378
measurement 161
nomograph for thickness 39
Transmittancy standard in ultraviolet 439, 492
Transparent products, color 460
Transparency of tracing cloth 23a
Trichromatism 396a, 419
Tristimulus colorimetry 341, 347, 349, 494, 369a
Tristimulus integrators 494
Tristimulus specification 174, 180, 193, 199, 205, 212, 219, 220, 227, 238, 239, 243, 251, 268, 290, 343, 344, 345, 349, 352, 358, 374, 376, 396a, 490
Tritanopia, color discriminations 146, 419, 430, 431, 435
Tungsten, spectral transmittance of glasses containing 502
Two-color projection 484
Ultraviolet
fading 409
photography, for detecting writing 41
solar energy distribution 255
spectrophotometry 157
transmittance
animal tissue 153
carotin 163, 191
dyes 68
dyes, food 68
filters 108
glasses 47, 153
glasses, eye-protective 39, 153, 298a, 410a

48
11. AUTHOR INDEX

Acree, S. F. 361, 375, 371, 390
Appel, W. D. 85, 86, 105, 145, 172, 223, 244
Balcom, Margaret M. 404, 429, 515, 564b
Barbrow, L. E. 234, 433, 483b
Beeker, Genevieve 223, 224, 397, 399, 402
Beek, John, Jr. 362
Belknap, Marion A. 424, 426, 454, 504
Bittering, Charles 119
Breckenridge, P. C. 322a
Brewster, J. F. 247
Brickwedde, F. G. 111, 298
Bright, H. A. 351
Brode, W. R. 86, 103, 105, 106, 107, 159
Brown, Mabel E. 228
Bruce, H. D. 104, 155
Burgess, George K. 102
Caldwell, B. Patrick 529, 548
Caldwell, F. R. 234
Carmine, Earl J. 399
Chamberlin, C. J. 495
Cleek, H. J. 502, 503
Coblentz, W. W. 15, 27, 28, 34, 37, 65, 153, 222, 251, 255, 305, C421
Cordrey, Dorothy J. 454
Cottrell, Casper L. 72
Crandall, J. R. 467
Crawford, B. H. 550
Crittenden, E. C. 26, 168, 292, 310, 365
Danielson, R. R. 76
Dannemiller, Mary C. 490
Davis, Raymond 123, 134, 150, 152, 166, 182, 194, 195, 225, 444
Douglas, C. A. 381
Douglas, Florence L. 405
Eastman, A. A. 571
Title and Subtitle

Author(s)

Kenneth L. Kelly

Performing Organization

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

Supplementary Notes

Library of Congress Catalog Card Number: 74-5090

Abstract

This bibliography of publications will serve as the key to the large amount of research into color measurement and specification, and color vision carried out by the staff of the National Bureau of Standards (NBS) in colorimetry and spectrophotometry. These 623 publications appeared in NBS publications and outside scientific and technical journals between January 1906 and January 1973. This material has been in constant demand by Bureau members as well as by outside individuals and organizations. The practical value of this wealth of information lies in its ready accessibility to the scientific and technical fraternity by title, by key words or by author, in the Library of Congress and in depository libraries such as large public and university libraries. A short organizational chronology of the colorimetry and spectrophotometry program is included.

Key Words

Bibliography; color; color codes; color measurement; colorimetry; spectrophotometry; vision.

Availability

Unlimited

For official distribution. Do not release to NTIS

Order from National Technical Information Service (NTIS) Springfield, Virginia 22151

95¢

54

UNCLASSIFIED

UNCLASSIFIED

USCOMCD 20042-P74
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes stings of other NBS papers as issued.

Published in two sections, available separately:

Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $17.00; Foreign, $21.25.

Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS, NBS

The best single source of information concerning the bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the layman and also for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $6.50; Foreign, $8.25.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics). A literature survey issued weekly. Annual subscription: Domestic, $20.00; Foreign, $25.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

Penalty for Private Use, $300