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ABSTRACT

This book is a revised and somewhat extended version of V. V. Ivanov's
Radiative Transfer and the Spectra of Celestial Bodies, published in Moscow
in 1969. The principal subject is the transfer of radiant energy through a
gas composed ot atoms with two discrete levels. Although the emphasis of the
book is on analytical methods, extensive numerical and graphical results are
presented

.
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FOREWORD TO THE ENGLISH EDITION

This book is a revised and somewhat extended version of the author's
Radiative Trans fer and the Spectra of Celestial Bodies published in Russian
in 1969. The book is devoted to a rather limited problem of radiative trans-
fer theory, namely radiative transport of excitation in a tenuous gas composed
of two-level atoms. Although this problem is highly restricted, it is the
heart of the whole theory of transfer of line radiation.

Our approach may seem old-fashioned, since it is mainly analytical
rather than numerical. Although numerical methods play an essential and
constantly increasing role in transport theory, the analytical approach must
not be underestimated. In the final analysis, a computer solution of a
problem without a prior investigation of the nature of its solution is only
a mathematical analog of a physical experiment. Analytical methods provide
the basis for radiative transfer theory, as they do for any theory.

We use the now-classical analytical methods of transport theory developed
mainly by E. Hopf, V. A. Ambar ts umi an , S. Chandrasekhar and V. V. Sobolev.
The use of these methods rather than Case's method of the normal mode expan-
sion may also seem somewhat old-fashioned. The majority of the results pre-
sented in this book may be readily obtained by Case's method. It seems,
however, that the asymptotic solutions of line transfer problems are more
directly obtained by the classical methods.

The manuscript of the original Russian edition of the book was completed
in June 1968. In preparing the English language edition I have revised the
whole manuscript and added more than 100 pages, mainly to account for results
that were published since 1968. Sections 3.6, 4.5, 6.9, 6.10, 8.10 and 8.11
are new, and sections 2.6, 3.8, 3.9, 4.4, 7.5, 8.5, 8.6 and 8.9 are substan-
tially enlarged; minor additions have been made throughout the book.

I am deeply indebted to Dr. D. G. Hummer for his efforts to organize the
publication of the Engl ish- language version of this book and for his excellent
editorial work. Dr. Hummer also succeeded in fitting smoothly into the trans-
lated text of the original book all of the additions supplied by the author in
a rather non-colloquial form of the English language.

V. Ivanov

Leningrad
December 1971



FOREWORD TO THE RUSSIAN EDITION

With more than a dozen books on transfer theory now available, the need
for yet another might well be questioned. However, in recent years a new and
important area of transfer theory, the scattering of radiation within spectral
lines, has been developing rapidly. The discussions of this topic in the
existing monographs do not reflect its present state; yet this area will
undoubtedly continue to grow in importance, as it provides the theoretical
basis for the interpretation of line spectra of optically thick plasmas.

That radiative transfer theory for spectral lines has been developed
primarily by astrophysicists is not accidental, of course, but reflects the
important role that radiation transfer plays in astrophysics. In fact, much
of our understanding of celestial objects is based on the study of their line
spectra. Unfortunately specialists in transfer theory are not yet able to
solve the seemingly simple problems that have long been the concern of astro-
physicists. However, there is now reason to hope that in the foreseeable
future we shall have the reliable methods so urgently needed by astrophysicists
for computing the intensities and profiles of spectral lines. These methods
will evolve from those currently in use, primitive as they may be in many
respects. The recent successful applications of transfer theory, especially
through numerical methods, to spectral lines provide an encouraging sign.

This book avoids concrete as trophys ical problems. However, most of the
model problems solved here arose in connection with the study of spectra of

j
celestial objects. Although the models considered were usually too crude to

/ be used directly in interpreting the observations, they are valuable in help-
ing us to understand the physics of the phenomenon and to develop a feeling
for the problem. Further, models of this kind allow one to estimate the
accuracy and range of validity of the approximations and numerical methods

H used in transfer theory.

I

This book is addressed primarily to theoreticians, although certain of
i

its topics will be of interest to observers as well. The sequence of thought,
in essence, is "from the physics of the problem, to mathematics, and back
again to physics." As to the level of mathematical development, two criticisms

i

are possible: some readers will find the discussion insufficiently rigorous,
j

while others will feel that the attention to purely mathematical questions
;

has been excessive. Perhaps the best description of the point of view adopted
j

here is to say that the book gives the solution of a number of problems of
;j

applied mathematical physics at a physical level of rigor.
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The selection o£ material was largely dictated by the author's interests.
Considerable space has been given to results obtained in recent years by a

group of astrophysicists at the University of Leningrad, and an appreciable
amount of this material is being published here for the first time.

The list of references is not intended to be exhaustive. From the vast
literature we have referred only to those papers bearing directly on the
problems chosen for inclusion in the book. Decisions on questions of nota-
tion proved to be far from easy. The problems considered are intrinsically
quite cumbersome as their solutions involve many parameters. Lack of agree-
ment on notation among various authors further complicated the situation.
For the reader's convenience, a table of the basic symbols is given at the
end of the book, including the number of the page on which each appears for
the first time.

Equations are given two numbers within a chapter. The first number is
that of the section of the chapter in which the equation appears; the second
reflects its order within that section. For example, (6.56) in Chapter II

indicates equation 56 of section 2.6. In referring to an equation in another
chapter, the number of that chapter precedes the "internal" number. Thus,
equation (6.56) of Chapter II will be referred to in any other chapter as
(2.6.56).

I wish to expressed my profound appreciation to Professor V. V. Sobolev,
who has played a crucial role in shaping my views on the problems of transfer
theory. He has read the book in manuscript and many of his suggestions have
been incorporated into the final draft.

For several years the author has worked closely with Dr. D. I. Nagirner,
who has contributed to the formulation and clarification of many important
problems. Dr. Nagirner has provided many of the results appearing in this
book, including the majority of previously unpublished numerical data. My
correspondence with Dr. D. G. Hummer (USA) has also played a significant role
and his permission to use a number of important unpublished results has been
most useful.

Mr. H. Domke of the Potsdam Observatory assumed the difficult task of
checking the formulae. Invaluable assistance in drawing the figures and
preparing the manuscript for the printer was rendered by T. M. Maksimova,
I. I. Lebedeva and L. F. Gromova.

To all of these people I extend my warmest thanks.

V. Ivanov



EDITOR'S PREFACE

This book had its inception in a letter written by Dr. Ivanov to me in
1967, asking permission to use some o£ my unpublished material in a book on
line formation that he was writing. In my reply authorizing the use o£ that
material, I also offered to arrange for the translation and publication of
an English- language version of his book. At that time the need for a well-
written up-to-date book on the radiative transfer problems of spectral line
formation was acute. I felt confident from my knowledge of Dr. Ivanov's
published work and from our correspondence extending back to 1963 that his
book would meet that need admirably. In this way I could also abandon, with
a clear conscience, my own plans to write a book on this subject.

After the book appeared in 1969, I contacted a large number of publishers
but found little interest in the translation as a commercial venture. At the
encouragement of the then- Chairman of JILA, Dr. Peter Bender, and with the

I assistance of the Chief of the Laboratory Astrophysics Division of the

I

National Bureau of Standards, Dr. Steven J. Smith, I arranged for the publica-
J tion of the book by the Government Printing Office. As I was by then too busy

lj

to translate the book without assistance, we arranged for Eileen Weppner to
provide me with a draft translation and for Alice Levine to assist in the edi-
torial work, to design the book and to oversee the typing and final assembly
of the camera copy. The draft translation was prepared and edited in the
spring and early summer of 1971. This was sent to Dr. Ivanov who made exten-
sive corrections and additions. The final editing was begun in the spring of
1972 and was completed on New Year's Day, 1973. The last corrected proofs
were received from Dr. Ivanov in July, 1973.

A word on the design of this book may be in order. Having at our dis-
posal the newly-developed IBM Selectric II (a 10- and 12-pitch typewriter),
we endeavored to use its flexibility to produce a design that is both
attractive and readable. The large page format was selected to minimize
the effect of the lack of right- justification and to allow most of the
longer equations to be typed on one line. As a considerable amount of
thought and experimentation has been invested in this design, we hope that
it may be of value to other people wishing to publish technical books on
a very low budget.

A venture of this magnitude depends critically on the assistance of many
people. I am deeply indebted to Eileen Weppner for supplying a draft trans-
lation in a very short time, to Leslie Haas and Dorothy Harris for typing the
first draft, to Olivia Briggs and Harriet Ortiz for quickly and accurately
typing the camera copy and to Lorraine Volsky, head of the JILA editorial
service, for her advice and assistance in many matters. I would like to



vi i i EDITOR'S PREFACE

thank Drs . Bender and Smith for providing funds from the ARPA contracts under
their control to pay for the draft translation and the editorial help.
Although Dr. Smith allowed me to work on this project as an official duty of
my NBS position, it is probably not surprising that most of the editorial
work was done at home in the evenings and on weekends. I am grateful to my
wife, Janet, and son, Julius, for their patience in postponing many family
activities" until the book is finished." Dr. John Davis of the Naval Research
Laboratory has read the proof sheets and detected a number of errors. To
Alice Levine I owe a special debt of gratitude, for without her cheerful,
intelligent and professional assistance in all phases of this project --

editorial, design, preparation of camera copy and proofreading -- the job
simply would not have been finished. Finally I would like to say that my
satisfaction with the outcome of this project has been enormously enhanced
by the pleasure of working with Dr. Ivanov, for in addition to contributing
much new material and extensively re-writing the existing text in a way that
significantly increased the value of the book, he played a crucial role in
checking my editorial work and in carefully proofreading the camera copy in
a most efficient manner.

Despite all of our efforts, it is inevitable that errors remain. If, as
readers detect errors, they would communicate them to me , I will maintain an
erratum list that may be obtained on request from the JILA publications
office.

D. G. Hummer

Boulder
July 1973
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CHAPTER I

BASIC CONCEPTS

The study of the equilibrium state o£ a gas in its own radiation field
is still in a preliminary stage in which the theory is being developed,
rather than one in which the principal results have already been obtained.
It will therefore be helpful to begin our discussion with a more or less
detailed analysis of some basic concepts. The specific assumptions that are
at present required for complete solution of the problems need not be intro-
duced at the outset.

This chapter has two purposes: it provides an introduction to the sub-
ject and outlines the limits of applicability of the theory to be developed,
simultaneously sketching a more general approach to the problem.

1,1 RADIATION

INTENSITY OF RADIATION. In the theory of multiple scattering of light, radi
ation is considered to be an aggregate of photons that constitute a photon
gas. Photons are regarded as particles moving with the velocity of light c.

Accordingly, each photon is characterized by (1) the energy E or the fre-
quency V, related by E = hv (h being Planck's constant); (2) the three com-
ponents of the radius vector r, which specifies the location of a photon in
space relative to some frame of reference; and (3) the two angular variables
that give the direction of motion of the photon, a direction that we shall
characterize by the unit vector co.

The set of six variab les -- frequency , three spatial coordinates, and two
angular variables (e.g., direction cosines of vector aj)--defines a six-dimen
sional phase space. Each photon is represented by a point in this space.

Transfer theory is a statistical theory in which the radiation field is
considered to be an ensemble of photons that are described by the parameters
enumerated above. A complete description of this statistical ensemble is
given by the corresponding distribution function f(v,r,cio,t), such that
f (v ,r ,a3,t)dvdVdco is the number of photons with frequencFes from v to v + dv

locateH" at time t in a volume dV near a point r and moving within a solid
angle dw around the direction ix>. If f does not depend on time t, the radia-
tion field is said to be steady. We shall consider only such fields.



2 BASIC CONCEPTS

In radiative transfer theory one is commonly concerned not with the dis-
tribution function f itself, but with the associated quantity I (r,a)) defined
by the relation ^

Iv (^I'iii^
= chvf(v ,r,w) . (1.1)

The quantity 1^ is called the intensity of radiation and has the following
physical meaning. Let there be photons with frequencies from v to v+dv,
moving in the vicinity of a point r in directions lying within the solid
angle dco about ai. Then 1^ (r ,0)) dv dadw represents the energy these photons
transfer per unTt time througF the area da perpendicular to oj, located at
point r. The intensity I^ and the phase density f each compTetely describe
the raH'iation field provided the polarization effects may be neglected. The
description of a radiation field when polarization is considered is thorough-
ly discussed by S. Chandrasekhar (1950). At the present stage of development
in the areas of radiative transfer theory to which this book is devoted, the
consideration of polarization effects is not of immediate concern.

RADIATION DENSITY AND FLUX. An important integral characterizing the radia-
tion field at a given point is its radiation density P^(2l)> defined such that
p^dvdV is the radiant energy in the frequency interval from v to v+dv,
within the volume element dV. According to this definition

p^(r) = hvyi (v,r, )daj' , (1.2)

where the integration encompasses all directions. With (1.1) in mind, we can
also write

Pv (r) = -^JI^(r,a)')da3'
, (1.3)

or

% c "v ^-

where is the mean intens i ty

Another integral characterizing the radiation field at a given point is the
radi ation flux vector f^Fy (i;_) , defined by

^fy(l) = y*aj'
I^

(r,(£' )doa' . (1.6)

The projection of the flux vector on a given direction is called the flux in
that direction. Having designated the flux in the direction u as TrFvca(l.) .

we have

^Pva)(l) = y*Iv (r,aJ')cosYdaj'
, (1.7)

where y is the angle between directions w and w'
, so that cos Y = '^•'^ .

From the last equation it follows that 'fF^Q)(r) is the energy flowing across
a unit area perpendicular to w per unit time in a unit frequency interval.
In specifying the direction co we have defined the orientation of the area
perpendicular to this directTon as well. Consequently the quantity ttF (r)

also represents the flux through this area.
~
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The radiation flux through an area is easily expressed in terms o£ the
fluxes in the directions of the coordinate axes. Let the direction cosines
of the vector w be cos9-j^, cose2, cosG^, so that

u = i_cosO-|^ + jcosO^ + kcosBj
, (1-8)

where i^, j, k are unit vectors of the coordinate axes. Similarly we can
write

~

oj' = i_cos0j^ + jcose; + kcosSj • (1-8')

Since

cosy = = cos0^ cos6-j^ + cosS^ cos92 + cos6^ cos9^ ,

we find from ri.71 that

F = F cos9, + F cos9^ + F cos9,
, (1.9)

VO) vx 1 vy 2 vz 3 ' ^ '

where ttFvx» '"'^vy '"^vz are fluxes in the directions of the x-
,
y- and z-

axes, respectively. The first of these is

'^^vx^^'^
= yi^(r,a)')cos9^dao' (1.10)

The quantities TTF^y(r) and 7TF^^(r)are defined analogously.

Thus the amount of radiative energy per unit volume is characterized
by the radiation density, whereas the direction and velocity of its flow at
a given point are characterized by the flux vector. However, these quanti-
ties alone do not, of course, completely specify the radiation field.

THERMODYNAMIC EQUILIBRIUM (TE) . In this book we shall address ourselves to
the study of the physical conditions in a gas that is not in a state of
thermodynamic equilibrium (TE) . As a rule, the intensity of radiation in
such a gas changes substantially from point to point. The radiation field
is non- isotropic and its spectral composition depends upon both coordinates
and direction. Thus in a non-equilibrium system the intensity I (r,to) de-
pends, generally, upon all phase coordinates. As it is possible tEat for
certain values of the phase variables the conditions are quite different
from TE, while for others the conditions are more or less near equilibrium,
we might usefully review briefly the properties of a radiation field in TE

.

In TE the intensity of radiation does not depend upon coordiriates and
direction so that the radiation field is homogeneous and isotropic. Moreover,
the frequency dependence of the intensity is a universal function of the sys-
tem's temperature T and does not depend upon the properties of the matter
with which the radiation interacts. The intensity of radiation in TE will,
as is customary in astrophysics, be denoted by Planck's function B (T)

.

This function is defined by

V
(T) = Ji^^e^v/kT _

^ ^^^^^^

where k and h are Boltzmann's and Planck's constants. It is convenient to
introduce the special notation u (T) for the radiation density in TE. We
have, from (1.3) and (1.11),

^
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The integrated radiation dens i ty

oo

u(T) = J u^(T)dv (1.13)

0

is seen from (1.12) to be proportional to the fourth power of the temperature
(the Stef an-Boltzmann law)

:

u(T) = al"^, (1.14)

where

^
•

• (1.15)
ISh^c^

The quantity a is related to Stefan's constant a by a = 4a/c.

In the short wavelength region, i.e. hv >> kT , Planck's function re-
duces to Wien's function

2hv"^ -hv/kT
B^(T) = e , hv >> kT , (1.16)

and in the long wavelength region, where hv << kT , it reduces to the
Ray leigh- Jeans law:

B^(T) = v^ hv << kT. (1.17)

We note that the substitution of Wien's function for Planck's is equivalent
to the assumption that stimulated emission is negligible compared with spon-
taneous emission.

RADIATION TEMPERATURE. In the absence of TE , it is often convenient to
express the radiation intensity in terms of the Planckian intensity at some
temperature T. This can be done in several ways. The simplest is to express
I^ as a fraction of B (T) , where T is the local temperature of the gas. How-
ever, the deviation of I^ from By)(T) is often quite large. It is therefore
more convenient to introduce the radiation temperature T-^. by means of the
definition

I^(r,a.) =
^e'^v/kT, _

'

(.^^g^

or

I = B (T ) . (1.18')
V V r-^

Strictly speaking, (1.18) is not a definition of the radiation temperature.
Radiation is a photon gas and its temperature should be introduced according
to the general principles of statistical physics, i.e. in terms of entropy.
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In this way it may be shown that (1.18) is a consequence o£ the general con-
cept o£ the temperature of a non- equi librium system, and not simply an ad hoc
definition of an interpolation parameter Tj. (see, e.g., J. Oxenius

, 1966).

It is clear that the radiation temperature Tj- is a function of the same
arguments as 1^; i.e., in general, T^. = Tj.(v,r,aj). The difference T^- - T
provides a measure of the deviation of 1^ from By(T), where T is the local
gas temperature. This description of the radiation field has the feature
that in the Wien region a large variation in the intensity corresponds to a
relatively small change in the radiation temperature.

Just as the radiation temperature may be used to characterize the inten-
sity of radiation with frequency v at a given point and propagating in a

given direction, a temperature parameter may also be int^roduced to describe
the mean intensity or radiation density. The quantity T-^ defined by

J^(r) = B^(T^), (1.19)

or equivalently
,
by

p^(r) = u^(T^), (1.19-)

may be called the mean radiati on temperature for the frequency v at a given
point. It is clear that the_mean_radiation temperature is a function of both
frequency and coordinates: Tp = Tj.(v,r_).

From the theoretical point of view, this description of the radiation
field in terms of temperature parameters, provides nothing new. Moreover,
since these parameters are related to the intensity in a rather complex
manner, their use only leads to unnecessarily complicated expressions.
Therefore in transfer theory the various kinds of radiation temperatures are
rarely encountered. However, because it is easy to visualize, the tempera-
ture description is rather widely used (primarily by oDservers and experimen-
talists). Unfortunately, it is not always precisely specified what any given
"temperature" describes. Yet it is absolutely necessary to do this, espe-
cially when it is recalled that other temperature parameters are used to de-
scribe the state of matter. The failure to distinguish different "tempera-
tures" has more than once been the source of unfortunate misunderstandings.

1.2 MATTER

PRELIMINARIES. We shall now consider the description of the state of a gas
interacting with radiation. We shall regard as known the chemical composi-
tion of the gas, or more precisely, the relative number of atoms of various
elements, and also the density of the gas at each point. The properties of
the atoms comprising the gas, such as their energy levels, transition proba-
bilities, collision cross sections, etc., are also regarded as given. The
problem, then, is to describe the state of the gas considered as an aggregate
of individual particles with known properties.

In each elementary volume, atoms of a particular element are present in
various stages of ionization. To describe the state of a gas, therefore,
one must determine the degree of ionization of the atoms. Furthermore, one
must know the distribution of the ions over the discrete energy levels as
well as the velocity distribution of ions in a given state of excitation and
ionization. The velocity distribution function of the free electrons formed
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as the atoms are ionized must also be found. Once all of these parameters
are known, the state o£ the gas is completely described.

In practice, simplifications of different types arise (or, in any case,
are introduced during theoretical considerations), so that it is not neces-
sary to discuss the question in such general terms. We shall now discuss
typical examples of situations that are encountered.

THERMODYNAMIC EQUILIBRIUM AND LOCAL THERMODYNAMIC EQUILIBRIUM (TE and LTE)

.

We start with the simplest case: that in which the gas may be considered to
be in a state of TE. The following conditions must be met:
(1) The velocities of each species of particle (let us say, r-times ionized

atoms of the 1-th element, in the i-th state) must have a Maxwellian
distribution, characterized by the same temperature T for all species.
Let ni be the total number of such particles per unit volume. Then the
number having velocities from v to v+dv is

dn. = „.4.
'

^„ e-*'/2" v^dv
, (2.1)

(2TTMkT)-^/^

where M is the particle mass. The free electrons must also have a Max-
wellian velocity distribution at the same temperature T.

(2) The distribution of atoms over the energy levels must be given by
Boltzmann's law

n. g. -hv ./kT
= ^ e , [2.2)

^1 ^1

where n^ is the population of level i, i.e. the number of atoms in this
level per unit volume, gi is the statistical weight of the level, and
hvj^^ is its excitation energy.

(3) Ionization must follow the Saha equation

^ 1/ _ g: 2(2.mkT)^/^ ^-hv^^/kT
'

^ ^1 §1 h3

where n^^ is the number of atoms in the ground state in some (e.g., the
r-th) stage of ionization per cm^, n"*" is the concentration of ions in
the ground state of the next (r+l-th) stage of ionization, ne is the
concentration of free electrons, g-^ and g"*" are the statistical weights
of the ground states of the "atom" and "ion," respectively, m is the
electron mass, and hv^,; is the energy required to ionize an r-times
ionized atom in its ground state.

(4) The radiation intensity must be given by Planck's function (1.11) with
the same temperature T appearing in expressions (2.1) - (2.3).

With sufficient rigor for our purposes, these four conditions can be
regarded as defining the state of TE. It is obvious that these conditions
are rather stringent and are met only in exceptional cases.

However, it is often found that when one or more of these conditions is

violated the others are satisfied with sufficient accuracy. One example of
a state of this type is the so-called state of local thermodynamic equi -

librium , or LTE. If conditions 1 to 3 are satisfied at each point in a gas
and the temperature T is permitted to change from point to point, the gas is
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said to be in LTE. It must be stressed that in LTE the radiation can have
arbitrary intensity. As long as conditions 1 to 3 are not violated, the

j

intensity can deviate arbitrarily from the Planck intensity at the local
temperature T. When collisional processes dominate radiative processes in

j

the ionization and excitation o£ atoms, the state of the gas is close to LTE
!

(see Sec. 1.4 for further details).

Initially LTE was understood in astrophysics in a somewhat different
sense. Namely, the medium was said to be in LTE when conditions 1 to 3 were
satisfied only if the intensity at every point was sufficiently close to the

: Planck intensity at the local gas temperature. In this more restricted
sense LTE exists if the variation of T is small over distances of the order
of the maximum mean free path of the photons that contribute substantially
to the level populations. In this book the expression LTE will be used in
the wider sense explained above, with no restrictions imposed on I^.

NON-EQUILIBRIUM GAS. In astrophysics, cases in which more than one of condi-
' tions 1 to 4 are violated are more frequently encountered than those describ-

ed by LTE. If at least one species of particle has a Maxwellian velocity
I

distribution, it is possible to introduce the concept of kinetic temperature.
We shall refer to such a gas as being in partial equilibrium . If the kinetic

i Maxwellian temperature cannot be introduced for even one species of particle,
the system is then said to be in a completely non-equilibrium state.

' We shall consider only systems in partial equilibrium. However, this
,

restriction still leaves us most of the problems of practical interest. Actu-
!

ally, even under such extreme conditions as those existing in interstellar
I'j space free electrons, as well as atoms and ions in the ground state, have a

j

Maxwellian velocity distribution. Moreover, the electron and ion tempera-

II

tures are practically identical. Perhaps still further from TE is the
: plasma of a gaseous discharge. In this case there are many situations in
which one may speak of electron and ion temperatures that are frequently

,

very different.

An aggregate of particles of a given species with a Maxwellian velocity
!
distribution can be called an equilibrium part of a system, or equi librium

j:

subsystem . (The word "equilibrium" is used here to emphasize the fact that
' the distribution of the particles of the subsystem over the trans lational

j

degrees of freedom is the same as in TE
. ) There may be several such equi

-

j

librium subsystems, exactly as many as there are species of particles having
j

a Maxwellian velocity distribution. A system that as a whole is not in
equilibrium may be composed of a set of equilibrium subsystems. Obviously,

! this can only occur if the particles of each species have a Maxwellian
[i velocity distribution,
ii]

i| The kinetic temperatures of individual subsystems may, in general,
i'l

differ from one another. However, even if they are equal, the system as a

I whole is not necessarily in TE
;
equal kinetic temperatures merely indicate

i

that at each point in the medium a single kinetic temperature exists for all
'! particles, i.e. that condition 1 (page 6) is met. We shall refer to such

I

systems as "single temperature." That a s ingle - temperature gas is not
necessarily in equilibrium follows from the fact that individual subsystems
are not necessarily in equilibrium with each other: the degree of ioniza-
tion and excitation in such a gas is not, generally speaking, described by

ill
the Saha and Boltzmann laws. The interstellar gas is a good example of a

ji single- temperature system that is very far from TE. In those regions of the
interstellar medium in which hydrogen is strongly ionized (the so-called

I

H II regions), the degree of ionization, for example, of hydrogen atoms (equal

.1 to 10-^-10^) is several orders of magnitude smaller than the equilibrium
|(
value for a gas with a kinetic temperature T==104°K and a density n^^lQl-lO-^.
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Particles whose velocity distribution differs from Maxwellian form non-
equilibrium subsystems (say, a subsystem of r-times ionized atoms of the 1-th
species, in level i) . As we shall see later, deviations from a Maxwellian
distribution are more of a rule than an exception for excited atoms whose
concentration is controlled principally by radiative processes.

For the sake of simplicity we shall consider only single- temperature
gases. As a rule, the generalization of the results to the case of a gas
with different electron and ion temperatures is trivial. In accordance with
the above discussion, for a complete description of the state of a single-
temperature gas at a given point one must know the kinetic temperature and
the concentrations of particles of each species, i.e. the level populations
and the state of ionization. However, other methods of description, theoret-
ically equivalent to that just indicated, but more convenient in practice,
are often used.

In the first
gas temperature T
species of ion in
atoms of a given
TE concentrations
centration of r +

question. Let n^
some element , and
in the next stage
(2.3) ,

of these methods each point has assigned to it a kinetic
, an electron density ng, and the concentration of each
its ground state. The concentrations of r-times ionized

element in excited levels are expressed as fractions of the
corresponding to these values of T and tiq and of the con-
1-times ionized atoms of this element at the point in
be the population of level i of an r-times ionized atom of
n* the concentration of ground state atoms of that element
of ionization. Then in TE , as follows from (2.2) and

n - = n n
1 e

hv. /kT
ic'

2(2TTmkT)-^/^

(2.4)

where hvic is the energy to ionize an r-times ionized atom in level i. For a
single- temperature gas, n^^ may be expressed as

+ Si h^ic/^^
^i = "e^ — 77:^ ' ^2.5)

g 2(2TrmkT)3/2

Here the level population is characterized by the dimensionless parameter
bi — the so-called Menzel factor (D. Menzel, 1937). This means of expressing
the concentration of excited atoms is especially useful when the levels are
populated primarily from above, by recombinations and transitions from
higher-lying states.

It should be noted that values of b-j^ greater than unity do not necessar-
ily imply that the population of level i relative to the ground state is
higher than the equilibrium population corresponding to the temperature T.

When the degree of ionization is less than that at equilibrium, the popula-
tion of level i may be lower than the Boltzmann value even though bj^ > 1.

Another means that is sometimes used to describe the state of a gas
differs from the one just discussed only in that the populations of the ex-
cited levels, instead of being represented by the parameters b^^, are char-
acterized by the numbers c^ , defined by the relation

n. g. -hv-,./kT

^ = — e c. . (2.6)
^1 §1

'
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The dimens ionless parameter is the factor by which the population of level
i of an r-times ionized atom differs from the Boltzmann population correspond-
ing to local temperature T. With this description the population of level i

is expressed in terms of the concentration of ground state ions of the same
(r-th) stage of ionization, whereas when the parameters are used, the pop-
ulation is referred to the concentration of (r + 1) -times ionized atoms. The
quantity Cj^ is sometimes called the reduced concentration of excited atoms.

From (2.5) and (2.6) it follows that

+ „+ , ,„s3/2 -hv, /kT c
n § 2(2TrmkT) Ic i

n — - — —^ e — • (2.7)
e n^ gi bi

Thus the ratio ci/b^ indicates the factor by which the degree of ionization
differs from that in TE for local temperature T and electron density n^.
Since the left side of (2.7) does not depend upon i, we conclude that the
quantities c^ and b^ differ only by a constant factor.

Another means of representing the state of a gas, which may be called
the thermal description, is as follows. The kinetic temperature T, electron
density ng , and concentration of ions in some i-th (usually the ground)
level are given. The populations of the other levels are characterized by
parameters T^]^ defined by the expression

— = — e , (2.8)
. 1 ^1

where hv^j^ is the energy difference of the levels i and k. The quantity
T^]^ is called the excitation temperature of level i relative to level k. In
a similar way, the degree of ionization is described by the ionization
temperature T^^^, defined by the expression

^ n^ _ 2(2TrmkT)^/^ ^-^^Ic/^^lc ^2 9)
^ ^1 §1

In LTE the values of T^i^ and T]^^ for all levels of all atoms, in any stage
of ionization, are equal and identical to the local gas temperature T.
Values of Tik and/or Ti^; differing from the kinetic temperature T reflect
deviations from LTE and indicate how strongly the equilibrium between the
individual equilibrium subsystems making up the s ingle -temperature gas has
been disturbed.

In this section we have considered alternative descriptions of a non-
equilibrium gas in the steady state. This steady non- equi libr ium state can
exist only if it is maintained by an external mechanism. Radiation incident
upon the gas from outside is one example; but it is by no means the only
possibility. In any case, a steady non-equilibrium gas can never be thought
of as an isolated system.

1.3 INTERACTION PROCESSES

The steady state of a gas is established through various kinds of
interactions. Let us discuss briefly those processes that play a decisive



10 BASIC CONCEPTS

role under the conditions encountered in astrophysics. First we will con-
sider the interaction of particles (atoms, ions, and free electrons) not
related to the processes of light emission and absorption; then we will
discuss radiative phenomena, i.e. the interaction of radiation and matter.

ELASTIC COLLISIONS. Elastic collisions cause changes only in the velocity
of the particles and do not precipitate any internal reorganization in the
particles, i.e. ionization and transitions between levels. These processes
lead to the establishment of a Maxwellian velocity distribution. If elastic
collisions occur much more often than inelastic collisions and radiative pro-
cesses for particles of a given species, then the velocities of these parti-
cles have a Maxwellian distribution. For atoms and ions in the ground state,
these conditions usually seem to be satisfied. As a rule electrons also
have a Maxwellian velocity distribution.

The situation for excited atoms is quite different. The lifetime of
excited states is sufficiently short that at low enough densities the atom
will usually complete a downward transition long before an elastic collision
has occurred. In order, therefore, to ascertain whether or not the velocity
distribution of the atoms in some excited level is Maxwellian, one must
closely examine the populating mechanisms. If radiative processes dominate
collisional processes and the intensity of radiation incident upon the atoms
varies strongly across the line in which excitation occurs, appreciable devi-
ations from the Maxwellian distribution may occur. We shall consider this
question in greater detail in Sec. 1.5.

INELASTIC COLLISIONS. Inelastic collisions cause excitation and ionization
of atoms together with the inverse processes of de-excitation and recombina-
tion. Under astrophysical conditions the most important of the inelastic
collisions are those of atoms and ions with free electrons; we shall confine
our attention to such collisions.

Let us first consider collisional transitions between discrete levels.
A collision leading to the excitation of an atom at the expense of the inci-
dent electron's kinetic energy is called a collision of the first kind. The
reverse process is known as a collision of the second kind, or de-activation.
Let ni and nj^ be the populations of the lower and upper levels, respectively,
and ne the electron concentration. The number of collisional transitions
occurring in a unit volume per unit time is:

for i ^- k collisional excitations: n.n C-, ,1 e IK
for k -> i de-activations (collisions of the second kind):

^i<;"-e^ki
' C3.1)

The quantity Cik is related to the excitation cross section qikCv) by
the relation

oo

^ik
= /qik(v)vf(v)dv, (3.2

^ik

where v is the velocity of the incident electron and £(v) is the velocity
distribution function of the electrons. Here v . is the threshold velocity,
determined by the obvious condition

mv.j^
hv . 1ik

(3.3)

where hv., is the difference between the energies of levels i and k.



1.3 INTERACTION PROCESSES 11

I£ the velocity distribution o£ the electrons is Maxwellian with a tem-
perature T, the rate coefficients Cj^-y. and Cj,^ are related by the expression

^ki (3.4)

Actually, in TE each process is exactly balanced by its inverse, so that

n . C .
11 ik ^kSi (3.5)

I

Moreover, in this case the ratio of the level populations is given by
Boltzmann's law (2.2). From (3.5) and (2.2) it immediately follows that in
TE the relation (3.4) is indeed valid. However, since Cik and C]^i are deter-

I
mined only by atomic properties (cross sections) and by the velocity distri-
bution of the electrons, (3.4) must hold in the absence of TE as well, pro-
vided that the velocity distribution of the electrons is the same as in TE

,

i.e. Maxwellian.

To obtain an order of magnitude estim.ate of the number of transitions
induced by electron impacts, one can proceed from the semi-classical ex-
pression for the excitation cross section Rj^]^('^)'

lik
(V)

,23
3e c

2 2
g.

\^
hv.^ mv2

;

(3.6)

where Aj^^ is the Einstein coefficient for the spontaneous transition k i

and e is the electronic charge. From (3.6) and (3.2) it follows that for
electrons having a Maxwellian velocity distribution with temperature T

^ik

2 3
e c m ^ki gk -hVik/^T

^hv3 (2™kT)-^ Si
ik

(3.7)

where

P(x)
3*^

277

[1 - xe^Ej^(x) ] ,
(3.8)

I

and Ej^(x) is the first exponential integral:

-x dx (3.9)

I

A somewhat better estimate of C^v is obtained if the values of the
function P(hvi}^/kT) are not obtained from (3.8), but instead the values given
in Table 1 are used (after H. van Regemorter, 1962). In this particular case
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TABLE 1

THE FUNCTION P(X)

Positive Positive
X Atoms Ions X Atoms Ions

<0 005
2 TT

E^ (X)
2tt

E^ (X) 0 . 4

1

0

0

209

100

0

0

290

214

0 01 1 . 160 1 . 160 2 0 063 0 201

0 02 0 . 956 0 . 977 4 0 040 0 200

0 04 0 . 758 0 . 788 10 0 023 0 200

0 1 0 . 493 0 . 554

0 2 0 . 331 0 . 403 >10 0 . 0 6 6x~%0 200

it is convenient to calculate the values of Ei(x) appearing in the table by-

using its series expansion:

E,(x) = - Inx -Y* + E (-1)^^^
. (3.10)

^ j=l 3-3:

where y* - 0.5772 is Euler's constant. The expression (3.7) is applicable
when the k -» i transition is optically allowed.

Electron impact transitions between the discrete states and the continu-
um are described in a similar manner. There are two such processes: elec-
tron impact ionization and three-body recombination, that is, recombination
involving the collision o£ three particles. During the latter process, which
is essentially a collision o£ the second kind, the energy released in the
capture o£ the electron is carried away by the third particle. We shall
assume that this third particle is also an electron, although this is not
always the case. The number o£ transitions between level i and the continuum
(c) occurring in a unit volume per unit time is:

£or electron impact ionization i c : n-n C. .^ 1 e ic

'

£or three-body recombination c ^ i: n^n^C -. - (3.11)

The quantity C^c is expressed in terms o£ the impact ionization cross section
qic(v) by (3.2) and (3.3), in which the subscript k must be replaced by c
throughout. A line o£ reasoning similar to that leading to (3.4) indicates
that £or electrons with a Maxwellian velocity distribution
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An order of magnitude estimate o£ the rate constant for electron impact
ionization of an atom is given by

, -Iiv. /kT
4 1 ic

C.
=4T^2m^el 1 ^ ^ pf^^), (3.13)

3/3 hv.^ (2TTmkT)^ \ kT /

where n is the number of equivalent optical electrons, and the function P is
given by (3.8). This expression is obtained by using Thomson's formula for
the ionization cross section:

^ ' ^ - ^ (3.14)
^ic (V) = 2^^^ (-1 2_\ .

2 Ihv. 2 jmv \ i-C mv /

DISCRETE RADIATIVE PROCESSES. Let us now proceed to radiative processes.
We first consider those associated with transitions between discrete levels.
Let ni and nj^ be the populations of the lower and upper levels, respectively,
and the mean intensity of radiation:

Jv

For the present we shall assume that within the line the mean intensity does
not depend upon frequency and is equal to Jij^. Then per unit time per unit
volume the number of transitions is:

for k i spontaneous transitions: n. A, .
,K K

1

for k -> i stimulated transitions:
^Jc^lci'^ik

' (3.16)

for i -> k photo-excitations: n-B., J-i .^ 1 ik ik

The quantities A]^j^
,

Bj^j^ , and Bj^]^ are. the Einstein coefficients for
spontaneous and stimulated emission and absorption, respectively (calculated
for mean radiation intensity rather than for radiation density) . They are
related by the well-known expressions

2hv^,

I

so that it is sufficient to have only one of these coefficients. Usually one
uses either the transition probability Aj^j^ or the oscillator strength fik,

I'which is related to k^i by the equation
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0 2 2 2

A, . = — — . - (3.19)
ki gv „„3 ik

mc

There are numerous summaries o£ the values o£ fiki see, £or example,
C. W. Allen (1963); W. L. Wiese, M. W. Smith and B. M. Glennon (1966); W. L.

Wiese, M. W. Smith and B. M. Miles (1969). Methods for the theoretical cal-
culation and experimental determination o£ oscillator strengths, excitation
and ionization cross sections, and probabilities of other elementary proc-
esses are discussed in detail, e.g., by I. I. Sobel'man (1963), D. R. Bates
(1962) and J. B. Hasted (1964), to whom we refer the reader for further in-
formation. A detailed summary of the data on the cross sections for electron
impact ionization has recently been published by W. Lotz (1967).

The number of photo- excitations can be expressed in terms of the Ein-
stein coefficient B-iv and the atomic absorption coefficient k-jv as follows.

Then
^

j^jj.
and the atomic absorption coefficient kj^i^

sity of radiation with frequency v within tn(Let I be the intensity of radiation with frequency v within the line i -> k

{7- I k .
T ( v) n . dvdco

hv V ik^ ^ 1

is the number of i k photo- excitations per unit time per unit volume in-
duced by radiation with frequencies v, v + dv , incident within the solid
angle dio around a certain direction. If the velocity distribution of atoms
in level i is isotropic, then kj^]^(v) does not depend on direction. The total
number of i -> k photo-excitations per sec per cm3 is obviously

1 /- 1 dv

f I dw
V

(3.20)

or

4TTn
dv

. f k., (v) J —
ij ik^ V Yxv

(3.21)

The absorption coefficient kii^(v) has a sharp maximum at the center of the
line. Therefore the value of the integral in (3.21) is wholly determined by
the values of the integrand in a narrow band of frequencies near line center,
and the latter expression may be replaced by

4Tr
n

.

00

(3.22)

where v^^^ is the line-center frequency. If the mean intensity depends
weakly upon frequency within the line, then it may be set equal to Ji^, so
that instead of (3.22) we have
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4tt t
(3.23)

This is the desired expression for the number of photo-excit.ations in terms
of the absorption coefficient kj^]^(v)^ Equating it to n j^Bj^]^J j^j^

, we arrive
at the relation

yk.^(v)dv =
-Tf

. (3.24)

0

If the intensity cannot be assumed to be independent of the frequency
within the line, then (3.22) must be used to find the number of photo-excita-
tions. Using (3.24), it may be written in the form n.B.j^^J.j^, with

oo oo

/k., (v)J dv /k.,(v)dv/l —
if ik^ ^ V ^ ik^ ^ J v^TT

oo ~
oo

y*k.j^(v)dv y-k.j^(v)dv
^ik =

— = — •
^^-25)

0

Thus for radiation with an arbitrary frequency dependence incident upon a

volume element, the number of photo-excitations_occurring in it is given by
!
the second of the expressions (3.16), in which J^j^ is defined by (3.25).

Let us now consider stimulated transitions k -> i . We assume that the
photons emitted in spontaneous transitions k -> i have a frequency distri-
bution proportional to the line absorption coefficient kj^v(v) and that they

i are emitted with equal probability in all directions. (These assumptions
ji

are equivalent to the approximation of complete frequency redistribution
!i discussed in detail in Sec. 1.5.) Then the number of photons with frequen-
cies from V to V + dv emitted per cm^ per sec within the solid angle doo is

n. A, .

k . , (v) dv Jik^ ^ do)

k k i oo 4 TT

j k,,(v)dv

0

To find the number of stimulated transitions one has to multiply the number
of spontaneous transitions by (c2/2hv3) l^ (see Sec. 1.6). Integrating the
resulting express_ion over all frequencies and directions, we arrive at the
expression n^^Bj^^J^j^ postulated above, with J^]^ given by (3.25). As is clear
from the derivation, this expression does not always hold. However, since we
shall assume complete frequency redistribution throughout the book, we ar_e

justified in setting the number of stimulated transitions equal to ^]^Bj^^ J^-j^

.

CONTINUUM RADIATIVE PROCESSES. Let us now turn to transitions in which one
of the states belongs to the continuous spectrum and the other to the dis-
crete. There are three such processes: spontaneous radiative recominations

,

stimulated radiative recombinations, and photo- ionizations . Let the free
electrons have a Maxwellian velocity distribution at temperature T. We shall
denote the number of such processes occurring per unit volume per unit
time as:

522-519 O - 74 - 3
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for c i spontaneous radiative recombinations: n n'''A . .

e ci '

for c i stimulated radiative recombinations: n n"'^B .J. .

e ci ic'

for i c photo-ionizations : ^i^ic"^ic ' (3.26)

The coefficient A^-^ is a function of electron temperature, namely,
CO

^ci = / ei(v)vf(v)dv , (3.27)

0

where 6.(v) is the cross section for radiative recombination, and fX.v) is the
velocit^ distribution function for the electrons. The quantity ^dJiQ, which
gives the number of stimulated recombinations, is expressed in terms of the
mean intensity and the capture cross section 3i(v) as follows

r 2

B .J. = / B-(v)vf(v) —— J dv, (3.28)
ci ic J ""i^ ' ^ '

2hv3
^

where

2

hv = hv. + — . (3.29)
ic 2

Finally, the number of photo-ionizations from level i is

n.B. J. = 4^n. f k. (v)J —
, (3.30)

1 ic ic 1 J ic^ ^ hv
V .

ic

where k^Q(v) is the cross section for photo-ionization from level i.

The quantity 3j^(v) is expressed in terms of 5^-j^(^(^) by the Milne relation

3.(v) = Jl^L- ^ k. (v)
, (3.31)1^-^ 222 + ic^^'c^m^v^ g

which is easily derived from the condition of detailed balance in TE

.

The expressions (3.27), (3.28), and (3.30), together with (3.31), show
that when the mean intensity is known, only one atomic property need be
known in order to calculate the number of radiative transitions from level i

to the continuum and back: namely, the cross section kj^^(v) for photo-ioni-
zation from level i.

For hydrogenic ions with charge Z:

k. (V) = Z TT e mz
(.^^ (3.32)

ic^ ^
6 5 3 ic

3/3ch i V

where gic^^^ -^^ Gaunt factor. In as trophys i cal calculations of the num-
ber of radiative ionizations and photo- recombinations , the Gaunt factor is
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often set equal to unity, with errors o£ only a few percent. In the approxi-
mation gic(v) = 1 (Kramers' approximation) for a gas with kinetic temperature
T, the value of A(-i , as follows from (3.27), (3.31), and (3.32), is

1 &i hv. /kT /hv.
.A.=K -^-^ ^ e eA-^\ (3.33)

where

1^ g 2(2TrmkT)-^/^ v

^9 5 10 „4

° 3/3c3h6

If the intensity of radiation is Planckian with temperature T^ = T, then

1 Si hVi^/kT /hv^^
i -J. =K -i- tl e Q* _i£ I (3.35)

°
2(2.mkT)^/2 n kT '

'

1. J. = K
1 c 1 c

1 I* (l!^)
, (3.36)

o
i5 \ kT / .

where

/
Q*(x) = / 1

""^^
, (3.37)

x(e^ - 1)

/
I*(x) = / —

. (3.38)
x(e^ - 1)

We note that

I*(x) = E^(x) + Q*(x) (3.39)

and

* CO R .j^2j 1

where y* = 0.5772 is Euler's constant, and are the Bernoulli numbers
(B2 = 1/6, B4 = -1/30,...). The series (3.4oj converges for all x > 0;
but it is useful for computations only for small x. For the derivation of
(3.40), see V. V. Sobolev and V. V. Ivanov (1962).
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Free-free transitions, in which both states belong to the continuum,
i.e., spontaneous and stimulated bremsstrahlung and inverse bremsstrahlung

,

are described similarly. If the electrons have a Maxwellian velocity distri-
bution with temperature T, then for hydrogenic ions with charge Z the free-
free absorption coefficient, per ion and per electron, is

k^rv) = ^-^^ J_g^^(v)
, (3.41)

3/3mch (2TTmkT)^ ^

where gcc(^^) "^^^ Gaunt factor, which in the optical region is on the
order of unity.

1.4 EQUATIONS OF STATISTICAL EQUILIBRIUM

GENERAL CASE. If the state of a gas, as characterized by the specification
of its kinetic temperature and the degree of ionization and excitation of
each atomic species, does not change with time, the gas is said to be in a

steady state. Such states are described by the equations of statistical
equilibrium . They express the equilibrium between the various elementary
processes that lead to the establishment of that state.

A tremendous range of steady states, highly specialized examples of
which are the states of TE and LTE , is possible, depending on the particular
elementary processes that are dominant in the specific situation. We shall
be studying primarily those states that are maintained largely by photo-ex-
citation by the radiation field of the gas itself. However, at the outset
we shall not limit ourselves to any specific case but, rather, discuss equa-
tions of statistical equilibrium in general, including all of the main types
of elementary processes.

The state of a single- temperature gas at a given point will be complete-
ly described if we know the distribution of atoms over energy levels and the
degrees of ionization as well as the temperature. We shall consider the
equations that determine these quantities. The concentration of atoms in
level i can be found by equating the number of transitions into this level to
the number of transitions out of it. The number of atoms of a given element
arriving in level i per cm-^ per sec for each elementary process of interest
is listed below:

(1) spontaneous and stimulated radiative transitions from higher discrete
levels

:

oo

^k^\i ^ \i^"ik^
k=i + l

(2) spontaneous and stimulated radiative recombination:

n n"^ (A . + B .J. ) ;

e ^ ci ci ic-^

(3) transitions from above induced by collisions of the second kind:

oo

n / n, C, .
;

e X—/ k ki '

k=i + l
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(4) three-body recombination:

n^n^C .

e ci

(5) photo- excitation from lower-lying levels

i-1

V n.B. . J. .
;

j = l

(6) collisional excitation:

n
e

i-1

En .C . . .

3Thus, the total number o£ transitions into level i per sec per cm is

c i-1

n, (A, . + B, . J. 1 + n C, . ) + n . (B . . J . . + n C . .

) , (4i—t ki ki ik e ki-^ < j 31 ji e ji-^ '
^

k=i+l 3=1

where the first summation includes both discrete (k = i+1, i+2,...,)
and continuum (k = c) states, with n^ being understood as ngn"^.

We now list the number of transitions from level i by the various
processes :

(1) radiative transitions (spontaneous and stimulated) into lower-lying
levels:

i-1

n. "V (A. . + B. . J. . ) ;

3 = 1

(2) downward transitions induced by collisions of the second kind

i-1

(3) photo-excitation into higher levels:

ik ik '

k=i + l
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C4) upward transitions through electron impact:

00

^e^i E ^ik
'

k=i + l

(5) photo- ionization

:

n.B. J. ;

1 ic ic

(6) ionization by electron impact:

n n.C
e 1 ic

For the total number o£ transitions from level i we therefore have

i-1 c

n. V (A.. + B..J.. + n C.) + n. (B.,J., + n^C.,) . (4.2)
1 ij ij ji e ij-^ 1 ^ ik IK e ik-'

j=l k=i+l

Equating the number of populating and de -populating transitions, we
arrive at the following set of equations for the populations n^:

c i-1

En, (A, . + Bi -J-i + n C, . ) + V* n.(B..J.. + n^C..) =
k^ ki ki ik e ki-^ ji ji e ji^

(4.3)

k=i+l j=l

i-1 c

= n. y (A.. + B-.J.. + n C.) + n. (B-^J-i, + n C,), i = l,2... .

1 ^ 1] ij 31 e ij-^ 1 ^ ik ik e ik^ '

j=l k=i+l

The system (4.3) can be used to find the state of a gas at a given point
in the medium only if certain additional information is available: (1) the
radiation intensity; (2) the temperature; and (3) the electron density ng and
ionic concentration n"^. If any of these factors are unknown, the problem is
more complicated. Thus if the concentration of n+ ions is not known, the
system (4.3) must be solved simultaneously with an ionization equilibrium
equation expressing the equality of the numbers of ionizations and recom-
binations in a unit volume:

00 00

y n.(B. J. + n C. ) = n n^ V (A . + B .J. + n^C^.). (4.4)^ 3^ jc jc e jc^ e ^ ^ c] cj jc e cj^

j=l j=l

Here the total number of photo- ionizations and electron impact ionizations
from all levels is given on the left; the total number of recombinations
composed of spontaneous and stimulated radiative recombinations and
three-body recombinations into all levels appears on the right.
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If, in addition, the temperature is not known, the system (4,3) -(4.4)
must be coupled with an energy balance equation. This equation expresses
the fact that in a steady state the energy acquired by an elementary volume
must equal the energy lost. For a single-temperature gas, only the electron
temperature need be found. Energy is introduced into the electron gas, i.e.
it is heated through a number of processes: (1) electrons acquire the energy
of an absorbed photon by inverse bremsstrahlung

; (2) in a three-body re-
combination the binding energy of the level into which the electron is cap-
tured is transformed into heat; (3) in a collision of the second kind, energy
equal to the difference of energies of the levels is produced; (4) in photo-
ionization the electron gas gains energy equal to the difference between the
energy of the ionizing photon and the binding energy of the level from which
ionization occurred. The electron gas may be heated by other mechanisms as
well. As for cooling, the electron gas loses energy through bremsstrahlung,
radiative recombination, and collisional excitation and ionization.

An energy balance equation allowing for all of these processes can be
formulated. However, since usually only a few of these processes are im-
portant, it hardly seems worthwhile to write out this general equation, par-
ticularly since we henceforth regard the temperature of the gas as known.

In order to solve the equations of statistical equilibrium (4.3)-(4.4),
the radiation field in the medium must be known. If the mean intensity J is

known for the relevant frequencies, calculating the steady state in principle
presents no difficulties as it involves only the solution of a set of simul-
taneous linear algebraic equations. However, when an important role is
played in the gas by transitions induced by its own radiation field, the
situation is very much more complicated. A knowledge of the radiation field
then depends on the solution of the statistical equilibrium equations, which
must be solved concurrently with the equations of radiative transfer. In
this case the condition of statistical equilibrium is expressed in terms of
integral equations. Physically this means that the conditions at each point
are determined by the state of the medium as a whole, because volume elements
far from each other interact effectively through the exchange of radiation.
A more detailed discussion of the statistical equilibrium equations for this
important case is given in the next chapter.

Let us now look in detail at several special steady states for a single-
temperature gas.

THERMODYNA^lIC EQUILIBRIUM (TE) . In this state the velocity distribution of
all particles is Maxwellian, the degree of excitation and ionization is
given by Boltzmann's and Saha's laws, and the intensity of radiation is given
by Planck's function. The state of the system is completely determined by
one parameter — the temperature T.

In TE each process is exactly compensated for by its inverse (the so-
called principle of detailed balance). In particular, the number of radiative
transitions from an upper level i to a lower level j then equals the number
of j

-> i photo - excitations

n + B. . u
13 4lT

i = 2 , . . . ; (4.5)

where u is the Planckian radiation density of frequency v.., given by
^ji

(1.12). Similarly, the number of radiative ionizations from level i,
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n.B. — u
1 ic V

ic

is equal to the number of radiative recombinations into that level

, i = l,2, . . . .nn''(A.+B.— u \ = n.B.
e V ci ci 4tt ^ic) ^ ^

(4.6)

For collisional transitions the detailed-balance relations are

n.C.. = n.C.., ij = l,2, (4.7)

n n'^C -

e ci
= n.C.

1 ic
i=l,2, (4.8)

LOCAL THERMODYNAMIC EQUILIBRIUM (LTE) . As has been said, LTE is that state
of a Maxwellian gas in which the level populations accord with the Boltzmann
distribution, ionization follows Saha's equation, while the radiation inten-
sity is not, in general, given bv Planck's function. Contrary to the case of
TE , the temperature may change from point to point. In discussing the physi-
cal conditions required to establish such a state, we shall limit our consi-
deration to a statement of sufficient conditions.

In (4_i_3) and (4.4) we shall temporarily set equal to zero both the mean
intensity J and the A- coef f i cients . We obtain

c i-1 i-1 c

L Vki * E "jC., = n. ^ C.. . n. Cik' i = (4.9)

k=i+l j=l j=l k=i+l

En.C.
3 3

= n n"^ C .

c e -t—' cj

3=1 3=1

(4.10)

If the levels are populated according to the Boltzmann distribution, and the
degree of ionization is given by the Saha equation, the detailed-balance re-
lations (4.7) and (4.8) are satisfied. Using them, it is not difficult to
verify the fact that in this instance (4.9) and (4.10) are also satisfied.
Since these equations are linear in the quantities n^/n^n'^ , the equilibrium
values of the populations of the discrete levels and the continuum are in
fact the only solution. Moreover, the temperature entering the Boltzmann and
Saha equations may be a function of position. Thus a gas whose steady state
is described by equations (4.9) and (4.10) is in LTE.

The system (4.9)-(4.10) differs from (4.3)-(4.4) in the absence of terms
allowing for radiative transitions. Thus if these terms are negligible in
comparison with those describing the collisional transitions the gas may be
considered to be in LTE. In other words, a sufficient condition for the
assumption of LTE to be valid is that radiative transitions be negligible in
comparison with collisional transitions . Since the role of collisions
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increases with electron density, LTE should exist at sufficiently high elec-
tron densities. For numerical estimates, see D. Sampson (1969).

PARTIAL LTE. Under as trophys ical conditions, LTE in the strict sense is
hardly ever encountered since the densities in the atmospheres are not, as a

rule, sufficiently high. More frequently a gas is in a state that might be
called partial LTE, by which we mean the following. Let us consider a cer-
tain volume of gas in a given field of non- Planckian radiation and trace
the change in its state as the density is decreased. The initial density is
assumed to be sufficiently high for the gas to be in LTE. Then as the den-
sity decreases, at a certain point one will no longer be able to neglect
radiative transitions in comparison with collisional ones for all levels.
Deviations from LTE usually develop first in the lower levels, while the
populations of the higher levels still remain in equilibrium with respect to
the continuum. The number of levels whose populations depart noticeably
from the equilibrium values gradually increases as the density decreases.
There is a wide range of densities for which the higher levels have essenti-
ally the same populations with respect to the continuum as in LTE, while the
populations of the lower levels may be far from equilibrium. This situation
arises because one cannot neglect the effect on the lower levels of radiative
transitions compared to the collisional ones. This, then, is the state of
partial LTE.

Roughly speaking, the entire negative-energy spectrum of the atom can
in this case be broken down into two regions — equilibrium and non-equilibrium,
Let io be the number of the level dividing these regions. The relative popu-
lations of the levels in the equilibrium region, i.e. close enough to the
continuum, are the same as in LTE (bj^ - 1 for i ^ ig) • And the populations
of levels lying in the non-equilibrium energy region (i < ig) are now govern-
ed not only by local temperature and density, but also by the radiation field
at the given point, so that the coefficients b^ for these levels can be very
different from unity. It is obvious that the size of the non -equilibrium
energy "gap," which is characterized by the number Iq of the critical level,
is determined by the properties of the atoms making up the gas, by its
density, and by the radiation field at the point in question.

For conditions in stellar atmospheres D. Sampson (1969) has obtained the
following equation for ig for atoms of effective charge Z:

n^pfx. .^A - 2.S.10^^ (-^\^ ^^sSlhll (4.11)

where X^j^ = hv^-^/kT, hv]^^- is the ionization energy of ground-state hydrogen
and P(x) is the function given in Table 1 (p. 12). It is assumed that
Iq > 2. On levels where i > Iq deviations from LTE do not exceed 5 percent.

The gas in stellar atmospheres, in the upper layers of planetary atmos-
pheres, and in nebulae and the interstellar medium is in a state of partial
LTE. Of course, the number of levels of, say, hydrogen atoms whose popula-
tions are not in equilibrium with the continuum will be substantially differ-
ent in stellar atmospheres from the number in H II regions of the inter-
stellar medium. However, there is no basis for the a priori assumption that
in stellar atmospheres the level populations of the atoms of any element have
equilibrium values. This assumption, the so-called LTE hypothes is , has been
employed in the theory of stellar atmospheres for some fifty years. The
applicability of this hypothesis, so attractive because of the tremendous
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simplifications it introduces, must be justified in each specific case. A
consistent theoretical approach to the study of stellar atmospheres should
be based on a detailed examination of the elementary processes. Active
research in this field is under way; the results have been reviewed recently
by J. T. Jefferies (1968) and D. Mihalas (1970),

LOCALLY CONTROLLED STATE. If the state of a gas at a given position in a

medium does not depend on conditions in other parts of the system, we may
speak of a locally-controlled state. LTE is an example, although not the
only one, of such a state.

Interaction between remote volume elements occurs via the radiation
field. Therefore, if the conditions at a given position are not to depend
on the state of the medium as a whole, radiative processes caused by the
gas' own radiation field should not be significant. If collisions dominate
all radiative processes, this condition is obviously met (in this case the
gas is in LTE). But if collisions do not dominate and radiative transitions
cannot be neglected, then in order for a locally-controlled state to exist
the gas must be practically transparent. The first situation exists, for
example, in a high-pressure laboratory gas discharge. The second case
corresponds to the solar corona. The equations of statistical equilibrium
for this situation are algebraic, and their solution raises no theoretical
difficulties, apart from the fact that usually the probabilities of the
elementary processes are poorly known.

1.5 THE SCATTERING OF RADIATION IN SPECTRAL LINES

LINE ABSORPTION COEFFICIENT. Radiative processes associated with transitions
between discrete levels deserve closer scrutiny. In the first place, one
must consider the frequency dependence of the line absorption coefficient.
According to the quantum theory of radiation, for an isolated, motionless
atom the absorption coefficient for a line corresponding to the i k
transition is (see W, Heitler, 1954)

2 gi Av„
k (V) = S !k R

_ (5.1)
2 2 g. ^ . ^ 2 . . ^ 2

where

i-1 k-1

j = l £=1

The quantity Avj^ is called the natural, or radiation line width. At a dis-
tance Avj^ from the line center, the absorption coefficient is half as large
as at the central frequency (at v = Vg) .

If an atom is not isolated, the effect of the surrounding particles is
to increase the line width (so-called pressure effects). As is well known
(see, e.g., I. I. Sobel'man, 1963), the shape of the line is often similar
to that in the preceding case and is described by (5.1), except that Avj^

must be replaced by
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Av^ - AVj^ + AV(.
, (5.3)

where Av^; is the collisional line width.

Atoms are, in fact, not at rest, but are always in thermal motion. Let
us consider radiation propagating along the z axis, and take the atomic
velocity component in that direction to be . Then, because o£ the Doppler
effect, the central frequency of the line is shifted and becomes

c

The absorption coefficient in this case for radiation of frequency v within
the line is obviously

c^ Sk

^ 8Tr2v^j^ g. Cv-v')2 + (AvJ 2

In order to obtain the absorption coefficient per atom of a volume element of
gas, the expression (5.5) must be averaged over the distribution function of
the z-components of the velocities of the absorbing atoms. If atoms in the
lower level have a Maxwellian velocity distribution with temperature T, then
the fraction of the atoms having z-components of velocity from v to v + dv
is

z z z

|7
exp I Idv^

, (5.6)
(ZTTMkT)^

where M is the atomic mass. Averaging (5.5) over the distribution (5.6),
and taking (5.4) into account, we find that

where
2

e dy
U(a,x) = ^ j ^

'±1
. (5.8)

it3/2 / (x-y)2 + a2

In the two last expressions, the quantity

'D 'c' ( M
. !ii im.y (5.9)

is the Doppler line width, x is the dimensionless frequency measured from the
line center in Doppler widths
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X
V - V,

Av,
(5.10)

and finally

a =
Av.

Av
D

AVp^ -H Av^

Av

(5.11)

D

The function U(a,x) is known as the (normalized) Voigt function. It de-
scribes the frequency dependence of the line absorption coefficient, and
therefore plays an important role in all matters relating to the interpreta-
tion of the shape of spectral lines.

The expression (5.7) is applicable only when the absorbing atoms have a
Maxwellian velocity distribution. In the case of lines of the resonance
series, i.e. arising in transitions from the ground state, this assumption
is not as a rule open to doubt. However, for lines of subordinate series,
as we shall soon see, the assumption of a Maxwellian velocity distribution
for the absorbing atoms may be rather crude. Nevertheless, for lack of any-
thing better, this assumption is universally employed.

At the densities and temperatures of interest in astrophysics, the para-
meter a is small (a 10"^ - 10'4). In this case the frequency dependence
of the absorption coefficient in the central parts of the line differs sub-
stantially from that in the far wings. That is to say, there is a certain
critical distance from the line center (which we designate as |xq|), such
that for |x| significantly less than

|

xq
|
we have, with sufficient accuracy,

U(a,x) ^ ^-^e"^
(5.12)

For |x| significantly larger than | xg |

, it can be assumed that in the first
approximation

U(a,x)
TTX''

The value of
|

xq
|

is the root of the equation

(5.13)

2

e-^0 aTT
-k 1

(5.14)

As a decreases, | x„ | increases

a 10-2 10 10-"

2.67 3. 12 3.51
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Along with the Voigt absorption coefficient (5.7) — (5.8), we shall
also make frequent use of its limiting forms, corresponding to a = 0 and
a = °°. In the first of these cases we get the so-called Doppler absorption
coefficient

:

c^ Sk \i -x^

In the second we have

k,j^(v)
c

'ik

2 g,. A
^k \i 1 . (5.16)

87t2v?j^ ^i Av^ 1 + x^

In (5.16), as distinct from the preceding formulae of this section, the
dimensionless frequency x is measured not in Doppler widths Avj), but in
units of Av*:

X =
V - Vq

The absorption coefficient of (5.16) is named after Lorentz.

Comparing these expressions with the approximate forms of U (a, x) for
|x| <

I x^ I and |x| >
I

Xq
|

, we see that in the central parts of the line the
absorption coefficient is close to the Doppler form, while far from the line
center it can be considered Lorentzian. Accordingly, one often refers to
the Doppler core and the Lorentz wings of a line.

Let us look a little more closely at the Doppler absorption coefficient,
It corresponds to a = 0, i.e., the case in which Av^ is negligible in com-
parison with AVj^. As Av^ ->• 0 we have

Av^

(v-Vq)2 + (AvJ2

7t6(v-Vq)
,

where (S(v-vq) is the delta function. Therefore, in this limiting case, the
absorption coefficient of an atom at rest reduces to

2 g,

k.v(v) = —-— — A, .6(v-v.) . (5.17)
8Trv2^ Si ki ^

0^

Taking into account the Doppler shift of the central frequency of the line
for a moving atom and averaging (5.17) over the Maxwellian distribution (5.6),
we obtain (5.15). This derivation of (5.15) makes the physical significance
of the frequency dependence described by the Doppler absorption coefficient
quite obvious: it is a direct reflection of the Maxwellian velocity distri-
bution of the absorbing atoms.
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Of primary importance in line transfer problems is the behavior of the
absorption coefficient in line wings. The asymptotic properties of the solu-
tion of the line transfer equation are insensitive to the details of the be-
havior of the absorption coefficient in the central parts of the line, but
are very sensitive to its behavior in the wings. The exact meaning of this
statement will become clear later. We mention it now because if the absorp-
tion coefficient cannot be assumed to be represented by the Voigt function,
the theory of collisional broadening is usually more reliable for the line
wings than for the central parts of the line. In particular, under rather
mild restrictions it may be assumed that far from the line center kj^i^(v) is
proportional to Iv-vqI"^, where k is a constant, 1 < k < °°.

The frequency dependence of the line absorption coefficient is usually
described by the so-called prof i le function a(x) , defined as the ratio of
the absorption coefficient for frequency v to its value at line center:

k.

a(x) = TT^r—T '
^^'^^^

kik(vo)

so that a(0) = 1. Profiles corresponding to the three cases considered above
(a = 0, 0 < a < <», and a = ») will be referred to by the names Doppler,
Voigt, and Lorentz, respectively, and will be denoted by subscripts D, V,
and L

:

2

Doppler: a^M = e'^ , (5.19)

Voigt: a,,(x) = LLlavO
^ (5,20)

^ U(a,0)

Lorentz: a, (x) = . (5.21)
^ l+x2

The characteristic frequency interval used to define the dimensionless fre-
quency X (equal to Avq in the D and V cases, and to Av^ in the L case), will
henceforth be designated simply as Av. The normalization constant A,
defined by the relation

00

A f a(x)dx = 1 , (5.22)
- 00

is equal, in the D, V, and L cases respectively, to

Ap = tt"'^; A^ = U(a,0); A^ = tt"^ . (5.23)

As we have already mentioned, profiles of the form

a(x) ^ Wlxl'"^, |x| ^ «=
, (5.24)
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where W and k are constants, 1 < k < <», are also o£ substantial importance.
We shall also often make use of a (somewhat artificial) rectangular profile,
which will be denoted by the subscript M. This M may be thought of as an
abbreviation of either the name Milne or the word "monochromatic":

Milne: a^^^Cx) =
j J; |x| > } '

=
f

' ^^.25)

The rectangular (or Milne) profile is the particular case (corresponding
to p = 0) of the profiles

(l-|x|)P, Ixl < 1

0 , |x| > 1

where p is a parameter, -1 < p < «>. Obviously, in practical line transfer
problems such profiles are not encountered. However, in the theoretical
analysis of line transfer problems this family of profiles was found to be
very useful. In concluding the discussion of the absorption coefficient in
a spectral line, w3 note that if temperature and density vary from point to
point the absorption coefficient is a function not only of frequency, but
also of position. If the velocity distribution of absorbing atoms is non-

!! isotropic, it then also depends upon direction. However, the problems in

I

which ki]<;(v) and a(x) depend on r and/or o) are outside the scope of this
book. It will be assumed throughout that ki]<;(v) and a(x) are given functions

I

of frequency that are independent of both position and direction.

The strong frequency dependence of the absorption coefficient is char-
acteristic of line transfer problems. An immediate consequence of this is
the very large difference between the mean free paths of core and wing pho-

' tons. Thus, if we have a Doppler profile (and there is no continuum absorp-
I tion) , a photon with x = 3 has a mean free path that is e^ - 10^ times

larger than the mean free path of a photon with x = 0. Therefore, within one
line we have photons with mean free paths differing by several orders of

I

magnitude. As it is scattered, the photon's frequency may change, causing a

large change in its mean free path.

,
FREQUENCY REDISTRIBUTION DURING SCATTERING. So far we have been concerned

J
with the photo- excitation of atoms. We must now consider the emission pro-
cesses involved in radiative transitions. As this is a much more complicated

i question, we will be forced to quote the majority of the results we use with-
in out proving them.

First let us discuss terminology. An i k photo-excitation process
1

followed by a k i radiative transition will be called scattering of a

I! photon in the line. If all processes de -populating the upper level k can be
I neglected in comparison with the k i radiative transition, and there is no

loss of line photons in flight (due to photo- ionizations
,
etc.), we shall say

I

that pure, or conservative, scattering occurs. We shall lump together under
' the general name of (true) absorption of radiation in the line all processes

causing transitions from level k following i -> k photo- excitation , with the
Ij exception of the k i radiative transitions. Examples of true absorption
' processes are collisions of the second kind, ionization from the upper level,

spontaneous k -> j transitions (j ^ i) , etc. In the last-named process a
photon with energy hv^j^ is transformed into a photon of energy hvj^.:; it

j|
should be stressed that this process is also treated as a true absorption

I process for radiation in the line i ^ k. Further on we shall say that a

a(x) =
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photon in a line corresponding to the transition between levels i and k comes
from primary sources , i£ its emission during a radiative k i transition
does not occur directly after an i > k photo-excitation caused by the
medium's own line radiation. Thus when the chain. of radiative transitions
i-^k^j->k->-i occurs , it is assumed that one photon in the i -> k line
was lost as a consequence of true absorption, and a new photon was then born,
coming from primary sources. However odd this terminology may look at first
sight, it turns out to be very convenient.

Let us consider the scattering processes in more detail, beginning with
a simple illustrative example. We shall trace the fate of photons in a

resonance line corresponding to the 1^2 transition, assuming that pure
scattering occurs and that the gas is tenuous enough for pressure effects to
be neglected. Moreover, for the sake of simplicity, we shall neglect the
broadening of the upper level, i.e. we assume that the absorption coefficient
of a motionless atom is given by (5.17). We shall assume that the absorbing
atoms have a Maxwellian velocity distribution. Let us look at an elementary
volume of gas, illuminated by isotropic monochromatic radiation of frequency

\>l, and ask for the shape of the line emitted by this volume through the
resonance scattering of the incident radiation. The first conclusion that
comes to mind, "Doppler, of course," turns out to be incorrect. s

This can be confirmed, for example, in the following way. With the
above assumptions, the profile of the emission line is a direct reflection of
the velocity distribution of the excited atoms, just as the Doppler absorp-
tion coefficient reflects the Maxwellian velocity distribution of the absorb-
ing atoms. Now the velocities of the excited atoms will not, in the case at
hand, be distributed according to Maxwell's law. The frequency of the radia-
tion absorbed by an atom is v = vq + vqCv^/c) , where v^ is the component of
the atomic velocity in the direction of propagation of the radiation.
Therefore, for the atom to be able to absorb a photon of frequency v^, its
total velocity must not be less than

^0
(5.26)

Consequently, among the excited atoms there will be none whose velocities are
less than v^.

Analysis shows that in this case the velocity distribution function for
the excited atoms takes the form

dn2 =
M— exp

z
IcT

M(v^-vJ)

2kT
V dv

V < V,

V > V,

(5.27)

where n2 is the population of the upper level, dn2 is the number of excited
atoms with velocities from v to v + dv, and T is the kinetic temperature of
ground state atoms. The velocity distribution (5.27) is completely unlike
the Maxwellian distribution.

In order to answer the question concerning the form of the line emitted
by the volume element, the atomic velocity distribution must first be con-
verted to a distribution of the component along a line of sight that is con-
veniently taken as the z-axis. The result is that the normalized distribu-
tion function of the z-component of the velocity has the form
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where |v| = vi for IV2I < vi and |v| = Iv^l for jv^l ^ V]^ . It is obvious
that the intensity of radiation with frequency V2 emitted by a unit volume
through the resonance scattering of the radiation incident upon it is deter-
mined by the equation

hv^2

2 4'rr

where ~ "^0 ""^ "^0
'•^z''''"-^

' Consequently

where X2 is the dimensionless frequency corresponding to The population
of the upper level is determined by the equation of statistical equilibrium

2 21 hvi2 ^ V

or
2

4-rr n "^l
^2^21 = i;;;7j"i^i2(^o) '-1 '

^'-''^

where I^-j^ is the intensity of the incident radiation, and x-^ is the dimen-
sionless frequency corresponding to v^. From (5.29) and (5.30) we find,
taking (5.2 8) into account.

\ = ^1^^12(^0)Iv^^f^l'^2) ^ ,

(5.31)

where
~ 2

r(x-,^,X2) = / e'''^ dt (5.32)

and |x| is the larger of [x^l and | X2 | . Thus the shape of the line is
described by the function r(X]^,X2) (Fig. 1) and is quite unlike the Doppler
profile. In particular, it depends on the frequency of the incident radia-
tion. The width of the flat portion of the profile increases with |x-j^|.

The expression (5.32) was found by W. Unno (1952a) and, independently, by

522-519 0-74-4
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V. V. Sobolev (1955, 1956). The derivation given here is due to V. V. Ivanov
(1967)

.

— 0.4
CM

0.3

^ 0.1

0 0.5 1.0 1.5

^2

Fig. 1. Frequency redistribution function for Doppler broadening.

The function r{x\, X2) describes the conversion o£ photons of one fre-
quency into photons of another within an elementary gas volume. In the simple
example that has just been considered, this transformation is caused by the
Doppler effect. In more complicated cases other mechanisms are responsible
as well for the frequency redistribution of photons within the line. However,
whenever the radiation incident onto the volume is isotropic, and the velocity
distribution function of atoms in the lower state is Maxwellian, the intensity
of the radiation scattered by the volume can be represented by an expression
of the form (5.31), although, of course, the function r(xj,X2) will not then,
in general, be given by (5.32).

The quantity r(x]^,X2) is called the redistribution function . In all
cases mentioned below, as well as in the example just discussed, the redis-
tribution functions are normalized so that

J r(x-j^ ,X2)dx2 = a(x-|^) . (5.33)

The physical significance of r(x2,X2) follows from (5.31). The quantity
r(x]^,X2)dx2 is the atomic absorption coefficient for radiation of frequency
XI which is subsequently emitted as a photon with frequency in the interval
(X2, X2 + dx2)

,
expressed as a fraction of the absorption coefficient at

line center.

Let us turn now to a slight modification of our previous example. We
now assume that the volume element is illuminated by unidirectional radiation
instead of by isotropic radiation and leave the other assumptions in force.
Let the incident radiation propagate in direction co^ . It is clear that the
velocity distribution of the excited atoms will now depend upon direction.
The spherical symmetry that existed for isotropic illumination gives place
to axial symmetry, with the axis of symmetry parallel to . The intensity
of the scattered radiation will depend upon both frequency and the angle with
the direction of incidence. Instead of (5.31) we have

'^v^^-l^ " n^k^2(^0^^v^'^-l^^*^^l'^2'^^ ~^ ' (5.34)

where y is the angle between and (£2, so that

cosy = 00, • co^ . (5 . 35)
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The functions t(xi,X2; y) and r(xi,X2) are related by

r(x^,X2) = ZTT^rCx^ ;y) siny dy (5. 36)

0

The function r(xx,X2;Y) is the angle - dependent redistribution function. In
the particular case of zero natural line width, as was shown by R. N. Thomas
(1957) ,

r(x-|^,X2 ;y)
4tt -^/^siny

exp

2 2
x^+X2 - 2x^X2COSY

sm Y

(5.37)

The function r(X]^,X2), corresponding to (5.37), is given by (5.32).

There is an additional effect that we have ignored. An atom can scatter
non- isotropically the radiation incident upon it. We shall call x(Y)d.u)/4Tr
the probability that radiation is scattered within the solid angle dco alDOUt
the direction forming an angle y with the initial beam. The function x(y) is
called the phase function , or scattering indicatrix. Until now atoms were
assumed to scatter incident radiation in all directions with the same proba-
bility (isotropic scattering), a situation described by the isotropic or
spherical phase function

x(y)' = 1 (5. 38)

In reality we are concerned with dipole scattering, for which we have the
Rayleigh phase function:

xCy) = - (1 + cos^y)
4

(5 . 39)

Strictly speaking, one should take this circumstance into account. However,
the difference of phase functions from the spherical case is usually ignored
in the study of multiple scattering in spectral lines. This is by no means
the least accurate of the approximations employed in this theory.

If the assumption of a zero natural line width is not made, the redis-
tribution functions become more complicated. If, as before, a resonance line
is being considered and the gas density is so low that pressure effects may
be ignored, then the photons are again redistributed in frequency by the
Doppler effect alone. It is found (V. G. Levich, 1940; L. G. Henyey , 1940;
W. Unno, 1952b; V. V. Sobolev, 1955, 1956) that

00

.(x.,x,) = 1 fe-^y'
^ ^ 7T3/2u(a,0) y

t)
2 r

arctg + arctg j dy ,
(5.40)

r(x, ,x, ;y) = —— exp (
— t^csc"^ - lU(a sec-,s sez!^ \ , (5.41)

^ ^ 47T3/2u(a,0)sinY \ 2/ \ 2 2/
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where
|x -x^l X +x

t = —i— s = ——- . (5.42)

Here a is the ratio of the natural to the Doppler width and U(a,x) is the
(normalized) Voigt function (5.8). When a = 0, (5.40) and (5.41) reduce to
(5.32) and (5.37), respectively.

If pressure effects cannot be ignored, the picture changes. Thus far the
photon frequencies in the atom's rest frame before and after scattering were
assumed to be the same although in the observer's rest frame they were in fact
different. Now a new mechanism for frequency redistribution is added to the
Doppler effect. While an atom is in the excited state, the positions of sur-
rounding particles that cause a displacement of the level may change complete-
ly. Thus, if the density is on the order of 10l2 cm"^, then the average dis-
tance between particles is "^10'^ cm. At a temperature of lO^^K the average
relative velocity of hydrogen atoms is '\^2'106 cm/sec, so that an atom will
travel '\^10"* cm in 5«10'11 sec. Since the lifetime of an atom in an excited
state is 'x^lO"^ sec, no correlation at all can be expected between the posi-
tions of the surrounding particles at the moments of absorption and emission.
Although this treatment is very crude, and the question is indeed much more
complicated, the basic conclusion that correlation between the frequencies
of absorbed and emitted photons is absent appears to be correct. It follows
that in the atom's rest frame the probability that emission of a photon of
frequency V2 will follow absorption of a photon of frequency is independent
of and is proportional to the absorption coefficient for the frequency
The Doppler effect provides an additional frequency redistribution mechanism
whose action was discussed in sufficient detail above. The resulting redis-
tribution function is very complicated; we shall not reproduce it here. The
properties of this function were studied by G. D. Finn (1967) . Special atten-
tion should be paid to the fact that if |x, | and |xp| are large, then

r(x, ,x,) ax^ . (5.43)

This result reflects the lack of correlation between the frequencies of the
absorbed and emitted photons, and is valid in situations in which the Doppler
effect plays a negligible part in the frequency redistribution.

Until now we have limited our discussion to resonance lines. For lines
of the subordinate series the situation is even more complicated. First, the
assumption of a Maxwellian velocity distribution for the excited atoms must
be used with caution. In this connection we recall that the above analysis
was based on the fact that the velocities of atoms in the lower level were
supposed to have a Maxwellian distribution. Second, since the lifetime of an
atom in either of the levels is finite, neither can be regarded as infinitely
narrow. Because of this the frequency of the photon may change even when it
is scattered from an isolated, motionless atom. This redistribution mechan-
ism has been the topic of numerous studies. It is discussed in detail by
R. v.d. R. Woolley and D. W. N. Stibbs (1953), where references are given to
the earlier publications. [Ed. note: An important clarification of this
situation has been published by Omont, Smith and Cooper, Astroiphys . J. 175

,

185-199, 1972.]

In this book we shall be primarily concerned with resonance lines.
Therefore, we shall not discuss the question of redistribution functions for
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lines o£ subordinate series in more detail. Moreover, the approximate
expressions that are always used for them involve the same approximations as
for resonance lines (the so-called approximation of complete frequency redis-
tribution; see below).

A comprehensive discussion of the redistribution function in various
cases, which includes the derivation of the formulae given above without proof
and an exhaustive list of references on this subject, has been given by
D. G. Hummer (1962, 1965a); a useful review is given by J. T. Jefferies (1968),

APPROXIMATION OF COMPLETE FREQUENCY REDISTRIBUTION. The extremely cumbersome
form of the redistribution functions makes imperative the introduction of an
approximation that retains the basic properties of the process of frequency
redistribution while avoiding unimportant details. Such an approximation was
first published, so far as we know, by J. Houtgast (1942), and thereafter by
a number of authors. Known as the approximation of complete frequency redis-
tribution, it involves the following two simplifications. First, it is

assumed that the dependence of redistribution functions on the scattering
angle may be disregarded, i.e. r(x]^,X2) is used throughout instead of
r(xi,X2;Y)- Second, the exact redistribution function r(xi,X2) is replaced
by an approximate one, setting

r(x, ,x,) Aa(x^) a(x2) (5.44)

where a(x) is the profile of the absorption coefficient in the line.

This approximation, which is now generally accepted, provides the basis
for all of our subsequent discussion. What considerations can be adduced in
favor of this approximation, and when does it become reasonably accurate?
The main argument for neglecting the angular dependence of the redistribution
functions rests on the fact that the radiation being scattered is usually
incident from all sides. With the exception of regions in immediate proximity
to the boundary of the region occupied by the gas, the radiation intensity
does not as a rule depend strongly on direction. The second approximation,
expressed by (5.44), is a much more serious matter. It is based on two facts.
First, if the absorption coefficient has a Voigt profile, then in the Lorentz
wings, as follows from (5.20) and (5.13),

V 7rU(a,0)
(5.45)

so that for sufficiently large |x-j^| and
I X2 1 ,

according to (5.44),

2
r \ a - 2 - 2

r(x^ ,x,) ^ —— x^ ..

^ Tr2u(a,0) ^
(5.46)

When pressure effects are substantial, th'e result agrees with that for the
exact redistribution function (5.43). Second, in the line core, where fre-
quency redistribution is caused almost entirely by the Doppler effect, a

fraction of the photons will always be scattered with complete frequency re-

distribution. This follows from (5.37), which shows that for photons scat-
tered through a right angle (y = Tr/2)

,
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- X.

otpCx^) ap(x2) - . C5.47)

When pressure effects are substantial (Av(3>>Avj^) , these considerations
ensure that the assumption of complete frequency redistribution is reasonable
for all frequencies. But if pressure effects are unimportant, the approxima-
tion of complete redistribution can be used only for the central frequencies
of the line, and the atoms must be excited mainly by radiation flowing within
the Doppler core. Detailed calculations confirm this qualitative line of
reasoning.

Further information on the accuracy of the approximation of complete
frequency redistribution may be found in a monograph by V. V. Sobolev (1956)
and in papers by R. N. Thomas (1957), J. T. Jefferies and 0. R. White (I960),
A. G. Hearn (1964a), D. G. Hummer (1963, 1965a), J. Oxenius (1965), M.
Dobrowolny and F. Engelmann (1965), and the author (V. V. Ivanov, 1967).
Special attention is called to a paper by D. G. Hummer (1969) where one can
find the most detailed study of this problem to date.

According to the basic idea of the approximation of complete frequency
redistribution, the fraction of the energy emitted within a volume element
in the frequency interval (v, v+dv) by spontaneous k ^ i transitions is
eil<;(v)dv; ^^^(v) does not depend on the mechanism by which the level k is
populated, and is proportional to the absorption coefficient The
normalization condition

oo

/
e.j^(v)dv = 1 , (5.48)

together with the relation (3.24), makes it possible to determine the coeffi-
cient of proportionality. In this way we get

or

e., (v) = — a(x) . (5.49')

This expression for ei]^(v) will be used in the next section in deriving the
equation of radiative transfer in spectral lines.

An approximation that takes the opposite approach to that of complete
frequency redistribution was widely used in the as trophys ical literature for
almost half a century, and is still occasionally used. It postulates that
the frequency of a photon is unchanged during scattering so that

r(x-^,X2) = a(x-^)6 (x^-X2) ,
(5.50)
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where 5(x) is the de Ita- function . For complete frequency redistribution, a

photon completely forgets its initial frequency during scattering, while
according to (5.50) it remembers and preserves it.

There are no real physical grounds for approximation (5.50), and it
should be abandoned. Calculations using this approximation directly contra-
dict the results of several experiments. On the other hand, experiments
especially designed to check the applicability of the assumption of complete
frequency redistribution have shown that it is in fact a good approximation
(A. V. Phelps, 1959; P. Walsh, 1959; A. V. Phelps and A. 0. McCobrey, 1960).

We shall conclude with some remarks on terminology. Scattering with
complete frequency redistribution is often called completely non- coherent

,

while the term "coherent scattering" is widely used to designate scattering
in which the frequency does not change. This terminology can hardly be
called apt as the point of interest is not, in fact, the phase relations be-
tween the incident and scattered waves, but rather the changes in the fre-
quency of a photon during scattering. Instead of the expressions "coherent"
and "completely non- coherent" scattering, we shall use "monochromatic
scattering" and "scattering with complete frequency redistribution."

1.6 RADIATION TRANSFER

Before the equations of statistical equilibrium can be solved, the radi-
ation field at every point in the medium must be known. The radiation field
is specified by the equation of radiative transfer.

TRANSFER EQUATION FOR LINE FREQUENCIES. Let us consider the radiation in a

spectral line corresponding to the transition between the lower i-th and
upper k-th levels. We assume first for simplicity that the i k photo-
excitations and the inverse k ^ i transitions are the only relevant elemen-
tary processes in the range of frequencies of interest. Let Iy(X.,iil) be the
intensity of radiation of frequency v at point r in direction w. Then, by
definition, I ^ ( r , oj) dvdadou is the energy flowing per unit time through an area
da perpendicular to w in the frequency interval (v ,

v+dv) within the solid
angle doj. The transfer equation describes the change of intensity along the
beam. At the point r + wds the intensity in direction w equals I (r+oj^ds

,
o)) .

The difference v — —

[I (r+tods,aj) — I (r
, w) ] dvdadco (6.1)

then represents the change in the intensity along the path ds

.

This change occurs in two ways. On one hand, energy is expended in
exciting the atoms of the gas. If ki^i^(v) is the line absorption coefficient
per atom in state i, then the energy expended per unit time in atomic excita-
tion is

^i''^ik ^— '— (6.2)

On the other hand, atoms in the upper level k emit photons during k -> i

transitions, leading to an increase in the intensity. The energy emitted
in spontaneous k ^- i transitions by a volume dads per unit time within the
solid angle doj is (hvi]^/4Tr) Aj^ j^nj^dadsdio . In the approximation of complete



38 BASIC CONCEPTS

frequency redistribution, the fraction o£ this energy emitted in the
frequency interval (v,v+dv) is eii^(v)dv. Thus the contribution to the
original beam due to spontaneous emission is

hv .

,

— e^j,(v)nj^Aj^^dvdadsdto . (6.3)

Stimulated transitions must also be taken into account. The radiation
field is a boson gas. Therefore, according to the general principles of
quantum statistics, in order to allow for induced emission, the probability
of a spontaneous transition in a given cell of the phase space of coordinates
and momenta must be multiplied by 1 + N, where N is the number of particles
(in this case of photons) in this cell. If f is the phase density of photons
in the space (v, r, w) (the intensity ly is given by 1^ = chvf; see Sec. 1.1)
and N is the number of photons in a cell of the phase space of coordinates r

and momenta p, then

fdvdVdoj = 2N iii-
,

h

2
where dr is the volume element of the space (r, £_) , i.e. dr = p dpdVdca.
Here p is the momentum of the photon: p = hv7"c; the factor 2 allows for two
possible states of polarization. Hence

N = -— f
,

2v2

or

XT 2
N = c

2hv
5

I, . (6.4)

Therefore, to account for stimulated emission, the probability of spontaneous
transition is multiplied by

2

1 + N = 1 + —— I
,

.

3
2hV^

Thus due to k -> i radiative transitions, both spontaneous and stimulated, the
energy in the original beam is increased by

e.j^(v)nj^Aj^. (1 + — I^(r,u))] dvdadsdw . (6.5)

Using (5.49), we can rewrite (6.5) as
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2hv^ g. / 2

Combining (6.1), (6.2), and (6.6), we must have, to conserve energy,

[I^(r + tods,oj) - I^(r,ti)) ]dvdada) =

2hv?, g. / 2

- k.j^(v)n.I^(r,w) + iii ^ ^ik'^^'^^'k I
^ ^ —^

^v^I'^^ 1 1

dvdadsdo).

Expanding I^(r + a)ds,w) in a Taylor series, we get

9I^(r,w) 31 '^-'-^ ^Iv'^I'-^
cos9, + cosB- + cos6, =

^ ay 9z

= - k., (v)n.I (r.aO ^ k., (v)n, (l - ^^L^lA >

\ 2hvjj^ /

where the quantities cosQ^ are the direction cosines o£ the vector w_:

(£ = i^cos6-j^ + jcos02 + kcosBj . (6.8)

Equation (6.7) may also be written in the form

w-VI^(r,a)) = - k-j^(v)n.I^(r,a3) +

2hv\ g. I 1 .^ k., (v)n,
I
1 + — I (r,w)

1 ,

c2 Sk il^' ' M 2hv?j^ ^ -'- '

or, regrouping the terms on the right.

(g- \ 2hv?, g.

-
it "kj ^v^I'H) '

gt ^ik^^^ ^k •
(6.9-)

(6.9)
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This is the equation of radiative transfer in a spectral line (in the approxi-
mation of complete frequency redistribution).

The coefficient of -I^ on the right side of equation (6.9') is the
volume absorption coefficient in the line:

The second term on the right side of (6.9') is the energy spontaneously
emitted into the line per unit volume per unit frequency interval around fre-

quency V per unit time per unit solid angle. This quantity is known as the
line em.ission coefficient ^j^j^C"^) •

^ik

2hv ?iik
(V) = _^-Jk.,(v) . (6.11)

The ratio of the line emission coefficient to the line absorption coefficient
is called the line source function S . It follows from (6.10) and (6.11) that
under the assumption of complete frequency redistribution, the line source
function is independent of both frequency and direction and is therefore a
function of position only. It is related to level populations by

-
c2 \Si "k /

Defining T^}^ as the excitation temperature of level k relative to level i,
as in (2.8), we can rewrite (6.12) as

(^ik^I^)S.j,(r) = BvijT^^viL)] ,
(6.12')

where Bv(T) is Planck's function. By using (6.10) and (6.12), the transfer
equation (6.9') may be expressed in the form

a).V I rr,a3) = -a . , (v) I (r , o)) - S . , (r) . (6.13)

TRANSFER OF CONTINUUM RADIATION. We shall now obtain the equation of trans-
fer for continuum radiation. The change in intensity along the path ds is
caused, on the one hand, by losses occurring in the photo- ionization of atoms
and in free-free absorption and, on the other, by contributions from spontan-
eous and stimulated radiative recombinations and free-free emission.

If radiation with frequencies (v,v + dv), propagating v;ithin the element
of solid angle dto around the direction w is incident upon a volume dads, the
energy lost per second in photo- ionizing atoms is
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k^^(v)njI^(r,aj)dvdadsdco , (6.14)

j = i

where kj^(v) is the atomic absorption coefficient in the j-th continuum,
so that

k.^(v) = 0, V < v.^, j=l,2,... (6.15)

The free-free energy loss is

"e^^^cc*-^-* ^v'-i'-'''^^^'^'^^'^'^ '
(6.16)

where kpp(v) is the corresponding absorption coefficient. Combining (6.14)
and (6.16), we get the total energy loss:

^^kj ^ (v) n
j
I^ (r_, to) dvdadsdoj , (6.17)

3 = 1

where, as in Sec. 1.4, the summation extends over both the discrete states
(j = l,2,...) and the continuum (j = c), with n^ =

^e^"""*

In spontaneous radiative recombinations to level j the energy emitted
in an element of phase volume dvdVdo) about the phase point (v,r_,oj) is

(dV = dads)

, , ,2hv^ -hv/kl + Sj '^^jc^^'^ , , rAk. (v) e n n —4- t— e dvdadsdtu . (6.18)
c2 ^ 2(27TmkT)3/2

This expression is obtained by assuming a Maxwellian velocity distribution
for the electrons corresponding to temperature T. Its derivation, which
presents no difficulty, makes use of (3.31).

The energy produced by free-free emission is given by (6.18), with j

0 a

3/2

replaced by c, on the assumption that v^^ = 0 and

^ 3
h-^

In accordance with the general rule for including the effects of stimu-
lated transitions, (6.18) must be multiplied by 1 + (c2/2hv3)i^. Summing
the resulting expressions over all j, including the continuum, we find,
finally, that the total energy emitted by radiative recombination and free-
free emission is
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]+ ^ g. hv . /kT
n n >^ k. (v) —^ e dvdadsdw

(6. 20)

2 L 2hv3 ^
^

j = l

From (6.1), (6.17), and (6.20) it follows that

aj-VI^(r,(£) = k^^(v)n^I^(r,(£)

j = l

(6.21)

3 r _2 n . _1 g. hv. /kT
^ 2hv" -hv/kT
+ e

c2
1 + I rr,co)l n n"" V k. (v) ^ e

2hv

Equation (6.21) is the radiative transfer equation iu the continuum for a
Maxwellian gas.

It is sometimes useful to group the terms on the right side of (6.21) a

little differently, and also to convert from the level populations nj to the
Menzel parameters bj

,
according to the expression (2.5). Equation (6.21) will

then assume the form

a:.VI^(r,a)) = _ n^n^^k . Jv) |l e^""^ ^^^^^b^ - e
'^"^Z^^) I^ (r ,(£) +

.

3 = 1

c
(6.21')

^ 2hv^ -hv/kT

c2

^ ^ gj hv /kT
n n Y^k. (v) -1 e

j = l

with b = 1.
c

The quantity

a
- - e

j = l

is the volume absorption coefficient in the continuum. The function a (v)

exhibits discontinuities at the series limits (the famous "saw" whose dia-
gram.matic representation appears in all textbooks on astrophysics) .

The emission coefficient e''(v) in the continuum is given by
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2hv'' g-hv/kT hv.^AT
n n^Vk. (v) ^ e ^ (6.23)

c c
The ratio e (v)/a (v) is the continuum source function:

S^(r) £''(v)

a''(v)
(6.24)

In terms o£ the quantities just introduced, we can write the transfer equa-
tion (6.21') in standard form:

VI^ (r , w) a''(v) I^(r,c£) - S^(r) (6.25)

The transfer equation is, of course, subject to boundary conditions.
Let the gas occupy a volume bounded by a convex surface, which does not
reflect radiation incident upon it. In this case the boundary condition is

oj-n < 0 (6. 26)

where r^ is the radius -vector of an arbitrary point on the boundary, n is the
unit vector along the outward normal to the boundary at point r_o >

^\)(~^0>!£) is a specified function representing the intensity of radiation of
frequency v incident from the outside onto the boundary of the medium at
point r_Q in direction co. If the boundary is capable of reflecting radiation,
or if the boundary surTace is not convex, the condition (6.26) must be
altered correspondingly.

RADIATIVE TRANSFER EQUATION FOR SPECTRAL LINES SUPERIMPOSED ON THE CONTINUUM.
Strictly speaking, we were not completely consistent in the derivation of
the above set of transfer equations, since we did not allow for the inter-
action of the continuous and line spectra. An example of a process involving
this interaction is the photo- ionization of excited atoms by line radiation
of the same element. Thus Lyman-alpha photons can ionize hydrogen atoms from
excited states. We have also tacitly assumed that the gas should have only
one component, i.e. be composed of atoms of only one element, and that this
element is present in only two stages of ionization, with the ions of the
higher stage all in the ground state. Obviously these assumptions are
satisfied strictly only for pure hydrogen.

If these assumptions are not valid, then in the line transfer equations
one must take into account not only radiative processes caused by i i k

transitions, but also the loss of radiation in photo- ionizing the atoms
that provide the primary source of opacity in the continuum. Emission from
radiative recombinations in this element and free-free processes must also
be included. The line transfer equation then assumes the form
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a)-VI^(r,a)) = - ^a.j^(v) + o^j^^ I^^I'^^ ^
''ik

'^''^ ^ik "^I^ ^ ^ik' l^^-^^^

c cwhere aj^]^ and e^-^ are the absorption and emission coefficients in the con-
tinuum at frequency \>iy^. Within the line they can be assumed to be indepen-
dent of frequency.

Let us introduce the total source function

S = — ^ . (6.28)

Clearly it can be represented as

^ik'^''^ ''ik^ c
S = — S., + — S^ , (6.29)

aij^(v)+a.j^ a.j^(v).a.j^ ik

where S^y^ is the line source function and S^j^j^ is the continuum source func-
tion at the line frequency. With (6.29) in mind, we can rewrite the transfer
equation (6.27) in the form

aj.Vl^(r,(£) = -^a.j^(v)+a.j^^^ ^I^(r,(£)-S^(r)^ . (6.30)

THE CASES OF TE AND LTE . We now have the complete set of coupled transfer
and statistical equilibrium equations. From this set it is instructive to
find the relations describing TE . For simplicity we assume the gas to have
only a single component, with kinetic temperature T.

We assume first that the gas fills the whole space and that the radia-
tion field is homogeneous and isotropic, i.e. I^ does not depend on position
and direction. Then the left side of the transfer equation (6.9') vanishes,
so that

3
2hv.-, g.

- k., (v) (n. - — n, ) I + — — k., (v)n, = 0 . (6.31)
ft >)

Consequently the intensity of radiation within the line is independent of
frequency and

I = ('A^-L-y . (6.32,

In the case at hand Jik = Ivt,- The direct substitution of (6.32) then shows
that radiative transitions between the discrete levels satisfy the detailed-
balance conditions:
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^kf%i ^
^ki ^ik^ = n. B.^ J.^, i=l,2,..; k>i . (6.33)

We emphasize that so far neither the level populations nor the intensity of
radiation are specified. The only restriction imposed is that they satisfy
the relation (6.32). Therefore, this relation is the condition for the
radiative i Z k transitions to be in detailed balance.

With (6.33) taken into account, the set of statistical equilibrium equa-
tions (6.3) reduces to

c i-1

n (A . + B . J. ) + n, n Ci • + "V^ n.n C-. =
c^ ci ci ic^ / ^ k e ki / j ] e ji

k=i+l j=l

= n.> nC.+n.B. J. +n. "S ^n C . , , i = l , 2 ,
1 / > e ij 1 ic ic 1 / J e ik' '

'

j-1

j=l k=i+l

Let us seek its solution in the form

n. g. -hv^./kT
1 ^1 - li

(6.34)

^1
e

,
i=l,2,...;c, (6.35)

which is a compact way of writing both the Boltzmann (i=l,2,...) and Saha
(i=c) laws. In this case the collisional transitions satisfy the detailed-
balance relations (4.7) and (4.8). Hence, in the statistical equilibrium
equations (6.34), terms that account for collisional transitions cancel. It

remains to be shown that if the level populations satisfy (6.35) and the radi-
ation field is homogeneous and isotropic, then

n (A . + B . J. ) = n.B. J. , i=l,2,... . (6.36)
C Cl Cl IC^ 1 IC ic' '

To prove this result let us turn to the radiative transfer equation in
the continuum. Since, according to the initial assumption, I^ does not depend
on r, (6.21) gives

2hV

V 1 r ^ hv/kT
/ k . (v) n . g e

jc^ j^c
j = l

^ hv. /kT
> k. (v)n g. eZ—/ jc^ ^ c*j

j = l

-1

(6.37)
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whence, taking (6.35) into account

i.e. the intensity o£ radiation is Planckian with T^, = T. Using (3. 27) - (3. 30)
it is easy to verify that the relation (6.36) is indeed satisfied, provided
the intensity of radiation is Planckian and the level populations satisfy
(6.35). With (6.35) and (6.36) in mind, we find that the ionization equili-
brium equation (4.4) is also satisfied.

Hence, the assumption that the radiation field in a Maxwellian gas fill-
ing the whole space is homogeneous and isotropic leads to the inevitable
conclusion that this intensity is Planckian, and that the level populations
and the degree of ionization necessarily obey the Boltzmann and Saha laws.
In short, if the radiation field in a Maxwellian gas is homogeneous and iso-
tropic, the gas is in TE

.

The assumption that the gas fills the whole space is not necessary. Let
us isolate in an infinite gas an arbitrary volume V. In the present model
the interaction of remote volumes is due only to the exchange of radiation.
The effect of the remainder of the gas is only to irradiate the volume V from
the outside with radiation of intensity (T) . Therefore, if the gas fills
only the volume V and is illuminated by radiation with the intensity B^(T)
the conditions in V will be exactly the same as in the infinite medium. This
means that TE holds in an arbitrary cavity filled by gas and illuminated by
Planckian radiation.

In deriving the statistical equilibrium equations we used the relations
found from thermodynamic considerations. Hence, strictly speaking, this line
of reasoning does not constitute a proof. However, it does seem to be of
interest. This argument clearly shows how, in the specific model, the
kinetic equations lead to the equilibrium relations as a limiting case.

Now a few words about LTE . In LTE the coupled statistical equilibrium
and radiative transfer equations are radically simplified. The solution of
the statistical equilibrium equations for the discrete levels and the con-
tinuum is given by Boltzmann's and Saha's laws. Since the level populations
are known, the transfer equations become first-order differential equations.
We shall consider in a little more detail the limiting form they assume in
this case.

Since the level populations obey Boltzmann's law, the volume absorption
coefficient in the line, as expressed by (6.10) is now

/ .hv /kT\
a.j^(v) = k.j^(v)n. h-e ). (6.39)

The line source function (6.12) reduces to Planck's function for the local
kinetic temperature:

(6. 40)
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so that the transfer equation (6.13) becomes

a)-Vl^(r,aj) a-i^Cv) - (T(r)) (6.41)

Analogously, the absorption coefficient in the continuum given by (6.22)
assumes the form

a^(v)

3 = 1
^

(6.42)

and the continuum source function is found to be equal to Planck's function:

S^(r) = B^(T(r))
, (6.43)

so that instead of (6.25) we have

VI^(r ,co) = - a^(v) I (r,oj) - B y:T(r))] (6.44)

As follows from (6.41) and (6.44), when the temperature is a known function
of the coordinates, the calculation of the intensity involves a theoretically
simple, but sometimes cumbersome, quadrature. Since the temperature can
change from point to point in LTE , the absorption coefficients vary with
position

.

Until now the kinetic temperature of the medium has been regarded as
given. Yet in fact it is determined by an energy equilibrium equation which
must be solved simultaneously with the statistical equilibrium and radiative
transfer equations. If absorption and emission of radiation are the only
mechanisms for heating and cooling the gas, and its state does not change
with time,_ then such a gas is said to be in a state of radiative equilibrium .

In this case the equation expressing the energy balance is called a radiative
equilibrium equation. For a single- component gas it obviously has the form

00

/
(i<k)

(v) (r) dv

CO

i,k
(i<k)

dv (6.45)

and in particular, in LTE

00

j
[^^(^) " 2 ^ikt^)][jvd) -^(nr))] dv

i,k
(i<k)

(6. 46)

Even in LTE the simultaneous solution of transfer and radiative equili-
brium equations is rather difficult. This constitutes the central problem of

522-519 O - 74 - 5
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the classical theory of model stellar atmospheres, a theory based on the
a priori assumption of the existence of LTE in stellar atmospheres (see, e.g.,
G. Miinch, 1960).

Henceforth we shall always regard the temperature as known. However, if
the gas density is low and LTE cannot be assumed, the situation is still very
complicated. In the statistical equilibrium equations terms appear depending
on the intensity at a given point in the medium. On the other hand, the in-
tensity, which is found by solving the transfer equation, depends in turn
on the level populations. Therefore, if radiative processes play an important
role in populating the levels, the calculation of statistical equilibrium
states involves the simultaneous solution of the statistical equilibrium and
radiative transfer equations. This is exactly the problem to which this book
is addressed.



CHAPTER II

THE LINEAR APPROXIFIATION

The system of statistical equilibrium and radiative transfer equations
is nonlinear, as we have already seen. As the solution of this system, in
full generality, entails tremendous difficulties, which have yet to be
completely overcome, we are limited to rather schematic models. Consequently,
it seems logical to study in detail all of the specific cases for which
exact solutions can be obtained in closed form. Such cases are far from
plentiful; moreover, they all relate to highly idealized situations that are
sometimes rather far removed from the concrete problems encountered in the
interpretation of observations. Nevertheless, such model problems are of
great interest

.

First of all, these simple models can illustrate specific features of
the general problem. The study of such model problems aids us in reaching
a clear understanding of the physical aspects of the problem, and provides
the orientation necessary, in the more complicated cases, to sift the
essential ideas from a mass of details. Second, because these model problems
have exact solutions, they serve as standards for estimating the accuracy and
limits of applicability of various approximate and numerical methods. Finally,

I

these problems are, as a rule, of interest in their own right. The greater
part of this book, then, is devoted to a study of these standard problems.

It is natural that an exact solution is much more readily obtained in
those cases in which the set of statistical equilibrium and radiative trans-

. fer equations can be linearized. With this in mind, we shall consider the
linearized form of these equations in this chapter.

I
The linear theory of radiative transfer in spectral lines is a generali-

j

zation of the now classical theory of monochromatic scattering. We begin,
I therefore, with a brief survey of the fundamental concepts of the phenomenolo-

gical theory of radiative transfer when frequency changes are neglected. A
detailed discussion then follows of the simplifications that arise when the
set of statistical equilibrium and radiative transfer equations is linearized.
It is shown that in certain instances intrinsically nonlinear problems can be
reduced to linear ones. Finally, at the end of the chapter we study the

j properties of a number of special functions that play an important role in
the study of a state of a gas in its own radiation field.
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2.1 MOKOCHROMATIC SCATTERING

BASIC ASSUMPTIONS AND DEFINITIONS. Two basic assumptions are made in the
classical theory of multiple scattering of radiation. First, the radiation
is assumed to have no effect upon the medium in which it is propagated,
thereby guaranteeing the linearity of the transfer equation. Second, the
frequency of the photons is assumed not to change as the radiation interacts
with the matter. Although this assumption is definitely not valid for multi-
ple scattering within a line (see Sec. 1.5), there are many cases in which it
does represent a very good approximation to reality. As an example, one
might point to the multiple scattering of light by small particles. We may
assume the frequency to be constant if over the spectral interval that in-
cludes the possible initial and final frequencies of the photon, the optical
properties of the medium do not change substantially. The frequency depen-
dence of the optical properties may then be neglected and the frequency of
the photon becomes immaterial. We may therefore assume that the frequencies
of all photons are equal; i.e. we may speak of the scattering of monochro-
matic radiation with a fixed frequency.

The theory of multiple scattering of light is very closely related to
neutron transport theory. When the energy of the neutrons changes only
slightly as they are scattered by nuclei (thermal neutrons), the dependence
of the scattering cross section upon energy may be disregarded. In neutron
transport theory this situation is referred to as the constant cross section
approximation, or the one -group approximation. In this approximation neutron
transport is mathematically identical to monochromatic scattering of radia-
tion. Therefore, although we shall speak of photons and use the terminology
of the theory of light scattering, all of the results in this section (and
also in Chapter III) apply to neutrons as well.

In the theory of monochromatic scattering the optical properties of an
elementary volume of the medium are characterized by three quantities —the
volume absorption coefficient o, the probability A that a photon survives
the act of scattering, and the phase function or scattering indicatrix xCy)*
These quantities are defined as follows. Let radiation of intensity I (the
subscript v may be omitted throughout in the theory of monochromatic scatter-
ing) be incident upon a unit volume within a unit solid angle about a certain
direction. Then ol is the radiant energy interacting with matter per unit
time. This interaction may be of two types. Part of the energy, say o

,

is absorbed, i.e. is converted to another form of energy (for example, heat).
The quantity is called the volume coefficient of true absorption. The
remainder of the radiation only changes its direction of propagation in the
interaction with matter, and conserves its initial frequency. We shall de-
note this so-called scattered energy by Ogl. The quantity Og is the volume
scattering coefficient. It is obvious that

0=0^^0^. (1.1)

The ratio

A = — = 5— '

(1.2)
a 0 + a

s a

is the probability that a photon survives the act of scattering. This quan-
tity is known as the albedo for single scattering. (Other notations for the
same quantity frequently encountered in the literature are:

,
cog, 1 — e.)

If X = 1, then the scattering is said to be pure, or conservative. As stated
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in Sec. 1.5, the phase function x(y) (often also designated as x(y), P(y).
etc.) is the probability density of scattering through an angle y from the
initial direction. Its normalization is

fx(Y)dco = 1. (1.3)

In general, the medium emits, as well as absorbs, radiant energy. The
energy emitted by a unit volume per unit of time within a unit solid angle
is called the emission coefficient e. For monochromatic scattering, the
emission coefficient e and the intensity I may refer to any spectral interval
over which the optical properties of the medium do not depend upon frequency,
and not simply a unit frequency interval.

The emission coefficient £(r,a}) depends, in general, on both position
and direction, and is composed oT two parts. First, a volume element scatters
a part of the radiation incident upon it. The contribution to the emission
coefficient e from scattering is obviously equal to

A£ y I(r,a)')x(Y)da3' ,

where y is the angle between co and w ' . Second, within the volume element
there can be internal sources of radiation whose strength is independent of
the intensity of radiation incident upon it, and is regarded as given. These
are known as primary or true sources. Denoting their contribution to the
emission coefficient as e*(r,a)), we have

£(r,a3) = ^ /'l(r,a)')x(Y)da3' + £*(r,a3) . (1.4)— — An J — — — —

The ratio of the emission coefficient to the absorption coefficient is the
so-called source function:

£ (r ,0))

S(r,a3) = 7
-

. (1.5)
a(r)

If the phase function is spherical, i.e. x(y) = 1, and the primary sources
are isotropic, so that e* = £*(r), then the source function does not depend
on direction and is equal to

S(r) = — f I(r,co')da)' + S*(r) , (1.6)—
/\t\ J — — —

where S* is the primary source function or the source term:

S* = — . (1.7)
a

TRANSFER EQUATION. The radiative transfer equation is obtained, as always,
by considering the change in intensity along the beam. For monochromatic
scattering it is

co«VI = -al + e
,

(1.8)
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or

wVI = -a(I - S) (1.9)

This equation has the same form as (1.6.13) and (1.6.25). However, in (1.9)
the absorption coefficient a is regarded as given, whereas the quantities
aj^]^(v) and aC(v) depend on the level populations which, in general, are not
known at the outset.

For the spherical phase function and isotropic primary sources, (1.6)
and (1.9) give us

wVI (r ,Lo) = -o (r) [ I (r ,co) ~ f47T J
I (r ,oj' )dLo' - S*(r) ] (1.10)

We shall henceforth deal exclusively with (1.10) in order to avoid unneces-
sary complications. The boundary condition for (1.10) is

I(rQ,w) = I^(rp|,w), a)*n < 0
,^0 (1.11)

where r^ is an arbitrary point on the boundary surface, and n is the unit
vector normal to the boundary in the outward direction at the point r ^ . How-
ever, with no loss of generality, this condition may be changed to

I (r^ ,w) co*n < 0 (1.12)

for if I (r,t£) is the intensity of radiation at point r_ in direction co that
has come directly from external sources and has been attenuated by the medium,
then one may set

S*(r:
a
-/
4tt

I°(r,to')doo' (1.13)

and solve the transfer equation (1.10) with the boundary condition (1.12).
By adding I*^(r,w) to I (r ,0)) the total intensity at a given point can be ob-
tained. The quantities I^ and I are called the intensities of direct and
diffuse radiation, respectively.

If the absorption coefficient does not depend upon the coordinates
(a = const), the transfer equation (1.10), together with boundary condition
(1.12), is equivalent to the following integral equation for the source func-
tion:

S(r)
^^ J

exp (—0
I
r — r '

I

)

S(r')dr' + S*(r) (1.14)
r — r

where the integration extends over the entire volume occupied by the medium,
Equation (1.14) is called the Peierls equation. (Its derivation may be
found, for example, in B. Davison's book (1958); see also Sec. 2.4.) When
the source function is found, the solution of the transfer equation reduces
to quadrature, as may be seen from (1.9).
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When the medium and the distribution o£ primary sources possess a par-
ticular symmetry, (1.10) and (1.14) are simplified. However, we shall post-
pone for a moment the analysis of these simplifications in order to clarify
the analogy between the problems of monochromatic scattering and the linear
problems of radiative transfer in spectral lines.

2.2 THE TRANSFER EQUATION FOR SPECTRAL LINES

GAS OF TWO-LEVEL ATOMS. The simplest problem in which one calculates the
steady state of a gas in its own radiation field is as follows. An isother-
mal gas, composed of atoms having only two discrete levels, occupies a given
region. The density of the gas and the electron concentration are known func-
tions of the coordinates. The gas is not illuminated from the outside, and
has a sufficiently low temperature so that the average thermal energy of the
particles is much less than the excitation energy of the upper level:
kT << hvx2- We desire to find the degree of excitation of the gas and to
calculate the radiation field in the line.

Under these assumptions, the population 1x2 of the excited level will
everywhere be small compared to the concentration n^ of ground state atoms.
An isothermal medium of infinite extent will be in TE , with the level popu-
lations given by Boltzmann's law. If hvi2 kT, the degree of excitation
will be very low, even in an infinite medium, and if the gas occupies a fi-
nite region, then it will obviously be lower still. Therefore the total con-
centration of atoms n = n^ + n2 is very nearly equal to the population ni of
the lower level. Furthermore, the line would have a Planckian intensity in
an infinite medium, and the factor 1 + (c2/2hv^)I^, allowing for the stimu-
lated emission, would differ from unity only by terms of order exp (—hv 2/^^) .

In a finite medium from which some radiation escapes, this quantity is even
closer to unity because the intensity is less than its equilibrium value.
Consequently stimulated emission may be neglected. The statistical equilib-
rium and radiative transfer equations therefore assume the form

"2^^21 ^ ^e^21^ = ^lf^l2^12 ^ ""e^lZ^ '
^^"^^

2hv^,^ g,

- 03-^1^^^'^^ = -k]_2^^^^1^v^I'^^ * f^^^l2f^^^2 •
^2.2)

Using the familiar relations between the Einstein coefficients, expressing
C12 in terms of C21, and introducing the explicit expression for J12 given
by (1.3.25), we have instead of (2.1)

n 2 g / k 2(v')J ,dv' g2 -hv^^/kT
— (A +n C ) = — — A.. - — + — e n C.^,

^^-21 "e 21'' ^ r. ^71 «> rr e 21
2h^l2 ^1 ^ / k,,(v')dv

0 12

We now define
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2hv^. g,
S = ~ — — . (2.5)

The quantity A is the probability that a downward radiative transition will
occur following the excitation o£ an atom. In other words, A is the proba-
bility that a photon survives the scattering process. The quantity S is
the line source function when stimulated emission is disregarded.

Using (2.4) and (2.5), we can write the condition of statistical equi-
librium (2.3) in the form

/o^2'^v')dv' f I^, Cr,a)')dcu'

S = — + S* , (2.6)
4 TT

~

whe re

2hv^-, -hv.^/kT
S* = e (1 - A) (2.7)

and 0]^2(^) is the volume line absorption coefficient:

0^2^^) = ^i2'^^^'^l •
(2-8)

The transfer equation may be rewritten as

a3-VI^(r,(^) = -0^2^'^^ l^^v^^l'^^^
-S(r))

•
(2.9)

Substituting (2.6) into (2.9), we finally arrive at the following linear
integro-dif ferential transfer equation:

w*VI^(r,w) =

/o^2^v')dv' / I^, (r,a)')do

-a,2Cv)
(

I^(r,.) - S*(r)l. (2.10)

We stress that in the present case the line absorption coefficient is known,
since n-^ can be assumed to be equal to the total concentration of atoms,
which is regarded as given. The transfer equation (2.10) is subject to the
boundary condition

I^(rQ,aj) = 0, oj-n < 0 , (2.11)
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which expresses the absence of radiation incident on the medium from the out-
side. Once the radiation intensity is found, the problem is solved, since
from the statistical equilibrium equation the population of the upper level
may be calculated directly.

GENERAL CASE. The assumption that an atom has only two levels is not neces-
sary for the linearization of the transfer equation. If stimulated emission
may be neglected and the population of the lower level is regarded as given,
the linearity of the transfer equation will be ensured. Let us consider the
problem of computing the radiation field in a line formed by transitions
between levels i and k. If we disregard stimulated emission, the line trans
fer equation (1.6.9) assumes the form

u)«VI^Jr,aj) = -k^j^Cv)n. I^, Cr ,co) +
1 V

2hv.T g.
ik *i

c^ Sk

— k.j^(v)n^
, (2.12)

and the condition of statistical equilibrium may be written as

\^ - ^^ik^ik * ^k
(2.13)

where n^Dk is the number of transitions from level k per unit of time by all
possible means except k -> i radiative transitions, and E]^ is the number of
transitions into level k due to all processes except i k photo-excitations
by diffuse radiation. Repeating literally the arguments used in deriving
(2.10), we get the following linear transfer equation from (2.12) and (2.13)

w«VI^(r,(£) = -a(v)

where

I (r,oj) - —
CO

/a(v')dv' / I^, (r,a)')dc

CO

^a(v')dv'

- S*(r) , (2.14)

X =

Aki ^ Dk
(2.15)

2hvr
ik

c2 gk H^^ki ^ Dk)
(2.16)

Since the population of the lower level is regarded as known, the absorption
coefficient a(v) (v)ni is known. The situation is more complicated for
the quantities X and S*. Through Dk and Ek , X and S* depend, in general, on
the populations of all levels except the k-th, and also upon the radiation
fields in all lines and continua except that in the i i k line. In several
instances, however, these quantities can also be regarded as known. Examples
can be found in the work of V. V. Sobolev (1962) and V. P. Grinin (1969).

STANDARD FORM OF THE TRANSFER EQUATION. Throughout this book we shall assume
that the frequency dependence of the line absorption coefficient is identical
at all points in the medium. Then we can set
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a(v) = a(vQ)a(x) = n^k^^ ) a (x) , (2.17)

the profile o£ the absorption coefficient a(x) being independent of position.
If the broadening of the line is caused by the Doppler effect, this assump-
tion implies that the medium is regarded as isothermal (since temperature
variations lead to changes in the Doppler width in terms of which the dimen-
sionless frequency x is defined). If, moreover, the line broadening is
caused by collisions (Lorentz profile), the density should also be constant.
If both line broadening mechanisms are significant simultaneously (Voigt pro-
file) , then the assumption that the absorption coefficient is independent of
position also implies that both the temperature and the concentration of the
particles responsible for the pressure broadening are constant throughout the
medium

.

Substituting (2.17) into (2.14), we get the radiative transfer equation
in the standard form:

03* VI (r, CO, x) = — a (Vq) a (x) I (r , w ,x) +

00

+ oCVq) ^ Aa(x)J a(x')dx'y I (r ,0) ' , x ' ) doj ' + a (Vq ) a (x) S* (r)
, (2.18)

or

aj-VI(r,w,x) =-o(vQ)a(x) ^I(r,a3,x) -S(r)^ , (2.19)

where S(r) is the line source function:

oo

S(l) = J a(x')dx'y I (r ,0)' ,x' )doj' + S*(r) , (2.20)

—OO

and A is the normalization constant:

00

Ay a(x)dx = 1 . (2.21)

— oo

Although we are now using x as the frequency variable, it is important to
stress that the normalization of the intensity is unchanged , so that
I(_r,a),x) dadtodv is the energy flowing per second through an area da perpen-
dicuTar to the beam direction, within the solid angle dco in the frequency
interval (v,v+dv), where v = Vq + xAv.

For cases in which absorption and emission in the continuum must be
taken into account, the line transfer equation assumes the fo'rm (see (1.6.27))

w-VI(r,aj,x) = -a(vQ)a(x)^I(r,a),x) - S (r)
j
-a^ ^I (r , oj ,x) -S^(r)^ , (2.22)

where S (r) is the continuum source function:
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(2.23)

and S(r) is, as before, given by (2.20). The functions S* and S describe
the distribution of primary sources of radiation in a given line. As has
already been mentioned in Sec. 1.5, whenever the k ^ i radiative transition
does not occur following an i -> k photo-excitation by the medium's own line
radiation, a photon is considered to have come from primary sources.

The transfer equation (1.10) describing isotropic monochromatic scatter-
ing is a special case of (2.18). Indeed, let us suppose that the profile of
the absorption coefficient is rectangular, so that

( 1 , |x| < 1
,

a(x) = < (2.24)
( 0 , |x| < 1 .

From (2.18) it then follows that within the line (in the case at hand for
|x| < 1), the intensity does not depend on frequency, and equation (2.18)
reduces to (1.10). The physical explanation of this is as follows. If the
profile is rectangular, all of the line photons have the same mean free path,
which is unchanged by frequency redistrilDution . Hence all the photons may be
regarded as having the same frequency.

2.3 PLANE AND SPHERICAL GEOMETRIES

If the medium has any particular symmetry, the transfer equation becomes
simplified. We shall consider the cases of plane and spherical geometry.

PLANE GEOMETRY. When the absorption coefficient at line center a(vo), the
continuum absorption coefficient o'^ , the photon survival probability A, and
the functions S* and S*^, which describe the distribution of primary sources,
depend upon only one spatial coordinate (for example, z) , the system has
plane symmetry. The intensity of radiation I is then a function of z, the
frequency, and the angle between the positive z-axis and the direction of
propagation of the radiation. This angle, designated as 63 in the previous
chapter (in Sec. 1.1 and 1.6), will henceforth be denoted simply as 0 (Fig.

2). Instead of (2.22) we now have, taking (2.20) into account,

z

cos i?=yU.

Fig. 2. Notation used in the transfer equation for plane geometry.
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+ 0

cose '^^'^^^^'^^ =-^a(vQ)a(x) + a^^ I(z,e,x) +

00

(Vq) ^ Aa(x)J a(x')dx'y I ( z , 6 ' ,x
'
) doj ' + o (v^ ) a (x) S* ( z ) + a'^S^(z)

(3.1)

It is convenient to define

^0 ^0

T f a(Vg)dz' = k^j^Cvg) f n.(z')dz' (3.2)

and to refer to this quantity as the optical distance at line center from the
plane z = Zq. This distance is measured in mean free paths of a photon at
line center (for = O) . Setting y = cosG, we have, finally,

i
^^^"^;'^^ = (a(x) - I(t,m,x) -

1

J a(x')dx'y- ^ Aa(x) I a(x')dx'y I (t ,p ' ,x '

) dy ' -a(x)S*(T) -6S^(t)
, (3.3)

or

^dIXT^£_^ = a(x) (l(T,M,x) - S(T)^ + B ^I(T,y,x) - S^(t)^
, (3.4)

where

00 1

S(t) = aix')dx'
J'

I(t,m' ,x')dy' + S*(t) (3.5)

_oo _1

and 3 is the ratio of the continuum to the line center absorption coeffi-
cients :

- - (3.6)
o(vo)

We now obtain the boundary conditions to be satisfied by the intensity.
If the integral

CO

Tq =j a(VQ)dz' (3.7)

— oo

converges, the medium is said to have a finite optical thickness Tq. To
avoid dealing with negative optical distances, it is convenient to define the
T-coordinate system by the expression
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00

= J a(vQ)dz'
, (3.8)

i.e. to set zq = °o in (3.2). The quantity t in this case is known as the
optical depth ; it varies from 0 to tq. The boundary conditions expressing
the absence o£ radiation incident upon the medium are

1(0, y,x) = 0 , M < 0
,

I(TQ,y,x) = 0 , y > 0 .

(3.9)

I£ the medium is illuminated by external radiation, the transfer equation may,
as before, be solved with the boundary conditions (3.9), after the function
describing the distribution of primary sources has been redefined and the
direct and diffuse radiation fields have been separated (see Sec. 2.1).

If we consider the line source function S(t) to be known, the solution
of (3.4) with the boundary conditions (3.9) can at once be written:

I(t,1j,x) =

T

0

a(x)S(T') + 6(t')S'-(t

T

J 6(t)dt^exp |-- (a(x)(T' -t) +
J 6(t)dt

T

dT
y < 0

I(T

^0

a(x)S(T' ) + B(t' )S''(t

(3.10)

exp i ^a(x) (t' - t) + y B(t)dt^
dx '

y > 0 (3.11)

These expressions give only a formal solution of the transfer equation, since
the line source function S(t), as is seen from (3.5), itself depends on the
intensity

.

If the integral (3.7) diverges, and (3.8) converges at any z ^— °°, then
the medium is referred to as semi - infinite , or as a layer of infinitely large
optical thickness. In this case it is convenient to define the x-coordinate
according to (3.8). The first of the boundary conditions of (3.9) remains
valid and the second is replaced by the requirement that at xg = °° the inte-
gral in (3.11) converges for all x. Finally if at any z the integrals

J"
o(vQ)dz' and j' o(vQ)dz'

diverge simultaneously, the medium may be regarded as optically infinite.
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Nearly all of the current research in the theory o£ radiative transfer
in spectral lines is concerned with the solution of (3.3) under additional
assumptions of one kind or another. Usually it is assumed that X and 6 do
not depend on optical depth. Moreover, since for strong lines B << 1, it is
often assumed that 6=0. The transfer equation then becomes

y
dl (t , y ,

x) r ^ T r ^—

—

'-r-^
—- = a(x)I(T,y,x)

dT

00 1

-
^ Aa(x) y* a(x' )dx'y I (x ,

y
'

,
x

'
) dp ' -a(x)S*(T)

, (3.12)

which has the formal solution

T a (x) . , .
^

—

- (t ' — T )

I(T,y,x) = - /* S(T')e ^ a(x)— , y < 0 , (3.13)
u

0 a(x)^^,

T

I(T,y,x) = / S(T')e ^ a(x)— , y > 0 . (3.14)
y

In particular, the intensity of radiation emerging through the boundary
T = 0 is

^0 a(x) ^,

1(0, y,x) = f S(T')e ^ a(x)— , y > 0 . (3.15)
J y
0

The physical content of this result becomes quite obvious if S(t) is replaced
by the expression (2.5) for the line source function in terms of the level
populations and the variable of integration t' is replaced by the geometrical
depth z '

:

T rn ^ ik Aa (x) '
I (0 ,y ,x) = -

4iT Av
A,,n^(z')e ^ ^. (3.16)

The transfer equation for isotropic monochromatic scattering in plane
geometry, as follows from (1.10), is

1

^Lil^ = i(x,y)-i f I(T,y')dy' -S*(T) , (3.17)
dT 2 ^

-1

where t is the optical depth:
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00

/T = y a(z')dz' , (3.18)

z

For a layer o£ optical thickness tq with no external illumination, the formal
solution of (3.17) is

T T ' — T

I(t,m) = - I S(T')e ^
dx;.

, y < 0 , (3.19)

0

T̂ 0 T ' — T

I(T,y) = y S(T')e ^ , y > 0 . (3.20)

T

Many of
applied to (3
to a study of
is discussed,
line transfer
Chapter IV it
is studied in
placed by the
the case of a
given the stu

the methods developed for solving (3.17) may be successfully
.12) as well. The next chapter, therefore, is entirely devoted
monochromatic scattering; in particular, the solution of (3.17)
In subsequent chapters the same procedure is used to solve the

equation. Equation (3.12) is studied in Chapters IV - VI. In

is assumed that the medium is infinite; a semi - infinite medium
Chapters V and VI. In Chapter VII the condition 3 = 0 is re-
less stringent requirement 6 = const. Finally, in Chapter VIII
finite value of tq is considered, particular attention being

dy of the radiation field in an optically thick layer (tq >> 1) •

SPHERICAL GEOMETRY. Let the optical properties of a medium, i.e. the quan-
tities A, o(vo) and a'^ , and the source strength depend only upon distance r

from some point, which we shall take as the origin. From the symmetry of
this configuration, the intensity will depend only on the frequency, the
radius r, and the angle 9 between the radius -vector to a point, and the direc-
tion of radiation there. In this case we have

wvi = cosi
I sine 31

- 9r r 3(

Defining y = cos 9, from (2.22) and (3.21) we find

(3.21)

.

^^^^>^>^^
+ ^-^-H- = - (a(vja(x) ^ a^) I(r,u,x)

3 r r 3y

(3.22)

+ a(vQ)
Y

Aa(x) a(x')dx' f I ( r , y '
, x ' ) dy ' + o (v^ ) a (x) S* (r) + a^s'^(r) .

_oo — 1

If cr(v„) and do not depend on r (homogeneous medium), then, intro-
ducing the optical distance at line center

T = a(vQ)r (3.23)
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we obtain

>^I(t,ij,x) ^ 1 — 9I(t,ij,x) i r . n l t r .y—!^

—

'-^—^ + = —'-^—J- = _ict(x) + 3jI(T,y,x) +
3t t 9y y y

(3.24)

+ 2 Aa(x) y a(x')dx'
J'

I (t , y '
, x ' ) dy ' +a(x)S*(T) +3S^(t) . -

— CO _ 1

With the same assumptions concerning the symmetry o£ the system, the transfer
equation for monochromatic scattering with 3=0 has the form

9iIijlH1 + 1 - 9i(T>y) ^

8t T 9y

^a(x) +
3^

1

= - I(T,y) +
^ f I(T,y')dy' + S*(t) . (3.25)

^1

Equation (3.24) for an infinite medium with 3 = 0 is studied in Chapter
IV. In Chapter VII the results are generalized to the case 3 = const > 0.

TWO SCALES OF OPTICAL DISTANCE. In conclusion, we comment on the choice of
the optical distance scale. We have introduced here optical distances t meas-
ured at line center . Sometimes the optical distance x is used, which is
related to t by

T = A? . (3.26)

The quantity T has the merit of being independent of the shape of the profile.
When stimulated emission is neglected, t = kii^(vo)Ni, where N^ is the number
of atoms in the lower level along the line of sight and kik(vo) is the absorp-
tion coefficient per atom at line center. Using the well-known relation (see
Sec. 1.3)

oo

/ k,,(v)dv
hv . 1ik

4tt ik
'0

and the fact that a(x) =
^^ij^

(^ ) /'^j^j^ (^0 '
write

k.j^(vQ) J a(x)dv = — B.
,

0

whence
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and therefore

k., (v„) = A —— B.,

- 1 ^^ik
T = A = —— B.., N. . (3.27)A 4uAv ik 1 ^ ^

Thus T, unlike t, depends only on the number of absorbing atoms and the
strength of the atomic transition (and also on the characteristic line width
Av) , but not on the shape of the profile. The use of T instead of x is
necessary when results obtained for various absorption coefficients must be
compared (say, for Voigt profiles with different values of a).

2.4 INTEGRAL EQUATIONS OF STATISTICAL EQUILIBRIUM

DERIVATION OF THE BASIC EQUATION. In the linear case the solution of an inte
gro-dif ferential line transfer equation is, as has already been noted, equiv-
alent to a determination of the population n]^ of the upper level as a func-
tion of the coordinates. Once the radiation intensity is known, (2.20) gives
us the line source function S(r) or equivalently ni^(r). We shall now consid-
er an integral equation that expresses directly the condition of statistical
equilibrium. The solution of this equation gives us the line source function
from which nj^ is readily found. It is then easy to calculate the radiation
field in the medium as well.

We shall start from the statistical equilibrium equation (2.13), which
for convenience is reproduced here:

^k^\i ^ ^k^ = ^^ik^ik ^ ^k •
^^-1)

We define as ny- the population of level k in the absence of i k photo-exci-
tations by the medium's own radiation (both in line and continuum). We
assume that_ the direct radiation from external sources is not included in

Jiy^, i.e. J]_-^ refers only to the diffuse radiation fi^ld, while photo -excita-
tions by direct radiation are included in Ej^. Then nj^ is determined by the
equilibrium condition

We note that from (4.2) and (2.16) it follows that

3 *

* ^^^ik Si "k
S = — — — . (4.3)

*

||

This expression makes clear the physical meaning of the function S . From
' (4.1) and (4.2) we have, taking (2.15) into account,

nj^(r) = An.(r) ^ J.j^(r) + nj(r) . (4.4)
Aki

522-519 O - 74 - 6
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An explicit expression for the i ^ k photo-excitation can be obtained, al-
though a certain amount of care is required.

Let dV be the volume element near point r, and dV the volume element
near x' (Fig- 3). Radiative i ^ k transitions in dV are induced by radiation
arriving there from all points of the medium. Let us calculate the contribu-
tion due to radiation from the volume element dV . In dV the energy emitted

Fig. 3. Derivation of the equation of statistical equilibrium in integral form.

per unit time in the frequency range (v , v + dv) within the k -> i line is

[hvikAkink(r' )A(a(x)/Av) + 47T£C ' J ] dvdV . We shall denote by da the pro-
jection of the volume element dV onto a surface perpendicular to the line
joining points r and x' • The volume dV is seen from dV to subtend a solid
angle da|r - r'|'2. Within this solid angle the energy emitted in dV per
second in frequencies from v to v + dv is

4tt r — r
h^ik^i^k^l'^^ Av

+ 4TTe (r] dodvdV (4.5)

The energy is partially absorbed along the path from r' to r, and partially
scattered in all directions by the medium, so that of~"this energy dV receives
only the fraction

exp {-a(x) T (r ,r '
) -T'^(r,r')} , (4.6)

where T(r,r') is the line center optical distance between points r and r ' ,

i.e.

s

T(I.I') = ^ik^^O^ / i^i(l")ds' ,
(4.7)

0

with s = |r — x'l- The integration is performed along the line joining r'

and r. Analogously, T'^(r,r') is the optical distance between r and r' in the
continuum.

Of the energy emitted by the element dV in the frequency range (v , v + dv)

and incident on the volume element dV, the following fraction is absorbed by
the atoms responsible for the line:
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k.^(vQ)n. (r)a(x)ds
, (4.8)

where ds is the length o£ the element dV along the direction of propagation.

Multiplying (4.5), (4.6), and (4.8) together, integrating over frequency,
and taking into account that dods = dV, we get the total energy absorbed in
dV due to i k transitions from the radiation emitted in dV:

hv

.

n, (r)k,, (vj
I
M,(r,r')n, (r')A,

,
— —

- i^;-. j^.vQ, -2^^'^ ^^'k^-^ ^^ki
4tt r - r' '

+ M, (r,r') -AlA^ £^(r') I dVdV
,

(4.9)

where

CO

^ ^ J ct^(;^3exp{-a(x)T(r,r' ) - T^(r,r')}dx , n = 1,2 . (4.10)

— oo

Finally, dividing this energy by hv^j^ and by dV and integrating over the en-
tire volume of the medium, we obtain the total number of i ^ k photo-excita-
tions per unit volume near the point r:

ni(r)B.,J.^(r) = n.(r)k.^(v,) M,(r.r-)dV' .

- - (4.11)

1 /-Mid,!:') 4^^^

Substituting this expression into (4.4), we finally arrive at the following
statistical equilibrium equation for level k:

M ( r r '

)

= "iWku(-o' hj i'
:';,|2 "k(i'"j^'

*

, /.M (r ,r' ) . . *
+ n. (r)k., (vj ^ / ^ ~ ~

, ^^^^ E:^(r')dV' + n, (r) . (4.12
1^-^ ik^ 0^

|r - r' |2 AAkihvik " -

HOMOGENEOUS MEDIA. If the population of the lower level n^ and the continuum
opacity do not depend on position, then from (4.12) we obtain, after some

algebra, the following equation for the line source function S(t_):
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where

S, Ct) = B— / e II sC(T')dT' + S (t) . (4.13')
^ 4Try |T^_-r'|2 - "

Here t_ = nikik(vo)r is the optical radius- vector, di;' is the volume element
of _t' -space, 3 = a'^/nikij^ (vq ) is the ratio of the continuum to the line cen-
ter absorption coefficients, and

oo

= A J a^(x)e~°'^''^^dx , k = 1,2 . (4.14)

The physical significance of the individual terms on the right side of
(4.13) is as follows. The first term represents atomic transitions from the
lower level i into the upper level k by photo-excitation due to the radiation
field of the medium in the k -> i line; the term containing S*" (x) expresses
the photo-excitation by the medium's continuum radiation; and S*(x) accounts
for all other ways in which atoms can enter level k in addition to i ^ k
photo-excitations by the medium's radiation field. It is obvious that the
solution of (4.13) is equivalent to the solution of the integro-differential
transfer equation (2.18) subject to the boundary condition expressing the
absence of external illumination.

Equation (4.13) (for the special case 3=0) was obtained, independently
and at about the same time, by L. M. Biberman (1947) and T. Holstein (1947),
and is sometimes called the Biberman-Holstein equation. It describes the
scattering of line radiation in homogeneous media, neglecting nonlinear
effects. The assumption of homogeneity provides a substantial simplification:
the kernel of the equation becomes a function of the variable |r — r'

|

, and
not of r and r' separately, as in the general case.

When the medium has a particular symmetry, the integral equation of
statistical equilibrium (4.13) assumes a simpler form. We shall consider
the cases of plane and spherical geometry.

PLANE GEOMETRY. This case is very important from the point of view of appli-
cations, primarily in astrophysics. The requirement of a homogeneous medium
would constitute a very considerable limitation, since the density usually
changes rather rapidly with depth (e.g., in stellar atmospheres). Fortunate-
ly, in the case of a plane geometry the integral equation of statistical
equilibrium reduces to an equation with a kernel depending on the difference
of the arguments (displacement kernel) even when the population of the lower
level depends arbitrarily upon depth. It is sufficient to require only that
the ratio of the continuum to the line-center absorption coefficients is
depth - independent (3 = const).

The following procedure can be used to obtain the equation for the line
source function in the case of a plane layer of optical thickness tq . We
substitute the formal solution of transfer equation (3.10) - (3.11) into
(3.5), which expresses the line source function in terms of the intensity.
For 3 = const we have
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0
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S(t) =^kj a(x')dx'j-y ^ y[aCx')S(T') + 3S^(T')]e

—<» 1—10
a(x' )S(t '

) + 6S' Ct')]

T —

T

(a(x')+3)^
dx '

dx' +

(4.15)

+ S (T)

Hence we find that

S(t) (|t - T'
I

,e)S(T')dT' + S^(t)
, (4.16)

where

r
sJ(t) = K^^(|t - t-

I

,6)S^(T')dT' + S*(t)
,

(4.16-)

and

CO

K^(t,6) = a y* ct^(x)E^((a(x) + 3)t) dx
, (4.17)

CO

:^^(T,3) = A J a(x)E^((a(x) + 3)t) dx (4.18)

Here Ej^(t) is the exponential integral function

1 t

E^(t) - f f
0

^
(4.19)

If the line-center optical thickness is infinite (semi - infinite medium),
then tq = °° in equations (4.16) and (4.16'). And if the medium has infinite
optical thickness in both directions (infinite medium) , then the line source
function is the solution of the equation

S(t)

oo

= \ f K^dl - T-
I

,3)S(T')dT' + S*(T)
,

(4.20)

in which
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*

oo

/ K^^(|t - T- I

,3)S^[T')dT' +
*

S Ct) (4.20')

The continuum absorption coefficient is often much smaller than the line-
center absorption coefficient. If continuum absorption and emission are com-
pletely neglected, (4.16) then reduces to

S(T) (|t - T'
I

)S(T')dT' + S (t)
, (4.21)

whe re

K^(T) E K^(T,0)

oo

/
(x)E^(a(x)T) dx (4.22)

and instead of (4.20) we have

S(T)

OO

T '

I

)S(t • )dT ' + S (t) (4.23)

According to the discussion at the end of Sec. 2.2, one may obtain the
equations describing monochromatic scattering, by introducing the rectangular
profile. From (4.22) it follows that in this particular case K-j^(T) = Ei(t) .

Thus for monochromatic scattering the source function in a plane layer is
the solution of the equation

S(T) = ^
2

E^(|t - t' i)S(T')dT' + S (t) (4.24)

whereas for an infinite medium the basic integral equation is

S(T)

CO

t' |)S(T')dT' + S (x) (4.25)

The properties
related to K]^(t) are
equations (4.24) and
in detail in Chapter
(4.23). Equation (4
Chapter V the case o

Chapter VI more spec
depth - dependence of
Tg = <=° is studied in
Chapter VIII

.

of the kernel function K2(t) as well as various functions
studied in Sec. 2.6 and 2.7. The solution of integral
(4.25), describing monochromatic scattering, is discussed
III. In Chapter IV results are obtained for equation

.21) is studied for tq = «> in Chapters V and VI; in
f an arbitrary function S*(t) is considered, and in
ific results are derived for certain special forms of the
the source strength. Equation (4.16) with 8^0 and
Chapter VII, and the case of finite tq is taken up in



2.4 INTEGRAL EQUATIONS OF STATISTICAL EQUILIBRIUM 69

SPHERICAL GEOMETRY. First we shall consider scattering in a homogeneous
sphere o£ optical radius tq . For simplicity we assume that there is no ab-
sorption and no emission in the continuum (3 = 0) . According to the assump-
tion o£ spherical symmetry, the line source function S and the distribution
of primary sources S* depend only on distance from the center of symmetry,
which is, of course, taken as the origin. Equation (4.13) is now

/•M (|t - T- I)
S(T) = / ^ — S(T')dT' + S (T)

, (4.26)

where x = , and the integration is to be performed over the sphere of
radius Tq. Introducing the spherical coordinates t' ,

9'
,

cj) ' , we have

di' = T ' ^dx ' sine ' de ' d4> '
,

I I 2 2 2
1^— ^'1 =x +x' — 2xx'cos0' .

Setting y' = cosG' and using (4.14), we find instead of (4.26)

^0 « 1 .

S(T) = ^ / S(x')x'2dT'A /* a2(x')dx' f exp{-a(x')/x2.x'2-2xx'y'}
^^,^s*^^^^

2 J J J t2 + t' 2 - 2xx'm'
0 -00 -1 (4.2 7)

Transforming to a new variable

t = a(x' ) (x^ + X ' ^ - 2xx 'y ' )'^
,

we obtain

T
00

a(x')(x + x')

S(x) = ly S(x')x'^dx'A J a^(x')dx' / e'''^ ,~r * S*(x) , (4.28)

a (x '

)
I

X—X '

whence

^0 (4.29)

xS(x) = - / - t'I) - K^(x + x')] x'S(x')dx' + xS*(x) ,

0

where K-|^(x) is, as before, given by (4.22). The solution of this integral
equation is equivalent to the solution of the integro-differential transfer
equation (3.24) with 6=0 subject to the boundary condition I(xo,y,x) = 0

for y < 0.

It is worth noting that the problem of determining the source function
in a homogeneous sphere is essentially reduced to that for a plane layer.
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it

Indeed, if we define S (x) (and S(t)) for negative values of x by the rela-
tions

S*(-x) = S*(x), S(-x) = S(x) ,
(4.30)

then (4.29) may be rewritten in the form

It follows that

^0

J K^(|x - x' |)x'S(x')dx' + xS*(x), _Xg < X < Xq . (4.31)

-^0

s(x^ + x)

S(t) = ^
, (4.32)

where s(x) is the solution of the equation

s(x) =

I J K^(ix - x'|)s(x')dx' + s*(t)
, (4.33)

0

in which

s*(T) = (x - Xq)S*(x - Xg) . (4.34)

Hence, to determine S(x) for a homogeneous sphere of radius xq , one has to
find the source function in a layer of thickness 2xq with a fictitious source
s*(x) (which is negative for x < xq) .

More complicated systems possessing spherical symmetry may be considered
similarly. Thus, for the source function in a homogeneous spherical shell,
which surrounds a perfectly black sphere and receives no external illumina-
tion, the following equation may be derived:

^2

xS(x) =

y y I^K^(lx-x'l) - K^(/x2 - + /t ' 2 _ t ^
2

)J
^ ' S (x '

) dx ' +

Here x = Oj^jj.(vQ)r is the optical distance from the center, X] is the inner
optical radius of the shell, and X2 — x^ is its optical thickness. The
equation is even more complicated for a hollow spherical shell. This situa-
tion was studied by T. A. Germogenova (1966). However, if the thickness of
the shell is small in comparison with its radius (say, the inner radius),
the equation simplifies greatly and assumes the form
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S(T) = ^ [K^(|t - t' I)
+ T + t' ) ]SCt' ]dT ' + S (t) (4.36)

0

The integral equation (4.29) has been considered by S. Cuperman, F.

Engelmann and J. Oxenius (1963, 1964) and by V. V. Sobolev (1962), where re-
sults of numerical solutions for several special cases are given. M. Weinstein
(1962) has obtained an equation describing scattering in a homogeneous sphere
with a partially reflecting boundary. T. A. Germogenova (1960) has studied
equation (4.35) with K]^(t) = E]^(t) (monochromatic scattering). Finally, V. V.
Sobolev (1959a, 1965) and D. I. Nagirner (1965) have considered equations
(4.29) and (4.36) for large Tq.

For application to the study of transfer of resonance radiation in gas-
discharge tubes, a number of authors have also considered media with cylin-
drical symmetry (T. Holstein, 1951; M. Weinstein, 1962, and M. A. Heaslet and
R. F. Warming, 1966)

.

2.5 THE REDUCTION OF NONLINEAR TWO-LEVEL PROBLEMS TO LINEAR ONES

LINEAR CASE. Since radiation drives some of the atoms from the lower to the
upper level, the population of the lower level cannot, strictly speaking, be
regarded as given, and must be found from the solution of the statistical
equilibrium equations. If the intensity of line radiation causing redistri-
bution of the atoms between levels is not too great, this effect may be neg-
lected in the first approximation. So far we have done so. However, when
the radiation intensity becomes very large this situation will change. The
line opacity of the medium will decrease because an appreciable fraction of
the atoms are driven from the lower to the upper level. At the same time
stimulated emission begins to play a role.

These nonlinear effects are, in general, rather difficult to treat
exactly. There are, however, specific cases in which nonlinear problems can
be reduced to linear ones. This section will be devoted to the discussion
of one such case.

Let the medium have plane symmetry, so that all quantities depend on
only one spatial coordinate — the geometrical depth z, measured from the
boundary of the medium. We shall assume that the gas is isothermal and con-
sists of two-level atoms. The total concentration of atoms

and the electron density n^ are regarded as known constants. We wish to
know the steady state of such a gas.

If the temperature of the gas is low (kT << h.\>i2) and the intensity of
radiation incident upon it from outside is not too great, we have a special
case of the problem discussed at the beginning of Sec. 2.2. For a plane geom-
etry, the transfer equation (2.9) assumes the form

n = n, (z) + n, (z) (5.1)

y
dl (z ,y ,x) ^

dz
= -a(x)k,

^
(v„)n^ (I (z ,y ,x) -S(z)) (5.2)

or
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^
dI(T,y,x) ^ a(x)(l(T,y,x) - S(t))

, (5.3)

where the optical depth x is defined by the relation

lo

= J k^^C^o^^l'^^ " ^12 '^'^O^^l '^^O
~

'
(5-4)

here zq is the geometrical thickness o£ the layer. In the linear case the
value of n^ is known and may be set equal to the total concentration of atoms
n, since n2 << ni. The line source function S(t) in (5.3) is related to the
level populations by (2.5), and according to (3.5) and (2.7) it may be ex-
pressed in terms of the intensity of diffuse radiation as follows:

3
r r 2hv^^ -hv,^/kT ^

S(t) =|a / a(x')dx' / I(T,y' ,x')dy' + -Lie (1-X)+Sq(t)
,

_co _ 1
^

(5.5)

where

I
'^(^q)

S*(t)=^A f a(xQ)dxQy lQ(0,yQ,XQ)e ^^0 dy^. (5.6)

Here Ig(0,yQ,XQ) is the azimuth- averaged intensity of the radiation of fre-
quency Xg incident at an angle arccos yg with the inward normal to the boun-
dary (for the sake of simplicity we assume that only the boundary t = 0 is

illuminated). The last term on the right side of (5.5) represents photo-
excitation by external radiation attenuated by the medium. The probability
A of photon survival is

X = ^
. (5.7)

A2I + neC2i

For n^ = const and T = const, A does not depend on position.

Substituting the formal solution of (5.3) into (5.5), we arrive at the
following equation for the line source function:

""Q
3

, r 2hv,^ -hv-i^/kT ^
S(t) = A

y K^(|t-t' |)S(T')dT' + ^e (1-A) + Sq(t) ,
(S.8)

0 ^
.

in which K2(t) is given by (4.22), and the optical thickness of the layer is

"^0 = ^12^^0^ j ^i^^^dz ,
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or, since << n^,

BASIC EQUATIONS IN THE NONLINEAR CASE. If the gas temperature is high
(kT ~ hvi2) if the radiation incident upon it is very intense, stimulated
transitions can no longer be ignored, and the problem becomes nonlinear. The
radiative transfer equation then takes the form (see Sec. 1.6)

2hvj3 Si
''-'^

+ a(x)k^2 (^0'' 7 "2 '

and the statistical equilibrium equation is written as

^2^^21 ^ ^21^12 ^ ^0^21^ = "lf^l2^12 ^ ^eCl2) '

^^-^^^

where

1

Jl2 = \ ^ f a(x')dx' f (l(z,y'x') + 1° ( z ,

y
'

,
x

'
)) dp

' . (5.11)

— 00 _ 1

Here I and 1° are the intensities, respectively, of the diffuse radiation
and the azimuth-averaged direct radiation. We shall show that the combined
solution of the nonlinear equations (5.9) and (5.11) can be reduced to a set
of linear problems. Let

T = k^2(^o^
}^ I §1 "2^"'^\

The quantity x is now the line-center optical depth when stimulated
emission is regarded as negative absorption. In the transfer equation (5.9)
the geometrical distance z may be transformed into the optical depth t. This
transformation, it is true, is of a formal nature, because until the level
populations have been found as functions of z, the dependence of t on z re-
mains unknown.

If the line source function

S-'^l'-l^'A-y (5.13)
c2 VSl "2 /

is introduced, then the transfer equation (5.9), written in terms of the
variable t, has the same form as in the linear case.
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On the other hand, from the statistical equilibrium equation (5.10) the
ratio of level populations vii/ni, and consequently the source function, may
easily be expressed in terms of the intensity. After some algebra we find

/ 1
^

(5.14)

S(t)=|a j a(x')dx' y I(T,y' ,x')dy' + (1 - X)B^^2fT) + S*(t)
,

whe re

A
2 1

X = — —
, (5.15)

At, + n C-,,
21 e 2

1

By^2(T) is Planck's function

A
and Sq(t) is given by (5.6), with t defined according to (5.12). Finally, by
substituting into (5.14) the formal solution of the transfer equation (5.3),
given by (3.13) and (3.14), we obtain the following linear equation for S(t):

S(T ) =
I y K^(|t - T - |)S(T')dT' + (1 - A)B^^2f'^) ^ S*(T) . (5.17)

REDUCTION OF THE NONLINEAR PROBLEM TO A LINEAR ONE. At first glance the
nonlinear case hardly seems to differ from the linear one: the expression
(5.13) is used instead of (2.5) for the source function; the parameter X is
calculated according to (5.15) instead of (5.7); and, finally, in the inte-
gral equation for S(t), the coefficient of (1 — X) is Planck's function rather
than Wien's [cf. (5.8) and (5.17)]. However, this is not the only difference;
for the value of tq for which (5.17) is to be solved is also unknown. Accord-
ing to (5.12) the optical thickness tq of the whole layer is given by the
expression

^0 = ^12f^0) dz (5.18)

which, at first sight, can be evaluated only after the level populations have
been found as functions of z, i.e. only after the problem has been solved.
However, a procedure is available for obtaining tq without a preliminary de-
termination of the z-dependence of level populations.

We define tq as the limiting value of optical thickness that the medium
would have if all atoms were in the lower level:

k^2(Vo)nzQ (n^(z') + n2(z'))dz' (5.19)
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We shall call this quantity the limiting optical thickness o£ the medium. It
is obvious that the actual optical thickness tq is less than t§, since some
of the atoms are in the upper level. We also introduce the limiting optical
depth

z,

*
T = k ^2(vQ)n(zQ - z) = k^2(^o^ / ("if^^'^ ^^z*^^'^) ' •

(5-20)

If the value of Tq is known and in some way or other the source function
has been obtained as a function of the limiting optical depth t*, it is clear
that the problem is then completely solved.

For the remainder of this discussion it is important that we regard the
source function defined by (5.17) to depend on tq as a parameter: S = S(t,
tq) . In order to obtain the "real" value of tq for which the solution of
(5.17) gives the dependence of the source function on optical depth t, we pro
ceed as follows. From (5.12) and (5.20) we have

*
dT

dx

n + / g \ -1

I
1 - — —

1 , (5.21)

or

^"^
= 1 +

^1
+ S(T,Tj , (5.22)

whence

T„ = T
0

+ (l + —]-^ f S(T,T )dT . (5.23)

This equation may be used to find Tq. In fact, if (5.17) is solved for all
Tq less than tq, then the right side of (5.23) will be a known function of Xg
Having found the "real" value of tq given by the root of (5.23), we can then
select from all the functions S(x, xg) with tq ^ xg the one that corresponds
to this value of xq.

In this function the variable x must still be converted to the limiting
optical depth x*. This may be done by means of the relation

(21 +
52_\_c^

f S(x',x.)dx' ,
(5.24)

which follows from (5.22). It must be stressed that in this equation, xq

is the real optical thickness of the medium, i.e. the root of Eq . (5.23).

Thus the solution of a nonlinear problem may be divided into three
stages: (1) solving (5.17) for all xq less than xq; (2) determining the real
optical thickness xg from (5.23); (3) transforming the argument of S(x, xg)

from X to the limiting optical depth x* via (5.24), and thereby to z. Thus
if a linear problem reduces to the solution of one integral equation for
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S(t, tq) , in the nonlinear case a set of such equations with tq < tq must be
solved. This is the price paid for nonl ineari ty

.

There are, however, two important special cases in which the situation
becomes quite simple: those of infinite and semi - infinite media. Let us
consider, for example, a semi - infinite medium. It is clear that even if
allowance is made for the decrease of the optical depth because of excitation
of atoms from the lower level to the upper one, it remains semi - infinite as
before. Here, therefore, the real optical thickness tq need not be deter-
mined. The T-dependence of the source function is found by solving only one
integral equation, (5.17), with tq = «>. Then it is simple, using (5.24) with
Tq = to convert from optical to geometrical depth. And if one is inter-
ested in the intensity of emergent radiation, rather than the source function
itself, one need only determine S(t) without considering its dependence on
z, since

00 a(x) ^

,

1(0, y,x) = / S(T')e ^ a(x)— .

'

(5.25)

This last observation also applies to a layer of finite optical thickness.

The problem discussed in this section was first considered by E. A.
Milne (1930), who, however, assumed that the frequency of a phxiton remains
constant during scattering. The same problem, allowing for frequency redis-
tribution, was studied by R. N. Thomas (1957). Both Milne and Thomas assumed
a semi - infinite medium, and did not discuss tlie conversion from optical to
geometrical depth. A method for determining tq and transforming from t to z

has been suggested by V. A. Ambartsumian (1964, 1966); see also N. B.

Yengibarian (1966), V. Yu . Terebizh (1967) and Yu . Yu. Abramov, A. M. Dykhne
and A. P. Napartovich (1967a).

2.6 KERNEL AND RELATED FUNCTIONS: GENERAL PROPERTIES

DEFINITIONS AND BASIC RELATIONS. The function Ki(t), which appears in the
kernel of the integral equation for the line source function, and several
functions related to it play an essential role in all of the problems of
radiative transfer in spectral lines. In this section we study the most fre-
quently encountered of these special functions (for the case in which the ab-
sorption in the continuum may be ignored) . These results will be used con-
stantly in subsequent chapters. This and the following section are based on
the work of D. I. Nagirner and V. V. Ivanov (1966).

Let us define

oo

Mj^(t) = a y a^(x)e~"'^^^'^dx, t > 0 ; k = 1,2, ... , (6.1)

and

oo

^nk^^^
= ^ f a^(^)E^(«(x)T)dx , t > 0; k ,n = 1,2, ... , (6.2)

where E^(t) is the n-th exponential integral
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1

E^(t) = j e 2 dy . (6.3)

0

The most frequently encountered of the functions Kj^}^(t) are K-|^2(''^) ^'^d

K2i(t). Special notations will be used for them:

The function K^Ct) determines the kernel of the integral equation for the
line source function in media with plane and spherical geometry (see Sec.
2.4), and will be referred to as the kerne 1 function , or sometimes simply
the kernel. The normalization of K]^(t1 is

CO

(T)dT = 1

We note that

and, in particular.

T

From (6.1) - (6.3) it follows that

00

T

oo

K2(t) = y* K^(t) dt (6.6)

K„^(T) = ^J M^(t) ^
,

k,n = 1,2,... . (6.7)
nk^ ^ y k

T

From (6.5) and (6.7) we find

(n-l)K^j^(T) = Mj^(T) - tK^_^^
k+1^^^ '

k = 1,2,...; n = 2,3,... . (6.8)

In particular,

K2(t) = M^(t) - tK^(t) . (6.9)

Substituting (6.3) into (6.2) and introducing z = y/a(x), we obtain

1

=° ct (x) _ 31

K^j^(t) = A f a^''''~^(x)dx J e ^ z^"^dz . (6.10)

-co 0
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Here and throughout the rest o£ the book we shall assume, unless the contrary
is stated, that a(x) is an even continuous function that decreases monotoni-
cally as |x| increases. Changing the order of the integrations in (6.10), we
obtain

•o

where

G (z) = 2A

CO/m + 1
a (x') dx' , z < 1

, (6.12)

00

/
x(z)

G^(z) = 2A / a"^^^x')dx' , z > 1
, (6.13)

and x(z) is defined by the expression

a(x(z)) = -i-
; x(z) > 0 . (6.14)

We shall drop the subscript 1 in Gj^(z), so that

G^(z) E G(z) . (6.15)

Then, in particular,

T

CO
'J^

Ko(t) = / e ^ G(z) dz . (6.17)

Along with M]^(t) and Kj^]^(t), the functions

V(

oo

u) - /"-^
*^ 1 + u 2,2

dz
(6.18)

and

00

U(z) = z^ / -£IllL dz'
J z2_2>2

(6.19)
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also play an important role in line transfer problems. The first of these
differs only by a constant factor from the Fourier transform of K]^ ( |

x
|
) :

CO CO

VCu) =
\ f ( I

T
I

)e^'^"dT =J K^[t)costu dT , (6.20)

0

from which, incidentally, it follows that

00

K^(t) =^f V(u)cosTudu . (6.21)

The second is related to the one-sided Laplace transform of the kernel func-
tion

CO CO

K^(s) E y* e-^^K^(T)dT = f -^l^^dz- (6.22)

0 0

^

by the expression

By substituting the explicit expression for G(z) from (6.12) - (6.13) into
(6.18) and (6.19) and integrating by parts, we obtain

OO

V(u) = - A / a^(x) arctg dx , (6.24)
a(x)

U(z) = z - f a^(x) In ^""^^^ ^ ^
dx . (6.25)

2 J za(x)—

1

CO

When z is real, the ratio (za (x) +1 ) / ( za (x) —1 ) in (6.25) should be replaced by
its modulus, and the integral (6.19) is to be interpreted as a principal value.

These functions reduce to the "classical" ones appropriate to monochro-
matic scattering if we assume that the profile is rectangular, i.e.

a(x) = aj^(x) =
1,
0,

< 1

> 1

This rectangular profile was discussed by E. A. Milne (1930) and will be
referred to as the Milne profile. It may be assumed that for the Milne pro-
file G(z) = 1, z < 1, G(z) = 0, z > 1. In this case the kernel function
Ki(t) is Ei(t), the function K2(t) reduces to E2(t), and the functions V(u)
and U(z) are

Vm(u)
arctg u

u
(6.26)

522-519 O - 74 - 7
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the quantity (z+l)/(z— 1) being replaced by its absolute value for — 1 < z < 1.

As we have already mentioned in Sec. 1.5, the subscript M will be used to
denote functions referring to monochromatic scattering.

SERIES EXPANSIONS. Series expansions are readily obtained for -the functions
M]^(t) and Kj^]^(t). Let us define

CO

a^ = A / a-' "(x)dx
, j = 0,1,2,... , (6.28)

DO

/ a^(x) Jin a(x)dx . (6.29)

Expanding the exponent in the integrand of (6.1), we find

oo

j=0

Similarly, the well-known expansions of the exponential integrals (see, e.g.,
V. Kourganoff, 1952) may be substituted into (6.2) to obtain series repre-
sentations for Kj^]^(t). In particular,

GO
,

_^

K^(x) = -a^£nT-a^Y*-a . T.^^-^)' -^.2 ^^l^i^^^.iy.
'

'

OO

* _
. ^, j +2 (6.32)

K (t) = 1 + a T£nT + (ay -a + a)T + 2^(-l)^ a
^

I 1 1 1 ^ j+z (j+i)(j+2):
3=0

*
where y = 0.577216 is Euler's constant. The series (6.30) - (6.32) converge
for all T , 0 < T < °° ; however they are only useful when t is not large.

From (6.24) and (6.25) we have

oo

\jf ^ 1 ^ V* r
^21+2 —2(j+l) ^ TV ( u ) = — a T

- + 7. ( -1 ) — u ,
u>l, (6.33)

2 1 u j=o 2j + 1

00

U(z) = 22 JalL z2j+2 ^ 0 < z < 1 . (6.34)
j=0 2j +

1

ASYMPTOTIC BEHAVIOR AT INFINITY. The asymptotic forms that will be derived
in this subsection are much more important than the series expansions just
given

.

Let us assume that the function x(z) defined by (6.14) is such that for
arbitrary y, 0 < y < «>,

T • x ' (x/y) 2 6 ( -z^-\lim —
) ( \

= y > (6.35)
-j-->oo X (Xj
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with 6 > 0. The functions x(z) encountered in cases of practical interest
usually satisfy this condition. Let us consider the behavior of M]^(t) and
Kj^]^(t) at infinity, supposing that (6.35) holds. Substituting a(x) = 1/z
in (6.1) and transforming from integration over x to integration over z, we
obtain

00

Mj^(t) = 2A j Q-^'^ x'(z) ^ , (6.36)

1
^

or

T

\if r ^ T A /* — y k—2 x'(T/y) J x'(t)
M, (t) = 2A / e ^ y —

\ '
\' dy • \^ .

^ J X' (t) t-K—1
0

^

Using (6.35), we finally find

M, (t) ~ 2Ar(k + 26-l) 2L1IiI
, t ^ «>

, (6.37)
^ T-k - 1

where r is the gamma function. This method of obtaining the leading term of
the asymptotic expansion of Mj^(t) is due to Yu. Yu. Abramov, A. M. Dykhne

,

and A. P. Napartovich (1967a, 1967b).

Substituting (6.37) into (6.7) and using the same trick, we get the lead-
ing term of the asymptotic expansion of Kj^k(T)

K^j^(x) ~ 2A '}^'\'7^}^ , T ^ 00
. (6.38)

k+n + 26-2 T^~^

In particular.

K fT) ~ 2A ^^LLll
,

(6.39)
1 26+1 T

K.(t) - 2k ^Sl^ X' (t) . (6.40)
2 26 + 1

Let us now obtain an expression for ^^{'^) when z is large. The substi-
tution a(x') = 1/z' reduces (6.13) to

G (z) = 2A / x' (z
•
)

'

m J (z')"^*l
'

z ^ ^

from which, using the device employed in the derivation of (6.37), we obtain

G (z) ~ , z - » • (6.41)
I" 26+m ziTi

and, in particular.
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G(z) ~ -i^
. (6.42)

26 + 1 z

We note in passing the asymptotic relations that follow from (6.37), (6.40),
and (6.42):

M-, (t)

K^Ct) ~ r(26)TG(T) , T ~ . (6.43)
^ 26 + 1

To get the asymptotic form of V(u) for u ^ 0 , we first note that

G(z)dz = 1 , (6.44)/
0

which may be proven by equating the right sides of (6.17) and (6.32) and set-
ting T = 0. Using (6.44), we find from (6.14)

2

V(u) = 1 - /* ^ ^^^^ dz . (6.45)

^ 1 + u^z^

At this point the derivation depends on whether or not the second moment of
the kernel function exists. Let

00 00

0^ =
I

T^K^(T)dT = 2 / Z^G(z)dz . (6.46)

2
If a < °° , then obviously for u 0

2
^

1 - V(u) ~ ^ u^ . (6.47)

On2the other hand, if the second moment of the kernel does not exist
(a = «>) , then for small u the main contribution to the integral in (6.45)
comes from large values of z, and for G(z) we can substitute its asymptotic
form. Using this fact, we may readily show that if 0 < 6 < 1, in the limit
as u 0

7t6 \ u /

1 - V(u) — x'[-l . (6.48)
(26+l)sin ^ '

'

2 2
For 0 < 6 < 1 we always have a = oo

; for 6 > 1 necessarily a The case
of 6 = 1 is more complicated. Here one may have both < oo and = oo. in
the first of these cases (6.47) applies. The second case, i.e. 6 = 1 , = oo^

is exceptional, and neither (6.47) nor (6.48) are valid. However, (6.48)
shows that in this case, as u -> 0 , 1 — V(u) tends to approach zero more slow-
ly than does :x'(l/u). An example of this exceptional case will be given
shortly

.

The following asymptotic forms of U(z) can be obtained from (6.19) in a

similar way: if < oo
^ then
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U(z) - 1 - - ^^^^^g x'(z) , z - - . (6.49)
Z 0 + 1

2and i£ a = «> and 6 < 1, then

2
The case o£ a = «> and 6 = 1 is again an exception,

(6 . 50)

It is evident that the asymptotic behavior of the kernel and the related
functions determines, in many respects, the behavior of the solution of the
integral equation for the source function. As we have just shown, these
asymptotics depend on the behavior of the function x(z) at large z, or, equiv-
alently, on the behavior of the absorption coefficient in the range of x-
values where a(x) is small, i.e. in the line wings. Therefore, one might ex-
pect to obtain important information about the steady state of a gas in its
own radiation field by knowing only the behavior of the absorption coeffi-
cient in the line wings. As we shall see in subsequent chapters, this expec-
tation is fully justified.

INTEGRAL RELATIONS. If the second moment of the kernel diverges (a^ = 0°),

the following useful integral relations hold:

CO

/ U(z)G(z)dz = 1/2 , (6.51)

•o

dz TT^ 2

j U(z)G(z) ^ = Y . (6.53)

0
^

2
The derivation of these relations is omitted. If o < °°, these relations are
invalid. Such is the case, for example, for monochromatic scattering. In
this instance some analogs of these relations do exist, but they are of no
interest since Uj^^(z) and Vf^j(u) are elementary functions.

CHARACTERISTIC EXPONENT. Let Ki(t) be a given non-negative function normal-
ized to unity on the interval (0 ,<») and let V(u) be its cosine- trans form
[essentially, the Fourier transform of K^^ ( |

t
| ) ] . We further assume that

1 - V(u) ~ 4)(u)u^'^ , u ^ 0 , u > 0 , (6.54)

where 0 < y < 1 and <^{u) is a function that varies slowly as u ^ 0, i.e. is

such that for arbitrary a > 0

u-^0 cj) (u)
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In particular, (t)(u) may be a constant. The value of y will be referred to as
the characteristic exponent of K-j^ (t ) .

Comparison of (6.54) and (6.47) shows that if K]^(t) has a finite second
moment, then y = 1 and the function (l)(u) is simply a constant: ^ = o^/Z.
If 02 = oo and the condition (6.35) is satisfied, then for 6 < 1 (6.54) and
(6.48) give

l)sinTT6,..2Y ,'^rt^4'(u)u
, (6.56)

ttA

Substituting this expression into (6.35) and taking into account that (l)(u)

varies slowly, we find that y = 6 . It can be shown that in the "exceptional"
case of 0^ = oo and 6 = 1 we also have y = 6( = 1). The results may be summa-
rized as follows

:

2

1. If a < then y=l, 6>l,(i) = — . (6.57)

00

2

If = oo and Y = 1, then y = 1( = 6) and (j,(u) - f " ^^^^^^
.

^^"^^^

^ 1+u^z^

If 0^ = ~ and 6 < 1, then y = & and (j)(u) — u~^^x'(i). (6.59)
(2Y + l)sinTTY \u/

Let us consider as illustrations several important specific cases.
(1) Milne rectangular profile (monochromatic scattering):

( 0,

x| < 1
,

x
I

> 1

- T * 2
We have Kj(t) = Ei(t) ~ e /t for i ^ «>, so that a < oo

; hence we are con-
cerned here with case 1. Further, we have V[vj(u) = arctg u/u = 1—u2/3 +

so that

Milne: y = 1 , <t>
= 1/3 . (6.60)

(2) Parabolic profile:

X , I X I
< 1

,

a(x) =

xl > 1 .i:.

In this case x'(z) ~ l/(2z ) for z ^ °° , and (6.35) gives 6 = 1, whereas (6.39)
shows that K-^(t) ~ 1/(2x3) for x ^ °o

, so that o2 = oo (case 2). It is easy
to show that in this particular case (j)(u) = — (£n u)/4.

(3) Doppler profile:

2

a^ix) = e
•
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We have xq(z) = (In z)^^^ and, according to (6.35), 6 = 1/2 (case 3). Using
(6 . 59) we get

^1/2 / i\ -1/2
Doppler: y = 1/2, <t>

(u) = - Mn -
| (6.61)

4 \ u)

(4) Lorentz and Voigt profiles: For the Lorentz profile a, (x) =

(l+x2)-l we have xl(z) = (z-l)l/2, and
^

Lorentz: y = 1/4, (})
= . (6.62)

For the Voigt profile defined by (1.5.20) and (1.5.8),

1 / \^/^
Voigt: Y = 1/4, (f>

=

I
l2TTaU(a,o)J , (6.63)

(5) Profiles that decrease as power laws in the wings:

a(x) ~W|x|
,

|x|
,

where W and < are constants, W>0,l<K<a>. Here we have

,1-2y
K-1 , _ 1-2y ttAW^

2< 1 + 2y sinTTY
(6.64)

The profiles used in these examples are of interest either because of
their importance in applications of the theory (e.g., the Doppler and Voigt
profiles) or for purely theoretical reasons (say, the parabolic profile).

To clarify many of the points of the theory set forth in the next chap-
ters it is quite useful to consider a one -parameter family of profiles having
the form

a(x) = ^1-qx^y ^'^O(l-qx^) ,
(6.65)

where 0(s) is the unit step function: 9(s) = 0 for s < 0, 0(s) = 1 for
s > 0, and q is a parameter, q > —2 . For q < 0 the profiles have wings ex-
tending to + infinity; for q > 0 the width of the line is finite. In the
particular case of q = —1 we have the Lorentz profile; in the limit as q ^ 0

we obtain the Doppler profile; q = 1 corresponds to the parabolic profile;
and in the limit as q ^ we obtain a 6-function profile (monochromatic
scattering)

.

Using the family of the profiles (6.65) as a working example, we can
trace the distinction between the constant 6 introduced according to (6.35),
and the characteristic exponent y defined by (6.54). Using (6.65), (6.14),
and (6.35) we find
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q < 0

6

q > 0

SO that 6 can be arbitrarily large. For 6 not exceeding unity, y = 6; while
for 6 > 1 we have y = 1.

The profiles of this family with infinitely extended wings have 5 < 1/2,
while lines of finite width correspond to 6 > 1/2. This feature is of a gen-
eral nature; that is, it can be shown that if a line has infinitely extended
wings, the characteristic exponent does not exceed 1/2 . The proof is based
on the consideration of the function x(z) defined by (6.14). From the defini-
tion one can infer that if the wings extend to infinity, then x(z) ^ <» for
z -> °°. On the other hand, (6.56) gives

The integral on the right is divergent for z «> only if 6 < 1/2, which
proves our assertion.

Throughout this book it will be assumed that y < 1 if the contrary is
not explicitly stated or if it is not obvious from the context, as in the case
of monochromatic scattering. Since y = 6 for y < 1, the characteristic expo-
nent y will be often identified with 6. The main attention will be given to
lines with infinitely extended wings, i.e. to values of y in the interval
0 < y < 1/2.

ALTERNATIVE FORM OF THE ASYMPTOTICS. The asymptotics of the kernel and re-
lated functions found above can be rewritten in another form if (6.56) is
used. This alternative form will be used extensively in what follows. To
facilitate reference we reproduce the most important of the asymptotics in
this alternative form (t °°, z -> <») ;

z

x(z)

M, (t) ~ - (2y + l)r(k + 2y-l)sin7Ty
0(1/t)

Tk+2y-l
(6.66)

K, (t) ~ I r(2y+l)sinuy
^2y + l

(6.67)

K2(t) ~ ^ r(2y)sin^y (6.68)

G(z)
2 .— smiry ^(1/z)

,2y ^ 1
(6.69)

U(z) (6.70)
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CONCLUDING REMARKS. The functions Kx(t) encountered in radiative transfer
theory satisfy the condition (6.54). This condition enables one to develop,
in a sense, a closed theory for the asymptotic behavior of the solutions of
the transfer equation without appealing to detailed information about the
line absorption coefficient. Roughly speaking, instead of a function a(x),
one has to know only a number y, which determines the functional form of the
asymptotics (apart from a slowly varying function, which usually degenerates
into a constant close to unity). The physical reason for this is as follows.
The asymptotics are governed by photons having large mean free paths, i.e.
wing photons. We can ignore the details of the frequency dependence of the
absorption coefficient, for the results depend only on the rate at which
a(x) decreases as x and this information is completely specified by only
one number, y-

The kernel function K]^(t) has an immediate probabilistic interpretation:
K]^(t) is the probability density for the direct radiative transfer of exci-
tation over a distance t (see Sec. 5.2). The characteristic feature of prob-
lems of radiative transfer in spectlral lines with infinitely extended wings
is that the mean-square shift of excitation is infinite, i.e. = «> , This
characteristic distinguishes in a fundamental way these problems from the
whole class of monochromatic scattering problems, both isotropic and non-iso-
tropic, for which is always finite.

In the language of probability theory, the fact that (6.54) holds means
that the functions K-^^t) dealt with in radiative transfer theory fall within
the domains of attraction of stable probability distributions (see, e.g.,
I. A. Ibragimov and Yu. V. Linnik, 1965; V. Feller, 1966). This observation
seems to be very important, and the relation of line transfer problems to the
theory of stable probability distributions deserves the most careful considera-
tion. So far only the very first steps have been taken in this direction
(V. V. Ivanov and S. A. Sabashvili, 1972).

Once the form of the absorption coefficient is specified, more detailed
information can be obtained about the functions discussed in the preceding
section

.

DOPPLER PROFILE. In this case

2.7 KERNEL AND RELATED FUNCTIONS: PARTICULAR CASES

2

a^(x) =
— X

C7.1)e

the normalization constant is Ap = tt

ing to (6 . 12) - (6 .13)

,

'2

(1.5.23) , Xd(z) (£n z)^, and, accord-

z > 1

(7.2)
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Using the well-known asymptotic expansion of the probability integral, we
find from (7.2) :

Gn(z) ^~ . z - oc
, (7.3)

^ 2^'2z2(£n z)^2 [in z)-J

whe re

g = (-i)j (7.4)

and it is assumed that (—1)11 = 1. The expansion (7.3) refines, for the case
of the Doppler profile, the asymptotic form (6.42) of G(z) for large z found
in the preceding section, where only the leading term of (7.3) was obtained.

The coefficients aj and a^ in the power series expansions of the func-
tions under consideration are, in this case,

a° = (j + 1)~'\ a° = -2-^/2
_ ^7^5)

The asymptotic series for Mv(t) and K^^kC^^) x ^ 0° are readily obtained
(V. V. Ivanov and V. T. Shcherbakov, 1965a, 1965b; E. H. Avrett and D. G.

Hummer, 1965). It is found that

00

M^x)^—i ^ ill=mi T^^h^) . (7.6)

where r'--^-' is the j - th derivative of the gamma function. Specifically,

,,D, , 1 /, 0.28861 ^ 0.74179 ^ 1.7015 6. 4426 ^ \ .77.
M (t) ;

1 + r + + . . .
j , (7.7)

^ 7T^2T(Jln t)'2 \ in T (£n t)^ (£n t)^ (£n t)^ /

-,D, , 1 /t . 0.21139 ^ 0. 30888 ^ 0 . 15296 ^ 0. 48726 ^ \ rv(t) ~ ( 1 + + + + T + . . . I . ( / . 8)

TT^T2(£n t)^ V Jin t (£n t)^ [in t)3 [in t)4 /

For T = 10^ the expansion (7.7), as shown, gives M^(t) to three significant
figures, and (7.8) determines Mp(102) to within a few units in the fifth
digit. Tables of m5(t) and m5(t) for t < 10^ are given by V. V. Ivanov and
V. T. Shcherbakov ( 1965a). The function M^(t) has also been tabulated by
T. Tomatsu and T. Ogawa (1966).

The asymptotic expansion of Knk(T) for large t is

00

k\(t) 1 V a., m-i)j_:__^
(7 93

TT^^Tk(£n T)h (2j):: [in t)J
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where

j

^ikn
= Z (-l)'cir^j-i^(k) (7.10

and the C^ are binomial coefficients. In particular,

^D. . 1 A 0.03861 ^ 0.33784 0.26933 \
K [Tj — II + + ...) , (7.11)

2TT'2T'^(£n t)'5 \ in T (£n x)^ (£n t)3 y

^D. . 1 /, 0.53861 ^ 1.14576 3.1337 ^ \
(Tj ~ — I 1 + + ...). (7.12)

2TT^T(£n t)^ \ in T (in t)^ (£n t)-^ /

The expansions (7.11) and (7.12) as shown give values of K^(t) and K2(t) at
T = 100 which are accurate to two units in the third significant figure. Ta-
bles of these functions are in papers by V. V. Ivanov and V. T. Shcherbakov
(1965b), T. Tomatsu and T, Ogawa (1966), and A. L. Crosbie and R. Viskanta
(1970a). Various approximate representations for K^(t) have been obtained
which are well adapted for rapid evaluation on computers (D. G. Hummer and
G. B. Rybicki, 1967, E. G. Avrett and R. Loeser, 1966).

The asymptotic expansion of Vp(u) for u 0 may be obtained as follows.
From (6.24) we have

00

A {u[l - V(u)]} = 2Au^ f ^Mdx
_ ^7^^3^

^ u2 + a2(x)
_ 2

^

For the Doppler profile we set e = ut , to obtain

_d_

du

SO that for small u

_d_

du

oo oo

{u[i - vju)]} ~ , " T t^" - ^i'- f t^" -r-^

Evaluating the integrals which appear here, we obtain

^ - 2n
^^-'4^

-5- {u[l - Vn(u)]}
u (4n - 1) :

:

/iV if i

i
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where E2n ^^^s Euler's numbers (Eg = 1, E2 = —1, E4 = 5, E5 = —61, ...)• For
small values of u, we wish to express V]3(u) in the form

Vp(u) (7.15)

where the are unknown constants. Substituting (7.15) into (7.14), differ-
entiating, and equating coefficients of identical powers of In 1/u, we obtain
the following recurrence relations for the numbers vj :

4n+l
2n + l 2n

n = 0,1,2, .. . ,

(4n+3)
2n+2 [4(n+l)

, , / \2n + 2

1
+ (4n+5)(4n+l)

^2n+2l 16 2n

(7.16)

n = 0,1,2,

with VQ = 1. The first few coefficients v-: are vi = —0.25000; V2 = 1.1128;
V3 = -1.3910; V4 = 10.7577; V5 = -24.205. The expansion (7.15), including
terms through 3 = 5, gives 1 — V£)(u) for u < 10"~5 to four significant figures,
and for u < 10~^ to six significant figures.

The asymptotic series for Uj3(z) as z ^ <=° is obtained in a similar
manner. From (6.25) we have

_d_

dz
U(z) = A /

g (x)dx

1— z 2 (x)
(7.17)

Thus, for the Doppler profile, as z ^ °°

3/2
2n + 2

(4n+i) : : 1-2

z(£n z)3/2 (4n+2):: 2n+2

2n
2n + 2

1

(£n z)2n

(7.18)

where . are Bernoulli's numbers
2j

2 6' 4
" 30' ''6 "

42 ' •

We seek U^{z) for z <» in the form
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"d^^^ ~ 1 "
371 22 S- • (7.19)

16z(£n z)-^/^ (£n z)-'

From (7.18) and (7.19) we obtain the following recurrence relations for Uj

:

_ 4n + 5

^2n + l "Zn '

(7.20)

^ (4n^5):: (22nM V tt^""'^ .g , , (4n.5)(4n.5)
n = 0 1 2

^2n + 2 ^ (4n-^6):: ^ n + 2 r2n + 4| i6 ^2n '
^ •••

with = 1. In particular, Ui = -0.75000; u? = 4.0218; ut = -7.0381; ua =

63. 779
;

U5 = -175. 39.

VOIGT PROFILE. In this case

(x) =
, (7.21)

^ U(a, 0) ' ^
^

where U(a, x) is the normalized Voigt function defined by (1.5.8). Since the
absorption coefficient is given by a rather complicated non - e lementary func-
tion, simple expressions cannot be obtained even for Gy(z), not to mention
M]^(t) and The normalization constant A and the coefficient ai are
the only quantities that can be expressed in terms of tabulated functions,
name ly

,

A,, = U(a, 0) = - e^'
V TT

00

dx
,

(7.22)

^ 1 U (a/2,0)
1 /2 U(a,0)

(7.23)

For other quantities of interest, only partial results are available.

The function U(a, x) itself can be regarded as known. A detailed study
of its properties may be found in the review by B. H. Armstrong (1967), which
contains an exhaustive bibliography. There are also numerous tables of
U(a, x) , the most complete being the 8-figure table of D. G. Hummer (1965b)
(x = 0.00 (0.05) 5.00 (0.1) 10.0; 24 values of a from a = 10-4 to a = 0.5).
For large |x| the following asymptotic expansion for U(a, x) is valid:

U(a,x)
TTX

j=0

(2j + l)'.

x2J

(7.24)

where
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2i

c.(a) = y; (-1)^ ^ ——- .

J ^„ (2i + l): (j-i) : 22 (j-i)
i = 0

For a > 10 and x > 5 the expression

U(a,x) =

7TX' [•(t-1i-(
15 r 2 ^ 4— — 5a + a
4 )

(7.25)

is accurate to four significant figures; this becomes six places for x > 10.

Using (7.25) it is readily shown that the function xy(z) for z ^ °° has
the expansion

Xy (z)
3 _ 2\ U(a,0) 1

^
a z\^U(a,0)

y L /

With this in mind, we obtain from (6.13)

(7.26)

/aU(a,0)\"- _1_ r _a/3 _^2\ ,u(a,0)J-. 0(z2)

'

\ TT y ^3/2 [ 10
\^2 j ^ ' az ^

' , z ^ CO (7.27)

It can also be shown that for t ^ <»

M^d) = (aU(a,0))''^ ^ i _ 1
^|

_ a^^ ^U(a,0) j- + 0(t ^)

4(T) =
I

(aU(a,0))

(7.28)

(7.29)

Asymptotic forms of M^ii) and K2(t) may now be obtained by differentiation,
s ince

M^d) = - ^ M^(t), K^(t) = - ^ K^d)

We therefore have

My(,3 = i^u(a,o)y^ _i_

3/2

.V. . _ (aU(a,0)) "^
1

1 3 ^3/2

1-A(l_a^) .U(a,0)J-.O(x-^)]

l-A(|-_.2>),U(a,0)i-.O(.-2)]

(7.30)

(7.31)

(7.32)

A few words should be said about the region in which it is practical to
apply asymptotic expressions. Let us take mY(t) as an example. From (7.28)
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it is clear that this expansion may be used only when the second term in the
square brackets is small compared to unity. Since the value of a is small in
all cases o£ practical interest, the coefficient of l/ax in the square brack-
ets is of order unity, and the condition just stated takes the form

T >> a"-"- . (7.33)

The expansion (7.28) is then valid only when (7.33) is satisfied; the same
is true for (7.29), (7.31), and (7.32). Thus the domain of applicability of
these expansions depends on the value of a, and increases with a.

Values of the function AK-[^(At)/2 for Voigt profile with a = 0.001 and
0.01, and also for the Doppler (a = 0) and Lorentz (a = °°) profiles are
shown in Table 2, which is reproduced from the paper of E. H. Avrett and
D. G. Hummer (1965). Here, as usual, A is the constant normalizing to unity
the integral of a(x) over all x. An approximate representation as a sum of
exponentials has also been obtained for kY(t) for several values of a, which
allows rather accurate evaluation of this function without recourse to numeri-
cal integration (E. H. Avrett and R. Loeser, 1966).

As for the functions Vy(u) and (Jy(z), from (6.18) and (6.19) it is read-
ily shown, by using (7.27), that

TABLE 2

THE FUNCTION yK^(AT)

log
:

T a = 0 a = 0 . 001 a = 0.01 a = °°

4 1 ,, 8861 1 ,, 8833 1 ..8587 8 .0883 - 1

3 1 ,,4269 1 ,,4249 1 .. 4067 6 .2561 - 1

2 9 ,,6842 - 1 9 ,,6711 - 1 9 ..5549 - 1 4 .4255 - 1

1 5 ,,1728 - 1 5 ,,1668 - 1 5 ..1137 - 1 2 ,.6102 - 1

0 1 .,3071 - 1 1 ,, 3066 - 1 1 ,.3016 - 1 9 ,.3712 - 2

1 2 ,.1316 - 3 2 ,.1363 - 3 2 ,.1803 - 3 6 .4738 - 3

2 1 ,. 25 70 - 5 1 ,.2718 - 5 1 ,.4547 - 5 1 .6913 - 4

3 9 ..9495 - 8 1 ,. 1142 - 7 3 ,.2428 - 7 5 .2779 - 6

4 8 ,.5043 - 10 2 ,. 6470 - 9 1 ,.6138 - 8 1 .6669 - 7

5 7 ..5518 -12 1 ,. 5907 - 10 5 .2591 - 10 5 .2705 - 9

6 6 . 8624 - 14 5 ,.2592 - 12 1 .6663 - 1

1

1 .6667 - 10

7 6 ,. 3334 - 16 1 ,. 6663 - 13 5 .2704 - 1 3 5 .2705 - 12

8 5 .9 108 - 18 5 ,.2705 - 15 1 .6667 - 14 1 .6667 - 13

9 5 . 5630 -20 1 .6667 - 16 5 ..2705 - 16 5 .2705 - 15

10 5 .2 703 -22 5 . 2 705 - 18 1 .6667 - 17 1 .6667 - 16
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V^(u) = 1 - (2TraUCa,0)) '^

_ A
^|

_ .UU,0)^ + 0(u2)j , u -> 0
,

(7.34)

(7.35)

LORENTZ PROFILE. In this case

a, (x) = ^- . (7.36)

In the limit as a «= the expansions found in the preceding subsection
give the corresponding expansions for the Lorentz profile, if we use the
fact, which follows from (7.22), that

lim aU(a,0) = 1/tt

However, for the Lorentz profile one can obtain substantially more detailed
information. The majority of the quantities of interest can be expressed in
terms of elementary or higher transcendental functions.

\,

The normalization constant is = 1/tt. Further, Xj^(z) = (z—1) ^ and

Gl(z) =

a\ = 1/2 , z < 1
,

(7. 37)

z > 1
if .1 /?=r \— larcsm — — I

,

For z > 1 the function Gj^(z) may be expanded in the series

00

^ z3/2 ^ (2j+3)(2j):: J
j=0

The constants a^ and are
J

^L ^ iZj-l) !

:

a^ = - - £n 2 . (7.39)
J (2j):: 2

The functions M2'(t) and M2(t) can be expressed in terms of the modified
Bessel functions ;

M[iT) = 3 2 Iq^I^
, (7.40)
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so that they may be regarded as known. Substituting the asymptotic expan-
sions of the modified Bessel functions we obtain (t <»)

oo

M^x) - -h S ^^^^^^ ^ , (7.42)
u-2T-^ 2J(2j):: tJ

^ ^5-2^3/2 2J+l(2j)
: 1 t3

and, in general,

oo

Mhx) - ^ E (^j-i)::(2j.2k-3):: j_
_

From (7,44) and (6.7) asymptotic expansions of the functions K^, (t) are eas-
\

ily obtained for large t:
^

k\(t) 1— y; (2j-i)::(2j.2k-3):: _i_

^%Tk-^2 2j''k-2[2(j+k +n)-3] (2j) I : tJ

In particular,

Ki'(T) - (l + — - + — + — +...], (7.46)
135 J- .

175 -L .

224 t2 128 t3

27 J- .
25 J- .

221 t2 128 ,3
K^(t) ~ —r^TTT (l + — - + — + — +...). (7.47)2' 3-^^2^1/2 \ 20 T 7 i?« _^ i

•

Tables of kWt) and K2(t) for 0 < t < 50 are given by A. L. Crosbie and R,

Viskanta (1970a).

The functions Vj^(u) and (^^(2) are

48)V (u) = 1 i- + u)^ + — arctg r(2u)'''(u + X+u2")^0
, (7,

^ v/TH 2u L J

I
1 _ I /— - i /TZI . i an lll^ , 0 < z < 1

,

I
2 2 2 l + /l_z

Ul(z) = (7.49)

( 1 _ i /— . ^ £n . z > 1 ,

2 2 /J

and can be expanded in the series

522-519 0-74-8
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j=0

'

'

u^' , 0 < u < 1 , (7.50)
(2j+3)(2j)::

U^(z) = 1

/I
3=0

j (2j-i) :

:

j_

[2j+3)(2j):: zj

z > 1
, (7.51)

where [a] is the largest integer not exceeding a.

Expressions (7.48) and (7.49) are most simply obtained by the use o£
(7.13) and (7.17). For the Lorentz profile, the integrals appearing on the
right sides of these equations are not too difficult to evaluate. We have

^ [uV (u) ] = 1

du ^

— z
,2 _d_

dz
(Z)

u(u+/l + u )

2(l+u-)

1 1

2 /T + z

2 /T + z

1 < z <

^ 1

2

(7.52)

(7.53)

the second of the expressions (7.53) being valid for all complex z with
Re z > 0 ,

except for points of the real axis [1, <») . Integrating (7.52) and
(7.53) over u and z, respectively, we obtain (7.48) and (7.49).



CHAPTER III

MONOCHROMATIC SCATTERING

Problems o£ radiative transfer in spectral lines differ in several essen-
tial features from the classical problems of monochromatic scattering. Since
we shall refer continually to these differences, it seems advisable to pre-
face the solution of radiative transfer problems in spectral lines with a

special chapter devoted to monochromatic scattering, in order to make avail-
able for convenient reference the essentials of this theory. Further infor-
mation may be found in the following monographs: E. Hopf (1934); S. Chandra-
sekhar (1950); V. Kourganoff (1952); K. M. Case, F. de Hoffmann and G.

Placzek, (1953); V. V. Sobolev (1956); B. Davison (1958); I. W. Busbridge
(1960); G. M. Wing (1962); K. M. Case and P. F. Zweifel (1967); and in many
other publications, some of which will be mentioned below.

3.1 THE green's FUNCTION FOR AN INFINITE HOMOGENEOUS MEDIUM

BASIC EQUATION AND ITS TRANSFORMATION. We begin our study of the theory of
monochromatic scattering by determining the radiation field that arises from
an isotropic point source in an infinite, isotropically-scattering ,

homoge-
neous medium. We assume that the source lies at the origin of the coordinate
system. Let us denote by Sp the source function for this problem, i.e., the
ratio of the emission to the absorption coefficient. Since the Peierls equa-
tion is linear, Sp is essentially the Green's function for this equation in
the case of an infinite homogeneous medium. From considerations of symmetry
it is clear that the Green's function Sp depends only on the distance r from
the source, which is conveniently measured in optical units (mean free paths
of a photon). The function Sp(T) is determined from the Peierls integral
equation (see Sec. 2.1):

Here t = (Tx,Ty,Tz) is the optical radius vector, x = |t| is the optical
distance from the source, and X is the probability that a photon survives the
act of scattering (the ratio of the scattering to the total cross section).
The integration in (1.1) extends over all space. In writing this equation
the source strength (per unit frequency interval) is assumed to be 47t/o^,

where a is the absorption coefficient, or more precisely, the extinction

(1.1)
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coefficient (total macroscopic cross section). The subscript p on the Green's
function indicates that it describes the radiation field of a point source.

The physical significance of (1.1) is as follows. The emission of a vol-
ume element located at a distance x from the source has two components: the
direct radiation from the source scattered by this element, and the. re-emitted
radiation arriving from all other points of the medium. This equation is a

special case of (2.4.26), discussed in Sec. 2.4, which describes the trans-
fer of radiation in a spherically symmetrical medium. In the present case
we have assumed a rectangular profile and set S*(t) = Aexp (— t) /4ttt2 .

It is useful to transform (1.1) before obtaining its solution. Let the
components of the optical radius -vector to the field point M be t^, Ty, x^.
By integrating the Green's function S*(x) over the plane t-^ = const, we obtain
the quantity

:

— CO CO

Transforming from rectangular coordinates x , x , x to cylindrical coordi-
nates x^, 4), x^ (Fig. 4), we find

x y z

CO

^^(r^) = 2ii /Sp(x)x^dx . (1.3)

Taking into account that

we have finally

0

X = Xi + X
1 z

00 ^ Z

oo

./
(xj = 2tt

/
Sp(x)xdx . (1.4)

z

Fig. 4. Transformation of the equation for the Green's function.
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Similarly, we obtain

CO CO

f f ^ dx^dXy = Ztt J dx = 2t:E^(|tJ) (1.5)

— CO — CO
I X I

and, finally,

exp (— I X— X
'

I

)

r r exp(.-| x-x'
i J

/ / dx dx = 2ttE^(|x -x'
J J

i x-x •
1
2 ^ y 1 ^

1

z z
) . (1.6)

Therefore, by integrating (1.1) over all Xx and Xy, we obtain

OO CO oo

^ CtJ = \ \ E,(|x -x'|)dx' / / S (x')dx'dx' + t Ei (I -

oo>-
2 J 1 ' z z'^ z / / p ^ X y 2 1 z

00 — 00

tJ) . (1.7)

Using (1.2) once again, and writing x for the independent variable x^, we
finally arrive at the following equation for $oo(t):

CO

^coC-^) =
\ j E^(|x - X' l)*,„CT')dx' +

I
E^(|x|) . (1.8)

— oo

It is evident that $ (x) is an even function, so that only x > 0 need be
considered.

From the solution (1.8), we readily obtain the solution of (1.1), since
Sp(x) and ^>^(x) are related by

S (x) = ^ — $ (x)
, (1.9)

P 2ux dx ^
'

which follows from (1.4).

EXPLICIT EXPRESSION FOR THE GREEN'S FUNCTION. Equation (1.8) is typical of
the class of equations readily solved by the use of Fourier or two-sided
Laplace transforms (see e_^g . E. C. Titchmarsch, 1937; P. Morse and H. Feshbach,
1953). Let us denote by f(s) the one-sided Laplace transform of the function
£(T) :

oo

f(s) = y e~^'^f(x)dx . (1.10)
~~

0

Applying the two-sided Laplace transform to (1.8) and using the convolution
theorem, we obtain

li,
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E (s) + E (-S)

2 i_|e (s) - |e (-S)

But

00

E^(s) = / e~^^E-^CT)dT = -£n(l + s)
, (1.12)

so that the last equation may also be written in the form

A „ 1 + s
rr—ln-;

? (S) + ? (-S) =
, ,

. (1.13)
"

1 - ^in^
2 s 1-s

To obtain ^'^(t) for t > 0 one must invert the Laplace transform, i.e.

evaluate the contour integral

^ooC-^) = ^ / ^oo(s)e^''ds , (1.14)

where all singularities of $ (s) lie to the left of the line Re s = ag. We
require the solution of (l.sf that is bounded at infinity. The Laplace trans-
form ^^(s) of such a solution is a function of the complex variable s regular
in the right half-plane. Therefore in (1.14) we can set oq = 0 , and take the
imaginary axis as the path of integration. Using (1.13) and taking into ac-
count the regularity of $oo(—s) in the left half-plane, which is a consequence
of the regularity of ¥ (s) in the right half-plane, we can write, instead of
(1.14),

+ icO r- _1 "I

—100

The substitution of s = iu reduces this integral to the form

0

Finally, application of (1.9) gives

00

$ (T) = i /" Aarctgu ^^^^ _
(-1^16)

°° TT 7 u-Xarctg u

oo

S (T) = -J— f_AiI£lgi^usinTudu . (1.17)
P z-n^T J u-Aarctg u

0

This is the desired explicit expression for the Green's function for an in-

finite homogeneous medium.
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ALTERNATIVE REPRESENTATION OF THE GREEN'S FUNCTION. The representation (1.17)
is inconvenient for calculation because the integrand oscillates. However, a
further transformation of the integral in (1.15) is possible, leading to an
expression that does not have this disadvantage. This transformation is ob-
tained by deforming the path of integration.

For Re s < 0 the integrand has the following singularities:
1. A pole on the real axis at s = — k where k is the positive root of the

so-called characteristic equation

X „ 1+k— In
2 k 1-k

(1.18)

2. A branch point at s =-1, where In (1 + s) is not s ingle - valued

.

We make a cut along the real axis from — to —1 and deform the path of
integration in (1.15) so that it encompasses all of the singularities of the
integrand in the left half-plane (Fig. 5). To evaluate the integral along
the cut, we note that above the cut s = x+iO, and

1 ^ n 1+s
1 £n-

2 s 1-s
1 - -^in

2x

x+1

x-1 2x

Below the cut s = x-iO, so that

1 ^
r,

1+S , X .
1 In =1 In

2s 1-s 2x

x+1

x-1

,
Xtt .

+ 17^ •

Therefore the integral along the path £, encompassing the cut, is equal to

-1 r. .-1

In
2ui y \\ 2x x-1

lle^^ dx +

ZTii [V 2x x-1 2x / J

le^^dx
,

(s;

Fig. 5. Path of integration for the evaluation of the Green's function

for monochromatic scattering.
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or

1
\^ 2x x-iy

\^
2xy

In evaluating the integral along the path £ we have taken into account the
fact that the contribution from the small circle of radius r centered at
s = — 1 tends to zero as r ^ 0.

Now let us calculate the contribution to the integral (1.15) from the
pole at s = —k. The residue at this pole is

k(l-k^) -kx— — e

X-l+k2

Differentiating (1.18) with respect to \, we find that the coefficient of
e~kT is just X

I
dk/dA j . The pole term may therefore be written as

X
I

dk/dX
I

e""'^''^ . Substituting x = 1/y in (1.19), adding the contribution from
the pole, and allowing for the fact that $00(1^) is an even function, we finally
obtain

1
I

T
I

$ (t) = 2kB^e""^l^l + i /* e ^ R(y) ^
, (1.20)

0

whe re

R(y) =

l-k^ X dk

2(k2+X-l) 2k dX
(1.21-)

Using the relation (1.9), we find from (1.20) that the radiation field
arising from an isotropic point source of strength 47t/o2 in an infinite homo-
geneous medium has the source function

S (T) = -A- f^k^ e-^-^ . ( e"^ R(p) ^ , (1.22)
P 4uT V X J '

,,2 /
'

and, in particular, in the conservative case

1 T

S (t)
P 4ttt

0

1-^3 e ^ R(M) dH.j
, X = 1 . (1.22-)

The derivation of this expression for the Green's function has been the

main object of this section. We shall analyze it in detail below. In most
of the standard texts on transfer theory, an analysis of this kind is either
omitted or given very briefly, leaving unanswered a number of questions of
special interest to us. An exception is the book by K. M. Case, F. de
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Hoffmann and G. Placzek (1953), from which most of the results presented in
Sec. 3.2 — 3.6 are taken.

It is not completely accurate to refer to Sp(T) as the Green's function
for an infinite medium. It would be more nearly correct to refer to the
function

Goo^l'l') = <S(|t-t'|) + Sp(|T-T'|)
, (1.23)

where 6 (
|

;r
—t '

|
) is the delta- function , as the Green's function. We hope that

this minor Tncons istency will not cause confusion.

The solution of the Peierls equation for an infinite medium,

X / exp ( I T—T

'

4tt /
I

'

I

2
S(t) = — /

""^^ I- -' I

^

S(T')dT' + S*(t) (1.24)

*
with an arbitrary source term S (x), is expressed in terms of G as follows

S(T) =

J
S (l')G^(T,T')dT' , (1.25)

or, by virtue of (1.23) ,

S(t) = S*(t) + y*S*(T')Sp(|T-T' |)dT' . (1.26)

The T_' - integration in (1.23) — (1.26) extends over the whole space.

3.2 THE DIFFUSION LENGTH AND RELATED QUANTITIES

In monochromatic scattering the structure of the radiation field depends
in an essential way on the parameter k introduced above as the positive root
of the transcendental characteristic equation (1.18), for it determines the
position of the pole of the Laplace transform of the function $oo(t). In Sec.

3.3 it will be shown that far from the source the radiation field is entirely
determined by the value of k.

The root of the characteristic equation and a number of quantities re-

lated to it also play an important role in other problems of monochromatic
scattering. We shall now examine the way in which these quantities depend on

X.

The quantity k is a monotonic function of X, varying from k = 1 at

X=0tok=0atX=l (Fig. 6). The reciprocal of k is called the diffu-
sion length , which we shall denote by t^. It is important to emphasize that
the diffusion length differs significantly from unity, i.e. from the mean
free path of a photon, only when absorption is relatively unimportant _ in

comparison with scattering. For example, if every second photon survives the

scattering process (X = 0,5), the diffusion length is approximately 5 percent
greater than the mean free path. At X = 0.9 the diffusion length becomes
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0 0.2 0.4 0.6 0.8 1.0

X

Fig. 6. The root k of the characteristic equation as a function of the
albedo for single scattering X.

approximately twice as great, and only for very weak absorption (1 — X £ 0.01)
do the diffusion length and the mean free path differ by an order of magni-
tude .

From (1.18) it is easy to obtain the following asymptotic expansions,
which are useful for calculations when X is small:

k 1 - 2e-2/^(l . . 2A-12X^x' ^-4/X
^

^ ^2.1)

~ 1 - 4e-^/^fl . izile-^/^ . 24-20X.5X^ ^-4/X
^ \ ^ 2)

In the opposite case when X is very close to unity (1 — X << 1) , we have:

(3(1-X))'2

1,2

3(1-X)

2 1 2 2 2
= 1 - -(1-X) i^(l_X)^ £_(i_x)-^ +

5^ ' 175^ ' 125

1 - -(1-X) + ^(1_X)2 + _i-(l_X)^ +
5 175 175^ '

(2.3)

(2.4)

It is thus evident that in the extreme case of very weak absorption, the
diffusion length is approximately (3(1—X)) 2.

From (1.18) it follows that

dk^ ^ 2k^ (1-k^) ^ 4k^ ^2
dX

X (X-l+k2)
(2.5)

We have already encountered this quantity; it is the coefficient of the expo-
nential term in (1.22). Differentiating (2.2) and (2.4), we find the follow-
ing useful expansions

:
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_ . .
8-6X^-2/X

^
72-84xW ^ \

, , ^ ^ (2.6)

-f(l-X) . * 3^(l-A)' * ...) , 1 - X « 1 . (2.7)

The values of the quantities just mentioned and the quantity A encountered in
the next section are given in Table 3.

3.3 THE green's FUNCTION FOR AN INFINITE MEDIUM: GENERAL ANALYSIS

BEHAVIOR AT INFINITY. Let us now discuss the properties of the Green's func-
tion for an infinite homogeneous medium. It can be seen from (1.22) that the
function xSpCx) is the sum of two terms. One of them — the term not involv-
ing the integral — decreases with distance as e"^"^ , with k < 1. The second,
being a superposition of the functions

'

with y < 1 , should decrease at
least as fast as e~^ (it tends to zero even slightly faster; see below). For
large enough distances from the source, therefore, the first term should be-
come predominant, i.e. it describes the asymptotic behavior of the solution
for T 0°. The integral component, on the other hand, may be regarded as a

deviation from this asymptotic solution which is significant only when t is
sufficiently small, i.e. near the source. Thus the Green's function (1,22)

TABLE 3

THE CHARACTERISTIC ROOT k AND RELATED QUANTITIES

X k
dk^

dX
A

0 . 0 1 0000 1 0000 0 0000 0 00000

0 . 3 0 9974 0 9948 0 1162 0 . 08176

0 . 4 0 9856 0 9715 0 3733 0 2305

0 . 5 0 9575 0 9168 0 7319 0 3992

0 . 6 0 9073 0 8233 1 1460 0 5568

0 . 7 0 8286 0 6866 1 5900 0 .6947

0 . 8 0 .7104 0 5047 2 05 11 0 .8128

0 . 9 0 .5254 0 .2761 2 5224 0 9 136

0 . 92 0 4740 0 .2247 2 6175 0 .9320

0 . 94 0 .4140 0 .1714 2 .7128 0 .9498

0 . 96 0 . 3408 0 .1162 2 8083 0 .9670

0 . 98 0 . 2430 0 .0590 2 .9041 0 .9838

0 . 99 0 .1725 0 .0298 2 .9520 0 .9919

1

.

00 0 .0000 0 .0000 3 . 0000 1 .0000
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may be represented in the form

where

Sp(T) = S^3(T) . S^^(T)
, C3.1)

TTT

and S-(--j.Ct) describes the behavior o£ the Green's function in the near zone.
The subscripts "as" and "tr" denote "asymptotic" and "transition," respective'
ly. The feasibility of this division into asymptotic and nonasymptotic parts
is the most important feature of the Green's function. As will become clear
later, this feature is not peculiar to the problem of a point source in an
infinite homogeneous medium, but is characteristic of the entire class of
monochromatic scattering problems.

But in reality, how universal is the possibility of dividing the Green's
function into two parts in this way? At "large enough" distances from the
source, of course, the exponential term is dominant and the division becomes
valid. We must consider, however, the possibility that these distances are
so large that radiation from the source is unlikely to reach this asymptotic
region.- When the survival probability of a photon is significantly different
from unity, this is just what does occur.

INTEGRAL PROPERTIES. In order to analyze this question properly, we shall
first consider the integral properties of the Green's function (1.22). We
wish to ascertain what fraction of the photons in the medium is described by
the asymptotic part of the solution. In other words, we wish to evaluate the
following expression:

S^3(T)dT

(3.3)
/Sp(T)dT

where the integration in both cases extends over all space.

The numerator may be calculated directly:

oo

S (T)dT = 4k^B^ / Te"^"^ dx = 4B^ . (3.4)

0

Evaluating the integral in the denominator is somewhat more complicated.
Using (1.9) and integrating by parts, we find that

oo

/t^^ Sp(T)dT = 2(2n + 1) j T^''$^(T)dT , n = 0,1,2, ... . (3.5)

0

For small values of n the integral on the right can be calculated in the
following way. In the domain of regularity of the function ^^(s), i.e. for
Re s > — k, it can be expanded in a Taylor series:
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00 00 00 CO

= f ^„(T)e-^^ dT = y* $^(T)dT - S J T<f^(T)dT + ^ f T^$^(T)dT - ... (3.6)

0 0 0 0

Consequently in the strip — k < Re s < k

GO OO

^cofs) +^00^-5) = 2 f $^(T)dT + 5^ f T^$^(T)dT + ... (3.7)

0 0

Substituting this expansion into (1.13), we obtain

°° OO
_^

2 f $^(T)dT + s2 f ThjT)dt = (l - ^^ni^j - 1 . (3.8)

Expanding the right side in a power series and equating the coefficients of
equal powers of s, we find the values of the integrals in question. In par-
ticular

,

00

f $ (T)dT =
, (3.9)

J ^ 2(1-X)
'

0
OO

/ T2$^(T)dT = ^—
. (3.10)

0
3(1-A)2

From (3.5) and (3.9), it follows that

fS (T)dT = — . (3.11)
^ P - 1-A

This equation has a simple physical significance. In order to interpret this
equation, we note that the ratio of the total number of photons emitted in the
medium per second to the number of photons created by the sources per unit
of time gives the mean number N of scatterings of a photon, i.e.

7
N = -W- , (3.12)

fs^dx

7i

where S is the primary source function, and integration extends over the
entire volume of the medium. (For more detail, see Sec. 6.8.) We shall
apply this formula to the problem at hand. The free term of the original
integral equation (1.1) must be substituted for S*, and the solution Sp(T)
of this equation must replace S. We obtain

N = 1 /* S (T)dT ,
(3.13)
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which, combined with (3.11), gives us

N = 1
(3.14)

1-A

Thus (3.11) is a direct consequence of the physically obvious fact that in an
infinite homogeneous medium the mean number of scatterings of a photon is
equal to (1 - X)-l.

DOMAIN OF APPLICABILITY OF THE ASYMPTOTIC THEORY. We now resume the calcula-
tion of the fraction of the photons described by the asymptotic term. Substi-
tuting (3.4) and (3.11) into (3.3), we obtain finally

Turning to the values of A in Table 3 (p. 105), we see that for strong
absorption (small A) the asymptotic term describes a rather small fraction
of all photons. Thus for A = 0.4 this fraction does not exceed 25 percent,
and for A = 0.3 it is less than 10 percent. Only for nearly pure scattering
(1 — A << 1) is there an overwhelming preponderance of photons in the zone
where the asymptotic behavior, described by (3.2), is established. Conse-
quently, the greater the role played by absorption, the more cautious one
must be in drawing any conclusions about the nature of the radiation field if
information about only the asymptotic part of the solution is available. Such
conclusions are at best valid for only a small fraction of all photons. It
can be shown that the range of parameter values for which the substitution of
the asymptotic for the exact solution provides reasonable accuracy is even
narrower than might be thought on the basis of the figures just mentioned.
In (3.3) the main contribution to the integral containing S^5(t) comes from
those regions where StrC^) is still not negligible in comparison with S^s(t),
Therefore the fraction of the photons found in the asymptotic region, i.e.
where 335(1) >> StrC^), is substantially less than A.

3.4 THE green's FUNCTION FOR AN INFINITE MEDIUM: DETAILED ANALYSIS

BEHAVIOR IN THE VICINITY OF THE SOURCE. Having discussed in general terms
the properties of the Green's function, and having outlined the limits of
applicability of the asymptotic theory, we now turn to a detailed analysis of
the expression (1.22). This analysis is essentially a study of the "near"
zone, where the exact solution of (1.22) cannot be replaced by the asymptotic
form (3.2). The word "near" is in quotation marks here because in fact, as

we have seen, the dimensions of this zone are very large when A is small. We
have a special reason for studying the behavior of the Green's function in the
"near" zone as thoroughly as possible: when we study radiation scattering in
spectral lines, we shall constantly be dealing with a situation that strongly
resembles that of the "near" zone.

A = i(i_A)B^ . (3.15)

In particular, when 1 — A is small,

A =
5^ 175^ ^ 175^ ^ (3.16)

First let us study the radiation field in the immediate vicinity of the
source, i.e. for small x. Multiplying both sides of the integral equation
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(1.1) by T and taking the limit as t ^ 0 we obtain

2 > 2 X
rexp(-|T-T' I)

lim t^S^Ct) =-^+limT^-^/ ^s^Ci'^dT' . (4.1)
T->0 P 4^ ^^J t-t'|2 P

The limit on the right equals zero. Therefore for sufficiently small t

The contribution to Sp(T) from radiation that has arrived from the source
without being scattered is

S*(T) = 2- £-1
, (4.3)

477 ^2

which coincides with (4.2) for x << 1. Such a result might have been expec-
ted.

The behavior of Sp(T) for small t may be studied in more detail. The
technique for such a study, based on the use of (1.17) and (1.22), is ex-
plained in detail in Sec. 4.2. The result is

The intensity I clearly depends on two variables: the distance from the
source, and the angle 6 between the position vector and the direction of
propagation of the radiation. It can be shown (M. G. Smith, 1964) that for
y = cos 9 > 0 and x ^ 0

I(x,u) = ^— (t\ - arcsin(l-y^)^) i + O(Jlnx)
,

(l-y2 3% \ / t

(4.5)
2 J'

rr ^ ^ ^ arcsin(l— y )^ ^
I (t ,-y) = — + 0 (£nx)

,

4tt Q_y2-)% X

or, if we convert from the variable y to the angle 6,

I(x,e) = — - + 0(£nx) , 0 < 0 < X ^ 0 . (4.5')
4tt sin9 X

We note some errors in Smith's paper: a factor \/2 is omitted in the right
side of the expansion, and the second term is incorrect throughout. Instead
of using this term, we give in (4.5) and (4.5') only an estimate of its
growth rate for x ^- 0

.

l) DETAILED ASYMPTOTIC THEORY. Let us turn back to the Green's function. Com-
parison of (4.4) and (1.22) shows that for small x the main contribution to
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Sp(x) comes from the non- asymptotic part of the solution, i.e. from

(t)
tr ^ '

4TrT ^ ^2
(4.6)

which is conveniently represented in the form

X -T

4ttt'

(4.7)

where ^r^^i^ allows for the deviation of S^.-p(T) from the expression (4.3) for
S*(t). ^Thus

£p(T) = xe^ /e-^/^R(y)dH (4.8)

It is advantageous to write S^j.(t) this way because at moderate values
of T (let us say, for t < 20) the function ?p(T) is of the order of unity.
It can be considered as a correction factor, and set equal to unity in esti-
mates. And when t is large, Cp(T) simplifies greatly, and a rather simple
asymptotic representation can be obtained for it as follows. The substitu-
tion

1

1 + x

reduces (4.8) to

?p(T) = T

'/ • (-)
e dx

(4.9)

(4.10)

For large t the main contribution to this integral comes from small values of
X. In this region the function R(l/l+x) can be approximated by

(4.11)

whe re

Xg = 2e
-2 /A

Substituting (4.11) for R in (4.10) and introducing y = tx, we find finally,
for large t,

^ (t) F(t)
,

(4.12)
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where

oo

I-l

; and

F(t) = y* + A. (£ny-t)^j e ^'dy (4.13)

t = InZx - - . (4.14)

The expression (4.12) exhibits the asymptotic behavior of ?p(T) for
large t. It is remarkable that the quantity \^E,^{t:), which depends on two
variables t and X, in the extreme case of large t reduces to a rather simple
function of the single variable t. Naturally, this is a great simplifica-
tion. In later chapters we shall see that similar simplifications play a
tremendously important role in the study of scattering in spectral lines.

NUMERICAL DATA. To obtain the Green's function it is necessary to evaluate
F(t) . For t2 < tt2 this function may be expanded in a Taylor series

2 3

F(t) = 0.88322 - 0.04684t - 0.11500^ + 0.01863— +
2 3!

t^ t^
+ 0.08280± 0.0202— ... , (4.15)

41 51
'

which, taking all of the terms appearing here, for |t| ^ 0.5 gives F(t) to
four significant figures. The following asymptotic expansion is valid for
t^ > tt2:

(4.16)

*
where y is Euler's constant. When t does not satisfy one of the inequali-
ties |t| << TT

,
|t| >> IT, F(t) can be evaluated numerically from (4.13) (Table

4).

The expressions ( 4 . 12 )
- ( 4 . 14) give ?p(T) for t >> 1. In the opposite

case when t << 1, we have

Cp(T) = 1 - ^hJ^-^\^y + ^ZX-Aidy^ni + 0(t2) . (4.17)

All we lack now for a full evaluation of the Green's function Sp(T) are
values of ?p(T) in the intermediate region, which we can find from (4.8) by
numerical integration. K. M. Case, F. de Hoffmann and G. Placzek (1953) give
4-s.f. tables of ^p(T) for t < 20 and several values of X. These tables,
unfortunately, are inaccurate. We give a three- figure table of Cp(T) for
X = 1 obtained by rounding off the values of ?p(T) given by Case et al.

(Table 5). At x = 20 the asymptotic expression (4.12) is already quite accu-
rate (Fi g. 7) .

After a study of the non- asymptoti c part of the solution, it is helpful
to revert to the discussion of the region for which the asymptotic theory

522-519 O - 74 - 9
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TABLE 4

THE FUNCTION F(t)

t F(t) t F(t) t F(t3

-20 0 ,,0259 -2. 0 .. 7670 5 0 ,.2600

-18 0 ..0320 -1 0 ,.8723 8 0 ,.1236

-16 0 ..0407 -0 . 5 0 .. 8920 10 0 ,.0835

-14 0 ,.0535 0 0 ,.8832 12 0 ,.0601

-12 0 ,.0732 0 . 5 0 .. 8460 14 0 ,.0452

-10 0 ..1058 1 0 ,.785 1 16 0 ,.0352

- 8 0 ,. 1640 2 0 ,.6256 18 0 ,.028 1

- 5 0 ,. 3624 3 0 ,. 4686 20 0 ,.0230

- 3 0 ,.6208

TABLE 5

THE FUNCTION ^ (t) FOR X = 1

T S (t) T fp (t) T

0 . 0 1 , 000 0 . 8 0 . 791 4 . 0 0.544

0 . 1 0 . 956 0 . 9 0 . 775 4 . 5 0.525

0 . 2 0 . 922 1

.

0 0 . 761 5 . 0 0.508

0 . 3 0 . 893 1

.

5 0 . 702 6 . 0 0 .479

0 . 4 0 . 868 2 . 0 0 . 657 7 .0 0 .455

0 . 5 0 . 846 2 . 5 0 . 62 1 8 .0 0.435

0.6 0 . 826 3 . 0 0 . 591 9 . 0 0.417

0 . 7 0 . 808 3 . 5 0 . 565 10 .0 0 . 402
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t

Fig. 7. The accuracy of the asymptotic form of Cp(T) : the curve is the
function F(t); the points are values of (Att/2)25 {20) obtained from (4.8)
by numerical integration.

0 2 4 6 8 10 12 14 16 18 20
' T
j

Fig. 8. Fraction of photons described by the asymptotic term.

I

based on the neglect o£ S-j-jCx) in comparison with S^sC^) is applicable.
Using the results quoted above, it is easy to find the ratio Sas(T)/Sp(T) as
a function of t. This ratio appears in Fig. 8.

It is evident from Fig. 8 that for weak absorption the main contribution
to the Green's function comes from the asymptotic term even at distances as
small as one mean free path from the source. In the conservative case
(X = 1), neglecting StrC^) in comparison with Sas(T) gives an error of less
than 2 percent for t > 2. For t > 3 the error does not exceed 0.5 percent.
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NEARLY CONSERVATIVE SCATTERING. As we have just seen, i£ 1 - A << 1, we need
to take S-t;j-(''^) into account only for small t. But in this region S^j.(t) for
1 — A << 1 can be assumed to be approximately equal to StrC^) foi" A = 1.

Therefore when the scattering is nearly conservative, the Green's function
may be approximated by

^p"^^'^^ ~ ^as^^'^^ ^ S^^(T,1). 1 - A « 1 , (4.18)

where the second argument is added to emphasize the A-dependence of the func-
tions involved. Furthermore, in the expression (3.2) for Sa^s(''^)> 'the factor

can be replaced without great loss of accuracy by the leading term of
its expansion for 1 — A << 1 and S^;f.(T) can be replaced by Cp(T) according to
(4.7). Then (4.18) assumes the form

S^(T) ^ (sxe-^^ + e-U^T)) , 1 - A << 1 ,
" (4.19)

where ^p(T) refers to A = 1. Hence it follows that for t << t, e 1/k the
Green's function for 1 — A << 1 is equal to the Green's function for A = 1

to within the accuracy of the leading term of the expansion in terms of
(1 — A)^. In other words, for nearly conservative scattering, absorption may
be ignored in the first approximation at distances from the source that are
small compared with the diffusion length; the effects of absorption appear
only at a distance on the order of the diffusion length. In the next chapter
we shall see that a similar situation exists for radiation in spectral lines,
except that the dimension of the conservative region is governed by the so-
called thermalization length rather than by the diffusion length.

ACCUMULATION EFFECT. We shall now turn to the cumulative effect of multiple
scattering. More precisely, we want to see how the value of the source func-
tion at a given distance from the source depends on the degree to which the
radiation interacts with the -medium.

2Let us consider a point source of strength 4TT/a located in a vacuum,
with a test volume of matter a distance r from it. We assume that the prop-
erties of this matter (its absorption coefficient a, value of the parameter
A, etc.) are the same as those of the matter occupying the whole space in the
system we are discussing. Let the volume element have the shape of a cylin-
der with cross section 1 cm^

,
length dr, and with its axis directed toward

the source. The flux of radiation incident upon this volum.e is

4tt 1 ^ J_
(j2 ^2

2
An amount of energy odr/x is absorbed from the incident flux per unit time,
of which a fraction A is emitted in all directions. The source function in
the test volume is therefore

Snd) = . ' (4.20)

If the source were in an infinite homogeneous medium, then at a distance t

from the origin the source function is equal to the Green's function S (t).

Therefore the ratio
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i(T) =
47tt'

Sp(T) (4.21)

indicates the factor by which the source function within a test volume loca-
ted at a distance r = i/a from the source changes under the influence of the
medium. The quantity i(T) can be called the medium- effect coefficient and is
shown for several values of X, in Fig. 9. (This figure is based on data given
by K. M. Case, F. de Hoffmann, and G. Placzek, 1953.) Our object is to dis-
cuss the general behavior of the function i(T).

The radiation is severely attenuated in a strongly absorbing medium
(small X) . In the extreme case A -> 0 the attenuation is exponential (e"""^) .

The rate at which the medium-effect coefficient decreases with increasing t

becomes smaller as X becomes larger. For X > 4/tt2 = 0.405 a region around
the source exists where the medium acts as a kind of amplifier, or, more
precisely, as a storage element. However, as long as absorption plays an
important role, the size of this region and the accumulation of photons are
not very large. Thus, even for X = 0.9 the maximum value of the medium- effect
coefficient is only about 1.9, and the radius of the accumulation zone, where
i(T) > 1, does not exceed 4.8 mean free paths. Only for very weak absorption
(1 — X << 1) does the accumulation effect become significant.

It is clearly of interest to consider the case of nearly conservative
scattering in a little more detail. From (4.21) and (4.19) it follows that

i(T) ~ 3Te
^"^

+ e ^^p(T) , 1 - X << 1 . (4.22)

For large i the second term on the right is negligible compared to the first;
so for large t

i(T) 3Te
-kT

(4.23)

X = 0.9

Fig. 9. Medium-effect coefficient i(T)
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It is evident from Fig. 9 that as the role of absorption decreases, the
maximum of i(T) shifts in the direction of large t. Therefore in estimating
the position of the maximum one can proceed from (4.23). Differentiating
(4.2 3) and equating the derivative to zero, we find that the maximum accumu-
lation occurs at a distance t^^^x " from the source. In other words, for
nearly conservative scattering the maximum accumulation is observed at a dis-
tance of one diffusion length from the source. Since k ~ /3 ( 1—X ) , for nearly
conservative scattering we may use (4.23) to find the maximum value of the
medium-effect coefficient

1^

i(T ) /'—V , 1 - A << 1 . (4.24)
^ max-^ \1—A/

To determine the radius of the accumulation zone, i(x) must be set equal
to unity in (4.23):

3x^e~^^l = 1 . (4.25)

For reasonably small values of k the solution of this equation gives a value
for the radius of the accumulation zone that is several times the diffusion
length X(j = 1/k. For example, for X = 0.99 we find - 4.3X(j, and for
X = 0.9999 we have xi - 7.1x^.

What is the physical nature of the accumulation effect? In a vacuum the
photon trajectories are rays originating from the source. When the source
is surrounded by matter, the photons are scattered and follow, zigzag paths.
Consequently, the escape of photons from the vicinity of the source is inhib-
ited, resulting in their accumulation there. The degree of accumulation of
photons in an infinite medium is limited by absorption.

We have deliberately discussed these obvious concepts in considerable
detail. In the next chapter we will consider the radiation field in a spec-
tral line. One might expect a similar accumulation to occur in that case as
well, but it is not quite the same. It turns out that the possibility of
frequency shifts during scattering greatly changes the picture, for in some
cases it sharply reduces the accumulation; while in others nullifies it com-
pletely .

3.5 PLANE ISOTROPIC SOURCE

THE SOURCE FUNCTION. Having found the Green's function Sp (x) , we have in
principle solved all the problems of scattering in an infinite medium for
arbitrary distributions of the primary sources. Because of the linearity of
the integral transfer equation, evaluation of the source function requires
the integration of Sp(x) over the source distribution.

Let us consider one important special case. We imagine a uniform distri-
bution of sources in a given plane, and assume them to emit isotropically
with a source strength per unit frequency per cm^ equal to 4tt. We choose the
frame of reference so that the origin lies in the source plane. The source
function then will depend only on the_ optical distance x from this plane. We
denote the source function as Spi(x) (subscript "pi" for plane). Let x' be
the optical distance from a field point to an arbitrary point on the emitting
surface, and ar be the optical distance of the latter point from the base of
the perpendicular dropped from the field point onto the plane. The source
function Spi(x) is the superposition of the contributions of each of the
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"point" sources distributed in the plane t = 0. Considering that Sp refers
to source strength 4tt/o2, we have

00

Sp^d) = 2^J a'-Sp(T')rdr (5.1)

But

,2 2^22
T = T + a r

There fore

Sp,(T) = 2./ Sp(T')T' dT' . (5.2)

After comparing (5.2) with (1.4), we conclude that

Sp^/T) = f„(T) (5.3)

Thus the function ^'^(t) has a double physical significance. On one hand, as

was shown in Sec. 3.1, it is the integral of S for an isotropic source of
strength 47r/a2 over a plane at a distance t from the source. On the other
hand, as we have just seen, is equal to the source function at a distance
T from a plane isotropically emitting 47t units of energy per sec per cm^

.

This coincidence should be expected from physical considerations.

ANALYSIS OF THE SOURCE FUNCTION. We can now use many of the results of the
previous sections. The most important of these results is the explicit ex-
pression (1.20) for the function $^(t)
the sum of two terms -- one asymptotic

Like Sv3(t), the function $ (t) is

as
(t) = 2kB^e~^'^' (5.4)

and the other non- asymptotic

0

'R(y)^ (5.5)

The first dominates for large values of |t|, and the second for small values
It is useful to write the non- asymptotic term as

tr
(T) = A E^(|t|)C^(t) (5.6)

where ?^(t) is the factor by which the function $^^(t) differs from the value
corresponding to single scattering. Values of ^Ji'^) for x < 30 and X = 1

are given in Table 6 (the corresponding table given by K. M. Case, F. de

Hoffmann, and G. Placzek, 1953, is inaccurate; the values of ?„(t) have been

recalculated) .
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TABLE 6

THE FUNCTION ? (t) FOR A = 1

T So:oc
(T) T

CO
T

CO ^ T K oo ^

0 . 0 1

.

0000 1 . 2 0 .6733 6 . 0 0 . 4594 16 0 . 3352

0 . 1 0 . 8679 1 . 4 0 .6548 7 . 0 0 .4385 17 0 . 3283

0 . 2 0 . 8320 1 . 6 0 .6382 8 . 0 0 .4208 18 0 .3220

0 . 3 0 . 805 1 1 . 8 0 .6232 9 . 0 0 .4054 19 0 .3161

0 . 4 0 . 7830 2 . 0 0 . 6095 10 0 . 39 19 20 0 . 3105

0 . 5 0 . 7640 2 . 5 0 .5798 11 0 .3799 22 0 . 3005

0 . 6 0 . 7473 3 . 0 0 .5550 12 0 . 3692 24 0 . 2916

0 . 7 0 . 7322 3 . 5 0 .5338 13 0 . 3595 26 0 .2836

0 . 8 0 . 7185 4 . 0 0 .5153 14 0 . 3507 28 0 . 2764

0 . 9 0 . 7059 4 . 5 0 . 4990 15 0 . 3426 30 0 .2698

1 . 0 0 . 6943 5 . 0 0 .4844

For jxl << 1 one can obtain the following expansion for $ (t) :

+

(5.7)

*
where y is Euler's constant and

)!i
= / (R(y) - 1) ^ . (5.8)

Values of p_, are given in Table 7. From (5.6) and (5.7) it follows that,
for

I T I << 1

,

A

?o.(^) - 1 - — ^ •
^^-^^

iln
I

T
I

+ Y

To completely determine the function K^i."^) , we must establish its behavior
for large |t|. Since for r >> 1

E;l(t) ~ ^ ,
(5.19)
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TABLE 7

THE VALUES OF p*

A p*j X p*

0 0 0 0000 0 6 0 1668

0 1 0 1478 0 7 0 0459

0 2 0 3083 0 8 -0 0715

0 3 0 3991 0 9 -0 1825

0 4 0 3744 1 0 -0 2861

0 5 0 2 830

we find from (5.6) that

1

5.(T) - Ixlel^l / e-|^l/^R(y)^ . (5.11)

0

Let. us compare this expression with (4.8). For large |t| the main contribu-
tion to both integrals comes from values of y close to unity. Therefore the
difference of a factor y in the integrands is unimportant, and Coo(t) has the
same asymptotic behavior as E, (t)

,
given by ( 4 . 12 ) - ( 4 . 14) . Th^ results shown

in Sec. 3.4 are also directly applicable here.

ADDITIONAL REMARKS. We could conclude our discussion of the plane isotropic
source at this point. However, a number of additional comments seem to be of
some interest. The first of these relates to the behavior of the solution
for weak absorption. When 1 — A is small, the leading term in the expansion
of the quantity 2kB2, which appears as a factor in the pole term of *^(t), is

2kB^ ~ — . (5.12)
2(1-X)^ 2k

Consequently the function $^(t) diverges as X -> 1 . This indicates that a

stationary radiation field cannot exist in an infinite medium with an iso-
tropic plane source if the scattering is conservative. In reality, scatter-
ing is never strictly conservative, and the medium is never infinite, so
that divergence is avoided.

However, the tendency of ^>„(t) to approach infinity as X ^ 1 signifi-
cantly influences the behavior of the solution for nearly conservative scat-
tering. Since the non- asymptoti c term $^j,(t) remains finite as X -> 1, the
divergence occurs only in the asymptotic term (5.4). Therefore, no matter
how small a value of t we take, a value of X exists such that for larger
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values o£ A, ^as'^''^) will exceed ^-t-^CT). Consequently the smaller the role o£
absorption, the smaller the interval over which the exact expression for
cannot be replaced by the asymptotic term ^asC"!^)* In the extreme case of
weak absorption (1 — X << 1), we have

^ooCt) ~ ^ e-^l"^' ^ i E^CItD^^Ct) , 1 - X « 1 , (5.13)

where ^^(t) refers to X = 1. This expression is a counterpart of (4.19).

The second observation is as follows. Until now the medium has been
considered to be homogeneous. This assumption was essential for the point
source problem. In the case of a plane source, however, it may be replaced
by the less stringent requirement that the absorption coefficient a depend
only upon the distance from the source plane (see Sec. 2.4). All results of
the present section remain valid and only the relation of optical to geometri-
cal distance is changed. Instead of t = az we have

= y a(z')dz'
, (5.14)

where z is the geometrical distance from the source plane.

3.6 OTHER SOURCE DISTRIBUTIONS

PLANE PROBLEMS: GENERAL RELATIONS. If the source distribution has plane
symmetry, then the determination of the source function involves just the
solution of the equation

00

S(T) =
I y E^(|t-t' |)S(T')dT' + S*(T) ,

'

(6.1)

oo

*
where S (t) describes the primary source distribution. Let r^(T,T') be the
resolvent of (6.1), i.e. the solution of

00

r^(T,T') =
I
y* E-^(|T-t|)r^(t,T')dt + A e^(|t-t' I) . (6.2)

00

It follows that the resolvent depends not on t and t' separately, but only on

I
T—T

'
I

. There fore

,

r<„(T,T') = r^(T' ,T) (6.3)

and .

'

r^(T+T^, t'+T^) = r^(T,T') ,
(6.4)

where ti is an arbitrary constant. The last equation expresses the transla-
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tional invariance of the resolvent, i.e. its independence of the choice of
reference frame in which x is defined.

Sometimes the plane Green's function G (t,t') is used instead of the.
resolvent. It is defined as the solution o?

oo

G^(t,t') =

^ J E^(|T-t|)G^(t,T')dt + 6(T-T')
, (6.5)

where 6(t—t') is the de Ita- function . Obviously,

G^Ct.t') = r^CT.T') + 6(t-t') . (6.6)

Comparing (6.2) and (1.8) and using the trans lational invariance of the resol'
vent, we get

r„(T,T') = r^(O.T-T') = *^(t-t') . (6.7)

We note in passing that the resolvent, being a function of the absolute dif-
ference of its arguments, satisfies the equation

ar ar
oo CO

+ = 0 . (6.8)

Once the resolvent of (6.1) is known, its solution can at once be writ-
ten :

CO

S(t) = S*(T) + J S*(T')r^(T,T')dT'
, (6.9)

00

or

00

S(T) = y S*(T')G^(T,T')dT' . (6.9-)

00

With (6.7) in mind, we can write (6.9) in the form

00

S(t) = S*(t) + y S*(T')f^(T-T')dT' . (6.10)

00

This is the final expression. The function may be considered known (see
the preceding section)

.

PLANE PROBLEMS: ASYMPTOTIC SOLUTIONS. If S*(t) tends to zero rapidly enough
as |t| -> oo the behavior of the source function S(t) for large

|

t
|
turns out

to be universal; namely, S(t) decreases proportionally to e~k | x 1 . Indeed,



122 MONOCHROMATIC SCATTERING

from (6.10J and (5.4) it can be readily shown that i£

e" ' S (T')dT' < <»
, (6.11)

then

00

S^g(T) = 2kBM f e-^^'s*(T')dT' j e~^'^' , t ± ~
, (6.12)

^ oc.
'

where the subscript "as" stands for "asymptotic."
A

If S (t) > 0, the last expression can be rewritten in the form

5^3(1) = S^$^Jt + tJ , t ^ ±~
, (6.13)

whe re

(y ®^^'^*<^^' J ® ^^'s*(t' )dT'j '
, (6.14)

) is given by (5.4), and is the root of the equation

e
2kT^ y* g k^'s*(T')dT' = y e^^'s*(T' )dT' . (6.15)

This representation enables one to make the following physical interpre-
tation of the asymptotic form of S(t). If the sources are sufficiently con-
centrated (in particular, if they are located entirely within a finite range
of T values), then at large enough distances their effect is the same as that
of a plane source. The value of determines the strength of this effective
source, and gives its position.

It is always possible to choose the t reference frame in such a way that

(30

/
*

S (t' )sh kx' dT* = 0 . (6. 16)

From (6.15), we see that this choice leads to = 0, so that

S^^(t) = S^$^^(T) , T - ±00
, (6.17)

and, as follows from (6.14) and (6.15),
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S^ = y e ^^'s*(T')dT' . . (6.18)

00

We note also another particular case o£ (6.12). If

S*(-T) = -S*(T)
, (6.19)

then the function S(t) is also odd, so that (6.1) for t > 0 can be written
as

oo

S(t) = -J FE^dT-T'I) - E^(t + t') S(T')dT' + S*(t) . (6.20)

0

According to (6.12) and (6.19), if S (t) decreases steeply enough as t -> °°,

the asymptotic form of the bounded solution of this equation is

S^^(t) = S^^kB^e-^^ , T - ~ (6.21)

where

00

S^ = y S*(t' )sh ki'dx' . (6.22)

0

Apart from the notation, this expression is identical to that found by T. A.
Germogenova (1960) by another route. (Germogenova' s expression contains a

typographical error.) In the limit X -> 1 (6.21) reduces to Davison's expres
sion (see R. Marshak, 1947):

00

S(~) = ^ f T'S*(T')dT' , X = 1 . (6.23)

0

SPHERICAL PROBLEMS. Let us now consider an infinite homogeneous medium with
spherically symmetric sources. The functions S* and S depend only on the op

tical distance t from the center of symmetry. We shall show that if S (t)

decreases rapidly enough at infinity, then the asymptotic form of S(t) is,
apart from a constant factor, the same as that of Sp(T).

In Sec. 2.4 we have shown that the equation for S in an infinite homo-
geneous spherically symmetric medium can be reduced to the form

00

tS(t) = - f ["E^dT-T'l) - E^(t + t')| T'S(T')dT' + tS*(t) . (6.24)

^
0

^

Comparing it with (6.20) and using (6.21) and (6.22), we find.
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S (T) = S^-^ 4k2B^e , T ^ 00 (6.25)as /I'j^j

whe re

00

0

= — / t'S*(t' )sh kt'dx' . (6.26)

In particular, for k = 0 (conservative scattering)

= 4iT y T'^S*(T')dT' . (6.27)

The quantity is the strength of a point source at t = 0 which is asymptoti-
cally equivalent in its effect to the distributed source S*(t).

The foregoing derivation of the asymptotic form (6.25) is formal. We
shall also present a derivation based on more easily visualized considera-
tions. This approach will elucidate the physical significance of expression
(6.26)

.

Let t', 6', (})' be the spherical coordinates as shown in Fig. 10. We
wish now to find the contribution to the source function S(t) from the volume
element located about the field point Ui with the coordinates (t', 6', ({)').

Since we are interested only in the asymptotic behavior of the source func-
tion S(t) for large x, we may assume that the rays directed to the point of
observation from all the points with t' e |t'| << t are parallel. Hence the
contribution of the volume element around Mi is the same as the contribution
of a point source with S^ equal to S* (t ' ) t ' 2 di ' s inB ' d6 ' dcj) ' located at the
distance t — x from the point of observation, with x = t'cosG'. In other
words, this contribution is

S*(T')T'^dT'sin0'de'dct>' J_ 4k^B^e~'^'^^~^'^°^®^ .

4TrT

The contribution to S(t) given by the volume element around M-, is, evidently.

Fig. 10. Derivation of the asymptotic solution for the spherically-symmetric
case.

I
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S*(t' ) t' ^di' sine' de' d(})'
1 4j^2g2 -k(T +T'cose')

4ttt

so that the total contribution o£ M, and M-, equals

2S (t' ) t' ch(kT' cose ')dT'sine' de' d(j)'
1 kx

4ttx

Therefore, the factor 2 ch (kx ' cos 6
'
) allows for absorption arising from the

differences in the lengths of the rays from Ui, M2 , and 0 to the point of
observation located at a distance x >> 1 in the direction 6' = 0. Integrating
the last expression over 4)' and 6', we get the contribution to S(x) from the
sources located in a spherical shell of radius x' and thickness dx'. To ob-
tain (6.25) one has only to integrate the resulting expression over all x'.

BASIC RELATIONS. Until now we have been discussing the scattering of radia-
tion in an infinite medium. We now must consider the effect of boundaries
on the radiation field in the medium. The geometry of a scattering region
can vary greatly, and it is, of course, impossible to study boundary effects
for a general case. However, if the radius of curvature of the boundary sur-
face is much greater than the photon mean free path, the boundary may be con-
sidered to be approximately plane, and we obtain the classical problem of
radiation scattering in a semi - infini te medium. Such a semi- infini te medium,
bounded by a plane, can, in particular, be regarded as a very good idealiza-
tion of a stellar atmosphere, which is precisely why this problem was first
studied. More recently similar problems were encountered in the study of
neutron transport.

A semi-infinite medium may be considered to be a good model only for
those regions of the medium where only one (the nearest) boundary significant-
ly affects the radiation field. When "interference" of the boundaries must
be taken into consideration, the problem becomes much more complicated (see
Chapter VIII) .

The radiative transfer equation for a plane-parallel medium is (see Sec.

where y is the cosine of the angle between the direction in which the radia-
tion propagates and the outward normal to the boundary, x is the optical
depth, and S*(x) is the function describing the distribution of primary
sources. The solution of the transfer equation is subject to the boundary
condition

3.7 SEMI-INFINITE MEDIUM: GENERAL THEORY

2.3)

1

(7.1)

1(0, y) = 0 y < 0 (7.2)

expressing the absence of external illumination.

The equations (7.1) -(7. 2) define the same problem as the integral equa-
tion for the source function S(x) (see Sec. 2.4):
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00

S(t) =
^ J E^(It-t' |)S(T')dT'

0

+ S (t) (7.3)

The source function is related to the intensity o£ radiation by

1

S(t) = ^ / I(T,y')dy' + S*(t) (7.4)

A huge body of literature is devoted to the study of these equations,
and a discussion of the methods available for solving them may be found in
any text on the theory of multiple scattering of light. We shall therefore
confine ourselves to an outline of the basic ideas, referring for details to
the monographs mentioned at the beginning of the chapter, and to the original
papers cited below. Although an exact solution of (7.3) can be found in ex-
plicit form, it is extremely unwieldy for use in practical calculations.
Therefore, in addition to summarizing the formulae expressing this solution,
we will also present tables of auxiliary quantities to facilitate their use.
Many of the equations given here are also valid for the general case of scat-
tering with complete frequency redistribution and an arbitrary profile. Deri-
vations of these general relations will be given in Chapter V.

A
The solution of (7.3) with an arbitrary source term S (t) may be regarded

as a search for its resolvent r(T,T'), satisfying the equation

CO

r(T,T') =

I J E^(lT-t|)r(t,T')dt +
^

e^(It-t'I) . (7.5)

0

when the resolvent r(T,T') is known, the source function is found by quadra-
ture :

S(t) = S*(t) + J S*(t' )r(T,T' )dT' .

0

(7.6)

It may be shown (see Sec. 5.1) that to obtain the resolvent r(T,T') depending
on two arguments, x and t', one has to find only the function r(0,T) = 1(1,0)
of one variable, which we denote as $(t):

$(t) = r(0,T) (7.7)

The function $(t) will be referred to as the resolvent function . As follows
from (7.5) and (7.7), it is the solution (bounded at infinity) of the equation

<J)(t

00

) =
J y E^(|t-t' |)$(T')dT' + ^ E^(T) (7.8)

The resolvent is expressed in terms of the resolvent function $(t) by
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r(T,T') = $(|t-t'|) + / $(T-t) $(T'-t)dt
, (7.9)

where is the smaller o£ t and x' (B . Davison, 1958, Chapter VI; V. V.

Sobolev, 1956, Chapter VI, see also Sec. 5.1).

The function 0(t) has the following physical interpretation. Consider
a plane isotropic source at optical depth x in a semi - infinite medium whose
strength is 4it per cm^ . Then the source function at the boundary of the
medium is *(x). It is also possible to regard $(x) as the source function
at a depth x in a medium, bounded by a plane isotropic source emitting 4tt

units of energy per unit area. That the physical significance of the function
|J>(x) is open to a dual interpretation of this kind is a particular consequence
of the reciprocity principle.

The following explicit expression can be obtained for the function $(x)
(I. N. Minin, 1958; see also Sec. 5.3):

$(x) = 2kBerk(T-^Xe)
X r^-x/yR(y) dy

2 J H(y) y
(7.10)

where the notation is identical to that of (1.20), H(y) is the solution of
the nonlinear integral equation

H(y) = 1 + ^ yH(y) f ^^^^ dy'
2 J y+M'

(7.11)

and X is the so-called extrapolation length defined by the relation

e = B (7.12)

In particular, for conservative scattering

$(t) = ^ + 1 y
-T/y

R(y) dy ^ ^

H(y) y
'

(7.10')

The resolvent function $(x) and the function H(y) are the basic special func-
tions associated with the problem of light scattering in a s emi - infinite med-
ium.

We shall call the function H(y) the Ambartsumian function (V. A.

Ambartsumian
, 1942, 1943; see also V. A. Ambartsumian, 1960). In all fairness

it must be mentioned that (7.11) was first obtained and solved by 0. Halpern,
R. K. Luneburg, and 0. Clark (1938); however, their study, unlike that of
Ambartsumian, did not attract the attention it deserved.

522-519 O - 74 - 10
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THE AMBARTSUMIAN H-FUNCTION. An explicit expression for H(y) can be obtained
in the form of a definite integral. The integral representation of H(y) (for
the special case of conservative scattering) was first found by E. Hopf
(1934). Later other representations were found for H(y); 0. Halpern, R. K.
Luneburg and 0. Clark (1938), and, independently, V. A. Fock (1944) showed
that

00

(7.13)

From this expression it follows, in particular, that for 0 < y < 0° the
tion H(y) increases monotonically with y. Its limiting values are

func-

H(0) = 1 ; H(«>) = (1-A)-

The function H(y) is usually considered only for values of the argument
y in the interval 0 < y < 1. As seen from (7.11), once H(y) is known in this
"basic" interval, its value for any other value of y can be found by simple
integration.

There are numerous tables of H(y) for 0 < y < 1. The tables given by
S. Chandrasekhar (1950) were obtained by solving numerically (7.11) using an
iterative method. Most complete are the tables of D. W, N. Stibbs and R. E.
Wier (1959), obtained from an integral representation of H(y) by numerical
integration. Table 8 is based on the data of Stibbs and Wier. D. W. N.

Stibbs (1963) has also published a table of H(y) for X = 1 and y > 1.

Let us now consider the integral properties of H(y)
the i-th moment of H(y), i.e.

We denote by aj^

1

= y* y"^H(y)dy
,

i = 0,1,2, (7.14)

Letting y tend to infinity in (7.11), and using the fact that H(<») = (1—X)
we find

a, = i (l - /1-x) . (7.15)

The other moments cannot be expressed in terms of elementary or special func-
tions; they must be found by numerical integration, except for ai when
X = 1. It can be shown that for 1 — X << 1

= 4 [l -
^ /3 L

/3q(oo) (1-X)''^ -H |-(1-A) +
..] (7.16)

We note also that for X

^ /3
^

(7.17)
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TABLE 8

THE FUNCTION H(y)

X

0 . 5 0 . 7 0 . 8 0.9 0 950 0 975 0 995 1 000

0 00 u u u u 1
1 u u u u i n r\ r\ Ciu u u u i n n n nU u u u i n r\ n r\U U u U i fi n n nU U U U 1 n n n nU U U U 1 n r> n nU U U U

0 05 1 n A A zU H ^ J 1
\J 0 1 1 1 n sj 1 Qu o i y 11 n Q Q 7u y y / i 1 1 11 i i i) i i i y 4 1 1 9 Q 7i z y o 1 1 7 A ^1 O D D

0 10 1 01 7 A 1
1 1 1 7 n1 1 o u i 1 7 Q Qi J> 0 O i i / Z 1

1
i i y D z i 9 111Z 1 1 1 1 9 7 1 AZ o 1 o 1 Z 4 / 4

0 1

5

I n Q /I 7u y 4 / 1 1 b U o i i O O D i
o 7 /I nZ J 4y 1 z 0 9 4 1 2 9 3 6 i

7 T r3 Z 0 6 1
7 r n o3 5 0 0

0 20 i i 1 i 0 1
1 o o r
1 0 Z 5 1

o o o
2 2 8 6 1 2 9 14 1 3 3 7 3 1 3 70 3 1 4146 1 4 5 0 4

0 25 1
L

1 o n 7i z y / 1 z 1 U 9 1 2 6 6 3 1 34 33 1 40 0 7 1 44 2 7 1 5001 1 5 4 7 3

0 30 1 14 3 9 1 2 364 1 30 06 1 3914 1 4605 1 5117 1 5 829 1 6 4 2 5

0 35 i
1 r ^ £15 6 6 1 2 59 5 1 3 3 2 0 1 4363 1 5171 1 5 7 7 8 1 6635 1 7 36 4

0 40 i 1 0 » U 1 2 8 0 6 1 3611 1 4 7 8 5 1 5 710 1 6 414 1 7 4 2 1 1 8 2 9 3

0 45 i 1
7 A A r\
3 0 0 0 1 3 8 81 1 518 3 1

^ o T r6 2 z 5 1 7 0 2 7 1 819 1 1
n o 1 7y Z 1 3

0 50 i
1 O "7 "7loll 1 317 9 1 413 3 1 5 5 6 0 1 6 7 18 1 7 6 2 1 1 89 4 6 Z

n 1 o oU 1 Z 0

0 55 1 1964 1 3346 1 4368 1 5918 1 7192 1 8196 1 9688 2 1037

0 60 1 2043 1 3501 1 4590 1 6259 1 7647 1 8753 2 0417 2 1941

0 65 1 2117 1 3646 1 4798 1 6583 1 8086 1 9295 2 1134 2 2842

0 70 1 2186 1 3781 1 4995 1 6893 1 8509 1 9822 2 1840 2 3740

0 75 1 2249 1 3909 1 5182 1 7190 1 8918 2 0334 2 2536 2 4635

0 80 1 2309 1 4029 1 5358 1 7474 1 9313 2 0834 2 3222 2 5527

0 85 1 2365 1 4142 1 5526 1 7746 1 9695 2 1320 2 3898 2 6417

0 90 1 2417 1 4250 1 5685 1 8008 2 0065 2 1785 2 4565 2 7306

0 95 1 2466 1 4351 1 5837 1 8259 2 0424 2 2258 2 5223 2 8193

1 00 1 2513 1 4447 1 5982 1 8501 2 077 1 2 2710 2 5873 2 9078

Here is the value at infinity of the Hopf function q(T) (see Sec. 3.8).
Later we shall encounter the quantity

1

(7.18)

which is the convergent part of the minus-first moment of the H-function. It

can be shown (J. W. Chamberlain and M. B. McElroy, 1966) that
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a*-j^ = 2JlnH(l) . (7.19)

Values of , a^, a-^, and a2 are given in Table 9.

As well as satisfying the nonlinear equation (7.11), the function H(ij)
is also a solution of the linear equation (see, e.g. V. V. Sobolev, 1956,
Chapter IV)

H(y)fl - Aji.ni^) = 1 - /^dy' , (7.20)
\ 2 y-1/ 2 ^ y-y'

where (y+l)/(y-l) is to be replaced by its absolute value for 0 < y < 1, and
the integral on the right side is to be understood as the Cauchy principal
value. This equation holds for all complex y, except — 1 < y <0. Substituting
y = 1/k in (7.20) and invoking (1.18), we find that

TABLE 9

MOMENTS OF THE FUNCTION H(y)

A a*
^

a
0 ^1 ^2

0 . 1 0 0723 1 0263 0 .5156 0 3444

0 . 2 0 15 14 1 0557 0 .5332 0 3568

0 . 3 0 2388 1 0889 0 .5531 0 3710

0 . 4 0 3368 1 1270 0 .5762 0 3875

0 . 5 0 4483 1 1716 0 .6035 0 4070

0 . 6 0 5785 1 225 1 0 .6366 0 4309

0 . 7 0 7359 1 2922 0 .6787 0 4614

0 . 8 0 9378 1 3820 0 .7358 0 5032

0 . 85 1 0671 1 4416 0 .7744 0 5316

0 .90 1 2305 1 5195 0 .8253 0 5694

0.925 1 3336 1 5700 0 . 8588 0 5944

0.950 1 4620 1 6345 0 .9019 0 6268

0.975 1 6404 1 7269 0 .9645 0 6741

0.985 1 7435 1 7818 1 .002 1 0 7027

0.995 1 9013 1 8679 1 .06 17 0 7485

1 .000 2 1348 2 0000 1 .1547 0 8204
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f "I
J 1-]

HClO dy = 1 (7.21)

We also note the relations

X

XkH(l/k) f HMIii^ dy = 1

n l-k2y2
(7.21')

1

XkB2/ _HHlHi_ dy = H(l/k)

Q
(1-ky)

(7.21")

To prove the first of these relations we set y = 1/k in (7.11)
the resulting equation

H(l/k) 1 1 -
J

fl - A / HiiilidyA
V 2 J l^ky-

I

= 1

To show that

is identical to (7.21') it is sufficient to replace unity in the brackets by
the left side of (7.21). The relation (7.21") may be derived as follows.
From (7.11) it follows that

dp VH(ii) I
y=-i/k

y'H(y')

(l-ky')2
dy'

,

while (7.20) gives

_d_

dy
y=-l/k y 2 J l+ky' / dy \ 2 y-1 / y=-l/k

2B'

H(l/k)

Equating the right sides of these two equations we get (7.21").

We now reproduce the expressions characterizing the behavior of H(y) for
small and large y. From (7.11) it is easy to find that

H(y) = 1 -Ay£ny+ )rO._^\y + 0((£ny)^) , y 0
,

(7.22)

so that the derivative of H(y) diverges logarithmically as y -> 0 . Combining
(7.13) and (7.22) it can be shown that as y -> 0
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X \ *
£n H(y) = --\iin y+ +

I 2v
(7.22-)

+ ^UX - A^^jy^ + 0(y\n y) .

This expansion was obtained by C. Mark (1947) for the special case A = 1.

Using (7.22') it is easy to obtain the coefficients of all terms in the expan-
sion of H(y) — 1 which tend to zero more slowly than y^£ny as y 0 . For
y > 1 it can be found from (7.11) and (7.15) that

1 - (1-X)^- + + . (7.2 3)(vH(y) 2 \ y ^2 ^3

Hence for y > ( X/ 2 ) ( 1-X)~ ''^a^

H(y) = (1-X) ^^l_A(i_x) ''^a^i + . .

.

j ; (7.24)

whereas for 1 < y < (X/2) (1—X)
1

H(y)=--^(l + — -i(l-X)^^ Ji_ + . . .\ . (7.2 5)
X a-j^ y y X a-|^ /

In particular, for pure scattering (X=l) we find from the last expansion,
bearing in mind (7.16) and (7.17),

H(y) = /"y + /3q(-) - ^ 0 - (oo)^ i + 0(y-^)
, X = 1

, y - »
. (7.26)

It follows from (7.10) and (7.12) that to calculate $(t) one must have
values of H(y) for y = 1/k, or values of the extrapolation length Xg. Values
of these quantities appear in Table 10 (after M. A. Heaslet and R. F. Warming,
1968a; see also I. Ku^^^er, 1953). For small values of 1—X the following ex-
pansion is useful:

For nearly conservative scattering (1—X<<1) the function H(y) can be
expressed in terms of the conservative H-function:

H(y,X) = H(y,l)j^l - /3y(l-X)^ + ^3y^-r (y
)^

( 1-X)

+ /3y(|-3y^r(y)^(l-X)^/2 ^ 0^(1-X)^)J ,

(7.28)

whe re
J.

r(y) = ^ ( R(y') (7.29)
2 J y+y'
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TABLE 10

i

THE VALUES OF T
e

AND H(i
k

X T
e

0 . 3 2 . 4947 1 . 1269

0 . 4 1 . 8249 1 . 1843

0 . 5 1 . 4408 1 . 2552

0 . 6 1 . 1923 1 . 3479

0 . 7 1 . 0181 1 . 4799

0 . 8 0 . 889 1 1 . 6955

0 . 9 0 . 7896 2 . 1710

0 .95 0 . 7479 2 . 8339

0 .96 0 . 7401 3 . 0998

0 .97 0 . 7324 3 . 4888

0 .98 0 . 7250 4 . 1401

0 . 99 0 . 7176 S . 6078

1 .00 0 . 7104 OO

and R(y') refers to X = 1. Values o£ the function r(y) for 0 < y < 1 are
given in Table 11. For the proof of (7.28) see Sec. 5.4. The first two
terms of this expansion are easily obtained directly from (7.11) and (7.15).
From (7.28) it follows that this expansion is useful in practice for those
values of y for which ij(l-X)^ << 1.

RESOLVENT FUNCTION. Now we are ready to discuss the properties of the resol-
vent function <J>(t). Using the same method as in Sec. 4.2, we can show that
for small x

X r * * X 2
^'(t) = — —Jlnt—Y +a_^+—T£n t—

* * 1 ^ ^^'^^^

- j(a*i+l-Y*)T£nT + 0(t) ,

*
where y = 0.577216 is Euler's constant. The derivation of this expansion,
though it is simple in essence, requires a lengthy calculation.

In the opposite extreme case of large t we have from (7.10)

$(t) = 2kBe~^'^'^*^e) + o(e ^) (7.31)
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0 ,,00 0 ..0000

0 ..05 0 ,. 0695

0 .. 10 0 ,. 1077

0 ,. 15 0 ,. 1356

0 ,. 20 0 ,.1576

0 ..25 0 ,.1757

0 ,. 30 0 ,. 1909

TABLE 11

THE FUNCTION t

U r (y)

0 ,. 35 0 ,. 2040

0 .. 40 0 ,.2 154

0 ,.45 0 ,.2255

0 ..50 0 ,.2344

0 ..55 0 ,.2424

0 ..60 0 ,. 249 7

0 ..65 0 ..2562

U r (y)

0 ,. 70 0 ,.2622

0 . 75 0 ..2677

0 ,. 80 0 ..2728

0 ,. 85 0 ..2 774

0 ,.90 0 ,.2818

0 .95 0 ,.2 858

1

.

.00 0 .. 2 896

For values of t for which neither of these expansions can be used, the func-
tion *(t) must be found numerically from its explicit expression (7.10). It
is useful to represent $(t) in a form similar to that used in Sec. 3.5 for
$^(t)

,
namely

,

$(t) = ZkBe'^'^^^^e) + A E^(t)^(t)
, (7.32)

where only the correction factor ?(t) need be tabulated. This factor is of
order unity when t is not too large. For large values of t, C(t) has the
asymptotic form

?(t) (7.33)

where F(t) and t are given by (4.13) and (4.14), respectively. Thus, in the
asymptotic region, ^(t) differs from Cp(T) and C^(t) only by the constant
factor 1/H(1) .

^

For nearly conservative scattering the contribution from the second term
in (7.10) is substantial only for small t, where ?(t) for A < 1 differs little
from C(t) for X = 1. Using (7.27) and the expansions given in Sec. 3.2, we
find that, approximately,

$(t) ~ /"e"^^ + |e^(t)C(t) , 1 - X << 1 , (7.34)

or
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$(t,X) ~ /3(e ^^-l) + $(t,1) . (7.35)

In (7.34) ^(t) refers to X = 1.

In contrast to $ (t) , the exponential (pole) term in <I>(t) remains bounded
as X ^ 1 with a limiting value of /3; see (7.10'). This behavior results
from the escape of photons through the boundary which limits their accumula-
tion in the medium.

The function $(t) satisfies several useful integral relations, which we
give for reference without proof.

oo

(T)$(T)dT =
, (7.36)

oo

1 $(T)dT = (l-X)"''^ - 1 , (7.38)

00

/
A "l

T$(T)dT = -— , (7. 39)
2 1-X

oo

J $^(T)dT =
I ^P*i-a*^^ ^ 2kB^ , (7.40)

oo

ye^($(T)-2kBe-k^""^e)jdT = iM e'^-^e _ i . (7.41)

0

For X = 1 instead of ( 7 . 38) - ( 7 . 41) we have, respectively,

OO

y* [$(t) - /3]dT = /3q(~) - 1 , ^ (7.42)

0

CO

y* T[$(T) - /IldT = ^ |-q^(~)] .
(7.43)
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/ [$^(T)-3]dT = 2q(c») -1
, (7.44)

•o
^

00

/ e^[$(T) - /3]dT = /I - 1 . (7.45)
*0

All of these relations can be obtained by elementary means although in a num-
ber of cases the calculations are rather tedious (especially the proof of
(7.44)) .

It is also interesting to note that the resolvent function $(t) for
A = 1, which is by definition the solution, bounded as t <», of an integral
equation of the second kind,

$(t

00

) = E^(|t-t' |)$(T')dT' +
I

E^(t)
, (7.46)

is also the solution of two equations of the first kind:

f E^dx-T' |)HT')dT = J- _ £3(1) (7.47)

0

and

00

y E2(t'-t)<I)(t' )dT' - f E2(T-T')$(T')dT' = £2(1) . (7.48)

T Q

To prove these assertions we differentiate (7.47) twice and (7.48) once. In
both cases we obtain (7.46). Further, for x = 0 (7.47) and (7.48) are satis-
fied, since we obtain the relations that follow from (7.37). This completes
the proof.

3.8 SEMI-INFINITE MEDIUM: STANDARD PROBLEMS

The evaluation of the radiation field in a s emi - infini te medium with
some specified distribution of primary sources can be carried out by means of
the general expressions introduced in the preceding section. We shall there-
fore confine ourselves to a summary of the results relevant to several stand-
ard problems that will be considered in detail later in the context of scat-
tering in spectral lines .

UNIFORMLY DISTRIBUTED SOURCES. The radiation field in a medium with uniform-
ly distributed sources can be determined by solving the transfer equation
(7.1) or the integral equation (7.3) with S = const. The source function in
this case is (V. V. Sobolev, 1957a; see also Sec. 6.1):
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S(T) = S*C1-X) , (8.1)

where

T

^Ct) =1 + 1 $(T')dT' (8.2)

* _ 1^

The source function increases monotonically from S(0) = S (1—A) ^ to
S(oo) = s*(l—X)~l (Fig. 11). The intensity of the emergent radiation is found
to be proportional to Ambartsumian' s function H(ij):

1(0, y) = S (1-X) ^H(y) (8.3)

As the angle of emergence increases, the intensity decreases with a rate that
increases with A (Fig. 12).

Let us consider the case of nearly conservative scattering (1 — X << 1)

in a little more detail. Using (7.35), we have approximately, instead of
(8.1),

S(t)

_ *
/3 S

k(i-x)^^ L
1-e

-k
''+kq(T)J , (8.4)

where q(T) is the Hopf function (see (8.10)). Since k ~ /3(1—X) for

3-2-1 0 I 2 3 4 5

Fig. 11. Depth dependence of the source function in a medium with uniformly

distributed sources.
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Fig. 12. Angular dependence of the intensity of radiation emerging from a

semi-infinite medium with uniformly distributed sources.

1 — X << 1, we have

S(T)
* r^ [l-

k2 L
(8.5)

For the intensity o£ the emergent radiation, one can obtain from (8.3) and
(7.28) the first terms of its expansion in powers of k:

1(0, y)

— *
/3S

H(y) (l-ky) , 1 - X << 1 , (8.6)

where H(y) is the conservative H-£unction.

From (8.5) it follows that far from the boundary

A

S(t) - ^ d-e"^"") , T >> 1 , 1 - A << 1 ; (8.7)
k^

2from which it is evident that in this region the product k S(t) depends not
upon T and \ separately, but only on the combination t e kx . For t < 1 the
source function increases rather rapidly with depth. When t reaches the
order of unity, the source function begins to saturate and approaches its
limiting value S(<») = S*(l—X)—1. Thus the effect of the boundary is signifi-
cant to depths corresponding to a value of t on the order of unity, i.e. for
T on the order of = 1/k. A similar picture is also observed for scattering
in spectral lines with the difference that now the thickness of the boundary
layer is given not by the diffusion length, but by some other quantity (see
Sec. 6.2).

THE MILNE PROBLEM (CONSERVATIVE CASE). .Let us consider one important special
case in a little more detail. We put S = /i — A and then go to the limit



3.8 SEMI- INFINITE MEDIUM: STANDARD PROBLEMS 139

X 1. We then find from (8.1) that the solution of the homogeneous equation

00

S(T) = i f E^(|t-t' |)S(T')dT'
, (8.8)

normalized so that S(0) = 1, can be represented as

S(t) = /3[T+q(T)]
, (8.9)

whe re

qCT) = 4i (l + f $(T')dT'
I
- T . (8.10)

{ I

According to (8.3) the emergent intensity in this case is equal to

1(0, p) = H(y) , (8.11)

and the corresponding flux is

1

ttF = 2u f l(0,y)udy = 2wa, = Az ^ , (8.12)

where a^^ is the first moment of the H- function. The functions $ and H in
(8.10) and (8.11) refer to A = 1

.

The solution of (8.8) and the determination of the corresponding emer-
gent intensity is known as the (conservative) Milne problem, which has been
studied in dozens, if not hundreds, of papers (see, in particular, the book
by V. Kourganoff (1952), almost completely devoted to this problem). Equa-
tions (8.9)— (8.11) give the solution of the Milne problem.

The function q(T), which appears in the expression for S(t), is known
as the Hopf function. The physical significance of q(T) is elucidated in
Sec. 6.9. Substituting (7.10') into (8.10) we obtain the following explicit
expression for q(T), first found by C. Mark (1947):

q(T) = 4: - ^ H^-^~"^')¥^^^ ' fS.13)
/3 2/3 ;f \ /Hfy)

We immediately see that the Hopf function increases monotonically , with
q(0) = 1//3 = 0.577... . The value of q (<»)

,
according to (8.13), is equal to
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1

q(~) = 4: - / ^ dy (8.14)
/3 2/3-^ H(y)

and was calculated by E. Hop£ (1934), who showed that

tt/2

f

0

tt/2

q(«,) =- f I i 1 de = 0.710 ... . (8.15)
^ J \sin20 1-ectge

j

Many other integral representations can be obtained for q(°^) besides (8.14)
and (8.15); for example,

q(oo) = 1 _ r(l)

1 / * * \

where r(p) , a_i , and p_2 are given by (7.29), (7.18), and (5.8). G. Placzek
and W. Seidel (1947) rewrote (8.15) in the form

T7/2

q(oo) = A + i/' /J_ 1
) de (8.16)

^2 W y^i 1-ectge
j0

and used this expression to calculate q(°°) to eight places. Su-shu Huang
(1952) and J. I. F. King, R. V. Sillars and R. H. Harrison (1965), using
different methods, obtained q(T) to ten places, which is, of course, far in
excess of any practical needs. In a recent paper by H. C. van de Hulst
(1968), the value of q("») calculated to 12 places by K. Grossman is quoted:

q(«') = 0. 710 446 0 89 800 . . .

There are numerous tables of q(T), varying in accuracy and detail. For
a long time the record for accuracy was held by V. Kourganoff's tables (1952),
which gave q(T) to seven places. In 1965 the palm was yielded to J. I. F.

King, R. V. Sillars and R. H. Harrison, (1965), who published an 8-figure ta-
ble of Hopf's function. We give q(T) to five places (Table 12). We note that
for small t, as follows from (7.30) and (8.10),

q(T) =

/3

(A A \

l+a_ -Y \

/3 j- j T +

+ — (T£nT)^ ,
16 ^ 16

A A
2a

T
+ 3—2y

2
- T £nT + 0(1^) . (8.17)

C. Mark (1947) found this expansion by another route.

There are two reasons for this great interest in Hopf's function. One
of them has a practical, or more precisely, an applied, basis because the
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TABLE 12

THE HOPE FUNCTION q(T)

T q(T) T q(T3 T q(T) T q(T)

0 . 00 0 57735 0 . 08 0 62185 0 . 70 0 690 11

——
2 . 00 0 70792

0 . 01 0 58824 0 . 09 0 62499 0 . 80 0 69353 2 . 25 0 70867

0 . 02 0 59539 0 . 10 0 .62792 0 . 90 0 69629 2 . 50 0 709 19

0 . 03 0 60124 0 . 20 0 64955 1 . 00 0 69854 2.75 0 70955

0 . 04 0 60629 0 . 30 0 66337 1 . 25 0 70257 3 .00 0 70981

0 . 05 0 61076 0 . 40 0 67309 1 . 50 0 70513 3 . 25 0 70999

0 . 06 0 61479 0 . 50 0 .68029 1 . 75 0 70680 00 0 71045

0 . 07 0 61847 0 . 60 0 .68580

solution of the conservative Milne problem is related to the evaluation of
the distribution of temperature with depth in solar-type atmospheres (see,
e.g. A. Unsold, 1955). The second reason is of an entirely different nature
As is apparent from (8.10), the resolvent function $(t) for X = 1 is simply
related to the Hopf function. Therefore, in terms of q(T) one can express
not only the solution of the Milne problem itself, but also the solutions of
all other conservative scattering problems in a semi - infinite medium.

DIFFUSE REFLECTION. Let parallel rays be incident on a semi- infinite medium
at an angle arc cos yg to the inward normal, and let Iq be the net flux per
unit area normal to the rays. The problem is to find the intensity of the
diffusely reflected radiation. This problem goes back to A. S. Eddington,
who considered it in connection with the reflection effect in binary stars.
Its solution for the conservative case was given by E. Hopf (1934), and for
arbitrary X, 0 < X < 1, by 0. Halpern, R. K. Luneburg, and 0. Clark (1938),
who have shown that

This problem is also of great importance in the study of light scattering in

planetary atmospheres. The problem of diffuse reflection has been solved by
V. A. Ambartsumian (1943) (see also V. A. Ambartsumian , 1960) througha new
approach known in transfer theory as the principle of invariance. This ap-

proach made it possible to obtain from simple physical considerations the

expression (8.18) and equation (7.11) for the function H(u) which now bears
his name. Ambartsumian ' s method, having proved extremely fruitful, was devel-

oped and widely used by S. Chandrasekhar (1950), V. V. Sobolev (1956), and
R. Bellman and his associates (see, in particular, the book by G. M. Wing,
1962, which contains numerous references to the early work of R. Bellman's
grdup on applications of the invariance principles to the theory of multiple

H(y)H(yQ)
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scattering and to other problems). We shall not extend the scope o£ this
book to cover these questions.

Along with the intensity of the diffusely reflected radiation, it is
also useful to know the corresponding source function. It is easy to see that
it must satisfy the equation

00

S(T,Po) = \J E^(|t-t' |)S(T' .yg)dT' + I,

-T/y,

4tt
(8.19)

in which we have explicitly shown the dependence of the source function S(t)
on the parameter yg. The solution of (8.19) has the form (see, e.g., V. V.
Sobolev, 1956, Chapter III, and also Sec. 6.4 of this book):

A / ~^/^n r -f^-T' ) /Pn ^
S(T,yQ) = lQ^H(yQ)(e

J ^ %(T')dT') . (8.20)

In particular.

S(0,yQ) = Iq a H(yQ) (8.21)

and for large t

S(T,y.) ~ In :r-
2kB ^.^1^^ e-^^^^^e) . (8.22)

The last result is obtained from (8.20) by substituting the explicit expres-
sion (7. 10)for ^(t).

Substituting (8.22) into the transfer equation

y M = I _ S , (8.23)
dx

we find that for large t

I(T, y,y )
- Iq ^ 2kB

,

e'^^^'^e) . ^8.24)
u U 4^ (1-kyg) (1 + ky)

It follows that deep within the medium the directional distribution of inten-
sity becomes more nearly isotropic as the role of absorption decreases.
Specifically, for A = 1 , we have k = 0, and (neglecting terms on the order of
e"""^ ) the intensity does not depend on direction; the flux is therefore equal
to zero. Thus the mean intensity

1

J(T) =J I(T,y)^ = 1 J I(T,y)dy
,

(8.25)
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to the same accuracy, does not depend on depth, and is equal to

J(t) ~ Iq 0 ^O^^^O^ ,
X = 1 , T >> 1 . (8.26)

I£ the medium is illuminated by isotropic radiation o£ intensity I„, the
intensity o£ the reflected radiation and the source function may be obtained
from (8.18) and (8.20) by integrating over direction:

1

1(0, u) = 2u y I(0,y,yQ)dyQ
, (8.27)

0

1

S(T) = 2tt J S(T,yQ)dyg . (8.28)

0

On the basis of the relations found in Sec. 3.7, it is easy to show that

1(0, y) = Iq [1 - (l-A)^^H(y) ] , (8.29)

S(t) = IqLI -
, (8.30)

where ^(t) is defined by the expression (8.2).

For weak absorption the second term in (8.30) approaches the order of
the first only for large x, where the asymptotic expression can be used for
Y(T) :

'^(t) ~ (l-A)~^(l-e~'^^) , T >> 1 , 1 - X << 1 . (8.31)

This result follows from (7.10) and (8.2) for 1 — X << 1. Therefore for near-
ly conservative scattering we have the approximation

S(t) - IqS"^^ . (8.32)

As is clear from the derivation, this expression is valid for large x.

However, it follows directly from (8.30) and (8.31) that for small x and
1 — X << 1, the source function differs only slightly from Ig. The same re-
sult is given by (8.32), which is therefore valid for all x.

Two conclusions follow from (8.32). The first is that although the
direct radiation falls off as e— , the diffuse radiation penetrates to great
depths; the smaller k the greater the depth of penetration. The external
radiation penetrates to depths on the order of the diffusion length xj = 1/k.
The second conclusion is as follows. Let there be two nearly conservative
media with values of X equ al to -^1 and ''^2. The corresponding values of k are
k^ ~ /3(1 - \-^) and k^ ~ /3(1 - X^) .

Then the source function in the first medium at depth X]^ will be asymp-

522-519 O - 74 - 11
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totically (X ^ 1) equal to the source function in the second medium at a
depth where and are related by the equation k-j^i-j^ = '^2^2

(1 - = (1 - X2JT2 . (8.33)

The relation (8.33) is a similarity principle. The closer and ^2 are to
unity, the more accurately (8.53) is fulfilled. Analogous similarity rela-
tions play an important role in the theory of transfer of line radiation
(see, in particular. Sec. 6.6).

THE MILNE PROBLEM (NON- CONSERVATIVE CASE). The Milne problem for an arbitrary
A, 0 < A < 1, involves the evaluation of the radiation field in a semi-infi-
nite medium with no sources at finite depths. The radiation field is genera-
ted by a source (generally, of infinite strength) located infinitely deep in
the medium.

Let S(t) be the^source function of the Milne problem. According to the
preceding paragraph S(t) must be a solution of the homogeneous equation

S(t) = ^ / E^(|t-t' |)S(T')dT' . (8.34)

Without any loss of generality we may assume that

S(0) = 1 . (8.35)

The solution of (8.54) is readily expressed in terms of the resolvent
function $(t). In the problem of diffuse reflection the value of appearing
in (8.19) and (8.20) is the cosine of the angle of incidence of the external
radiation, so that 0 < pq < 1. However, we can consider \\q just as a param-
eter. By (7.20), H(ijq) has a pole at yg " — 1/k, where k is the positive root
of the characteristic equation (1.18). Hence, if we take Iq = ( 47t/ A) (H (y q )

)~

^

in (8.19) and then let = —1/k, this equation reduces to (8.54). From
(8.20) it then follows that

T

S(t) = e^^ + j e^^^~^' ^<^(t' )dT' , (8.56)

and (8.18) gives

1(0, y) = . (8.57)
1-ky

For conservative scattering (A = 1) one has k = 0, and these expressions re-
duce to (8.9) and (8.11), respectively.

After some reductions, which are omitted for brevity, the following ex-
plicit expression for S(t) can be obtained from (8.56) and (7.10):

1
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The asymptotic behavior o£ S(t) for large t is described by the first term
on the right. If this asymptotic term is extrapolated to negative x, it
vanishes at x = — Tg, which explains the term "extrapolation length."

Considering (7.12), we can rewrite (8.38) in the form

S(x) = H(l/k) [e^^ - D(x) ] , (8.39)

where
1

D(,) = e-^f^^2xe) ,
_K f -x/y RM
2H(l/k) 0 (l+ky)H(y)

Tables and graphs of D(x) are given by M. A. Heaslet and R. P. Warming (1968a)
who denote by f(x) our D(x).

3.9 SEMI-INFINITE MEDIUM: DEEP LAYERS

THE RELATION OF ASYMPTOTIC SOLUTIONS FOR INFINITE AND SEMI - INFINITE MEDIA.
In the conservative case there is a simple relationship between the asymptotic
solutions for infinite and s emi - infini te media. As will be shown in Sec.
6.1, a similar relationship exists for scattering in spectral lines.

Let us define for x > 0

l'^(x) = 1 + 4tt J x'^Sp(x')dx' . (9.1)

This function increases m.onotonically from *i'^(0) = 1 to

>!/ («>) = J_ . (9.2)
°° 1-X

The physical significance of ^^(t) is as follows. Let us consider monochro-
matic scattering as s cattering°°of radiation by two-level atoms whose absorp-
tion coefficient has a rectangular profile (see the end of Sec. 2.2). Then

( (1-X) /X) (^^(x)-l) is the probability that the excitation, which initially
occurs at x°°= 0 and then migrates into the medium will be destroyed (through
collisions of the second kind, etc.) at a point that is located not further
than X from the point of initial excitation.

From (9.1) and (1.9) it follows that

'i'^(x) = 1 - 2x$^(x) + 2 f <I>^(x')dx' . (9.3)

0

Substituting here the explicit expression (1.20) for *<„(t), integrating, set-

ting X = «>, and using (9.2), we obtain
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f R(y)dy = ^ - i (9.4)

0

In particular, for conservative scattering

1

R(u)du =

5
y R(y)dy = 1

, X = 1 . (9.5)

0

It is convenient to introduce a special notation for 1' (t) when X = 1

S (t) E ^ (t) , X = 1 . (9.6)

Although the resolvent ^^(t) diverges as A ^ 1, the difference

T

^^oo(^) - / f^(T')dT'

remains finite, so that

S (t) = 1 - 21im T<5
CO ^ c

A ^ 1 L
0

(9.7)

From (9.7) and (1.20) we find, taking (9.5) into account, that S^(t) can be
represented as

where

,^(.) = |_l/e-/^(l.l)R(y)dy

(9.8)

(9.9)

The function q^(T) is similar to Hopf's function: QooCf) is a monotonically
increasing function that varies within rather narrow limits:

For T >> 1, (8.9) and (9.8) assume the forms

(9.10)
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SCt) ~ /3[T+q(<») ] , C9.ll)

S^(T) ~
I

[T^+q^Coo)] . (9.12)

Consequently a simple asymptotic relation exists between the solutions for an
infinite and a semi - in fini te medium:

S(t) ~ /2[S^(t) , T - - . (9.13)

In other words, the asymptotic behavior of the solution of Milne's problem
is simply related to the asymptotic form of the Green's function for a con-
servative infinite homogeneous medium.^ It is worth noting that the functional
form of the^ relation between SC^) and S^(t) — the proportionality of SCt)
and (S^(t))^ — is preserved in 1 ine - frequency scattering, and the coefficient
of proportionality in all the cases of practical interest is close to unity
(see Sec. 6 . 1) .

THE SOURCE FUNCTION IN DEEP LAYERS. If the source strength S*(t) decreases
rapidly enough as t , we can readily show that the source function in deep
layers decreases as e—ki.

We have

CO

S(t) = S*(t) + / S*(t' )r(T ,t' )dT' . (9.14)

i

The resolvent r(T,T') is expressed in terms of the resolvent function $(t) in
the following manner (see Sec. 3.7 and 5.1):

r(T,T') = $(|t-t'|) + / $(T-t) $(t '-t)dt , (9.15)

0

where = min (t,t'), and

$(t) = 2kB e~^^'^^'^e) + o(e~^) , t ^ «> . (9.16)

An immediate consequence of (9.15) and (9.16) is that the asymptotic (t ^ <»)

form ofr(T,T')is

r^^(T,T') = 2kB e-k^^"^e3 ^e^,^ ' . f
^"^

'

"^^
$ (t) dt^ . (9.17)

or, if use is made of (8.36),
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r fx,!') = 2kB e"^^^^'^e)s(T'

)

as
(t)S(t') (9.17')

where S is the solution of the Milne problem and $as '^^e asymptotic form
of the resolvent function i^Ct). We note that in Sec. 3.5 and 3.6 the notation
$as was used for another function, namely the asymptotic term of ^^(t) . We
hope this inconsistency will not cause confusion. Upon substituting (9.17')
into (9.14) we finally obtain the following asymptotic form of S(t):

= S^2kB e
-k(T + Te) (9.18)

or

(9.18')

whe re

00

S (T')S(T')dT' (9.19)

The condition for this expression to be valid follows from (9.19): S (x)
must decrease fast enough as x -> to ensure the convergence of the integral
(9.19). Since s(t) increases as e^T for x °o

, it is necessary that S*(x) =

o j^e""''^''^) for X ^ ». With this in mind, in deriving (9.18) we have neglected
S (x) in comparison with the term containing the integral. The asymptotic
form (9.18) was found by T. A. Germogenova (1960) in another way. In the
specific case X = 1 (9.18) reduces to Davison's formula (B. Davison, 1951):

S^^(x) = /3 S^ , A = 1 (9. 20)

Substituting (9.18) into the transfer equation

dx

we find that in the deep layers the intensity of radiation is asymptotically
equal to

(9.21)
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1 CHAPTER IV

INFINITE MEDIUM
I

-
. .

I

In Chapter I we discussed the description of the steady states o£ a

j

system consisting of gas and a radiation field in circumstances when thermo-
I
dynamic equilibrium is not established. The basic processes leading to the
establishment of such states were also discussed, and the statistical equi-

;
librium equations for macroscopic masses of gas were derived. These equa-
tions were considered in greater detail in Chapter II. Since problems of
radiative transfer in spectral lines and problems of monochromatic scattering

, are very closely related, Chapter III was devoted entirely to a study of the
: solutions of radiative transfer equations for monochromatic scattering.

!
Now we proceed to carry out our basic task of solving the equation of

radiative transfer for spectral lines. The principal assumptions are:

ij
scattering occurs with complete frequency redistribution, and X = const.

" For the sake of simplicity, we will assume in Chapters IV - VI that the
absorption coefficient in the continuum is negligible compared to the line
absorption coefficient. The more complex problems arising when both line
and continuum absorption must be considered simultaneously are discussed in

j

Chapters VII and VIII.

I
In this chapter we will discuss the radiation field in an infinite

I

medium. In reality, of course, a medium can never be infinite. However,
quite often the dimensions of the region occupied by a gas are much greater

i
than the mean free path of a photon with the line-center frequency, i.e. the
gas has a very large optical thickness in the line. The theory presented

': in this chapter is relevant to the inner parts of such systems. It was
;
developed mainly by D. I. Nagirner and the author (D. I. Nagirner, 1964a,

,

1964b; D. I. Nagirner and V. V. Ivanov, 1966; V. V. Ivanov and D. I. Nagirner,

Ij

1966) , and is presented here in a somewhat extended form.

I
There are two reasons for undertaking a detailed study of scattering in

I
an infinite medium. First, as has already been mentioned, when certain con-

I
ditions are met, a medium of finite dimensions may be considered to be infin-

|; ite. The second reason, which we would like to stress, is that knowledge of
the radiation field in an infinite medium greatly facilitates the study of
the complex effects that arise in the boundary regions of a gas occupying
a finite volume. In the following chapters we will analyze the radiation
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field in these boundary regions where the escape of radiation must be con-
sidered.

4.1 THE green's FUNCTION FOR A HOMOGENEOUS MEDIUM

BASIC EQUATIONS. We wish to calculate, in the linear approximation, the
spatial distribution of excited atoms in an infinite homogeneous medium with
an isotropic point source. The medium is considered to be composed of two-
level atoms. Just as for monochromatic scattering, the corresponding source
function is essentially the Green's function for an infinite homogeneous
medium. If the source is taken to define the origin, the transfer equation
assumes the form (see Sec. 2.3)

9l(-^,Vi,x) ^ iV 3I(T,y,x)
_c.(x)I(T,y,xl .

2 AaCx)
y

a(x')dx'y

I

(t
,

y
' ,x

'
) dy ' + a(x)S*(T), (1.1)

where S*(t) is the primary source function which represents radiation arriv-
ing directly from the source, and I(T,y,x) is the intensity of diffuse
radiation

.

To determine S*(t), we let Q be the total source strength, integrated
over all line frequencies and over all directions. We shall consider a

unit volume in the shape of a cylinder with a base 1 cm^ and an axis directed
toward the source, located a geometrical distance r from the source. When
viewed from the origin this volume element subtends a solid angle r"2. With-
in this solid angle the source radiates energy Q/4TTr2 per unit time; the
energy falling in the frequency interval (v, v + dv) is

Aa(x) ^ .

4^r2 Av

As the radiation is attenuated along the path from the source to the volume,
the energy incident on the volume is

Aa(x) e-^«f^^
4TTr2 Av

where t is the optical distance of the volume from the source:
T = k22(vo)nir. A fraction a(x) k]^2 (^o)"l °f this energy is absorbed in ex-

citing atoms in the volume. The total energy acquired by the volume per
unit time from the absorption of direct radiation is therefore

oo

Q A 2 , . - Ta(x) J 1 r ^^ Ay a (x) e ''dx-k^2 C^o^^l '

4^r

or
^2(1)

47tt2
Q [k;^2^^0^^l]^ '
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where M2 ( x) is given by (2.6.1). The fraction of this energy re-emitted in
the frequency interval (v, v+dv) is AAa (x) (dv/Av) . Therefore the primary
emission coefficient of the volume under consideration is

A ^h^^^ na r

"12 = — |kl2f^n^^i
4tt t2 4TrAv L » 1

The corresponding prim.ary source function is

S*(t) =

a(x)k-^2
(^O-'^l

or

S'==(t) = ± ^ Ll£_2—y_ Q . (1.2)
4Tr T- 4TrAv

If, for the sake of simplicity, we assume that

4ttAv

^[^12(^0)^1]
^

we obtain the following transfer equation:

2
9ICT,y,x) ^ 1-y 3I(T,y,x) . . r ^

y ^—2— + — —2-^-2

—

- = — a(x)I(T,y,x) +

8t t 9y

(1.3)

+ - Aa(x) / a(x')dx' / I (x ,y ' ,x' ) dy ' + -^L a(x) . (1.4)

As shown in Sec. 2.4, the transfer equation (1.4) is equivalent to the
integral equation for the line source function Sp(x) having the form

A
r^oClT-x'!) . M (x)

^f^^ ^ T- /
~

7,
S (x')dx' + -i- -i—

, (1.5)
P 4tt / T- T '

I

2 P 4tt T-2

where x = |x_|. The source function Sp(x) is the sum of the last two terms
on the right side of (1.4), divided by a(x) , and is related to the level
populations n-, and n^ by the expression
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S (t)
P

2hv
12 1 ^^2

.2 g2
(1.6)

The integration in (1.5) extends over the whole space. The function Sp(T) is,
except for the 6-function, the Green's function for an infinite homogeneous
medium. The physical significance of this equation has been discussed in
Chapter II, where the notation is also defined. The solution is obtained in
generally the same way as for monochromatic scattering. Referring to Sec.
3.1 for all the details (see also Sec. 7.2), we shall briefly outline only
the general trend of the argument. We shall discuss in more detail those
aspects that differentiate the two problems.

Integration of both sides of (1.5) over the plane = const reduces its
solution to that of the following equation for the function ^'^^(t) :

oo

^oc^T) =
J

y*K^(|T-T' |)$^(T')dT' -.AK^dTl), (1.7)

where K]^(t) is defined by (2.4.22)
lated by the equation

The functions S (t) and
P

(t) are re-

Sp(T)
1 _d_

2ttt dT
,(T) (1.8)

EXPLICIT EXPRESSION FOR THE GREEN'S FUNCTION. In order to obtain $co(t) , we
take the double-sided Laplace transform of (1.7) to obtain the expression

. K. (s)+K (-S)
*^(s) + $^(-s) = - i ^—

, (1.9)

where f(s) is the one-sided Laplace transform of f(T). Using (2.6.23), we
can rewrite (1.9) as

*„(s) * *„(-s) = hU (I-IO)

From (1.10) it follows that the solution of (1.7), which tends to zero as
|t| ^ °° , can be represented by an integral of the form

+ 1°° ll\

(T) = ^ f -A^si^ e^^ds , (1.11)
2^i J l-^^fj)

- 1°°
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or
CO

^ / i-xvru~
^co(^) = r / ' ' cos du ,

(1.12)
-XV(u)

where V(u) is given by (2.6.24). From (1.12) and (1.8) we finally get the
desired explicit expression for the Green's function:

oo

S (t) = —— I
^^^^^ u sin Tu du . (1.13)

We note that the expressions (1.12) and (1.13) are of the same form as
for monochromatic scattering. In that case V(u) is given by (2.6.26), and
(1.12) and (1.13) reduce, respectively, to (3.1.16) and (3.1.17).

ALTERNATIVE REPRESENTATION OF THE GREEN'S FUNCTION. By deforming the path of
integration in (1.11) we can obtain a representation of the Green's function
Sp(T) which is more suitable for calculation. We seek the solution of (1.7)
which tends to zero as t °°. The Laplace transform $oo(s) of such a solution
is regular in the right half-plane. From (1.10) it follows that for Re s < 0

the singularities of $oo(s) should be the same as those of the expression on
the right side of (1.9). Let us therefore consider the function

= 1 -^K^(s) K^(-s) . (1.14)

The function K-|^(s) is a Cauchy-type integral:

CO

K (3) = f^ / 1+sz'
dz '

I,
We shall assume from now on that the profile of the absorption coefficient

[
a(x) is the continuous monotonic function of |x| (this condition is obviously
not satisfied for the rectangular profile) . It is readily seen that under
these assumptions (which can easily be weakened) the function G(z) is posi-

jl
tive for all finite z, 0 < z < °°. From the general properties of Cauchy-type

I integrals it follows (see, e.g., N. I. Muskhelishvili , 1962 , F. D. Gakhov

,

j

1963), that under rather mild assumptions concerning G(z), which are satisfied
i
in all the cases of practical interest (the Holder condition) , the function

' K^Cs) is regular on the whole plane of the complex variable s, except for
points of the negative real semi-axis, where it is non- s ingle -valued . More-
over, it can be shown that the fun£tion (1.14) does not vanish (see Sec. 7.2).

.j

Therefore the only singularity of $oo(s) in the left half-plane is the branch
line (-°°,0). Consequently integration in (1.11) along the imaginary axis

j

can be replaced by integration along the contour i, shown in Fig. 13. Let us
suppose that the absorption coefficient is such that the second moment of the
kernel
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s)

Fig. 13. Path of integration for the evaluation of the Green's function
in line transfer problems.

oo

/ dT (1.15)

diverges. If the line has infinitely extended wings, divergence is assured
(see Sec. 2.6). It can be shown that if = °° , the integral along the
small circle of radius r centered on s = 0 tends to zero as r ^ 0.

Therefore we find that for t > 0

$ (t)

CO

^ /2tti X I
K^(-x-iO) -

^
K^(x)

[l -
I

K^(-x + iO)
In

e dx (1.16)

According to the Sokhotski i
- Plemel j formulae (see, e.g., N. I. Muskhelishvili

,

1962 , F. D. Gakhov, 1963) ,

where

K^(-x±iO) = K^(-x) + ^icf^) \ , (1.17)

OO

-L J 1 -XZ '

with the integral being understood as the principal value. Substituting
(1.17) into (1.16), introducing z = 1/x, and taking into account that <J><^(t)

is an even funct.i.on, we find
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where

(1.18)

(1.19)

and ti(z) is given by (2.6.19) or (2.6.25). From this, by means of (1.8), we
obtain finally the following expression for the Green's function Sp(T) with
which we are concerned:

S„(T) = ^ / e"^/" R(z) G(z) ^ . (1.20)
P 4TrT / z2

The functions Oco(t) and S (x) were first obtained in this form by D. I.
Nagirner (1964a, 1964b). P

7Now let the second moment of the kernel be finite (a < °°) . If we
assume, as before, that G(z) > 0 for all finite z ^ 0, then in the non-con-
servative case (A < 1) ,

expressions (1.18) and (1.20) still hold. However,
because of the non-uniform convergence, one cannot go to the limit A ^ 1 in
(1,18) and (1.20) in order to obtain the conservative Green's functions.
In the conservative case the expression for the Green's function contains an
extra term. This term accounts for the contribution coming from the integral
along a small circle centered on s = 0:

S (t) = -
P 4

OO

-(- * f e'^'^ R(z) G(z) ^) (1.21)

From (1.21) and (1.8) it follows that the function $ (x) in this case diver-
00

ges .

The Green's function will be thoroughly analyzed and tabulated in sub-
sequent sections, but first we should like to make two observations. The
first of these relates to the derivation of (1.20) and (1.21). In the case
of monochromatic scattering the function T(l/s) is so simple that the
Sokhotskii-Plemel j formulae are not needed to evaluate the integral along
the branch cut. Line transfer problems are another matter; here the use of
these formulae is essential.

The second observation relates to the structure of the solution (1.20).
In contrast to the case of monochromatic scattering, there is no exponential-
ly decreasing pole term. This fact has far-reaching consequences. It im-
plies that in radiative transfer problems for spectral lines with infinitely
extended wings the diffusion approximation, which essentially neglects the
integral term in comparison with the pole term, is in principle invalid.
From other considerations, this conclusion had already been reached in the
pioneering work of L. M. Biberman (1947) and T. Holstein (1947); see also
S. I. Braginskii and G. I. Budker (1958).
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I£ a(x) is identically zero outside a finite range in x, it may happen
that < oo (see Sec. 2.6). According to (1.21), in this case the asymptot-
ic form of the conservative Green's function for large x is

S (t)
p , as ^ ^

X = 1 (1.22)

2This function satisfies the diffusion equation, so that if a is finite and
scattering is conservative, the diffusion approximation may be used. Thus,
contrary to widespread opinion, there do exist problems of radiative trans-
fer in spectral lines with complete frequency redistribution for which the
diffusion approximation is valid. However, these problems are rather artifi-
cial (lines with finite wings).

In concluding this section we give three integral relations satisfied
by R(z)

:

00

/ R(z)G(z)dz
1-X

(1.23)

OO

/ (R(z)-l)G(z)
dz 2 f XV^(u)

^ / l-XV(u)
du

, (1.24)

OO

/ (R(z) -l)G(z)-y = — a^ (1.25)

where a-^ is given by (2.6.28). The conditions for the validity of these
relations are the same as those under which the Green's function S (t) is

given by (1 . 20) .

^
9

The first of these relations can be obtained as follows. It is clear
that the mean number of scatterings of a photon in an infinite homogeneous
medium equals (l-X)-l. Consequently it can be asserted (see Sec. 3.3) that

oo

S (t) T dx
p 1-X

(1.26)

Substituting (1.20) into (1.26), we arrive at (1.23). Expressions (1.24)
and (1.25) will be proven in Sec. 4.7 and 4.2, respectively. We emphasize
that relations ( 1 . 2 3) - ( 1 . 2 5 ) cannot be applied to monochromatic scattering,
although certain similar relations are known. Thus the analog of (1.23)
is relation (3.9.4).
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4.2 BEHAVIOR OF THE GREEN S FUNCTION NEAR THE SOURCE

Let us turn to a study of the Green's function Sp(T). In the first
place we shall consider its behavior for small t, i.e. in the vicinity of
the source. We shall consider only the case in which Sp(T) is given by
CI. 20), which is the usual situation in line transfer problems.

Let us rewrite (1.20) in the form

S (t) = —

—

P 4TTT

00

/^(R(z)-l)G(z)^ +

oo

/^G(z)i| (2.1)

and examine, as x -> 0, the behavior of the integrals appearing here. Differ-
entiating (2.6.16) and (2.6.31), we find that

oo

/^G(z)^
z ^

— - + 0(T)

Further

,

oo

'^/'(R(z)-l)G(z)^

oo

/ (R(z)-l)G(z)^ +

z^

(2.2)

/^^l)(R(z)-l)G(z)^
z ^

(2.3)+y (e"''/"-l)(R(z)-l)G(z)^ + /
0

^

For T < 1 we have the following estimate for the third term on the right:

oo

y* (e"^/^-l)(R(z)-l)G(z)^ = 0(T) . (2.4)

Turning to the second term, we note that for z < 1 , as follows from (1.19),
(2.6.12) , and (2.6.34) ,

R(z)

.1
= ^2Xa2 - ^^y-a^^ + O(z^)

,
(2.5)

so that

1

/ (e"^/"-l)(R(z)-l)G(z)^ a-^^2Xa2-A2ya^^ (E2(t) -1) + 0(T) , (2.6)
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or

J (e""/^-!) (R(z) -l)G(z)^ = a-, (zAa^-A^llafjTJlnT + 0(t)

0

Therefore we can rewrite (2.3) as

7z

L, ( ZAa^ -A^—a^ I'
2 4 ly

0

(R(z)-l)G(z)

00

dz_ ^ f
,2 J

dz(RCz)-l)G(z)^ +

z- Q- z^

(2.7)

. a^^2Xa2-A2^a2^^ T£nT + 0(t) . (2.8)

Coinbining this result with (2.2), we find for the Green's function S (t)

for small t: P

S (T)

4itt'

dz(R(z)-l)G(z)^ - SiAT +

,2tt^ 2\ 2„
+ a^l2Aa2-A —a^^ji^ ^nr 0(1) (2.9)

The integral appearing in this expansion can be expressed simply in terms of
the constant In studying the behavior of the Green's function for t << 1,
we could have started from its representation in the form of (1.13). Substi-
tution of y = Tu would then have given

oo f

-1 y sm y

T

dy (2.10)

For u > 1, using (2.6.33), we get

1

l-XV(u)
1

n
^ 1- Xa, -

2 u

•IT./2 ,u 2\1—A( —a, -X—a, I—
2 \u 2 2

(2.11)

From (2.10) and (2.11) we find that

Sp(T) = (2.12)

Equating (2.12) and (2.9), we obtain (1.25). Taking this relation into
account, we have finally, instead of (2.9),
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S (t)
P 4ttt2

Jinx + 0(1) (2.13)

We note that the first term depends linearly on X, the second term conta'ms
A2

J
and the third contains This indicates that as the distance from the

source to an element of volume increases, so does, on the average, the number
of scatterings experienced by those photons that excite atoms in this volume,
This result might have been anticipated from physical considerations.

4.3 BEHAVIOR OF THE GREEN S FUNCTION FAR FROM THE SOURCE

BASIC FORMULA. Simplifications in the Green's function in the other extreme
case — that of large distances from the sour ce — depend on the behavior of the
absorption coefficient in the wings of the line.

We shall again consider only the case of Sp(T) given by (1.20). Let
x(z) be a non-negative function defined by the relation

a(x(z)) (3.1)

We assume that the limit

f(y) = lim

exists and is equal to

x'(t)
(3.2)

f(y) = y2^, 0 < Y < 1 (3.3)

Specifically, as was shown in Sec. 2.6, these conditions are satisfied both
by the Doppler profile (y = 1/2) and by absorption coefficients that de-
crease in the wings as |x|"'^, where 1 < k < °o

. in the latter case

K-1
Y = ,

2k

so that 0 < Y < 1/2. As was mentioned in Sec. 2.6, if the line has infinite
wings, then the characteristic exponent does not exceed 1/2. Hence, we
shall be primarily concerned with the interval 0 < y - 1/2. We shall con-
sider the large x behavior of Sp(x) assuming that (3.2) -(3.3) hold.

For X >> 1 the main contribution to the integral (1.20) comes from the
values of the integrand for large z. Therefore, one can substitute for U(z)
and G(z) their asymptotic forms found in Sec. 2.6. Using (2.6.50) and
(2.6.42), we find that for large z the function R(z) , defined by (1.19),
can be approximated by

2Y + 1 J

ttA

2Y + 1

-1 2

X' (z)

522-519 O - 74 - 12
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Introducing this expression into (1.20), letting t/z = y, and substituting
y^''''x'(T) for x'(T/y), which is possible by
T >> 1, we obtain, after minor reductions.

virtue of (3.2)-(3,3) since

47TT'

r (2y.l) lAx^Ill V!L
T (1-X)2

(3.4)

where
CO

rr2Y+2) / (t+

y 1+2y j
y dy

F (t) =
,P ^(2y+2) ^ (t+y2'^ctgTTY)2+y^Y

(3.5)

t = (1-X) 2y + 1

XttAx ' (t)
(3.6)

and r(x) is the gamma- function . This is the desired asymptotic form of
Sp(T) for large x. Strictly speaking, (3.4) is the asymptotic form of Sp(T)
as T -> « and at the same time A ^ 1 in such a way that (1-A)/x'(t) = const.
A considerable simplification arises because, in the asymptotic domain, the
quantity

4ttt^ (1-A)

^ x'(t)
S (t)
P

^

instead of depending on the two variables x and A, becomes a function of the
single variable t, which is simply expressed in terms of x and X. We have
already encountered a similar simplification in Sec. 3.4 in our study of
monochromatic scattering.

NEARLY CONSERVATIVE SCATTERING. When the role of absorption is small
(1-X << 1) , three zones can be distinguished in the asymptotic region
(t >> 1).

1. Zone of nearly conservative scattering . In this zone absorption
has little effect. This is the region in which x >> 1, but t << 1. The
closer X is to unity, the greater the extent of this region, and in it,
as follows from (3.4)-(3.6),

S ^ _i L (1-4y )tg UY 1

P 4ttt2 ttA r(2Y) XX
'
(x)

(3.7)

In particular, for the Doppler absorption coefficient we have
Y = 1/2 and

(3.8)
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Going to the limit y -> 1/2 in (3.7) and using (3.8), we obtain

S ( t) (£nT)^ (3.9)

For X = 1 the condition t << 1 does not bound values of t from above. There
fore for conservative scattering (3.9) gives an asymptotic form of the
Green's function which is valid for all x >> 1. If the few first terms are
taken in the expansions of Uj^^z) and Gj)(z) for z >> 1, (2.7.3) and (2,7.19),
it is possible to obtain from (1.20) not only the first, but also the subse-
quent terms of the large x asymptotic expansion of S^(x) for A = 1:

47Tx2 ^3/2
(£nx)^ ^^ l + 2y* _J 2tt^ + 3y*^ +3y* + 3

2.nx 24
+ 0^(ilnx) '^^

X = 1 , X ^ 0°

,

(3.10)

or

S (x)

Attt^ ^3/2
(£nx)^ 1 . 0-5386 _ 1.0613 , o(ilnT)-A

£nx (2.nx)2 \ /

(3.11)

In (3.10), Y* = 0.577216 is Euler's constant.

For the Voigt profile, y - 1/4. Considering (2.7.26), we find from
(3.7) that in that part of the nearly conservative zone where asymptotic
forms appropriate for the Voigt profile can be used.

SV(,) 3

P 47Tx2 2^(aU(a,0))^.
X 2 (3.12)

If we allow a to go to infinity here, we get the asymptotic result for the
Lorentz profile. As follows from (2.7.22),

aU(a,0) (3.13)

Therefore

S^(x)
P^

^

4ttx2 27t^
(3.14)

For conservative scattering, a more refined asymptotic form can be derived,
similar to the expansion (3.10) in the Doppler case:

5!:(t) = ^ -k

4'n-x^ 2tt'2

1 + 9 1

20 X 1120 t2

1053 1 , 0^^-33
, X = 1, X ^ °°. (3.15)

II
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This expansion is valid for all t >> 1.

2. Transition zone. In this zone absorption is more important, al-
though it still does not play the dominant role. This region corresponds to
distances from the source for which the parameter t is on the order of unity.
The Green's function can be found from (3.4).

3. Strong absorption zone. This is the region in which t >> 1. The
Green's function is given by the following expression, resulting from (3.4)
and (3.5):

S^(T) r(2Y + l)
,

• (3.16)
^ 4^t2 (1-A)^ t

Since this zone always exists, even when A is not close to unity, we have
retained the factor X in this expression. Obviously, when 1-A << 1, A may
be replaced by unity.

AUXILIARY FUNCTIONS. The function Fp(t) must still be evaluated in order to
comnletely determine the Green's function for t >> 1. l^'e shall consider the
cases of Doppler and Voigt profiles. For the Doppler profile we have
Y = 1/2, and (3.5) assumes the form

y,2
FD(t) = ^ f ^:idy

. (3.17)
^ 2 / t2.y2

This integral may be expressed in terms of known functions, namely:

2 3

F^(t)=-^-^(cit-sint-sit-cost)
, (3.18)

where si t and ci t are the integral sine and cosine:

OO 00

si t = - f iilLil- dx, ci t = - f dx . (3.19)

t t

From (3.18) an expansion of Fp(t) can be obtained which converges rapidly
for small t. The first few terms of this expansion are:

FP(t) = li Tl - Zt - t^^nt + (1 - Y*)t2 + It^ + U\nt + 0(t4)l ,(3.20)
V 2 I 2 46 J

where y* = 0.577216 is Euler's constant. For large t the function Fp(t) has
the asymptotic expansion

F^t)
P a--

11
.2

6:

t6

(-1)^
(2n+2)

:

4. 2n
)

(3.21)
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which is easily obtained from its integral representation (3.17). Values o£
F^(t) are given in Table 13.

For the Voigt profile, y = 1/4, and (3.5) gives

3/2,
,v

0 (t + /y)

(3.22)

For t << 1, Fp(t) can be evaluated from the expansion

F^t) = it^ - 2 t3 . .
P 3 3

(3.23)

and for t >> 1, from the asymptotic series

TABLE 13

THE FUNCTION F (t)
P

t F^t)
P

t t F^t)
P

t P°Ct,

0 . 0 1 .00000 2 . 6 0 . 5034 6 . 4 0 .8122 13 . 6 0 .9434

0 . 1 0 .00435 2 . 8 0 .5 320 6 . 8 0 . 8275 14 . 0 0 .9462

0 . 2 0 .01545 3 . 0 0 .55 86 7 . 2 0 .8411 14 4 0 .9489

0 . 3 0 .03118 3 . 2 0 .5833 7 . 6 0 . 8533 14 8 0 .95 13

0 . 4 0 .05011 3 . 4 0 . 6062 8 . 0 0 .8642 15 2 0 .9535

0 . 5 0 .07122 3 . 6 0 .6275 8 . 4 0 .8740 15 6 0 .9 55 7

0 . 6 0 .09377 3 . 8 0 .6474 8 . 8 0 .8828 16 0 0 .9 577

0 . 7 0 .1172 4 . 0 0 . 6658 9 . 2 0 . 8907 16 4 0 .9596

0 . 8 0 .1411 4 . 2 0 .6830 9 . 6 0 . 8979 16 8 0 .9613

0 . 9 0 . 1652 4 . 4 0 .6991 10 . 0 0 .9045 17 2 0 .9629

1 . 0 0 .1893 4 .6 0 . 7140 10 . 4 0 .9 104 17 6 0 .9645

1 . 2 0 .2365 4 . 8 0 .7280 10 . 8 0 .9159 18 0 0 . 9659

1 . 4 0 .2820 5 .0 0 .7411 1

1

. 2 0 .9209 18 4 0 .9673

1.6 0 .3252 5 . 2 0 . 7533 11 . 6 0 .9254 18 8 0 .9686

1 . 8 0 . 3658 5 .4 0 . 7647 12 . 0 0 .9296 19 2 0 .9698

2 . 0 0 .4039 5 .6 0 . 7755 12 . 4 0 .9335 19 . 6 0 .9709

2 . 2 0 . 4395 5 . 8 0 . 7855 12 . 8 0 .9371 20 . 0 0 .9720

2 . 4 0 .4726 6 . 0 0 . 7950 13 . 2 0 .9404
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3tt2 1^ = 0
\ 2 / tk

= 1 - 16 1

h t

+ 5 (3.24)

For intermediate values of t the function F^ft] must be found from (3.22) by
numerical integration (Table 14) .

P

We emphasize that the form of the function Fp(t) does not depend on the
value of the Voigt parameter a. In particular, for a = » the Voigt profile
becomes the Lorentz profile (see Sec. 1.5). Thus FV(t) = FL(t). However,

TABLE 14

THE FUNCTION F (t)
P

t t F^t)
P

t
V

F;(t) t
V

F^(t)

0 . 0 0 .00000 2 . 8 0 . 3963 7 . 2 0 .6710 14 . 8 0 .8190

0 . 1 0 .00299 3 .0 0 .4173 7 . 6 0 . 6844 15 . 2 0 . 8232

0 . 2 0 .01078 3 . 2 0 .4372 8 . 0 0 . 6968 15 . 6 0 .8272

0 . 3 0 .02199 3 . 4 0 . 4558 8 . 4 0 . 7083 16 . 0 0 . 8311

0 . 4 0 .03562 3 . 6 0 .4734 8 . 8 0 .7189 16 . 4 0 .8347

0 . 5 0 .05091 3 . 8 0 .4899 9 . 2 0 . 7288 16 . 8 0 . 8383

0 . 6 0 . 06733 4 . 0 0 . 5055 9 . 6 0 .7381 17 . 2 0 .8416

0 . 7 0 .08445 4 . 2 0 .5203 10 . 0 0 . 7467 17 . 6 0 . 8448

0 . 8 0 .1020 4 . 4 0 .5342 10 . 4 0 . 7549 18 . 0 0 .8480

0 . 9 0 .1197 4 . 6 0 .5474 10 . 8 0 . 7625 18 . 4 0 . 8510

1 . 0 0 .1374 4 . 8 0 . 5600 11 . 2 0 . 7696 18 . 8 0 . 8539

1 . 2 0 .1722 5 . 0 0 .5719 1

1

. 6 0 .7763 19 . 2 0 . 8566

1 . 4 0 . 2060 5 . 2 0 .5832 12 . 0 0 . 7828 19 . 6 0 . 8593

1 . 6 0 .2382 5 . 4 0 . 5939 12 . 4 0 .7888 20 . 0 0 . 8619

1 . 8 0 . 2687 5 .6 0 . 6041 12 . 8 0 . 7945 30 . 0 0 .9052

2 . 0 0 . 2974 5 . 8 0 .6138 13 . 2 0 . 8000 50 . 0 0 .9418

2 . 2 0 . 3245 6 . 0 0 .6232 13 . 6 0 .8050 100 . 0 0 .9704

2 . 4 0 . 3499 6 . 4 0 .6405 14 . 0 0 . 8099

2 . 6 0 . 3738 6 . 8 0 .6564 14 . 4 0 .8145
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the region for which the expression (3.4) with y ~ 1/4 is valid depends on a.

The minimum value o£ t for which this expression provides a reasonable
approximation increases as a becomes smaller.

ALTERNATIVE DERIVATION OF THE ASYMPTOTICS. The asymptotic behavior of the
Green's function for large t and 1-X << 1 can also be obtained in another
way, which is of interest because it offers the possibility of considering
line scattering and monochromatic scattering in a unified form. In other
words, this method works for all values of the characteristic exponent Y,
0 < Y - 1- Since our purpose now is to illustrate the alternative method we
shall study only the simplest case, A = 1. Our point of departure is the
representation of the Green's function in the form (1.13). For large x and
1-X << 1, the main contribution to the integral (1.13) comes from the
region of small u, in which V(u) in the numerator of the integrand of (1.13)
can be set equal to unity, and l-V(u) in the denominator can be replaced by
(see Sec . 2.6)

where (|5(u) is a slowly varying function of u as u -> 0 (in particular, it can
be a constant). In Sec. 2.6 it was shown that for Y < 1, i.e. in the cases
so far considered in this section,

For monochromatic scattering Y = 1 and <p = 1/3.

Substituting (3.26) into (1.13), we find that for A = 1 and large
enough x

,

l-V(u) 4'(u) u (3.25)

(3.26)

S (x)
P

du (3.27)

Introducing xu
we have

y and recalling that (l)(u) varies slowly for small u,

oo

S (x)
P

siny dy (3.28)

The integral on the right is to be understood in a certain generalized
sense, for example, as the limit of the integral

oo

0

as c ^- 0 . Evaluating this integral, we finally find
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1 1-2Y T^^"^
S (T) - ^-I — , T - CO, X = 1, 0 < Y ^ 1 . (3.29)
^ 4ttt^ r(2Y)cos Try ^(1

The expression (3.7), found earlier, is a special case o£ (3.29). It
is obtained from (3.29) by the use of (3.26). In the case of monochromatic
scattering V(1/t) ~ 1-1/3t^ for t ^ ~, and (3.29) gives

sJJ(T) ~ , (3.30)

which is the result already obtained in Chapter III by another route.

The case of nonzero 1-A can be treated similarly..

4.4 MODIFIED FORM OF THE GREEN's FUNCTION. NUMERICAL DATA

The above study of the asymptotic behavior of the Green's function
suggests a modified form of its representation for y < 1 . This modified
representation has important practical advantages over the representations
found in Sec. 4.1.

CONSERVATIVE SCATTERING. We begin with the simplest case of conservative
scattering (A = 1) and consider the asymptotic form (3.7) of the Green's
function. Using the asymptotics of the functions Mj^(t) (see Sec. 2.6; we
recall that for y 1 one has 6 = y) ,

M, (t) ~ 2Ar(k + 2y-l) ^lill
, r -> oo

, (4,1)
^ ^k-

1

T

we can rewrite (3.7) in the form

P 4ttt2 [Mi(t)]2

where

C M^(t)
S^(t) ~ —

, T ^ -
, (4.2)

S = ^^^^^
• (4.3)

The coefficient C„ decreases monotonically with y from Cp = 1 for y = 0 to
Cp = 0 for y = 1. It is essential that Cp is close to unity for those
values of y that are of primary importance for us, namely 0 < y ^ 1/2.
In particular, Cp = 3/Tr = 0.955... for y = 1/4 (Lorentz and Voigt profiles),
Cp = 8/tt2 = 0.811... for y = 1/2 (Doppler profile).

At first glance it may seem that the representation (4.2) is artificial
and has no advantages over the original form (3.7). However, this is not so.
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First, since M-^Ct) and M2(t) can be computed for all t > 0, one might try to
use the asymptotic result (4.2) as an approximation for Sp(T) in the non-
asymptotic domain as well, i.e. for small t. Second, the fact that Cp is
close to unity, combined with the simple physical interpretation of M]^(t) and
M2(t), suggests that the asymptotic results (apart from factors of the order
of unity) are amenable to direct physical interpretation. As we shall see
shortly, both ideas are highly fruitful.

1

Accordingly, we represent Sp(T) for all t in the form

C M (T)
S(t) = —^ 5 (t)

, (4.4)

[M-|^(t)]

where 5p(T) is the correction factor that transforms the asymptotic equality
of (4.2j into exact equality. The last equation is the definition of ?p(T).
The function Cp(T) may differ substantially from unity only for relatively
small T.

Substituting into (4.4) the expansions of Sp(T) and M]^(t) for small t

found in Sec. 4.2, (2.13), and Sec. 2.6, (2.6.30), respectively, we get

5p(T) = _1_

c

a-^T +
f 2a, - ILl a^M Inx + Od^) (4.5)

Thus, unless y is close to unity (in particular, for y < 1/2), the function
5p(t) for small t is not very different from unity. For the Doppler and
Lorentz profiles it is also easy to estimate the rate at which 5p(T) tends
to unity as x -> °°. Equating the right sides of (4.4) and (3.10) and using
(2.7.6), we get

5^(T) = 1 - 1 -1- - ihlllll . 0((£nx)-^), X - - . (4.6)
P 4 5,nT 48 (£nx)2

In a similar way it can be shown that

P 5 X 140 j2

It is a striking characteristic of the representation (4.4) that for the
profiles of practical interest the function ?p(x) is close to unity for all x

(see the numerical data in the next subsection). Therefore 5p(x) can be
regarded as a rather unimportant correction factor. If only an estimate of
the Green's function is needed, this factor can be replaced by unity. If we
also disregard the difference of C from unity, we get the simple approxi-
mation P

S^ (T) = -J- _i _
, (4.8)

p,a
4ttx^ [M-^(x)]
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where the subscript a emphasizes that it is an approximate expression.
Usually, the smaller the characteristic exponent y, the more accurate this
approximation is.

The representation o£ the solution o£ the integral equation for the line
source function in a form similar to (4.4) is possible not only for an infin-
ite medium, but also for other cases of conservative and non-conservative
scattering. In these representations the "main" part of the x -dependence

,

which is expressed in terms of kernel functions, is multiplied by a correc-
tion factor, which is close to unity. These representations give rise to
approximate expressions of the type of (4.8) which will be shown in the next
section to have an immediate physical interpretation.

Expressions of the type of (4.4) play an important role in the theory
of transfer of line radiation. The source function was represented in this
form first for a semi - infinite medium (V. V. Ivanov, 1965), and later for an
infinite medium (V. V. Ivanov and D. I. Nagirner, 1966) and a layer of
finite optical thickness (V. V. Ivanov, 1972).

NUMERICAL DATA FOR THE CONSERVATIVE CASE. The values of the Green's
functions for the conservative infinite medium are given in Table 15 for
Doppler and Lorentz profiles. They were obtained from (1.20) by numerical
integration. This table is extracted from a more detailed table given by
D. I. Nagirner and A. B. Schneeweis (1973).

Having obtained the Green's function Sp(T), one can easily find Cp(T)
from (4.4). In this calculation the values of M]^(t) and M2(t) are needed.
For the Doppler profile they are given by V. V. Ivanov and V. T. Shcherbakov
(1965a). For the Lorentz profile, Mi(t) and M2(t) can be expressed in terms
of the modified Bessel functions (see Sec. 2.7), and thus also may be con-
sidered known.

Graphs of Cp(T) and 5p(T) are shown in Figs. 14 and 15. In both cases
5p(T) is rather close to unity for all t, so that Cp(T), indeed, may be con-
sidered as a correction factor. Although in the Doppler case (y = 1/2) the
maximum deviation of ?p(T) from unity is larger than in the Lorentz case
(y = 1/4), it is still not too large.
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TABLE 15

THE GREEN'S FUNCTION S (t) FOR THE DOPPLER AND LORENTZ PROFILES WITH X = 1

T 5^(1}
P

T
p

Sp^(x)

0, 01 5 .679 + 2 3 .998 + 2 7 3 .627 -3 5 .410 -4

0 . 05 2 . 355 + 1 1 .627 + 1 8 2 . 856 -3 3 . 867 -4

0 . 1 6 . 146 0 4 . 144 0 9 2 , 310 -3 2 . 874 -4

0 . 2 1 . 662 0 1 . 068 0 10 1 .909 -3 2 . 204 -4

0 . 3 7 .923 -1 4 . 855 - 1 12 . 1 .371 -3 1 . 391 -4

0 , 4 4 . 744 -1 2 .778 - 1 14 1 .035 -3 9 .432 -5

0. 5 3 .212 -1 1 . 800 - 1 16 8 . 101 -4 6 . 737 -5

0 . 6 2 . 347 -1 1 . 261 -1 18 6 .523 -4 5 . 007 -5

0 . 7 1 . 805 -1 9 .316 -2 20 5 .372 -4 3 . 840 -5

0 . 8 1 .441 -1 7 . 155 -2 25 3 . 554 -4 2 . 190 -5

0 , 9 1 . 183 -1 5 . 659 -2 30 2 .532 -4 1 .385 -5

1

.

0 9 .929 -2 4 .579 -2 35 1 . 900 -4 9 . 405 -6

1

.

25 6 . 859 -2 2 .906 -2 40 1 .480 -4 6 .726 -6

1

.

50 5 .074 -2 1 .987 -2 45 1 . 187 -4 5 . 005 -6

1

.

75 3 .932 -2 1 . 431 -2 50 9 . 738 -5 3 . 842 -6

2 . 0 3 . 150 -2 1 .070 -2 60 6 .909 -5 2 .432 -6

2 . 5 2 . 168 -2 6 . 506 - 3 70 5 . 166 -5 1 .653 -6

3. 0 1 . 593 -2 4 .277 -3 80 4 .013 -5 1 . 183 -6

3. 5 1 .224 -2 2 .975 -3 90 3 .211 -5 8 . 807 -7

4 , 0 9 .720 -3 2 . 159 -3 100 2 .629 -5 6 . 764 -7

4. 5 7 .920 -3 1 .621 -3 200 7 .021 -6 1 . 193 -7

5 . 0 6 .585 -3 1 . 251 -3 500 1 .210 -6 1 . 206 -8

6. 0 4 .773 -3 7 .959 -4 1000 3 . 179 - 7 2 .131 -9
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GENERAL CASE, 0 < A < 1. Now let us abandon the assumption of conservative
scattering. We now modify the definition of the quantity t from its original
form (3.6) to

t = nuiii^j^
. (4.9)

For large t the values of t given by the two expressions are asymptotically
equal. However, (4.9) is more convenient in that it also enables one to
calculate t for values of t that are not particularly large. Using (4.1),
we can rewrite (3.4) as

S^(t) ~ F (t) , T -> X -> 1, t = const, (4.10)
P 4 (1-A) 2 P

where Fp('t) is, as before, given by (3.5).

Let us now represent the Green's function for all t and X in the form

S^(t) = ^ -i
r- F (t) C^(T,A) , (4.11)

P 4ut2 (1-A)2 P P

where t is given by (4.9), and ?p(T.,A) is the correction factor to the asymp-
totic form (4.10). We emphasize that the equality in (4.11) is exact, and
not asymptotic.

For nearly conservative scattering (small 1-A), absorption becomes sig-
nificant only at considerable distances from the source, while ^ (t,A) devi-
ates significantly from unity only for relatively small x. Therefore the
error caused by substituting Cp(T) = Cp(T,l) for Cp(T,A) decreases as A in-
creases and hence for all t and small 1-A

1
M (t)

S^(t) ~ -±- ^
7 F

^n^^^^'
^< 1- ^4.12)

P 4^x2 (1-A)2 P P

This equation shows that in the limiting case of nearly conservative scatter-
ing, the Green's function, which depends on two variables, t and A, is
asymptotically expressed in terms of functions of a single variable.
Obviously, this is a substantial simplification.

In the zone of conservative scattering, i.e. for such x that t << 1,
from (4.12) we have

M (x)
S (X) - 2 (4_13)
P 4^x2 [M-^(x)]2 P

Here §p(x) differs substantially from unity only in that part of the zone
relatively close to the source. For the transition zone and the strong
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absorption zone, in which values of t are not much less than unity, (4.12)
may be replaced by

4^T^ (1-A)2 PP

Specifically, for t >> 1 (strong absorption zone), we find from (3.5) F (t)~l,
so that (4.14) assumes the form ^

Sp(T) ~^ . (4.15)
P 4-ITT'^ (1-^)^

No matter how little X differs from unity, for sufficiently great distances
from the source the asymptotic behavior described by (4.15) will eventually
be reached.

NUMERICAL DATA FOR THE NON - CONSERVATIVE CASE. The values of the Green's
function for the Doppler and Lorentz profiles and A = 0.9, 0.99, and 0.999,
calculated from (1.20) by numerical integration are given in Table 16 (after
D. I. Nagirner and A. B. Schneeweis, 1973).

We note that for the Doppler and Lorentz profiles the expansion (2.13)
gives Sp(T) for t < 0.02 to four significant figures. The expansion (3.15),
with all the terms retained, also gives four significant figure accuracy for
T > 20. For the Lorentz profile the relative error of the representation
(3.4) does not exceed 1.5 percent for x s 30 and all A, 0 < A < 1; for
T ^ 100 the error is less than 0.5 percent. For the Doppler profile the
asymptotic form (3.4) gives the Green's function for x > 100 and arbitrary A

with an error of not more than 2.5 percent.

We now conclude our formal study of the Green's function for an infinite
homogeneous medium. A physical interpretation of the results will be given
in the next section. However, before proceeding with this, we note that
B. A. Veklenko (1957, 1959) and Yu . Yu . Abramov and A. P. Napartovich (1968)
have studied the non-stationary radiation field arising from an "instantan-
eous" source located in an infinite homogeneous medium that scatters radia-
tion with complete frequency redistribution. More precisely, the non-
stationary Green's function for an infinite homogeneous medium has been
found, and its behavior has been studied in various extreme cases (large dis-
tances and considerable time lapses after the initial "flash")

.

4.5 LONGEST FLIGHT APPROXIMATION

In this section an approximate form is proposed for the infinite medium
Green's function. The approximation is suggested by the asymptotic results
found in the preceding section, and is valid for y < 1.

THE BASIC EXPRESSION. Comparison of (4.2) and (4.15) suggests an approxima-
tion to the Green's function Sp(x) of the form

—
T

AM (t)

S (x) = ^ 2 (5.1)
P'^ 4ux2 [l-A + AM-^(x) ]2
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TABLE 16

THE GREEN'S FUNCTION FOR THE DOPPLER AND LORENTZ PROFILES WITH X < 1

: 0 . 9 X = 0 . 99 X = 0 999

T S^
p
(T) S

P
S
P

S
p

S
P

S^
P
(T)

0 1 5 . 418 0 3 .683 0 6 .071 0 4 . 097 0 6 . 138 0 4. 140 0

0 2 1 . 431 0 9 . 369 - 1 1 .637 0 1 . 054 0 1 . 660 0 1 . 066 0

0 3 6 . 654 -

1

4 . 208 - 1 7 .779 -

1

4 . 788 - 1 7 . 908 - 1 4 . 846 - 1

0 5 2 . 564 -

1

1 .524 - 1 3 . 132 -

1

1 .771 - 1 3 . 203 -1 1 . 797 - 1

0 7 1 . 370 -

1

7 .713 -2 1 . 748 -

1

9 . 143 -2 1 . 799 - 1 9 . 299 -2

1 0 6 . 992 -2 3 .674 -2 9 . 508 -2 4 . 479 -2 9 .882 -2 4. 569 -2

1 5 3 . 166 -2 1 .518 -2 4 . 768 -2 1 .933 -2 5 .039 -2 1 . 9 81 -2

2 0 1 . 747 -2 7 .818 -3 2 .903 -2 1 .036 -2 3 . 120 -2 1 . 067 -2

3 0 7 . 039 -3 2 . 876 -3 1 .412 -2 4 . 101 -3 1 .570 -2 4 . 259 -3

5 0 1 . 899 - 3 7 .313 -4 5 . 391 -3 1 . 180 -3 6 . 424 -3 1 . 244 -3

7 0 7 . 072 -4 2 . 823 -4 2 . 743 -3 5 .031 -4 3 .500 -3 5 . 371 -4

10 2 . 205 -4 1 . 005 -4 1 .284 -3 2 .014 -4 1 .811 -3 2. 184 -4

15 5 . 073 -5 3 .051 -5 5 . 096 -4 7 .073 -5 8 . 404 -4 7. 834 -5

20 1 . 652 -5 1 . 297 -5 2 .520 -4 3 . 360 -5 4 . 810 -4 3 . 788 -5

30 3 . 156 -6 3 . 826 -6 8 .615 -5 1 .174 -5 2 . 142 -4 1 . 362 -5

50 3. 722 -7 8 .0 15 -7 1 . 903 -5 3 . 099 -6 7 .375 -5 3 . 757 -6

70 9 . 091 -8 2 .817 -7 6 . 330 -6 1 .282 -6 3 .522 -5 1 . 609 -6

100 2 . 055 - 8 9 . 168 -8 1 . 799 -6 5 . 000 - 7 1 .544 -5 6 . 548 -7

where the subscript a stands for "approximate." For a reason that will be-
come clear in the next subsection, this approximation is referred to as
the longest flight approximation to the Green's function.

Approximation (5.1) has the following remarkable properties: (1) It

gives the leading term of Sp(T) for x ^ 0. (2) In the non-conservative case
(X ^ 1) it correctly describes the asymptotic behavior of Sp(T) as t -> °°.

(3) It gives the exact value of the mean number of scatterings of a photon,
i.e. it satisfies the equation

OO . -

'
-

At\ / S CT)T^dT = — •

0 ^ ^
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(4) It describes correctly the functional form of the leading term of the
asymptotic expansion of Sp(T) for those t >> 1 that satisfy the inequality
Mi(t) >> 1 — A, i.e. in the asymptotic part of the conservative zone (provided
it exists)

.

With all this in mind, one might expect (5.1) to be an excellent approxi-
mation for all T and X, with arbitrary profiles of practical interest. As a

rule, the accuracy of (5.1) increases as the characteristic exponent y de-
creases .

PHYSICAL INTERPRETATION. G. B. Rybicki and D. G. Hummer (1969) have shown
that (5.1) expresses the fact that the net effect of all scattering processes
can be approximated by the single longest flight in the sequence of scatter-
ings undergone by a photon. We reproduce their reasoning.

Let us derive the probability density of longest flights. If a photon
undergoes precisely n flights bef.ore destruction the probability that the
longest flight lies between t and t + dx is given by

n-1
(5.2)nM2 (t) dT M2(T')dT'

Indeed, the probability that the first flight ends between x and x + dx
is M2(x)dx and the probability that the remaining n-1 flights are shorter
than X is the bracketed expression raised to the power n-1. Since the
longest flight might also be the second, third, etc., flight we multiply by n,

Since the probability that the photon experiences precisely n flights is
X^'l(l-X), the net probability density of longest flights is

oo

(l-A)M2(x) n X

j
n=0 1)

M2(T )dx
n-1

(l-X)M2(x)

.1-X J"^M2(x')dx'

(5.3)

or

(l-X)M^(x)

[l-X + XM-^(x) ]2

The series has been evaluated by recognizing it as the derivative of a geo-
metrical series. We also used the fact that (see Sec. 2.6)

I

X

M2 (x')dx' = 1 - M-^(x)
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Let us now assume that an excited atom is born at t = 0 . The excitation
is then transferred by radiation and is eventually destroyed at some point.
The probability that the excitation energy will be converted into heat in a
spherical shell of radius x and thickness dx is evidently (cf. Sec. 3.9)

According to (5.1), this probability is approximated by the distribution of
longest flights (5.4), i.e. the net result of multiple flights is approxi-
mated by the longest single flight.

We emphasize that the approximation (5.1) is valid only for y < 1, with
the conservative limit given by (4.8). This approximation was obtained from
(4.4) by setting Cp(T) and Cp equal to unity. Since Cp tends to zero as

Y ->- 1 , the approximation (5.1) breaks down for y = 1. In particular, it is
inapplicable if the second moment of M]^(x) exists, since then we always
have Y = 1

•

There is a sharp physical distinction between cases in which the second
moment of M2(x) does, or does not, exist. Since the existence of this moment
implies that the distribution of free flights is not too heavily dominated by
long flights, some average flight can be chosen as representative. Since
the mean number of scatterings in an infinite medium is (1-A)~1, we may imag-
ine that the photon undergoes a random walk of (1-A)"1 steps, each, when the
second moment exists, of roughly constant length. Because all directions
are equally likely, one expects the average distance travelled tOj^be propor-
tional to the square root of the number of scatterings, or (l-A)-2^ in
agreement with the result (6.14) below. In this case (5.4) would be a poor
approximation to (5.5).

If the second moment of M2(x) does not exist, the excitation at large, x

is dominated by the relatively infrequent long flights. For example,
the most likely situation in line problems is for a photon created at a point
in the line core to be imprisoned there until a relatively improbable scat-
tering event deposits it in the wing. The photon then moves a very large
distance in comparison with the net effects of all previous scattering in the
core. Finally, it remains imprisoned near this new point until its ultimate
destruction. The validity of this physical picture is verified by the
approximate agreement between Sp(x) and Sp a^^"^)- this situation the dis-
tance travelled by the photon increases wi^h the number of scatterings, not
because the net distance is increased by the addition of more individual
scattering steps, but because the probability of a scattering into the wing
region has increased, thereby increasing the longest scattering length.

ACCUMULATION EFFECT. In the preceding chapter (Sec. 3.4) it was shown that
in a weakly absorbing medium an accumulation region exists around the source
in the case of monochromatic scattering. In this region the source function
is greater than it would be in a test volume located in a vacuum at the same
distance from the source. We shall now examine how frequency redistribution
affects the accumulation effect.

1-X 2
4iTx S (x)dx . (5.5)

4.6 ACCUMULATION EFFECT, THERMALIZATION LENGTH

For scattering of line radiation with complete frequency redistribution
the source function in a test volume located in a vacuum at a distance r

from the source of strength
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Q = 4fTAv

equals

4u ^2
SqCt) = — , (6.13

where t = ki2(^o3^1^* '''h® factor a-]^ is the value of M2(t) at t = 0 . It ap-
pears because the number of photons with frequencies from x to x + dx emitted
by the source which afterward cause photo -excitation in the test volume is
proportional to a^Cx)dx. When this quantity is integrated over all frequen-
cies, the factor ai appears. By definition, the medium-effect coefficient
is (cf. Sec. 3.4)

i(T) = S (t). (6.2)
Aai P

Let us first consider the case of the Doppler profile. For 1 — X << 1

and T >> 1 we find from (6.2), using (4.14),

oo

.3)

I og r

Fig. 16. The medium-effect coefficient for scattering with the Doppler profile.

Qualitatively, everything remains the same as for monochromatic scattering —
around the source an accumulation zone exists in which i^(T) > 1, and as

1 - A decreases, the size of this zone increases. However, from the quanti-

tative viewpoint there is a tremendous difference. For the Doppler profile

the medium-effect coefficient in the accumulation zone is of the order of

unity, while with monochromatic scattering it can reach very large values.

For example, for 1 - A = 10'^ we have iD(Tniax) ~ 5-6. whereas i^(Tinax)
~

0.6 • 103 (see (3.4.24)). This difference is caused by the frequency redis-

tribution during scattering, which leads to progressive "pumping" ofphotons
from the core of the line into the wings. As the absorption coefficient in

the line wings is small, a photon emitted there traverses a relatively great

522-519 0 - 74 - 13
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distance without scattering. Such a photon is much less likely to excite
atoms than a photon whose frequency is close to the line center.

Thus two phenomena with opposite effects occur during scattering. On
one hand, the direction of the photon changes, leading to the "trapping" of
its trajectory and giving rise to the accumulation effect. On the other
hand, the frequency of the photon changes. At each scattering, a fraction of
radiation enters the line wings. As the length of the path traversed by
radiation in the medium increases, the number of scatterings experienced by
the photons also increases, and the radiation gradually loses the ability to
excite atoms. In the case of the Doppler profile, the first effect dominates
the second, although to a very small degree. This is why i^Ci) is of the
order of unity in the accumulation zone.

For scattering with the Lorentz profile the redistribution effect dom-
inates. Even in the conservative case, when the accumulation effect should
be greatest, it does not exist, since, as is seen from (6.2) and (3.15),

iL(^) = A 1 [i + A 1. _ x » 1 . (6.4)

In the immediate vicinity of the source, it is true, a small region exists
in which i^(T) > 1. This is seen, for example, from (6.2) and (2.13),
which lead to the result that, for small t

iL(T) = 1 +!V - + (6.5)(4 -
1)

However, the behavior of i (t) quickly changes from increasing to decreasing
(Fig. 17), and throughout the asymptotic region (t >> 1) the medium - ef feet
coefficient is much smaller than unity. In contrast, for monochromatic
scattering and in the case of the Doppler profile, i(T) > 1 at all t > 0.

Thus for the Lorentz profile the presence of even a pure scattering
medium decreases the concentration of excited atoms at great distances from
the source, compared with the value found in a test volume located at the
same distance from the source, but in a vacuum. In this case the

0 12 3 4 5

T

Fig. 17. Medium-effect coefficient for conservative scattering with the

Lorentz profile.
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concentration of excited atoms in a pure scattering medium falls off as
r"^/^, where r is the distance from the source (see (3.14)). At first glance
this result might appear strange. In a pure scattering medium the flux

I through a specified area decreases as r'^, and it would therefore seem that
the density of excited atoms could not decrease faster. In fact, this is not

;
so. The flux, integrated over the line, does decrease as r"^, but the fre-

;• quency distribution of the radiation also changes with distance. Because
i

of the strong frequency dependence of the line absorption coefficient,
this change in frequency should certainly be kept in mind. It can lead to an

j
even more rapid decrease in the concentration of excited atoms. The decisive
factor is the behavior of the profile in the far line wings. The more slowly
the absorption coefficient decreases into the wings, the more rapidly the
concentration of excited atoms far from the source falls off in a pure scat-

j

tering medium. From (3.29) and (6.2) it follows that in a conservative
medium i(T) behaves asymptotically as T2Y-l/(t)(l/T) for t ^ o°. Hence for
Y < 1/2 the accumulation effect is absent; for y > 1/2 it is always present;
and in the case of y = 1/2 one can have both i(T) > 1 (for example, the
Doppler profile) and i(T) < 1.

THERMALI ZATION LENGTH: LEADING CONSIDERATIONS. Line photons emitted by the
source undergo multiple scatterings in the medium. Each scattering consists
of the excitation of an atom followed by a spontaneous downward transition.
The farther an excited atom is from the source, the more scatterings the

j

average photon will have undergone before exciting this atom. At the same
t time, the probability that a non-radiative transition follows the excitation

of an atom and the photon "dies" is 1 — A. Therefore, no matter how small
the quantity 1 — X, far enough from the source the destruction of photons

j
becomes significant. And near the source, where excitation is due primarily

I to photons having experienced a relatively small number of scatterings, the
radiation field should be nearly the same as if photons did not die at all.

I
In accordance with the foregoing discussion, for 1 — A << 1 a region

I
should exist around the source in which scattering can, to a good approxima-

I

tion, be considered as conservative, i.e. one can assume that X = 1. It is
clear that as the role of absorption decreases, the size of this region of
conservative scattering should increase. This qualitative conclusion is

valid for all cases (for any line absorption profile, any phase function,
etc.). If one wishes to speak quantitatively, then everything is determined

I

by the details of the processes occurring in the elementary act of scatter-
'f ing.

As we have seen in Chapter III (Sec. 3.4), for isotropic monochromatic
scattering the size of the conservative region is of the order of the dif-
fusion length = 1/k. Provided that 1 - X << 1, from (3.2.3) we have

^
. (6.6)

^3(1-X)

In line - frequency scattering everything depends on the behavior of the
absorption coefficient in the line wings. From the results of the preceding
sections it is clear that absorption may be ignored, in the first approxima-
tion, for distances from the source corresponding to small values of the
parameter t defined by (4.9). The effects of absorption become significant
only when t approaches unity. An order of magnitude estimate of the dimen-
sions of the conservative scattering region is therefore given by the value
of T corresponding to t = 1.
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These considerations indicate that a certain characteristic length ought
to exist for any medium in which "true" absorption processes occur along with
scattering. This length characterizes the mean distance from the place where
a photon is born to the place where it dies. In other words, there is a cer-
tain mean distance from the place where the atom receives its primary excita-
tion to the place where the energy utilized in that excitation is converted
into heat. This basic length is called the thermalization length .

Since we are interested primarily in an order of magnitude estimate for
the case of nearly conservative scattering, one might define the thermaliza-
tion length as the root of the equation

M^(t^) = 1 - a . (6.7)

This equation is obtained from the condition t = 1 just mentioned if the
factor r(2Y+2)/XTTY is replaced by unity. The definition (6.7) is, however,
inapplicable in the case of monochromatic scattering. This is a serious
shortcoming. Taking into account this fact as well as some other consider-
ations which we will not explore here, we find it more convenient to define
the thermalization length in a somewhat different manner. Evidently one must
require the values of defined in this way to be of the same order of mag-
nitude as those given by (6,4). Such a definition is given below.

THERMALIZATION LENGTH: DEFINITION AND LIMITING CASES. We define, as in
Sec. 3.9,

T

-l'^(T) = 1 + 47r/ S (t)t^dt . (6.8)

0

The value of 'i'c»(T) is obviously the number of excited atoms within a sphere
of radius t around the source of unit strength. Clearly 1'oo(<=°^ = (1 — A)"-*-

(see the end of Sec. 4.1). Furthermore, let S_^(t) be the function *i'^(T) for
the conservative medium:

1 ^/

?
o

II 1

X2 >x
1

0

1

]

log T

Fig. 18. Definition of the thermalization length (schematic curves).
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S (t) = ^ (t) , X = 1 (6.9)

We now define the thermalization length as the root of the equation

-1
(6.10)

We can see the physical significance of this definition from the following
argument. Let us consider a point source in a medium with a given X < 1,
and the same source in a conservative medium. The thermalization length is
then the radius of a sphere around the source in the conservative medium
which contains the same number of excited atoms as are in the whole non-con-
servative medium. To aid the visualization of this definition, it is shown
graphically in Fig. 18.

Let us consider this definition for several specific cases. For X = .0

we have x-;- = 0, indicating that a non-radiative downward transition follows
each atomic excitation. The extreme opposite case, 1 — X << 1, is much
more interesting. From (4.2) and (6.8) -(6.9) it follows that, for y < 1,

S (t)

M. (t)

(6.11)

and (6.10) gives

M^(T^) ~ C (1-X) , 1 - X ^< 1 , (6.12)

which in the most important case of 0 < y < 1/2 agrees with the estimate
given by (6.7). Using the asymptotic form of Mj^d) given in Sec. 2.7, we
find from (6.12), for the most important types of absorption coefficients,

Doppler

:

3/2
(1-A)Vln A1- (6.13a)

Voigt

:

Lorentz

— aU(a,0) (1-X)

1 (i-x)-2
9

(6 . 13b)

(6.13c)

We note that (6.13b) is applicable only for >>

a

ing in the wings as Ixl"!^, (6.12) gives
For profiles decreas

T, oc (1-A)-1/2y
,

(6.13d)



180 INFINITE MEDIUM

where y = (ic-1)/2k. Finally, for the rectangular profile (monochromatic
scattering), for 1-X << 1 we get from (6.10) and (3.9.12)

~ ~
, (6.14)

•^Sd-X)

where is the diffusion length.

For nearly conservative scattering we can obtain a general asymptotic
expression for the thermalization length which is valid for an arbitrary
value of the characteristic exponent y, 0 < y - 1. Using the asymptotic
form of the conservative Green's function as given by (3.29), we find from
(6.8) -(6.9) ,

2Yr(2Y)cos^Y <J'(1/T)

Substituting this expression into (6.10) and using the fact that (j) is a slow-
ly varying function, we finally obtain

~ r-pr- • 1 - X << 1 , (6.16)
'

(1-A)1/2y

where

f = 2Yr(2Y)cos uy ^L^_^^l/2y\ ^/^Y
^^^^^^

1-2y V /.

In practice f is usually of the order of unity. Equation (6.16) is valid
for both line - frequency and monochromatic scattering and gives, in these
cases, the results (6.12) and (6.14) respectively.

The general conclusion that can be drawn from these results can be
summarized in the following way. For nearly conservative scattering the
thermalization length is very sensitive to the behavior of the absorption
coefficient in the line wings. The more slowly the absorption coefficient
decreases in the wings, the larger the thermalization length. The extent of
the effect arising from differences in the form of the absorption coeffi-
cient is illustrated by the following example. For 1-A = 10"^ (in practice
much smaller values of 1-A are often encountered), the magnitude of the
thermalization length is 2-103 for the Doppler absorption coefficient,
3'107 for the Lorentz profile, and O.S-IO^ for monochromatic scattering.
Thus the difference amounts to several orders of magnitude. However, even
today one still occasionally encounters an error that has been very wide-
spread in recent years, namely, the identification of the thermalization
length with the diffusion length not only for monochromatic scattering
(which is quite acceptable), but also for 1 ine - frequency scattering for
every type of absorption coefficient, which is absolutely incorrect. We
have just seen the enormous errors that this can cause.
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' CONCLUDING REMARKS. The concept o£ thermalization length is extremely useful
for estimating the nature of the solutions of most problems involving line-
frequency radiative transfer. The value of defines the radius of the

I "sphere of influence" of a point source throughout which the primary excita-
tion is "smeared." If sources whose strengths vary only slightly over a
distance of the order of are distributed throughout a medium, the source
function will have roughly the same depth dependence as the strength of the
primary sources. Conversely, if the strength of the primary sources varies
greatly over distances of the order of , "smearing" begins to exert a sub-

i stantial effect, and there is no longer any simple relation between S(t_) and
S*(t_). Roughly speaking, the source function at a specific point is a cer-
tain mean of S*(t_) over the surrounding region with dimensions of the order
of !(-. A detailed qualitative discussion of this question is given by R. N.

I

Thomas (1965a, 1965b) .

j

The ultimate goal of optical plasma diagnostics is to recover the values
' of the physical parameters of the medium— for example, the temperature and
k density distributions — from the fharacteristics of the observed radiation.
!

It is evident that the radiation intensity directly reflects the distribution
of excited atoms, whereas temperatures and densities can be found through the

' primary source distribution for the radiation field. The "smearing" effect
of which we have just spoken therefore sets a theoretical limit on the infor-
mation that can be obtained by optical diagnostics.

I
The systematic use of the thermalization length in transfer theory began

!; with the paper by E. H. Avrett and D. G. Hummer (1965) which explained the

1
important role of this characteristic length. The original definition of

[

was not completely satisfactory, and efforts were made to improve it. The

I
literature therefore contains various definitions of t^, differing only

,i slightly from one another (see G. B. Rybicki and D. G. Hummer, 1969; G. D.

j
Finn and J. T. Jefferies, 1968; V. V. Ivanov, 1966; V. V. Ivanov and D. I.

\

Nagirner, 1966) . An improved definition of has recently been discussed at
length by a number of people working on problems of line transfer theory
(D. G. Hummer, G. B. Rybicki, J. C. Stewart, V. V. Ivanov). The definition
(6.10) expresses the point of view developed by the author as this discussion
proceeded. For another point of view, see G. B. Rybicki and D. G. Hummer
(1969).

BASIC FORMULAE. Until now we have been concerned with the point source. Now
let us turn our attention to the problem of a plane isotropic source in an
infinite medium. We shall assume that its strength per unit area is 4itAv/A.

If T is the line center optical distance from the emitting surface and S ^(t^)

is the corresponding line source function, then, as in monochromatic scatter-
ing (cf . Sec. 3.5)

,

4.7 PLANE ISOTROPIC SOURCE

(7.1)

where $ (t) is the solution (bounded at ± infinity) of the equation

OO

(7.2)

- oo

I
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Explicit expressions for $ (t) were obtained in Sec. 4.1 and are given by

0 (t)

CO

= I f ^V(u)

^ / l-XV(u)
cos Tu du

, (7.3)

$ (t) = y e-'"l/^R(z)G(z) ^ (7.4)

where V(u) and R(z) are given by (2.6.24) and (1.19) respectively. For these
expressions to be valid it is sufficient (though not necessary) to suppose
that ct(x) is a continuous monotonically decreasing function of |x|.

SMALL-T BEHAVIOR. Proceeding as in Sec. 4.2, from (7.4) we find that for
small ItI

0

T^£n| T I 1 + O(t^)
,

where
CO

(R(z)-l)G(z)
dz

(7.5)

(7.6)

On the other hand, (7.3) and (2.6.21) give

(t) = - K
' 2

00

^

(It I)
+1 r XY (u)

^ ^ / l-XV(u)

so that for small t

$ (t) a-j^ ^n
]
T

I

+ a-|^Y*-a +

CO

. 2 f XV^u)
^ 0^ l-XV(u)

o(|t|)

and thus, in addition to the representation (7.6), p*^ may also be written
in the form „

,\ - I f ^V'(^ ) du
^/ l-AV(u)

(7.7)
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Incidentally, we have proved the identity (1.24). However, what is now
of interest to us is not the identity itself, but an interesting consequence
of (7.7). If the characteristic exponent y is less than 1/2 (in particular,
if the absorption coefficient decreases in the line wings according to an
arbitrary power law, i.e. is proportional to |x|"'^, 1 < k < °=>)

, then the
quantity p*i remains finite for A ^ 1. For the Doppler profile (y = 1/2) the
picture is different. As is seen from (7.7) and (2.7.15), when \ tends to
unity, the value of p*-^ increases indefinitely. Thus in this case a steady
radiation field cannot exist in an infinite, pure scattering medium. In this
respect scattering with the Doppler profile is no different from monochroma-
tic scattering (see Sec. 3.5). The physical reason for this similarity is
that the accumulation effect is present in both instances (see Sec. 3.4 and
4.6). The values of q*i for the Doppler and Lorentz profiles are listed in
Table 17. This and the other tables in this section are based on the calcu-
lations of D. I. Nagirner and A. B. Schneeweis (1973).

LARGE -T BEHAVIOR.
Y < 1 is

The asymptotic form of $oo(t) for large in the case of

(2y+1) |t|(1-A)2
(7.8)

where

(1-A)
2y + 1

XttAx' ( I

t
I
)

(7.9)

F (t)

_ CO

r(2Y+i)Q^

e ^ y^^ dy

2y . 2 4y
(t+y 'ctg ^y) +y ^

(7.10)

TABLE 17

THE VALUES OF p*

1_JV Doppler Lorentz

0 . 5 0 6630 0 3624

0 . 4 0 8940 0 4755

0 . 3 1 207 0 6172

0 . 2 1 679 0 8068

0 . 1 2 584 1 094

10-2 6 673 1 652

10-^ 12 60 1 799

10-4 20 . 25 1 825

10-^ 29 .41 1 . 829
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The result (7.8) is derived directly from (7.4), by using the asymptotic
forms of G(z) and U(z) found in Sec. 2.6. The use of the asymptotic expres-
sion for Sp(T) obtained in Sec. 4.3, m conjunction with (1.8), also leads
to (7.8), but by a more indirect route.

The functions Foo(t) for the Doppler (y = 1/2) and the Voigt and Lorentz
profiles (y = 1/4) are tabulated in Tables 18 and 19, respectively. We
note that for t -> 0

F°(t) = t^(-£nt-Y* + - t + (7.11)

TABLE 18

THE FUNCTION F^(t)

F^t) F^t)
CD ^ ^ F^t)

on -*

0 0 0 00000 3 . 4 0 . 7504 9 .6 0 .9451

0 1 0 01865 3 . 6 0 . 7666 10 0 0 ,9489

0 2 0 05175 3 . 8 0 ,7814 10 4 0 9522

0 3 0 08965 4 . 0 0 . 7948 10 8 0 ,9553

0 4 0 1290 4 . 2 0 . 8072 11 2 0 .9581

0 5 0 1682 4 . 4 0 .8185 11 6 0 .9606

0 6 0 2064 4 . 6 0 . 8290 12 0 0 .9629

0 7 0 2431 4 . 8 0 . 8386 12 4 0 .9651

0 8 0 2783 5 . 0 0 . 8474 12 8 0 .9670

0 9 0 3117 5 . 2 0 . 8556 13 2 0 .9688

1 0 0 3434 5 . 4 0 . 8632 13 6 0 ,9705

1 2 0 4017 5 . 6 0 . 8702 14 0 0 .9720

1 4 0 4537 5 . 8 0 .8767 14 4 0 ,9734

1 6 0 5000 6 . 0 0 . 8828 14 8 0 9747

1 8 0 5413 6 . 4 0 .8937 15 2 0 ,9760

2 0 0 5782 6 . 8 0 .9032 15 6 0 9771

2 2 0 6112 7 . 2 0 .9116 16 0 0 9782

2 4 0 6408 7 . 6 0 .9189 16 8 0 9801

2 6 0 6674 8 . 0 0 .9254 17 6 0 9817

2 8 0 69 13 8 . 4 0 . 9312 18 4 0 9832

3 0 0 7130 8 . 8 0 .9364 19 2 0 9845

3 2 0 7326 9 . 2 0 .9410 20 0 0 9857
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Vlit) = t\l + ^ t£nt ... ) , (7.12)

whereas for t ^ <»

k=0
.2k

m (k.i)lL]2fk^i^/2r(5sil) J_
4 J \ 2 / i-k

(7.13)

(7.14)

TABLE 19

THE FUNCTION F^(t)

t
V

F (t) t
V

F ( t)CO ^ ' t
V

F ( t)

0 . 0 0 . 00000 3 . 4 0 .5515 9 .6 0 . 7962

0 . 1 0 .00725 3 .6 0 .5678 10 .0 0 .8033

0 . 2 0 .02348 3 . 8 0 .5830 10 . 4 0 . 8098

0 . 3 0 .04436 4 .0 0 . 5972 10 . 8 0 . 8160

0 . 4 0 .06766 4 . 2 0 .6106 11 . 2 0 . 8217

0 . 5 0 . 09209 4 . 4 0 .6231 11 .6 0 .8271

0 . 6 0 . 1169 4 . 6 0 .6348 12 . 0 0 . 8322

0 . 7 0 . 1415 4 . 8 0 .6459 12 . 4 0 . 8370

0 . 8 0 . 1656 5 . 0 0 .6563 12 . 8 0 .8417

0 . 9 0 .1892 5 . 2 0 .6662 13 . 2 0 . 8459

1 .0 0 .2119 5 . 4 0 .6755 13 .6 0 . 8499

1 . 2 0 . 2550 5 . 6 0 .6843 14 . 0 0 . 8538

1 . 4 0 . 2947 5 . 8 0 . 6927 14 . 4 0 .8575

1 . 6 0 .3311 6 . 0 0 . 7006 14 . 8 0 . 8610

1 . 8 0 . 3645 6 . 4 0 .7154 15 , 2 0 . 8643

2 . 0 0 . 3951 6 . 8 0 . 7288 15 . 6 0 . 8675

2 . 2 0 .4232 7 . 2 0 . 7410 16 . 0 0 .8705

2 . 4 0 .4491 7 . 6 0 . 7521 16 . 8 0 . 8761

2 . 6 0 .4728 8 . 0 0 . 7624 17 . 6 0 .8813

2 . 8 0 .4948 8 , 4 0 . 7719 18 . 4 0 .8861

3 . 0 0 .5151 8 . 8 0 . 7806 19 . 2 0 . 8905

3 . 2 0 .5340 9 . 2 0 . 7887 20 . 0 0 . 8946
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For conservative scattering (and for y < 1 > well as for 1 — X << 1 in
the asymptotic part of the conservative scattering zone), we have from (7.8)

$ ~ (2Y-^l)tg7rY 1 .

2ATTr(2Y) |t|x'(|t|)

In particular, for the Voigt profile y = 1/4 and the asymptotic form of the
function x(t) is given by (2.7.26). From (7.15) we find

$I(t) ~| ^ 1x1"^, |t1 » a'^ . (7.16)
2^ (aU(a,0))^

In the limit as a , we get the asymptotic form of the conservative
function Ooo(t) for the Lorentz profile:

^^(j) ^ _1_ |t| . (7.17)
°°

2 /if

MODIFIED FORM OF $oo(t). LONGEST FLIGHT APPROXIMATION. As in the case of a
point source, the formation of homologous combinations of arguments can be
used to show that for y < 1/2 the asymptotic expression (7.8) will also give
good results in the non-asymptotic region. The source function for any x and
A can be represented in the form

A Ki(|x|)
*..(T) F^(t)5^(x,A) , (7.18)

2 2
(1-A)

where

^ 1-

A

t = ^ r(2y) (7.19)
TT ak,(|t|)

and Coo(x',^) is the correction factor to the asymptotic form. The equality in
(7.18) is exact, and not asymptotic.

For nearly conservative scattering (1-A << 1) and Y < 1/2 the factor
Coo(x,A) can be replaced by ?oo(x) = 5c»(x,l), and it can be set equal to unity
to obtain an estimate of the source function. For conservative scattering
(A = 1) we have from (7 . 18) - (7 . 19)

C (
I

T
I
)

*oc(T) = — ^ooC^). ^ = 1 . (7.20)
^ k,(|t|)

where

= . (7.21)
Try
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I£ X * 1 , then for
|
t

|

->

$ (t)
2

Ki(|t|)
(7.22)

but for 1 — X << 1 the region in which this asymptotic representation can be
applied is limited to very large values of |t| (namely, those corresponding
to values of t much greater than unity)

.

We emphasize that, in contrast to the analogous formulae for the Green's
function, when t << 1 it is impossible to take the limit y 1/2 in (7.8) and
(7.18) in order to get the asymptotic forms appropriate to the Doppler
profile

.

Sec

,

The function
4.5 is

,(t) in the longest flight approximation introduced in

(T) = - 2
K^dxl)

1-X+XK2( I T I

)

(7.23)

TABLE 20

THE FUNCTION <I)^(t) FOR CONSERVATIVE SCATTERING

T $^(t) T ^''"(t) T $^(t) T ^^(t)
00 "^ oo^-^ oo^-^ m^-'

0 01 2 017 1 4 0 .7013 3 8 0 4438 9 . 0 0 .2 86 1

0 05 1 610 1 5 0 6819 4 0 0 4326 9 . 5 0 2783

0 1 1 431 1 6 0 6638 4 2 0 422 1 10.0 0 2711

0 2 1 248 1 7 0 6470 4 4 0 4123 11 0 2582

0 3 1 138 1 8 0 6312 4 6 0 403 1 12 0 2470

0 4 1 059 1 9 0 6165 4 8 0 3945 13 0 2372

0 5 0 9960 2 0 0 6026 5 0 0 3864 14 0 2 284

0 6 0 9442 2 2 0 5772 5 5 0 3681 15 0 2205

0 7 0 9001 2 4 0 5545 6 0 0 352 1 16 0 2134

0 8 0 8617 2 6 0 5340 6 5 0 3380 18 0 2010

0 9 0 82 78 2 8 0 5155 7 0 0 3254 20 0 1906

1 0 0 7975 3 0 0 4986 7 5 0 3 141 22 0 1816

1 1 0 7701 3 2 0 4832 8 0 0 3039 24 0 1738

1 2 0 7452 3 4 0 4690 8 5 0 2946 25 0 . 1702

1 3 0 722 3 3 6 0 4559
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r

The properties and the physical significance o£ this approximation are simi-
lar to those of the longest flight approximation of the Green's function
SpCx). However, it should be noted that C^o in (7.20) tends to infinity as

Y -> 1/2. Hence in the conservative scattering zone (7.23) breaks down for

Y > 1/2. In particular, for the Doppler profile (y = 1/2) it must be a poor
approximation in the conservative region, i.e. for such t that 1 -X<<K2

(

|

t
|
) .

NUMERICAL DATA. We shall now present some numerical results. First let
us consider the cases of the Lorentz and Doppler profiles. Table 20 gives
values of the funct ion $co (t) for conservative scattering with the Lorentz
profile, obtained from (7.4) by numerical integration. Using the values of

$^(t) shown in the table, ?^(t) was evaluated from (7.20) (prior to which

K^(t) and were tabulated) . It was found that the function C^(t) in-

creases from tt/4 = 0.79 at t = 0 to 1.46 at t = 0.1, and then decreases

rather rapidly. For x > \, ^p^^-* deviates from unity by less than 8 percent.

Thus, for the Lorentz profile the representation (7.17) with Coo(t) = 1 gives
an accuracy of better than 50 percent for all t; for t > 1 the error does not
exceed 8 percent and for t > 5 it is less than 3 percent.

TABLE 21

THE FUNCTION $ (t )

T A = 0 . 9 A = 0 99 A = 0.

0 . 1 1 . 768 0 3 963 0 6 961

0 . 2 1 . 526 0 3 689 0 6 684

0 . 3 1 . 377 0 3 517 0 6 509

0 . 5 1 . 179 0 3 280 0 6 267

0 . 7 1 .040 0 3 107 0 6 089

1 . 0 8 . 862 - 1 2 905 0 5 880

1 . 5 7 .058 - 1 2 647 0 5 610

2 . 0 5 . 779 - 1 2 445 0 5 395

3.0 4 .070 - 1 2 135 0 5 056

5.0 2 .272 - 1 1 712 0 4 571

7.0 1 . 404 - 1 1 427 0 4 220

10 7 . 724 - 2 1 131 0 3 824

15 3 . 560 - 2 8 199 3 352

20 1 .962 -2 6 247 3 007

30 8 . 194 -3 3 969 2 . 5 15

50 2 . 691 -3 1 970 1 907

70 1 . 300 -3 1 146 1 . 529

100 6 .053 -4 6 055 -2 1 . 161
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The values o£ $oo(t) for the Doppler and Lorentz profiles and for several
X's are shown in Tables 21 and 22. As we have already mentioned, $£(t)
diverges as X -> 1

.

The effect of the Voigt parameter a on the form of $oo(t) is graphically
illustrated by Figs. 19-22, made available through the courtesy of D. G.

Hummer. The values of •I'ooCt) used in the construction of these curves were
found by numerical solution of equation (7.2). Fig. 19, which is relevant
to the Doppler profile, gives a good illustration of the divergence of <I>B(t)

as A. ^ 1 . When a = 10'^, the x-region in which $J^(t) can be considered equal
to the conservative function 'fXC'^) ^° reasonable accuracy exists only for
1 — X ;^

10"^ 10"6. This is evident from Fig. 20. The region in which it
is practical to apply the asymptotic form (7.16) for a = 10"^ would therefore
appear to be rather small, although a comparison of Figs. 20-22 shows that
it expands as a increases. For the Lorentz profile (a = °°) a x-region in
which the asymptotic form (7.17) can be used exists for 1 — X = 10"^ and
rapidly increases in size as 1 — X decreases.

TABLE 22

THE FUNCTION $o^(T)

T X = 0.9 X = 0 99 X = 0.999

0 . 1 9 . 603 1 330 0 1 415 0

0 . 2 7 .985 1 149 0 1 232 0

0 . 3 7 .026 1 040 0 1 122 0

0 . 5 5 . 805 8 999 9 800 -1

0 . 7 5 .001 8 057 8 843 -1

1

.

0 4 . 165 7 052 7 819 -1

1

.

r 3 . 258 5 924 6 666 -1

2 . 0 2 . 666 5 154 5 875 -1

3. 0 1 .935 4 153 4 840 -1

5. 0 1 .227 3 084 3 723 -1

7. 0 8 .885 -2 2 513 3 116 -1

10 6 .228 -2 2 012 2 578 -1

15 4 .096 -2 1 555 2 077 -1

20 3 .014 -2 1 290 1 782 -1

30 1 .928 -2 9 859 -2 1 434 -1

50 1 .072 -2 6 941 -2 1 089 -1

70 7 . 184 -3 5 463 -2 9 066 -2

100 4 .642 -3 4 203 -2 7 453 -2
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Fig. 19. The function $ (x) for the Doppler profile.
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CHAPTER V

SEFII-INFINITE MEDIUM: GENERAL THEORY

In Chapter IV the general problem o£ radiative transfer in an infinite
medium was discussed. Consequently no attention was paid to boundary regions,
in which both absorption and the escape of radiation play important roles.
We shall now study the radiation field in these regions, which are particular-
ly important as primary contributors to the radiation field emerging from, the
medium. It is natural to begin by considering an idealized medium, occupying
a half-space. We will devote Chapters V and VI to this subject.

The problem of radiation scattering in a semi - infinite medium is one of
the few problems in the theory of multiple scattering whose exact solution
can be obtained in closed form. Thus aside from our interest in this problem
as such, it serves as a touchstone for verifying the accuracy and limits of
applicability of the various approximate and numerical methods of transfer
theory. This justifies both the prominence given to this problem and our
policy of quoting numerical results which, unfortunately, are. still far from
complete. It is also no accident that the study of the asymptotic properties
of the solution receives so much attention. As will be shown shortly, when
the scattering is nearly conservative, so that almost every photo-excitation
of an atom is followed by a downward radiative transition, the boundary layer
becomes very thick. The asymptotics that we have just mentioned reflect sim-
plifications in the structure of this thick boundary layer at optical depths
much greater than unity. These simplifications are of a sufficiently general
character that they must pertain not only to a medium bounded by a plane, but
also to media having a more complicated geom.etry.

In this chapter a formal solution will be developed for evaluating the
radiation field in a half-space for a source strength that depends on depth
in an arbitrary way. The functions appearing in the solution are studied in
detail, and some of them are tabulated. In the next chapter these general
results are applied to standard model problems, and the physical aspects of
these problems are discussed.

The standard tool for the solution of half-space problems of multiple
scattering is the Wiener-Hopf technique fsee , e.g., E. Hopf, 1934 ; E. C.

Titchmarsh, 1937; I. W. Busbridge, 1960). However, as we shall see in this
chapter, if the Green's function for an infinite medium is known, a more
direct and physical approach can be used. It enables one to solve half-space



SHMI- JMFTMITB MKDIUM: GEMHRAL THEORY

probleifis by eleTnentary me?jns and elucidate?-; the physical meaning of unany quan-
tities and relations v/hich remain formal in the Wiener-IIopf approach.

5.1 BASIC EOIJATIOMS

'I'lli: 'i'RANSFER EQUATION. We shall assume that the strength of the radiation
sources depends on only one spatial coordinate — the distance from the boun-
dary. 'I'he source stren^jth is constant on any surface parallel to the boundary
of the rnoflium. Tn vi ov/ of the symmetry of the problem, the intensity will de-
pend only on doptfj, iho anfle with the normal, and frequency. Let x be the
usual dimonsionlcss frequency, c, the optical depth, i.e. the distance along
the normal from the boundary of the medium measured in mean free paths of a

photon of frequency x = 0, and p, the cosine of the angle between the direc-
tion of propagation of radiation and the outward normal. 'fhen 1 = I(T,y,x).
fn tfio absence of continuum absorption the equation of transfer within a line
is f see Sec. 2.7))

d 1 r T , y , X ) f . . f

d T

1 n . 1

)

-
I

A'/fxj j" 'jA/a' J f fr ,x' ) dy ' -a(xjS*rTj
J. CO _

]

and the l;oundary condition expressing absence of radiation incident from out-
s ide is writ ton as

If0,lj,xj = 0 , u <- 0 . (1.2J

'I'lic solution of" ri.lj V'/itfi the l)oundary condition (1.2) and an arbitrary pri-
mary source rijnc:tion [','''({) is the subject of this chapter.

Introducing, the line source functi.on

1

•Sr-r) = jA y^y.fx'jdx' J f fx , p '

, x '

) d)j ' + s'^Tt) , (1.3)

-co _ 1

we can rewrite the transfer equation in the form

dT(T,y,x) ^ K,,,,x)-S(T) ,
ri.4j

a(x) di

from which it is evident that in fact the intensity depends not on y and x

separately, but only upon the combination

z = . (1.5)
a(x)

We shall again denote the intensity as a function of t and z by I, which
should not cause confusion. Its normalization is unchanged, so that
I (t

,
z) dado)dv is the energy flowing per unit of time within an element of
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solid angle doj in the frequency interval (v , v + dv) through an area da loca-
ted at optical depth t and oriented perpendicular to the direction of propa-
gation of the radiation.

Using the notation (1.5), we have, instead of (1.4) and (1.2) respective-

Z = I(T,Z) _ S(T)
,

di

I (0 , z) = 0 , z < 0 .

(1.6)

(1.7)

The expression for the source function S(t) can also be reorganized by sub-
stituting z' = y'/a(x') in the second integral in (1.3):

l/a(x'

)

S(t) = / a"(x')dx'
I

I(T,z')dz' + s'^(t)

-l/a(x'

)

00

(1.8)

changing the order of integration, we obtain

S(t)

oo

4/ I(t ,z')G(z')dz' + S (t)
, (1.9)

whe re

G(z)

00

= A a^(x ')dx'
,

|z| < 1

00

2A / a" (x' ) dx' ,
I

z
I

> 1
,

x(z)

(1.10)

and x(z) is defined by

a(x(z)) = -i-
,
x(z) > 0

We note that

G(z) = G(-z)

Further, (1.9) and (1.3) give the identity
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1

J I(T,z')G(z')dz' = AJ aix')dx' f I f t
,

^\
J
dp '

Setting 1=1 and using the fact that G(z) is an even function, we find

00

y* G(z) dz = 1 . (1.11)

0

Explicit expressions for G(z) for the Doppler and Lorentz profiles were given
in Sec . 2.7.

For the intensity of radiation at depth t, we find from (1.6) and (1.7)
(see (2.3.13) and (2.3.14))

T

I(t,z) = -y*S(T')e~^^'~'^^/^dT'/z
, y < 0

0

00

I(t,z) = y S(T')e~'^^'~^^/^dT'/z, P > 0 .

(1.12)

T

Specifically, the intensity of the emergent radiation is

CO

1(0, z) = / S(T')e ^'/^di'/'z . (1.12')

0

We give now for reference expressions for the three quantities of physi-
cal interest: the total radiation flux in the line, the density of radiation,
and the radiation pressure. Let ttF(t) be the total flux of radiation in the
line in the direction of the normal to the layers (it is assumed that the flux
is positive if the energy flows in the negative-i direction):

r
7tF(t) = 2u

I
dv / I(T,y,x)ydiJ

This expression can be reduced to

TrF(T) = Av ^ y I(T,z)G(z)z dz . (1.13)

Substituting I(t,z) from (1.12), we get
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00

ttF(t) = Av -y y K2(|t-t' |)sgn(T'-T)S(T')dT'
,

(1.13')

0

whe re

OO 00

K^Ct) = J e~^/^ G(z)dz = A y a(x)E2(a(x)T)dx .

0

The properties o£ K2(t) were considered in Sec. 2.6 and 2.7.

By definition, the total density of radiation in the line is

1

p(t) = 27T i y dv y I(T,y,x)dy
,

^0 -1

from which

CO

p[T) = Av 1^ f ICT,z)GQ(z)dz
, (1.14)

/\c
0̂0

or, if use is made of (1.12),

00

P(T) = Av |I y K]_^(|t-t' i)S(T')dT' ,
(1.14-)

where

00

= A y (x) Ca(x) t) dx .

OO

For the properties of K^^ and G-j^ , see Sec. 2.6.

Finally, the force of radiation pressure exerted on a unit volume at

depth T is

_ <7(Vn) r r
P^(t) = 2tt —

I
a(x)dv / I(T,y,x)ydy ,

^
0 -1

where o(vq) is the line-center absorption coefficient. The quantity Pj,(t) is
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positive if the force is directed in the negative-i direction. It can easily
be shown that

P^(t) = Av
^ 0 ^ 2tt

^ y* I(T,z)G2(z)zdz
, (1.15)

or, considering (1.12),

P^(T) Av ~r~ ^ J
K22(|t-t' |)sgn(T'-T)S(T')dT' . (1.15')

We can easily obtain an integi'al equation for S(t) whose solution is
equivalent to the solution of the transfer equation (1.1) with the boundary
condition (1.2). One need only substitute into (1.9) the expressions for the
intensity given in (1.12). This yields the following equation for the line
source function S(t):

00

S(t) = K^(|t-t' |)S(T')dT' + S*(T)
, (1.16)

whe re

op CO

= J e~^/^'G(z' )dz' /z' " ^ y a^(x)E^(a(x)T)dx . (1.17)

Equation (1.16) is the basic integral equation for the problem at hand.
In what follows we shall base our analysis on this equation rather than on
the transfer equation in its differential form.

THE RESOLVENT AND THE RESOLVENT FUNCTION. To solve the integral equation
(1.16) we shall use the method developed by V. V. Sobolev (1956; 1958a; 19S9b

;

1967a) and K. M. Case (1957a, 1957b). In recent years this method has found
rather widespread application in the theory of radiative transfer.

The solution of (1.16) for an arbitrary source term S (t) is essentially
equivalent to the evaluation of its Green's function G(t,t'), defined by

00

G(T,T')=|y* K^(|T-tl)G(t,T')dt + 6(T-T')
, (1.18) I

0

where 6 (x) is the de It a- funct ion . Equivalent ly , we could find the resolvent
r(T,T') that satisfies the equation

00

r(T,T') = K^(|T-t|)r(t,T')dt +
^

k^(It-t'I) . (1.19)
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The Green's function and the resolvent are related by

G(t,t') = rCT,T') + 6(t-t') . (1.20)

When r(T,T') is known, the source function S(t) is obtained by integrat-
ing over the distribution of primary sources:

00

S(t) = S*(t) + J r(T ,T')S*(T')dT' . (1.21)

Because of the symmetry of the kernel of equation (1.16), the Green's
function and the resolvent are symmetrical, i.e.

r(T,T') = r(T' ,t) . (1.22)

The resolvent, which depends on two variables, may be simply expressed in
terms of a function of one argument, $(t), which we shall call the resolvent
function . It is the value of r(T,T') for x' = 0:

$(t) e r(T,0) = r(0,T) . (1.23)

To show this we shall first of all prove that if a function f(T) is bounded
as T 0 , then

00 00

^ f K^(|T-t|)f (t)dt = J K^(|T-t|)f' (t)dt + f(0)K^(T) . (1.24)

^0 0

Splitting the integral on the left into two parts — one from 0 to x and
the other from x to <» — and substituting y = x — t in the first, and y =

t — X in the second, we obtain

00 f 00

j K^(lx-t|)f(t)dt = J K^(y)f (x-y)dy + (y) f (x+y) dy , (1.25)

from which

_d_

dx
0

T

00

J K^(|x-tl)f(t)dt = f(0)K^(x) +

J K^(y)f' (x-y)dy + j (y) f
' (x+y ) dy . (1.26)+

"Q 0
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Rearranging the sum o£ the two last terms on the right, and using the identity
(1.25), we get (1.24).

Now, differentiating (1.19) with respect to t and then to t', we add the
equations thus obtained term by term. Considering (1.24) and (1.23), we find

00

K,(|x-tl, * ^) dt * H.n \
K,(T) . (1.27,

0

Introducing the notation (1.23), we have from equation (1.19)

00

$(t) =

I J K^(|T-t|)$(t)dt +
I

K^(t) . (1.28)

Comparing (1.27) and (1.28), we conclude that

iL + Jil = <i>(t)$(t') . (1.29)

The solution of this equation satisfying the condition (1.23) can, for
t' > T, be written as

T

r(T,T') = $(t'-t) + / $(T-t)$(T'-t)dt . (1.30)

Hence, because of the symmetry of the resolvent, it follows that for arbitrary
T and t'

r(T,T') = $(|t-t'|) + / <|)(T-t)$(T'-t)dt
, (1.31)

0

whe re is the smaller of x, x'

Expression (1.31) shows that, indeed, the evaluation of the resolvent
of equation (1.16) involves the determination of a function of one variable
$(x), defined by (1.28). This function plays a fundamental role in problems
of radiative transfer in a semi - in fini te layer.

Equation (1.31) for the specific case K]^(x) = 'E-^i'i) was first derived
by G. Placzek in 1945 (see B. Davison, 1958, Chapter VI). The derivation
above was given by V. V. Sobolev (1958a). It is interesting that (1.30) can
also be obtained directly from physical considerations (see the next section)

AUXILIARY EQUATION. H-FUNCTION. Turning now to the derivation of relations
that are used in the determination of $(x), we first consider the function
S(x,z), defined as the solution (bounded as x ») of the auxiliary equation



5.1 BASIC EQUATIONS 201

00

S(t,z) = A J K^(|t-t' |)S(t' ,z)dT'
— t/z

(1.32)

Let us compare this equation with (1.28). From (1.17) we see that the free
term in (1.28) is a superposition of the free terms in (1.32) for different
values of the parameter z. Because of the linearity of these equations, the
solution of (1.28) is then a superposition of the solutions of (1.32), namely

00

4/s(.,z,G(.)dz/z . (1.33,

0

Differentiating (1.32) with respect to t and using (1.24), we find

00

3S(T,z)
__

X
f K r|x-T'|) i^ill^ dT- ^

+ S(0,z) A K (t) - i e-^/"
2-1- z

From (1.34), (1.32), and (1.28), it follows that

From the last equation we have

S(t,z) = H(z)

(1.34)

^^^^>^^ = - i S(T,z) + S(0,z)$(t) . (1.35)

(e-"^/" . J e-^"-^')/"$(T')dT') ,
(1.36)

where the notation

H(z) = S(0,z) (1.37)

has been introduced. Substituting (1.36) into (1.33), we obtain a Volterra
equation for 'I'(t) with a displacement kernel (convolution- type equation)

T

$(t) = N(t) + y* N(t-t' )<I'(t' )dT' ,
(1.38)

where
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00

N(t) = ^ I
e H(z')G(z')dz'/z' . (1.39)

This result shows that the form of $(t) is determined entirely by the proper-
ties of H(z). We shall now obtain a nonlinear integral equation for the
latter function.

From (1.21) and (1.32) we have

00

S(T,z) = e""^/^ +y r(T,T')e~^'^^dT' , (1.40)

0

or, considering (1.20),

S(t,z) = / G(T,T')e ^'/^dx' . (1.41)/
0

Thus the function S(t,z) is essentially the Laplace transform of the Green's
function with respect to one of the variables. For this reason S(t,z) will
play an important part in our analysis. Setting x = 0 in (1.40), we obtain

00

H(z) = 1 +y $(x' )e""^' /^dx' . (1.42)

0

By means of (1.38), we can express the integral appearing here in terms of
H(z), to obtain an equation for this function. To do this, both sides of
(1.38) must be multiplied by e""^/^ and integrated over x from 0 to 0°. After
minor manipulation, we obtain

oo

H(z) = 1 + A zH(z) / iillll G(z')dz' . (1.43)
2 ^ z+z'

This is the desired equation for H(z), which occupies the central position in
the study of the transfer of line radiation in a semi - infini te medium. We
note also a useful relation, which will be used extensively later:

/, H(z)H(Zn)
S(x,z)e~^/^0 dx = — zz„ . (1.44)

0
'^'0Z + Zo 0

It is readily obtained from (1.36) if use is made of (1.42)
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Expression (1.42) shows that H(l/s) — 1 is the Laplace transform o£
$(1). The determination of $(t) therefore involves the inversion of the
Laplace transform, that is, the evaluation of the integral

e^^ds

However

,

poss ib le
physical

for the evaluation
to express $(t) in
cons iderat ions

.

of 0(t) we
terms of $.

shall use an
(t) and H(z)

approach which makes it
proceeding directly from

We note that
to being given by

the intensity of the
(1.12')

,
may also be

emergent radiation l(0,z)
written as

in addition

00

/1(0, z) = y S (t)S(t ,z)dT/z

0

(1.45)

In fact, from (1.12') and (1.21) it follows that

1(0, z)

00 00

/(s*(x.) ./S*(t') + / S*(T)r(T' ,T)dTU ^'/^dx'/z . (1.46)Tie

0 V 0

Inverting the order of integration in the second term, we obtain

1(0, z)

00 y 00

— T
r(T' ,T)dT' JdT/z (1.47)

Remembering the symmetry of the resolvent r(T,T'),
in brackets is just S(t,z), as follows from (1.40)
therefore identical to (1.45).

we find that the quantity
The last equation is

Let us summarize the main steps of this method for solving the basic
integral equation (1.16). In solving this equation we seek its resolvent
r(T,T'), which can be expressed as a function of one variable $(t) (1.31).
This function satisfies an integral equation (1.38) of the convolution type.
The solution of this equation involves the inversion of the Laplace transform
of the function H(l/s) - 1, where H(z) is the solution of the nonlinear inte-
gral equation (1.43). Thus the form of the resolvent r(T,T') is determined
essentially by the properties of H(z).

This method is directly applicable to the solution of equations having
the form (1.16) when the kernel function K]^_(t) can be represented as a super-
position of exponentials. Equation (1.16) is treated with rather broad as-

sumptions as to the form of Ki(t), by V. A. Pock (1944), K. M. Case (1957a),
and others. The most complete study of equations of this type is that of
M. G. Krein (1958)

.
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5.2 PROBABILISTIC INTERPRETATION

A simple probabilistic interpretation, proposed by V. V. Sobolev (1951,
1956), may be given to the linear problems of radiative transfer theory. It
does not in itself lead to any new methods for solving the problem; however,
it does enable us to see the problem from another point of view. Moreover,
this approach makes it possible to obtain many important relationships direct-
ly from probabilistic considerations, avoiding a long series of intermediate
trans formations.

SINGLE SCATTERING. Let us consider an excited atom located at a depth t.
With probability X the atom will make a downward radiative transition, and a

line photon will be emitted. Under the assumption of complete frequency
redistribution, the probability that this photon is emitted within an element
of solid angle doj in the dimensionless frequency interval from x to x + dx is

AAa(x)dx — . (2.1)
4Tr

If the photon is emitted in the direction corresponding to arccos y < 71/2,

then the probability that it will escape from the medium without any further
interaction with matter is

g-a(x) T/y

Thus

Aa(x)e-°'^^)^/^dc.dx
4tt

(2.2)

is the probability that the excited atom, situated at depth t, will emit a

photon v;ith a frequency from x to x + dx which will, without subsequent scat-
terings, escape from the medium at an angle arccos y to the normal within the
solid angle doj. Integrating (2.2) over all frequencies and angles of emergence,
we get

I
A^ a(x)dx fe~"'^^^^/^dy = \ ^J a(x) E2 (a(x) T)dx =

|
K2(t) .

00 Q — 00

The function K2(t) is discussed in detail in Sec. 2.6. Thus the total proba-
bility that an excited atom located at optical depth t will emit a photon in
the line which will escape from the medium without scattering is equal to
(A/2)K2(t) .

In Sec. 2.6 it was shown that

K2(t) = y e ^'^^G(z)dz .

0

It is therefore clear that (A/2) G(z) is the probability that an excited atom
emits a photon w-ith such a frequency and in such a direction that the ratio
y/a(x) lies between z and z+dz. We note that the relation (1.11) thereby
gains an obvious probabilistic interpretation.
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Now let us go on to consider two excited atoms, one of which is at depth
T, and the other at depth i+dx. The corresponding probabilities that pho-
tons will be emitted and escape directly from the medium are (X/2)K2(t) and
(X/2) K2 (T+dr)

,
respectively. It is obvious that the difference between them,

which, as follows from (2.6.5), is equal to ( A/ 2 ) K]^ (t ) di ,
gives the probabil-

ity that a photon will be emitted and subsequently experience its first ab-
sorption in a plane layer of thickness di , located at a distance t from, the
emitting atom. From this discussion, the probabilistic meaning of the kernel
of the basic integral equation (1.16) is apparent.

MULTIPLE SCATTERING. Until now the discussion was confined to the probabilis-
tic interpretation of quantities characterizing single scattering. Now let us
turn to the problems of multiple scattering, restricting ourselves to a con-
sideration of a semi - infinite medium. Let p (x ,y ,x) dwdx be the probability
that an excited atom at depth t will emit a photon that will escape through
the boundary (in general, after a number of scatterings) at an angle arccos y
to the normal within the solid angle dto in the frequency interval from x to
x+dx. The probability that the photon will be emitted and interact with
matter for the first time somewhere in the layer between t' and x'+di', excit-
ing an atom in that layer, is (X/2 ) K]^ ( |

t-t '

|

) di ' . The probability that this
atom will in its turn emit a photon that will escape from the medium at an
angle arccos y with frequency x is p (t '

, y ,
x) dcudx. Integrating the quantity

( X/2 ) K]^ ( I

T— T '

I )p ( T '

, y , x) dojdx over all t', we obtain the probability that the
photon will escape from depth t after at least one scattering. Adding to it
the probability of direct escape (2.2), we should obtain p (x , y , x) dwdx . Thus
we arrive at the following equation for p(x,y,x):

00

p(x,y,x) = AjK^(|x-x'|)p(T',y.x)dx' + Aa(x)^e-°'^''^^/^ . (2.3)

0

The function p(x,y,x) is called the escape probability of a photon . From
(2.3) it is seen that the function

S(T,z) = ill P^'^''-'>^^ (2.4)
X Aa(x)

does not depend on the quantities y and x themselves, but only on the combina-
tion z = y/a(x) , and satisfies the equation

S(x,z) = ^ K, (|x-x' ns(x' ,z)dx' + e-^/^ , (2.5)

which is the auxiliary equation (1.32) introduced in the preceding section.

A comparison of (2.4) and (2.1) shows that the escape probability of a

photon with a given frequency and direction is changed by a factor of S(x,z)
through its interaction with the medium. This makes clear the physical signi-

j

ficance of the function S(x,z), which was introduced in Sec. 5.1 in a purely

I

formal manner.

' From (1.37) it is apparent that the quantity ( X/2 ) G ( z) H ( z ) dz is the
probability that the appearance of an excited atom on the boundary of a semi-
infinite medium will be followed by the escape of a photon for which y/a(x)
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lies between z and z+dz. Integrating this probability over all z, we get
the total probability that once an excited atom appears on the boundary of
the medium a photon will escape from it. This probability is equal to
(A/2)aQ, where

oo

= / H(z)G(z)dz . (2.6)

•o

The probability that the photon will be "trapped" in the medium, or, more
accurately, that the energy of the original excitation will not be carried out
of the medium by radiation is then 1 — (A/2)ao. These comments will be of
use later.

Now let us consider the resolvent T C^i ,^2) . Considering the probabilis-
tic interpretation of the function Ki{t) , we conclude from (1.19) that
r(T]^,T2)dT2 is proportional to the probability that the appearance of an exci-
ted atom at depth T]^ will sooner or later lead to the photo- excitation of an
atom in the layer between 12 and T2+dT2. This is readily seen by expressing
r(T2,T2) as a Neumann series

00

r(T-^,T2) = ^n^l^l-^2l^ '
^^-^^

n=l

whe re

00

^n^'^l-^2l^ = I y K^(|t^-t' |)Vl^l^'-^2')'l^' '
^2.8)

^^(It^-t^D = A K^(|T^-T2l) . (2.9)

It is clear that the n-th term of this series is the probability that the
excitation is transferred from depth ti to T2 with n—1 intermediate photo-
excitations .

The probabilistic interpretation of che resolvent given above makes it
easy to obtain the relation (1.30), which expresses the resolvent in terms
of the resolvent function $(t). Excitation migrates from depth t-^ to depth
T2 in the following manner. An excited atom at depth x^^ emits a photon.
During the subsequent random-walk process in the medium, it arrives at 12
where it excites an atom. The probability that the appearance of an excited
atom at depth will sooner or later entail the excitation of an atom in a

layer of unit optical thickness lying at depth T2 will, for brevity, be called
Ti ->- T2 transition probability. We make the situation definite by assuming
that T2 > Ti. Let us divide all possible photon trajectories into two cate-
gories. The first contains those trajectories that never intersect the plane
T = T-j^, and the second, all the others (Fig. 23). Clearly the probability of
a T I ^ T 2 transition along all trajectories of the first type equals the

probability of the 0 ^ '^2"''^! transition, i.e. equals r(0, T2-T]^). Turning
to trajectories of the sec.ond type, let x = t be the depth closest to the
boundary x = 0 reached by a photon in its walks along a trajectory of the
second type (t < ti ) . It is obvious that the atom must be excited at this
depth, since the photon would otherwise continue to move in the direction of
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TYPE I TYPE n
r = 0

Fig. 23. Derivation of the expression for r(T^, t^) in terms of 0(1)

decreasing x. The trajectory described by a photon exciting an atom anywhere
in the layer between t and t+dt does not cross the x = t level, and is other-
wise arbitrary. The probability of the transition x

]^
x with photoexcitation

in a layer of thickness dt is therefore T (t i—t ,
0)dt. Excitation from depth

t is transferred to depth X2, subject only to the limitation that the trajec-
tory does not cross the plane x = t, with a transition probability r(0,
T2—t) . Thus the probability of the t-^ ^ x^ transition along those trajectories
of the second type for which the photo-excitation closest to the boundary
T = 0 occurs between t and t+dt, is

r(x-^-t,0)r(0,X2-t)dt

Integrating this expression over t from 0 to x^, and adding t'le contribution
from trajectories of the first type, we get the total probability of the

Hi X2 transition, equal to r(Ti,X2). In this way we arrive at the rela-
tion (x2 > :

r(x^,x2) = r(0,x2-T^) + y* r(x^-t, 0)1(0, x2-t)dt ,
(2.10)

0

which, in view of (1.23), is identical to (1.30).

It is also easy to show that

r(x^,x2) = r^(x^,x2) ~ y* <5CT^+t)$(x2+t)dt . (2.11)

0

This expression shows that in a semi - infinite medium, contrary to the situa-
tion in an infinite one, photon trajectories that intersect the plane x = 0

are "forbidden."

522-519 O - 74 - 15
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Similar considerations also make possible probabilistic interpretations
of many other relations obtained in the preceding section.

5.3 THE green's FUNCTION FOR A HALF-SPACE

DERIVATION OF THE BASIC RELATION. In Chapter IV the radiation field arising
from a point source located in an infinite homogeneous medium was calculated,
i.e. the Green's function for the radiative transfer equation was obtained
for an unbounded region. Now we shall find the resolvent of the integral
equation (1.16), or equivalently , the Green's function for a half-space. Once
we have the Green's function for an infinite medium, this can be done very
easily (V. V. Ivanov, 1964a). We shall show that the resolvent function 4>(t)

can be expressed in terms of ^^(t) and the H- function. The resulting expres-
sion can be used to find the H-function explicitly (see Sec. 5.4) and hence
to completely solve the problem of determining the half-space Green's func-
tion.

The Green's function for a half-space is

G(t-^,T2) = ^(T^-T^) + r(T^,T2)
, (3.1)

where r(T,,T-,) is the solution of the equation

r(T.
1J

J^l^l"^!-^' :2)dT' . AK^(|T^-r2|) (3.2)

The most direct way of obtaining r(Ti,T2) is to solve this equation by itera-
tion, yielding a representation of r(T-j^,T2) in the form of a Neumann series
(2.7) - (2.9). Physically, the solution of this equation by iteration cor-
responds to the successive calculations of scatterings of different orders.
However, such a solution is of limited practical interest, since the series
converges slowly unless A is small, whereas the most interesting case is pre-
cisely the one in which X is close to unity. Here, clearly, some other ap-
proach is needed so that all scatterings can be considered at once, and
T^T-^fT^) can be obtained in closed form.

Such an approach might, for example, be based on probabilistic considera-
tions of the kind used in the preceding section to derive equation (2.10).
Let us classify all trajectories leading to the ^ t2 transition in an inf i

-

nite medium into two types. To the first type belong those trajectories that
never intersect the plane t = 0, and to the second all that remain (it is
assumed that ti and t2 are non-negative). We calculate separately the proba-
bility of a Ti T2 transition in an infinite medium along the two types of
trajectories

.

Since trajectories of the first type do not cross the plane t = 0, and
are otherwise arbitrary, the probability of the transition along these trajec-
tories is equal to the total probability of a ti -»• 12 transition in a semi-
infinite medium, i.e. r(Ti,T2). Let us find the probability of this transi-

|

tion along trajectories of the second type. Photons describing such trajec- '

tories undergo at least one scattering in half-space t < 0, since otherwise,
having left the t > 0 region, they would not be able to return to depth
T2 > 0. Trajectories of the second type can therefore be classified accord-
ing to the depth at which the first scattering occurs in the half-space
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T < 0. Let us obtain the T2 transition probability along those trajec-
tories for which the first scattering in the region of negative t occurs in
the layer from -t to -t+dt, with t > 0. For a transition along such a tra-
jectory, the photon should escape from depth out of the half-space t > 0,
continue without scattering into the half-space t < 0 to a depth —t , be ab-
sorbed between -t and -t+dt, and finally come from this depth to depth
T2 > 0 (generally, again after random walks in all the infinite space). It
is easy to see that the probability of this complex event is

2^ J dxj dy'p(T^,y' ,x')e
"

'

^

'
(-t , T2 ) a (x

'
) dt /y ' . (3.3)

or, if use is made of (2.4),

00

J S(T^,z')G(z')e-^/^'r^(-t,T2)dt dz'/z' , (3.4)

0

where r^(T, x') is the Green's function for an infinite medium. The integra-
tion over z' in this expression allows for the escape of the photon from the
half-space t > 0 at any angle and with any frequency. By integrating this
expression over t from 0 to <», we allow for all trajectories of the second
type. Thus the total probability of the 12 transition along such tra-
jectories is equal to

00 00

I y S(T^,z')G(z')dz'y* e-^/^'r^(-t,T2)dt/z' . (3.5)

0 0

The Ti T2 transition in an infinite medium occurs along a trajectory
of either the first or the second type. Therefore the sum of r(Ti,T2) and
(3.5) should equal the total probability of the transition for an infinite
medium, i.e. r^(Ti,T2). Consequently,

00 00

^o.(^l>^2^ = r(T^,T2) " 7/ S(T^,z')G(z')dz' y* e-'^/"'r^(-t,T2)dt/z' . (3.6)

0 0

This expression provides an important relation between the Green's functions
for an infinite and a semi-infinite medium and allows the function $(t) to be
readily expressed in terms of ^^(t) and the H- function.

For this purpose, we set X]^ = 0 in (3.6) and recall that according to

(1.37) S(0,z) = H(z). We obtain

00 00

^J^2^ = +
Y / r„(-t,X2)dt j e-^/^'H(z')G(z')dz'/z' . (3.7)
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Since it is obvious physically that in an infinite medium the probability of
the Ti T2 transition depends not on the quantities and t2 themselves,
but only on Iti-t2| Csee Sec. 3.6), we can assert that T^(-t, 12) = '^'„CT2 + t) .

Therefore, replacing the independent variable t2 by t in°°(3.7), we find the
desired expression

$(t) = $^(T) -| y*$^(T+t)dt y e-^/^'H(z')G(z')dz'/z' . (3.8)

Since r(T2^,T2) is expressed in terms of <I>(t) , this result in essence expres-
ses the Green's function for a half-space in terms of the Green's function
for an infinite medium and the H-function. Here we have obtained this rela-
tion on the basis of simple physical considerations, but it can, of course,
be obtained by purely formal means (see K. M. Case, 1957a, 1957b).

EXPLICIT EXPRESSION FOR THE RESOLVENT FUNCTION. Substituting into (3.8) the
explicit expression for $^(1), one obtains a useful integral representation
of 3>(t). Let us first consider the case in which the infinite medium Green's
function is given by (4.1.20) and, moreover, the function $^(t) exists (hence
e.g., the conservative Doppler case is excluded for a moment). In Sec. 4.1
it was shown that in this case, for t > 0,

$ (t)

00

/z R(z)G(z)dz/z
, (3.9)

where R(z) is given by (4.1.19). By integrating over t and rearranging, we
obtain

$(t)

00 00 .0^0 '

G(z')dz' G(z)dz/z (3.10)

The quantity in brackets is 1/H(z), as follows from the basic equation (1.43)
for H(z). Therefore, finally.

$(t)

00

0

T/z R(zl G(z)dz/z
H(z)

(3.11)

In this case ^(t) differs from $^(t) only in the factor 1/H(z) in the
integrand. This similarity, of course, is not accidental; it arises from
the fact that all of the physics of the problem is already contained in
(|>^(t). The difference between '^'^oC^) and 3>(t) comes entirely from the dif-
ference in geometry, and the factor 1/H(z) allows for this difference.

An explicit expression is known for the H-function (see the next sec-
tion). Therefore (3.11) explicitly expresses $(t) , and thereby r(Ti,T2)>
in terms of a(x) . The result (3.11) was first obtained by D. I. Nagirner
(1964a, 1964b) by another means.
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In Sec. 4.1 we showed that if the characteristic exponent y > 1/2, the
conservative function $^(t) does not exist. It also may not exist for

Y = 1/2 (as in the case of the Doppler profile, for example). We now show,
however, that the resolvent function $(t) remains finite in th.e conservative
case for all y ^ 1 ^.nd is given by

oo

= fo 2 J
f(T) = / e ''/^R(z)G(z) , X = 1 , (3.12)

zH ( z )

2
where a is the second moment of the kernel function:

oo oo

= y T^K^(T)dT = 2y z^G(z)dz . (3.13)

2
Usually, in line transfer problems a = «>, so that the first term on the
right in (3.12) is absent. In particular, this is always the case if the
characteristic exponent y is less than unity.

To prove (3.12) we use the explicit expression for the conservative
Green's function for an infinite homogeneous medium found in Sec. 4.1,

00

SpCT)=^^-^+ f e-^/"R(z)G(z)dz/z2
I

(3.14)

2
(if a = °°, the first term on the right automatically vanishes). We further
note that the function $'^(t), related to Sp(T) by (see Sec. 4.1)

$'^(T) = -2TTTSp(T)
, (3.15)

remains finite in the conservative case for all y* Differentiating (3.8) we
obtain ( A = 1) :

00 00

$' (t) = $'^(t) - - f *'jT + t)dt y e~''^/^'H(z' )G(z' )dz' /z' . (3.16)

0 0

Now we substitute into (3.16) the explicit expression for 'J''oo(''^) which results
from (3.15) and (3.14), and make use of (1.43) and the fact that in the con-
servative case

oc

/= / H(z)G(z)dz = 2 , X = 1 . (3.17)

0
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The result (3.17) follows from the probabilistic interpretation of ag men-
tioned in the preceding section (cf . also the next section) . The resulting
expressionfor$'(T)is

$'(t)=-7 f e-''/^R(z)G(z) —^i—
, (3.18)

^ / z^H(z)

whence

$(t) = <5(oo) + i / e ^/^R(z)G(z) --^ . (3.19)
2 J zH(z)

0

The proof of the fact that, in accordance with (3.12),

z^G(z)dz|
, (3.20)

will be given in Sec. 5.5.

The expressions just found for $(t) are valid under the same conditions
for which Sp(T) is given by (4.1.20) and (4.1.21). In particular, these
expressions are valid if a(x) is an even monotonically decreasing continuous
function.

We also note that from (3.8) and (3.1.20) it is easy to obtain the expli-
cit expression (3.7.10) for $(t) for monochromatic scattering, which was
given in Sec, 3.7 without proof.

5.4 THE H-FUNCTION

INTRODUCTION. The function H(z) is the most important special function occur-
ting in problems of radiative transfer in a semi - infinite medium. As we have
just seen, it enters into the explicit expression for the corresponding Green's
function. Moreover, as we shall see in the next chapter, -in many cases the
intensity of emergent radiation may be expressed directly in terms of H(z).
This function is also of importance in the study of scattering in an optically
thick layer (see Sec. 8.5).

The function H(z) is a generalization of the Ambartsumian function Hf^(y)
to the case of scattering with complete frequency redistribution and an ar^bi-

trary profile. The nonlinear integral equation which it satisfies,

H(z) = 1 + -zH(z) / liIlDG(z')dz'
,

(4.1)
2 J z + z

0

is a generalization of Ambartsumian' s equation
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0

(4.2)

As has been noted more than once, isotropic monochromatic scattering is a
special case of scattering with complete frequency redistribution, corre-
sponding to a rectangular profile, i.e.

1, |x| < 1
,

0, lx| > 1 .

(4.3)

For z < 1 we then have z e y/a(x) = y, and the function Gf,j(z) is equal to

j

unity for z < 1 and to 0 for z > 1, so that (4.1) in this particular case
ij reduces to (4.2). On the other hand, (4.1) is itself a special case of the

i

more general equation obtained by V. V. Sobolev (1949, 1954) in a study of

I

the scattering of line- frequency radiation with absorption in the continuum
taken into account (see Sec. 7.5). Problems of monochromatic scattering

I with non-spherical phase functions also lead to H- functions (S. Chandrasekhar

,

1950), which are defined by (4.1) with G(z) = 0 for z > 1. If the phase
function is a sum of a finite number of Legendre polynomials, then for z < 1

I
the function G(z) is an even polynomial in z. The function (A/2)G(z) in this
case is known as Chandrasekhar ' s characteristic function. We may therefore

j

regard (X/2)G(z) as a generalization of the characteristic function to prob-
" lems of scattering with frequency redistribution. For the physical signifi-

cance of G(z) in these problems, see Sec. 5.2.

H-functions are the subject of a substantial literature in the theory of

ij
monochromatic scattering (see, in particular, S. Chandrasekhar, 1950 , and
I. Busbridge, 1960). Some of the results obtained there are also applicable

1 to the case of line- frequency scattering. However, as frequency redistribu-
tion has a substantial effect on the behavior of the H-functions, there are

I fundamental differences between the results for monochromatic and line-fre-
quency scattering.

j

EXPLICIT EXPRESSIONS FOR H(z). A knowledge of the Green's function for an
infinite medium makes it possible to obtain an explicit expression for H(z)

. by means of elementary manipulations, without appealing to the theory of
functions of a complex variable. Differentiating (1.28) with respect to X,

i we obtain

I

a^T.X)
__

A f
K (|x-T'|) dT' ^ i nx,X) , (4.4)

I 3X2^ oX \
0

jj

where we have explicitly shown the X-dependence of the resolvent function

I
If the function $(t,X) on the right is regarded as known, this relation may

t; be considered as an integral equation for 9$/8X. According to (3.11), the
\ free term, of this equation, i.e. (1/X)$(t), is a superposition of functions
i of the form e~'^ / . Therefore the solution of (4.4) should be a superposition
1 of the solutions of (1.32); to be precise:

ii
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9X

00

ft^'l f S(T.z.)Mlll G(z.,dzVz' . (4.5)

Multiplying both sides of this equation by e""""^/^, integrating over t from 0

to °° , and using (1.42) and (1.36), we find, after a simple rearrangement,

CO

^^""^^'^^
= i f R(z') ^iLia dz- . (4.6)

dX 2 J z + z'
^

0

Taking (4.1.18) into account, we then have

X

5,nH(z) = J A'^ dX'/A' . (4.7)

0 \^ /

where $ (s) is the one-sided Laplace transform of $ (t) :

CO

$ (s) = A / R(z') £Li_!l dz
2 y 1+sz'

It follows from (4.7) that

H(z,X) = H(z,l)exp

i

- / ^oo(p^')d^'/^' (4.7')

It is easy to verify that this relation, as well as the representation
(4.7), is also valid for monochromatic scattering (whereas terms must be
added on the right sides of (4.5) and (4.6) to allow for the pole). Using
(3.1.20), we find that (4.7') gives us the following relation between the
Ambartsumian functions for X < 1 and for the conservative case:

i\i(y,A) =

1+ky
exp

7 J y+y' J
R(y' ,X' )dX' (4.7")

From this relation the expansion (3.7.28) of H[vi(y,X) in powers of /I—X ,
given

in Sec. 3.7 without proof, can readily be obtained.

The integration over X in (4.6) can be performed directly. We define

X^ zG(z)

e(z) = arctg , , 0 < 0(z) < tt . (4.8)
i— A U Z J



5.4 THE H- FUNCTION 215

Direct calculation gives

9e(z)

3X I
zR(z)G(z)

From [4.6) we therefore find

H(z) = exp

CO

e(z')
dz'

z ' (z + z '

)

(4.9)

Keeping (4.1.23) in mind, for X < 1 , we can rewrite (4.6) as

9&nH(z , X) ^

3 A 2(1-

00

L__i f-A) 2 J
0

R(z')G(z')
z'dz'

z + z'
' (4.6-)

from which we arrive at the following representation of H(z), wliich, unlike
(4.9), is not valid for X = 1:

H(z) = (1-X) ^ exp

OO

e(z')
dz'

z + z

'

(4.9')

From a comparison of (4.9) and (4.9'), incidentally, it follows that

exp

00

-1/ e (z) dz/z 1-X (4.10)

Similar integral representations can also be obtained for the Ambartsumian
function H^^da) . These representations differ from (4.9) and (4.9') in that
they have extra factors allowing for the contribution from the pole.

Another m.ethod of deriving the expression (4.7"), as well as other simi-
lar relations, and a detailed study of these results is given by T. W.
Mullikin (see, in particular, J. L. Carlstedt and T. W. Mullikin, 1966, which
gives a summ.ary of the results found in this way, and a useful list of refer-
ences). The reasoning used here to obtain the explicit expression for H(z)
seems to be the most elementary one as regards the mathematics. (Another
derivation of (4.9) has been given by R. F. Warming, 1970a.) In accordance
with the statement at the beginning of the chapter, knowledge of the Green's
function for an infinite medium suffices, without an appeal to the theory of
functions of complex variables, to find explicitly both the H-function and
the half-space Green's function. It is often believed that much more sophis-
ticated mathematics is needed to solve the problem of multiple scattering in
a half-space.

;

In addition to (4.9), a number of other integral representations are
known for H(z). A form especially convenient for computing is
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H(z) exp

00

0

Jin [l-AV(u) ]

du

1 + z^u2„2
(4.11)

where V(u) is given by (2.6.18) or (2.6.24). The derivation o£ (4.11) may be
found, for example, in the book by S. Chandrasekhar (1950). The relation
between the various representations of H(z) is discussed by D. I. Nagirner
(1968) .

MOMENTS OF H(z). Let us consider the general features of the behavior of
H(z). From the basic equation for H(z), rewritten in the form

H(z)

oo

1 _ A-z f ^ilill G(z')dz'
2 J z+z'

^

0

- 1

(4.12)

it is clear that H(z) is a monotonical ly increasing function of z, with
H(0) = 1. From the equation directly following (4.7) and from (4.1.23) we
have

2(1-A)

Setting z = 00 in (4.7), we therefore find that

(4.13)

H(oo) = (1-A)- (4.14)

In the conservative case (X = 1) the H-function increases indefinitely as
z -> oo. The nature of the divergence of H(z) for z oo in the conservative
case, as well as the rate at which H(z) for X < 1 approaches its limiting
value H(oo) = (i—X)"'^^ is determined by the behavior of the absorption coeffi-
cient in the line wings. However, we shall delay the detailed discussion of
these important questions for the moment to consider some useful integral
relations

.

Let be the i-th moment of the H-function with weight G(z)

:

00

0

z^H(z)G(z)dz (4.15)

We emphasize that ai , from some value of i on, may diverge. Thus, if the
second moment of the kernel diverges, as is usually the case in line transfer
problems, then in the conservative case ai and all higher moments do not
exis t

.

Going to the limit z ^ oo in (4.1), we get

H(oo) = 1+1 H(oo)a^

It follows, on using (4.14), that
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aQ = i (1 - /1-A) . (4.16)

This relation is found to be most useful. For the physical significance of
ttg , see Se c , 5.2.

In the conservative case one can also find ai explicitly (if it exists),
Multiplying (4.1) by z2g(z) and integrating over z, we get

00 / 00 \ 00

y (h(z) -
J

zH(z) y ^^+^^ G(z')dz'J z^G(z)dz = z^G(z)dz .

0 \ 0 / 0

Using the identity

z = I _ z

'

z+z ' z + z

'

and the fact that in the conservative case, according to (4.16),

y* H(z)G(z)dz = 2 , X = 1
,

0

we get

00 oo oo

I J H(z)z^G(z)dz y ^
'^j^'

^

G(z')dz' = y z^G(z)dz .

0 0 0

Applying the above identity once again, we find from this equation

00 00
^

00

1 ct^ _ 1 / H(z)zG(z)dz / iUiiili G(z')dz' = / z^G(z)dz
2 ^ 2 J J z + z' J

0 0 0

Adding the last two equations, we obtain

00

i = 2 y z2G(z)dz
,

from which we finally obtain

= 2 f y z^G(z)dz| ,
X = 1 , (4.17)
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or

a-^ = /2 a , (4.17')

2where a is the second moment of the kernel function K-^{t) .

ALTERNATIVE INTEGRAL EQUATIONS FOR H(z). The equation for HCz) can be rear-
ranged. Clearly we can rewrite (4.1) in the form

oo

H(z) = 1-^1 H(z)ao -
I

H(z) f ^^^j^f^
G(z')dz'

,

0

from which, on using (4.16), we finally obtain

H(z) ( /r=I + - / ^ G(z')dz' 1=1. (4.18)
\ 2 J z+z' /
\ 0 /

This equation assumes an especially simple form in the conservative case:

00

J
H(z) y ^'^^J^V

'' G(z')dz' = 1 , X = 1 . (4.18')

0

It can be shown that H(z) also satisfies the linear equation

00

H(z) [l-XU(z) ] = 1 --Z / iilili G(z')dz'
, (4.19)

2 J z-z'
0

which is a generalization of (3.7.20). This equation is valid for any complex
z, except those on the negative real semi-axis. When z is a positive real
number, the integral on the right and U(z) are to be understood as Cauchy
principal values.

BEHAVIOR OF H(z) FOR SMALL z. It can be shown that for z > 0

JlnH(z) = -y a^z^nz +
|

^a*^ - a^ z +

(4.20)

whe re

^2a2 - X ^a^^z^ + 0(z^£nz)

OO

a*^ = y* (H(z)-l)G(z)dz/z , (4.21)
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and the constants a^ and a are defined by (2.6.28) and (2.6.29), respectively.
From (4.20) it follows that the derivative of H(z) diverges logarithmically
as z ^ 0. The proof of (4.20) is omitted.

We note, again without proof, that

X

^ll
=
J f P*^(X')dX'

, (4.22)

0

where p_]_ is given by (4.7.6) or (4.7.7). Using these expressions for p—i, we
find for a^-^ the representations

00

^ll
" y Kn[l-AV(u)] + XV(u)| du

,
(4.22')

OO

BEHAVIOR OF H(z) FOR LARGE z (CONSERVATIVE CASE). The asymptotic form of
H(z) in the conservative case is easily obtained directly from (4.18') (V. V.
Ivanov, 1968). Let us first assume that the characteristic exponent is less
than unity: 0 < y < !• Then the second moment of the kernel function K2(t)
is necessarily infinite (see Sec. 2.6). It can be shown that for this reason
the main contribution to the integral in (4.18') for z ^ » comes from the
values of the integrand for z' -> «>. Multiplying and dividing the integrand
by H(z)G(z), we have

oo

-H^(z)G(z) /
H(z' )G(z' ) ^ ^ ^ (4.23)

2 J z+z' H(z)G(z)
0

We substitute z ' = zy and assume the existence of the (as yet unknown) limit

£ (y) = ^(.^y)G(^y')
(4.24)

^ z-co H(z)G(z)

Then from (4.23) we find that as z °°

H(z) ~ C^(zG(z)^ '
,

• (4.25)

where
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Substituting (4.25) into (4.24) and using (2.6.42), we discover that

fH(y)=i75) (4.27)

whe re

f(y) = lim ^'
[""/l^ , (4.28)

Z^ oo ^ I ^ J

and x(z) is a function such that a(x(z)) = 1/z, x(z) > 0. As in Sec. 2.6, we
assume that

f(y) = y^^
, (4.29)

with 0 < Y < !• Specifically, for the Doppler profile, y = 1/2, and for a
profile decreasing proportionally to Ix|"~'^ in the wings,

Y = V- . (4.30)
2<

Substituting (4.27) into (4.26), and taking (4.29) into account, we
find

= sin^Y^ . (4.31)

The expression (4.25) with given by (4.31) is the desired asymptotic form
of H(z) as z ^ «>,

As we have seen in Sec. 2.6 (2.6.69), the leading term of the asymptotic
expansion of G(z) for y < 1 can be written as

nr 2 . (i)(l/z)
G(z) ~ — smTTY —- .

^ z2Y+l

Substituting it into (4.25), we get

H(z) ~ ((})(l/z)^ ' z^, A = 1 , z ^ «>
. (4.32)

This expression is also readily obtained from the integral representation
(4.11) of the H- function. For large z the main contribution to the integral
in (4.11) comes from small values of u, and hence the asymptotic form
1 — (t)(u)u2Y can be substituted for V(u) . Then u = t/z and using the fact
that <^(u) is a slowly varying function, we arrive at (4.32). Equation (4.32)
holds for all y» 0 < Y - 1» which is an advantage of this representation over
(4.25). (Equation (4.25) is valid only for y < !•)

For the most important profiles, we have

Milne: Hj^(z) = s'^'z + 0(1) ,
(4.33a)
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Doppler: Hj.(z)

Voigt: H,,(z)

Lorentz : H, (z)

Error estimates in these equations do not follow from (4.32). For the Milne
rectangular profile the estimate is a consequence of (3.7.26); for the Doppler
profile it will be derived in Sec. 5.6, and for the Voigt and Lorentz pro-
files, in Sec. 5.7. The results (4. 33b) - (4. 33d) were first found (without
error estimates) by the author (V. V. Ivanov, 1962a). An asymptotic expres-
sion for H(z) as z 0°, essentially the same as (4.25), was recently found by
Yu. Yu. Abramov, A. M. Dykhne , and A. P. Napartovich (1967b) by more subtle
arguments than those used here.

The asymptotic behavior of the conservative H- function for z -> <» was
recently discussed also by R. F, Warming (1970b), but his results are less
complete than those given here.

BEHAVIOR OF H(z) FOR LARGE z (NON- CONSERVATIVE CASE). The behavior of the
H-function for large z in the non- conservative case is more complicated. The
simplest way of studying this situation is to start with a representation of
the H-function in the form of (4.11).

When z is large, the main contribution to the integral on the right side
of (4.11) comes from values of the integrand for u close to zero. Therefore
in (4.11),V(u) can be replaced by its asymptotic form 1 — ())(u)u2y (see Sec.
2.6). As a result we have

2.-1/4,1/2^,^,31/4 , o(zl/^£nz)-3/4)
^

( y^'zl/4 , o(z-^/4^nz)
,

V2TTaU(a,0)/

(4. 33b)

(4. 33c)

(4. 33d)

£nH(z)

00

Substituting zu = y and using the fact that (})(u) is a slowly varying function,
so that 4)(y/z) ~ (t)(l/z), z ->- «>, we find that with the same accuracy

00

£nH(z) ~ -7 y iln^l-A + X(J)(l/z)y^^)-^ ,

or

H(z) ~ (1-X) ^h(q) ,
(4. 34)

whe re

00

£nh(q)=-i f inll^qy^A-^ (4.35)
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and

q = Xz~^Y(^(l/z) (1-A)~^ . (4.36)

Thus in the asymptotic region (z >> 1), the function (1—X)^H(z), depending on
two variables — z and X — becomes a function of the single variable q,
which is simply related to z and X. This is the main simplification. The
asymptotic representation of (4.34) is due to V. V. Ivanov and D. I. Nagirner
(1965). The function h(q) is essentially the asymptotic form of (1—X)^H(z)
for the case in which the limits z o° and X ^ 1 are taken in such a way that
the quantity q, defined by (4.36), remains constant.

As for the function h(q), a knowledge of its values for 0 < q < 1 is
sufficient, since the following relation holds:

h^i^ = q''^h(q) . (4.37)

This result is a direct consequence of (4.35).

, From (4.32) and (4.36) it is easily seen that for 1 — X << 1 the quantity
q can be represented as g;,„

t n y T e rl t n' (1-X)h2(z,1)
(4.38)

where H(z,l) is the conservative H- function. With this in mind and consider-
ing (4.37), we find from (4.34) that

H(z,X) ~ H(z,l)h^i^
, l^X << 1 . (4.39)

In contrast to (4.34), this equation is valid for all z > 0, and not only for
z >> 1. The accuracy of (4.39) increases as X tends to unity.

QUALITATIVE BEHAVIOR OF H-FUNCTIONS. To better visualize the behavior of H-
functions, in Fig. 24 we plot £gH(z) versus Jlgz for the Doppler profile using
the values of Hj)(z) given by V. V. Ivanov and D. I. Nagirner (1965). The
parameter of the curves is the value of 1 — X. Although these curves refer
to the Doppler profile, they reflect the general features of H-functions for
other profiles as well. '

0"

When X is not too close to unity, the amplitude of the variation of H(z)
is not large, and it approaches its asymptotic value H(°°) = (1—X)~^ at rather
small z. As X increases, so do the values of H(z). However, H(z) increases
non-uni formly . As X becomes close to unity, a region of z-values develops in
which H(z) becomes practically independent of X and can be approximated by
the conservative H- function. As 1— X decreases, the size of this conservative
region increases. However, no matter how closely X approaches unity, the
curves of H(z) for X < 1 and for X = 1 eventually diverge, the first approach-
ing the asymptote H(«') = (1— X)"~^, and the second increasing to infinity. Let
Zg be the value of z for which q = 1. According to (4.38), the value of Zs
for 1 — X << 1 is the root of the eaua.tioji

c
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i Fig. 24. The H-functions for the Doppler profile,

i; H(z^,l) = (l-X)-'' .

The quantity Zs is the abscissa o£ the point at which the curve of H(z,l)
ii intersects the horizontal asymptote of H(z,A). Substituting H(z,l) from
1 (4.32) into the last equation, we find that asymptotically as A -> 1

z^ - Qd-X)-^^^^ ,
1-A << 1 ,

where

is a slowly varying (in particular, constant) factor, usually close to unity.

For z << Zs one can assume that H(z,X) •= H(z,l) approximately. In the
part of this region for which z >> 1, the asymptotic form (4.32) can be used.
If the opposite inequality holds, i.e., z >> Zg , we have H(z,X) ~ (1—X)~'^.
In the intermediate region, where z is of the order of Zg , values of the H-
function can be found from (4.34) or (4.39). Therefore, to obtain the H-
function for all X's which are close enough to unity, one has to tabulate,
first, the conservative H-function for not too large z and, second, the func-
tion h(q) for 0 < q < 1.

5.5 THE RESOLVENT FUNCTION AND ASSOCIATED QUANTITIES

Having studied the properties of the H-functions, we can now examine the
behavior of the fundamental function $(t) , in terms of which the resolvent of
the basic integral equation for the line source function is expressed. As we
have already laentioned in Sec. 5.1, we shall call $(t) the res olvent function .

522-519 O - 74 - 16
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BEHAVIOR FOR SMALL t. From the integral equation for $(t),

CX3

) =
y
y* K^(|t-t' |)$CT')dT' + A k^(t)

, (5.1)

it follows that

lim
T->0

00

Is (T')$(T')dT' (5.2)

But

00

(t' ) $(t' )dT'

0 0

oo oo

J G(z)dz/z jG(z)dz/z / $(T')e ^'^^dT' (5.3)

With the aid of (1.42), we obtain

00 00

(T')$(T')dT' = J ^H(z)-ljG(z)dz/z = a_-^

0 0

(5.4)

We now find from (5.2), using the expansion of (x) for small t (see Sec,
2.6),

X \ ( * * ~\
$(t) = a, Uni + — (a a,Y —a I

2 1 2 \ -1 1 /
(5.5)

By means of essentially simple, but rather cumbersome, rearrangements of the
explicit expressions for $(t) given by (3.11) and (3.12), additional terms of
the expansion can also be obtained. It turns out that

X X / * * .-

+ V a^T (Unr)^ + ^ a^ ^a-^ (y *-l ) +a-a*^^ xJlnT + 0(t) , t 0 . (5.6)
4 1\ 1

In the last two equations y is Euler's constant.

BEHAVIOR FOR LARGE t. In the opposite limiting case, i.e. for large t, the
resolvent function can also be simplified. Let x(z) be defined by a(x(z)) =

1/z. If

lim
, , .

J-X30 ^ I T J



5.5 THE RESOLVENT FUNCTION AND ASSOCIATED QUANTITIES 225

and 0 < y < 1 , then for t >> 1

^ A 2Ar(y.l) xllll F(t)

2 2Y.1 T (i_x)3/2

where

00

'^'^ ~ r(2Y-l) J { 2y 2 4Y(h/ Y^^ \
"

Here the function h(q) is given by the expression (4.35), and t is related to
T and X in the following manner:

^ = (1-^)
, ,

•
(5.9)

XttAx' (t)

Expressions (5.7)-(5.8) describe the asymptotic behavior of $(t) as t ^

and X ^ 1 simultaneously in such a way that t = const. The result (5.7) is
obtained from the explicit expression for $(t). Its derivation does not dif-
fer from that used in Sec. 4.3 to study the behavior of the Green's function
Sp(T) for large t. Although the representation (5.7) is by no means simple,
it is at least much less complicated than the exact expression (3. 11) . Ac-
cording to (5.7), in the asymptotic region (x >> 1) the function /I—X t$(t)
does not depend on t and X separately, but only on their combination t. This
greatly simplifies matters.

MODIFIED FORM OF THE RESOLVENT FUNCTION AND ITS ASYMPTOTICS. APPROXIMATE
FORMS. Equation (5.7) is a natural point of departure in obtaining exact,
asymptotic and approximate expressions for the revolvent function in more con-
venient forms.

Let

<f(T) = ^ ^— F(t)UT,X) '
^^''^^^

2 (l-X)^/2

where F(t) is given by (5.8), and the quantity t by definition is related to
T and X by

t = ir(2Y) . (5.11)
IT XK2(t)

In (5.10), unlike (5.7), the equality is not asymptotic but exact. When t is

large enough the values of t given by (5.9) and (5.11) are asymptotically
equal, so that (5.10) reduces to (5.7), and ?(t,X) 1 as t ^ The factor
?(t,X) thus allows for the deviation from the asymptotic form when x is not
too large. When X is close to unity, we have ?(x,X) ~ ?(x,l) = C(t), so that

X
K (x)

2 (l-X)3/2

Hence for nearly conservative scattering we have a substantial simplification:
the function which depends on x and X, can be expressed asymptotically as

X -> 1 in terms of functions of one variable for all x.
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In order to obtain an expression for the resolvent function in the case
of conservative scattering, we must let X tend to unity in (5.10). According
to (5.11)^ in this limit we have t 0 . Equations (4.37) and (4.35) show that
h(q) ~ q— ^ for q -> °°. Keeping this in mind, it is easy to find from (5.8)
that as t -> 0

F(t)
IT (s imry)

2 Yr(Y)r(2Y)
.3/2

(5.13)

From (5.10) and (5.13) we have

r
K (t)

^'Ct) = -—i—- ax) , X

2 [K,(t)]3/2
1 , (5.14)

whe re

C = 1

Yr(Y) \tt
r (2y) siniTY (5.15)

As Y increases, C decreases monotonically from C=latY=OtoC=Oat
Y = 1. In the region of the y values of primary importance for us, that is

0 < Y ^ 1/2, the coefficient C is close to unity (for y = 1/2 we have
C = 23/2Tr~l = 0.900). The more slowly the absorption coefficient decreases
in the line wings, the closer C is to unity.

The representation of the conservative function $(t) in the form of
(5.14) was suggested by V. V. Ivanov (1965). It is convenient because in
cases of practical importance the function 5(t) is close to unity for all t

From a comparison of (5.14) and (5.6), we find

S(0) = 1/C . (5.16)

On the other hand,

C(t) (5.17)

If all that is needed is an estimate of the resolvent function for X = 1, the
differences of 5(t) and C from unity can be ignored. As a result we obtain
a very simple approximation (subscript a stands for "approximate")

1
(t)

^ 2 [K,(T)]3/2
(5.18)

valid for all t and for an arbitrary profile with y < !• As a rule, the
approximation improves as y decreases.

From (5.14) and (5.17) we find that

$(t)
K]^(t)

2 [K2(t)]3/2
, T °° , X = 1 (5.19)
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Equation (5.19) gives the leading term of the asymptotic expansion of
the conservative function ^C^) for y < 1 , If y = 1, one can deduce from
(5.19) only that <I>(t) = o (K^ (t) /K2^/ ^ (t) ) as t ^ °°. However, the asymptotic
expression for $(t) may be rewritten in a form that is valid for any value
of the characteristic exponent y, 0 < Y ^ !• Let us proceed from the equation
(see Sec. 5.1)

00

H(z) = 1 + y e~^/^$(T)dT .

0

Substituting the asymptotic form (4.32) of the conservative H- function from
the preceding section, we obtain

00

($(l/z))~^z^ ~ y e~^/^$(T)dT , z ^ 0°

Since for large z the main contribution to the integral on the right comes
from the region of large t values, one can obtain the asymptotic form of $(t).
It turns out that

^(t) 1 -1-
, T -> 00

, X = 1 . (5 . 20 )

r(Y)(c})(l/T))-^ t1-y

In particular, if y = 1 and the second moment of the kernel exists, the func-
tion

(J)
degenerates into the constant (see Sec. 2.6)

00 00

=

J y* T^K^(T)dT = y Z^G(z)dZ
,

and (5.20) gives

'(~) =
( f z^G(z)dz|

,
A = 1 , Y = 1 . (5.21)

.0

This result was already given (without proof) at the end of Sec. 5.3.

In particular, for the most commonly considered profiles (5.20) gives:

.M. ^ /T . ^/ e
Milne: ^^\t) = /3 + o(—? -) ,

(5.22)
\T(£nT)2/

Doppler: ,\r) - 2." ^^^'^/^ (.nx) , 0 (.'^ ^ ^Znr)-'

^

, (5.23)
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Voigt: ^'^(t) = T + Ol^^\ , (5.24)
(2TTaU(a,0))^rCl/4) '(^)

Lorentz: <|)^(t) = t + o(^^) . [5.25)
2^r(l/4)

For the error estimates in (5.22), (5.23), and (5 . 24) - (5 . 25) , see Se<:. 3.7,
5.6, and 5.7, respectively. As the asymptot"" form (5.24) is valid only when
T >> a""-*- , the region o£ applicability increases with a. The results (5.23)-
(5.25) and their analogs for a one - dimens i onal semi- infinite medium in which
scattering occurs only strictly forward or backward were found by the author
(V. V. Ivanov, 1960, 1962a, 1962b). Let us now turn to hearly conservative

Let us now turn to nearly conservative scattering. We assume that
Y < 1.. As in the case of an infinite medium, when X is close to unity, three
zones exist. For those values of t for which the values of t calculated from
(5.11) are much less than unity, it may be assumed that $(t,A) ~ $(t,1). This
is the zone of nearly conservative scattering. In the asymptotic (t >> 1)

part of this zone, the asymptotic form (5.19) may be used. As t increases
further t becomes of the order of unity. Here the resolvent function must be
calculated according to (5.7), with F(t) found by numerical integration (tran-
sition zone). Finally, when t is so large that t >> 1, we are in the zone of
strong absorption, and the situation is quite simple. Since F(t) -> 1 as
t ^ °°, we find from (5.10)

*(t) ~ ^ i—— , t >> 1 . (5.26)
2 (l-A)3/2

For A 7^ 1 the zone of strong absorption inevitably exists, whereas the zone
of conservative scattering exists only for 1 — A << 1, and becomes smaller as
A decreases further from unity.

Comparison of (5.18) and (5.26) suggests the following simple approxi-
mation for the resolvent function $(t) :

<5a(T) =
I

K^(t)(i-A + AK2(t)^ . (5.27)

V/hen 1 — A is sufficiently small, this approximation, for all t, must give
$(t) to within a factor of the order of unity. The properties of this approxi-
mation are similar to those of the longest flight approximation for the infi-
nite medium Green's function given in Sec. 4.5. The simple probabilistic
meaning of all the quantities appearing in (5.27) suggests that this approxi-
mation is amenable to direct physical interpretation.

INTEGRAL RELATIONS. In addition to (5.4), the function $(t) satisfies three
other integral relations, namely:

00

/
2

K2(T)$(T)dT = y(l - /1-A) - 1 , (5.28)

y $(T)dT = (l-A)"'^ - 1 ,
(5.29)

0
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0

00

f <D^(T)dT = ^^p*^ - a*^^
, (5.30)

where is given by (4.7.6) or (4.7.7). The proof o£ the first of these
is similar to that of (5.4) and the second follows from (1.42) for z = ».

The third is derived from (2.11) by setting T2 = 0 and then letting t-^ tend
to zero:

oo

/ )^(T)dT = lim[$^(T) - $(t)] . (5.31)

Substituting on the right side the expansions of $ (x) and <I>(t) for t << 1

given by (4.7.5) and (5.6), we arrive at (5.30).

FUNCTIONS RELATED TO ^(t). In many standard problems the following function
is encountered:

T(t) = 1 + J <l>(T')dT' . (5.32)

0

Except for a constant factor, it is equal to the source function in a medium
with uniformly distributed primary sources (see Sec. 6.1). From (5.6) and
(5.32) we find that for small t

= 1 -
1

a^TJlni +

J
^a*^ + a-|^(l-Y*)-ay

(* ~ ^^1 * 1 2 2
a-j^Y +a ^ ^—ij'^

^'^'^

?(t) = 1 - ^ a^TJlnT + ^ ( a*T+a-, (1-Y )-a)T +

(5. 33)

A 22^rt ^2 X I

+ — a^T (ilnx) + — a,la,Y "^a—
16 1 e ' *

'

By representing H'(t) in the form

oc

f(T) = (1-X) ' - / $(T')dT' , (5.34)

T

which follows from (5.32) and (5.29), using (5.26) we obtain the asymptotic
form of this function for x -> <» (which is valid for y < 1)

(5. 35)

This expansion is applicable in the strong absorption zone, i.e. t >> 1.

When 1-X << 1, a transition zone (t ~ 1) and a zone of nearly conservative
scattering (t << 1) also exist.
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It can be shown that for small 1 — X and all t > 0, the function T(t)
has an asymptotic representation

(5 . 36)

Here t is given by (5,11), the function F(t) increases monotonically from zero
at t = 0 to unity at t = and for small t behaves as

F(t)
/s imry

Yr(Y)
(5.37)

Finally C(t) is a correction factor of the order of unity, with the asympto-
tic value ^(t) ^ 1 for x -> °°. We shall not give the explicit expression for
F(t} because of its complexity. The simplification appearing in (5.36) is a
familiar one: a quantity depending on two variables is expressed, in the
limit of small 1 — A, in terms of functions of one argument.

Substituting (5.27) into (5.32), we obtain an approximation

>i'^(T) = (1 - X + XK^d))" (5. 38)

This approximation gives the exact value of 'F(O) and properly describes the
leading term of (t) as t ^ 0 and possesses the rigorous asymptotic form
(5.35) as 1 ^ °= . Moreover, for values of t >> 1 'that satisfy the inequality
K2(t) >> 1 — X, it gives the correct functional form for the leading term of
the T-dependence of T(t), with a numerical coefficient which differs, for an
arbitrary profile with infinitely extended wings, from its asymptotically
exact value by, at worst, 10 percent. With all this in mind, it is not sur-
prising that in the nearly conservative case the approximation (5.38) is quite
accurate for all t.

The function H'(t) for conservative scattering is of special importance,
It gives the solution of the corresponding Milne problem (see Sec. 6.1).
Special notation will be used for this function:

s(T) = nx) , X = 1 (5.39)

If 1 — X << 1, in the conservative scattering zone, i.e
have ^(t) ~ s(t) .

Substituting (5.19) into (5.32), we get

for t << 1, we

S(t) (5.40)

with C given by (5.15). This asymptotic form fails for y = 1- However, if
(2.6.68) is substituted for K2(t) in (5.40), we obtain the expression which
is valid for an arbitrary value of the characteristic exponent y , 0 < y < 1:
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S(T) ~ (<^(l/T)) '-^T^, !-><». (5.41)

In particular, for the profiles of immediate physical interest we have:

Milne: S^^) = /3t + 0(1) , (5.42a)

Doppler: S°(t) = 4tt~^/^t^^^ (£nT) ^^"^
+ 0{t^ ^

^ {Inj)'^
^
^) ,

(5.42b)

Voigt: S^T) = i^^L- T^/^ . oIJ^
,

(5.42c)
(2uaU(a,0))l/4r(l/4) V^'^^/

Lorentz: S (x) = x . 0^—j . (5.42d)

Error estimates in these expressions do not follow from (5.41). They are de-
rived in Sec. 3.8, 5.6, and 5.7.

Letting X tend to unity in (5.36) and using (5.37), we obtain S(t) in a
modified form:

S(t) =
^

at) . (5.43)
/K2(t)

Here 1(t) is a weakly changing correction factor to the asymptotic form (5.40),
which is usually close to unity for all x. Setting gii) and C equal to
unity, we get the approximate solution of the Milne problem:

S,(t) =
^

. (5.44)
^ v/K2(t)

This result also follows from (5.38) for X = 1.

5.6 THE CASE OF THE DOPPLER PROFILE

In this section a number of the results obtained above will be discussed
in more detail for the special case of the Doppler profile. Numerical data
will be presented.

CONSERVATIVE SCATTERING. We shall start by considering conservative scatter-
ing (X = 1). In Sec. 5.4, we gave in (4.33b) the leading term in the asymp-
totic form of H£)(z) for z >> 1. From (4.19) one can obtain a recurrence re-
lation for the coefficients of an asymptotic series whose leading term is
given by (4.33b). The calculations, however, are very cumbersome and are not
reproduced here. It is found that

°°
h

H„(z) ~ 2TT~'^z^(£nz)'^ V ^ , z - -
, (6.1)

where the constants h, are defined by the recurrence relations
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with h
0

k-1

4k J

j=0

k-i

m= j +Jl1=0

, k = 1,2,

1. Here the coefficients g are given by (2.7.4),
i

(6.2)

f.. = 4-. B.,,
^ 2i~2(i+2):

(6.3)

where the Bj^ are the Bernoulli numbers, and the numbers are defined accord-
ing to (2.7.20). From (6.2) we find, in particular,

h^ = 0.125000 ,
= -1^JL12. =-0.84138

1 2 128

The constants hi and h.2 were obtained earlier by different methods by
D. I. Nagirner (unpublished) and the author (V. V. Ivanov, 1968). These
methods, however, do not enable one to obtain the general recurrence relation
(6.2). For the proof of (6.2), see V. V. Ivanov (1970a). As we have already
mentioned, the derivation of (6.2) proceeds from the linear integral equation
(4.19) for H(z). An attempt to find the coefficients hk directly from the
explicit integral representations of H(z) turns out to be much more cumber-
some, and only the first few of the constants hj^ can be found in this way.

Values of the conservative function Hd(z) are given in Table 23. They
were obtained from (4.11) by numerical integration (V. V. Ivanov and D. I.

Nagirner, 1965). When z is large, values of H£)(z) can be found by the expan-
sion (6.1). For z = 100, the first term alone gives an accuracy of about 1

percent; if three terms of the expansion are retained, the error is reduced
to 0.05 percent.

TABLE 23

THE FUNCTION H (z) FOR THE CONSERVATIVE CASE

z (z) z (z) z (z) z (z)

0 .00 1 . 0000 8.0 5 . 3180 90 20 .556 1000 76 . 897

0 . 05 1 . 0887 8.5 5 . 4970 95 21 . 185 1100 80 .950

0 . 1 1

.

1566 9 . 0 5 . 6718 100 21 . 798 1200 84 . 832

0 . 2 1

.

2743 9 . 5 5 . 8427 110 22 .985 1300 88 . 563

0 . 3 1 . 379 1 10 6 . 0100 120 24 . 123 1400 92 . 161

0 . 4 1 . 4759 11 6 . 3349 130 25 .218 1500 95 .639

0 . 5 1 . 5671 12 6 . 6478 140 26 .575 1600 99 . 009

0.6 1 . 6538 13 6 . 9502 150 27 .298 1700 102 . 28

0 . 7 1 . 7369 14 7 . 2431 160 28 . 290 1800 105 . 46

0.8 1 . 8168 15 7 . 5273 170 29 . 254 1900 108 . 56

0.9 1

.

8941 16 7 . 8038 180 30 . 192 2000 111 .58

(Continued)
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z
«D

Cz) z z
»D

z

1

.

0 1 . 969 1 17 8.0730 190 31 . 105 2200 117.42

1

.

2 2 . 1129 18 8 .3356 200 31 . 997 2400 123.01

1

.

4 2 . 249 1 19 8.5921 220 33 . 721 2600 128.38

1

.

6 2 . 3809 20 8 . 8429 240 35 374 2800 133.56

1

.

8 2 . 5070 22 9 . 3289 260 36 . 963 3000 138.57

2. 0 2 . 6288 24 9 . 7963 280 38 . 497 3200 143.42

2 . 2 2 . 7466 26 10 .247 300 39 . 980 3400 148.12

2 . 4 2 . 8610 28 10.683 320 41 . 418 3600 • 152.70

2 . 6 2 . 9 722 30 11.106 340 42 . 814 3800 157.16

2 . 8 3 . 0805 32 11.516 360 44 . 173 4000 161.50

3. 0 3 . 1863 .34 11.9 15 380 45 . 49 7 4200 165.75

3. 2 3 . 2896 36 12.304 400 46 . 788 4400 169 . 90

3. 4 3 . 3906 38 12.684 420 48 . 050 4600 173.96

3 . 6 3 . 4896 40 13.055 440 49 . 283 4800 177.94

3 . 8 3 . 5 866 42 13.418 460 50 . 49 1 5000 181.83

4 . 0 3 . 6818 44 13 . 773 480 5 1 . 674 5500 191.27

4 . 2 3 . 77S3 46 14.121 500 52 . 835 6000 200 . 30

4 . 4 3 . 8671 48 14.462 550 55 . 644 6500 208.98

4 . 6 3 . 9575 50 14 . 797 600 58 . 335 7000 217 . 35

4. 8 4 . 0464 55 15.6 10 650 60 . 9 23 7500 225.43

5 . 0 4 . 1339 60 16 . 389 700 63 . 419 8000 233.26

5 . 5 4. 3471 65 17.140 750 65 . 832 8500 240.86

6. 0 4 . 5531 70 17.866 800 68 . 170 9000 248 . 25

6. 5 4 . 75 26 75 18.568 850 70 . 440 9500 255 . 45

7. 0 4 . 9463 80 19 . 249 900 72 . 648 10000 262.47

7 . 5 5 . 1346 85 19.911 950 74 . 799

Let us now turn to functions S (t) and $ (t) . The asymptotic forms of
these functions for large x obtained in the preceding section can also be
refined. This is most easily done as follows. From (1.42), (5.39), and
(5.32) we have

00

zH(z) = J e~^/^S(T)dT ,
X = 1 . (6.4)

0

For large t we will attempt to express S (t) in the form
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S^T) ~ 4.-3/Sl/2c.nT)^/4 V j . (6.5)

Substituting (6.5) and (6.1) into (6.4) and carrying out a series of rather
lengthy transformations, one can show that

J [2/ TT
1

22jj'. II.
j=l m=k-j

Since Sq = 1, we find from (6.6)

s = i [2 (Y*+2£n2)-3] = 0.11588
,

8

=

"YY^
[4tt^ + 12 (Y* + 2£n2)^ - 36(Y* + 2£n2) + 81] = -0.75044

,

where y = 0.577216 is Euler's constant. If necessary, values of Sj^ for
k > 2 can also be calculated.

Differentiating (6.5) and using the fact that in the conservative case

T

S(t) = 1 +y $(T')dT' ,
(6.7)

we get

00

^D,
, ^ -3/4 -1/2, „ ,1/4 *3

$ (t) ~ 27T ' T (Jinx) / J —r , T ^ «=
, (0.8)

where

*o = ^' *k ^ " ^k-i' ^ = ^'2' •••
•

f^-^^

Specifically, cf)^ = 0.61588, and ^2 =-0.92426.

NON- CONSERVATIVE SCATTERING. Now let us consider an absorbing medium. We
begin with the H-functions. The function ¥{y)(z) for several values of X is

given in Table 24. Much more detailed tables have been given in V. V. Ivanov
and D. I. Nagirner (1965). For small 1 — A and z >> 1 the asymptotic repre-
sentation (4.34) can be used to compute the H- function. In the present case
of the Doppler profile, we have
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TABLE 24 ^

THE FUNCTION H (z) FOR NON- CONSERVATIVE SCATTERING

log(I-A ]

z

-2 -3 -4 -5 -6

0.0 1 0000 1 0000 1 0000 1 0000 1 0000

0 . 1 1 1503 1 1556 1 1565 1 1566 1 1566

0 . 2 1 2611 1 272 1 1 2739 1 2742 1 2742

0 . 5 1 5301 1 5608 1 5662 1 5670 1 5671

1 . 0 1 8840 1 9539 1 9667 1 9687 1 9690

2 2 4274 2 5906 2 622 7 2 6279 2 6286

5 3 5045 4 0002 4 1118 4 1307 4 1335

10 4 5 76 5 5 6651 5 9500 6 0011 6 00 88

20 5 7702 7 9761 8 6807 8 8180 8 8394

50 7 2 79 7 12 069 14 212 14 702 14 784

100 8 2025 15 762 20 307 21 541 21 760

200 8 879 1 19 583 28 356 31 314 31 894

500 9 4389 24 095 41 909 50 452 52 449

1000 9 6796 26 718 53 602 70 994 75 876

2000 9 8211 28 589 65 283 97 557 108 93

5000 9 9192 30 110 78 623 141 19 172 82

10000 9 9563 30 759 86 179 177 89 240 55

£nh^(q) =-i f iln(l+qy) (6.10)

and

q =
. (6.11)

1-^ 4z(£nz)^

Differentiating (6.10) and evaluating the integral on the right, we find

± iinh^(q) = -i . 1^
. (6.12)

from which

,

q

S,nh^(q) =-i IniW) - ^ arctgq - ^ f ^^^^ dx . (6.13)

0
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For small q we have the expansion

inh^iq) = ^ qilnq - 1 - 9_ + . . . , q ^ 0 . (6.14)

For large q, (6.14) and (4.37) give us

£nhp(q) = -i anq - ^ - ^ + ... , q - 00 . (6.15)

Values o£ the function h£)(q) for 0 < q < 1 are given in Table 25. For q > 1

the function hD(q) is easily calculated from the tabulated values by means of
(4.37).

The accuracy of the asymptotic representation (4.34) for the Doppler pro-
file can be indicated as follows. At z = 10 this expression gives values of
Hp(z) for X > 0.9 with a maximum error of around 3 percent. When z > 1000,
the accuracy is better than 1.7 percent and for z = 10,000 the error does not
exceed 1.1 percent.

Thus these asymptotic expressions are valid over a fairly wide region.
In combination with the available tables of 1\d(z) ,

they make it possible to
obtain values of the H- function for any X and z with an accuracy that is quite
sufficient for any application of the theory. For practical purposes it suf-
fices to have the H-function to 2 or 3 significant figures. One may question
whether Hd(z) really need be tabulated with the great accuracy of Table 23.
It seems to us that this question must have'a positive answer. In practice,
the accuracy of most of the approximate methods used to solve the transfer
equation is difficult to predict beforehand. It therefore appears desirable
to tabulate very accurate numerical values of the exact solutions for several
standard problems.

As will be shown in the next chapter, in many important particular cases
the intensity of the emergent radiation can be expressed in terms of the H-
function. In order to avoid interpolating between the tabulated values of
Hj)(z), it is convenient to calculate the intensity of the emergent radiation
for values of the frequency x that correspond to the tabular values of z. For
example, x = 1.52 corresponds to the value of z 5 ye^^ = 10 for y = 1, etc.

It may be expected that the tabulation of the functions $^(t) and ^^(t)
will be completed in the near future; see also Sec. 8.11 where the accuracy
of approximation (5.38) is considered.

5.7 THE CASES OF VOIGT AND LORENTZ PROFILES

ASYMPTOTIC EXPANSIONS OF THE BASIC FUNCTIONS. For conservative scattering
with Voigt and Lorentz profiles the asymptotic forms obtained in Sec. 5.4 and
5.5 can be refined.

We shall begin with the H-functions. From (4.11) we find that

± ,nH(z) =-1 f ^Xl(u)
dz ^ J l-XV(u'

udu
XV(u) i+z2u2

(7.1)
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TABLE 25

THE FUNCTION h (q)

q h q h
D(q) q h

D(q) q h
D(q) q h oCq)

0 . 00 1 .000 0 . 20 0 . 840 0 . 40 0 . 761 0 . 60 0 . 705 0 . 80 0 . 663

0.01 0 .982 0 .21 0 . 835 0 .41 0 . 758 0 .61 0 . 703 0 . 81 0 . 661

0.02 0 .969 0 .22 0 . 830 0 .42 0 . 755 0 .62 0 . 701 0 .82 0 .659

0 .03 0 .958 0 . 23 0 .826 0 . 43 0 . 751 0 .63 0 .698 0 .83 0 .657

0 .04 0 .947 0 . 24 0 . 821 0 . 44 0 . 748 0 .64 0 . 696 0 . 84 0 .655

0 .05 0 .938 0 . 25 0 .817 0 , 45 0 . 745 0 .65 0 .694 0 .85 0 .653

0 . 06 0 .^29 0 . 26 0 .813 0 . 46 0 . 742 0 .66 0 .692 0 . 86 0 .652

0 .07 0 .921 0 .27 0 . 808 0 .47 0 . 740 0 .67 0 .689 0 . 87 0 .650

0.08 0 .913 0 . 28 0 . 804 0 .48 0 . 737 0 .68 0 .687 0 . 88 • 0 . 648

0 , 09 0 .905 0 . 29 0 . 800 0 .49 0 . 734 0 . 69 0 .685 0 . 89 0 . 646

0 . 10 0 . 898 0 . 30 0 . 796 0 . 50 0 .731 0 . 70 0 .683 0 .90 0 .645

0.11 0 . 89 1 0 .31 0 . 792 0 .51 0 . 728 0 .71 0 .681 0 .91 0 .643

0.12 0 . 885 0 . 32 0 . 789 0 .52 0 . 726 0 .72 0 .679 0 .92 0 .641

0 . 13 0 . 879 0 . 33 0 . 785 0 .53 0 .723 0 .73 0 .677 0 .93 0 .640

0 . 14 0 . 873 0 . 34 0 .781 0 .54 0 .720 0 . 74 0 .675 0 .94 0 .638

0 . 15 0 . 867 0 . 35 0 . 778 0 .55 0 .718 0 . 75 0 .673 0 .95 0 .636

0 . 16 0 . 861 0 . 36 0 .774 0 . 56 0 .715 0 . 76 0 .671 0 .96 0 .635

0.17 0 . 856 0 . 37 0 .771 0 .57 0 .713 0 . 77 0 . 669 0 .97 0 .633

0.18 0 . 850 0 . 38 0 . 767 0 .58 0 . 710 0 . 78 0 . 667 0 .98 0 .631

0 . 19 0 . 845 0 . 39 0 . 764 0 . 59 0 . 708 0 . 79 0 . 665 0 .99 0 .630

1.00 0.628

For z > 1

The re fore

_d_

dz

00

f V (u) udu ^ q/J_\

/ l-XV(u) i + z2u2 Vz7

1

JlnH(z) = -i f ^111}^ ^idu_ , Jl\
, , > 1 . (7.2)

In Sec. 2.7 it has been shown that as u 0
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r ^ 1
(2TTaU(a,0)) ' hV^(u) = 1 - ^ ' u'

Substituting this expansion into (7.2), we find that for the Voigt profile
and A = 1

dz 4z 10 V2 /

U(a,0) £nz

The comparison of this equation with (4.33c) shows that in the conservative
case

Hy(z) = Qr 1 +

10 \2 j Si z \z
(7.3)

where

Q
- 1-/^ \

Tih) y2^aU(a,0)
j

(7.4)

For small values of a (let us say, for a £ 0.1), the second term in the
braces is small compared to unity only for z >> a—1 . The z-values for which
the Voigt asymptotic forms are applicable for the H-function must satisfy
this inequality.

Letting a tend to infinity in (7.3) and recalling that aU(a,0) 1/tt as
a ^ 00 (see Sec. 2.7), we get the expansion of the conservative Lorentz H-
function

•

1 -
lOlT

Z -> 00 (7.5)

Let us consider, further, the behavior of the conservative resolvent
function $V(t) as x ^ oo. Using (7.3) and the expansions of Uy(z) and Gy(z)
for z -> 00 given in Sec. 2.7, we can find from the explicit expression (3.11)
for $(t) that

.V. . „ -3/4
^ (t) = Qt 1 -

40
(7.6)

In the limit as a ^ oo we find

'(T) =

2l/4r

/3 -3/4
1 +

40tt t \t/
(7.7)

From (7.6) it follows that the Voigt asymptotic form of the resolvent
function is not applicable for all t >> 1, but only for t >> a~l (cf. Sec.
2.7).

The result (7.5) leads to an interesting relation satisfied by the con-
servative Voigt $—function, namely.
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oo

J _ $V^^^J = 1 . (7.8)

Actually, as was shown in Sec. 5.1

c»

)dT = H(z) - 1
,

from which we obtain

00

y^"^^^ Qt"-^/"^ - 3>^'(T)jdT = 1 - H^(z) + ^^^^
• ^''•^^

Letting z go to infinity here and using (7.3), we arrive at (7.8).

From (7.8) it is possible to obtain the second term in the asymptotic
expansion of the solution of the Milne problem for the Voigt profile. We have

T

S(t) = 1 + J $(t)dt
,

0

so that for the Voigt profile

T

S^^(T) = 4Qxl/^ ^ 1 ^ / (^""(t) -Qt-3/4)dt

Using (7.8) we can rewrite this equation in the form

S^T) = 4Qt1/4 - / (^\t) - Qt-2/^ jdt

Substituting '^'^(t) from (7.6) we finally obtain

S^^(T) = 4Qt1/4 ^1 . a
(I

_ a^) ^ . 0(1/t)^ . (7.10a)

In the limit as a ^ ~ we get

sL(x) = T^/^ fl - ^ ^ ^ Od/T)") . (7.10b)
r(l/4) \ 407T T

J

522-519 O - 74 - 17
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NUMERICAL DATA FOR THE CONSERVATIVE CASE. Let us now consider the numerical
data relating to the Voigt and Lorentz H-functions. We shall first of all
examine the effect of the Voigt parameter a, i.e. the ratio of the collisional
and damping width to the Doppler width. Table 26 gives values of the conser-
vative H-functions for several values of a. The Doppler H-function corre-
sponds to a = 0, and the Lorentz to a = <». For z < 1 the table gives values
of H(z), and for z > 1 it gives values of the quantity H(l/a(x)) tabulated
according to the argument x. It is convenient to tabulate H(l/a(x)) as a
function of x to facilitate the construction of line profiles.

TABLE 26

THE H-FUNCTIONS FOR THE VOIGT AND LORENTZ PROFILES (CONSERVATIVE SCATTERING)

H(z)

z a = 0.001 a = 0.01 a == 0.1 a = °°

0 .00 1 000 1 000 1 000 1 .000

0.02 1 0 41 1 041 1 0 3 8 1.027

0 . 06 1 103 1 102 1 094 1 .064

0 . 1 1 156 1 154 1 141 1 .096

0 . 2 1 273 1 269 1 243 1.161

0 . 3 1 378 1 370 1 332 1.216

0 . 4 1 474 1 464 1 411 1 . 264

0 . 5 1 565 1 551 1 .485 1 . 307

0 . 6 1 651 1 634 1 554 1 . 347

0 . 7 1 .733 1 713 1 618 1 . 383

0 . 8 1 813 1 789 1 680 1.418

0 . 9 1 889 1 862 1 738 1 . 450

1 . 0 1 963 1 933 1 793 1 . 480

\a(

X a = 0.001 a = 0.01 a := 0.1 a = oo

0.0 1 963 1 933 1 793 1 .480

0 . 2 1 993 1 960 1 813 1 . 492

0 . 4 2 087 2 048 1 874 1.525

0 . 6 2 263 2 211 1 983 1.577

0 . 8 2 552 2 476 2 151 1 .643

1 . 0 3 013 2 890 2 394 1 .718

1 . 1 3 336 3 173 2 549 1 . 759

1 . 2 3 742 3 523 2 729 1 . 800

1 . 3 4 252 3 951 2 935 1.842

1 . 4 4 896 4 475 3 168 1 .885

(Continued)
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Va(x)/

a=0.001 a = 0.01 a = 0.1 a = °°

1, 5 5 707 5 109 3 427 1 928

1

.

6 6 730 5 . 871 3 711 1 971

1. 7 8 021 6 775 4 016 2 015

1. 8 9 . 645 7 831 4 339 2 058

1. 9 11 . 68 9 040 4 674 2 101

2 . 0 14
•

22 10 39 5 014 2 144

2 . 1 17 34 11 87 5 353 2 187

2. 2 21, 14 13 43 5 685 2 230

2 . 3 25 . 64 15 05 6 004 2 272

2 4 30 85 16 67 6 305 2 .314

2 5 36 66 18 26 6 585 2 355

2 6 42 90 19 11 6 843 2 396

2 7 49 36 21 18 7 080 2 436

2 8 55 81 22 44 7 297 2 477

2 9 62 08 23 54 7 .497 2 516

3 0 68 01 24 47 7 682 2 556

3 1 73 44 25 26 7 856 2 594

3. 2 78 19 25 92 8 019 2 633

3 3 82 12 26 50 8 174 2 671

3 4 85 25 27 02 8 323 2 709

3. 5 87 70 27 48 8 466 2 746

3 75 92 00 28 54 8 806 2 837

4 00 95 17 29 5 1 9 126 2 926

4 25 98 00 30 43 9 430 3 0 13

4 50 100 7 31 31 9 721 3 098

4 75 103 3 32 16 10 002 3 180

5 00 105 8 32 99 10 27 3 261

5 5 110 7 34 57 10 79 3 418

6 0 115 3 36 08 11 28 3 568

6 5 119 7 37 52 11 75 3 712

7 0 124 0 38 90 12 20 3 85 1

7 5 128 2 40 24 12 63 3 986

8 0 132 2 41 .53 13 05 4 116

8 5 136 1 4 2 78 13 45 4 243

9 0 139 9 44 00 13 84 4 366

9 5 143 6 45 18 14 22 4 485

10 0 147 2 - 46 34 14 59 4 601
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Figure 25 shows the effect of the parameter a upon the H-function in the
case of pure scattering. One of the conclusions that may be drawn from this
figure is that even for a = 10—3 the values of Hy(z) are close to H^iz) only
for rather small z. The practical region of applicability of the results
obtained for the Doppler profile is therefore rather small. This is especial-
ly true of the asymptotic results corresponding to z >> 1 (and t >> 1). Of
course, this does not mean that the asymptotic theory considered in detail in
the previous section is completely devoid of interest. From a purely theo-
retical point of view it is necessary for the development of the theory it-
self. However, even from the practical side it is useful, since the idealized
case of the Doppler profile is often used to test various approximate and
numerical methods for solving radiative transfer problems in spectral lines.

The second conclusion to be drawn from Fig. 25 is that, in agreement with
the result obtained above, for a 7^ 0 and with sufficiently large z, the func-
tion H(z) increases proportionally to z'a. This asymptotic result, so attrac-
tive in its simplicity, appears to be valid over a very wide region. We now
consider the accuracy of this result.

The leading terms of all the asymptotic expansions associated with the
Voigt profile are obtained by replacing the normalized Voigt function U(a,x)
with its asymptotic form

U(a,x) ~ ^ , (7.11)

which is valid for sufficiently large |x| (see Sec. 1.5). Therefore

(x) = "^^>;j ~ ^ L
. (7.12)V U(a,0) TTU(a,0) ^2

Substituting this expression into (7.3), we find that the leading term in the

log z

Fig. 25. H-functions for the conservative scattering.
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expansion of the conservative Voigt H-£unction for sufficiently large |x| is

(7.13)
"v(a(x)) ^

(2)

A comparison of the exact values of the H-functions given in Table 26 with
the values given by this result shows that when a = 10~3^ (7.13) provides an
accuracy of 5 percent for all |x| ^ 3.2, and 1 percent for |x| ~ 10 . For a
10-2 the error does not exceed 5 percent for |xl Z 2.9, and 1 percent for
|x| ~ 6.7. When a = 0.1, the corresponding values of fx| are approximately
2.9 and 4.0.

For the Lorentz profile (a 0 > (7.5) gives us

(^) ~ (jf
^ (7.14)

This expression is essentially the same as (7.13), since for the Lorentz pro-
file the frequency is measured in units of the collisional width and not in
Doppler widths, i.e. x^ = x/a. When the Lorentz H-function is calculated
from the asymptotic expression (7.14), an accuracy of 5 percent is attained
at X ~ 1.8; for x > 3.3 the error does not exceed 1 percent. More de-
tailed information about the accuracy of the approximations (7.13) and (7.14)
may be obtained from Fig. 26, which gives for several values of a curves of the
relative errors

A(x)

^ot(x.

(7.15)

X

Fig. 26. Accuracy of the asymptotic representations (7.13) and (7.14)
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as a function of x. In the last equation H^s is the asymptotic form of the
H-function, calculated from (7.13) for 0 < a < °° and from (7.14) for a = «>.

In summary, it can be said that for conservative scattering the asympto-
tic theory gives a very good description of the behavior of the H-functions
beyond the Doppler core of the line. The asymptotic form of H(l/a(x)), for
a given value of x, is approximately as accurate as (7.11) for the same value
of X.

NUMERICAL DATA FOR THE NON- CONSERVATIVE CASE. Now let us turn to the numeri-
cal results and asymptotic forms for the non- conservative case. Tables 27,
28, and 29 present values of the H-functions for A < 1. They were obtained
from the representation of H(z) in the form (4.11) by numerical integration
(values of the H-functions for A = 1 were found in the same manner). The
tables we give ,in this section were compiled by D. I. Nagirner, who plans to
publish in the near future more detailed numerical data as well as a descrip-
tion of the method of calculation. R. F. Warming (1970a) has recently pub-
lished detailed six-place tables of the Lorentz H-functions.

To compute H-functions beyond the Doppler core for any A < 1, one can use
the asymptotic theory which, as for A = 1, provides completely adequate accu-
racy here. As has been shown in Sec. 5.4, in the Voigt asymptotic region,
i.e. for z >> a~l

,

H,,(z) ~ (1-A) ^h,,(q)
, (7.16)

where

00

£nh (q) =-i / £n(l+qvy) (7.17)

0
1+y^

and

- = (1-A) z^' . (7.18)
^ (2^aU(a,0))'^

Values of the function hv(q) for 0 < q < 1 are given in Table 30. The rela-
tion (4.37) must be used to find hY(q) for q > 1. We note that

h^(q) = 1 - _ i q^^nq + . .. , q - 0 , (7.19)

The function h(q) for the Lorentz profile is identical with hy(q)

.

For nearly conservative scattering it is more convenient to use another
asymptotic expression, also found in Sec. 5.4,

H(z,A) - H(z,l)hfi^ , 1 - A << 1 , (7.21)
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where

q = [(1-X)h2(z,1)]-^

and H(z,l) is the conservative H-function. This expression is valid for all
z, and becomes more accurate as 1 — A decreases. We can obtain an idea o£
Tts accuracy from the following example. For 1 — X = 10""^ and a = 0.01,
values of H(z) calculated from (7.21) using the data of Tables 26 and 30 dif-
fer from the accurate ones given in Table 29 by only a fraction of a percent.

TABLE 27

THE H-FUNCTIONS FOR THE VOIGT AND LORENTZ PROFILES (X =0.99)

H(z)

z a = 0.001 a = 0.01 a == 0.1 a = CXI

0 .00 1 000 1 000 1 000 1 000

0.02 1 040 1 040 1 037 1 026

0 . 06 1 099 1 .098 1 .092 1 063

0 . 10 1 150 1 149 1 138 1 094

0 . 2 1 261 1 258 1 236 1 158

0.3 1 358 I 353 1 321 1 211

0.4 1 447 1 440 1 397 1 258

0.5 1 529 1 521 1 467 1 300

0.6 1 607 1 597 1 532 1 338

0.7 1 680 1 669 1 593 1 374

0.8 I 750 1 737 1 650 1 407

0.9 1 818 1 802 1 704 1 438

1.0 1 882 1 865 1 755 1 467

(a(x)^1

X a = 0.001 a = 0.01 a := 0.1 a = OO

0.0 1 882 1 865 1 755 1 467

0.2 1 908 1 889 1 774 1 478

0.4 1 988 1 967 1 830 1 510

0.6 2 136 2 108 1 930 1 560

0. 8 2 373 2 332 2 083 1 622

1 .00 2 733 2 670 2 300 1 694

1 . 25 3 425 3 308 2 677 1 790

1 . 50 4 461 4 240 3 17. 1 890

1 . 75 5 835 5 440 3 760 1 991

(Continued)



246 SEMI- INFINITE MEDIUM: GENERAL THEORY

TABLE 27 (Continued)

Va(x)

X a = 0.001 a = 0.01 a = 0.01 a = 00

2 . 00 7 326 6 713 4 363 2 091

2. 25 8 564 7 778 4 906 2 188

2 . 50 9 329 8 486 5 341 2 282

3.0 9 838 9 088 5 910 2 462

q 9 1 ? q 9 ^ RL. o o D ^ u o i. ,

4.0 9 926 9 346 6 534 2 785

4.5 9 934 9 411 6 755 2 . 931

5 . 0 9 941 9 464 6 944 3 . 068

6 . 0 9 950 9 543 7 254 3 . 319

7. 5 9 960 9 625 7 605 3 . 647

10 , 0 9 969 9 710 8 015 4 . 103

TABLE 28

THE H-FUNCTIONS FOR THE VOIGT AND LORENTZ PROFILES (X == 0.999)

z

H(z)

a = 0.001 a = 0.01 a = 0.1 a = CO

0. 00 1

.

000 1 000 1 000 1 000

0.02 1 . 041 1 041 1 .038 1 027

0 .06 1

.

102 1 101 1 093 1 064

0 . 10 1

.

156 1 153 1 141 1 096

0 . 2 1

.

272 1 267 1 242 1 161

0 . 3 1

.

375 1 368 1 330 1 215

0 . 4 1

.

470 1 461 1 410 1 263

0 . 5 1 . 559 1 547 1 483 1 306

0 , 6 1

.

644 1 629 1 55 1 1 346

0 . 7 1

.

725 1 707 1 616 1 . 382

0 . 8 1

.

803 1 782 1 675 1 . 417

0 . 9 1. 878 1 854 1 734 1 . 448

1 . 0 1 . 950 1 924 1 789 1 . 479

(Continued)
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TABLE 28 (Continued)

247

X a = 0.001 a = 0.01 a = 0 . 1 a = 00

0 . 0 1

,

. y 5 u 1 ,

n o ,1

, y 2 4 1

,

, 7 89 1 ,.4 79

0 . 2
^
1 ,. y /y i ,

OCT
, y 5 i 1 ., 80 8 1 ,.49 0

0 . 4 2 ,

A "7 1
. (J 7 1 2 ,,037 1 ,, 869 1 ,.5 24

(J . 0 I .,242 Z .. ly / 1 .,974 1 ,,575

0 . 8 2 .

coo,522 2 .

-1 r "7

.45 7 2 ,,14 4 1 ,,641

1.00 2 ,, y 5 4 2 ,

o r r\
, o 5 y 2 ,

7 O y1,384 1 ,,716

1.25 3 ,

O "7 "7

. 0 7 7
7
3 ,,56 4 2 ,.811 1 ,,818

1.50 5 ,

AAA.444 4 ,

o ^ r\
, y oy 3 ,, 39 5 1

.

,924

1 . 75 QO ,, U D U 6 .. y 5

1

4 .

1 O 7,12 3 2 .

A 7 O,032

2.00 1 2 ,, 0 5 y ,,618 4 ,,928 2 .,139

o or2.25 i 7 ,. Z 4 1 z ,, 0 /
r
D ,

"7 1 C i .

O /I yl
, z 4 4

2 . 5 U 2 2 ,

7 O
, 0 0 1 b ,. 3 is D ,, 4 U / Z ,

7 /I "7,34/

2.75 2 5 .. 0 5 1 7 .. 4 7 6 ,, y b / z ,,44/

3.00 2 o ., U 4 L Q>o ,. o 1
•7

/ ,, 4 U i z ,

C /I c
, D 4 0

3 . 2 0 2 0 .

n "7 ly

,

. D i
"7 "7 "7 1 Z ,

^ /I A
, D 4 U

3 . 5 U 2y ,. 3d I U ,. 1 O oO ,, u y 0 z ,

"7 7 7

3.75 29 ,. 5 4 2U ,. 5 7
o
0 ,, 3y 4 z ,

Q O T
, 0 Z O

4.00 29 ,. 6 6 20 .. 9 4 8 ,,6 70 2 ,

A 1 A,910

4.25 29 ., 76 2 1 ,, 2 8 8 ,,931 2 ,

A A r,995

4.50 29 ,. 85 2 1 ,. 59 9 ,,17 8 3 ,,0 79

4.75 29 ,. 9 3 2 1 ,, 88 9 ,,414 3 ., 160

5.00 30 ,. 00 2 2 ,, 15 9 ,.640 3 ,, 2 39

5 . 5 30 ., 12 2 2 ,. 6 3 1 0 ,, 0 6 3 ,,39 2

6 . 0 30 . 23 23 ,.07 1 0 ,. 46 3

,

,538

6 . 5 30 ,. 3 2 2 3 ,. 46 1 0 ,. 84 3 .

^; "7 A,6 79

7.0 30 . 40 23.. 81 11,. 19 3., 814

7.5 30 .47 24,. 13 11 ,.52 3 .,945

8.0 30 .53 24,.42 11 ,, 84 4 .,071

8.5 30 ,.58 24 ,,69 12 ,, 14 4 ,, 193

9.0 30 .63 24,.94 12 ., 42 4 ,,311

9 . 5 - 30

,

.68 25 . 17 12 ,. 70 4 .,425

10 . 0 30 .72 25 ,.38 12,,95 4 ,,538
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TABLE 29

THE H-FUNCTIONS FOR THE VOIGT AND LORENTZ PROFILES (A == 0.9999)

H(z)

z a = 0.001 a = 0.01 a = 0.1 a = 00

0 ,00 1 , 000 1 . 000 1 .000 I .000

0.02 1 . 041 1 041 1 .038 I .027

0 . 06 1 . 103 1

.

101 1 .09 4 I .064

0 . 10 1 . 156 1 , 154 1 .141 I .096

0 . 2 1 . 2 73 1 . 268 1 .243 I .16 1

0 . 3 1

.

377 1 . 370 I .331 I ? ^ 6t ^ X \J

0 . 4 1 . 474 1 . 46 3 I .411 1 . 264

0.5 1 . 564 1 . 551 1 .485 1 . 307

0.6 1 . 650 1

.

634 1 .554 1 . 347

0.7 1 . 732 1 . 713 1 .618 1 383

0.8 1 . 811 1 . 788 1 .679 1 418

0.9 1 .
O 0 oO O 0 1

.

861 1 .737 1 ,45 0

1 n 1 .
r\ oy 6 2 1 . y 5 z 1 . 79 3 1 , 4 80

X a = 0.001 a = 0.01 a == 0.1 a = 00

0 . 0 1

.

96 2 1

,

932 I 79 3 I _ 480

0 . 2 99 1 1

.

9 59 1X I _ 49 2

0 . 4 2 . 0 85 2 . 047 I 8 7 3 I 5 25

0 . 6 2

.

260 2 . 210 1 9 82 I , 5 7 7

0 . 8 2 . 5 4 8 2 . 474 2 151 1 , 6 4 3

1.00 3 . 00 7 2 . 887 2 39 3 1 . 718

1.25 3 . 969 3 . 719 2 82 7 1

,

8 21

1.50 5 . 6 7 2 5 . 094 3 4 2 3 I , 9 2 8

1.75 8 . 6 8 3 7 . 246 4 _ 1 70 2 , 0 36

2.00 1 3 . 88 10 . 30 5 005 2 . 144

2.25 22. 20 1 4 . 0 3 5 . 832 2 . 250

2 .50 33. 49 17. 86 6 . 565 2 . 354

2. 75 45 . 33 21

.

19 7 . 165 2 . 456

3.00 54 . 65 23. 58 7. 652 2 . 554

3.25 61 . 03 25 . 14 8 . 06 1 2 . 651

3.50 64. 24 26 . 25 8. 425 2 . 744

(Continued)
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TABLE 29 (Continued)

249

\a(x)

X a = 0 .00 1 a = 0 .01 a = 0 . 1 a = oo

0 . / D D D . 93 0 7 17 o
o . 760 2 .8 36

4 . U U D / . 1

1

1 QL O . 00 r\
y

.

0 7 4 2 .925

D O • 12 O 0 78 y .

•7 "7 7
3 7 3 3 .011

A c n4 . o U o y . 03 Iv . 53 y

.

659 3 .09 6

4 . / O Qoy . 88 7 noU , 24 y

.

9 3 4 3 .17 3

o . u u / u . 68 z noU , 9 2 1 U . Z U 3 .259

c c3 . O 7 9 1 3 X 0J t . 22 I U .
7 1
/ 1

•7

3 /lie.415

A n0 . u 7 "Z 43 % 7o o , 43 1 1 .
1 O
1 O 3 .565

o . o 7 A 70 7 A 5 7 i i .
A A0 4 3 7 A A

. 709

7.0 75 . 66 35 . 65 12 . 08 3 . 848

7.5 76 . 63 36 . 67 12 . 49 3 .982

8.0 77. 5 2 37 . 65 12 . 90 4 . 112

7 S 34 38. 58 1 O •
? Q A4 9 7

9 . 0 79 . 10 39 . 48 13 . 66 4 . 360

9 . 5 79 . 80 40 . 33 14 . 03 4 .479

10 . 0 80 . 46 41 . 16 14 . 38 4 . 595

TABLE 30

THE FUNCTION h(q) FOR THE VOIGT AN U LORENTZ PROFILES

q h(q) q h(q) q h(q) q n (qJ

0.00 1 . 0000 0 . 26 0 . 8690 0 . 51 0 .7882 0 . 76 0 .7282

0.01 0 .9931 0 . 27 0 .8652 0 . 52 0 . 7854 0 .77 0 .726 2

0.02 0 .9865 0 . 28 0 . 8614 0 . 53 0 . 7827 0 .78 0 .7241

0.03 0 .980 1 0 . 29 0 . 85 77 0 . 54 0 . 780 1 0 . 79 0 .7220

0.04 0 .9740 0 . 30 0 .854 1 0 . 55 0 .7775 0 . 80 0 . 7200

0 . 05 0 . 9680 0 . 31 0 . 8505 0 . 56 0 . 7749 0.81 0 .7180

0 . 06 0 .9621 0 . 32 0 . 8469 0 . 57 0 .7723 0 . 82 0 .7160

0.07 0 .9565 0 . 33 0 . 8435 0 . 58 0 . 7697 0.83 0 . 7140

0.08 0 .9510 0 . 34 0 . 8400 0 . 59 0 . 7672 0 . 84 0 .7120

0 . 09 0 . 9456 0 . 35 0 .8366 0 . 60 0 . 7647 0 . 85 0 .7101

0 . 10 0 .9403 0 . 36 0 .8333 0 . 61 0 .7623 0 . 86 0 . 7082

CContinued)
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TABLE 30 (Continued)

q h(q) q h(q) q h(q) h h(q)

0 . 11 0 ,.9351 0 . 37 0 ,,8300 0 , 62 0 .,759 8 0 . 87 0 ,.7062

0 . 12 0 ,,9301 0 . 38 0 .,8268 0 . 63 0 ,.75 74 0 . 88 0 ., 7044

0 . 13 0 ,.9252 0 . 39 0 .,8236 0 . 64 0 ,,7551 0 . 89 0 ,.7025

0 . 14 0 ..9204 0 . 40 0 .,8204 0 . 65 0 ,,7527 0 . 90 0 ..7006

0 , 15 0 ..9156 0 . 41 0 .,8173 0 . 66 0 ..7504 0 . 9 1 0 ,.6988

0 . 16 0 ,.9110 0 . 42 0 .,8142 0 . 67 0 ,.7480 0 . 92 0 ..69 69

0 . 17 0 ,.9064 0 . 43 0 .,8112 0 . 68 0 ,.7458 D . 93 0 ,.6951

0 . 18 0 ..9020 0 . 44 0 .,8082 0 . 69 0 ., 7435 0 . 94 0 ,. 6933

0 . 19 0 ,. 89 76 0 . 45 0 ,, 8052 0 . 70 0 ,, 7413 0 . 9 5 0 ,.6915

0 . 20 0 ,. 8933 0 . 46 0 ,, 8022 0 . 71 0 ,. 7390 0 . 96 0 ,.6898

0 . 21 0 ,.889 1 0 . 47 0 ,. 7994 0 . 72 0 ,. 7368 0 . 97 0 ,.6880

0 .22 0 ,. 8849 0 . 48 0 ., 7965 0 . 73 0 ,, 7347 0 . 98 0 ,.6863

0 .23 0 ,. 8808 0 . 49 0 ,, 79 37 0 . 74 0,.7325 0 . 99 0 ,.6845

0 .24 0 ,. 8768 0 . 50 0 ., 7909 0 . 75 0 ,. 7304 1

.

00 0 ,.6828

0.25 0.8729



CHAPTER VI

SEFII-INFINITE MEDIUM: STANDARD PROBLEMS

The results obtained in the preceding chapter enable us to write in ex-
plicit form the solution of the integral equation describing the scattering
of line radiation in a semi - infini te layer with a primary source whose
strength depends in an arbitrary way upon depth. Unfortunately, this solu-
tion is rather cumbersome. However, if the depth dependence of the source
strength has a reasonably simple form, such as, for example, a constant or
decreasing exponential function, etc., the solution can be greatly simplified
and put into a more compact form. It is naturg.1 to consider the simplest stan-
dard cases in greater detail. Such standard problems enable one to form a
clear physical picture of the phenomenon and to better understand the nature
of the problems of spectral- line radiative transfer arising from the change
in frequency of a photon during scattering.

In this chapter, we apply the general results obtained in Chapter V to
the solution of several standard problems. Our goal in this chapter is two-
fold. We will show how the general methods previously developed can be
applied to concrete cases. In addition, we anticipate that it will be useful
as a handbook of complete solutions of standard problems.

6.1 UNIFORMLY DISTRIBUTED SOURCES. GENERALIZED MILNE PROBLEM

A MEDIUM WITH UNIFORMLY DISTRIBUTED SOURCES. Let us first study the radiation
field in a medium with uniformly distributed sources, i.e., one with S*(t) =

S* = const. In this case the basic integral equation for the line source
function is

00

+ s (1.1)

0

It is easily shown that
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SCt) = S(0) ^1+ y $(T')dT'j (1.2)

0

Indeed, differentiating (1.1) and taking (5.1.24) into account, we have

CO

S'(t) =
^ / K^(|t-t' 1)S' (T')dT' + S(0) A k^(t) . (1.3)

0

From a comparison with equation (5.1.28) for the resolvent function $(t) we
conclude that

S'(t) = S(O)nT) , (1.4)

from which (1.2) directly follows.

The value of S(0) may be obtained as follows. As x <» the function
S(t) should tend to the source function in an infinite medium wi th S"(t) = S"'.

In fact, when the sources are uniformly distributed, sufficiently deep in a

semi - infini te medium conditions differ little from those in a medium that is
infinite in all directions, because at great depths absorption processes domi-
nate the escape of radiation through the boundary. In an infinite medium each
photon undergoes an average of (1 — ^)~-'- scatterings. The source function
for an infinite medium with S*(t) = S is therefore S*(l — X)~l. From what
has just been said, we have

*

lim S(t) =
, (1.5)

or

S

1-X

(00 .

1+ y$(T')dT'j (1.6)

Using (5.5.29), we find

= S(0)

0

S(0) = S*(l-X) ^
, (1.7)

and, finally,

S(t) = S*(l-A) '"^

f
$(T')dT'j

, (1.8)

or, in the notation of (5.5.32),

S(t) = S*(1-A)~'^T(t) . (1.9)
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0£ course, this expression may also be obtained from the general rela-
tions found in Sec. 5.1. For S*(t) = S* the expression (5.1.21) gives

0

It can be shown (see Sec. 6.8 below) that

(oo .

1+ y r(T,T')dT'j . (1.10)

oo

1+J
r(T,T')dT' = (1-X) ^T(t)

, (1.11)

0

which brings us back to (1.9).

If the source function S(t) is known, it is easy to find the intensity
of radiation at any point in the medium. We limit ourselves to determining
the intensity of the emergent radiation l(0,ij,x). This is usually the quan-
tity of greatest interest, since it is most readily found from experiment.
In astrophysical problems l(0,y,x) is, as a rule, the only quantity that can
be determined by observation. As is well known,

00

1(0, y,x) = y S(T)e-^^^^^/^a(x)^ . (1.12)

0

Substituting (1.8) here, integrating by parts, and using (5.1.42), we get

1(0, y,x) = S*(l-X)"''^H(y/a(x)) (1.13)

Thus when the sources are uniformly distributed throughout the medium, the
angular and frequency distribution of the emergent radiation is proportional
to H(z) , with z = y/a(x).

GENERALIZED MILNE PROBLEM: THE SOURCE FUNCTION IN THE DEEP LAYERS. From
(1.9) it is apparent that (1.1) has no solution for pure scattering (X = 1).
However, we can set S* = /I — X in (1.1) and (1.9) and then allow X to ap-
proach unity. Then (1.1) reduces to the homogeneous equation

oo

S(t) =1 y K^(|t-T' |)S(T')dT'
,

(1.14)

0

and, as follows from (1.9), its solution, normalized so that S(0) = 1, is

T

S(t) = y $(T')dT' . (1.15)

0
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According to (1.13), the emergent intensity is

1(0, y,x) = H(y/a(x)) . (1.16)

The functions $ and H in (1.15) and (1.16) refer to A = 1 .

Equation (1.14) represents a generalization of the conservative Milne
problem (cf. Sec. 3.8). Since an explicit expression for $(t) is known (see
Sec. 5.3), the result (1.15) gives the solution of the generalized Milne pro-
blem in the form of an integral, i.e., the closed, albeit rather cumbersome
expression

Zl. . 1 . 1 J M _ ^-t/z, or.^ G(z)
S(T) = I^T + 1 + i

J (1 - e ^^^) R(z) ^ dz . (1.17)

0

2
We emphasize that if the second moment of the kernel is infinite (a = °°)

,

the term proportional to t vanishes. In Sec. 5.5-5.7 simple expressions
describing the behavior of S(t) for large and small values of i^were obtained.
In particular, the leading term of the asym.ptotic expansion of S(t) for large
lis

S(T) - ^^^^/^^^'"^
,y

, T - 00 . (1.18)
Yr(Y)

It would be very useful to have detailed tables of S(t) for the absorption
coefficients most often encountered in practice. So far very little has been
done in this direction; only a modest three- figure tab'Te of sD(t) has been
published (E. H. Avrett and D. G. Hummer, 1965, Table 2).

An asymptotic relation exists between the solution of the generalized
Milne problem and the Green's function Sp(T) for an infinite, homogeneous,
conservative scattering medium.

We define

T

S^(T) = 1 + 4^^ t2Sp(t)dt , A = 1 . (1.19)

0

In Sec. 4.3 it has been shown that in the conservative case

.2y-1
S (T) ~ ^
P 4^t2 r(2Y)cosTTY <J)(1/t)

'

Substituting this expression in (1.19) and utilizing the fact that ({)(u) is a

slowly varying function we get

S (T) 1-2^-- -
2Yr(2Y)cos^Y 4>(1/t)

Comparing this equation with (1.18), we arrive at the desired relation:
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SCt) ~ c
(
S^(^)j

,
T -> oo

, (1.20)

where

c = (mill costtyY
'^

VYr2(Y) V
As Y varies from 0 to 1/2, the value of c increases monotonically from 1 to
/2 , _For Y = 1 (in particular, for monochromatic scattering) we also have
c = /2 , which agrees with the result obtained in Sec. 3.9.

THE MILNE PROBLEM AS A CONSTANT FLUX PROBLEM. In the case of the generalized
Milne problem the transfer equation is

1

I(T^y,x)
^ a(x)I(T,y,x) - 1 Aa(x) y* a (x ' ) dx ' y* I ( t , y

'
, x ' ) dy '

, (l'.21)

and the boundary condition is 1(0, y,x) = 0 for y < 0. The source function
S(t) is now just the radiation intensity, averaged over frequency (with the
weight Aa(x)) and over direction:

00 i

S(t) = a(x')dx'y* I(T,y' ,x')dy'

-1

(1.22)

Integrating the transfer equation over y from -1 to +1 and over x from -<» to"

+00, we obtain

1

-1

I (t ,y ,x) ydy = 0 (1.23)

The quantity following the derivative operator is the total flux in the line
which, from (1.23), is clearly independent of depth. In this respect the
generalized Milne problem is no different from the classical one. However,
in the generalized Milne problem the flux in the line may be infinite (al-
though its derivative according to (1.23) is equal to zero) while for mono-
chromatic scattering it is finite.

The integral equation (1.14) for the function S(t) is a generalization
for an arbitrary profile of the (first) Milne equation

00

S^(T) = E^(|T-T'|)S^^T')dT' . (1.24)

0

As is well known, the function S^'^(t) , normalized so that S^'(O) = 1, satisfies
in addition to (1.24) the equation

522-519 O - 74 - 18
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00 1

J E2 (t'-t)S^(t' )dT' - J E2(t-t' )S^(t' )dT' = 4= , (1.25)

T 0
'^^

which is sometimes called the second Milne equation. Using (3.7.37), one m.ay

readily show that

00

/ E, (t' )S^Vt' )dT' = 4= . (1.26)

0
^3

Therefore, (1.25) can also be rewritten in the form

/ [E.(t'-t) - E,(t') ]S"(T')dT' -^2^^ -Lj - ^2

T

-/
T

Mr..[E2(t-t') + E2 (t' ) ]S"(t' )dT' = 0 . . (1.27)

The generalization of this equation to the case of an arbitrary profile is

00

J [K2(t'-t) - K2(T')]S(T')dT' -

T

- J [K2(t-t') + K2(t') ]S(T')dT' = 0 . (1.28)

0

From (1.14), the generalized Milne problem is seen to correspond to the
case in which there are no sources at any finite depth. The radiation field
may be thought of as arising from a source of, generally, infinite strength,
located infinitely deep in the medium. Physically, this means that the atomic
excitation in the surface layers is caused by radiation that is generated at
great depths.

We note in passing that the conservative resolvent function

$(T) = S(T) ,

dx

in addition to satisfying (5.1.28) with X = 1 , is also the solution of the
following two equations:

00 x

J K2 (t'-t) $(t' )dT' - J K2(T-T')0(T')dT' = K2(t) , (1.29)
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00

y* [KjCt') - KjCIt-t' |)]*(T')dT' = K3CT)
, (1.30)

where

T

K3(t) = j K2(T')dT' . (1.31)

0

In the special case of the rectangular profile, i.e., for monochromatic scat-
tering, (1.29) and (1.30) become, respectively, (3.7.48) and (3.7.47).

The generalized Milne problem has been formulated and investigated by
the author (V. V. Ivanov, 1962b, 1965, 1968); it has also been discussed by
D. G. Hummer and J. C. Stewart (1966). It can be regarded as the simplest
standard problem in the theory of line- frequency radiative transfer.

In the next two sections the discussion of a medium with uniformly dis-
tributed sources will be continued, with emphasis on the physical aspects of
the problem.

6.2 THICKNESS OF THE BOUNDARY LAYER

DEFINITION AND ORDER- OF- MAGNITUDE ESTIMATE. The effect of the boundary is to
allow radiation to leave the medium from those regions in its vicinity. Thus
the boundary plays the role of an absorbing wall. Obviously the escape of
radiation becomes more important as the boundary is approached. Therefore,
with a uniform distribution of primary sources, the mean intensity and the
photo- excitation rate near the boundary will decrease. This uncompensated
decrease causes the excitation to fall as the boundary is approached. Con-
sequently, a boundary layer will exist in the gas.

It follows from (1.8) that

= (l-X)''«
, (2.1)

S(«>)

i.e. within the boundary layer the source function decreases by a factor of
(1—X)~'2. Leaving for a moment the detailed behavior of S(t), we shall consi-
der the important problem of estimating the thickness of the boundary layer.
An order- of-magnitude estimate can be obtained from simple physical considera-
tions (V. V. Ivanov, 1965, 1966). The probability per scattering that a pho-
ton is destroyed by inelastic processes is 1 — X. The probability that an
excited atom at a depth x will emit a photon that will immediately (without
scattering) escape is (X/2)K7(t) (see Sec. 5.2). Since, in line transfer pro-
blems the whole process of photon random walks can be approximated by a single
flight (see Sec. 4.5), it is clear that for those values of t for which
(X/2)K2(t) << 1 — X, the escape of radiation is unimportant in the first
approximation. On the other hand, for (X/2)K2(t) >> 1 - X the role of inelas-
tic processes is small in comparison with the effect of the boundary. We
shall denote the optical thickness of the boundary layer as Xj^ (the subscript
b stands for boundary). Thus, when 1 — X << 1, an order of magnitude estimate
of ttq is given by the root of the equation
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I
K^Ct^) = 1 - a . (2.2)

This equation could be taken as a definition of . However, for a number of
reasons we prefer to define Xj^ a little differently, but in a way that does
not contradict the estimate given by (2.2).

We shall define the optical thickness of the boundary layer as the value
T = that satisfies the equation

S(T^) = (1-X)
, (2.3)

where S(t) is the solution of the homogeneous equation (1.14) normalized so
that S(0) = 1.

LIMITING CASES. Let us consider several special cases. For A = 0 we have
S(t|)) = 1, so that = 0 . In the extreme case X 0 the role of radiative
transitions is negligibly small, and therefore the boundary does not affect
the degree of excitation. The boundary layer is absent. In the opposite
extreme case 1 — A << 1 we have from (2.3), using (1.18),

"b
[Y^r^Y)Hi/T^)]^^^\i-x)"^/^^

,

whence, using the fact that 4) is a slowly varying function,

~ D^(l-A)~^/2'^ . (2.4)

Here D|^ is the slowly varying function of X:

I^b

^2p2^^3^^^,_,3l/2y^- 1/2y
(2.5)

In cases of practical interest, is of the order of unity

In particular, for monochromatic scattering (y = 1 , 4* = 1/3), we get
from (2.4) and (2.5)

^ A (1-X)

~

i.e. for nearly conservative monochromatic scattering the thickness of the
boundary layer is asymptotically (X -> 1) equal to the diffusion length. Com-
bining (2.3) and (5.5.40), we find that if the characteristic exponent y is

less than unity, then

K2(tj^) ~ C^d-X) (2.6)

whe re
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C = —1— (l r(2Y)sin^Y) '
. (2.7)

Since the factor C is close to unity for values of y of primary interest,
namely, for 0 < y ^ 1/2, the values of x^^ given by (2.2) and (2.6) are in
close agreement.

For nearly conservative scattering a simple asymptotic relation exists
between the thickness of the boundary layer t-^ and the thermalization length
T+-, which follows from a comparison of (2.4) and (4.6.16):

CT, (2.8)

where

! c = /iliill cos^Y/2t
^2.9)

I

\yT2iy) 1-2 Y ;

The coefficient c decreases monotonically as y increases from_0 to 1, with

;
ciO) = e = 2.718; c(l/4) = 2.327; c(l/2) = 2.000 and c(l) = /2 = 1.414.

!

Thus, for nearly conservative scattering the thermalization length
and the thickness of the boundary layer Xj^ are quantities of the same order
of magnitude. In making estimates, therefore, there is no need to distinguish
between them. In particular, all of the conclusions drawn in Sec. 4.6 about
the effect on the thermalization length of the behavior of the absorption

' coefficient in line wings can be applied as well to the thickness of the boun-
dary layer. As the rate at which the absorption coefficient decreases in the

' line wings becomes smaller, the thickness of the boundary layer increases, and
the dependence of x^ on the line shape is very strong. For nearly conserva-

I

tive scattering the thickness of the boundary layer is very large. It may be

I several orders of magnitude larger than the mean free path of the line center
photon.

6.3 DEPARTURES FROM LTE IN THE BOUNDARY LAYERS OF AN ISOTHERMAL GAS

' FORMULATION OF THE PROBLEM. Let us consider the simplest physical problem,
,j

which involves the solution of the equation discussed in Sec. 6.1. This pro-
' blem is ideally suited to illustrate the physics of the line transfer problem,
jl and is undoubtedly of interest in its own right.

i'

Consider a homogeneous, isothermal gas filling a half-space. The gas is

composed of atoms with the populations of the ground and first excited levels
equal to nx and n2

,
respectively. In addition to the atoms, there are free

electrons, whose concentration ng is everywhere the same. The electron tem-
perature is equal to the atomic kinetic temperature, and is thus independent

I

of depth.

We shall consider two processes ivhich populate the excited level: (1)

transitions from the ground level due to electron impact, and (2) photo-
excitation; and two processes which depopulate it: (1) downward radiative
transitions (spontaneous and stimulated)

, (2) collisions of the second kind.
The problem is to calculate the degree of excitation nz/ni as a function of

i| depth. We assume that no radiation is incident upon the gas from the outside.

I
I i
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As was shown in Sec. 2.5, this problem involves the solution of the
following integral equation for S(tJ:

oo

S(t) =

^ J K^(|t-t' |)S(T')dT' H- Bvq(T)(1-A) . (3.1)

Here S(t) is the line source function:

2h ^ 1

S(T) = (
£i !ll - i)

, (3.2)
c2 \gi ^2 I

^vg (T) is Planck's function at the line center frequency vq , and X is the
probability that a photon survives the scattering process, vhich in this case
is related to the probabilities of the elementary processes by the expression

X = —
. (3.3)

21 e 2 1
1 — exp ^—

Thus, we are dealing with the equation considered in Sec. 6.1, in which

S* = (I-X)B^q(T) . (3.4)

THE EXACT AND APPROXIMATE SOLUTIONS. Using (1.9), we find that the solution
of (3.1) is

S(T) = (l-X)''%^(T)nT) . (3.5)

As was shown in Sec. 5.5, for 1 — X << 1 the function T(t) can be represented
in the form

^(t) ~ (l-X)~''^F(t)C(T) , (3.6)

where

t = - r(2Y) ^ . (3.7)
K2(T)

The merit of such a representation of *i'(T) is that the function C(t)
varies within narrow limits. For rough estimates it can safely be replaced
by unity.

For t << 1, i.e. x << t^, , we get from (3.5) and (3.6), with the use of
(5.5. 37) ,

S(t) ~ (1-X)\ (T) —^ t(r) , T << T, , (3.8)
0 /kTTTT
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where C is given by (2.7). This result can also be written in the form

S(T) ~ C1-X)'^Bv^(T)S(t) , t << , (3.9)

where_^S(T) is the solution of the homogeneous equation (1.14), normalized so
that S(0) = 1. Thus, in the surface layers the source function is propor-
tional to the solution of the generalized Milne problem. The values of t in-
crease as T increases. When t becomes of the order of unity, i.e. when t is
of the order of the thickness of the boundary layer t]-, , the rate at which the
source function increases becomes smaller, and for t >> 1 it practically
vanishes. From (3.5) and (5.5.35) we find that for values of t in this region

7 K (t)

SCt) = B^^(T) 11 - —^-^ ^ ...
j , T » . (3.10)

By substituting (5.5.38) into (3.5) we get an approximate solution of (3.1):

S
a

This approximation is extremely useful. It properly describes all the impor-
tant physical features of the solution. If one needs only an estimate of the
solution to obtain physical information, this approximation always suffices.
In the physical analysis given below it would be possible to restrict our-
selves to this approximation rather than to the exact results.

D. G. Hummer and J. C. Stewart (1966) have proposed another approxima-
tion, namely

S (T) = B^ (T)
^^-^'^ 'g^^^^

^

. (3.11b)
^ 0 (1+(1-X)S2 (t))^

This approximation is usually more accurate than (3.11a). However, to use it
one has to tabulate in advance the solution of the generalized Milne problem.
We note in passing that (3.11b) reduces to (3.11a) if the approximate form
(5.5.44) is substituted for S(t).

In the case of the Doppler profile the approximate form (3.11b) is accu-
rate to within a few percent.

The results just obtained are shown graphically in Fig. 27, in which
plots of lg(S(T)/S(0) ) as a function of lg(/TfT) are given for the Doppler
profile (according to D. G. Hummer and J. C. Stewart, 1966).

PHYSICAL INTERPRETATION. It is evident from the figure that as t ^ «> the
source function tends to a constant value. This result has the following
interpretation. Since the gas is isothermal and is not illuminated by exter-
nal radiation, the deviation from thermodynamic equilibrium must arise because
radiation escapes across the boundary. As we go further from the boundary,
this process becomes less important and the degree of excitation ultimately
approaches the equilibrium value.

Close to the boundary the departure from equilibrium increases rapidly
and can become very large. We shall assume, for the sake of simplicity, that
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Fig. 27. Depth dependence of the line source function in a medium with
uniformly distributed sources. Doppler profile.

the temperature of the gas is sufficiently low so that the average thermal
energy of the particles is substantially smaller than the excitation energy
of the upper level (kT << hvg). We shall also assume that the gas density
is so low that spontaneous transitions occur much more often than collisions
of the second kind (A2 i >> ngC2i). Neither of these assumptions is essential
and they are only made so that our conclusions will be more clear.

The first of these assumptions enables us to disregard stimulated emis-
sion in comparison with spontaneous emission. Formally, this assumption
leads to the following simplifications. First, X is given by

A
X = 21

A2l"^eC21
(3.12)

instead of by (3.3).
function. Third, (3,

Second, Planck's function can be
2) must be replaced by

replaced by Wien's

S(T)
^^^0 §1 ^
c2 g2

(3.13)

Let us discuss the second assumption. To order of magnitude C21 ~ '^^21'
where v is the average thermal velocity of the electrons (on the order of
108cm/sec for T = 10?°), and ^2.1 average value of the cross section,
within an order of magnitude of the gas kinetic value (

10""!^ cm'^ ) . For allowed
optical transitions, A21 ~ 108sec~l. Therefore for tem.pe ratures around 104°K
the inequality A2 1 >>neC2i is satisfied for electron densities much less than
10l6cm-3. In as trophys ical problems one often deals with significantly lower
densities. In laboratory plasmas the densities and temperatures are such that
the condition A2 1 >>ngC2i is again often fulfilled. In such cases it can be
assum.ed that
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^21
1 - X = n (3.14)

^21
and consequently 1 — X << 1.

Substituting (3.13) and (3.14) into (3.5) and replacing Planck's function
with Wien's function, we find

n- -hVn/kT/C

n^ e

Specifically, for those values of t corresponding to t << 1,

g^ -hv /kT/C.
n2 = ^ e ^ (-±^jS(T) . (3.16)

Thus, for low electron concentrations and temperatures that are not too high,
the population of the first excited level of the atoms near the boundary of
an isothermal, s emi - infinite layer of a gas is proportional to the square root
of the electron density. We stress that this conclusion is valid only when
the destruction of photons in flight may be disregarded (i.e. for
1 — A << 36(3), see Sec. 7.6), and when photo- ionizations from the excited
level are infrequent compared with quenching collisions, which is the only
process competing with spontaneous transitions.

As follows from (3.7) and (2.2), for t << T^Q the corresponding values
of t are much less than unity. Therefore the region in which the expression
(3.16) is valid is restricted to values of t much less than the thickness of
the boundary layer. As the electron density decreases, the quantity 1 — X

decreases in proportion to ng, see (3.14). The thickness of the boundary
layer then increases in proportion to ng—^/^Y, where y is the characteristic
exponent.

The decrease in the excitation toward the boundary may be described in
terms of the excitation temperature Tgy, defined by the relation

n

or, equi valently

,

12 ^-hvQ/kTg^

^1 Si

S(T) = B^o(Tg^(T)) . (3.18)

In Fig. 28 a plot of Tgj./T as a function of Ig t appears as an illustration,
The curve refers to the Doppler profile, with 1 — X = 10~6 and hvg/kT = 5.

The deviation of the excited level_ population from the Boltzmann value
indicates that the radiation intensity will differ from the Planckian. Ac-
cording to (1.13) and (3.4),
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.00

X 0.50

log T

Fig. 28. Depth dependence of the excitation temperature in a homogene-
ous, isothermal gas (Doppler profile, hv^/kl =5, 1 — X = 10"^).

1(0, p,x) = B^^(T) (l-X)'''^H(y/a(x)) . (3.19)

Line profiles calculated from this expression are shown for a number of values
of X in Fig. 29. The plots refer to the case of the Doppler profile, with the
radiation emerging along the normal to the boundary, so that y = 1. The val-
ues of the Doppler H- functions used to construct these curves were taken from
V. V. Ivanov and D. I. Nagirner (1965). It is evident from the figure that
the boundary of a homogeneous, isothermal p-lasma occupying a half-space emits
Planckian radiation, which forms a background on which the absorption line is
seen. As y decreases, the line becomes somewhat deeper, and its width increas-
es slightly (Fig. 30). We emphasize that this absorption line appears in the
spectrum of a gas that is isothermal as regards trans lational degrees of free-
dom because an inner degree of freedom, the excitation, is not isothermal
(see Fig. 2 8) .
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Throughout this section numerical data referring to the Doppler profile
have been used to illustrate general statements. We shall also show some
results for the Voigt and Lorentz profiles. Fig. 31 illustrates the effect
of the Voigt parameter a on the depth- dependence of the source function (ac-
cording to E. H. Avrett and D. G. Hummer, 1965) . The corresponding line
profiles computed from thie tables of H- functions and their asymptotic forms

I I I I 1 I 1 I I 1 1 L-3-2-1012345678
log t/A

Fig. 31. The line source function in a homogeneous isothermal gas with

1 — X = 10"*. The numbers on the curves are the values of the Voigt

parameter a.
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given in Sec. 5.7, are shown in Fig. 32. From these figures it is evident
that as a increases, the thickness of the boundary layer increases rather
rapidly. The line has a clearly expressed Doppler core and wide damping
wings .

The problem considered in this section was first formulated and studied
by E. A. Milne (1930) who essentially assumed the rectangular line profile.
Under the assumptions of complete frequency redistribution and a Doppler pro-
file the problem was first considered by L. M. Biberman (1949). Biberman
obtained (3.1) for the case of hvg >> kT and solved it by iteration for two
values of A. A. G. Hearn (1962, 1964b) re-examined the problem under the
same assumptions as those used by Biberman. Using numerical methods, he
found the source function and calculated the line profiles for several val-
ues of X, some of them rather close to unity. For the more general case in
which both Doppler and collisional broadening determine the line shape, the
problem was first studied by E. H. Avrett and D. G. Humme.r (196 5). Equation
(3.1) was solved numerically not only for constant X, but also for A depend-
ing on T (E. H. Avrett, 1965).

6.4 DIFFUSE REFLECTION

EMERGENT INTENSITY EXPRESSED IN TERMS OF THE H- FUNCTION. Let us now consider
the radiation field in a medium that is illuminated from the outside. We
shall assume that the medium is illuminated by parallel beams of monochromat-
ic radiation which is constant in intensity from point to point on the bound-
ary. We shall Be particularly interested in determining the angular and
frequency distribution of the emergent radiation. This is the so-called prob-
lem of diffuse reflection.

Fig. 32. Intensity of normally emerging radiation for 1 — A = 10

Numbers on the curves are values of the Voigt parameter a.
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A rigorous solution o£ this problem for conservative isotropic mono-
chromatic scattering was obtained by E. Hop£ (1934). He expressed the inten-
sity o£ the emergent radiation in terms of the corresponding H-function and
obtained an explicit integral representation of this function. Hopf's result
can be extended to the case of scattering with complete frequency redistribu-
tion with an arbitrary profile.

We shall consider incident radiation of unit irradiance on a surface
perpendicular to its direction of propagation, with dimensionless frequency
xq and the cosine of the angle of incidence yg. We shall denote by y the
cosine of the angle between the direction of propagation of radiation and
the external normal. The problem then reduces to the solution of the trans-
fer equation

1

^
dI(T^,y.x)

^ a(;x)I(T,y,x) - A Aa(x) J a(x')dx' J I (x , y
'

, x ' ) dy ' -

-1

(4.1)

with the boundary condition

1(0, y,x) = 0 , y < 0 . (4.2)

The line source function corresponding to this case satisfies the equation

00

S(T,yQ,XQ) =
J
y* K^(|t-t' |)S(T' ,yo,XQ)dT' +

(4.3)

A A , ,

-(a(Xo)/yQ)T

4iT Av ^

From this it is apparent that the quantity

depends only on t and on the ratio

Zr, =
^0

'0 a(xo)

and is determined by the equation

-t/z,

(4.5)

S(t,Zq) = A
J k^(|t-t' 1)S(T' ,ZQ)dT' + e V (4-6)
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i.e. it is identical with the auxiliary function introduced in Sec. 5.1.

The intensity of the emergent radiation 1(0, y,x; y^.x^) is expressed in
terms o£ the source function by

00

I(0,y,x;yQ,XQ) = J S

(

t , y^

,

Xq )
e"

)^ a (x) di /y . (4.7)

0

Hence, according to (4.4) it follows that 1(0, y,x; yg.xg) can be represented
as a product of a(xQ) times a function depending only on z s y/a(x) and zq.
For brevity we shall omit the arguments yg and Xg and write the emergent in-
tensity simply as 1(0, z).

In order to find 1(0, z), the expression (5.1.45) can also be used instead
of (4.7), which in the case at hand can be written as:

I(0,z)=-A.A / S(T,z)e
^

'°a(x )dT/z . (4.8)
4iT Av y ^

Using (5.1. 44) , we get

, H(z)H(z )

1(0, z) = ^ y , (4.9)
4ttAv ^'^0

with zg given by (4.5). Since the function H(z) can be regarded as known,
this result gives the solution of the problem of diffuse reflection.

We note that the line source function S(T,yg,xg) is given by the expres-
sion

(—
t/z f — (t—t')/z \

e ^ ^
J ^

°<i>(T')dT'j , (4.10)

0

'

which follows from (4.4) and (5.1.36). Of course, this expression could also
be obtained from the general result (5.1.21), if (5.1.31) were used. However,
for the simple case under consideration, this method would scarcely be the
most direct. The integral term in (4.10) can be rearranged by partial inte-
gration. We get as a result

'^"'"O'^O^
- ^ Aa(Xo)H(zQ)^T(T) -

\^ j e %(T')dT'j . (4.11)

The advantage of this representation as compared to (4.10) is that >1'(t') re-
mains finite as t' -> 0 while $(t') diverges. Hence (4.11) is more useful for
computati on.
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It is clear that expressions (4.9) and (4.10) specify the intensity o£
emergent radiation and the source function not only in a medium illuminated
by monochromatic parallel rays, but also in all cases in which there are in-
ternal radiation sources in the medium whose strength decreases exponentially
with depth. An example of this will be discussed in detail in the next sec-
tion.

ANALYSIS OF THE LINE PROFILE. Let us examine the results given by the ex-
pressions we have obtained. The spectral distribution of the reflected radia-
tion, i.e. the profile of the line, seems very distinctive. Let us rewrite
(4.9) by substituting z = ij/a(x) , in order to exhibit explicitly the depen-
dence of l(0,z) on the frequency x and on the angular variable p. We obtain

XA
1(0, y,x) =

^
a(x)y . (4.12)

4TrAv v + z^aix) ^

The line profile r(y,x), normalized so that the normally emergent (y=l) inten-
sity at line center (x=0) is set to unity, is given by the expression

Trn > (1+Zn)ci(x) h( . )

^ I (0 ,y ,x) ^ 0^ ^ \a(x)/

1(0,1,0) y+ZQa(x) H(l)

If the angle of incidence of the illuminating radiation tends to 77/2,
then \iq and Zq approach zero. From (4.13) it is evident that for Zg = 0

"(a(x))
r(y,x) = _x±s±i/_

, (4.14)
y H(l)

^

In this case the external rays hardly penetrate into the medium, but only
irradiate its outermost layers. Here, therefore, we are faced with the prob-
lem of emission by a medium whose sources are concentrated at the boundary.
From (4.14) we see that in this case an emission line is formed. Actually,
although the function H(y/a(x)) increases with the distance from the line
center (i.e. as |x| increases), this increase is insufficient to counteract
the rapid decrease in the factor a(x). As a result, r(y,x) appears to be a
monotonically decreasing function of |x|.

The opposite limiting case is obtained when radiation in the far wing of
the line (|xg|>>l) is incident on the medium with any angle arccos yg it/2.
Then a(xQ)<<l, and the parameter Zg is large. In the limit as z„ ^ <» we have

r(y,x) = (4.15)

As the distance from the center of the line increases, the quantity y/a(x)

,

and hence H(y/a(x)), increases. Therefore r(y,x) is now an increasing func-
tion of |x|, i.e. we have an absorption line. Comparing the last expression
with (1.13), we see that they are essentially identical. This is hardly sur-
prising. The greater the quantity Zq , the deeper the external radiation
penetrates without significant attenuation. In the limit as zg 0° we get a

[

uniform distribution of sources through the medium, for which the result

[
(1.13) has already been derived.
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For any finite value of zq an emission line is formed, which increases
in width with zq (Fig. 33) . When zq is large enough a depression appears at
the center of the line, whose depth increases with zg . Simultaneously, the
separation of the intensity maxima increases. The limiting shape of this cen-
tral self- reversal is given by (4.15). Conversely, in the far wing of the
line, where ij/a(x) >> Zq , from (4.13) we have

a(x) \a(x)/
r(vi,x) = (1 + z ) _1^|±2^ + ... . (4.16)

u y H(l)

Thus, in the line wings the frequency dependence appears to be the same as

for Zg = 0: the intensity decreases in proportion to H (y/a (x) ) a (x) as |x|

increases. Let us consider this dependence in a little more detail.

If X is not very close to unity, then it may be assumed that H(y/a(x))
is approximately equal to (1 — A)~'^, since in the line wings y/a(x) >> 1.

Therefore instead of (4.16) we get

r(y,x) = —— + . .. , (4.17)
H(l) y(l-X)'5

omitting terms that approach zero more rapidly than a(x) . Hence, the inten-
sity in the far wing of the line is proportional to the absorption profile.

^ I 50 -

X

Fig. 33. Line profiles for exponential distributions of primary sources.

Doppler profile. Curves are for the case X = 1, y = 1. Numbers on curves

are values of l/zg-
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When X is close to unity, the situation is slightly more complicated.
Clearly (4.16) is still valid. However, it is now possible for a region of
frequencies |x| to exist for which the condition ij/a(x) >> zq for the validity
of (4.16) is satisfied, while H(y/a(x)) is still much less than its limiting
value (1 - A)~^. For such frequencies the function H(y/a(x)) increases rather
rapidly with |x|, and therefore r(y,x) decreases considerably less rapidly
than a(x). In this case the general asymptotic expressions obtained in Sec.
5.4 must be used for H(ij/a(x)). Frequencies |x| >> 1 may exist, for which
(4.16) is applicable, while the asymptotic form corresponding to pure scatter-
ing can still be used for H(y/a(x)). Such cases arise when 1 — X << 1 and the
value of Zq is much less than the thickness of the boundary layer . If this
situation occurs, then, for example, with the Doppler profile, we can use
(4.16) and (5.4.33b) to obtain the expression for the normally emergent inten-
sity in this frequency region.

l+z„ 2 2

r(l,x) = :—^ e Hp(e^ )
+ = 2ti'

l + z,

Hj3(l)
(4.18)

Thus the intensity in this case decreases with the distance from line cejiter
in proportion to /| x| exp (—x^/2) , i.e. considerably less rapidly than the
absorption coefficient exp(—x^).

Going further from the line center, z = y/a(x) becomes so large that the
rate at which H(z) increases becomes smaller, at first only slightly, and then
more and more strongly. Ultimately it nearly vanishes; H(z) approaches its
asymptotic value H(oo) = (1 — X) 2, and the intensity of the emergent radiation
becomes proportional to the absorption coefficient a(x)

.

The result (4.13) also makes it possible to trace the dependence of the
line profile on y, the angle of emergence. The

.
y- dependence describes the

change in the shape of a line going from the center of the disc of a star or
planet (y = 1) to its limb (y = 0). The general nature of the changes occur-
ing is clear from Fig. 34. As y increases the line becomes wider and the
central depression becomes deeper.

Fig. 34. Line profiles for various angles of emergence. Curves refer to

Doppler profile, X = 1 and 1/zq = 0.30.

522-519 O - 74 - 19
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We are not going to make a special study o£ the i-dependence of the
source function S(T,yQ,XQ), i.e. the variation in the degree of excitation
with depth, but instead we shall limit ourselves to some very brief remarks.
Vifhen Zq is small, the degree of excitation decreases mono toni cal ly with depth
In this case an emission line is formed (see Fig. 33, p. 270). As Zq increas
es the T-dependence of S(T,yo>^o) develops a maximum. In this case an emis-
sion line is formed with a central se 1 f

- revers al , which reflects the drop in
the excitation temperature toward the boundary. As zq increases further,
becoming much larger than the thickness of the boundary layer, saturation
sets in. The ratio of the degree of excitation at the maximum to that at the
boundary increases much less slowly as zq continues to grow and the maximum
on the curve of S(T,yQ,XQ) becomes ever flatter. Corresponding to this," the
line profile also changes — the intensity maximum becomes less and less sharp

ALBEDO OF THE MEDIUM. In many instances it is necessary to know the total
energy reflected in the line in all directions per unit surface. We denote
this quantity as E.

The energy leaving the medium in a spectral line through a unit area per
unit time within the solid angle doj is equal to

CO

0

The total energy E reflected per unit time in all directions is

CO 1

(4.19)

0 0

Substituting (4.9) here, we get

(4.20)

Instead of y we introduce the variable z = y/a(x). Then

1

a(x)

(4.21)

Changing the order of integration, we get

00

0

(4.22)
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From the equation for the H-function written in the form (5.4.18) it follows
that

00

Therefore, finally,

liilll G(z)dz = —i /1-X . (4.23)
^^^0 H(Zq)

E = PqCI-IUZq) /1-X ) . (4.24)

Since we are assuming in this section that the emission of the medium
arises from its illumination by parallel rays, the reflected energy is natu-
rally expressed in terms of the incident energy. The latter quantity is
equal, per unit area, to Eg = yg.' We therefore find that of all the energy
incident on the boundary of the medium, the fraction

Ag = |- = 1 - H(Zq)/~ (4.25)

0

is reflected, while the fraction

1 - Aq = H(Zq) /1-X (4.26)

is absorbed in the medium. The quantity A^ is known as the albedo of the
me d i um

.

It follows from (4.26) that the role of absorption increases with Zq .

This is related to the fact that as zg becomes larger the external radiation
penetrates deeper into the medium and the number of scatterings experienced
by a photon before escaping increases. Since for each scattering there is a
certain probability that the photon will be destroyed, 1—Ag will increase
with Zg.

From (4.26) it is easy to obtain the mean number of scatterings IT ex-
perienced by a photon. For this it suffices to divide the fraction of the
photons absorbed in the medium by the probability per scattering that a pho-
ton is destroyed, which is equal to 1 — A.. As a result we get

N = (1-A)"'2h(z.) . (4.27)

(See also Sec. 6.8, where this expression is found from other considerations.)

As has already been mentioned at the beginning of the section, many of
the relations found here are analogous to results obtained earlier for the
case of monochromatic scattering. The method we are using was developed by
V. V. Sobolev (1956). The present discussion is based on a paper of the
author (V. V. Ivanov, 1962b), but contains much more detail.
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6.5 EXPONENTIAL DISTRIBUTION OF SOURCES

FORMULATION OF THE PROBLEM. In the preceding section we mentioned that the
results obtained there apply not only when parallel rays are incident on the
medium, but also when there are internal radiation sources within the medium
whose strength varies exponentially with depth. Let us discuss in detail an
example in which the problem reduces approximately to this situation.

Earlier, in Sec. 6.3, the concentration o£ atoms in the first excited
level in a homogeneous, isothermal gas was calculated on the assumption that
the line broadening was caused by thermal motion of the atoms, i.e. the ab-
sorption coefficient was assumed to have a Doppler profile. The population
of the upper level was assumed to be established by the balance of radiative
and collisional excitations, on one hand, and downward radiative transitions
and quenching collisions, on the other. Let us now discard the assumption
that the gas is isothermal.

When the temperature is not constant, the rates of electron collisions
of the first and second kinds, C12 and C21, which depend on the electron temp-
erature T, will now be functions of x, whose explicit form is determined by
the deptn dependence of the temperature. However, this is not the only way
that temperature variations affect the situation. The Doppler width of the
line, in units of which the frequencies are measured, also now becomes a
function of t. Consequently the statistical equilibrium equation no longer
reduces to an integral equation with a kernel depending on the modulus of the
difference of two depths. Therefore an exact treatment of this problem seems
to be much more complicated than for those previously considered.

We shall disregard the dependence of the Doppler width Avp upon tempera-
ture, as our first additional approximation. This assumption will be used
throughout the rest of this section. In this approximation the equation of
statistical equilibrium, with stimulated emission neglected, has the form

A /*

n^Ci) (A2^+ngC2P =-|i
J ( |

t-t '
|

(t '
) dx ' ^n^n^C^^ ' ^^'^^

0

The quantity Cji depends weakly upon the temperature, and in an approximate
treatment of the problem this dependence can also be neglected. However,
because of the presence of an exponential factor in the relation between C21
and C12 > the temperature dependence of C12 appears to be strong and cannot
be neglected. The probabilities of the elementary processes will be assumed
to depend on T only via this exponential factor. This will constitute the
second additional approximation. The value of C21 can, for example, be taken
to correspond to the temperature at the depth t = 0. Under these assumptions
(5.1) may be rewritten as

, / 2hv^ -hv./kT(T)
S(t) =- / K (|t-t' l)S(T')dT' + (i-X)-—^ e , (5.2)

0 ^
-

where S(t) is the usual line source function, related to the level populations
by (3.13), and the quantity X is expressed in terms of the probabilities of
the elementary processes by (3.12).
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If the depth- dependence o£ the temperature has the form

T(0)
T(T)

l+mi
(5.3)

where m is a constant, then (5.2) becomes

S(T)

oo

t'
I

)S(t' )dT' + Qe
-t/z.

(5.4)

where

e 21
2hvQ -hvQ/kT(0)

(5.5)

'0

kT(0) 1

hv
(5.6)

0

Thus in this case we are dealing with the radiation field of a medium with
an exponential distribution of sources, i.e. we have recovered the problem
analyzed in detail in the preceding section. Using the results obtained
there, we can at once write the expression for the intensity of the emergent
radiation

:

1(0, y,x) = Qz
0

H(z)H(Zq)
(5.7)

where z = ij/a(x). Our aim is now to analyze this expression, with the pur-
pose of showing how the shape of the line emitted by the medium can be used
to estimate the variation of the temperature with depth. It is necessary to
understand clearly that this analysis is valid only for those extremely
specialized assumptions that we have just made. This analysis does not give
a ready-made prescription for practical use. On the contrary, this analysis
might serve as a warning to anyone attempting to draw conclusions about the
physical conditions in a gas from the form of self- reversed lines.

ANALYSIS OF THE LINE PROFILE. As is seen from (5.7), the profile of the line
emitted by the gas depends on the value of the parameter zq. According to
(5.6) this parameter, in turn, is related to the quantity m, i.e. it depends
on the depth distribution of the temperature. This fact can be used to ob-
tain the depth dependence of T through the line profile.

The probability X that a photon survives the act of scattering tends to
unity as the electron density decreases, whereas the value of zq, according
to (5.6), is independent of density, and under the present assumptions is

determined only by the temperature distribution. The thickness of the boun-
dary layer increases as the density decreases and for sufficiently low n^ it

becomes much larger than Zr,. In this limiting case, as has been shown in the
preceding section, the profile of the line ceases to depend on X (in (5.4)
the quantity X can be set equal to unity) and is instead determined entirely
by the value of Zq. Thus the line profile in the limiting case of low den-
sities is determined only by the depth- dependence of the temperature.
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Figure 33 (p. 2701 shows line profiles for radiation emerging in the
direction of the normal to the boundary (y = 1), computed from (5.7) for the
Doppler absorption coefficient and X = 1. The value of l/zg = fhvQ/kT(0))m
is given as the parameter of the curves. It is evident from the figure that
as m becomes smaller, i.e. as the temperature decreases more slowly with
depth, the line becomes wider and the depth of the central self -re vers al in-
creases .

The first conclusion that follows from this figure is that in and of it-
self a distribution of kinetic temperature that increases toward the surface
does not guarantee the appearance of an unreversed emission line. It is only
when the temperature increase occurs rapidly enough (small m) that the line
will not have a depression in the center. What causes the appearance of this
intensity minimum? Because the temperature increases toward the boundary,
the number of collisional excitations increases as t becomes smaller. How-
ever, at the same time, the escape of radiation from the medium becomes more
important and causes the number of photo-excitations to decrease. If the
temperature does not increase rapidly enough, the second factor dominates,
causing the concentration of excited atoms to decrease near the boundary. In
this way the appearance of a self- reversal in the center of the line may be
unde rs tood.

The second conclusion that may be drawn from Fig. 33 is that the depth
of the central minimum is significantly more sensitive to the temperature dis-
tribution than the width of the line as measured, for example, by the separa-
tion of the intensity maxima. Let us consider this point in a little more
detail. The frequency at which the intensity maximum occurs is defined by
the condition

^nO,V,^) . 0 , (5.8)
9x

which, by means of (5.7), may be expressed in the form

dH(z) ^ H(z)_
^

-

^5^9-,
dz z+Zq

We denote the root of this equation by z^. Knowing this root, we can calcu-
late the frequencies x^^ of the intensity maxima from the condition

a(x^) = -H-
. (5.10)

^m

Specifically, for the Doppler profile

= -Un^l . (5.11)

For small values of m, when the temperature varies slowly with depth,
the line width depends only slightly on m. We shall verify this by finding
explicitly the dependence of |xj^| on m for small m. When m is small enough,
the value of zq , as is seen from (5.6), becomes large. In this case the root
of equation (5.9), i.e. z^,^, should also be large. Therefore in solving equa-
tion (5.9) we can use the asymptotic expression for H(z) (see Sec. 5.4),
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(5.12)

noting that this expression leads to the following equation for z^:

(5.13)

whence z Therefore for sufficiently small m we have instead of (5.11)

1/2

(5.14)

-1
Since Zq is proportional to m , it follows from the last expression that for
small m the distance between maxima increases approximately as {In 1/m)-'-/^,
i.e. very slowly indeed.

It is also easy to estimate the depth of the central minimum. From
(5.7) we have

1(0, y,x ) y + z„ H(z )

1(0, y,0) Zj„ + Zq H(y)
(5.15)

When m is small, as we have seen, z^ Zq >> 1 for the Doppler profile, and
instead of the last expression we have approximately

-1/4

1(0, y,0) Hp(y)
(ZpAnzQ) 1/2

(5.16)

Thus the maximum intensity, expressed as a fraction of the line center inten-
sity, increases as m decreases, roughly speaking, in proportion to vZg , i.e.
as l//m. Although this dependence is not very strong, it can be used to •

determine the value of m from the line profile. We can conclude generally
that for a Dopp ler-b roadene d line emitted by a hom.ogeneous non- is othe rmal gas,
with a temperature that decreases slowly with depth, the line parameter most
sensitive to the temperature distribution is the depth of the central self-
reversal.

The situation is quite different if the line is collis ionally broadened,
so that the absorption coefficient can be assumed to be Lorentzian. We shall
restrict ourselves to the case in which the temperature varies slowly with
depth (small m) . Our goal will be to show how the width of the line and the
depth of the central depression depend on m. The line of reasoning used above
for the Doppler line can be followed here as well, except that in order to ob-
tain the root of equation (5.9) for small m we must now use the asymptotic
expression not of the Doppler, but of the Lorentz H- function, which has the
form (see Sec. 5.4)

Hl(z)
(I)

1/4
1/4

(5.17)

Substituting this expression into (5.9), we find that z^ is given by the
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equation

(5.18)

whence z

Zg » 1
'

Zo/3, Thus from (5.10) we have for the Lorentz profile and

0

3p
(5.19)

where | x„ | is the distance of the intensity maxima from the center of the
line, measured in collisional widths
follows from (5.15) and (5.17) that

As to the height of the maxima, it

1(0, y,x^) ,5/4
1/4

1(0, y,0) 29/4Hj^(m)
(5.20)

The quantity Zq is proportional to 1/m. Therefore, according to (5.19), as
m decreases the separation of the intensity maxima increases in proportion
to l/Zin, whereas the height of the maxima increases only as m~l/4; see (5.20)
Hence, for the Lorentz profile the line width is more sensitive than the
depth of the central depression to the temperature distribution. We recall
that for the Doppler profile the situation was exactly the opposite. This
example demonstrates how carefully one must analyze the profiles of emission
lines in order to obtain information about physical conditions in a medium.

The analysis in this section has been based on the assumption that the
effect of temperature variation on the Doppler width may be ignored. This
and other approximations discussed at the beginning of the section are very
rough. A more careful discussion of the problem of line formation in a med-
ium with the temperature depending on depth has been given by D. G. Hummer
and G. B. Rybicki (1966) and G. B. Rybicki and D. G. Hummer (1967), who used
a numerical approach.

6.6 GAS ILLUMINATED BY CONTINUUM RADIATION

THE LINE SOURCE FUNCTION AND EMERGENT INTENSITY. From the results of Sec.
6.4, it is easy to find the intensity of the diffusely reflected radiation
and the degree of atomic excitation in several other simple cases

.

First we shall obtain the line source function for a gas illuminated by
isotropic radiation whose intensity is independent of frequency within the
line. Thus we may assume that continuum radiation is incident upon the
medium from all directions. This illuminating radiation is a superposition
of separate beams, each being characterized by its angle of incidence
arccos and frequency Xq . It is evident that the line source function must
then also be a superposition of the functions S(T,yQ,XQ) determined by (4.3).
Therefore, if the intensity of the incident radiation is Ig, the line source
function for this problem is

S(T) = 1^2.

1 00

/ / S(T,yQ ,XQ)dvQ (6.1)
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From (4.3) it now follows that the source function satisfies the equation

oo

S(t) =

^ J K^(|t-t' hS(T')dT' + IojK2(t) , (6.2)

where

00 1 oo

K2(t) = A /*a(x)dx/'e~("^^^/^)^dy = j e'"^/^G(z)dz . (6.3)

-o. Q 0

The solution of this equation has the form

S(t) = Iq[1-(1-X)^/2>^(t)]
, (6.4)

where, as usual,

T

I'(t) = 1+

J
$(T')dT' . (6.5)

This result is readily verified by direct substitution of (6.4) into (6.2),
if the identity

00

I / K^(1t-t' |)dT' = 1 - i K2(t) (6.6)

0

and the results obtained in Sec. 6.1 are used. The intensity of the emergent
radiation corresponding to the source function (6.4), as is easily seen, is

1(0, y,x) = Iq (6.7)

PHYSICAL SIGNIFICANCE OF THE RESULTS. SIMILARITY RELATIONS. Let us elucidate
the physical meaning of these results. First we express the intensity Ig of
the radiation incident on the boundary in terms of a radiation temperature Tj-

through the equation (see Sec. 1.1)

Iq = B^^(T^)
, (6.8)

where By)q(T) is Planck's function. Also, instead of the line source function
S(t) we introduce the excitation temperature Tg-j^-, i.e. we define

S(T) = B (T_(T)) . (6.9)
^0 ^
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Then (6.4) assumes the form

^VQ^'^ex^
= B^^(T^) [l-(l-X)^/2nT) ] . (6.10)

We shall consider the case that is most interesting from the as trophys i cal
point of view, in which X is very close to unity. Then, as was shown in Sec.
5.5, with an accuracy which increases as X approaches unity,

(1-X)^/^Y(t) ~ F(t)aT) , (6.11)

whe re

t = 1 r(2Y) .
. (6.12)

^ K2(t)

Replacing ^(t) with unity here, we obtain an expression that is significantly
in error only for small t. However for small t quantity (1—X)1/2t(t) may be
neglected in comparison with unity in (6.10). Therefore, substituting (6.11)
with ^(t) = 1 into (6.10), we get an asymptotic relation that is valid for
all T, with an accuracy that X approaches unity:

B,^(T^,) ~ B^^(Tp[l-F(t)] , 1 - X « 1 . (6.13)

At depths small in com.parison with the thickness of the boundary layer
, the parameter t is small; from the last equation it follows that

T ~ T , T << T, , (6.14)ex r ' b ' ^ -'

since F(t) 0 as t -> 0 (see (5.5.37)). Thus for t << the degree of exci-
tation is nearly independent of depth, and is such that the excitation temp-
erature of the upper level relative to the lower is equal to the temperature
of the incident radiation. Starting with depths of the order of 15, the de-
gree of excitation begins to drop. Here the situation is the direct opposite
of the one we found in Sec. 6.3 in our study of a self-luminous isothermal
gas. There throughout the boundary layer of thickness the excitation temp-
erature Tex substantially less than the gas temperature T. Now, on the
contrary, within a layer of the same thickness the radiation and the popula-
tion of the upper level are found to be in equilibrium, in the sense that

'^ex
~

'^r*
other words, T]-, represents the depth to which effective inter-

action occurs between the external continuum radiation and the gas.

There is one important consequence of (6.13): for 1 — X << 1 the degree
of excitation does not depend on t and X separately, but only on the combina-
tion (6.12). In other words, the following similarity relation holds: the
degree of excitation at optical depth t = ti in a medium with X = Xi , illumi-
nated by continuum radiation, is the same as that in a medium with x = -^2

at a depth t = 12, where and t2 are related by

(1-X2)K2(t^) = (1-X^)K2(t2) • (6.15)

The closer Xi and X2 are to unity, the more accurate the similarity relation
becomes

.
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When the temperature o£ the incident radiation is large, a significant
fraction of the atoms in the boundary region enter the excited state, so that
the optical depth at any point is substantially reduced. In the case of a
semi - infini te medium this effect has no influence on the angular and frequency
distribution of escaping radiation; however, it must be taken into considera-
tion in relating the optical to the geometric depths. The relevant technique
was presented in Sec. 2.5.

HOT GAS ILLUMINATED FROM OUTSIDE. In the case so far considered, the exter-
nal radiation was assumed to be the only source of atomic excitation in the
medium. A more complicated case can be studied, in which there are internal
sources as well as the external radiation. We shall consider one example.

Let us assume that there is incident upon a homogeneous, isothermal gas
of kinetic temperature T, occupying a half-space, isotropic radiation whose
intensity does not depend on frequency within the line and is characterized
by the radiation temperature T^.. Two mechanisms for populating the upper
level are operating — electron impact and photo-excitation, and two mechanisms
for depopulating it — radiative transitions and collisions of the second kind.
In short, all the assumptions of Sec. 6.3 are retained except for one: we
now assume that external radiation is incident upon the gas, whereas in Sec.
6.3 no such radiation was present.

It is clear that in this case the source function is determined by the
following equation:

00

S(t) = A f K (It-t- |)S(T')dT' + B (T )Ak (t) + B (T)(l-X)
, (6.16)

^ ""O ^ 2 ^ ^0

where X, as before, is given by (3.3). Here the last term on the right allows
for collisional excitation, the second term for photo-excitation induced by
the external radiation and, finally, the integral term for radiative excita-
tions by the gas' own radiation. The solution of (6.16) is a linear combina-
tion of the solutions of equations (6.2) and (3.1), and has the form

S(t) = B^, (T ) [l-(l-X)^/^>i'(T) ] + B^^ (T) (1-X)^/2h'(t) . (6.17)

Our task is to explain the nature of this solution. In order to make the
results easier to visualize physically, we shall transform from the source
function S(t) to the excitation temperature Tex> through the relation
S = BvQ(Tgx)' We shall denote T^^^ the excitation temperature of the upper
level m the same medium when no radiation is incident from outside, i.e. for
T^ = 0. It is obvious that T^^^ is defined by the relation

B^^ (T° ) = B (T)(1-X)^/^'I'(T) . (6.18)
ex Vq

If the function I'(t) is known, there is little difficulty in computing the
excitation temperature as a function of x according to (6.17). We shall limit
ourselves to one illustrative example and use it to explain the general nature
of the results in various cases. The discussion will center on results ob-
tained for the Doppler profile with the following parameter values: 1—X=10~6;
hvg/kT = 5; T-^/T = 2.0, 1.5, 1.0, 0.8, 0.5, 0.0. The results of a numerical
solution of the transfer equation, made available to the author by D. G.
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Hummer (see also E. H. Avrett and D. G. Hummer, 1965), were used to find
^(t). From the calculated values of the excitation temperature Tg;j^(T) , the
plots of Tgj^(T)/T as a function of Ig x appearing in Fig. 35 were constructed.
This figure makes it possible to understand how analogous curves would behave
for other values of the parameters. Values of T^ fall naturally into three
regions, corresponding to the three types of curves in Fig. 35:

1 . The radiation temperature T^ is higher than the gas temperature T .

Then for depths much less than the thickness of the boundary layer, the
excitation temperature Tg^j^ is practically constant, and is close to Tj-. Then
it begins to fall and ultimately it becomes equal to T (curves corresponding
to Tj./T = 2.0 and 1.5).

2 . The radiation temperature Tj. is less than T, but significantly higher
than T^x TO), i.e. the excitation temperature at the boundary of a medium not
illuminated from outside . In this case a region also exists near the boun-
dary in which the excitation temperature is close to Tj. and varies only
slightly. However, the size of this region is now determined not by the
thickness of the boundary layer, but by the difference T — Tj., and increases
as this difference decreases. Further from the boundary the excitation temp-
erature increases and approaches T (curves Tj-/T =0.8 and 0.5).

3. The radiation temperature T;^- is significantly lower than T^^^ (0 ) .

In this case the external radiation is not significant in determining the
atomic excitation. At all depths, beginning with the boundary itself, Tgx(T)
differs little from tO^(t) (curve T^/T =0).

The profile of a line emitted by the gas is also easily expressed in
terms of the function H(y/a(x)) for the present problem. Without dwelling on
this question in detail, we mention that if the temperature of the incident
radiation T is higher than the gas temperature T, an emission line is seen

Fig. 35. Depth dependence of the excitation temperature in an isothermal
gas of temperature T, illuminated by radiation of temperature T . Doppler
profile, hv /kT =5, 1 - X = 10-6.

^
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against the background of the continuum, and the greater the di fference between
Tj. and T, the greater the intensity of this line. For Tj. = T we have a purely
continuous spectrum without any trace o£ a line, and for T^. < T an absorption
line is formed whose depth increases as T decreases.

6.7 SOURCES OF OTHER TYPES

The intensity of the emergent radiation can be expressed in terms of the
function H(z) for a number of situations in which the source strength depends
on depth in more complicated ways than those already discussed. In this sec-
tion we shall consider the case in which the source strength is given by the
product of a polynomial in x and an exponential (V. V. Ivanov and D. I.

Nagi rner , 196 5).

RECURRENCE RELATION. It is obviously sufficient to express in terms of H(z)
the emergent intensity corresponding to

S*(T) = S*(t) = T^e
^^^^

, n = 0,1,2, 0 < Zq < co
. (7.1)

V/e denote the corresponding source function as Sn(T,zo), and the intensity of
escaping radiation as Ij^(0,z,zq). We have the following equation for Sj^(t,zo);

oo

T / Z

S^(T,Zg) =
I J K^C|t-T' |)Sj^(t' ,ZQ)dT' + I'^e

^ '°
. (7.2)

-t/z,

f
K^(|t-T' |)S^(T' ,ZQ)dT' +

0

Differentiating with respect to , we get

00

3S (t,z.) r 9S(t',z) n+1 -t/z.
^=7 / K(1t-t'|)-^4 ^dT' V (7.3)

oZ„ L J oZn 7^
0 0 • " 0

Comparing these two equations, we conclude that

From the expression

9S (T,z )

" 0

1^(0, z,Zq) = y S^(T,ZQ)e ^/^dx/z (7.5)

it therefore follows that

81 (0,z,z )

From (7.2) for n = 0 we have So(t,zo) = S(x,Zg), where S(x,z) is the auxiliary
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function introduced in Sec. 5.1. Therefore

/ S(T,ZQ)e
—t / z di/z (7.7)

As this integral has already been evaluated in (5.1.44), we find

HCz)H(z )

0-
z + z

0
0

(7.8)

Thus the solution to our problem is contained in (7.6) and (7.8), which
express Ij^(0,z,zo) in terms of H(z) and its derivatives for any integral
n > 0. By using the equation satisfied by H(z) it is easy to express the
derivatives of the H-function in terms of H(z) and integrals involving it.

PARTICULAR CASE. ALTERNATIVE FORM OF THE RECURRENCE RELATION. As an example,
we shall find 1^(0, z,Zq). From (7.6) and (7.8) we have

I (0,z,z ) = ZnH(z)-- 1
1

= z.z — + z. —
. (7.9)

1 0 0 dzoV z + Zq / (z + Zq)2 0 z + z^ dzQ

From (5.4.18) it follows that

dH(z )

dzQ 0

oo

A f zH(

0 ^ Q

z) G(z)dz . (7.10)

Substituting (7.10) into (7.9), we finally obtain

1^(0, z,Zq) =
H(z)H(Zq) •

2

z + z.

+ A z H(z )f^(z )

z+zq 2 ^ ^ ^
(7.11)

where

fi(z)

00

H(z')

z+z' )

^

G(z')dz' . (7. 12)

A table of the function 9.(z) for the Doppler profile and X = 1 has been given
by V. V. Ivanov and D. I. Nagirner (1965).

The recurrence relation for Ij^(0,z,zo) may be written in a form more
convenient for calculations. According to (5.1.45),

lj^(0 ,z ,Zq)

00

0

—t/z
S(T,z)dT/z (7.13)

Multiplying (5.1.35) by t e and integrating over x from 0 to <=° , we find,
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after simple rearrangement,

^n^O'^'^O^ = 777" ^n-l^O'^'^O^ ' TTT "^^^^^^0^
' ^ = ...

,
(7.14)

Z+Zq ^ Z + Zq

where

°n^^0^ =
7 / I^(0,z,ZQ)G(z)dz . (7.15)

0

Substituting (7.14) into (7.15), we get the following relation for the deter-
mination of D (Zn):

n ^ 0

00

0 0

Since Iq(0,z,Zq) is known, (7.15) and (7.16) make it possible to find I^, I2,
etc., sequentially. Specifically, substituting (7.8) into (7.14) and (7.16),
we recover (7. 11)

.

6.8 MEAN NUMBER OF SCATTERINGS

BASIC EXPRESSION. It is clearly of interest to obtain the mean number of
scatterings N experienced by a photon. The main reason for this interest is
that the product of N, the excited-state atomic lifetime and the number of
photons created per unit of time by the primary sources

,
gi_ves the total num-

ber of excited atoms in the medium. Moreover, by knowing N, for media with
negligible continuous absorption (3 = 0), one can find the energy carried out
of the medium in the line under consideration. Let Eg be the energy expended
in primary excitation, so that Eg = hvgNj^, where Nj^ is the total number of
primary excitations to the upper level k. Then the energy lost by radiation
escaping in the line i ^ k is clearly

E = [i_(i_x)N]Eq .

Hence the quantity 1— (1—A)N is the mean escape probability.

Let us now proceed to obtain N. Consider a cylinder of geom.etrical
thickness dl

,
having a cross section of 1 cm^ . If, for simplicity, stimulated

emission is disregarded, the optical thickness of this cylinder is
dt = kj^j^ (vo)ni^dl , where k^-. (vg) is the atomic absorption coefficient at line
center, and n^ is the population of the lower level. _^Within the cylinder the
sources create Aj^^n^dl photons per unit time, where n^, is the population of
the upper level attributable solely to primary sources, ignoring photo-excita-
tion caused by the medium's own radiation field_j_in the line considered (see
Sec. 2.4). Using the relation between n^ and S given by (2.4.3), we find

\i\^^ = \i ^i^^ 2hv^ gi
^
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The number of photons created by the sources per unit time in a column of 1

cm^ cross section extending through the whole semi - infinite layer is

/OO OO 00

n. dl = A, .— I Sn.dl = A, .— / S rildT

0
2h^0 ^1

0 2hvo^ gi kij,(Vo) J

However, the total number of photons emitted within the same column is greater
than Nj^ because of multiple scattering. If the population of the upper level
is nj^ , then the total number of photons emitted in a column of height dl is
Aj^-^nj^dl. Using the known relation between the line source function S and the
level populations, we find

c^
A, ,n, dl = A, .

— ^ n. Sdl .

'ki^'k"" ^ki
2hv^ gi

^

Therefore the total number of photons emitted in the whole column per sec is
equal to

00

which can also be written as

c2 Sk

2hv3 gi k.j^CVg)

00— f S(x\ = A^. ^—
I S(T)dT . (8.3)

A —
It is obvious that the ratio Nj^/Nj^ gives the mean number N of scatterings
experienced by a photon. Hence

00

/ S(T)dT

N = ^—— . (8.4)

/ S*(T)dT
0"

Thus, determining the mean number of scatterings involves the calculation
of the inte_gral of the source function. [Ed. note. In many cases of interest
for which N is finite, the expressions (8.1) and (8.3) have only formal signi-
ficance since the integrals diverge. In these cases (8.4) must be interpreted
in terms of an appropriate limiting process.]

N EXPRESSED IN TERMS OF THE RESOLVENT FUNCTION. We shall show that for an
arbitrary S (t) the mean number of scatterings is simply expressed in terms
of the res'olvent function $(t). Let the sources be concentrated within an
infinitely thin layer lying at depth x = ti, so that S*(t) = 6 (t—t^) . The
source function will then be equal to the Green's function G(t,T2), and to
determine the mean number of s catterings- it is necessary to evaluate the
inte gral
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oo oo

y G(T,T-^)dT =1+1' rd.T^dl . (8.5)

Integrating the relation (see Sec. 5.1)

9r(T,T^) 3r(T,T^)

8t 3t;l
^

*(t)<I'(tJ (8.6)

over T from 0 to <», we obtain

9r(T,Tjr 3r(T,T ) r r

J
—

J
r(.,x^)dx = .(x^) J (x)dx . (8.7)

0 "'-1-0
0

Using the fact that

and

we obtain

1 + / $(x)dx = H(«>) = —^ (8.8)

r(»,T-^) = 0 , (8.9)

^ y r(x,x^)dx = (1-A) "'"$(Xt) , (8.10)
,-1/2,

and hence

1 0

Xt

1 + y* r(x,x^)dx = (1-A)~^/^M + y $(x)dxj . (8.11)

Denoting the mean number of scatterings for S (x) = 6 (x—x^) as N(x-|^), we have

N(x^) = (l-A)-^/^nTp . (8.12)

Because of the linearity of the basic integral equation, the function S(x) is
obtained from G(x,x-]^) by integration over the distribution of sources:

oo

S(x) = y S*(x-^)G(x,x^)dx^ , (8.13)

522-519 O - 74 - 20
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and therefore the mean number of scatterings N is found to be

oo

/ S*(T)N(T)dT

S (T)dT

(8.14)

or CO

/ S (T)^(T)dT

0

(8.14')

IVe note that, according to (8.12), the mean number of scatterings of a

photon that began its journey through the medium at a depth is equal to,
within a constant factor, the source function for a medium with a uniform
distribution of primary sources (see Sec- 6.1 and 6.3). Therefore the analy-
sis given in Sec. 6.3 can be applied directly to the present problem. In
particular, it is found that as long as is much less than the thickness of
the boundary layer t]-, , the mean number of scatterings increases rather rapid-
ly with T]^. When the sources are concentrated at the boundary (t-i^

= 0), the
mean numbe_r of scatterings attains its minimum value of (1—A)—1/2. The rate
at which N(t]^) increases with becomes smaller as t-, approaches the order
of , and for T]^ >> t-^ ,

N(t]^) is practically constant with a value close to
that for an infinite medium, (1 — X)~l.

The increase of N(t]^) with xi is readily understood. There are two rea-
sons for the loss of photons in the process of multiple scattering. One is
the destruction of photons during the scattering process by inelastic proces-
ses, the transformation into photons of other lines, etc. Since X is consi-
dered to be independent of x, this mechanism is equally effective at all
depths. The second factor limiting the number of scatterings is the escape
of photons. It is obvious that the effectiveness of this mechanism for remov-
ing photons from_the scattering process decreases with the distance from the
boundary. Thus N increases with the depth of the sources.

For pure scattering N is infinite. In reality, the mean number of scat-
terings is always finite, since there are always processes destroying photons
as they are scattered (collisions of the second kind, photo- ioni z ation from
the excited state, etc.), so that the strictly conservative case never occurs
in nature.

PARTICULAR CASES. For those cases in which the intensit_y of the emergent
radiation can be expressed in terms of the H- function, N may also be similarly
expressed. As an example we take the exponential distribution of sources:

S (x) = e . ' (8.15)

*
Substituting this expression for S (x) into (8.14') and making some simple
transformations, we obtain
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N= Cl-A)"^^'^^l + J e"^/^$CT)dTj . (8.16)

0

Invoking the relation between the Laplace transform of $(t) and the H- function
(see Sec. 5.1), we finally find

N = (l-X)~^/^H(z) . (8.17)

This expression has already been obtained in Sec. 6.4 by another means. Now
we have found it_as a consequence of the general result (8.14). The expres-
sion (8.17) for N is very convenient, since the values of H(z) for the most
important profiles are known (see Sec. 5.6 and 5.7). For

S*(t) = Te~^/^ (8.18)

the mean number of scatterings is found to be equal to

N = (l_X) ^'"H(z)|^l + ^zH(z)fi(z)J , (8.19)

where n(z) is given by (7.12). We shall not pause to prove this result.

All of the relations obtained in this section are valid for an arbitrary
profile, including the rectangular one (monochromatic scattering), since the
specific form of the function G(z) is nowhere used.

In Sec. 8.9 we shall turn once again to the problem of calculating the
mean number of scatterings, alloiving for the effects of continuous absorption
and finite optical thickness.

6.9 INTEGRAL PROPERTIES OF THE ESCAPING RADIATION

PHYSICAL SIGNIFICANCE OF THE HOPE FUNCTION. As we have seen in Chapter III,
in problems of monochromatic scattering in a semi - infini te conservative atmo-
sphere, an important role is played by the Hopf function q(T), which is proba-
bly the most widely known of the special functions of the theory of multiple
light scattering. The properties of q(T) were studied in detail in Sec. 3.8.
We shall show now that the Hopf function has an imm.ediate physical interpre-
tation: q(T) is the mathematical expectation of the cosine of the angle of
emergence of the photons that began their random walks in the medium at the
depth T. Incidentally, from this it immediately follows that the values of
q(T) lie in the interval (0,1). The well-knom monotonic increase of q(T)
also has a_simple physical explanation. We recall that q(T) increases from
q(0) = 1//3 = 0.5 77... to q (oo) = 0.710

In order to demonstrate this interpretation of the Hopf function, we
note that q(T) is the bounded solution of the equation

00

q(T) =
I J E^(|t-t' |)q(T')dT' +

I
E3(T) . (9.1)

0
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This equation is obtained by substituting (3.8.9) into (3.8.8). Let p(T,y)
be the bounded solution of the equation

p(T,y) = i / E (|t-t' |)P(T' ,y)dT' + ^ e '/l'
. (9.2)

2 y 4iT

Since

J.

£3(1) = J e~^/^ydy
, (9.3)

0

it follows from (9.1) and (9.2) that q(T) is the superposition of the func-
tions p(T,y) for different values of y,

/q(T) = 2tj

J
p(T,y)ydy . (9.4)

0

The probabilistic considerations of Sec. 5.2 show that p(T,y)dco is the
probability for a photon absorbed at depth t to escape from the medium (in
general, after multiple scattering) within an element of solid angle dw around
the direction making an angle arccos y with the outward normal. Since we are
considering conservative scattering, the total probability that the photon
will escape is unity, i.e.

1

2tt y p(T,y)dy = 1 . (9.5)

0

Hence from (9.4) it follows that q(T) is indeed the mean value of the cosine
of the angle of emergence:

1

f p(T,y)ydy

q(T) = y(T) = (9.6)

/ p(T,y)dy
0

A COUNTERPART OF THE HOPF FUNCTION FOR LINE TRANSFER PROBLEMS. The physical
significance of the function q(T) expressed by (9.6) can be regarded as a

physical definition of q(T). This definition has the merit of not being re-
stricted to the case of conservative monochromatic scattering. The function
q(T) defined according to (9.6) preserves, for the general case of 0 < A < 1

and an arbitrary line profile, the specific features of the Hopf function:
it is a monotonically increasing function that varies within narrow limits.

Let us consider multiple scattering in a line with an arbitrary profile
a(x). Let p(T,y,x) be the probability of photon escape from depth t with a

given frequency and direction (see Sec. 5.2). We introduce
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P(t,P) = J p(T,p,x)dx . (9.7)

00

According to (5.2.4), p(T,y) can also be represented as

CO

p(T,y) = A / a(x)S(T,y/a(x)) dx
, (9.8)

4tt J
00

where S(t,z) is the bounded solution of the auxiliary equation

oo

S(t,z) = A J K^(|t-t' |)S(T' ,z)dT' + e~^/^

0

(9.9)

The quantity p(T,y)dco = 27Tp(T,y)dy is obviously the probability that a photon
absorbed at a depth t will escape from the medium within an element of solid
angle dw around the direction making an angle arccos y with the outward nor-
mal. Substituting (9.8) into (9.6), we get by definition

1

kj\xd\xf (x)S(T,y/a(x))dx

0 -00

1
~

f I
a(x)S(T,y/a(x))dxA

0

In particular, for conservative scattering

1

q(T) =|Ay*ydyy* a(x)S(T,y/a(x))dx , A = 1 . (9.11)

0 -~

Let us consider this latter case in a little more detail.

From (9.11) and (9.9) we find that q(T) is the solution of the equation

00

q(T) =i f K^(|t-t' |)q(T')dT' + i K3^(T)
, (9.12)

where

oo '

Kj^d) = aJ a(x)E3(a(x)T)dx .
(9.13)
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In Sec. 2,6 it was shown that the function K^-|^(t) can be represented as

CO

K3^(t) = y e~^/^zG2(z)dz
, (9.14)

0

where

00

G^Cz) = 2A J a"'^^(t)dt , m = 0,1,2, .. . , / (9.15)

x(z)

with x(z) = 0 for z < 1 and a(jc(z)) = 1/z for z > 1. Therefore (9.11) can be
rewritten as

00

q(T) = i J S(T,z)zG2(z)dz . (9.16)

0

A few words about the values of q(T) for t = 0 and x = oo seem to be in
order. From (9.16) we have

q(0) =
J '

^^-^^^

where

00

j H(z)G^(z)z^dz
,

i,k = 0,1, ."ik
^
J

H(z)Gi^(z) z^dz , i,k = 0,1, ... . (9.18)

0

The values of these weighted moments of the Doppler H- function found by numer-
ical integration are given in Table 31. A§ ^regards q(~), it can be shown that
for Y < 1

TABLE 31

THE MOMENTS a., OF THE CONSERVATIVE DOPPLER H-FUNCTION
ik

k i=0 i=l i=2 i=3

1 2.0000 - - -

2 1.1798 1.0935

3 0.9318 0.6442 0.7516

4 0.7962 0.5085 0.4390 0.5673
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q(~) =
-"-^^^

. (9.18)
2(1+Y)

For the proof of this result, see V. V. Ivanov (1970a). For example, in the
case of the Doppler pro fi le, qp

(

t) increases, according to (9.17) and (9.18),
from qD(0) = 0.547 to qD(°=) = 0.66 7.

FREQUENCY SPREAD OF THE ESCAPING RADIATION. The function q(T) gives us some
general idea of the angular distribution of the radiation escaping from depth
T. Similarly, the frequency spread of radiation escaping from depth t can be
characterized by the function

1

f a(x)dx fa(x)dx J p(T,y,x)dy

a(T) =^ j-^ . (9.19)

J dx f p(T,y,x)dy

0

As T increases, ct(T) decreases, since the width of the line increases with the
depth at which photons are born. The larger the average value of |x| , of
course, the smaller is the corresponding value of a(x).

In the conservative case the integral in the denominator of (9.19) is

evidently (Zir)"!, and (9.19) can be rewritten in the form

a(T) = 27T / ct(x)dx J p(T,y,x)dy , X = 1 , (9.20)

whence

a(T) =
\ j S(T,z)G2(z)dz , X = 1 . (9.21)

0

Combined with (9.9), (9.21) shows that a(T) for X = 1 is the bounded solution
of the equation

oo

a(T) =
I j K^(|t-t' I)a(T')dT' +|k22(t) , (9.22)

0

where

00 00 ^

K22(t) =A f a2(x)E2(a(x)T)dx = / e~^/^G2(z)dz . , (9.23)

-i 0

There is a simple relation between a(T)
,
q(T) and the solution of the

generalized Milne problem S(t) which follows from (9.22) and (9.12>r, namely
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q(T) = q(0)S(T) -/ a(T' )dT' (9.24)

In the particular case of the rectangular profile (monochromatic scat-
tering) Kj^]^(t) = Ej, (t)

,
k,n = 1,2,..., and (9.22) gives a(T) = 1. This re-

sult follows also from simple physical £onsiderations . Moreover, for mono-
chromatic scattering we have q(0) = 1//3, and (9.24) assumes the form

q(T) -4= S(t) - T

/3
(9.25)

This is a well-known relation (see Sec. 3.8).

Equation (9.24) is of interest in two respects. First, it shows that the
simple relation between q(T) and the solution of the Milne problem (and hence,
the resolvent function $(t)) is the special feature of monochromatic scatter-
ing, for in the general case this relation also involves a. For this reason
the function q(T) for non- rectangular profiles, unlike that for monochromatic
scattering, cannot play an important role in the general theory. Second,
equation (9.24) enables one to find immediately the^asymptotic form of a(T)
for large t. Since q(T) for t ^ «> is bounded, and S(t) diverges (see Sec.
6.1), we conclude that

ad) ~ q(0)<I>(T) = - a^2^'^'^^ >
^ (9.26)

To more_easil^y visualize this result, we introduce the frequency x(t) such
that ot(x) = a(T). Then, e.g., for the Doppler profile (9.26) gives

Xpd) i?.n

3/4 1/2, „
,-1/4

T\ T (ilnx)

'12

1/2

(9.27)

The growth of x with t characterizes broadening of the line as the depth at
which photons are created increases. In the opposite extreme case when the
sources are concentrated at the boundary, we have from (9.21)

a(0)
1

2 02
(9.28)

Specifically, for the Doppler profile ctp(O) = 0.590.

6.10 THE EFFECT OF MULTIPLE SCATTERING ON THE ESCAPING RADIATION

INTRODUCTORY REMARKS. According to the assumption of complete frequency re-
distribution, the probability that an excited atom will emit a photon of a

given frequency is proportional to the line absorption coefficient. On the
other hand, numerous examples cons i dered. ab ove have shown that the radiation
emerging from the medium has a spectral distribution quite different from
that of the absorption coefficient. These changes in the spectral composition
of the radiation are caused by the strongly selective nature of the interac-
tion between the line radiation and the gas. Let us trace how the spectral
composition of the radiation changes.
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The mean free path of a photon with a frequency close to the line-center
frequency is much smaller than that of a wing photon. Having absorbed a pho-
ton, an atom can re-emit it anywhere in the line, including the far wing. If
this latter possibility is realized, the re-emitted photon most probably will
not excite an atom for a rather long time, since its mean free path is large,
while if the atom re-emits the photon in the line core, it will soon excite
an atom. Therefore, spectral composition of radiation will change with time.
Broadly, the change amounts to a gradual pumping of photons from the line core
into the wings, so that the line becomes wider. Similar changes occur if we
consider the propagation of radiation in space. As the distance from the
source increases, the line broadens, a region of nearly constant intensity
appears in its core, and then the central depression develops. These consi-
derations suffice to explain the wide variety of the profiles encountered in
the preceding sections.

PHOTON ESCAPE PROBABILITY. Let us now consider the problem quantitatively.
More precisely, let us discuss the properties of the function expressing the
probability that the excitation of an atom at depth t will finally lead to
the escape of a photon in a given frequency and direction. This probability,
denoted in Sec. 5.2 as p(T,y,x), was shown to be the solution of the equation

oo

p(T,y,x) =A
/ K^(|T-T'|)p(T',y,x)dT' + Aa(x)e-"WT/y

^ (Iq-.I)

0

Hence,

p(T,y,x) = Aa(x)S(T,y/a(x)) ,' (10.2)
4lT

where S(t,z) is the solution of the auxiliary equation

00

S(T,z) =

I y K^(|t-t' |)S(t' ,z)dT' + e~^/^ . (10.3)

0

First we assume that excitation occurred at the boundary t = 0. The medium
acts as a reflecting screen, since a photon emitted by the excited atom in
the direction of the medium can be reflected from it. Consequently the
probability that the photon will ultimately be moving outward, i.e., from the
medium, increases. Since in multiple scattering the frequency may change, the
reflecting properties of the medium are very distinctive. It would be even
more appropriate to consider the medium not as a screen, but as a kind of am-
plifier, with a gain which depends on both frequency and direction. According
to (10.2), the probability of photon escape from the boundary is

p(0,y,x) = Aa(x)H(y/a(x)) ,
(10.4)

4Tr

since S(0,z) = HCz) (see Sec. 5.1). If there were no multiple scattering, the
probability would be (see Sec. 5.2)

47r

Hence the gain is H(y/a(x)), which elucidates the physical meaning of the
H- funct ion

.
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In Fig. 36 we show the probability of photon escape from the boundary
along the normal as a function of frequency (Doppler profile) . As A increa-
ses

,
multiple scatterings become more important, and the pumping of photons

from the core into the wings causes the line width to increase.

Now let an excited atom appear at an arbitrary depth t. The mean numbei
of scatterings increases with t, and the influence of pumping becomes more
important. According to (10.2) and (5.1.36), the probability of photon es-
cape can be represented as

p(T,y,x) = ~ Aa(x)H(z)^e~^/^ + e"*^ ' ^ ^ ^
<i> (t ' ) di '

^
, (10.5)

where z = y/a(x). Comparison with (10.4) makes it clear that the factor in
brackets allows for these extra scatterings. As t increases, the line be-
comes wider (Fig. 37, after G. D. Finn, 1971). For large t there is a typi-
cal s e 1 f - re ve rs al

.

ESCAPE OF PHOTONS FROM GREAT DEPTHS. Substantial simplifications occur if a

photon is born at a great depth. It can be shown that for z << t and large
T

S(t,z) ~ zH(z)$(t) , z << 1 , t >> 1 , (10.6)

and hence, according to (10.2),

p(T,y,x) ~ M yH(y/a(x)) $(t) , t » 1 , t >> 1 . (10.7)

Fig. 36. Probability of photon escape along the normal from the boundary

(Doppler profile).
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Fig. 37. Probability of photon escape along the normal from various depths

(Doppler profi le , conservative scattering).

In the opposite limiting case z >> t we have, from (10.5),

p(T,p,x) ~ ^ a(x)H(y/a(x))T(T) , t « 1 . (10.8)

Let us discuss the results (10.7) and (10.8). Since H(z) increases with
z, (10.7) shows that the probability o£ photon escape from a great depth
considered as a function of x increases with |x| for a(x)T/y >> 1, i.e. in
the line core. In the wing of the line, i.e. for a(x)T/p << 1, the photon
escape probability decreases with |x|. Hence a maximum is attained for
a(x)T/y ~ 1.

So far we have assumed only that the photon is released at a depth
T >> 1, with no restrictions on t as compared to the thickness of the boundary
layer t^^ . In the limiting cases of t << t-^ and t >> tj^ further simplifica-
tions arise.

If the photon is born at a depth x >> t^^ , the asymptotic form (5.5.26)
can be substituted for $(t) in (10.7), so that

— K (t)

p(T,y,x) ~ ^ yH(y/a(x))^-J—-
, ^ » 1 , x » . . (10.9)

Using the results of Sec. 5.4, one can show that the factor H(ij/a(x)) in this
expression approaches its limiting value H(o°) = (1 — X)~l/2 at such values
of |x| that the inequality a(x)T/y still holds. Hence in (10.8) we can
safely replace H(y/a(x)) by (1 - X)~^'^. Considering further, (5.5.35), we
find that in the wings

p(T,y.x)~^^, (10.10)
4tt 1—a y D
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Figure 38 shows the general features of p(T,y,x) for t >> t^^ . As t increases,
the plateau becomes wider, while the depth and the shape of the central self-
reversal in this limiting case do not depend on t.

Let us now turn to the opposite limiting case of >> t >> 1. The left
inequality implies that we are dealing with a nearly conservative medium (see
Sec. 6.2). Obviously the limiting forms of (10.7) and (10.8) caii be used here
as well. However, for t^^ >> t >> 1 a more general asymptotic expression for
P(t,1j,x) can be given that applies for all x. According to (10.5), to get the
asymptotic form of p(T,y,x) for large x one has only to consider the asympto-
tic behavior of the function appearing in brackets in this expression. We
de fine

X

F(x,z) = e~^/^ + J e"'^^"^' ^/^$(x' )dx' . (10.11)

0

Setting z = x/t and x' = xy , we get

F(x,l) = e-'L.H^) f ^ dy

Using (5.5.20), we find

0

F(x,^) ~ x$(x)e ^
j e^^y^ "^dy

,
X|^ >> x >> 1

,

Fig. 38. Qualitative behavior of the probability of photon escape from

depth X >> X, .



6.10 THE EFFECT OF MULTIPLE SCATTERING ON THE ESCAPING RADIATION 299

pCT,y,x) ~ ^ Aa(x)H(y/a(x)) T$(T)f^^^
.

>> t >> 1 , (10.12)
4tt

where

±

£Ct) = e"''^ J e^^y^~^dy . (10.13)

Since f(0) = l/y, t£(t) -> 1 as t «> and t$(t) ~ y'I'(t) for Tu^ >> t >> 1 (see
Sec. 5.5), the result (10.12) reduces to (10.7) and (10.8), m the limiting
cases o£ a(x)T/y >> 1 and a(x)T/iJ << 1, respectively.

A simple approximate form for p(T,y,x) in the conservative region, i.e.
for T << Tb , is suggested by (10.12) and (10.4), namely

p^(T,y,x) = A Aa(x)H(y/a(x))S(T)Yf(^^T^ , (10.14)

where S(t) is the solution of the Milne problem for the profile a(x), and the
subscript a stands for "approximate." This expression correctly describes
the behavior of p(T,y,x) for large t, since yS(t) ~ t$(t) (see Sec. 5.5), and

i|

gives the exact result (10.4) for x = 0. Hence it may be expected that

'I
(10.14) is a reasonable approximation for all t' << t, .





CHAPTER VII

CONTINUUM CONTRIBUTIONS TO LINE FORMATION

1

We have previously assumed, when solving the transfer equation, that line-
frequency photons disappear from the multiple scattering process either by

j

escaping from the medium or by being absorbed in a scattering event (because
I!
of collisions of the second kind, re-emission in another line, etc.) . The
possibility that a photon can be destroyed in flight has not yet been consid-
ered. The most important process of this kind for the destruction of photons
is the photo-ionization of atoms by radiation in the line under consideration.
Another mechanism is the absorption of line radiation by macroscopic particles,
such as interstellar dust grains.

Another important process that we have also previously disregarded in
solving the transfer equation is the emission of continuum radiation by the
medium. This process leads to the formation of a continuum against which the
lines are usually seen. Since this radiation can be absorbed by atoms, caus-
ing transitions between discrete levels, it constitutes an additional source
of atomic excitation.

The transfer equation allowing for emission and absorption processes in
!| the continuum was derived in Sec. 1.6. Particular forms of this equation,
I specialized to media with plane and spherical geometries, were considered in
irSec. 2,3. Finally, the integral form of the transfer equation that directly

j expresses the condition of statistical equilibrium was introduced in Sec. 2.4.
ijNow we shall solve it for several of the simpler cases. Throughout this
chapter we will assume that the following are independent of position: the
jprobability X that a photon survives the scattering; the ratio B of the con-
' tinuum absorption coefficient to that at line center; and the profile a(x) of
the line absorption coefficient. Stimulated emission is assumed to be negli-
gible .

Many of the results in this chapter originally appeared in the disserta-
ijjtion of D. I. Nagirner (1966, unpublished); see also D. I. Nagirner (1968).
'jilmportant results have also been given by D. G. Hummer (1968).

/
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7.1 KERNELS OF THE INTEGRAL EQUATIONS AND ASSOCIATED FUNCTIONS

It is convenient to study the properties of the kernel of the integral
equation for the line source function and several related functions before
turning to the solution of the transfer equation for line radiation allowing
for absorption and emission in the continuum.

BASIC FORMULAE. The following two functions were introduced in Sec. 2.4:

OO

K^(t,6) = Ay* a^(x)E^((a(x) + 3)T)dx
, (1.1)

OO

00

K^^(t,B) = a(x)E^((a(x) + 3)T)dx . (1.2)

— oo

The kernel of the basic integral equation for media with plane and spherical
geometries is expressed in terms of the first of these functions, while the
second appears in the term of the equation that describes the excitation of
atoms by continuum radiation. We also define

00

^

K.(t,3) = A / ^-iiSl-E ((a(x) + 3)T)dx
, (1.3)

^ J a(x) +3
OO

00

K.n(T,B) = A ( -^M^E2((a(x) + 3)T)dx . (1.4)
J a(x)+3 ^

00

As 3 0 the functions Ki(t,3) and K2(t,3) become the functions K]^(t) and
K2(t) respectively, which have been studied in detail in Sec. 2.6 and 2.7;
K]^i(t,3) reduces to K-[^-]^(t); and K2o(t,3) tends to infinity.

The line of reasoning used in Sec. 5.2 to explain the physical signifi-
cance of K2(t) and K2(t) is also valid for media with continuous absorption.
We find that ( A/2 ) Ki

(

t , 3 ) dx is the probability that an excited atom will
emit a photon and that this photon will then be absorbed for the first time
in a layer of thickness dx, located at a distance x from the emitting atom,
causing the excitation of an atom in this layer. Thus it follows that the
quantity

00 00

A = \j K-^(|Tl,3)dx = A y K^(x,3)dx
, (1.5)

-00 0
.

which is equal, according to (1.1), to

oo

X = XA f -Vr^dx , (1-6)
J a(x)+3
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represents the probability that an atom originally excited in an infinite
medium will emit a photon that subsequently somewhere excites another atom.
This quantity should play an important role in all problems of the transfer
of line radiation in which continuous absorption is considered, since it
(along with the geometry of the medium) determines the role of multiple scat-
terings. The dependence of A on g for various forms of the absorption coeffi-
cient is discussed in detail in Sec. 7.3.

The kernel function K]^(t,6) can be represented as a superposition of
exponentials, namely,

z
c

IK^(t,3) = / e ^/^G(Odz/z , (1.7)

whe re

z = i
, ^ = —^ . (1.8)

c 3 ' ^ l-3z

Differentiating (1.1) with respect to t and considering the relation

E^(t) = -e"^/t
,

we find

9K^(t,B)
^ _g

oo

9t
-e tA/ 2..— a(x)Tj—la (x)e ^ ^ dx

,

^ J
—00

or

9t di

But from (2.6.16) it follows that

dK, (t)

3K (t,3) dK (t)
^ - e"^^ — . (1.9)

-

-f e-^/^G(c)di;/c^ . (1.10)
dx

0

Substituting this expression into (1.9) and integrating, we obtain

oo

0

The substitution c = z/(l-6z) in (1.11) leads to the form (1.7).

Ki;|[(t,8) may also be represented as a superposition of exponentials. It

has been shown in Sec. 2.6 that the function

522-519 O - 74 - 21
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can be represented as

00

K^^(t) = a(x)E-|^(a(x) T)dx (1.12)

OO

oo

K-^^(T) = J e~^/^GQ(c)dc/^ , (1.13)

0

where Gq(z) is defined by (2.6.12) and (2.6.13). Starting from this, and
repeating literally the reasoning that led us to (1.11) and (1.7), we find

00
G ( )

K^^(t,S) = e-^^y* e"^/^ ^_^dc/C , (1.14)

or
z

K;^^(t,3) = j e~^^^G^U)dz/z , (1.15)

where and ^ are given, as before, by (1.8)

It is obvious that

K2(t,3) = y K^(t' ,3)dT' . (1.16)

T

The same relation also exists between the functions K, -, and K^„. Therefore,
we obtain

z
.c

K2(T,3) = e-^^ f e-^/^-^I^dc = f e-^/^G(c)dz ,' (1-17)

K^.(t,3) = e"^^ / e-^/^-^^ilLd? = f e-^/^G„(Odz . (1.18)
' (1 +30^ '

0 ^''^
0

Setting T = 0 in (1.17) and taking account of (1.16) and (1.5), we find

z
-

X = AK,(0,3) = xl —^i^^ d? = xl G(^)dz . (1.19)

/ (1-3C)2 {

THE CASE OF THE WEAK CONTINUUM ABSORPTION. The absorption coefficient in the
continuum is usually much smaller than the absorption coefficient at line
center, i.e. 3 << 1. Values of 3 on the order of 10"8 _ 10~4 seem to be more
the rule than the exception. The smallness of 3 leads to considerable simpli-
fication. Specifically, it allows the functions introduced above to be ex-
pressed in terms of their limiting values, corresponding to 3 = 0. For
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6 << 1 the continuous absorption may be considered a minor perturbation. It
is true, as we shall soon verify, that the effects caused by this minor per-
turbation are often very large.

Let us consider the kernel function K,(t,3) for 3 << 1. The substitution
t/c; = y transforms (1.11) into

oo

J y + 3T
. K^(t,3) = e-P^

/ e"^ ''^^'/jj dy . (1.20)

0

Using (2.6.42), we find that i f t ^ and 6 0 s o that 3t = const, then

00

V r r.-^'^ 2k 1 I -y x' (x/y) ,

K (t,3) ~ e I e ^ — '

J dy . (1-21)
-L 2y + 1 T y y + 3T

Considering (2.6.35), we have

00

K rT,3) - e-^-" -^^^ f ^ih-llLdy
. (1.22)

1 2y+1 t J y+3T ^ ^
^

0

But, as has been shown in Sec. 2.6, for x ^ =°

2y+1

Therefore (1.22) can be rewritten in the form

K rx) ~ 2A Il^r^ 2^:111
. (1.23)

i 2 Y+ 1 T

K^(t,3) ~ K^(T)e ^^k^(6T)
, 3 << 1 , (1.24)

where

Y + 1) J

-y 2y+l
kAs) =

^ I
^-1 dy . (1.25)

1 r(2Y + l) J y + s

ji When 3 << 1, the expression (1.24) is valid for all t. This can be verified
by showing that (1.24) is satisfied for all t consistent with the inequality
Bt << 1, and not only for 1 << x << 3"!. For 3t << 1, (1-24) and (1.25) give

K^(x,3) ~ K^(t) , X << 3"^
, (1.26)

j;j

which may also be obtained directly from (1.11). This then proves our asser-
' tion. In the opposite limit 3x >> 1 we find from (1.24) and (1.25)

K^(x,3) ~ (2y + 1)-^7 e , x >> 3 . (1.27)
J- 3 T
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Thus, i£ even weak absorption is present, for sufficiently large t the kernel
function decreases exponentially; more precisely, it tends to zero for t ->

as (x' [T)/T2)e-BT.

The result (1.24) shows that for small 3 the kernel Ki(t ,B) , a function
of two variables, may be expressed in terms of functions of one variable.
Here, however, one stipulation must be made. For the Voigt profile the repre-
sentation (1.24) with kj(BT) given by (1.25) for y = 1/4 is applicable only
when 6t is of order unity for t in the region where the Voigt asymptotic forms
can be used for Kx(t). This region is defined by the inequality t >> a-1,
where a is the parameter of the Voigt function (see Sec. 2.7). It therefore
appears that for a Voigt profile the expression (1.24) is applicable only when
3 << a (in practice, when 3 ^ O.Ola),

Proceeding in a similar manner, we obtain from (1.14)

where

whereas (1.17) gives

whe re

We note that

K^^(t,3) ~ K^^(T)e ^^k^^(3T) ,
• (1.28)

00

11 r(2Y) J y+s
0

K^d.B) ~ K2(T)e ^'k2(3T)
, (1.30)

oo

"277/

-y 2y+1,
e ^ y ' dy

k,(s) = I ^ ^ . (1.31)
r(2Y) J (y,3)2

k^^(s) = ^ [l-k-^(s)] . (1.32)

For the Doppler profile

k^(s) = l-s+s^e^E-^(s)
;
k^^(s) = 1-s e^ E-|^ (s ) ;

k2(s) = l-2se^E^(s)+se^E2 (s) .

A graphic representation of the behavior of the kernel Kj^(t,3) for vari-
ous values of 3 appears in Figs. 39-41, which are taken from the work of
E. H. Avrett and R. Looser (1966). In this paper tables are given of
AK2(At, 3/A) and Kii(At, 3/A) for th6 Doppler (a = 0) and Voigt (a = 10-3 and
10-2) profiles, along with the coefficients of approximate representations
of these functions as a sum of exponentials.
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Fig. 39. The kernel functions K^(t,B) for the Doppler profile.

THE FUNCTIONS U AND V. Along with the functions K;^ and K2 , an important role
is also played by the two functions

00

u,6) = y* K^(t,3)cos TudT , (1.33)

where K]^(s,B) is the one-sided Laplace transform of the kernel K^^Cx.g) with
respect to the variable t:

00

/K^(s,3) =
I

e ^""K^Cx.BjdT . (1.35)

^

0

These functions are related by

V(u,3) = U-,3 . (1.36)
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Using (1.7) we find that

z

-Q l + u^z^ ^ (l + 6C)^ + u2(;2

z

U(.,e) = z^/ GU')-^ - z^/
^ ^

, (1.38)

^ z^-z'^ z^ + • ) ^-C'

^

while substituting (1-1) into (1.33) and (1.34) gives

00

V(u.6) = ^ / a^(x)arc tg
"

dx , (1.39)

— oo

oo

CO

For real values o£ z satisfying \z\ < the argument of the logarithm must



7.1 KERNELS OF THE INTEGRAL EQUATIONS AND ASSOCIATED FUNCTIONS 309

be replaced by its modulus, and the integrals in (1.38) are to be understood
as Cauchy principal values.

To study the asymptotic behavior o£ solutions o£ the transfer equation,
one needs the asymptotic forms of V(u,3) and U(z,6) for u 0 and z ^ °°

,

respectively. For a Voigt profile they may, for example, be obtained as
follows. From (1.37) we have

oo •

V(u,6) = I - f ^3^'-(e^^^^)^'^ (z')dz' . (1.41)

^ (l+6z' ) 2+u2z'

2

When both 3 and u are small, the main contribution to the integral on the
right comes from the values of the integrand at large z'. Therefore G(z') may
be replaced by the leading term of the asymptotic expansion (2.7.27), so that

oo

V,,(u.6) ~ L - l(aU(a^\l/2 r
2Bz ' ^ (3^^u^) z '

, , 3/2
_ ^^^^^^

V 3\ ^ / y (-1 + 32' )2+u2z'2

Evaluating the integral, we finally get
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Vy(u,6) ^(^aU(a,0))l/2 (1.43)

This expression is valid for u << 1, 3 << 1, and an arbitrary value o£ the
ratio B/u. As 6/u 0 it gives the leading term of the expansion of 1 — Vy(u)
for u << I given in Sec. 2.7 (see (2.7.34))- In an analogous manner we find
from (1.38) that for z >> 1 and 3 << 1, subject to the condition 3z ^ 1,

Uy(z,B) 1 I iir n^N^^^ C1 + 3Z)
-^/^

-(TTaU(a,0))
^ /I

(1.44)

For the Lorentz profile the asymptotics of the functions V(u,3) and U(z,3) can
be obtained from (1.43) and (1.44) by taking the limit a In this proce-
dure the limit aU(a,0) l/ir as a ^ « must be taken into account.

We shall not give the asymptotic forms corresponding to the Doppler pro-
file, since they are very cumbersome and are not very useful in studying the
asymptotic behavior of the solutions of the transfer equation.

7.2 INFINITE MEDIUM

THE GREEN'S FUNCTION. As the first standard problem of multiple scattering
with continuous absorption, let us consider an infinite, homogeneous medium
with an isotropic point source whose frequency distribution is proportional
to a(x) , i.e. let us find the infinite medium Green's function. The calcula-
tion of the Green's function S (t) involves the solution of the equation
(see Sec. 2.4) P

S (t) =

P 4tt/
exp{-3 Ii-t' I

}M2 ( I T-T
' I

)

t-t'
S (T')dT' +—

e

P - 47T

-3x^2^^^
.2 (2.1)

where x = |^| and the integration extends over the entire x_'-space. For 3=0,
(2.1) reduces to the equation studied in detail in Chapter IV. The main
object will be to discuss the new effects that appear when continuous absorp-
tion is considered, as well as to determine the limits of applicability of the
theory developed in preceding chapters, in which it was assumed that there is
no continuous absorption.

As in the case 3 = 0 , we introduce the function $ , related to S by
CO ' P

S (x)
P

1 , .

2Trx dx °°
(2.2)

and satisfying the equation

00

f^(T) =
\j K^(|x-x'

i

,3)<f„(x')dx' + |k^(|x|,3) . (2.3)

For the physical significance of $^(x), see Sec. 3.6.

Taking the two-sided Laplace transform of (2.3), and using the convolution
theorem, we obtain
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where

$ (s) + $ C-s) =
, , ,

- 1 , (2.4)00^'' oo^-^ Tfl/sl

T(l/s) = 1 - |k^(s,B) - |k^(-s,6)
, (2.5)

and the bar denotes, as in the preceding chapters, the one-sided Laplace tranS'
form with respect to the spatial variable.

Let us examine the function on the right side of (2.4). By virtue of
(1.11)

00 00

) K.(s,3) E f e-^^K.(T,6)dT = f f^'-.l^l r • (2.6)
^ J ^ J (l+3z) (l+Bz+sz)

0 0

Substitution of t = (1 + 3z)/z gives

00

K(s,3) = /
G(l/(t-3))

_ ^2.7)
J t(t+s)t(t+s)
t5

Thus K;l(s,3) is a Cauchy-type integral. As in Sec. 4.1, we assume that a(x)
is a monotonic continuous function of |x|, 0 < |x| < <». Then G(z) does not
vanish for all z, 0 < z < o°, and from (2.7) we conclude that the function
K]^(s,3) is regular in the plane of the complex variable s cut along the real
axis from -°o to -3. It can now be seen from (2.5) that T(l/s) is regular on
the s plane with branch cuts along the real axis from -«> to -3 and from 3 to
oo. We shall show that within the domain of regularity T(l/s) does not vanish
The roots of T(l/s) can lie only on the real axis. Actually, from (2.5) and
(2.6) we have

00

T(l/s) = 1 - A / ^
. (2.8)

(l + 3z)^-s2z^

For s = X + iy with x 7^ 0 and y 7^ 0 , we conclude that the imaginary part of
the integral cannot vanish because G(z) is positive. Moreover for s = iy it
follows from (2.8) that T(l/s) > 1 — X > 0, so that our assertion is proven.
In order to show that T(l/s) 7^ 0 as well for real values of s lying in the
domain of regularity (-3 < s < 3), we rewrite (2.8) in the form

T(l/s) = 1 - X I
G(z)_dz

_ ^2.9)
/ l+23z+z2 (32-s2)

Since G(z) > 0 , in the region of s-values we are considering, for 3 > 0 , we
have

00 00 00

/
,

< / fifif < / G(z)dz = 1 .

/ l+23z+z2(32_s2) J l+23z J
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Consequently, T(l/s) > 1 — X > 0, which therefore proves the non-existence o£
a root (D. I. Nagirner, 1966, unpublished; Yu. Yu. Abramov, A. M. Dykhne

,

A. P. Napartovich, 1967).

Since ^'^(t) tends to zero as x -> °°, the function *^(s) is regular for
Re s > 0 . However, because of the properties of the function T(l/s) just
demonstrated, the right side of (2.4) is regular in the strip -3 < Re s < 3.
Hence $^(s) is regular in a wider region as well, that is, in the half-plane
Re s > -3. Therefore $,^(-5) is regular for Re s < 3 •

From (2.4) we have

^oo(T)

+ i oo

— 1°°

1

T(l/s)
- 1 - -•] e ds (2.10)

In order to obtain $ (x) for x > 0 , we note that the function in square
brackets is regular m the left half-plane cut along the real axis from -°° to
-3. Therefore the contour of integration may be shifted to the left and
deformed, replacing integration along the imaginary axis by integration
along the contour shown in Fig. 42. The integral along the large circular
arc of radius R centered at the origin tends to zero as R ^- «>. The integral
over the small circle of radius r centered at the point s = -3 also tends to
zero as r ^ 0 (these parts of the contour are shown in the figure by broken
lines). Therefore the integral along the imaginary axis is equal to the
integral al^ong the sides of the cut (-<»,-3]. Taking into account the regu-
larity of <I>^(-s) for Re s < 0 , we find

Fig. 42. Path of integration in the evaluation of the Green's function allow-

ing for continuous absorption.
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or

^ r ^ r 1 TX, , 1 / 1 TX,
f (t) = r I ;—e dx + / —-e dx

,

2tti J T_(l/x) 2TTi J T+(l/x)
_00 _g

CO

2ttiJ [_T_(-1/x) T^(-1/x)J

where

±Vx/ \x±i(
(2. 12)

For X > 6 (2.5) gives us

1 - AK^(-x±iO,B) - |k^(x,3)

Keeping (2.7) in mind, and using the well-known expressions for the limiting
values of Cauchy-type integrals, we get

or

where Ll(l/x,3) is given by (1.38). The integral in (1.38) is to be understood
as the principal value. Substituting (2.13) into (2.11), setting z = 1/x,
and taking into account the evenness of $^(t), we get

z

^^(t) e-^l''l/"^R(z)G(?)dz/z
,

(2.14)

0

where

1-1

R(z) |[l - AU(z,8)]^ + [a^zG(0]^[ . (2.15)

U(z,6) is given by (1.38), and and r, are defined according to (1.8). From
(2.14) and (2.2) we find, finally,

z

e"^/^R(z)G(c)dz/z2 . (2.16)
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This result was first obtained by D. I. Nagirner. For B 0, (2.14) and (2.16)
reduce to (4.1.18) and (4.1.20), respectively.

The expressions obtained here can scarcely be called simple. Using them
to calculate, for example, ^^^(t) is not much simpler than the direct numerical
solution of the basic integral equation for $^(t). However, they are impor-
tant in the sense that they make it rather simple to study the dependence of
the solution on the parameters X and 3 and to identify those cases in which
simplifications arise. In the following two sections we shall discuss this
prob lem.

INTEGRAL RELATIONS. From (2.4), one can easily obtain the even-order moments
of $ (t) , They can be expressed in terms_of the moments of the kernel function
K]^(t,6). In the domain of regularity of $^(s), i.e. for Re s > -6, we have

CS) E

00

/ e (T)dT = T$ (t) di +

CO

T $ ( t) dx

Therefore, in the strip -3 < Re s < 3

,(s) ,(-s)

00

/ (T)dT + S

00

/ T $ (t) dx + (2.17)

On the other hand,

K^(s 3) =

00

/ e ^^K, (T,3)dT

CO 00
2

^

y* K^(x,3)dx -sj xK^(x,3)dx +
^^f

T^K-^(T,6)dT - .

0 0

so that according to (2.5)

Thus

oo 00

A) = 1 - A
y* K^(x,3)dx -

^^\f T^K^(x,3)dx +

0 0

OO

Ay x^K^(x,3)dx

^ + s^ — + ... , (2.18)
TCl/s) i_x (i-x)2

where X is given by (1.5) or (1.6). Substituting (2.17) and (2.18) into (2.4)
and equating the coefficients of identical powers of s on the left and right
s i des , we ob t ain
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00

2 / <D^(T)dT = J_ - 1 , (2.19)

CO

f

X

2 / T2K^(T,3)dT

(T)dT = — . (2.20)
(1-A)2

Similar expressions may be obtained for higher order moments as well. We note
that by using (2.2) the relation (2.19) can be rewritten in the form

oo

1+4^/ S (T)T^dT = — . (2.21)

0
^

If a line has infinitely extended wings, in the limiting case 6=0 all
moments of $^(t) except the zeroth diverge, because of the slow decrease of
K]^(t) as T ^ °°. Of course, this does not apply in the case of a rectangular
profile, which refers to the usual monochromatic scattering. The relations
(2.19) and (2.20) become, respectively, (3.3.9) and (3.3.10).

7.3 THERMALIZATION LENGTH

DEFINITION OF THE THERMALIZATION LENGTH. As we explained in Sec. 4.5, for
scattering in media without continuous absorption (3 = 0) there is a certain
characteristic length — the so-called the rmali zation length — that represents
the optical distance from the place where a photon is born to the place where
it dies. The definition of the thermalization length used in Sec. 4.6 can be
extended in an obvious way to a medium with continuous absorption. We define

^^(t) = 1 + 47T / Sp(T')T'^dT' . (3.1)

The function increases monotonically from unity at t = 0 to

^JT) =
,

- (3.2)
1-A

where X is given by (1.6). The last equation is simply (2.21) with different
notation. We define, as in Sec. 4.6,

Sco^-^) = 'i'ao(^) ,
A = 1 , 3. = 0 . (3.3)

We then take for the thermalization length the root of the equation

S^(T^) = (l-A)-^ . (3.4)
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The thermali zation length is, roughly speaking, the optical distance from the
source at which H'^(t) approaches its asymptotic value for t = As we shall
see shortly, it would have been desirable to refer to as the migration
length; but we prefer to follow the more common terminology.

MEAN OPTICAL PATH PER SCATTERING. Since X depends on both X and 6, the ther-
malization length is a function of both of these parameters. However, limit-
ing cases do exist in which the dependence on one of these quantities practi-
cally disappears. Let us consider this question in a little more detail.
From (1.6) we have

X = X - X36 (B) (3.5)

whe re

00

5 (B) 7 A / ^^^^^ dx . (3.6)
a(x) +3

Therefore the problem is essentially a study of the function 6(B)- The physi-
cal significance of this function follows from the relation

oo

/
0

K^(T,B)dT = 1 - B6(B) , (3.7)

which is a consequence of (3.5) and (1.5). Since K-|^(t,B) is the probability
of direct radiative transfer of excitation (see Sec. 7.1), we conclude that
B6(6) is the probability that a photon is destroyed in its first flight.
But B may be regarded as the probability of photon destruction per unit line
center optical path. Therefore 6(3) is the mean optical path of a photon per
scattering

.

Substituting a(x) = 1/t in (3.6), we find

oo

xj X' (t)dt
6(B) = 2A

Bt
'

1

where the function x(t) is such that a(x(t)) = 1/t, with x(t) > 0. Integrat-
ing by parts we obtain

oo

6(3) = 2AB /
^'^^^^^

, (3.8)

/ (l+3t)^

Let us study the behavior of 6(3) for small values of 3, which, from
(3.8) is evidently determined by the behavior of x(t) as t We rewrite
(3.8) in the form

oo

6(5) = 2A f (3.9)

/ (1 + u)^
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and use the fact that as 3 0 (see Sec. 2.6)

where y is the characteristic exponent. Substituting (3.10) into (3.9), we
obtain

0
^1"^^

from which we finally arrive at

oo

6CB) ~ ZaT ILl^^fl]
, (3.11)

/ (l+u)2 \3/

6(B) ~ ^^^^^"^^^ X
I ^) , 8 - 0 . (3.12)

s mZiTY

Let us consider in a little more detail the most important specific cases
Going to the limit y 1/2, we find that for the Doppler profile

^D^^^
^(^n (3.13)
v^V By/

As the asymptotic expansion of 62(3) is expressed in inverse powers of £n(l/3)
rather than of 3, it is therefore very helpful to have not only the leading
term, but also all subsequent terms of the asymptotic series. They may be
found in the following manner.

For the Doppler profile the expression (3.9) assumes the form

6,(3) = ^f^niy/' f (1 . ^Y'^ . (3.14)
^ /^V B/ ^ ^

my (i+u)2

Hence as 6 ^ 0

6i,(3)
\ B/

j = i t^lJ.. J (l+u)2 (^^1)

(3.1?)

But

00

/
[In u) ^ du ^

n (1+U)2

j = 2n - 1
,

2(2^^-^-l)u2^|B2^|
, j = 2n

,

where B^^ are the Bernoulli numbers, n = 1,2, Therefore (3.15) gives
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l\
1/2

2n

) S (in i\ 2n

wi th 1 and

C3.16)

2n
= _2(4n-3):: 2n-l

(4n):: ^ ^

2n
"2n

, n = 1,2,.. (3.17)

The first few values of 6^ are:
2n

5^ = -0.41123; 6^ = -1.77569; 6^ = -29.1046 .

For a Voigt profile the asymptotic form (3.12) can also be refined. It
is found that

U(a,0)
(3.18)

For the Lorentz profile the integral (3.6) can be expressed in terms of the
elementary functions, that is,

5^(3)
/3(1 + B)

(3.19)

Values of the function 6(3) for the Doppler (a = 0), Voigt (a = 0.001; 0.01
and 0.1) and Lorentz (a = °°) profiles are shown in Table 32. D. G. Hummer

TABLE 32

MEAN OPTICAL PATH PER SCATTERING 6(B)

3 a = 0 a = 0 . 001 a = 0 01 a = 0 1 a = oo

10 9 346 -2 9 . 346 -2 9 349 -2 9 374 -2 9 .535 - 2

8 1 150 1 . 150 1 150 1 154 1 .179 -

6 1 494 1

.

494 1 494 1 501 1 .543 -

4 2 132 2 . 132 2 134 2 148 2 .236 -

2 3 738 3. 738 3 743 3 789 4 .082 -

1

1

6 049 6 . 051 6 066 6 206 7 .071 -

8 10" 6 925 6 . 927 6 949 7 145 8 .333 -

6 10' 1
8 124 8. 127 8 160 8 455 1 .021 0

4 10" 1
9 898 9 . 905 9 961 1 047 0 1 . 336 0

2 10" 1
1 297 0 1 . 299 0 1 312 0 1 428 0 2 .041 0

(Continued)
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TABLE 32 (Continued)

319

Q
P 3. = nu a.

— n u U i a.
— n— u . U i a.

— n 1
1 a — oo

1
10-1 1 .588 0 1 59 1 0 1 .620 0 1 . 86 1 0 3 . 015 0

8 10-2
1 .676 0 1 680 0 1 .716 0 2 .017 0 3 . 402 0

6 10-2
1 785 0 1 79 1 0 1 . 838 0 2 . 234 0 3 . 965 0

4 10-2
1 .931 0 1 939 0 2 .009 0 2 .581 0 4 . 903 0

2
10-2 2 159 0 2 174 0 2 . 309 0 3 .337 0 7 . 00 1 0

1
10-2 2 . 364 0 2 394 0 2 . 646 0 4 . 409 0 9 . 950 0

8 10-^ 2 426 0 2 462 0 2 . 770 0 4 . 847 0 1 . 114 + 1

6 10-^ 2 504 0 2 55 1 0 2 947 0 5 . 496 0 1 . 287 + 1

4 10-^ 2 609 0 2 677 0 3 .239 0 6 . 597 0 1 . 578 + 1

2 10-^ 2 778 0 2 907 0 3 9 1

1

0 9 .128 0 2 . 234 + 1

1
10-^ 2 937 0 3 177 0 4 .923 0 1 .276 + 1 3. 161 + 1

8 10-4 2 986 0 3 280 0 5 . 344 0 1 .423 + 1 3. 534 + 1

6 10-4 3 048 0 3 429 0 5 .989 0 1 .639 +

1

4. 081 + 1

4 10-4 3 133 0 3 681 0 7 . 097 0 2 . 003 + 1 4. 999 + 1

2
10-4 3 273 0 4 278 0 9 .689 0 2 . 825 + 1 7 . 070 + 1

1
10-4 3 407 0 5 210 0 1 346 + 1 3 .991 + 1 1 . 000 + 2

8 10-^ 3 449 0 5 612 0 1 . 500 + 1 4 . 461 + 1 1 . 118 + 2

6- 10-^ 3 502 0 6 . 222 0 1

.

726 + 1 5 150 + 1 1 . 291 + 2

4- 10-^ 3 576 0 7. 290 0 2 106 + 1 6 306 + 1 1 . 581 + 2

2
• 10-^ 3 698 0 9 . 834 0 2 969 + 1 8 915 + 1 2 . 236 + 2

1
• 10-^ 3. 816 0 1 . 358 + 1 4 192 + 1 1 261 + 2 3 . 162 + 2

8- 10-6 3 854 0 1

.

512 + 1 4 686 + 1 1 409 + 2 3 . 536 + 2

6 • 10-6 3 901 0 1 738 + 1 5 409 + 1 1 627 + 2 4 . 082 + 2

4- 10-6 3 967 0 2 . 119 + 1 6 623 + 1 1 993 + 2 5 . 000 + 2

2 • 10-6 4 077 0 2 . 985 + 1 9 364 + 1 2 819 + 2 7 . 071 + 2

1 • 10-6 4 185 0 4 . 214 + 1 1 324 + 2 3 986 + 2 1 . 000 + 3

8- 10-7 4 219 0 4 , 710 + 1 1 . 480 + 2 4 457 + 2 1 . 118 + 3

6- 10-7 4 262 0 5 . 437 + 1 1

.

709 + 2 5 146 + 2 1 . 29 1 + 3

4 • 10-7 4 323 0 6 . 65 7 + 1 2 093 + 2 6 . 303 + 2 1 . 581 + 3

2 • 10-7 4 424 0 9 . 411 +

1

2 . 960 + 2 8 913 + 2 2 . 236 + 3

1 < 10-^ 4 523 0 1

.

331 + 2 4 . 186 + 2 1 . 261 + 3 3 . 162 + 3

8- io-« 4 554 0 1

.

488 + 2 4 . 681 + 2 1

.

409 + 3 3 . 536 + 3

6- io-« 4 594 0 1

,

718 + 2 5 405 + 2 1

.

627 + 3 4 . 082 + 3

4- io-« 4 650 0 2 104 + 2 6 619 + 2 1 . 993 + 3 5 . 000 + 3

2 lo-s 4 745 0 2 975 + 2 9 361 + 2 2 . 819 + 3 7 . 07 1 + 3

1 io-« 4 837 0 4 . 208 + 2 1 324 + 3 3. 986 + 3 1

.

000 + 4

522-519 O - 74 - 22
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(1968) has recently published a five- figure table of (1/A)6(3/A) for
log3 = 10.0 (0.5) 0.0 and -loga = o°

; 4.0 (0.5) 0.5; -oo. it should be noted
that the function (1/A)6(3/A) is the Menzel "curve of growth" for the
Schus ter-Schwarzs child model (D. H. Menzel, 1936).

THERMALIZATION LENGTH. LIMITING CASES. Now that we have studied the behavior
of 6(3), we can consider the dependence of on A and 3. When the inequality

1-X >> A36(3) (3.20)

is satisfied, the quantity 1-A, as may be seen from (3.5)
independent of 3 and is close to 1-A. According to (3.4)
length in this limiting case is almost independent of 3 and
value for 3=0 (see Sec. 4.6). The physical significance
as follows. As has been shown in Sec. 7.1, A is the probab
creation of an excited atom will result in the emission of
subsequently excite another atom. Consequently 1-A is the
per scattering that the photon will be destroyed, and

is practically
the thermalization
approaches its

of this result is
ility that the
a photon that will
total probability

1-A

is the mean number of scatterings of_a photon in an infinite medium. When
the inequality (3.20) is satisfied, N is practically independent of 3 and is

almost equal to its value for 3=0. Consequently when (3.20) is satisfied,
most of the photons are destroyed in the scattering event, while their death
in flight (because of continuous absorption) is insignificant. We note in
passing that the mean length of a photon path in an infinite medium is obvi-
ous ly

T = 6 (3)N = 6(6)
1-A+A36 (3)

Using the asymptotics of 6(3) just obtained, we find that for 3 << 1 the
condition (3.20) has the following forms for the most important special cases
of the absorption coefficients:

Doppler: 1-A >> A — 3 ( iln 1/3 )

"'"^^
(3. 20a)

Voigt: 1-A >> A(^U(a,0))^/^(a3)

,

1/2
Lorentz: 1-A >> A3^ .

It follows from (3.18) that (3.20b) is valid only for values of
small in comparison with a.

For 1-A << 1 the inequality (3.20) may be reversed:

(3.20b)

(3.20c)

that are

1-A << 36(3) (3.21)
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[the factor X on the right can be replaced by unity, since 1-A << 1), In this
limiting case the basic mechanism for removing photons from the process of
multiple scattering is absorption in the continuum (occurring in flight) , and
the death of photons in the scattering event can be disregarded. The mean
number of scatterings N and the thermali zation length can be considered to
be independent of X, as though A = 1.

It must be emphasized that for a Voigt profile the destruction of photons
during scattering is insignificant compared to their death due to continuous
absorption, when 1 - A is much less than /aS" (and not 31). This important
conclusion, which' follows from a reversal of the inequality (3.20b), is valid
for 3 << a.

It is now simple to find the dependence of the thermali zati on length on
3 for those 3 << 1, which satisfy the condition (3.21). Since 1-A << 1, one
can obtain x-j- for Doppler, Voigt and Lorentz profiles from the expressions
(4. 6 . 13a) - (4. 6 . 13c)

,
by substituting 1-A for 1-A. This is clear from the

definitions of x^ for 3=0 and 3 > 0, given by (4.6.10) and (3.4), respec-
tively. Since, when the inequality (3.21) is satisfied, the quantity 1-A
can be replaced by 36(3), we can use the asymptotic forms of 6(3) given above
for 3 << 1 to obtain

, 1-A << 3 << 1 , (3,22a)

(1-A)^ << a3 << a^ << 1 , (3.22b)

Doppler: x^ ~
l6(^^^|)

Voigt: x^

-1

9

Lorentz: x^ ~ |-3 ,
(1-A)^ << 3 << 1 . (3.22c)

Thus, for Voigt and Lorentz profiles, the thermali zation length is a
quantity on the order of 3"-'-, while for the Doppler profile, x^ is approxi-
mately In 1/3 times smaller than 3"-^. At first sight this result might seem
strange. The effect of continuous absorption is to limit the path length of
the photon through the medium to 3"-'-. It might therefore seem that if
continuous absorption is the main reason for the death of photons, the ther-
malization length should differ from 3~-'- only by a factor on the oider of
unity. In fact this is not so, since the thermali zation length does not
express the path length covered by a photon in the medium, but, rather, the
mean displacement from its birthplace to its place of death. The photons do
not follow straight trajectories, but instead describe zigzag paths, so that
the mean displacement of the photons can be significantly smaller than the
length of the path they have followed in the medium. Because of these jagged
trajectories the thermalization length for the Doppler profile is on the order
of iln 1/3 times smaller than B"-*-. For monochromatic scattering this effect
is even more telling. Since monochromatic scattering is a diffusion process,
we should expect that the displacement of a photon will be on the order of
the square root of its path length. Therefore the thermalization length, to
within a factor on the order of unity, should equal 1//3. It is easy to
verify that this is indeed so. For the rectangular profile we have from (3.6)

1

1+3

Consequently

,

1_X = 1-A + . (3.2 3)
1+3
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Since for monochromatic scattering S^(t) (3/2)t^ when t >> 1 (see Sec. 3.9),
we find from (3.4) and (3.23)

which agrees completely with the estimate just given.

Comparing these results with those found in Sec. 4.6, one can arrive at
the following general conclusion. If the destruction of photons in scattering
is negligible compared to that caused by continuous absorption, and if the
line absorption coefficient decreases rapidly enough in the wings so that the
accumulation effect is significant, then the the rmali zation length is substan-
tially less than 3~1. The greater the accumulation effect, the greater the
difference of from g~l.

It has been shown in Sec. 4.6 that no accumulation occurs if the charac-
teristic exponent y is less than 1/2. In the scattering process the redis-
tribution of photons between the core of the line and its peripheral regions
is found to be more important in this case than the change in the direction
of their motion. Consequently if the inequality (3.21) is satisfied and
Y < 1/2, the thermali zation length is equal to 6~1 to within a factor on "the

order of unity.

If neither of the inequalities (3.20) or (3.21) is satisfied, the ther-
malization length depends on both A and 3. However, as follows from (3.4)
and (3.5), for two media (1 and 2) in which values of X and 6 are such that

and the profiles of the absorption coefficient are the same, the thermaliza-
tion lengths are equal.

GENERAL ANALYSIS. The Green's function for an infinite medium will be ana-
lyzed only for the most interesting case, that of the Voigt profile. Moreover,
from the beginning we shall assume that 1-X << 1. This condition implies
that the two inequalities 1-X << 1 and B << 1 are simultaneously fulfilled.
From physical considerations, it might be expected (and this will soon be
verified by direct calculation) that in this case a region around the source
will exist in which the death of photons has almost no effect. The Green's
function in this regi on^di f fers little from that in a conservative medium.
The function Sr)(T) for X = 1 was discussed in detail^in Chapter IV. There-
fore an investigation of the Green's function for 1-X << 1 involves mainly
a study of its behavior for large t.

Setting y = t((1/z)-3), we get from (2.16)

1-X << 3 << 1 (3.22d)

1 - X^ + X^3-,^6(3-^) = 1 - X^ + X232'5(62)
,

7.4 ANALYSIS OF THE INFINITE MEDIUM GREEN S FUNCTION

(4.1)

Because of the exponential factor, the contribution to this integral from the
region of large y is insignificant. -Therefore for a Voigt profile, when t is
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sufficiently large we find from (4.1), considering (2.7.27), (2.15) and (1.44)
and the fact that 1-X << 1,

where

1

R(y)

SV.) 2/aUXa^y/^e^ r ^-J^^^^^^^Z
^ ^^^^^

Hill ^0

^ ^
l /TTaU(a.O) y^^ (y +23T)^/^ ]^ ^
3\ T ; y+3T J

,
['l /.aU(a,Q) V/^ y^l'

(4.3)

The asymptotic expression (4.2) is rather complicated. However, there are two
important limiting cases in which it becomes substantially simpler.

6-SOLUTION. If

1-X << (^U(a,0)a3)^^^
, (4.4)

the dependence of the Green's function Sp on A practically vanishes. Conse-
quently, as follows from (4.3), one can set A = 1, and

S^(T) ~ -i- ?

Ul^l^^'^ ' ^^-^^
P 4^t2 2tt (U(a,0)aT)l/'^ P

where

sV(3T) = -ie-^^ r\-y ^l!^!(zW_ dy . (4.6)
P

/tt / (y + 23T) 3 + y

3

0

The representation (4.5) is valid when ax >> 1 and a >> 3. However, if (4.5)
is rewritten in the form

S^(T) ~ S^(t,1)s^(3t)
, (4.7)

i
where Sp(T,l) is the Green's function for a conservative medium, i.e. a medium

' with 3=0 and X = 1 (see Chapter IV), then we obtain a representation which,
i

in contrast to (4.5), is valid for all x, and not only for x >> . This
' result is applicable when the inequalities a >> 3 and (4.4) are satisfied.
We have here a tremendous simplification — a function of three variables (x

,

I X, 6) is, in the limiting case being considered, expressed in terms of two

jj

functions, each of which depends on only one argument.

From (4.6) we find

Sp(3x) ~ 1 , 3x << 1 , (4.8)
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V 3 e"^^
Sp(BT) -

I^ , 3t >> 1 , (4.9)

so that for t << 1/3 (4.7) gives

Sp(T) ~ S^(t,1) , T << 1/3 . (4.10)

In other words, at distances from the source which are small in comparison
with the thermalization length, the function S^(t) for A 1 is close to the
source function in a conservation medium.

We shall call the source function corresponding to X = 1 and 3 0 the
3-solution . When X 7^ 1 and the condition (4.4) is fulfilled, the source
function is close to the 3-solution for all t.

X-SOLUTION. We shall call the source function corresponding to 3 = 0 the
X- s olution . In preceding chapters we have investigated this same X-solution.

From (4.3) it follows that for

1 - X >> (^U(a,0)aB) (4.11)

the dependence of the right side on 3 nearly vanishes, as the values of R(y)
are practically equal to its values for 3=0. Therefore in this limiting
case one can set 3 = 0 in (4.3) and obtain from (4.2)

S^(t) ~ S^(T,X)e-^''
, (4.12)

where Sp(T,X) is the Green's function for a medium with 3 = 0. In other words

,

when the condition (4.11) is satisfied, the Green's function can be obtained
by multiplying the X-solution by e'^"^. Since for 1-X << 1 Sp(T,X) can be
expressed in terms of functions of one variable (see Sec. 4.4), in the limit-
ing case (4.11) the Green's function for X / 1 and 3 7^ 0 may also be expressed
in terms of functions of a single variable.

A MORE GENERAL CASE. If neither of the inequalities (4.4) and (4.11) is
satisfied, the great simplifications found above do not occur. As follows
from (4.2) and (4.3), when 1-X << 1, for an arbitrary relation between 1-A
and a3, the Green's function can be represented as \

S^(t) ~ S^(T,l)s^(t,3T)
,

(4.13)

where

V
s
P
(t,3T) = ^e-^^ ( .-^ y'^'hy^^^^'-^y

,
(4.i4)

^R ^ [t(y + 3T) + (y + 23T) 3/2]2+y3

t =
. (4.15)

(TiaU(a,0)) ""^
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Hence, in this case, we conclude that for t << 3~ the Green's function can
be assumed to be equal to S^(t,X), i.e. we can set 3=0 and use the results
obtained in Chapter IV.

7.5 SEMI-INFINITE MEDIUM

TRANSFER EQUATION. Without any loss of generality the transfer equation for
line frequencies can be written in the form

^d^T^^
= Ca(x)+3)I(T,y,x) -

dx

1 (5.1)

- |Aa(x)J a(x')dx' J I (t ,

y
'

, x' ) dy ' - a(x)S*(T)

1

The quantity I(T,y,x) in this equation is the intensity of the diffuse line
radiation, i.e. the radiation emitted in discrete radiative transitions. To
get the total radiation intensity one has to add to I(T,y,x) the intensity of
the unscattered continuum radiation of the medium and the intensity of the
direct external radiation attenuated by the medium. The boundary condition
for equation (5.1) is

1(0, y,x) = 0 , y < 0 . (5.2)

The primary line s ource fun ct ion S]^(t) can be rep res en ted as (see Sec. 2.4)

CO

S*(t) =
3^ J K^^(|t-t'

I

,3)S^(T')dT' + S*(T) . (5.3)

0

The integral term in (5.3) accounts for atomic excitation by the medium's own
continuum radiation, and S (x) describes all other mechanisms of primary
excitation (electron impact, recombination, radiative excitation by the exter-
nal radiation, etc.).

If we introduce the line source function

S(x) = \^ J
a(x')dx' J I(x,y' ,x')dy' + sj(x) , (5.4)

_oo _1

(5.1) can be rewritten in the form

a(x)+3 dx\a(x) / a(x)

from which it is evident that the function ( (a (x) +3 ) /a (x) ) I (x , y , x) depends
only on two variables, namely, x and
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z = (5.6)

We define

I(t,z) = ^/ I(T,y,x) . (5.7]
a(x)

Then the transfer equation (5.5) assumes the classical form

^dl(_r^ = I(T.z) - S(t) . (5.8)
ax

We must emphasize that the function I(t,z) for 6 7^ 0 is not the radiation
intensity, but just an auxiliary function related to the intensity by equation
(5.7).

Substituting (5.7) into (5.4) and changing the order of the x' and y'

integrations, we find that the line source function S(t) can be expressed in
te rms of I(t,z) as

z

S(t) =
I J I(T,z')G(?')dz' + S*(t)

, (5.9)

— z
c

where

z = 1/3 . (5.10)
1-3

I

z'
I

' "c

The boundary condition (5.2) assumes the form

l(0,z) = 0 , z < 0 . (5. 11)

Equations (5.8) to (5.11) are the basic equations of the problem of radiative
transfer in line frequencies in a s emi - infini te medium with continuous absorp-
tion.

Substituting into (5.9) the formal solution of the transfer equation
(5.8) subject to the boundary condition (5.11), we arrive at the integral
equation for the line source function

S(T) -
I
0

wh ere

00

J K^(|t-t'
I

,6)S(T')dT' + sJ(T) ,
(5.12)

z
c

:i(t,3) = f e"''/"' G(c')dz'/z' (5.13)
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As we have seen in Sec. 7.1, the kernel function K-|^(t,3) can also be written
as

00

K-lCt,6) = a^Cx)E-^((a(x)+B)T)dx . (5.14)

In the next subsection we discuss briefly the properties of the basic
special functions in terms of which the solution of (5.12) is expressed. For
a more detailed discussion, see D. I. Nagirner (1968).

THE RESOLVENT FUNCTION AND THE H- FUNCTION. Equation (5.1) may be solved by
the method utilized in Chapter V for the case 3=0. We will omit all the
calculations and give only a summary of the results. The resolvent function
$(t) , which is the solution of the equation

oo

$(t) = K^(|t-t'
I

,8)$(T')dT' + |k^(t,3) (5.15)

0

and is related to the resolvent r(T,T') of equation (5.1) by the expression

r(T,T') = $(|t-t'|) + / $(T-t) ^(t' -t) dt , T-^ E min(T,T')
, (5.16)

0

is equal to
z/c
e-^/"R(z)G(i;)-^

, (5.17)
zH ( z)

0

where R(z) is given by (2.15), and H(z) satisfies the equation

z

H(z) = 1 + ^zH(z) / tililiG(c' )dz' . (5.18)
^ J z+z

0

In view of the importance of the H- function, we shall consider it in a
little more detail. Let us define

z
c

a^^ = / H(z)G(Oz''dz , n = 0,1, (5.19)

The quantity is the n-th weighted moment of the function H(z), with the
weight function G(c). Further, let
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/
z
,c

, GCOz'^dz , n = 0,1, C5.20)

From (5.18) it is easy to find that

2n .

j = 0 > >

For the proof of this relation, see I. W. Busbridge (1960). For n = 0, (5.21)
gives

Xa^ = A + —
,

from which, considering the boundedness of as X ->- 0, we obtain

ag = |(l - /T^) . (5.22)

For 6=0 this expression reduces to (5.4.16), since in this case A = X. It
should be mentioned that in line transfer problems with g = 0, usually all
of the moments except ag diverge. In many problems, in addition to ctj^

,

we encounter the moments

z
.c

^ik
y* H(z)Gj^(c)z''dz

,
i,k = 0,1,... , (5.23)

0

where the function G]^(z) is defined by the expressions (2.6.12) and (2.6.13).
It is obvious that ani ^ a^. The moments must be found numerically (with
the exception of ^ s a^) .

It follows from (5.5) and (5.9) that as z increases from 0 to °° the func-
tion H(z) increases monotonically from H(0) = 1 to

H(-) = (1-X)-^/^ . (5.24)

The explicit expression for H(z) when z > 0 is
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H ( z ) = e xp

V n

lTv\\ - AVCu,6)]
du )

l + z^u^ j

[5 .25)

where V(u,3) is given by (1.37) or (1.39). When 6=0, (5.25) reduces to
(5.4.11) .

Let us consider one important limiting case of (5.25). When the line ab
sorption coefficient has a Voigt profile and the inequalities 1-A << 1 and
1-X << (aB)-'-'^ are satisfied, then X can be replaced by unity in (5.25)
(3-solution) . The H-function is then much simplified. For z << g"l it is
practically independent of 3 and is asymptotically equal to ihe conserva-tive
H-function, corresponding to the case 1-A =3=0, which was tabulated in
Sec. 5.7. When z becomes of the order of 3"-'-, the continuous absorption is
"switched on." The H-function for values of z in this region can be found
from the asymptotic expression

Hy(z) - H^(z,l)h^(3z)
, (5 . 26)

where

£n h^(s)

OO

£n-
dt/t^+s^+2s

(/t2+s2+s) 1/2 i+t2
(5.27)

and Hv(z,l) is the conservative H-function. This expression is obtained from
(5.25) by the use of (1.43) and is valid when

(1-A)^ << a3 <<

Values of the function h-|^(3z) are given in Table 33.

The functions Hv(z) and related quantities were recently tabulated by
D. I. Nagirner for a large number of values of A and 3 and several values of
the Voigt parameter a. Tables 34 and 35, which give values of the H-function,
the moment oqq, and the function

W(z)
J z + z

'

-Go(c')dz' (5.28)

I
encountered in the next section, are taken from the much more extensive unpub-
lished tables which are being prepared for publication by D. I. Nagirner.
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TABLE 33

THE FUNCTION h (gz)

6 z h
1
(Bz)

1
3z h

1
(gz)

1
tIz ^1 (ez) ; z hj(6z)

0 . 000 1 . 0000 0 .075 0 .9025 0 ,. 19 0 . 8297 0 . 475 0 ., 7322

0 . 005 0 .9870 0 .080 0 . 8984 0 ,. 20 0 . 8248 0 . 500 0 ,,7261

0. 010 0 .9774 0 .085 0 . 8944 0 ,.22 0 . 8156 0 . 525 0 ,,7204

0 . 015 0 .9690 0 . 090 0 . 8905 0 ,. 24 0 . 8069 0 . 550 0 .,7148

0 . 020 0 .9615 0 . 095 0 .8867 0 ,. 26 0 . 7988 0 . 575 0 ,, 7095

0 . 025 0 .9545 0 . 10 0 .8830 0 ., 28 0 . 7911 0 . 60 0 ., 7044

0 . 030 0 .9481 0 . 11 0 .8760 0 ,. 30 0 . 7838 0 . 65 0 ,, 6947

0 . 035 0 .9420 0 . 12 0 . 8692 0 .,32 0 . 7768 0 . 70 0 .,6857

0 . 040 0 .9363 0 . 13 0 .8628 0 ., 34 0 . 7702 0 . 75 0 ,,6772

0 . 045 0 .9308 0 . 14 0 . 8567 0 ,, 36 0 . 7639 0 . 80 0 ,,6693

0 . 050 0 .9 256 0 . 15 0 . 8509 0 ,. 38 0 . 7578 0 . 85 0 ,, 6618

0. 055 0 .9206 0 . 16 0 . 8453 0 ., 400 0 . 7520 0 . 90 0 ,,6547

0 . 060 0 .9 158 0 . 1 7 0 . 8399 0 ., 425 0 . 745 1 0 . 95 0 .,6480

0 . 065 0 .9112 0 .18 0 . 8347 0 ,. 450 0 . 7385 1

.

00 0 .,6417

0 . 070 0 .9068

TABLE 34

THE FUNCTIONS H(z) AND W(z) FOR THE VOIGT PROFILE

,

X =1 AND 3 = 10"
4

a = 0 . 001 a = 0 . 0 1 a = 0 . 1

7 H(z) W(z) H(z) WCz) H(z) W(z)

z

z
"

l + 3z

0 . 0 1 . 000 0 .000 1 .000 0 . 000 1 .000 0 , 000

0 . 1 1 . 156 0 . 4 76 1 . 154 0 .486 1 . 141 0 .524

0 . 2 1 .273 0 . 791 1 . 268 0 .811 1 . 243 0 . 889

0 . 3 1 .377 1.044 1 .370 1 .076 1 . 331 1 .19 5

0 . 4 1 .473 1 . 259 1 . 463 1 . 302 1 .411 1 . 464

0 . 5 1 . 563 1 . 448 1 .550 1 . 503 1 .485 1 . 708

0 . 6 1 .649 1.616 1 . 633 1 .683 1 . 553 1 .932

0 . 7 1.731 1 . 770 1 .712 1 . 849 1 .618 2 . 141

0 . 8 1.810 1.911 1 . 788 2 .002 1 .679 2 . 338

0 .9 1 . 886 2.041 1 . 860 2 . 144 1 . 737 2 .525

1 . 0 1.960 2.163 1 .931 2 .278 1 . 792 2 . 703

(Continued)
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TABLE 34 (Continued)
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a=0.00 1 a=0.01 a=0.01
HC z) WCz) H(z) W ( z) H ( z) W ( z)

1

X z =

a(x)+3

0 . 00 1

.

960 2 163 1 9 31 2 278 1.792 2 703

0

.

25 2

.

006 2 237 1 9 74 2 359 1.823 2 . 802

0 . 50 2

.

158 2 470 2 116 2 617 1.920 3 117

0 75 2 . 459 2 89 4 2 39 4 3 09 3 2.101 3 70 7

1 00 3

.

000 3 565 2 882 3 871 2.391 4 69 2

1

.

25 3

.

9 52 4 5 84 3 710 5 115 2.823 6 2 88

11 . o u
r
D .

^; 0 cD Z 0
/ID 1 Z 8 D n 7 n

/ J. 0 4 QO Q C y1o D 4

I 75 8 . 5 3 7 s 5 3 3 7 180 1

0

6 8 4.154 1 2 9 2

2 . 00 1 3 . 39 1 2 4 4 10 1 2 1 7 1

3

4.972 1 8 9 7

2 . 2 5 20 . 60 1

9

0 3 1 3 5 6 2 8 89 5.772 26 96

2 50 29 . 04 30 0 4 1

6

82 4 7 80 6.466 35 89

2 75 35 . 89 46 0 1 19 24 70 34 7.022 44 5 2

3

.

00 39 . 4 8 6 1

.

4 8 20 69 8 8 6 4 7.462 5 2 34

3 25 40 . 79 69 . 88 2 1 49 100 6 7.824 59 46

3 50 4 1 . 7 3 0 4 2 1 9 9 10 8 g 8.139 6 6 15

3 75 4 1

.

3 7 7 4 3 7 2 2 36 115 4 8.423 72 5 8

4 46 7 5 1 7 22 fS 7 1 ? 1 8.683 7 8 84

4 25 4 1

.

54 75 77 22 9 4 125 2 8.926 84 . 9 7

4 50 4 1

.

59 76 2 7 23 1 7 130 8 9.153 90 9 7

4 75 41

.

64 76 69 23 38 135 1 9.366 96 86

5 0 4 1 \J o 7 7 1 3 8 9 9.567 10 2 6

5 5 41

.

75 77 63 23 87 145 5 9.938 113 8

6 0 41

.

79 78 06 24 11 15 1 3 10.27 124 6

6 5 41

.

83 78 40 24 32 156 0 10,57 134 9

7 0 41 . 86 78 67 24 48 160 1 10 . 85 144 7

7 5 41

.

88 78 89 24 62 163 6 11.10 154 1

8 .0 41 . 90 79 07 24 74 166 6 11.33 163 1

8 . 5 41 . 92 79 22 24 84 169 1 11.54 171 7

9 .0 41 . 93 79 34 24 93 171 4 11.74 179 8

9 . 5 41. 94 79 45 25 00 173 3 11.92 187 6

10 .0 41 . 95 79 54 25 07 175 0 12.08 194 9

a
00

102 3 246 4 448. 9
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TABLE 35

THE FUNCTIONS H(2) AND FOR THE VOIGT PROFILE, A = 1 AND 6=10
-6

a = U . (J U 1 a = 0.01 a = 0 . 1

z H(z) W(z) H(z) W(zl H Cz) W(zl

z
z

l + 6z'

n n 1 . 000 nU n n n
. U U U 1 n n n

. U U U 0 . 000 1 .000 0 .000

u 1
. 1 1 . 156 U /l Q C

. 4 O D 1 .15 4 0 . 500 1 • 141 0 .5 46

nu 9 1 .273 U . o U i 9 ^ Q
. 2 o y 0 .839 1 .243 0 .9 34

u
•7

• o 1 .378 1
1 . U / U 1 t 9 n

1 . 116 1 . 332 1 .26 3

u A 1 .474 11 . / y 4 1 /I A /I
. 4 O 4 1 . 357 1 .411 1 .555

nu c
• 0 1 . 565 1 /I Q 0

. 4 y z 1 .551 1 .571 1 .4 85 1 .822

u , o 1 .651 1 . D oy 1 ,634 1 . 765 1 .55 4 2 .069

n • 7 1 . 733 11 . O O 1 7 1 1 .944 i
A 1 o

. 0 1 o 92 7 n 1
. oO 1

0 . 8 1 .813 1 .981 1 . 789 2 . 110 1 .680 2 .521

0 . 9 1 . 889 2 . 119 1 . 862 2 . 266 1 . 738 2 . 730

1 .00 1 .963 2 . 250 1 .933 2 .413 1 . 793 2 .931

X

a

1

(x) + B

u n n
. u u 1 .963 9 9 c n

. / o U 1
0 7 7

. y o o 2 .413 1 . yy 3 72
n 7 1.931

u . ^ D 2 . 0 10 9 7 9 O i . y / 6 2 .503 1 . 0 2 4 3 .043

u . 0 U 2 . 163 9
i. . 5 0 i

92 . 1 i y 2 . 789 i
n o o 3 .40 1

u 7 c
2 . 466 7

J . U 4 4 92 7 Q Q
. oy 0 3 . 327 92 1 n T

. i U o 4 . U 0 1

1i n n 3 .013 •2

o 7 Q A 92 . oy u 4 .230 72 tC\ A.39 4 r
5 7 7 O

• ZOO

1 9 C 3 .982 4 Q O 9
. y 0 2 7 9

. / 2d 5 . 735 72 o o o
. O Z 8 77 1 <^ 7.16 2

i
c n

. 0 U 5 . 706 6 o n r\.89 9 5 .10 9 8 . 355 3 .426 1

0

. 3 7

1 . / 0 8 . 783 1

0

. 2 1 7
O O 7.283 13 .28 4 .175 1 5 . 6 6

2. . (JO 14 .21 1

6

. 50 1

0

. 39 23 .28 5 .013 2 3 . 9 8

I o c
. Z o 23 . 26 29 o c\

, 89 1

4

. 2 2 44 .22 5 . 845 35 . 56

2 . 50 36 .51 6 1 . 44 1 8 . 2 3 84 . 76 6 .583 49 . 32

I . 75 52 . 14 13 8 . 0 2 1 . 7 7 145 . 7 7 .188 6 3 . 4 1

•z
. U 0 66 . 81 o n ^

2 9 6 . 2 24 . 3 7 208 . 9 7 ^ "7 O
. 6 7 o 7 6 . 6 3

•7

o 9 C 77 . 85 CAT5 0 o 7
. 2 2 6 . 0 8 259 . 4 o0 n n o

. u y Z oy C 7
. 6 2

7
. o 0 84 . 15 ^ r o6 5 8 . 5 2 7 . 3

1

300 . 0
o8 , 4oU 10 2 . 1

87 .62 7 5 5 . 3 2 8 . 34 336 . 5 8 . 79 8
11/1114 . 6

4 .00 90 . 11 829 . 3 29 .27 372 . 0 9 . 116 127 . 2

4 .25 92 .27 896 . 7 30 .15 407 . 3 9 .419 140 . 1

4 . 50 94 .27 961 . 7 30 .99 442 . 8 9 . 709 153,. 1

4 . 75 96 . 14 1025 31 . 80 478 . 5 9 .988 166 ,. 3

(Continued)
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TABLE 35 (Continued)
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H(z)
0.001

W(z) H(z)
0.01

W(z) H(z)
0 . 1

W(z)

a (x) +B

5 0 9 7 9 2 1087 32 59 514 4 10 26 179 7

5 5 101 2 120 8 34 07 586 6 10 77 207 1

6 0 104 2 1322 35 47 659 3 11 26 235 3

6 5 106 9 1432 36 80 732 5 11 72 264 2

7 0 109 4 1537 38 06 805 9 12 16 293 6

7 5 111 6 1636 39 27 879 5 12 59 323 8

8 0 113 7 1730 40 42 953 2 13 00 354 5

8 5 115 6 1820 41 52 1027 13 39 385 8

9 0 117 3 1905 42 57 1100 13 78 417 5

9 5 118 9 1986 43 59 1173 14 15 449 7

10 0 120 4 2062 44 57 1246 14 51 482 4

00
4607 8213 142.5- 10'

7.6 LINE FORMATION IN AN ISOTHERMAL ATMOSPHERE

FORMULATION OF THE PROBLEM. We shall apply the results of the preceding sec-
tion to the problem of absorption line formation in stellar spectra. Our
discussion will be brief. A detailed review of work in this area has been
given by A. Unsold (1955) and K.-H. Bohm (1960).

Strong lines are formed in the outermost layers of the atmosphere, where
the continuum optical depth is small. To a good approximation one can regard
such lines as being formed in an isothermal atmosphere.

Originally it was assumed that the frequency of a photon remains constant
during scattering (so-called coherent scattering). Using this assumption,
A. S. Eddington (1929) discussed the line formation problem with absorption*
in the continuum and scattering taken into account, and obtained an approxi-
mate solution. An exact solution was later found by S. Chandrasekhar (1950).
However, as was explained in Sec. 1.5, the assumption that the frequency
remains constant during scattering cannot be accepted. J. Houtgast (1942)
formulated the same problem with the assumption of complete frequency redis-
tribution. The exact solution of this problem was obtained by V. V. Sobolev
(1949; 1954; see also V. V. Sobolev, 1956

,
Chapter VIII), but only the line

profiles were found. The problem of determining both the source function and
the line profile has been discussed by J. T. Jefferies and R. N. Thomas (1958,
1959), M. P. Savedoff (1952) and others, who used approximate methods to solve
the problem. Much more complete and accurate results have been obtained by
D. G. Hummer (1968) who used the best available numerical methods to solve the
transfer equation. A number of Hummer's results will be given in this chapter.

Below we consider the simplest model of strong line formation in stellar
spectra. The results obtained here from the solution of this model problem
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are of more theoretical than practical interest, and attempts to use them
directly to interpret observed profiles of strong lines would hardly be justi-
fied. However, some general conclusions about the way in which the solution
depends upon the parameters may be useful.

Let us now turn to the mathematical formulation of the problem. We con-
sider an isothermal, semi- infinite atmosphere with no external illumination.
The atmosphere is composed of a mixture of two- level atoms (line frequency vg)

and atoms of other types that can be ionized by radiation of frequency vq.
The kinetic temperature of the gas T is such that hvQ >> kT, so that stimu-
lated emission in the line may be ignored. The survival probability A of a

photon during scattering and the ratio 3 of the continuum absorption coeffi-
cient caused by photo- ioni zation of atoms of "the contaminants," to the line
center absorption coefficient are assumed to be independent of depth. It is
further assumed that the atoms of the "contaminants" are in LTE. Under these
assumptions the evaluation of the radiation field in the gas and the deter-
mination of the degree of excitation as a function of depth involves essen-
tially the solution of the transfer equation

^dlir^^ = (a(x)+6)l(T,y,x) -

•Aa(x)
J

a(x')dx'y I ( x , y '
, x ' ) dy ' - [( 1- X) a (x) +B] (T)

with the boundary condition

1(0, y,x) = 0 , y < 0 . (6.2)

Here I(T,y,x) is the total intensity of radiation (i.e. the sum of the inten-
sity of the diffuse line radiation and the intensity of unscattered continuum
radiation), Bvq(T) is Planck's function, and X is the survival probability of
a photon during scattering, which in the case at hand is equal to

^2 1
X =

21 e 2

1

Throughout the rest of this section it will be assumed that

B^, (T) = 1 ; (6.3)

in other words, the intensity and the line source function will be expressed
in units of the Planck intensity.

Introducing the dimensionless line source function

1

S(t) = y* a(x')dx' y I (T,y' ,x' )dy' + 1-X
,

_oo _1

which is related to level populations by
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hvQ/kT

we obtain from (6.1) — (6.3) the following integral equation for S (see Sec,
2.4 and 7.5) :

oo

S(t) =
I y K^(|t-t'

I

,6)S(T')dT' + S*(t)
, (6.4)

where

S*(t) = 1 - X + 3-|
y* K^-^(|t-t'

I

,B)dT' . (6.5)

0

In addition to the source function, the intensity of emergent radiation is
also of great interest. It is given by (see Sec. 2.3)

oo

1(0, y,x) = y* (a(x)S(T)+3)e"(^'^''^''^)^/^dT/y . (6.6)

0

LIMITING CASES. We shall begin our analysis of the above equations by con-
sidering the source term in (6.4), i.e. the function S]^(t). Having rewritten
(6.5) in the form

/go 00 \

sJ(t) = 1 - a + 8|f2y K^^(t,3)dt - y* K^^(t,3)dtj
,

we can use the relations appearing in Sec. 7.1 to obtain

S*(t) = 1 - X -
|3 K2o(t,3) (6.7)

The function K2o(t,3) decreases monotoni cally from K2o(0>3) = 6(3) to zero
at T = 00. Correspondingly, S*(t) increases monotonically from

S*(0) = 1 - A + |-A36(3) (6.8)

to

sJ(t) = 1 - a + A36(3) , (6.9)

i.e. it changes by no more than a factor of two (Fig. 43; after D. G. Hummer,
196 8).

522-519 0 - 74 - 23
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Fig. 43. Depth dependence of the primary source function in an isothermal
atmosphere with 1 - A = 10"6. The ratio of S|[t) /Sj^C^^) is plotted
on the ordinate.

As has been shown in Sec. 7.3, for 1 - X >> XB6(3) the destruction o£
line photons by continuous absorption is insignificant compared to their de-

struction during scattering. From (6.7) and (6.8) it follows that in this
case

S^(t) 1-A (6.10)

Thus in the primary atomic excitation, electron impacts dominate photoexcita-
tion by continuum radiation. Since neither the birth nor the death of photons
is controlled by the continuum, the source function S(t) should be close to
the corresponding function for 6=0, studied in Sec. 63, i.e.

S(t) (1_X)1/2^(t) (6.11)

where

I'(t) = 1

T

$(t) dt

and the resolvent function $ refers to 3 = 0. Although in this limiting case
continuous absorption has practically no effect on the level populations, the
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difference of B from zero should be taken into account in calculating the
intensity of the emergent radiation. Substituting (6.11) into (6.6), we ob-

tain, after simple rearrangement, the following expression for l(0,)j,x) in
terms of the H-function for 3=0:

1(0, y,x) 1 - a(x)
1

1/2

a(x).3 L-
^'-'^

For the parts of the line where a(x) >> 3, we find

1/2

Va(x)+3 yj
(6.12)

1(0, y,x) ~ (1-X) (6.13)

0° the intensity of the emergent radiation, as might have been ex-As
pected, tends to unity, i.e. to (T) . When 3=0, the results (6.12) and
(6.13) reduce to (6.3.19) and become exact rather than asymptotic relations.

This limiting case can be called the A-solution for a semi - in fini te , iso-
thermal medium, since the source function here depends only on X and not on

Let us now consider the opposite limit, 1 - A << 36(3). The death of
photons during scattering through collisions of the second kind can, in this
instance, be ignored in comparison with their death in flight (see Sec. 7.3).
Also, the initial "pumping" results from the underlying continuum self- radia-
tion of the medium rather than from collisional processes, as may be seen from
(6.7) and (6.8), since

1 - A << ^36(3) 36(3) - j3K2q(t,3)

Since the role of collisional processes is small in both the birth and the
death of photons, we can set A = 1. The solution in this case will be called
the B-solution. The line source function is close to the 3-solution if
1 - A << 36 (3) .

For the 3-solution the primary source function
exactly half of its value at infinity:

Sl(T)

S*(0)

s*(^ 0

at the boundary is

(6.14)

This result follows from (6.8) and (6.9), and also directly from physical
considerations: at infinite depths the continuum radiation causing the ini-
tial excitation is isotropic, and its intensity is equal to (T) , while at
the boundary the continuum radiation, with the same intensity, strikes atoms
only from the side toward the medium (i.e. within solid angle 2tt, and not 4tt).

Without solving the equation for the source function, we find from (6.14)
that asymptotically as 3 0

S(0) ~ b/36(3) A = 1 << 1 (6.15)

where b is a constant depending on the profile, but in all cases lying between
unity and one-half. Actually, we have
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OO

;^(t) +
J

s^iS(t) = S,(t) +
J

S, (T')r(T' ,T)dT'
, C6.16)

0

where r(T',T) is the resolvent of equation (6.4). Hence

oo

;^(0) +
J

S(0) = S-, (0) + y St (T')$(T')dT'

0

A
Considering the monotonicity of , we obtain

oo \ / 00

S^(0)[l + y <J)(T')dT'j <S(0) < S*(«)fl + y $(T')dT'j
, (6,17)

with equality attained only for 3=0. But

oo

1 + y $(T')dT' = HM = (1-X)"^/^ = (1-X+X36 (3))"^^^ (6.18)

0

Therefore, setting X = 1 in (6.17) and using (6.8) and (6.9), we find

'|/36 (3) < S(0) < /36 (3) ,

from wh-ich the above assertion follows on letting 6^0.

The expression (6.15) gives an estimate of the departure from LTE in the
surface layers for small 3. This estimate applies both for A = 1 and for
X 1, as long as 1 - X << 36(3).

BOUNDARY LAYER. When 1-X and 36(3) are of the same order, both S* and S
depend on x , X and 3- However, for an arbitrary relation between 1-X and
36(3) rather important information on the depth dependence of the source
function may be obtained from a simple analysis of the basic equation for S,
without actually solving it.

From physical considerations it is obvious that in the present problem
the source function should be a monotonically increasing function of t. This
conclusion follows also from (6.16). Since the atmosphere is assumed to be
isothermal, at some distance from the boundary the conditions should approach
those of thermodynamic equilibrium. Therefore

S(~) = 1 . (6.19)

This follows also from (6.4) and (6.9). The most important feature of the



7.6 LINE FORMATION IN AN ISOTHERMAL ATMOSPHERE 339

solution is the large variation in S(t). From (6,17) we can obtain the esti-
mates for S(0)

|(1-X)^/^ < S(0) < (l-A)^/^ (6.20)

with equality attained for 3=0.

One interesting consequence follows from (6.20). If as X -> 1 the ratio
(l-X)/g6(8) tends to a limit, then the value of

(1-X) ^/^S(0) (6.21)

will tend to some constant^ The value of this constant depends upon the value
of the limit l-X/66(3) as X ^- 1, and also, of course, upon the profile. How-
ever, in all cases the limiting value of (6.21) lies between 1/2 and 1. There-
fore for sufficiently small 1-X

S(0) ~ b(C)(l-X)
1/2

(6.22)

where

K
-

66(3)

and b(5) is a function depending on the form of the profile
in narrow 'limits:

(6.23)

It varies with-

^ < b(f) 1

with b (<») = 1. The expression (6.15) is a special case of (6.22) for ? = 0.

If desired, values of the function b(5) may be found empirically by analyzing
the results of a numerical solution of the equation for the line source func-
tion .

From (6.19) and (6.20) it follows that as t increases from 0 to <» , the
source function increases by a factor not less than (1/2) (1-X)" 1/2 and not
more than (l-X)"l/2. Thus when 1-X is small (the case of greatest interest),
the line source function changes by a large factor. Here the situation is
similar to that for the X-solution considered in detail in Sec. 6.1-6.3.

Qualitatively the picture may be described in the following way. In a
homogeneous, isothermal gas there exists a boundary layer within which the
source function changes by a factor of. order (1-X)~ 1/2. The smaller the
probability 1-X per scattering that the photon dies, the thicker is this_
layer. In the most important case of nearly conservative scattering (1-X<<1)

,

the structure of the boundary layer is very simple. In fact, if X tends to
unity (this means that X -> 1 and 3 0 at the same time), the equation (6.4)
reduces to the homogeneous equation

S(t)

OO

(|t-t' |)S(T')dT' (6.24)
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whose solution we shall consider so normalized that S(0) = 1. In other words,

Jim Ifll = SCt) , (6.25)

i.e. the line source function, normalized to unity at the boundary o£ the
medium, tends to the solution of the conservative Milne problem as A 1 (see
Sec. 6.1). From the general result obtained in Chapter VI from the study of
the A-solution, one can take as the thickness of the boundary layer, by
definition, the value t = such that

S(T^) = (1-A)-^/^ . (6.26)

Then for x much less than

whereas for t >> t,
b

S(t) ~ S(0)S(t) , t << t, ,
. (6.27)

S(t) ~ 1 , t >> t, . (6.28)

The expression (6.27) shows that when 1-A is small the structure of
the boundary layer is very simple: right down to a depth of the order of
T\) the degree of excitation increases for all A and 3, just as in the gener-
alized conservative Milne problem. Saturation sets in as t approaches t]-, .

For values of x in this region the behavior of the source function is not
universal — it depends on A and g. The results of a numerical solution of the
transfer equation provide a good illustration of these conclusions (Table 36
and Figs. 44 and 45; after D. G. Hummer, 196 8). Thus, the data of Table 36
show that for the Doppler profile, throughout the region in which S (x) <0 . 2S (<»)

the maximum error of the result (6.27) is about 1 percent.

TABLE 36

THE FUNCTION S(t)/S(0) IN AN ISOTHERMAL ATMOSPHERE (DOPPLER PROFILE, 1-A=10"^)

X /tT 0 10' 7 10' 6 10" 5 10" 4 10" 3

1 1 68 0 1 68 0 1

.

68 0 1 68 0 1 .69 0 1 70 0

10 4 83 0 4 84 0 4 . 84 0 4 85 0 4 86 0 4 78 0

10^ 1 78 + 1 1 78 + 1 1 . 79 + 1 1 78 + 1 1 68 + 1 1 28 + 1

6 33 + 1 6 33 + 1 6 . 26 + 1 5 74 + 1 3 89 + 1 1 65 + 1

10-^ 2 10 + 2 2 07 + 1 1 . 87 + 2 1 18 + 2 4 63 + 1 1 66 + 1

5 75 + 2 5 26 + 2 3 . 41 + 2 1 34 + 2 4 65 + 1

10^ 9 32 + 2 7 48 + 2 3. 73 + 2

10^ 9 97 + 2 7 75 + 2 3. 74 + 2

10« 1 00 + 3 7 76 + 2
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Fig. 44. Depth dependence of the source function in an isothermal atmosphere
for the Doppler profile and 1 - A = 10"^.

From Figs. 44 and 45, and also from (6.22), it follows that for 1-X<<1
even very weak continuous absorption strongly decreases the departures from
LTE . This is perhaps one of the most important results in this chapter and
has the following physical interpretation. The electrons have a Maxwellian
velocity distribution. Therefore the radiation field in a line, and along
with it the degree of atomic excitation will become closer to equilibrium as
the radiation interacts more strongly with the electron gas. These interac-
tions are of two types: (1) collisional excitation followed by line frequency
emission and de- exci tation of atoms that have been photo-excited; (2)the
emission during recombination of line frequency photons and continuous absorp-
tion, i.e. photo- ioni zation of atoms of the "contaminant" by line radiation.
A sharp drop in the departure from LTE as the continuum is "switched on" indi-
cates that processes of the second type are very effective mechanisms for the
interaction of the electron gas with the radiation field.

LINE PROFILES. The profile of the line depends on the depth dependence of the
source function and is very sensitive to the value of 6 . As 6 increases, the
line becomes narrower, and the central intensity grows rapidly (Fig. 46; after
D. G. Hummer, 1968)

.

An order of magnitude estimate of the central intensity can be obtained
from the following considerations. The central parts of the line are formed
in the layers nearest the surface, where the line source function is of the
order of S(0). Moreover, the intensity of the emergent radiation at each
frequency is close to the source function at the depth where the corresponding
part of the line is formed. In other words, the central intensity measured
in units of the Planck intensity should be of the order of S(0), or (l-A)^/2.
For 1-X >> B6(6) it is ' independent" of 3 (X-solution) ; for 1-X << 65(B) it
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-2-1012345 67
log t/A

Fig. 45. Depth dependence of the source function in an isothermal atmosphere
for a Voigt profile and 1 - A = 10~^.

Fig. 46. Line profiles formed in an isothermal atmosphere. Doppler profile,
1 - X = 10-6.
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depends on ly on 3 C3-solution) . For the 8-solution the central intensity is

of order /36 (3) • In the case o£ a Voigt profile with 3 << a, the main te'rm

of the asymptotic form (3.18) may be taken for SyiQ) ,
giving a central inten-

sity of roughly (a3)-^/^. Therefore, for, let us say, a = 10-2, g = 10-^^ and
1 - X << 10-4 the residual central intensity is of the order of 0.01, i.e.
rather large. From Figs. 44 and 46 it appears that the estimates just given
agree well with available numerical data. We note that most of the curves in
Figs. 44 and 46 correspond to the 3-solution.

The effect of the parameters A and 3 on the intensity in line cores was
first discussed by V. V. Sobolev (1954; see also V. V. Sobolev, 1956), who
obtained the above estimates. Sobolev's procedure was quite different from
ours

.

In the present problem the intensity of the emergent radiation can be
expressed in terms of the H-function. Let us rewrite (6.6) in the form

l(0,y,x) = + ^sf^^I^") ,
(6.29)

a(x)+3 y \ y /

where the bar over S, as before, indicates the Laplace transform with respect
to the spatial variable. According to (6.7) and (1.18) the source term in
the equation for the source function can be written as

z

S*(t) = 1 - X -

3jJ
e-^/"GQ(Odz (6.30)

0

Therefore, by virtue of the superposition principle

z
c

S(t) = (1-X)S(t,oo) -3t/ S(T,z)GQ(c)dz , (6.31)

where S(t,z) is the solution of the auxiliary equation

00

S(t,z) = ly K^( |t-t'
I

,3)S(t' ,z)dT' + e"''/^ . (6.32)

0

We recall that S(t,z) can be expressed in terms of the H-function and the
resolvent function $ as (see Sec. 5.1)

S(t,z) = H(z)(e-''/^ + e"^^"^'^/^$(T')dT'] . (6.33)

We now apply the Laplace transform to equation (6.31). Using (6.33) and (5.24)
and employing the relation
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OO

H(z) = 1 +•

J
e '^/^$(T)dT

0

(6.34)

we find from (6.29), after minor rearrangements,

1(0, y,x) =

a(x)+6
1

3 + a(x)H(z) (1-A)
1/2

2 00
AKCz)]j (6 . 35)

Here ago a-^^d W(z) are defined by (5.23) and (5.28), respectively, and

z =

a(x)+3

The quantities H(z), W(z) and ago appearing in this expression are tabulated
for a great many values of A and 3 and for several values of the Voigt param-
eter a. Therefore the result (6.35) can easily be used for the practical
calculation of the line profiles.

The result (6.35) was obtained by V. V. Sobolev (1954). For the special
case X = 1 an expression differing from (6.35) only in its notation was found
earlier by the same author (V. V. Sobolev, 1949) by the use of invariance
principles. Subsequently the result was extended to the case of arbitrary A

and 3 (V. V. Sobolev, 1954) by a generalization of the probabilistic approach
outlined in Sec. 5.2. The contents of these papers are given in detail in a

monograph by V. V. Sobolev (1956).

CONCLUDING REMARKS. Although throughout this section it has been assumed that
the atmosphere is isothermal, in normal stellar atmospheres the temperature
increases with depth. The following procedure is often used to allow approxi-
mately for this circumstance. In the transfer equation (6.1),ByQ(T) is
regarded as a given specific function of depth, while the effect of tempera-
ture (and density) variations on the frequency dependence of the line absorp-
tion coefficient and on the parameters A and 3 is ignored. When the depth
dependence of Bvg(T) is particularly simple (linear, for example), the inten-
sity of the emergent radiation can be expressed in terms of the H-function.
Such expressions are given by V. V. Sobolev (1954, 1956), I. W. Busbridge
(1953), S. Ueno (1955-1956), and others.

We conclude with one final observation. We have so far assumed that pho-
tons are destroyed during scattering only by collisions of the second kind.
However, under conditions typical of a stellar atmosphere, photo- i oni z ation
from the excited state is often found to be more important than collisions of
the second kind (B . Stromgren, 1935). Similarly, recombination can be more
effective than collisional excitation in populating the upper level. In the
case in which recombination and ionization from the upper level dominate
collisional processes, the transfer equation continues to have the form of
(6.1), with the probability A that a photon survives the scattering now equal
to

where t^z^Ic^Ic '^^^ number of photo- ioni zations from the upper level per
unit volume per unit time. Lines for which collisional population and de-

A =

2c^2c
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population o£ the upper level dominate the recomb inati on- i oni zation mechanism
are sometimes referred to as collisi onally controlled. If, on the contrary,
recombinations and ionizations from the upper level play a more important role
than collisional processes, we then speak of photo- i oni zation- controlled
lines. Other variants are also possible (say, collisional population and de-
population by photo- ioni zation

,
etc.). These questions are discussed in de-

tail by R. N. Thomas (1965a, 1965b); also see R. N. Thomas and R. G. Athay
(1961) .

7.7 STRUCTURE OF THE BOUNDARY LAYER

We have seen above that in a rarified, homogeneous gas occupying a half-
space, the degree of excitation falls monotonically toward the boundary. Thus
near the boundary between the gas and a vacuum, there exists a boundary layer
from which radiation escapes.

It is appropriate to borrow the term "boundary layer" from hydrodynamics,
since there in essence, the effect of a boundary on the distribution of par-
ticles among the trans lat ional degrees of freedom is considered, while in the
present case, we are concerned with the distribution of atoms over states of
excitation. We note in passing that in the dynamics of rarified gases it is
necessary in studying boundary effects to base the analysis not on the hydro-
dynamic equations, but on Boltzmann's equation. Boltzmann's equation for the
Bhatnagar- Gross - Krook model is very similar in its mathematical properties to
the transfer equation discussed in this book. In particular, the so-called
slip coefficient of rarified gas dynamics is an exact counterpart of the Hopf
constant q(°°). Some of the results above may be directly applied to problems
arising in the dynamics of rarified gases. For problems in this area, con-
sult, for example, M. N. Kogan (1967). Further discussion of these questions
is far beyond the scope of the present book.

In the preceding section it was found that the structure of the boundary
layer in a homogeneous, isothermal gas is universal in the sense that for
nearly conservative scattering, throughout the greater part of this layer, the
line source function is proportional to the solution S(t) of the corresponding
conservative Milne problem. Actually, the proportionality of the source func-
tion and S(t) in the surface layers holds under much more general assumptions.
Strictly speaking, it is just this universal behavior of the source function
near the boundary which makes it possible to speak of the boundary layer as a
characteristic phenomenon.

Let us first of all consider the kinds of conclusions that can be drawn
from the proportionality of the source function to S(t) in the surface layers
of a homogeneous . is othermal gas. In the case of a X-solution the primary
source function S]^(t) is independent of depth (it is equal to ( 1-X) Bvq (T) ) .

For the 3-solution representing the opposite extreme case, the primary source
function doubles within the boundary layer. However, in both instances the
source function in the boundary layer is proportional to the solution of the
generalized Milne problem. Hence we conclude that within some limits the
details of the behavior of S]^(t) near the boundary do not affect the depth
dependence of the source function throughout the boundary layer. Of course,
here (and throughout this section) we are talking about media with nearly
conservative scattering (1-X << 1).

Now let us consider a medium with constant A and 3 and some arbitrarily^
specified primary source function sf(T). One might ask what properties of S]_

are required to insure that the source function in the surface layers will be
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proportional to S(t). The answer to this question may be obtained from simple
physical considerations. The solution S(t) o£ the generalized Milne problem
corresponds to the case in which the excitation in a conservative medium
originates from a source of infinite strength, lying infinitely deep in the
medium, with no sources at finite distances from the boundary. If the con-
servative m.edium (A = 1) is replaced by a medium with 1-X << 1, then in the
surface layers the destruction of photons is unimportant compared to their
escape through the boundary. If, moreover, the strength of the sources lo-
cated in the surface layers is small enough in comparison with the strength
of the sources at great depths, the conditions are close to those characteris-
tic of the Milne problem. In this case, therefore, we expect the source func-
tion in the surface layers to be approximately proportional to S(t) , with a

proportionality coefficient determined by the value of A and the depth depen-
dence of the source strength.

Proceeding from these considerations, it can be verified that in the
boundary layer the source function , will be proportional to S^t), if, first,
1-X << 1; second, the function sJ(t) does not vary too greatly within the
boundary layer; and, third

T,

J
S*(T)dT << / S*(T)dT .

0 0

Calculations fully support these qualitative considerations, as may be
seen from the following two examples. The first example is taken from the .

paper by D. G. Hummer (1968) which presents the results of the numerical
solution of equation (6.4) for S* = const. Values of S(t)/S(0) computed for
the case of a Doppler profile with 1-X = 10"^ and various values of 3 are
shown in Table 37. A comparison of the data of Tables 36 and 37 shows at a

glance the similarity in structure of the boundary layers represented there.

TABLE 37

THE FUNCTION S(t)/S(0) FOR A UNIFORM SOURCE DISTRIBUTION

(DOPPLER PROFILE, 1-A=10"^)

T /F 10
-7

10
-6

10
-5

1 1

.

.68 0 1

,

.68 0 1

.

.68 0

10 4 ,, 83 0 4 ,. 83 0 4 ,. 82 0

102 1

,

, 78 + 1 1 ,,78 + 1 1 ,, 75 + 1

10^ 6 ,.31 + 1 6 ., 19 + 1 5 ..55 + 1 .

10^ 2 ,.06 + 2 1 ,, 82 + 2 1 ,. 10 + 2

10^ 5 .. 18 + 2 3,,23 + 2 1

,

,22 + 2

10^ 7,, 27 + 2 3.,48 + 2

10^ 7,.48 + 2
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As the second example we can use the problem o£ diffuse reflection from a

conservative medium (1-A =3=0), discussed in Sec. 6.4. In this case S^Ct)
is proportional to exp(-T/zo), where Zq = yg/^'C^o) ^^0 cosine of the
angle of incidence of the radiation, xg its frequency). When zq is large,
the external radiation penetrates deep into the medium, i.e. photons of the
diffuse radiation field are "born" mainly in deep layers. We there fore^expect
that in the boundary layer the source function will be proportional to S(t).
That this is precisely the case, we can prove from an analysis of the line
profiles. The central parts of lines are formed in the surface layers, and
their form reflects the depth dependence of the source function near the
boundary. For the Milne problem the intensity of the emergent radiation is
expressed in terms of the H- function for conservative scattering (see Sec.
6.1):

1(0, y,x) =

As was shown in Sec. 6.4, an expression differing from this only by a constant
factor is also obtained for the central parts of the line in the problem of
diffuse reflection with zg >> 1 (see (6.4.15)). This implies J-hat. in
fact the source function in the surface layers is proportional to S(t).

An important conclusion can be drawn from this discussion: the univer-
sality of the structure of the boundary layer implies that the form of the
central parts of absorption lines and of sufficiently deep central depressions
of emission lines is also universal. This circumstance, which deserves fur-
ther and more detailed quantitative study, may, it seems, be used to obtain
information about the physical conditions in the outermost layers of stellar
atmospheres from an analysis of profiles of strong lines.

In conclusion, we point out that in our discussion of the structure of
the boundary layer, the assumption that X and 3 are independent of depth is
not essential. The conclusions drawn above should remain valid in the more
general case, in which X and 3 vary with depth in such a way that the inequal-
ities 1-A << 1 and 3 << 1 are satisfied to sufficiently great depths. How-
ever the requirement that the Doppler width (or another characteristic unit
of frequency) is constant does appear to be indispensable.





CHAPTER VI I I

PLANE LAYER OF FINITE THICKNESS

Infinite and semi - infini te media are apparently the only geometries for
which the solution of the transfer equation can be obtained in closed form.
As it is not possible to solve the transfer equation for a plane layer of
finite optical thickness, we must be satisfied with much more modest results.
The most we can hope for is to develop a rigorous asymptotic theory for the
case of an optically thick layer. For monochromatic scattering, this is not
too difficult. However, -the difficulty increases sharply for problems of
radiative transfer in spectral lines. A rigorous asymptotic theory has not
yet been completely developed, although many results of practical interest
have been obtained.

In Sec. 8.1 and 8.2 various equations and expressions are introduced
which are valid for arbitrary values of the parameters characterizing the
optical properties of the medium. There are now three such parameters -- the
survival probability X of a photon during scattering, the ratio B of the con-
tinuum absorption coefficient to the absorption coefficient at line center
and, finally, the line center optical thickness tq of the medium. Simplifi-
cations that occur for tq >> 1 are investigated in Sec. 8.3 - 8.5, i.e. an
asymptotic theory is constructed. Sec. 8.6 - 8.10 contain a detailed discus-
sion of several model problems. The majority of them have previously been
studied in connection with a semi - infini te medium. Finally, at the end of the
chapter (Sec. 8.11) an approximate solution of the basic integral equation for
the line source function is given.

THE RESOLVENT AND THE RESOLVENT FUNCTION. Let us begin with the integral equa-
tion for the line source function S(t), which for a plane layer of optical
thickness tq has the form

8.1 BASIC EQUATIONS

(1.1)

0
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A
where S]^(t) is a given function representing the strength of the primary sour-
ces. We shall first study the general properties of (1.1), without introduc-
ing a specific form of Sf(T). We recall that the kernel function K]^(t,B) is

oo

K^(t,6) = ^ j a^(x)E^^(a(x)+B)T^dx . (1.2)

00

Its properties are studied in Sec. 7.1.

We denote by r(T,T';To) the resolvent of (1.1), i.e. the solution of the
equati on

r(T,T';TQ)=| j K^(|T-t| ,3)r(t,T' ;TQ)dt +
I

K^(|t-t'
1
,3) . (1.3)

0

The function S(t) is expressed in terms of the resolvent by

S(t) = sJ(t) +
J r(T,T' ;TQ)S*(T')dT' . (1.4)

0

As in the case of a s emi - infini te medium, the resolvent is a symmetrical func-
tion of T and T '

:

r(T,T' ;Tq) = rfT- ,t;Tq)
, (1.5)

which follows from the symmetry of the kernel of equation (1.3). Moreover,

r(T,T';TQ) = r(TQ-T,Tg-T' ;Tq) . (1.6)

This relation, easily proven with the help of (1.3), expresses the invariance
of the resolvent relative to the choice of direction in which the optical
depth is measured, i.e. its independence of the boundary from which x is
measured.

The resolvent r(T,T' ;Tg) can be expressed in terms of a function of a

smaller number of variables $(t;tq), which will be referred to as the resol-
vent function. This function is a special value of r(T,T';Tg):

$(T;Tn) = r(T,0;Tj = r(0,T;Tj , (1.7)

and therefore satisfies the equation
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t;Tq) =
y J K^(|T-t| ,6)$(t;TQ)dt + A K^(t,6) . (1.8)

In fact, proceeding as in Sec. 5.1, we find

^ / K^(|T-t| ,6)f(t)dt = J K^(lT-t| ,6)f' (t)dt +

^0 0

+ f(0)K^(T,6) - f(TQ)K-^(TQ-T,B) .

Using (1.6) and (1.7), we now obtain from (1.3)

f K,(,.-.|.e,(iI.-y,)dt_3r
^ ^ \

0

+ $(t';tq)
I

K^(t,6) - $(tq-t';tq)
|

K^(tq-t,6) .

(1.9)

(1.10)

Comparison with (1.8) gives

|I. . _^ = Kt;To)$(t';To) - $ (xq-t '

; t^) $ (tq-t ; x^) , (1.11)

from which it can be found that

r(T,T' ;Tq) = 0(|t-t'
I

;Tq) +

+ / [$(T-t;TQ)<&(T'-t;TQ) - ^>(TQ-T+t;TQ)$(TQ-T'+t;TQ)]dt
, (1.12)

0

1 1 where t-^ is the smaller of x and x'. For tq = «> the expressions (1.11) and
f (1.12) reduce, respectively, to (5.1.29) and (5.1.31).

I

We can obtain yet another relation satisfied by the resolvent function
$(x;Xq). Differentiating (1.3) with respect to x^ , we find

9r(x,x';Xo) }^ 8r(t,x';xo) ,

0 0 " (1.13)

From a comparison of (1.13) and (1.8) it follows that

522-519 0 - 74 - 24
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9r(T,T' ;Tq)

^0

Setting t' = 0 here, we get

3$(t ;tq)

8Tq

$(Tq-t;TqJ$(Tq-t' ;Tq) . (1.14)

$(Tq;tq)$(Tq-t;tq) . (1.15)

This relation will be very useful later. The only property of the kernel
K-j^(

I

T—t'
I

,B) used in deriving (1.12) and (1.15) is its dependence on
| t—t '

|
.

Consequently, the results (1.12) and (1.15) are valid for a wide class of
integral equations with symmetrical displacement kernels. These equations
were originally found by V. V. Sobolev (1958a, 1958b).

AUXILIARY EQUATION. X AND Y FUNCTIONS. As before, we begin with the repre-
sentation of the function K-,(t,3) as a superposition of exponentials (see
Sec 7.1):

z
c

K,(T,B) . / e-^/^G(c)% , . i
, c E . (1.16)

0

Let us introduce the auxiliary function S(t,z;Tq) satisfying the equation

^0

S(t,z;Tq) = A J K^(|t-t'
I

,3)S(T' ,z;TQ)df + e'^^^. (1.17)

0

According to (1.16) the free term in (1.8) is a superposition of the free
terms of equation (1.17). By virtue of the linearity of these equations, we
conclude that

z
c

$(t;Tq) = A J s(t,z;Tq)G(0^ . (1.18)

0

From (1.17), with the help of (1.9), we can find that S(t,z;Tq) also satisfies
the equation

(1.19)

8S(t,z;t„) ,

^—^ = _£s(t,z;tq) + X(z,Tq)$(t ;Tq) -

- Y(z ;Tq) $(Tq-t ;Tq) ,

where

X(z;Tq) = S(0,z;Tq) , (1.20)

Y(z;Tq) = S(Tq,z;Tq) . (1.21)
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Thus

S(t,z;tq) = X(z;TQ)^e + J e" ^^^"^ '
^ $ (x '

; ) dx

-

T

0

0

(1.22)

Substituting (1.22) into (1.18), we arrive at the following equation for
$(t ;tq) :

L

$(t;tq) = N(t;tq) + f [$(x
'

;

Tq)N(t-t ' ;Tq) -

0

- $(Tq-t' ;Tq)M(t-t' ;Tq)] dx ' ,

(1.23)

where
z
c

^^^'-"O^
=
J f e-^/"'x(x';xQ)G(c')^

, (1.24)
2

0

z
c

^^"'^0^ =
7 / e-"/"'Y(z';xQ)G(c')^

, (1.25)

0

with C = z'/(l-6z').

RESOLVENT FUNCTION EXPRESSED IN TERMS OF THE X- AND Y- FUNCTIONS. As has been
shown in Sec. 5.3, in the case of a semi - infini te medium, the resolvent func-
tion $(x) can be expressed in terms of '^'^^(x) and the H- function. In a simi-
lar way, $(x;xo) can be expressed in terms of 'l><„(x) and X- and Y-functions,

00

/^(x;xq) = $^(x) - I $^(x+x')N(x' ;Xg)dT' -

- f $^(Xq-x+t')M(t' ;xQ)dT'

(1.26)

0

Actually, the equation for r (x,x') ,

00

r^(x,x') =
I

y* K^(|x-x"| ,3)r^(x",x')dx" +
I

K^(|x-x'
I
,B) ,



354 PLANE LAYER OF FINITE THICKNESS

can be ivritten in the following form for 0 < t,t' <

"0

(t,t') = J K^(|t-T"| ,3)r^(T",T')dT" +

0

oo

+ |k^(|t-t'
I
,6) +y J K^(T+T",B)r^(-T",T')dT" + (1.27)

0

00

+ 7 f K^(T"-T,3)r^(T",T')dT" .

^0

Comparing (1.27) with (1.3) and (1.17) and recalling (1.16), we get

r^(T,T') = r(T,T' ;Tq) +

z

^ J S(t,z;tq)G(c)^ J e-^"/"r^(-T",T')dT" + (1.28)+
2

0

z
C -

^1 / S(to-t.z;To)G(0^ J e-^"/^r^(TQ.T",T')dT"

0

Let us now set t = 0 and then replace t' by t. Taking into account the nota-
tion introduced in (1.20) - (1.21) and (1.24) - (1.25), we obtain

oc

/(T) = $(t;Tq) +
J r^(-T' ,t)N(t' ;TQ)dT'

0

(1.29)

/+ f r^(T„+T' ,t)M(t' ;T.)dT' .

0 y-J'^y- ' ^0-

0

Equation (1.26) follow.s at once from this, if we recall that r^(Ti, xi) =

(t2—Ti) (see Sec. 3.6). It is interesting that (1.26) may also be obtained
by simple probabilistic considerations (V. V. Ivanov, 1964a).

When X = 1, the function $0,(1) may not exist; this occurs, for example,
in the case of the Doppler profile (see Sec. 4.7). However, $(t;to) can be
expressed in terms of the resolvent r(T,T') for a semi-infinite (and not
infinite) medium and the X- and Y- functions;
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00

-/ r(Tn+T' ,t)M(t' ;Tn)dT' , (1.30)

00

T;Tq) = r(TQ,TQ-T) - J r(TQ+T' ,Tq-t)N(t' ;TQ)dT (1.31)

These expressions are derived similarly to (1.26), but are free o£ diverse-
ness for X = 1.

The relations given here show that to obtain an expression in closed form
for the Green's function for a layer of finite optical thickness, it is suffi-
cient to obtain explicit expressions for the functions X(z;to) and Y(z;to).
Although it has not been possible to do this, it is clearly possible to devel-
op many important properties of these functions.

ALTERNATIVE REPRESENTATION OF THE SOLUTION. Along, with the usual expression
for the solution in terms of the resolvent (Eq. (1.4)), an alternative repre-
sentation, which involves only the resolvent function and not the resolvent
itself, seems to be useful. The solution of (1.1) depends on Tq as a param-
eter; we shall here write it as an extra argument. Differentiating (1.1)
with respect to and using (1.7), we obtain (c£. (1.15))

9S(t;Tq)
" ^'^^O'^O^^'^^O'^'^O^ '

(1.32)

from which

S(t ;t^) = S(t;t)

u

/ S(t' ;T')$(T'-T;T')dT' (1.33)

Now, letting t„ = t in (1.4), we find

T

S(t,t) = S*(t) + J S*(t' )$(t-t' ;T)dT' . (1.34)

0

Equations (1.33) and (1.34) are the desired representation of the source func-
tion in terms of the resolvent function.

THE TRANSFER EQUATION, EMERGENT INTENSITIES, AND FLUX RELATIONS. It is more
common to formulate problems of multiple light scattering in terms of the
integro-differential transfer equation for the radiation intensity rather than
in terms of the integral equation for the source function. Having this in
mind, we conclude this section with a brief summary of the basic equations
for the radiation intensity and related quantities.

The radiative transfer equation for the intensity of diffuse line radia-
tion in a plane geometry is
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^
dI(T y,x) ^ (a(x)+B)lCT,y,x)

dT

1

I
Aa(x) J a(x')dx' J I ( t ,

y ' , x '
) dy ' -a(x)S*(T) , (1.35)

-1

and the boundary conditions are

1(0, y,x) = 0
, y < 0

I (Tq ,y ,x) = 0 , y > 0

The substitution

whe re

a(x) +6

reduces (1.35) and (1.36) to (for details, see Sec. 7.5)

z

z
dI(T,2) _

dT
— z

c

I (0 ,z) = 0 , z < 0

I(Tq,z) = 0 , z > 0

where

(1.36)

I(T,z) = ^Ml§.i(T,y,x)
, (1.37)

a(x)

(1.38)

I(T,z)-| J I(T,z')G(c')dz' - S*(T) (1.39)

(1.40)

z = 1
,

^' = JllA—
. (1.41)

c 6 a(x)+6

The line source function S(t), which is the solution of the basic inte-
gral equation (1.1), is expressed in terms of I(t,z) as follows:

= A y l(T,z')G(c')dz' + sJ(t) . (1.42)S(T)
I
— z

c
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The intensities of the emergent diffuse radiation are

^0

1(0, y,x) = f SCT)e~^/^a(x)^ , U > 0 (1.43)

0

^0
r -(Tq-t)/|z| ,

I(T.,y,x) = / S(T)e ct(x)^
, y < 0 , (1.44)

0 '

'

where z is given by (1.38).

Further, let ttF(t) be the total flux of line radiation along the normal
(it is positive when the energy flows in the direction of decreasing t) :

^F(t) = 2tt / dv' f I (t ,y' ,x' )y' dy' . (1>45)

6^ -A

Using (1.37), one can show that

z

uF(t) = Av^ J I(t,z')[G(C')+6Gq(c')] z'dz' , (1.46)

— z
c

where the function Gq is defined by (2.6.12) - (2.6.13). Substituting into
(1.46) the formal solution of the transfer equation (1.39), we express the
total flux in terms of the source function:

uF(t) = Av^ y [K2(|t-t'
I

,3)+BK2q(|t-t'
I

,3)]sgn(T'-T)S(T')dT' , (1.47)

0

where the functions K- and K-„ are defined by (7.1.3) and (7.1.4) respective-
ly.

^

The total density of the line radiation at depth t is

P(t) = 27ri
J dv' / I(T,y' ,x')dy' , (1.4-8)

0 -1

from which

z

Ac J
p(t) = Av^ / I(T,z')G„(c')dz' , (1.49)

0

— z

I
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or

p(x) = Av— f K,, (It-t-
I

,3)SCT')dT'
Ac /

(1.50)

For 3 = 0 and = °° the expressions given in this subsection reduce to those
found in Se c . 5.1.

8.2 X- AND Y-FUNCTIONS

PRELIMINARIES. The functions X and Y play the same role for a layer of fi-
nite optical thickness as the H-function does for a semi-infinite medium.
As TQ °° the function X(z;Tg) becomes H(z) and Y(z;tq) tends to zero:

X(z,oo) = H(z)
;

Y(z,c») = 0 . (2.1)

This result follows from (1.20) and (1.21).

The X- and Y- functions were first introduced by V. A. Ambartsumian (1943;
see also V. A. Ambartsumian, 1960) in a study of isotropic monochromatic
scattering. The corresponding functions for problems with anisotropic mono-
chromatic scattering were studied by S. Chandrasekhar (1950), I. W. Busbridge
(1960) and others. The X- and Y- functions for line transfer problems were
introduced and studied by V. V. Ivanov (1963, 1964b), D. I. Nagirner (1967),
M. A. Heaslet and R. F. Warming (1968b), F. Fuller and B. Hyett (1968). Most
of the relations given in this section are a simple transformation to the
case of line- frequency scattering of results that had been obtained earlier
in the study of monochromatic scattering (see S. Chandrasekhar, 1950; I. W.
Busbridge, 1960; V. V. Sobolev, 1956, 1957b). It would be wrong, however, to
think that the specific properties of line- frequency radiative transfer prob-
lems, which arise from the possibility that a photon changes frequency during
scattering, have little effect on the properties of X- and Y-functions. In
studying the asymptotic behavior of X(z;tq) and Y(z;Tq) for large Tq these
properties are found to be dominant. However, a large number of relations do
exist that are valid under very general assumptions about the nature of the
interaction between radiation and matter. This section is primarily devoted
to a study of such general relations.

EQUATIONS SATISFIED BY THE X- AND Y-FUNCTIONS. According to (1.4) and (1.17)

/
^0

, ,— T/Z — t'/z
S(t,z;Tq) = e + J r(T.T';Tg)e di ' . (2.2)

0

We now successively set t = 0 and x = tq. By virtue of (1.6) and (1.7)
r(To,T';To) = $(Tg—t';to). Keeping this in mind, and also considering (1.20)
and (1.21), we arrive at the important relations

X(z;Tq) = 1 /
•t/z

$(t
; Tq) dx (2.3)
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Y(z;Tq) = e ^0/2 + J Q (^0 t) / z
^ . _ ^2.4)

0

From these relations we can develop many vital properties of the X- and Y-
functions and obtain equations from which they may be determined.

The quantity z in (1.17), and consequently in the relations (2.3) and
(2.4) as well, can have any (generally, complex) values. Substituting -z for
z in (2.3), multiplying both sides by exp(— Tq/z)., and comparing the result
with (2.4), we find that the X- and Y- functions are related by

Y(z) = e '^0/^X(-z) . (2.5)

We shall now derive equations for X(z) and Y(z). First we obtain the
following nonlinear equations, the generalized Ambartsumian- Chandrasekhar
equations

:

X(z) = 1 . Az r X(z)X(z;)-Y(z)Y(z')
^

2 J z ' +z

Y(z)

(2.6)

where

z = I z' = z'/(l-3z') .

c p

Multiplying (1.22) first by exp_(-T/z'), then by exp(-(TQ-T) /z ' ) ,
integrating

over T from 0 to tq and taking into account (2.3) and (2.4), we obtain, after
minor transformations,

/ S(T,z;x„)e-^/''dx . X[z]X(z')-Y(z)Ytz')
_

^ (2.7)

?
J S(T,z;T,)e-^^0-^^/^'dT = X(z)Y(zJ)--X(z')Y(z)

^

0

!j

Multiplying these equations by ( A/2) G (
c

' ) /z ' ,
integrating over z' from 0 to

f z^, and using (1.18) and (2.3) - (2.4), we arrive at (2.6).

I Other equations for the X- and Y- functions can be obtained from (2.3)
i and (2.4). Differentiating these expressions with respect to Tq and keeping
j
(1.15) in mind, we find



PLANE LAYER OF FINITE THICKNESb

+ / e ^/'$(TQ-T;TQ)dT)$(Tg;To) ,

0

3Y(z;t )

(•/ -(Tq-t)/z
-T ; Tq) dxj $(Tq ^0^

or, finally,

3X(z;Tq)

9t
0

Y(z ;tq) $(Tq ;Tq)
,

8Y(z;t.) ,

= Y(z;Tq) + X(z;Tq)$(tq;Tq)
,

3t
0

where, according to (1.18) and (1,21),

z

^^^O'^O^ =
I / nz';To)G(c')^

(2.8)

(2.9)

From (2.3) and (2.4) the boundary conditions for the equations (2.8) are
seen to be

X(z ;0) = Y(z ;0) = 1 . (2 . 10)

From (2.8) it is evident that the X- and Y-functions can be found if the
function $(to;to) is known. This fact is essential for the investigation in
Sec. 8.5 of the asymptotic behavior of X(z;tq) and Y(z;tq) for large tq.

Equations (2.8) - (2.9) with the boundary conditions (2.10) are equiva-
lent to the following coupled nonlinear integral equations for X and Y:

X(z;Tq) = 1 + Ay Y(z;T)dT J Y ( z '

;
t) G ( C '

)^ ,

(2.11)

Y(z;Tq) = e " + A
(Tq-t)/z

X(z;T)dT y Y(z' ;t)G(C')^

Using the method described by V. V. Sobolev (1957b) we can obtain yet another
system of nonlinear integral equations for the X- and Y-functions:
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X(z ;Tq) = 1 + a y X(z;T)dT f e V' ^7 XCz';t
z

Y(z;Tq) = e +
J

Z

Y(z;T)dT / e
°

(2.12)

)/z'
X(z' ;t)G(c')^

z

'

The X- and Y- functions also satisfy coupled linear integral equations
which are obtained from the equation

[^l-XU(z,6)j S(t,z;Tq) = e~^/^ +

(2.;

^7/ ;
0_ G(^')dz' - e

^0/" A / LG(^')dz'
2 J z'-z 2y z +z

by setting x = 0 and t = x
0

z

r -1 . r'' X(z' ;x )

l-AU(z,B) X(z;Xq) = 1 ^ ^ z / ___^G(c')dz' -

0

2 7 z' +

Y(z' ;x.)— G(c')dz' ,

z

z
c

[i-XU(z,6)]y(z;tq) = e
^Q/^

+ Az J c ( C ) d z
'

2
0

z
c

-Tn/z > /* ' ;
x^)

-e 0' Az / ^G(c')dz' .

(2.14)

2

0

Here U(z,6) is defined by (7.1.38) or (7.1.40). The equation (2.13) is an
extension of the equations obtained in problems of monochromatic scattering
by E. G. Yanovitskii (1964) and T. W. Mullikin (1964).

INTEGRAL RELATIONS. We shall now obtain some integral relations satisfied by
X(z) and Y(z) . We define
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z
c

\(^q) = f X(z;TQ)z^GCOdz , n = 0,1,... .

0

(2.15)
z
c

3j^(tq) = J Y(z;Tg)z^G(Odz , n = 0,1, ... .

0

The quantities and Q-^ are the n-th order weighted moments of the functions
X(z) and Y(z). We also define

z
c

= f z'^GCOdz . (2.16)

According to (7.1.7)

00

^n
= ^ /Ki(T,6)T-dx ,

(2.17)

0

i.e. nign is the n-th moment of the kernel function of the basic integral
equation. It must be stressed that the integrals gj^ may diverge when n ex-
ceeds a certain value. In this case the corresponding and 3^ also diverge
The most important example of such divergence is that of line scattering with
out continuous absorption (3=0). If a line has infinite wings, then only
the zeroth moments exist.

From (2.8) we find, taking (2.15) and (2.9) into consideration,

da^dg)

dT,

dgo^^o^

dTo

'0^ ^0

= [-f*-o^-o^]
+ an(Tn)h(TQ;TQ) ,

(2.18)

from which

daQ = 3Qd3o . (2.19)

Setting n = 0 and tq = 0 in (2.15) and keeping (2.10) and (7.1.19) in mind,
we obtain

aQ(0) = 3n(0)0
G(c)dz = - .

X
(2.20)

Therefore (2.19) gives

(2.21)
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3

In the conservative case, i.e. for 6 = 1 — A = 0, this expression becomes

+ 3q = 2 , X = 1 . (2.22)

Equation (2.21) is a special case of the general relation

^2n = g2n ^
f .1/-^) '

^"Zn-j "j-^2n-j ^
j

^ ' ^ = 0,1,2,...
,

(2.23)

which can be obtained from the first of the equations (2.6). We shall not
pause to give its proof, which is essentially the same as for monochromatic
scattering (see I. W. Busbridge, 1960). This relation is valid, of course,
only when all of the moments appearing in it exist. For t^^ = <» it reduces
to (7.5.21). We note, in addition, that for 0 < X < 1

z
C 2"

y [1 - (l-X)^/2H(z)]zG(Odz =
I J 6^(T)dT . (2.24)

0 0

This result holds even when gi diverges. If g^ is finite (specifically, for
monochromatic scattering)

,

00

/ [1 - ^Q{T)dT = g^ . (2.25)

0

The proofs of these relations are omitted.

For X = 1 the following relations are also valid:

y [X(z;TQ)-Y(z;TQ)]zG(z)dz = Tq6q(Tq) , (2.26)

0

f {2-[X(z;TQ)+Y(z;TQ)]3o(TQ)}zG(z)dz = f 3Q(T)dT
, (2.27)

0 0

00

y {(TQ + 2z)BQ(TQ)[X(z;TQ)+Y(z;TQ)]-4z}zG(z)dz = 0 . (2.28)

We stress that the integral in (2.26) cannot, generally speaking, be repre-
sented as the difference of and Bi, since these moments separately may
diverge. This is true of the integrals appearing in (2.27) and (2.28) as well.
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Turning to the proof o£ (2.26), we introduce the notation

00

ZCtq) = f [X(z;TQ)-Y(z;TQ)]zG(z)dz . (2.29)

0

Differentiating this expression and keeping (2.8) in mind, we find

dZ(T.)

^f- - 3o(To) - nTo;TQ)Z(To) . (2.30)

But it follows from (2.18) and (2.22) that for X = 1

^Tq;! ) =
'

A
>

' (2.31)
0 0 6o(To) diQ

so that (2.30) can be written in the form

3o(TQ)dZ(To)-Z(TQ)d3o(TQ)
r = dx^ . (2.32)

^0^-0^

From (2.29) and (2.10) we have Z(0) = 0. Therefore (2.32) gives Z(tq) =

igBoC'i^O^' Q.E.D. The relations (2.27) and (2.28) are proven in a similar way.

In situations in which the first and second moments of the X- and Y- func-
tions exist for X = 1 (for example, in monochromatic scattering), the inte-
grals in (2.26) - (2.28) can be expressed as sums of integrals. The expres-
sion (2.28) is then found to be a special case of (2.23) in which n = 1 and
X = 1.

The generalization of (2.26) and (2.27) to the case of arbitrary X, 0 <

X < 1, has the form

z
c 0

AX(°o;tq) J [X(z;Tq)-Y(z;Tq)] zG(Odz = - (1-X) j x2(»;T)dT
,

(2.26')

X

0 0

"^0

dx

z Xn
c 0

(2.27')

J [2X(=o;xQ)-X(z;xQ)-Y(z;xQ)]zG(Odz = X(°°;Xq) J ^

0 Q X («>;x)

- (1-X)XqX(oo;Tq) .

The proofs of these results follow the same line as the proof of (2.26).

SERIES EXPANSIONS OF X AND Y. For z 7^ 0 series expansions in inverse powers
of z for X(z) and Y(z) follow from (2.3) and (2.4):

(-1)' Z '
, (2.33)

i = 0
^'
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i = 0

(2.34)

Here

(2.35)

and for i > 1

^0

(2.36)

(2 . 3.7)

so that

j = 0

where are binomial coefficients. In particular,

(2.38)

X^do) ^ Yi^q) = TqX(co;Tq) (2.39)

Substituting (2.33) and (2.34) into (2.8) and equating the coefficients
of zO and in both sides of the resulting expansions we find

dX(oo;TQ)

dif.
X(«>;To)Kto;to) (2.40)

and

dX-^(TQ)

dx,
yi(To)*(To;TQ)

= X(oo;Tq) + X;^(Tq)$(To;Tq) ,

(2.41)

from which we obtain

^0

.
0 0

(2.42)

The expression (2.42) will be useful later.
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X(°°) AND ITS ESTIMATES. As z increases from 0 to «> the functions X(z) and
Y(z) increase monotonically from 1 and 0 respectively to

0

X(co;Tq) = Y(~;Tq) = 1 + y $(T;TQ)dT (2.43)

This follows from (2.3) and (2.4).

The value of X(<») is encountered in the solution of many model problems
For its physical significance, see Sec. 8.9. Going to the limit z •> » in
any of the equations (2.6), we find

x(<»;tq) ao(TQ)-BQ(TQ)r
or, if (2.21) is used.

X(~;Tq) 2^0

-1

Specifically, in the conservative case

{2.44)

(2.45)

X(-;tJ =
, X = 10 PoC-^o)

Let us show, following V. V. Sobolev (1967b) , that

^0 0

f K2(T,6)T(TQ-T)dT| < X^(oo;Tq) < (l-X + A K2 ( T g , 3
)

)

3 /

-1

(2.46)

(2.47)

The upper bound is obtained in the following manner. Multiplying (2.4) by
G(^) and integrating over z from 0 to z^, we find

6o(tq) = K2(tq,3) + f K2(TQ-T,3)<I'(T;TQ)dT (2.48)

Since K2(t,3) decreases monotonically as x increases, we have

SqCTq) > K2(Tq,3)[1 + f $(T;Tg)dT^ ,

or
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Qq(^o)
> K2(To,B)X(o°;Tq) . (2.49)

Combining this inequality with the relation

(1-X)x2(=o;tq) + AX(oo;Tq)3^(Tq) = 1 , (2.50)

which is a consequence of (2.34) and (2.21), we get an upper bound on X(o°;tq),

i.e. the right inequality of (2.47).

The derivation of the lower bound is a little more complicated. For
z = equation (1.17) takes the form

S(t.»;Tq) = A y k^(1t-t'
I

,B)S(T' ,-;TQ)dT' + 1 . (2.51)

0

Replacing t by Tq—t here, we find

S(t,'»;Tq) = S(Tq-t ,«>;Tq) . (2.52)

Multiplying (2.51) by t(tq—t), integrating over t from 0 to tq , and using
(2.52), we obtain

^0

y S(t ,~;Tq) T(TQ-T)dT =

0

^0 T ^3
= X f S(T,«';TQ)dT f K^(t' ,3)(T-T')(TQ-T + T')dT' + .

0 0

Thus

^0

(1-X) y S(T,«>;TQ)T(TQ-T)dT +

0

^0 T

+ 2X y S(T,«';TQ)dT y K2(t' ,6)T'dT' = (2.53)

0 0

^0 T ,3

0 0

= X y S(t,«>;Tq) (2T-TQ)dT y K2(T',3)dT' +-
0

Further, (1.22) gives

522-519 O - 74 - 25
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S(t,oo;Tq) = X(=o;TQ)fl + f $(T';TQ)dT' - f $ ( T q-t '

;
Tq ) dx '

]
, (2.54)

from which

s(t ,~;tq) < s(tq/2 ,<=°;tq) =

Tn/2

(l + J $(t' ;TQ)dT' - J
\ 0 0 )

(Tq-t' ;TQ)dT'J < (2.55)

0

< X(oo;Tq)(i + f $(T' ;TQ)dT'
j

= x2(<»;Tq)

The integral on the right side of (2.53) is positive. Discarding it and
majorizing the function S(T,°°;Tf^) on the left by x2(oo;t ), we arrive at the
left inequality of (2.47).

^

From (2.47) we have, for X = 1,

71 / K2(T)T(To-T)dT

LOO
<X(°°;tq) < (2.56)

From the asymptotic properties of the function ^2(1) proven in Sec. 2.6, it
can be shown that for y < 1

r ^0^2 ^^0^
/ K.(T)T(T.-T)dT —

,
^ - , (2.57)J 2^ ^ ^ 0 ^ (2-2y)(3-2y) ' 0

'

where y is the characteristic exponent (see Sec. 2.6). Considering the mono-
tonicity of X(oo;to), we may conclude from (2.56) and (2.57) that in the con-
servative case

^^"''"o^ ~ T
—-V77 . ^ = 1 > ^0 " ~ '

[k2(t)J1/2

where c^ is a certain (at present unknown) constant. In Sec. 8.5 it will be
shown that

Specifically, c^^ -> 1 as y 0, ci = 0.914 for y = 1/^ (Voigt and Lorentz pro-
files) and ci = 0.707 for y = 1/2 (Doppler profile).
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The asymptotic expression (2.58) can be rewritten in the form

^^°°'"0) ~ ^^i^^^/'o^y^^'^O^ ,
X = 1 , - ,

(2.60)

if use is made of (2.6.68). This representation is more general than (2.58)
and is valid for arbitrary values of the characteristic exponent y, including
Y = 1. Specifically, for the most important particular profiles (2.60) as-
sumes the form

Milne: Xj^(°°;Tq) ~ y Tq , (2.60a)

Doppler: Xj^(~;Tq) ~ u'^ ^ ^ t ^'^ ^ ^ (Inx q)'^^ ^
, (2.60b)

Lorentz; (»; t„) ~ ^5^101 t„ (2.60d)

Higher accuracy asymptotic expressions for X(<»;to) are available for
the Milne rectangular profile (see Sec. 8.4) and in the Doppler case. It may
be shown (V. V. Ivanov, 1970b) that in the latter case

^D^-'^O^
= .^/^o^/^£nT,)l/4j^l.^ . OUZnr^y') (2.61)

where

X-, = i(l + 2Y*-4£n2) = -0.07727 . (2.62)

Error estimates in (2.60c) and (2.60d) remain unknown.

The accuracy of the asymptotic forms (2 . 60b ) , (2 . 6 1) and (2.60d)
may be evaluated from the data presented in Table 38, where the ratio
X(°°;TQ)/X^g (°°;to) is tabulated as a function of tq for the Doppler and Lorentz
profiles. Here X(<»;to) is the numerically exact value of X(oo) which was cal-
culated from the numerical data of A. L. Crosbie and R. Viskanta (1970a) , and
X^5(o°;to) is its asymptotic value as given by equations (2.60b) (column label-
led Doppler I), (2.61) (Doppler II) and (2.60d) (Lorentz).

If only an estimate of X(°°) is needed, one may use the approximation

X^(-;To) = [l-X.XK2(To)]"'^' E TJtq) ,

^2-^3)

which is valid for arbitrary X, 0<A<1, 6=0 and y < 1. As a rule, the
accuracy of this approximation increases as y decreases.

There have been many tabulations of the X- and Y-functions for monochro-
matic scattering. The most extensive tables are those of Y. Sobouti (1963)
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TABLE 38

r 00 • T 1 "FOR THF nOPPLER AND LORENTZ PROFILES

U U U U 1 C L T O T) "f" 7

^0 I I I

10 0 . 960 0.992 0 .983

20 0 .940 0 . 964 0.990

50 0 . 939 0.958 0 .996

100 0 .946 0.962 0 . 999

and J. L. Carlstedt and T. W. Mullikin (1966). Tables o£ X and Y for the
Doppler profile were published by F. B. Fuller and B. J. Hyett (1968). These
tables must be used with caution, since not all of the entries are correct.
The authors seriously overestimate the accuracy of the tables, especially for
large values of tq . A. L. Crosbie and R. Viskanta (1970b) give graphs of the
conservative X and Y functions for several forms of the line absorption coeffi-
cient.

One may hope that extensive tables of X and Y for the most important
absorption profiles, with a wide range of the parameters Tq , A and 6, will be-
come available in the near future.

8.3 ROLE OF DISSIPATIVE PROCESSES

DISSIPATION MEASURE OF THE MEDIUM. Because of the great number of parameters
that can appear in the solution of the transfer equation for a plane layer,
all of the limiting cases in which some simplification occurs are very wel-
come. In this section we shall study the nature of the simplifications that
occur in the most interesting case, that of nearly conservative scattering
(1—X<<1) in an optically thick layer (tq>>1).

There are three mechanisms for eliminating photons from the random walk
process in the medium -- destruction in the scattering event, absorption in
flight, and escape. The first two processes convert the energy of the radia-
tion field into other forms, i.e. the radiant energy is dissipated. The
destruction of photons in scattering and their absorption in flight are there-
fore conveniently lumped together under the general name of dissipative p roc-
esses . The escape of radiation from the medium is obviously not a dissipative
process, since the energy remains in the form of radiation.

The importance of dissipative processes per scattering is characterized
by the value of 1 — X. However, it does not follow that if 1 — X is small,
the energy dissipated in the medium as a whole will also be small. The total
energy dissipated is determined not only by the value of 1 — A, but also by
the optical thickness of the medium tq , and increases with tq. It seems ap-
propriate to introduce a quantitative measure of the importance of dissipative
processes in a medium. We call this quantity the dissipation measure of the
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medium and define it as

oj = —^ ~
/\ \ , (3.1)

where tq is the optical thickness o£ the layer, and V(u) is the cosine trans-
form of the kernel function for 6=0 (it was studied in detail in Sec. 2.6
and 2.7). Media with 03 << 1 will be called weakly dissipative. The limiting
case of a weakly dissipative medium is the conservative medium for which tjj

= 0.

If (jo >> 1, we shall say that the medium is strongly dissipative.

In order to understand why the quantity oj characterizes the dissipative
properties of the medium as a whole, it is easiest to refer to the special
cases which are of practical interest.

For monochromatic scattering

V^(u) = il£_t£ii = 1 _ h! ^ ....
,^ u 3
'

and (3.1) gives for g = 0

OJ ~ 3(l-X)Tn ~ (kT.)2
, (3.1a)

where k is the diffusion length (see Sec. 3.2). The relation (3.1a) agrees
completely with what would be expected from the results of Chapter III: the
role of energy dissipation is determined by the value of the characteristic
parameter kxg . For Doppler, Voigt, and Lorentz profiles, we use the asymp-
totic forms of V(u) found in Sec. 2.7 and obtain from (3.1)

Doppler: ~ —^ Tq ( £nTQ ) ^ ( 1-X) ,
(3.1b)

771/ ^

1
Voigt: 03

~ {^) (1-X)
, T» ±

,
(3.1c)

(27rU(a,0))l/2 \ a/ U a

Lorentz: co ~ — (1-X) .
(3. Id)

^2
^

Let us consider a little more closely what these expressions give when
one dissipative process dominates the other. First, we will assume that in
the destruction of photons the role of continuous absorption is insignificant
compared to that of scattering, i.e. that 1 — X >> 66(3) (see Sec. 7.3). In
this case 1 — X can be replaced by 1 — X. From a comparison of (2.6.40) and
(2.6.48) we find that (for y < 1)

2r (2y) s iniTY
K2(To)

Substituting this expression into (3.1) we find that for 1 — X >> 66(6)
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03 ~ ir(2Y)sin^Y-^ . (3.2)

Thus, i£ Y is not too close to unity, the dissipation measure of the medium,
to within a factor of order unity, is in this case equal to ( 1—X) /K2 (tq )

.

From the preceding chapters it is clear that this ratio is the characteristic
quantity that determines the importance of the destruction of photons in
scattering relative to their escape from the medium, i.e. the role of the
dissipative processes.

In the opposite limiting case 1 — X << 36(3), continuous absorption domi-
nates scattering in destroying photons. At what value of tq should the effect
of dissipative processes begin to be felt in this case? The answer is ob-
vious: when the disp lacement of the photon through a distance of order tq
corresponds to a continuum optical path length of order unity measured along
the trajectory of the photon. For y < iT^ (in particular, for Voigt and
Lorentz profiles) the zigzag nature of the trajectories can be ignored (see
Sec. 7.3). Therefore for displacement through a distance tq , the photon
covers an optical path in the continuum of order Btq. Consequently, for
Voigt and Lorentz profiles the dissipative processes become significant when
Tq becomes of order S"-'-. With the Doppler profile the situation is different,
since the zigzag nature of the trajectories must be taken into account. From
the discussion in Sec. 7.3 it follows that continuous absorption becomes
significant when is of the order of ( 3Jin ( 1/ 3) ) •

Let us compare the results of these physical considerations^with the
implications of the expressions (3.1b) - (3. Id). Replacing 1— X=l— X+
X36(6) in (3.1b) and (3. Id) by 36(3) and taking the leading terms of the as-
ymptotic expansions of 6(3) from Sec. 7.3, we find for the case under consid-
eration

„ 1/2 / xl/2
Doppler: to ~ ^T^ilni^) ^ ( I '

(3.3a)

3 1 /2
Voigt and Lorentz: w b [^'^nJ • (3.3b)

/2
"

Thus it follows that the value of co increases with tq, and becomes of
order of magnitude unity when tq = (^lnl/B)~^ for the Doppler profile and
Tq = 3~1 for the Voigt and Lorentz profiles. This behavior of o) is just that
expected of a quantity that characterizes the importance of dissipative proc-
esses in a medium.

In summary, it may be said that the value of the parameter co , defined by
(3.1), should in all instances be a good measure of the role of dissipative
processes. For oj << 1 dissipation is small so that almost all of the energy
generated in the line escapes. For oj >> 1, on the contrary, only a small
fraction of the energy expended in the excitation of the upper level is
carried out of the medium by line radiation.

ANALYSIS OF THE LIMITING CASES. Now we can turn directly to a discussion of
the simplifications that arise in the soj-ution of the transfer equation in
various limiting cases. The greatest simplification occurs when the dissi-
pation measure of the medium is small (co << 1). In this case as a first
approximation we may assume that no energy at all is dissipated, i.e. the
medium can be regarded as conservative (to = 0). Correspondingly, one can set
X = 1 and 3 = 0 in the integral term of the equation for the line source func-
tion S(t)
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"^0

S(t) =
^ J K-^(|t-t'

I

,3)S(T')dT' + S*(t)
, (3.4)

0

and instead o£ solving (3.4), one can solve

S(t) =1 f K^(|t-t' |)S(T')dT' + S*(t) . (3.5)

0

A
It must be stressed that the source term Si(t) in (3.5) is the same as in
(3.4). Usually sJ(t) depends on the parameters \ and B, and this dependence
must be retained. Thus, in the limiting case o£ a weakly dissipative medium,
the source function S(t) depends on \ and 3 entirely through the source term
S-[^(t), which, o£ course, is a great simplification.

Now let us turn to media with significant dissipation. Here we also can
distinguish cases in which certain simplifications arise. If 1 — X >> 36(3),
the destruction of photons by continuous absorption can be disregarded in
comparison with that occurring in the scattering process. Consequently, (3.4)
can be replaced by

S(t) = A J K^(|t-t' |)S(T')dT' + S*(t)
, (3.6)

0

i.e. we can set 3 = 0 in the integral term. For 1 — X << 36(3), on the con-
trary, photons die primarily because of continuous absorption; and instead
of using (3.4), we may find the source function S(t) from the equation

^0

S(t) = i J K^(1t-t'
I

,6)S(T')dT' + S*(t) . (3.7)

0

Until now X and 3 have been considered independent of position. The line
of reasoning followed in this section shows that these rather stringent condi-
tions can, in certain circumstances, be relaxed substantially. Thus, if the
dissipative processes are negligible in a medium with variable X and 3, the
source function can be found, as before, from equation (3.5). Variability of
X and 3 affects only the form of the function sf (x) . However, it seems un-
likely that a simple, yet sufficiently general, criterion can be found, for
ignoring the energy dissipation in a medium with variable X and 3.

Classification of media according to the importance of the dissipative
processes has, in essence, been known for a long time in transfer theory, but
no common terminology has been developed. E. H. Avrett and D. G. Hummer
(1965) and D. G. Hummer (1968) use the expression "effectively thin" for
weakly dissipative media, and "effectively thick" for strongly dissipative
media. It has been suggested by other -authors that media with co << 1 be

!
called "optically thin," despite the fact that tq >> 11 A quantitative mea-

\
sure of the importance of dissipative processes has apparently not been intro-

i
duced until now. It is, however, necessary to emphasize the close connection
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that exists between the concepts of the dissipation measure o£ the medium,
thermalization length, and the thickness of the boundary layer.

8.4 ASYMPTOTIC SOLUTIONS FOR MONOCHROMATIC SCATTERING

RESOLVENT FUNCTION. Let us proceed now to discuss the asymptotic behavior of
solutions of the transfer equation for an optically thick layer. We shall
first consider monochromatic scattering with 3=0. This is the simplest
case for the following reason. In the case of monochromatic scattering the
Laplace transform of the half-space resolvent function $(t) has a branch line
(—<», —1) and a pole s = —k(0 < k < 1), where k is the root of the characteris-
tic equation (see Chapter III)

Jl an ll^ = 1 . (4.1)
2k 1-k

The fact that the right-most singularity of $(s) is the pole (and not the end
of the branch line, as occurs for line- frequency scattering) greatly simpli-
fies matte rs .

An investigation of the asymptotic behavior of solutions of the transfer
equation for large tq involves essentially the determination of the asymptotic
form of the resolvent function $(t;to) for tq >> 1. Since exact solutions of
the transfer equation are known for the half-space, it suffices to express
$(t;to) for large tq in terms of quantities referring to a semi - infinite
medium.

For monochromatic scattering the function (|>(t;to) satisfies the equation

^^^'''O^
=
J / E^(|t-t' |)$(t' ;TQ)dT' + jE^(T) . (4.2)

0

It can be shown that

^as'^^''^0^
= *(t) + aD(T) - bD(TQ-T)

, (4.3)

where

shk(T„ + 2T )

and D(t) is the function related to the solution S(t) of the non- cons ervative
Milne problem

00

) =
I y E^(1t-t' |)S(T')dT' , S(0) = 1 , (4.5)S(t

0

by
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S(t) = H(l/k)[e^''-D(T)] . (4.6)

An explicit expression for D(t) was given in Sec. 3.8.

To prove (4.3) it suffices to substitute this expression into the basic
equation (4.2) for $(t;to) and make use of (3.7.12), (3.9.16) and the fact
that $(t) satisfies the equation

00

$(t) = - y* E^(|t-t' |)$(T')dT' + -E-i^(t) (4.7)

0

and D(t) is the solution of

1

D(t) =
I / E^(|t-t' |)D(T')dT' ^

^ f e~^/^-^ (4.8)
0

2
^

1+ky

Equation (4.8) is readily obtained by substituting (4.6) into (4.5).

Letting k tend to zero, it can easily be shown that in the conservative
case (4.3) assumes the form

_ T+q(T)^(Tf.-T)+q(<»)

^as^^'^O^ = - ^3 7^-^ ,
A = 1 , (4.9)

as u TQ+2q(~)

where q(T) is the Hopf function. Obviously equation (4.9) is valid not only
for A = 1, but also for values of X < 1 for which kxg << 1.

Let us consider more closely the limiting form which (4.3) assumes far
from the boundaries, i.e. when t >> 1, xg — t >> 1. Expression (3.8.40)
shows that for large t

-k(T+2T )

D(t) = e ^ + 0(e ^)
, T -> ~ . (4. 10)

Substituting (4.10) into (4.3) and using (3.9.16), we find after minor mani-
pulation that far from the boundaries 4)(t;Tq) approximately equals

sh k (ip,—T + T )

$,(t;t.) = 2kB
^

. (4.11)
0. yj sh k (TQ + 2Tg)

In particular, if the layer is weakly dissipative (kr^ << 1),

_ Tf.-T+q(°o)

<D,(T;Tn) = /3 "
, , ,

. (4.12)
d^ 0^ TQ + 2q(oo)

The function '^'j(t;Tq) satisfies the diffusion equation
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dT

with the boundary conditions

- k"$^(T;TQ) = 0 (4.13)

$^C-t^;To) = 2kB
(4.14)

i.e. $^(T;Tg) is the resolvent function in the diffusion approximation.

Some comments here will be helpful in understanding the nature of the
asymptotic solutions of the line transfer problems that will be given in the
next section.

It is well known that the diffusion approximation involves essentially
setting the mean free path of a photon equal to zero. Physically this means
that the approximation is valid when distances from the boundaries are large
compared to the mean free path. It is natural to ask whether there is an
approximation of the same physical nature available for line transfer problems.
The answer is yes, although the generalization is non-trivial, for the diffu-
sion equation breaks down and its counterpart in line transfer problems is an
integral rather than a differential equation, etc. Nevertheless, asymptotic
solutions that generalize (4.11) to the case of an arbitrary line profile do
exis t

.

Let us rewrite the conservative diffusion solution in a somewhat less
accurate form. Setting t = xtq in (4.9) (or in (4.12)) and then letting
TQ tend to infinity, we obtain

lim $(xTq;Tq) = /3(l-x) , X = 1 . (4.15)

Thus, for finite but large Tq far from the boundaries we have

$(xTq;Tq) ~ /3 (1-x) , 0 < x < 1 , X = 1 , Tq >> 1 . (4^16)

This expression elucidates the large-scale behavior of the conservative resol-
vent function when distances from the boundaries are large compared to the
mean free path of a photon. In the next section it will be shown that (4.16)
is a special case (corresponding to y = 1 and <}) = 1/3) of the general large-
scale asymptotic form

$(xT.;Tn)
°

"^(1-x)^ , 0 < X < 1 , A = 1 , >> 1 , (4.17)
" " r(Y)/*(l/TQ)

"

which may, therefore, be regarded as a generalization of the diffusion approx-
imati on.

X- AND Y- FUNCTIONS. The X- and Y- functions for large tq can be asymptotically
expressed in terms of the H-function, namely, for 0 < y < 1
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as

(4.18)

In the conservative case (A = 1) (4.18) assumes the form

X^3(y,To) = H(y)

y
TQ + 2q(oo)

J

yH(y)

TQ + 2q (°°)

(4.19)

The asymptotic forms (4.19) apply also for \ ^ 1, provided that kr^ << 1.

The asymptotic expressions (4.18) - (4.19) can be verified, for example,
by direct substitution into the nonlinear Ambartsumian- Chandrasekhar equa-
tions, i.e. equations (2.6) with G(c) = 1,0 < <; < 1 ,

G(?) = 0 , i; > 1 . It
should be noted that the solution of the Ambartsumian- Chandrasekhar equations
is not unique. The solution that has the necessary physical significance
must satisfy the constraints

i

X f X(y')

2 J 1-ky'

-kT
dy ' + e

0 X

2
I

Y(y')

J l+ky'
dy' 1 ,

(4.20)

f Wi . e 0 A f ny^i dy' = 1

^ l + ky- 2 ^ 1-ky'

which are obtained from (2.14) by setting z = 1/k and requiring X(l/k) and
Y(l/k) to be finite. Using (3.7.12) and (3.7.21) - (3.7.21"), one can easily
show that the asymptotic forms (4.18) satisfy these constraints.

We have so far assumed that 0 < y < 1. For some problems, values of
X(z) and Y(z) for z greater than unity are also of interest. It can be shown
that for z > 1 and Tq >> 1

X,3(z;Tq) = ^[l - kz cth k(To-2x^)] -

li^e-'''^schk(x,.2x^)
,

(4.21)

^as(^'^o)
_ H(z)

kz csch k(Tn+2T„) +

1-kz 0 ^

1+kz
[l+kZ cth k(TQ + 2Tg)]

(4.22)
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Specifically, in the conservative case,

as U \^ TQ + 2q(oo)/ To + 2qCoo)

Y^,(z;tJ = -iilll) + HC-z)^ + ^ ^^e . (4.24)

For z << tq terms containing the factor exp(—Tq/z) can be discarded, and the
expressions (4.21) - (4.24) reduce to (4.18) - (4.19).

If, in either (4.23) or (4.24), z tends to infinity and (3.7.26) is used,
it can be verified that

^as^-^'^o)
=

^as^^'^o) = Y[^0^2q(o=)] ,
x - 1, t

^
^ ^

. (4.25)

Disregarding 2q(oo) in comparison with tq , we arrive at an expression that is
also obtained as a special case of (2.60). It follows from (4.25) and (2.40)
that

»as(^o;-0^
-

,
X . 1 ,

T„ » 1 . (4.26)

IS
The asymptotic form of X(°°;Tq) for Tq >> 1 and arbitrary X, 0 < X < 1,

X^3(~;To) = th . tJ . (4.27)

As kiQ ^ 0, (4.27) is transformed into (4.25), as we would expect. The ex-
pression (4.27) can be obtained, for example, by taking the limit z 0° in
(4.21). We note that the function H(—z) for z > 1 appearing in (4.21) -

(4.24) is expressed in terms of H(z):

H(z)H(-z)(l - — Jin —\ = 1 , Izl > 1 . (4.28)
V 2 z-1/

This relation is a consequence of (3.7.20) and (3.7.11).

LIMITING FORMS OF THE ASYMPTOTIC EXPRESSIONS. In the next section we shall
consider the asymptotic behavior of the X- and Y-functions for an arbitrary
line profile. If monochromatic scattering is regarded as a special case of
the general theory, we get asymptotic forms that are somewhat less accurate
than those just obtained. Let us derive these less accurate asymptotic re-
sults from the above asymptotic expressions. From (4.23) - (4.25) it can be
shown that in the conservative case the following limits exist

Xdg/t ;tq)

(4.29)

^^"^ 7=77 7 = ^10^^) '
'

Tq-«» /ttX(~; Tq)

Y(TQ/t;TQ)

Tq-x» /7TX(<»;Tg)

lim — = ^20"^^^ '
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and equal

fio(t) =
. ,1 . (t-l+e"^)

^1/2^2

^20^^) = ^2 [l-(t.I)e-^] .

(4.30)

The approach o£ Y (tq /t ; Tq ) /X(=° ; tq ) to the limiting form /iT£2o('t) is illus-
trated in Fig. 47. In constructing the curves for tq = 1 and tq = 2 . 5 we
have used the values of Y given by Y. Sobouti (1963) . In the next section it
will be shown that limits similar to (4.29) exist for an arbitrary line pro-
file, with the functions i.^Q{t) , i = 1,2, depending on the profile (more pre-
cisely, on the characteristic exponent).

We note also that the asymptotic form (4.15) of the resolvent function
$(xtq;to) for tq °° can be easily obtained from (4.29), (4.30), and (4.25).
Indeed, (2.3) can be rewritten as

X(TQ/t;TQ)
^

"^0 /* -tx
- ^

,
/ e ^^$(xT^;Tjdx

, (4.31)
»;t.) JX(oo;Tq) X(oo;t^) X(«>;Tq) J ^ 0' 0-

0
from which, in the case of monochromatic scattering, as t

1

-1 (t-l+e""^) = -1 J e-^^<I'^3(xTQ;TQ)dx , (4.32)

0

where ^'as ^^''^0 ' '^0 ^ limiting form of $(xtq;to) ""^0 ^ °°* '^^^ relation
(4.32) may be regarded as an integral equation for <l>a^s (^"^0 J'^O^ • solution
is given by (4.15), as may be verified by direct substitution into (4.32).

An important general conclusion may be drawn from the last observation.
If, for a given line profile, we know the asymptotic behavior of X(<»;Tp,) and
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the limits (4.30), the relation (4.31) will give us, in the limit as tq ^

an integral equation for the limiting form of the resolvent function. The
solution of this equation will, in turn, give us the asymptotic form of
$(xto;tq) which is a counterpart of (4.16). This approach will be used in
the next section to obtain the general asymptotic form (4.17) that holds for
an arbitrary line profile.

So far we have considered conservative scattering. Let us now turn to
the non- conservative case. For a given, fixed X < 1 the functions fio(t)
and f2o(t) defined by (4.29) are equal to 1 and

,
respectively. This is

easily shown with the help of (4.21) and (4.27). We may, however, proceed
in a somewhat different manner, by letting X tend to 1 as tq °° in such a

way that Rtq (and hence the dissipation measure oo) remains constant. The
limiting functions f^g and f20 will then depend on t and oj . Their explicit
expressions are easily obtained from (4.21) and (4.27) and are not reproduced
here

.

Proceeding from the equation (4.31) in a manner similar to that used for
conservative scattering, we may prove that the function tq $ (xtq ; tg ) /X (=»

;
tq )

of the three variables tq , x and A, tends to a function of only two variables,
X and CO, in the limit as X -> 1, tq °°, co = const. It turns out that in this
limit $(xto;to) tends to

_ sh[kT (1-x)]

i.e. to (4.11) with 2kB replaced by /3 and Tq set equal to zero. Generaliza-
tion of this expression to the case of an arbitrary line profile seems to be
impossib le

.

The asymptotic forms of $(t;tq) for tq >> 1, and of X(ij;to) and Y(y;Tg)
for large ig and y < 1 were obtained by V. V. Sobolev (1964). The derivation
of the asymptotic expressions for X and Y for z > 1, quoted here without
proof, may be found in V. V. Ivanov (1964b). The asymptotic forms of the
functions X(y;Tg) and Y(y;Tr,) for 0 < y < 1 are discussed in many papers, e.g.
V. V. Sobolev (1957b), H. C: van de Hulst (1964), H. C. van de Hulst and F.

Therhoeve (1966), V. V. Ivanov and V. V. Leonov (1965). The most complete
investigation of the asymptotic behavior of the X- and Y-functions that arise
in problems of monochromatic (generally speaking, anisotropic) scattering, is
that of T. W. Mullikin (see J. C, Carlstedt and T. W. Mullikin, 1966). A
great deal of useful information on the problems discussed in this section
has been given by M. A. Heaslet and R. F. Warming (1968a). It seems 0.

Halpern and R. K. Luneburg (1949) were the first to investigate the asymptotic
behavior of the exact solution of the transfer equation in an optically thick
layer. Although their work was done in the late thirties, it was not pub-
lished for ten years. Specifically, in this work, asymptotic expressions
were obtained for the intensity of diffusely- reflected and diffusely- trans

-

mitted radiation for an optically thick layer illuminated by col limate d li ght

.

The forms (4.18) and (4.19) follow directly from expressions given by Halpern
and Luneburg.

8.5 LINE TRANSFER PROBLEMS: ASYMPTOTIC SOLUTIONS

X- AND Y-FUNCTIONS (CONSERVATIVE CASE). Let us turn to scattering in line
frequencies and begin by determining the asymptotic behavior of the X- and
Y-functions for the conservative case, X = 1, i.e. 1 — X = 3 = 0. As has
been shown in Sec. 8.3, this condition can be regarded as satisfied if the
dissipation measure oj is much less than unity.
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The basis o£ the investigation is the asymptotic expression for the
function <5(tq;tq) as Tq °°. From (2.40) we have

d In X(oo;t
)

Ht,;t^) -
. (5.1)

Inserting (2.60) here, we find that for X = 1

* (tq ;tq) ~ JL
,

Tq ^ =0
. (5.2)

^0

It must be emphasized that the value of the numerical coefficient in (2.60)
is unimportant. The asymptotic behavior (5.2) is determined entirely by the
functional form of X(o°;to) as tq ^ °°.

For any fixed finite z, as Tq ^ °= the function X(z;tq) tends to H(z).
However, this limiting process is non-uniform, since X(<=°;tq) is finite, while
H(z) oo as z 00. Therefore, generally speaking, one cannot expect that from
the limiting values

X(z;oo) = H(z); Y(z;oo) = 0 (5.3)

one can obtain asymptotic formulae for X(z;tq) and Y(z;tq) which will be val-
id for all z. It is, however, possible to use (5.3) to obtain asymptotics
for values of z that are not too great in comparison with tq. Conversely,
the condition that X(oo;xq) is finite will correspond to the case in which z

is not very small in comparison with tq . In the intermediate region, i.e.
when z is approximately equal to tq , both expressions should give the same
result with comparable accuracy. In this way the asymptotic value of X(°o;xo)
could be obtained (although we shall use another method) . We note that the
functional form of X(o°;to) for tq ^ °° is not in question, as it is given by
(2.60). We are now concerned only with the evaluation of the numerical coef-
ficient in (2.60).

The preceding discussion may be reformulated as follows. There are two
types of asymptotic expansions of the X- and Y-functions for large tq. The
first type corresponds to a fixed z , 0 < z < «>

^ and tq ^ °°
• Expansions of

the second type are obtained when tq and z are allowed to approach infinity
simultaneously with their ratio t = tq/z, 0 < t < <»

,
remaining constant. They

are similar to the well-known Debye expansions of the Bessel functions
J'^(vx) for V ^ 0°, X = const. Expansions of the second type are very impor-
tant, and we shall derive them first.

We wish to find asymptotic expressions for X(z;to) and Y(z;to) of the
second type (tq is large and z is not too small in comparison with tq) in _the

form

X(z;tq) ~ X(«.;to) Xl^-^^' 4^ z"' . (5.4)

i = 0
^'

0°
. ^ i

Y(z;Tq) - X(~;Tq) ^(-1)^ 4^ z^^ , (5-5)

. i=0
^'
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where a. and b. for i > 1 are unknown constants,
1 1

'
and

ag = = 1

Substituting (5.4) and (5.5) into the equations (see Sec. 8.2)

3X(z;Tq)

8t
0

Y(z ;tq) <|)(Tq ;Tq)
,

8Y(z;t.) ,

= --i Y(z;Tq) + X(z;Tq)$(tq;Tq)
3t

0

(5.6)

(5.7)

and using (5.2) and (2.40), we find that a- and b. are determined by the
recurrence relations

(Y + i)a^ = yb^
,

rY+i)b. = ib . , + ya.
^ ' ^1 1—1 ' 1

i = 1,2,

from which, considering (5.6), we find

y(y + 1) . . . (Y + i-1)
a

.

1

b.
1

(2Y+l)(2Y+2)...(2Y+i)

(y + 1) (y + 2) . . . (Y + i)

(2Y + l)(2Y + 2)...(2Y-^i)

i = 1,2,.

We note by comparing (5,4) and (5.5) with (2.33) and (2.34) that

x.(To) ~ a.T;x(oo;TQ)
,

>^i^^0) ~ b.TjX(oc;TQ)

Introducing (5.8) and (5.9) in (5.4) and (5.5), we obtain

X(z;Tq) ~ X(-;TQ)^F^^Y,2Y + l;-^j
,

Y(z;Tq) ~ X(c»;tq)-^F^^y + 1,2y-^1;-^^ ,

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

where ^F^(a,c;t) is the confluent hypergeometric function
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,F,(a,c;t) = 1 . i 1- + ^dlHl ii ^11 c i: c(c+l) 21

^ a(a+l) (a+2)
^

c(c+l)(c+2) 3:
(5.13)

The function ]^F]^Ca,c;t) satisfies the functional relations (see, e.g., I. S.
Gradshtein and I. M. Ryzhik, 1962):

-^F^(a,c;t) = e^ (c-a, c ;-t)
, (5.14)

^F^(a+l,c+l;t) = ^F^(a+l,c;t) - ^F^(a,c;t) (5.15)

a^F^(a+l,c+l;t) = (a-c) ^F^ (a, c+1 ; t) + c^F^(a,c;t)
,

and is also related to the modified Bessel function I by

.-t/2 ^F^0+v,l + 2v;t^
,

^\2/ 22vr(v+l)

Using (5.14) - (5.17), we obtain from (5.11) and (5.12)

(5.16)

(5.17)

where

X(z;Tq) ~ 2

Y(z;tq)

tl/2-Ye-t/2
>-i/2(i)^^-)^"^..i/2(f); , i = 1,2

(5.18)

(5.19)

(5.20)

The quantity X(o°;to) that appears in these expressions is still unknown,
Although it was found in Sec. 8.2 that X(o°;to) ~ C]^[ K2 (t ) ]

~l/2 as tq °°

,

we have not until now been able to determine the value of c^. We proceed
from the following relation, which is obtained from (2.26) and (2.46):

00

/ [X(z;TQ)-Y(z;Tn) ]zG(z)dz 0
0-

X(«';tq)

As Tg » the right side increases indefinitely (for y < 1) . Thus it follows
that the main contribution to the integral on the left comes from the region
of large z. Therefore we can replace X(z;to) and Y(z;tq) by their asymptotic
representations (5.11) and (5.12) to obtain

522-519 O - 74 - 26
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0 0

(5.21)

zG(z)dz ~ 1 .

Let us now introduce t = Tp./z. From the results obtain in Sec. 2.6, it
follows that

Using this result and (5.15), we reduce (5.21) to the form

00

X^~;Tq)K2(Tq)— J t^^-\F^(Y + l,2Y + 2;-t)dt ~ 1 , (5.22)

from which

X(-;Tq) ~
, (5.23)

/K2(To)

where

^1 = (f(^ /t^^-\F,(yn,2y.2;-t)dtp .

The integral appearing in this expression for c^ can be expressed in terms of
the r-function (see I. S. Gradshtein and I. M. Ryzhik, 1968; p. 872). It is
readily shown that

= r(Y) /_iiiiIDL_)
^

. (5.24)
1 \2Trr(2Y)/

This result has already been given without proof in Sec. 8.2 (however, the
value of ci has played no role in the derivations given so far).

The expressions (5.18) and (5.19), in which X(«';to) is given by (5.23)
and (5.24) or (2.60), are the sought-for asymptotics of the X- and Y-functions ,

for large tq and values of z that are not very small in comparison with tq. ,

Setting z = Tg/t in (5.18) and (5.19) and using (2.60), we finally find for
j

the leading terms of the expansions of X(TQ/t;Tg) and Y(TQ/t;TQ) for «>

and t = const, 0 < t < °°

,

T

X(To/t;T,) ~ f f,o(t) , (5.25)
^ /4)(1/tq)
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YCTo/t;T,) ~ ^ ^^ f,o(t) , (5.26)

where the functions f^Q(t) are given by (5.20).

We shall now obtain asymptotics of the first type, which are valid when
z is not too much larger than tq. Substituting (5.2) into (5.7), setting
t = tq/z, and denoting differentiation with respect to t by the prime symbol,
we have

Y ' = _Y + 1 X .1
(5.27)

The solution of these coupled equations that satisfies the condition X(z;co) =

H(z) and the relation (2.5) gives the desired asymptotic forms of X- and
Y- functions. It can be shown (we omit the proof) that

X(z;Tq) ~ H(z)f^(t) + H(-z)g^(t)
,

Y(z;Tq) ~ H(z)f2(t) + H(-z)g2(t)
,

(5.28)

(5.29)

where

£i(t)
Zlltl ^-t/2j /tV

I
/t\

2 ® j Y-l/2\2j- Y + l/2(^2j

COSTTY

Vl/2(l)"Sn/2(l)]j.

(5 . 30)

(5.31)

with the upper signs corresponding to i = 1 and the lower ones to i = 2.
Here Iy,(x) and Ky(x) are the Bessel functions of imaginary argument, with
Ky(x) defined as

I (x)-I (x)
K (X) = I

s inVTT
(5.32)

For scattering in line frequencies in media with no continuous absorption
(6 = 0) the function H(z) has a branch line on the negative real semi-axis.
The quantity H(— z) appearing in (5.28) and (5.29) is understood for z > 0 as
the mean of the values of the H- function on the sides of the cut, and can be
found as follows. When z does not lie on the real axis, (5.4.19) can be
written (for X = 1) in the form

H(z)H(-z) [l-U(z) ] = 1
, (5. 33)
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where

U(z} = z'

00

f G(z'

J 2
'

dz (5.34)

Thus, using the formulae for the limiting values of Cauchy-type integrals,
we find that for z > 0

H(-z+iO)
l-U(z)+i|zG(z) H(z)

(5 . 35)

with U(z) being understood as a principal value. The value of H(—z) for
z > 0 is

H(-z) = j[H(-z+iO) + H(-z-iO)]
, (5. 36)

which, according to (5.35), becomes

H(-z) = [l-U(z)]
R(z)

H(z)
(5.37)

whe re

R(z) = < [l-U(z)] ^ + -zG(z)
2 11

-1

(5 . 38)

The expressions (5.28) — (5.31), in which H(—z) is given by (5.37), are
the desired asymptotics of the X- and Y-functions for tq >> 1 and z that is

not too large in comparison with tq • We note that in those cases in which
H(z) behaves asymptotically as a power of z as z «>, the expressions (5.28) —
(5.31) are valid for all z > 0. In particular (5.18) and (5.19) then follow
from them.

In order to make practical use of the asymptotic expressions just ob-
tained, tables of Iv(5c) and Ky(x) are necessary. The values of these func-
tions for V = 0 and 1, appearing in the asymptotics of the X- and Y-functions
for the Doppler profile (y = 1/2), are available in all treatises on the
theory of Bessel functions, and also in many reference books. For a Voigt
profile (y = 1/4), I^ and for v = —1/4 and 3/4 appear. Tables of I_i/4(x);
and l3/4(x) are given by G. Watson (1945), and the functions K_]^/4(x) and
K3/4(x) have been tabulated by H. R. F. Carsten and N. W. McKerrow (1944).

We shall develop 'further the limiting forms assumed by the above asymp-
totic expressions for z << tq , i.e. for the central parts of the line. Using
the fact that for t >> 1
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it is easy to show from (5.28) and (5.29) that for Tq >> 1 and z << Tq

X(z;Tq) ~ H(z)^l-Y^-^+ ...^ , (5.39)

Y(z;tq) ~ zH(z)J^ + . . . . (5.40)

Let us consider in a little more detail two important specific cases.
First we will discuss monochromatic scattering. Since for this case y = 1,
the functions l^(t/2) and K^(t/2) of half-integral order appear in the expres
sions for fi(t) and gi(t). They can be expressed as elementary functions,
specifically

,

/(«)(I)

If we denote the X- and Y-functions for monochromatic scattering as Xj^(z;tq)
and Ym(z;to), and the H- function as Hj^(z), we find from (5.28) and (5.29)
that for TQ >> 1

X
M
(z;tq) ~ Hj^(z)^l-:^^- Hj^(-z):Ae ^

, (5.41)

Y^(z;To) ~ H^(z)^ . H^(-z)fl.:i-^e . (5.42)

We note that the function H^(z) is regular in the z-plane cut from 0 to -1.
Therefore for z > 1 the function U^i-z) is related to H(z) by (4.28), and not
by (5.37). In the present case, (5.37) was to be used only for 0 < z < 1.

However, as the terms containing H-^(-z) in (5.41) - (5.42), for 0 < z < 1,
are negligible, there is no need to evaluate this function.

We see that (5.41) - (5.42) and (4. 23) - (4.24) are identical if 2q(oo)

is negligible compared to tq. Therefore, as in the Milne problem, the gen-
eral asymptotic expressions valid for an arbitrary line profile, in the spe-
cific case of monochromatic scattering, give the same accuracy as the uncor-
rected diffusion approximation, i.e. the diffusion approximation with the
extrapolation length set equal to zero.
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The second specific case we will discuss is that of the Doppler profile.
In this case the asymptotic forms of the X- and Y- functions can be somewhat
improved. It can be shown that for ^ «> and t = const, 0 < t < «>

,

^d("7'^o)
i/4V^ li^^^

j = 0

. To \ 1/4 1/2. „ .1/4X"^ 21

(5.43)

(5.44)

where the functions f^Q(t), i = 1,2, are given by (5.20) for y = 1/2, and

t

£il(t) = |e ^/^[lQ(t/2) + (-l)^^^I^(t/2)][2x3, -|/ Ii(x/2)KQ(x/2)dx]

0
(5.45)

|e ^/^[KQ(t/2) + (-l)^K^(t/2)] [l^(t/2)-l] . i = 1,2 ,

where Xi is given by (2.62). Explicit expressions for fj^- for j > 1 are un-
known, and it is unlikely that these functions may be expressed in terms of
known functions. Fortunately there is very little need for such expressions

The asymptotic forms (5.39) — (5.40) in the case of the Doppler profile
are refined as follows (z = const, t

0
0

zHp(z) m

.

X^(z;Xo) ~ H^(z) - ^^^0
. = 0

(ilnTQ)J
(5.46)

Yp(z;To)
zH„(z)

2^0 p^C^n^o^^
(5.47)

where m^ = n^ = 1 and

n . = oj .
,

J 3

. = 7 oj.co. • — (1—l)m. ,
,

3 1 3-1 ^ j-1 '

j = 1,2, .

i = 0

(5.48)

Here the constants oj^ are the coefficients of the asymptotic expansion

(to;to)
1 v;

2^0 (^nTo)J
(5.49)

I
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In particular,

oJq = 1 , oj^ =
I

, 0)^ = -^(l + 2Y*-45-n2) = 0.0386 . (5.50)

The values of to. for j > 2 are unknown. Substituting (5.50) into (5.48), we
obtain

m = 1 ; = -0.4409

1 (5.51)
n, = -

; n^ = 0.1545 .

1 2 2

•The proofs of (5.43) — (5.51) are omitted because of space limitations.

RESOLVENT FUNCTION. LARGE-SCALE DESCRIPTION (CONSERVATIVE CASE). Following
the derivation sketched in Sec. 8.4 we can now easily obtain the asymptotic
expression for the resolvent function. We proceed from (2.3), which we re-
write in the form

^^'^q/^'^q)
1 / -tx ^i^^V^ol,—^77 ^— = r + / e T„ dx . (5.52)

X(~;to) X(»;t^) J 0 X(c»;Tq)

Letting tq tend to infinity, we discover, with the aid of (5.25) and (2.60),
that in the limit as tq =° the left side is independent of tq. Since the
first term on the right tends to zero as t^. °° , we conclude that a limit
exists

TQ$(XTg;Tg)
F(x) = lim — ~ . (5.53)

I
Consequently, in the limit «> (5.52) assumes the form

i Direct substitution into (5.54) verifies that the solution of this integral
? equation for F(x) is

F(x) = i^li^ x^-^l-x)^ . (5.55)
r2(Y)

Thus it follows from (5.53) that for tq >> 1 the resolvent function far from
the boundaries asymptotically equals

T

^..(^^^n'^n) =
°

. . . .

, 0 < X < 1 . (5.56)
" " r(Y)v^TT7T^

This expression is a generalization of the unimproved diffusion solution
(4.16) to the case of an arbitrary line profile. As in the case of the dif-
fusion solution, it applies only when the distances from the boundaries are



390 PLANE LAYER OF FINITE THICKNESS

much larger than the mean free path o£ a photon. However, as we shall see
shortly, it may be used to construct asymptotic expressions that are valid
for arbitrary t, 0 <t < Tq .

Let us describe the general physical picture of radiative transfer in
a medium of large optical size. If the medium is conservative, we have two
characteristic lengths: (1) the photon mean-free path (which is unity in our
notation) and (2) the size of the medium (tq, in the present case). If the
second length is much larger than the first one, i.e. ig >> 1, it should be
possible to describe the radiation field deep in the medium in a way analo-
gous to the hydrodynamic approximation of gas kinetic theory. However, when
the distances from the boundaries are of the order of a photon mean-free path
such a description must break down, just as the hydrodynamic equations are
inapplicable near the walls (Knudsen layer).

The problem of gas flow for small Knudsen numbers (which corresponds to
that with large tq in radiative transfer) is always split into two problems:
the hydrodynamic solution for the inner parts of a medium with given geometry
and the gas-kinetic solution near the walls. If the curvature of the wall is
small compared to the mean free path of a molecule, the wall may be consid-
ered plane. Hence the kinetic description is needed only for the simplest
geometry, namely, the half-space. At distances from the wall of the order of
several mean free paths, the hydrodynamic description becomes valid. The
hydrodynamic solution for a medium of a given geometry is fitted near the wall
to the gas kinetic solution for a half-space, i.e. kinetic theory is used
only to provide exact boundary conditions for the hydrodynamic equations (see,
e.g., M. N. Kogan, 1967)

.

The situation in radiative transfer is exactly the same. The half-space
solutions near the boundary have been thoroughly studied in the preceding
chapters. Now we shall consider in detail solutions similar to hydrodynamic
solutions, which we will call large-scale solutions . The expression (5.56)
is an example of a large-scale solution.

We have to consider two important problems: first, fitting the kinetic
half-space solutions to the large-scale solutions and, second, deriving large-
scale equations for radiative transfer in spectral lines. These equations
should be simpler than the "exact" transfer (kinetic) equation. We note that
the large-scale expression (5.56) was found from the "exact" transfer equa-
tions as the large-scale equations are yet to be derived.

To illustrate how the first problem is solved let us fit the large-scale
solution (5.56) to the exact half-space solutions. Near the boundary t = tq
the T-degendence of the resolvent function $(t;to) must be nearly the same as

that of S(tq—t). For a thick layer, in which the primary source (in the case
under consideration, the exciting radiation incident upon the boundary t = 0)

is located far from the boundary t = tq , this assertion is proven by the
discussion in Sec. 7.7. Therefore, for tq >> 1 and values of t satisfying
TQ - T << TQ

,

$(t;tq) - $(Tq ;Tq)S(Tq-t)
,

Tq >> 1 , Tq-t << Tq . (5.57)

The value of $(to;to) may be obtained by fitting this result to the large-
scale solution (5.56). Let us consider those t for which tq >> tq — t >> 1.

Using (5.5.41) we can rewrite (5.57) as
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*(t;tq) ~ Kto;tq)—-—== ,
t»1

, Tq»To-t»1 , (5.58)

while (5.56) gives

(t —t)^

r (y) /(1)(i/t^) ^0

from which

$(Tq;Tq) ~ y/Tq , Tq>>1 . (5.60)

Thus, as the boundary t = tq is approached, the large-scale solution is to be
replaced by (5.57), with $(tq;tq) given by (5.60).

Similarly, near the boundary x = 0 o£ a layer of large optical thickness
TQ , the influence of the boundary t = tq is weak, and in the first approxima-
tion may be neglected. Therefore,

«'(t;Tq) ~ $(t) ,
Tq>>1

,
t<<Tq . (5.61)

As T increases, $(T;Tg) calculated according to (5.61) approaches <^'as ( ^ 5 t^O )

as given by (5.56), and we enter the region where (5.61) is to be replaced
by the large-scale expression (5.56).

An important by-product of this discussion is an asymptotic expression
for the resolvent function $(t;tq) in terms of half-space solutions

S(T -T)

which is valid for tq >> 1 and for all x, 0 < x < xq. For x satisfying the
inequalities x >> 1, xq — t >> 1, this expression reduces to the large-scale
asymptotic form (5.56); near the boundary x = 0 it gives (5.61); and for
values of x close to xq we recover (5.57). This remarkable representation
was found by Yu. Yu. Abramov, A. M. Dykhne , and A. P. Napartovich (1969a).

Let us now turn to the derivation of the basic equation of the large-
scale approximation. We proceed directly from the basic integral equation
for the source function

^0

S(x) =
I y K^(|x-x' |)S(x')dx' + S*(x) . (5.63)

0

Using the identity

^0

i f K^(|x-x' |)dx' = 1 - |k2(x) -
f K2(Xo-x) , (5.64)

L
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we can rewrite it as

S(t) (K2(t)+K2(Tq-t)) =

Tq (5.65)

= J K^(|t-t' I) [S(t')-S(t) ]dT' + 2S*(t)

Let us consider the inner region of the layer where neither t nor tq — x is
small. It is clear that the main contribution to the integral in (5.65)
comes from the values of t' that are far from t (for x' = t the integrand
vanishes). Thus we can replace K]^(|x—x'|) in the integrand by its asymptotic
form. Using the asymptotic relations (tq <» , x = const > 0)

K2(xXq) ~ x~^'^K2(Xq)
,

-2y-1 ^^2 '^0-^
(xT^) ~ 2yx —

which follow from (2.6.67) and (2.6.68), and substituting x = xTq and
t' = x'Tq in (5.65), we obtain

S(xTo)K2(to)(x ^^^-Hd-x) ^Y) =

/• S(x' T„)-S(XX^) ^

0 1^ ^ I

From this equation we may conclude that in the limit as Tq -> «> the product
S(xtq)K2(Xq) tends to a limiting function

s(x) = lim S(xXq)K2(Xq) , (5.66)
T ->-00

0

which is the solution of the equation

1

s(x)(x~2^+(l-x)"2^) = 2y f s(x)-s(x')
^

^
(S.67)

0 I

^-^

I

where

s*(x) = lim 2S*(xXq) . ' (5.68)

Equation (5.67) is the desired large-scale equation. It is valid for
0 < Y < 1/2 and may be regarded as a generalization of the diffusion equation.
We note that the integral operator in (5.67) belongs to a class of pseudo-
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differential operators which have properties akin to those of differential
operators

.

The advantages of the large-scale equation (5.67) over the usual equa-
tion (5.63) are, first, that it does not contain a large parameter (Tq) and,
second, that the kernel of (5.67) is much simpler.

A thorough study of the large-scale behavior of the solutions of the
basic equation (5.63) has been made recently by Yu. Yu. Abramov, A. M. Dykhne

,

and A. P. Napartovich (1969b) and by A. P. Napartovich (1969). In particular,
they obtained the following large-scale approximation to the resolvent of
(5.63) :

^as'^^'^0 "^0 "''^0'' " r(xTQ (1-x' ) ,x' Tq (1-x))
,

Tq^°>, x,x'=const, 0<x,x'<l
,

(5.69)

where r(T,T') is the half-space resolvent, for which they found the following,
highly accurate approximations (for t' > t) :

T^[T,Tn = S^-^-^^^^f^)$(T'-T)F(Y;2Y;l+Y;T/T') , y < j , (5.70)

r (t,t') = ^S(t)^(t') (T'/T)^^^£n
'^^'^

, Y = 1/2 , (5.71)

r^(T,T') = S(t)$(t')F(1;1-y;1+y;t/t')
, y > 1/2 . (5.72)

Here F(a;b;c;z) is the hypergeometric function. Unfortunately we lack the
space to derive these expressions. Important additional information on the
asymptotic behavior of $(t;tq) and related quantities is given by D. I.
Nagirner (1969) .

NON- CONSERVATIVE CASE. Let us now turn our attention to media that dissipate
significant amounts of energy. Consideration of the general case would hard-
ly be justified because the resulting expressions would be extremely cumber-

^

some. Instead we shall discuss a particular situation in which results can
I

be obtained in an intelligible form. All of these results pertain to the
case in which the absorption of photons in flight is negligible compared to
their death in scattering; that is, we assume that 3 = 0 and X 7^ 1 . As has

1 been shown in Sec. 7.3, it is thereby assumed that the inequality A66(B) <<
1 — X is satisfied.

Let the medium be strongly dissipative (oj >> 1). Under the above condi-
tions this implies that

XK2 (Tq) << 1 - X . (5.73)

We shall now prove that in this case, for Tq >> 1,
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For T < Tq equation (5,1.32) can be rewritten in the form

S(T,z) = A
J

K^(|t-t' |)S(t' ,z)dT' +

0

00

""^^
+
I f K^(t'-t)S(t' ,z)dT'

,

or

+ e
z

T
0

(5.75)

00 oo

0 0

By comparing this equation with (1.17) for 3=0 and using the superposition
principle we can conclude that

S(t,z;tq) = S(t,z) -

(5.76)
00 00 ^ '

-
\ J S(TQ + t,z)dt J e-^/"'s(TQ-T,z' ;Tg)G(z')^ .

0 0
^

Multiplying this equation by (A/2)G(z)/z and integrating over z from 0 to <»

,

we obtain

$(t;tq) = $(t) -

00 00

-
\ f *(To+t)dty

.

(5.77)

$(T.+t)dt / e ^/^'s(T.-T,z' ;tJG(z').'^^'

0 0

In particular, we have

^(Tq-.Tq) = $(Tq) -

"
2 y *^^0''^)<^^ / e-^/"'x(z' ;Tq)G(z')^

,

(5.78)

0 0

which can be used to prove (5.74)
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The inner integral on the right side o£ (5.78) has a logarithmic singu-
larity at t = 0 and decreases rapidly as t increases. At the same time, for
tq >> 1 the function ^Cxg + t) decreases relatively slowly as t increases.
Therefore when to is large the integral appearing in (5.78) equals, to within
the accuracy of the leading term of the expansion.

00 00

I y *(TQ + t)dt y e-^/"'x(z' ;Tq)G(z')^
0 0

(5.79)

and (5.78) gives

$(Tq;Tq) ~ $(Tq)|^1 - |aQ(TQ)j . (5.80)

From (2.21) for 6 = 0 we find

-S^^o^ = 1 - (i-^^r^o^-^oV •

^'-'^^

But from (2.47) and (2.45) it follows that if the condition (5.73) is ful-
filled, then

1 - X » ^3o(Tq) . (5.82)

Therefore (5.80) and (5.81) give

Htq;tq) ~ (1-X)^/^$(tq) . (5.83)

It was shown in Sec. 5.5 that when the inequality (5.73) is satisfied,

(T )

Ktq) ~ ^ \' . (5.84)
U ^_x)3/2

The result (5.74) follows from the last two relations.

The expression (5.74) can be used to obtain a number of useful results.
Thus, it is easy to prove that

X

,-1/2

'

X(«>;Tq) ~ (l-X)--^^^ll - ^
: J

. (5.85)

This follows from (2.40) and (5.74) if allowance is made for the fact that
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—1/2
X(<»;Tg) tends to H(<=o) = (1—A) as tq °°. Further, combining (5.85) with
(2.45) and keeping (5.82) in mind, we find

3o(Tq) ~ (1-X)-^/^K2(tq) . (5.86)

Combining this result with (5.81), we obtain

an(Tn) ~ -fl " ^~ - — ^^^^^'^^^

J • (5.87)
° 0 A 8 (i_A)3/2 /

With the help of (5.74) we can also obtain the asymptotic forms of the
functions X(z;to) and Y(z;tq) for tq >> 1 when z satisfies the inequality
Tg >> z. Setting t = tq in (5.76), we obtain

Y(z;Tq) = S(Tq,z) -

00 00

S(Tn + t,z)dt / e t/2'x(z' ;Tq)G(z')^
0 0

In Sec. 6.10 it was shown that for t >> 1 and z << t

There fore

Y(z;Tq) ~ zH(z) U(tq) -

00

(5 . 88)

S(t,z) ~ zH(z)$(t) , t >> 1 , z << t . (5.89)

00 oo

~
2 / '^'^^O^^^^^ f e"^/''x(z' ;Tq)G(z')^1

,

0 0
^

or, considering (5.78),

Y(z;Tq) ~ zH(z)$(Tg;TQ)
,

Tq » 1 , z « Tq . (5.90)

The first of equations (5.7), together with (5.3), gives

X(z;Tn) = H(z) -
J

Y(z;t)$(t ;T)dT .
- (5.91)

^'o

Substituting (5.90), we get
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oc

/X(z;t,) ~ H(z) - zH(z) I (T;T)dT , >> 1 , z << . (5.92)

Finally, introducing $(t;t) from (5.74) into (5.92) and (5.90), and using the
asymptotic properties of K]^(t) derived in Sec. 2.6, we find that when the
inequalities (5.73) and z << are satisfied.

X(z;t.) ~ H(z) - zH(z).
jk^Ctq)

n2

4y + 1 1-X
(5.93)

Y(z;t„) ~ zH(z)
1-X

(5.94)

It is worth mentioning that the condition (5.73) was not assumed in de-
riving (5.90) and (5.92). Therefore these results are valid for media with an
arbitrary dissipation measure. Specifically, for co << 1 we have $(to;to) ~

y/tq; (5.90) and (5.92) reduce to the expressions (5.39) and (5.40), obtained
previously by other means.

This section is mainly based on the work of the author (V. V. Ivanov,
1963, 1964b, 1970b) and of D. I. Nagirner (1967). The derivations of the
refined asymptotic forms for the Doppler profile given here without proof may
be found in V. V. Ivanov (1970b). The large-scale description was first
clearly formulated in a remarkable paper by Yu. Yu. Abramov, A. M. Dykhne

,

and A. P. Napartovich (1969), although it was implicitly used earlier (e.g.,
V. V. Ivanov, 1966). For an alternative derivation of the large-scale asymp-
totic forms and of various other results presented in this section, see C.
van Trigt (1969), (1970), and especially (1971).

8.6 THE SCHUSTER PROBLEM

BASIC EQUATIONS. For the first standard problem of multiple scattering in a

!

plane layer we shall consider the well-known Schuster problem, defined as
• follows. We consider a plane layer of a gas whose optical thickness at line

j

center equals tq. The layer is completely transparent in the continuum (3 =

I 0) and contains no internal sources of radiation. Incident on the boundary
ij T = TQ is isotropic continuum radiation, whose intensity is independent of
I
frequency and equal to Iq. It is usually assumed that pure scattering (X =

jj

1) occurs within the medium; however, in the interests of generality we shall

I
consider X to be arbitrary (X < 1) . In the classical statement of the prob-

1

lem it is assumed that the frequencies of the photons do not change during
I

scattering (so-called coherent scattering). As was shown in Sec. 1.5, this
I assumption is unrealistic. We shall assume complete frequency redistribu-

1

tion, i.e. that a photon "forgets" its frequency each time it is scattered.
We wish to find the intensity of the radiation l(0,ij,x) emerging through the
boundary t = 0. We shall also obtain the intensity I(TO,y,x) of the diffuse-

' ly reflected radiation, which is of interest for a number of problems, and
' shall discuss the so-called "curve of growth" for the Schuster problem.

Under the assumptions just stated, the Schuster problem involves the
I
solution of the transfer equation
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dl (t .y ,X) / ^ T A- ^y ^ = a(x)I(T,y,x) -

-^AaCx) / a(x')dx' I I (t , y '
, x ' ) dy

'

(6.1)

-1

with the boundary conditions

1(0, y,x) = 0

I(TQ,y,x) =

0, y < 0 , )

In. y > 0 . )

(6.2)

I£ we introduce the line source function

00 1

S(t) = |ay a(x')dx'y* I(T,y' ,x')dy'
, (6.3)

-1

we have for the intensity of the emergent radiation

T,
0— (a (x) /y) r

( ( ^ / ^

1(0, y,x) = I^e / ^^^^^^^^^a(x)dT/y
, y > 0 , (6.4)

0

}^ _(a(x)/|y|)(T -T)
I(TQ,y,x) =

J S(T)e a(x)dT/ly| , y < 0 . (6.5)

0

The integral equation for the line source function in the present case has
the form

S(t) K^(1t-t' |)S(T')dT' + lofl^Z^^Q-^) ' f^-^^

0

which is easily derived from (6.3) — (6.5). Comparing this equation with
the auxiliary equation (1.17) for the function S(t,z) and recalling that

00

:^o-^ = /
(t.-t)/z'

K7(Tn-T) = / e G(z')dz'
,

0

we can write, by virtue of the superposition principle,
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00

S(T) = y S(TQ-T,z')GCz')dz' . (6.7)

0

Of course, the functions S(t) and S(t,z) also depend on Tq
;
however, to keep

the notation as concise as possible, we shall not state this explicitly.

EMERGENT INTENSITIES. Substituting (6.7) into (6.4) and (6.5) and taking
account of (2.7), we obtain

1(0, y,x) = Iq|^|6oX(z) + ^1 - laQ^Y(z)j
, y > 0 , (6.8)

I(TQ,y,x) = Io|l - ^l-^aQjX(z) - j3qY(z)
, y < 0 , (6.9)

where

z =

a(x)

Here ag and 3o are the zero-order moments of the X- and Y- functions, defined
by (2.15). The expressions (6.8) and (6.9) give the solution of the Schuster
problem.

For pure scattering the above expressions can be simplified slightly.
Using (2.22) and (2.46), we find that for X = 1

1(0, y,x) = L!_[X(z)+Y(z)
] , y > 0 , (6.10)

2X(oo)

^0
I(T.,y,x) = u_[2X(~)-X(z)-Y(z)

] , y < 0 . (6.11)
" 2X(oo)

The result (6.10) shows that in the radiation emerging at t = 0 , an ab-
sorption line is seen on a continuum of intensity Iq. Let us estimate the

j

central intensity of the line assuming the optical thickness tq of the layer

I

to be sufficiently large. For radiation emerging along the normal (y = 1),
ii we have z = 1 at line center (x = 0). Further, for tq >> 1, the quantity
X(l) + Y(l) is asymptotically equal to H(l), where H(z) is the conservative

ji H-function. Using the asymptotic form of X(<») for tq >> 1, given by (2.58),
1
we find from (6.10) that the intensity of the radiation emerging at line cen-
ter along the normal to the boundary t = 0 is asymptotically equal to

1 1(0,1,0) ~ I^HIII /K^(T^
,

Tq >> 1 , (6.12)
^^1

ij where ci is given by (2.59). Specifically, for a Voigt profile, with aiQ >> 1

' we find, using (2.7.29),

1(0,1,0) ~ I,

H^(l)
2iT-^U(a,0)

r(i/4) 9
(6.13)

522-519 O - 74 - 27
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LINE SOURCE FUNCTION. In this subsection we restrict ourselves to the conser-
vative case. Using the easily proven identity

-^0

J f K^(|t-t' |)dT' = l-iK2(T) -iK2(TQ-T)
, (6.14)

0

we can show from (6.6) that for X = 1 the source function satisfies the rela-
tion

S(t) + S(Tq-t) = Iq . (6.15)

As follows from (6.7), the source function increases monotonically with t be-
tween the values

8(0) = \^ ; S(Tq) = - IBq^ . (6.16)

Specifically, for large t
0

S(0) ~ I±/K^; S(To) - Io(l -^^/IJlT^y (6.17)

The values of S(t)/Iq for the Doppler and Lorentz profiles and several
values of tq are given in Table 39 (after A. L. Crosbie and R. Viskanta,
1970a). They were obtained by an iterative solution of the integral equation
(6.6) with X = 1. We note that in the conservative case S(xTQ)/Ig tends- as

Tq -> 00 to a limiting function

f(x) = lim — (6.18)
^0"°° ^0

which describes the large-scale behavior of the source function. It can be
shown that

£(x) = f
yY-l(l-y)^-ldy

.
(6.19)

or

f(x) = ^^i^ x^f(i-y;y;y + i;x) ,
(6. 20)

Yr2(Y)

where y is the characteristic exponent and F is the hypergeometric function.
In particular, for the rectangular profile (y = 1) we have

£,^(x) = X
,

(6.20a)
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TABLE 39

THE SOURCE FUNCTION S(t)/I^ FOR THE CONSERVATIVE SCHUSTER PROBLEM

T/T^

0
= 1 T

L

o
= 2 T

o
T —
O

1 n T =

0
Z U

D L D L D L D L D L

0 00 . 7092 . 6569 . 7751 . 7074 . 8541 . 7695 .8997 . 8080 .9 320 .8396

0 05 .6796 .6334 .7351 . 6738 . 8005 . 7182 .8361 .7388 . 8587 .7486

0 10 . 6560 .6152 . 7040 . 6490 .7599 .6834 .7891 .6962 .8061 .6994

0 15 .6 344 .59 88 /' ~t C /I.01 bo . 62 70 . 7231 .6541 .7471 .6623 .7602 .6627

0 20 .6139 .5834 . 6487 . 6068 .6885 . 6281 . 7080 .6333 . 7182 .6326

0 25 . 5941 .5687 . 6228 .5876 .6554 . 6042 .6710 . 6075 .6788 . 6064

0 30 .5748 . 5545 . 59 75 . 5693 .6233 .5818 .6354 .5839 .6412 .5828

0 35 . 5558 .5406 . 5728 .5516 . 5919 .5605 . 6007 . 5617 .6049 . 5609

0. 40 .5371 .5269 .5484 . 5342 . 5610 . 5400 .5668 .5406 .5695 . 5400

0 45 .5185 .5134 .5241 .5170 .5304 .5199 .5333 .5202 . 5346 .5199

0. 50 . 5000 . 5000 . 5000 . 5000 .5000 . 5000 . 5000 . 5000 . 5000 . 5000

D = Doppler; L = Lorentz

while for the Doppler profile

2
fj^(x) = — arcsin/x . (6.20b)

THE MILNE PROBLEM AS A LIMITING CASE OF THE SCHUSTER PROBLEM. The generalized
Milne problem studied in detail in Sec. 6.1 can be regarded as a limiting
case of the Schuster problem for tq °°. Actually, let us increase both tq
and the intensity Ig of the exciting radiation in such a way that the relation
In = 2/6o - 2X(a') holds. For A = 1 the free term in equation f6.61 is then

! found to be equal to X(oo) K2 (tq-t) . Since for pure scattering X(<») -Cj [K2 (tq)]"^
as Tg > 00, for any finite t the free term tends to zero when xg increases
indefinitely. Consequently, for A = 1 and Tg = °° equation (6.6) reduces to
the homogeneous equation corresponding to the generalized Milne problem.
According to the first of the expressions (6.16), the solution is normalized

I
to unity at t = 0 . Further, setting Ig = 2X(<») in (6.10), we find that the
intensity of the emerging radiation is, in the limit as xg

,
equal to

1(0, y,x) = H(z), which agrees with the result obtained by another method in
Sec. 6.1.

It is interesting to see the results of analogous arguments for non-
conservative scattering. As was shown in Sec. 8.5, in this case
6p~(l-X)-l/2K2 (xg) for tq -> ~. Therefore, setting Ig = (2/X)6q^, we find that
when Xp, ->- «> equation (6.d) takes the form
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S(T) =
I
/k^(It-t' |)S(T')dT' + (l-X)^/2

, (6.21)

0

and (6.8) gives

1(0 ,y,x) = H(z) . (6.22)

We have arrived at the problem of the radiation field in a medium with a uni-
form source distribution, which was studied in detail in Sec. 6.1 — 6.3.
However, in the present model the primary atomic excitation occurs not becaus
of electron impact, as was assumed in Sec. 6.3, but because of the radiation
in the far wings of the line coming from an infinitely powerful source that
radiates in the continuum at infinite depths. The result (6.22) shows that
the function H(z) gives the frequency and angular dis tribjation of radiation
transmitted by an infinitely thick layer.

CURVE OF GROWTH. Let us return to the Schuster problem. As we have found,
an absorption line is present in the radiation emerging at t = 0 . We shall
now find its equivalent width as a function of tq • For simplicity we assume
that pure scattering occurs (X = 1). The equivalent width of the line (in
the flux) is defined as

oo

W = y* (l-r^)dv
, (6.2 3)

0

where r^ is the residual flux, i.e. the ratio of the flux at frequency v in
the line to the flux in the adjoining continuum. Since in the present model
the emergent radiation in the continuum is isotropic and its intensity is

equal to Iq , the corresponding flux is ttIq. Therefore

1

r = — / l(0,y,x)y dp . (6.24)

0
0

We recall that although we write x as the frequency variable, the radiation
intensity is calculated per unit interval of the usual frequency v. Substi-
tuting (6.10) into (6.24), inserting the resulting expression into (6.23),
and transforming the variable of integration from v to x, we find

p 1

W =
j f [2X(«>)-X(z)-Y(z) ]y dy , (6.25)

0
X(~)

where Av is the characteristic frequency interval used to define the dimen-
sionless frequency x (usually, Avq) . Setting y = a(x)z and changing the orde
of integration, we obtain

00

/W =
/ t2X(oo) - X(z) - Y(z)]zG(z)dz

,
(6.26)

AX(a>)
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where A is the usual normalization constant, A_£ a{x)dx = 1. From (2.27) and
(2.46) we obtain an alternative expression for W:

W = Av

^0

-/
A J '

dT

Ay x2(«.;t)
(6.27)

The values of AW/Av for the Doppler and Lorentz profiles found from (6.26)
by numerical integration are given in Table 40 (after A. L. Crosbie and R.

Viskanta, 1970a).

The most interesting case is that of an optically thick layer (Tq >> l).

It follows from (6.27) and (2.58) that for the Doppler profile

W AVjp2/iT J' K2(T)dT ~ AVp2/£n Tq , Tq >> 1
,

0

whereas for a Voigt profile

"^0

(6.28)

W - AVp^-^ f K^(T)dT ~ Avp
_ , JL^=(aTn)"'" ,

ax^ >> 1 , (6.29)
1/2

cJU(a,0) J

and for the Lorentz profile

3c|/U(a,0)

TABLE 40

VALUES OF AW/Av FOR THE DOPPLER AND LORENTZ PROFILES

Dopp ler Lorent z Doppler Lorentz

0, 0 0 0000 0 0000 9.0 1 430 2 547

0 1 0 0880 0 . 0911 10 1 473 2 698

0 3 0 2259 0 . 2441 15 1 663 3 358

0 5 0 335 1 0 3740 20 1 741 3 910

0 7 0 4259 0 4884 25 1 823 4 395

1 0 0 5385 0 6396 30 1 888 4 832

1 5 0 6849 0 8542 35 1 941 5 232

2 0 0 7982 1 037 40 1 986 5 605

2 5 0 8900 1 199 45 2 025 5 954

3 0 0 9667 1 345 50 2 059 6 284

4 0 1 089 1 602 60 2 118 6 897

5 0 1 185 1 827 70 2 166 7 460

6 0 1 262 2 030 80 2 207 7 983

7 0 1 327 2 215 90 2 242 8 474

8 0 1 .382 2 386 100 2 274 8 937
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, 4v^ 1/2 ,

(6. 30)

Here is given by (2.59) with y = 1/4 (precisely, ci = 0.914), and Av^ is
the collisional line width.

The numerical data presented in Table 41 make it possible to estimate
the accuracy of the asymptotic expressions (6.28) and (6.30). In Table 41
we give the ratio W^s/W for the Doppler and Lorentz profiles as a function
of TQ. Here W is the numerically exact value of the equivalent width, and

is the asymptotic value as given by (6.28) and (6.30) for the Doppler
and Lorentz profiles, respectively.

We note that the asymptotic expression (6.28) in the case of the Doppler
profile can be improved somewhat, for it may be shown that (V. V. Ivanov,
19 70b)

,

W = Avj^2/£n Tq 1 + Q

/In

0 . 15454

fcn T„
(6.31)

where

(6. 32)

Unfortunately, the numerical value of Q is unknown; it may only be asserted
that Q < 0.

The expressions obtained so far in this subsection refer to the conser-
vative case (X = 1) . How sensitive is the equivalent width to the value of
X? In order to answer this question, we shall consider the opposite limiting
case — a purely absorbing medium (X = 0). Obviously, in this case the inten-
sity of the emergent radiation is

1(0, y,x) ^0^

-Tq/z

(this also follows from (6.8) for X = 0) . Substituting this expression into
(6.24), we find from (6.23), exactly as in the derivation of (6.26), that

TABLE 41

THE RATIO W /W FOR THE DOPPLER AND LORENTZ PROFILES
as

0
Dopp 1 e r Lorent z

10

20

50

100

1. 162

1.121

1.084

1.065

1.056

1.031

1.014

1.008
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W = Av zG(z)dz

0

or

W = Av^ (6. 33)

0

A comparison of this expression with (6.28) shows that for the Doppler
profile, when tq >> 1, the leading term of the asymptotic expansion of W(tq)
is the same for X = 1 and X = 0. In a similar way, we conclude from a com-
parison of (6.33) with (6.29) that for the case of a Voigt profile, when
axQ >> 1, the equivalent width for X = 0 is asymptotically larger than for
X = 1 by the factor 2c^ = 1.67. The fact that W is smaller for X = 1 than
for X = 0 is physically quite understandable: for pure scattering line photons
that have been scattered partially escape from the boundary x = 0 causing W
to be smaller than for X = 0. For a Doppler profile the importance of this
effect is so slight that it does not affect the leading term of the asymp-
totic expansion of W(Tg). For a Voigt profile and X = 1 the effect of the
diffusely- transmitted radiation reduces the equivalent width by a factor of
1.67. It is obvious that for X < 1 this effect should be still less signifi-
cant. We conclude that in the Schuster problem the equivalent width of the
line is not very sensitive to the value of X.

The dependence of the equivalent width of the line on the number of

ij

absorbing atoms is known as the curve of growth. In constructing a family of
- theoretical curves of growth the equivalent width W should be plotted as a

function of the quantity Tq/A, rather than of tq since the latter depends not
,

only on the number of absorbing atoms and the transition probability, but al-
,

so on the form of the line (say, upon the value of the Voigt parameter a),
i' The quantity Tq/A is independent of a (for more details, see final part of
I

Sec. 2.3).

! One final observation is necessary. Until now we have always treated
Doppler and Voigt asymptotics separately. However, when a is sufficiently

I

small, for a certain range of t the Doppler asymptotics are valid for the
Voigt profile as well. If we speak of asymptotics with respect to t, then

ij this range is defined by the inequalities 1 << x << 1/a. For asymptotics
.' .with respect to z, "the Doppler region" is given by the inequalities
' 1 << z << 1/a. For ax >> 1 and az >> 1 the usual Voigt asymptotics hold.
Ij In using the Doppler asymptotics with respect to x for the Voigt case, one

should, strictly speaking, allow for the effect of the line profile on the

I

x-scale (the factor Ay = U(a,0); see preceding paragraph). However, since
the Doppler asymptotic region exists only for a << 1 (in practice for a ^

\

10-2), ^this effect can be ignored, since U(a,0} ~ U(0,0) = tt-^/^ when a << 1 .

,
DIFFUSE REFLECTION AND TRANSMISSION. Let us now consider the so-called

'J problem of diffuse reflection and transmission which is defined in the follow-
ing way. Parallel beams of radiation are incident on the boundary at x = 0

of a medium of optical thickness xq . The total flux through a unit area per-
il pendicular to the direction of inci-dence (integrated over all frequencies v)
r is Iq. The incident radiation is considered to be monochromatic with dimen-

8.7 DIFFUSE REFLECTION AND TRANSMISSION.
A MEDIUM WITH UNIFORMLY DISTRIBUTED SOURCES
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sionless frequency xq , and the angle of incidence is arc cos ijq . The medium
contains no internal sources of radiation, so that its luminescence is caused
only by external illumination. The problem is to determine the intensity of
the radiation emerging from the medium.

The intensity I(t,ij,x) of the diffuse radiation in this case is deter-
mined by the transfer equation

^dlXj^iiiiO = (a(x)+3)I(T,M,x) - ^a(x) / aCx')dx' f I (t , y '
, x '

) dy ' -

_c» _/i (7,1)

, X A , , , ,
-(a(xQ)^6)T/yo

with the boundary conditions

1(0, y,x) = 0 , y < 0 ,

I

I(TQ,y,x) = 0 , y > 0 . )

From (7.1) and (7.2) it follows that the line source function

1

(7.2)

S(t) = ^A / a(x')dx' / I(T,y' ,x')dy' + I.-^ —a(x.)e %7.3)

satisfies the integral equation

lo

0

whe re

r , Aa(x^) -t/z^
S(T) =

\ J K^(|t-t'
I

,3)S(T')dT' . Iq^ -^e
, (7.4)

^0

0 a(xQ)+f

Comparison of (7.4) and (1.17) gives

(7.5)

^^'^ ~- ^Oi7-Mr^S(x.z,;To) . (7.6)

Because the basic equations are linear, we can, without loss of generality,
assume from now on that

= 4TTAV
_ ^7^7)

0 XAa(xQ)
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The intensities o£ diffusely reflected and diffusely transmitted radia-
tion can be expressed in terms of the X- and Y- functions. Taking into account
(7.6) and (7.7), we have

1(0, y,x) = J S(T,ZQ;TQ)e ^/^dx^^ , y > 0 , (7.8)

0

""-^

-(T.-T)/Z
I(TQ,y,x) = J S(T,ZQ,TQ)e ' °

"^""iTf
, y < 0 , (7.9)

whe re

z = —Li^— . (7.10)
a(x) +6

Using (2.7), we finally obtain

X(z )X(z)-Y(z )Y(z)
1(0, y,x) = ^- ^17^ , y > 0 , (7.11)

Zq+z u y

X(z)Y(z )-X(z )Y(z)
I(Tn,y,x) = zz„^^

, y < 0 , (7.12)

where zq and z are defined by (7.5) and (7.10). These expressions give the
solution of the problem of diffuse reflection and transmission. They are a
generalization of the results first obtained by V. A. Ambartsumian (1943)
for the problem of diffuse reflection and transmission with isotropic mono-
chromatic scattering. It should be noted that for isotropic monochromatic
scattering with B 0 , the X- and Y-functions can be expressed simply in
terms of the corresponding functions for 3=0. Since for monochromatic
scattering G(z) = 1 when z < 1 and G(z) = 0 when z > 1, we obtain from (2.6)

Xj^(z;Tq,X,3) =» Xj^^z(1 + 3) ;To(1 + 3) . >
o)

Yj^(z;to.A,3) = Y^j(z(1.3);Tq(1-3)
> ^ ^ ^)

(7.13)

Thus allowing for continuous absorption, in this particular instance, turns
-out to be very simple, as it involves just the introduction of certain scal-
ing factors into the arguments

.

In the limit as Tq °° (7.11) assumes the form

H(z)H(z^) , .

1(0, y, X) = 0_zz^. (7.14)
2+zq ^ y

This expression gives the solution of the problem of diffuse reflection from
a semi- infini te medium in which both continuous absorption and the destruc-
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tion o£ photons in scattering occur. For 3=0 (7.14) reduces to the expres
sion obtained in Sec. 6.4, exce]
we are taking Iq = 47rAv/XAa (xq )

sion obtained in Sec. 6.4, except that there we assumed Ig = 1, whereas here

An analysis of the line profiles described by expressions (7.11) and
(7,12) can be performed in the same way as in Sec. 6.4 for lines formed by
diffuse reflection from a semi - infinite atmosphere without continuous absorp-
tion. Unfortunately the X- and Y-functions are still far from being complete-
ly tabulated (see Sec. 8.2). However, they can be easily found for weakly
dissipative atmospheres by using the asymptotic expressions obtained in Sec.
8.5.

The value of expressions (7.11) and (7.12) is not just that they give
the solution to the problem of diffuse reflection and transmission; they
describe as well the line profiles formed in a medium with an exponential
distribution of primary sources. In problems of practical interest, the
primary source function S^(t) can often be approximated by an expression of
the form

A ^ ^ A — / 2 •

S^(t) = 2^^i^ , (7.15)

i = l

where Si and are constants. If S-i^(t) has this form, the intensities of
the emergent radiation are equal to

aX(z)X(z. )-Y[z)Y(z. ) r ^
c 1 ^ J y

-^J ^a(x) ^ nS. z.
, y > 0

,

1 z^ +z 1 y

IU^, X(z)X(z.)-Y(z)Y(z.)

(7.16)

.;,X(z)Y(z. )-X(z. )Y(z)
^^^^

Zi +z
i = l

^

n

I(T ,y.x) = y S i i ^i^T^ , y < 0 ,

where z, as before, is given by (7.10). Let us consider one important par-
ticular case in greater detail.

UNIFORMLY DISTRIBUTED SOURCES. We assume that the internal sources are uni-
formly distributed, i.e. in (1.1) S*(t) = S* = const. Setting n = 1, Z]^ =

and S* = S* in (7.15) and (7,16), we find that

1(0, y,x) = I(T.,-y,x) = S*X(c») [X(z)-Y(z) ]z^^ , y > 0 , (7.17)

The line profile strongly depends upon the values of the parameters X,

B, and tq, and also, of course, upon the absorption coefficient profile. Let
us discuss the case of 6 = 0. In Figs. 48-51 line profiles are shown for the
case of a Doppler absorption coefficient with various values of tq and X, as

obtained numerically by A. G. Hearn (1962), Figure 52 shows profiles calcu-
lated by E, H, Avrett and D. G. Hummer (1965) (also by a numerical solution
of the equation for S(t) and subsequent calculation of the emergent inten-
sity) for several values of the Voigt parameter a, 1 — A = 10—4, a^d a series
of values of tq. It is evident from the figures that the line widens as Tq

increases. When X = 0 and tq >> 1, for an absorption coefficient with an

arbitrary profile the line will show no reversal. As 1 — X decreases, a

characteristic self- reversal appears at line center because the escape of
radiation causes the excitation to decrease toward the boundaries.
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A

-3 I I I I \ ^
0 1.0 2 0 3.0 4.0

X

Fig. 48. Line profiles formed in a

plane layer with uniformly distributed
sources. Doppler absorption coeffi-
cient, A = 0, 6=0.

-4l__J I I I 3^
0 LO 2.0 3.0 4.0

X

Fig. 49. Line profiles formed in a

plane layer with uniformly distributed
sources. Doppler absorption coeffi-
cient, A = 0.9, 6 = 0,

Comparison of Figs. 50 and 51 shows that for small 1 — X a range of tq
exists within which the line profile for a given absorption coefficient is
entirely determined by the value of tq and is independent of X (curves cor-
responding to TQ ^ 10). This indicates that a medium is weakly dissipative.
In the limiting case of a conservative medium, the line profiles in the
Doppler case have the form shown in Fig. 53 (after A. G. Hearn, 1964a). When
Tq is large, line profiles may be calculated from (7.17), using the asymptotic
forms of the X- and Y- functions obtained in Sec. 8.5. The results are com-
pletely in agreement with those obtained by numerical methods (such a compari-
son has been made by D. I. Nagirner, 1967; and by M. A. Heaslet and R. F.

Warming, 1968b).

The characteristic feature of the profiles appearing in Fig. 53 is the
trough at line center for large tq. The location of the intensity maxima can
easily be estimated (V. V. Ivanov, 1964b, 1966). Let us consider the case of
the Doppler profile as an example. From (7.17), (5.18), and (5.19) we find
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A ^ A

0 1.0 2 0 3.0 4.0 0 1.0 2.0 3.0 4.0

Fig. 50. Line profiles formed in a Fig. 51. Line profiles formed in a

plane layer with uniformly distributed plane layer with uniformly distributed
sources. Doppler absorption coeffi- sources. Doppler absorptibn coeffi-
cient, A = 0.99, e = 0. cient, X = 0.999, 6=0.

that for those values of x for which the quantity

t = ^a(x) (7.18)

is not too large, i.e. rather far from the line center,

1(0, y,x) ~ 2S*x2(-)e~^/^I^(t/2) (7.19)

2

(in the present case y = 1/2 and a(x) = e
''^

) . Differentiating this expres-
sion with respect to x and equating the derivative to zeto to determine

t = — a(x ) ,max y max
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2 3 4 5

Fig. 52. Line profiles formed in a plane layer with uniformly distributed
sources, 1 — X = 10"^ and g = 0, for three values of the Voigt parameter
a: a = 0; 0.001 and 0.01. Numbers on curves are values of = t^/A.

we arrive at the equation

or, using the well-known properties of Bessel functions,

= 0

The value of t given by the root of this equation is equal to 3.09, so
that "^^^

2

l2.e
'''"^^ ~ 3.09 .

y

Thus

max
1.13)

\l/2
(7.20)
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This asymptotic expression increases in accuracy with tg and becomes exact as

TQ In practice it may be safely used for tq > 10. From this expression
it appears, incidentally, that when line broadening is caused by the Doppler
effect, the line width provides a poor basis for determining the optical
thickness of the medium in which the line is formed. The depth of the central
reversal is significantly more sensitive to the value of tq. However, in the
case of a Voigt profile, with tq >> 1/a, the situation is reversed. In this
case the separation of the maxima increases in proportion to tq^/^, whereas
the ratio of the intensity at the maxima to that at line center increases
only as ^^1/4 (cf . Sec. 6.5).

The most important physical problem which involves the solution of the
transfer equation with a uniform distribution of primary sources is the cal-
culation of the radiation field and the degree of excitation in a homogeneous,
isothermal layer of gas of two-level atoms. If the upper level is populated
by electron impact and by photo - exci tation arising from the self - radiation
of the gas, and is depopulated by downward radiative transitions and colli-
sions of the second kind, and no absorption or emission in the continuum
occurs (3 = 0) , then

S* = C1-A)B (T)
,

^0
(7.21)
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X =

A
21 e 21

(7.22)

In this case the quantity (1 — X)I(0,l,x)/S , the logarithm of which appears
as the ordinate in Figs. 48-52 , is obviously equal to I (0 *1

, x) /ByQ.(T) . It. is
evident from the figures that for weakly dissipative media the intensity in
all frequencies is much smaller than Planckian. Consequently, at all depths
the degree of excitation is small compared to the value given by the Boltzmann
formula. As the dissipation measure oj increases, the maximum value of the
intensity approaches the Planck intensity and the degree of excitation in the
center of the layer becomes close to the Boltzmann value. For w >> 1 there
is a region at the center of the layer where conditions are close to LTE
(Figs. 54-56, after E. H. Avrett and D. G. Hummer, 1965).

A more detailed discussion of this problem, particularly its physical
aspects, and additional numerical results are given by A. G. Hearn (1962,
1964b) and E. H. Avrett and D. G. Hummer (1965); see also the next two sec-
tions .

Recently F. B. Fuller and R. F. Warming (1970) considered the radiation
field in a medium with a source distribution of the form Si (t) = t^, n =

0,1,... We note in passing that the main results of this paper are readily
obtained by expanding (7.4), (7.8) — (7.9) and (7.11) — (7.12) in powers of

BASIC EQUATIONS. Let us return to the problem studied in Sec. 7.6, retaining
all the assumptions used in that section except that we now take the 'line
center optical thickness of the layer to be equal to tq , instead of being
infini te

.

If Planck's function is set equal to unity, the integral equation for"
the line source function S(t) for the problem at hand has the form

1/z

8 8 LINE FORMATION IN AN ISOTHERMAL ATMOSPHERE

(8.1)

0

A

where the primary source function S, is equal to

(8.2)

0

The intensity of the emergent radiation is given by

dr

y
y > 0 (8.3)

0
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log VtF T

Fig. 54. The source_ function in a plane layer of optical thickness

TO = (l/v'TTjlO^ with uniformly distributed sources. Doppler
absorption coefficient. Dotted line — source function for
T„ = and 1 - X = 10-4.

A line appears superimposed on a continuum whose intensity can be obtained
from (8.3) by setting x = °o

:

-6T„/y
l(0,p,=°) = l(TQ,-y,oo) = 1 - e

, y > 0 . (8.4)

We note that Qtq/\i is just the continuum optical thickness o£ the layer mea-
sured along the beam.

We wish to find the profile of the line and to determine the source
function, i.e., the depth dependence of the degree of excitation. A great
deal of important information can be obtained directly from an analysis of
the basic equation for the source function, without actually solving it.
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'00

I

o

10^
10=

DOPPLER PROFILE
VOIGT PROFILE a^O.OI

l-X=IO-^

J \ \ L_
2 3 4 5

log r/A

7 8

Fig. 55. The source function in a plane layer with uniformly distributed
sources for the Doppler and Voigt (a = 0.01) profiles with
6=0, 1 — X = 10-4 for several values of Tj/A, as indicated
on the curves. Source functions are plotted only for 0 < x < Tq/2.

THE SOURCE TERM. We shall start with a consideration of the source term Sj.
The expression (8.2) can be rewritten in the form

sJ(t) = 1-X-b|k2o(t,S) -6|k2o(to-t,6) , (8.5)

or

s*(T) = i-x+e| J K^^(t,B)dt + 6- f K^^(t,3)dt (8.6)

It is obvious that S-j^ (and therefore S) is symmetrical relative to t = Tq/2 :

. S*(t) = S*(Tq-t) . (8.7)

Since Kii(t,6) is positive and decreases monotonically with t, the function
S*, as follows from (8.6), reaches its maximum at the center of the layer
(at T = To/2) . It is readily shown that for < «

522-519 O - 74 - 28
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i-X = io-^

1 1 1
1 1 1 1 1 III*

2 -10 12345678
log TTT

Fig. 56. The source function for the same values of the parameters as in
Fig. 55, for the Lorentz profile.

S^(Tq/2) < 2S^(0) . (8.8)

Actually, by virtue of the monotonicity of K^-j^(t,B) we have

T

/K^^(t,3)dt < I K^^(t,6)dt + / K^^(t,3)dt <

/
0

To/2

.< 2 / K-^^(t,B)dt < 2 I K^-^Ct,B)dt ,

0

(8.9)

which in combination with (8.6) leads to (8.8)

From (8.6) and (8.9) it follows that if

0

1 - A >> XB / K-^^(t,B)dt
, (8.10)
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excitation of atoms by the continuum radiation is negligible compared to col-
lisional excitation, and if

1 - A «
I y K^^(t,6)dt

, (8.11)

0

the initial population of the upper level is excited by continuum radiation.

When the optical thickness of a medium is large (xg >> 1) , rather sim-
ple sufficient conditions can be obtained for the relation (8.10) to be valid.
Since for Tq < °°

J K^^(t,3)dt < j K^^(t,6)dt = 6(g) ,

0 0

the inequality (8.10) will be satisfied if

1 - X >> XB6(6) . (8.12)

We can obtain another sufficient condition if we note that for 6 > 0

Therefore, if

K^^(T,e) < K^^(t,0) e K^^(t) .

1 - A >> XB J K^-j^(t)dt ,
(8.13)

0

the inequality (8.10) will also be satisfied. According to (2.6.38), for
sufficiently large values of t,

K^l(T) ~ A^I|lix'(T)
,

(8.14)

and, consequently, if a line has infinite wings,

J K^^(t)dt ~ A^i|llx(TQ) .

0

Therefore, when is large enough, the condition (8.13) assumes the form

1 _ X » X6AlIilix(xQ) . (8.15)
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Specifically, for the most important profiles:

Doppler: 1 - X >> X6

—

/In Tq (8.15a)
/it

Voigt: 1 _ X >> X64 (U(a,0)aTg)-'-/^
,

ai^ >> 1 , (8. 15b)

Lorentz: 1 - X >> ^6 4^ "^q
"'^^^

* (8.15c)
7

In the limiting case of a strongly dissipative medium (co >> 1), the condition
(8.12) is identical to (8.10). However, if the dissipation measure is not
large (oj < 1), the inequality (8.12) imposes upon 1 — X more stringent limi-
tations than (8.10). In this case it is preferable to use (8.15) instead of
(8.12). In the limiting case of a weakly dissipative medium (o) << 1) of large
optical thickness, (8.12) is identical to (8.10).

LIMITING CASES. If the inequality (8.10) is satisfied, the situation is
greatly simplified, since the primary source function may be taken as equal
to 1 — X. Thus we recover the problem of calculating the radiation field in
a medium with a uniform distribution of sources, which was studied in the
preceding section. It must be noted that the intensity of the emergent radia-
tion should be found from the expression (8.3), i.e. to the intensity of the
diffuse radiation, found in Sec. 8.7, one must add the intensity of the con-
tinuum radiation that escapes from the medium without scattering. The final
expression is

1(0, M,x) = I(TQ,-y,x) = i|(l-X)X(cc)[X(z)-Y(z)]a(x) +

+ Bll-e
'^^^

l{ , M > 0
,

(8.16)

where

a(x)+3

Until now we have focused our attention on the simplifications that
arise from the domination of one of the mechanisms for the primary population
of the upper level (collisional excitation or excitation from continuum) over
the other. Now we shall study simplifications that arise for other reasons.

If the dissipation measure of the medium is small (to << 1) , then to a

good degree of approximation the medium can be regarded as conservative (see
Sec. 8.3). In this case the line source function S(t) can be found from the
following equation instead of (8.1):

S(

}0
t) =

J y K^(|t-t' nS(T')dT' + S*(t) , 03 << 1 , (8.17)

where the primary source function S2(t) is given by (8.2). Further, since
the medium is weakly dissipative, then Tq << 1/B and 1 - X << 1. Therefore
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in (8.2) the function AK]_x(|t-t'
|
,6) can be replaced by Kii(|t-t'

|

,0) e

Kii(|t-t'|) (see Sec. 7.1), so that (8.2) assumes the form

S*(t) = 1-X+l J K^^(t)dt + 1/ K^^(t)dt , to << 1 . (8.18)

0 0

Substituting this expression into (8.17), we find that the source function
S(t) can be rewritten in the form

S(t) = (I-A)S^(t) + BS2(t) , 0) << 1 , (8.19)

where S-|^(t) and S2(t) are the solutions of the equations

^0

=
I J*

K^(|t-T' |)S^(T')dT' + 1
,

0

(8.20)

S2(0 =
y
/k^(|t-t' |)S2(T')dT' +

I J K^^(t)dt +
I f K^^(t)dt . (8.21)

It is very important that Si(t) and S2(t) depend only on t (and xg), and not
on X and 6. Thus when the medium is weakly dissipative, the dependence of
the source function on the parameters X and 3 is found to be extremely simple.

If, in addition to the condition oj << 1, either the inequality (8.15) or
its opposite is satisfied, further simplifications arise. In the first of
these cases one may set

S(t) = (I-X)S^(t) , (8.22)

and in the second

S(t) = aS^d) . (8.23)

It should also be noted that when tq is large the ratio Si(t)/S2(t) will de-
pend very weakly on x since the free term of equation (8.21) varies in this
case within narrow limits.

Now let us discard the assumption that the dissipation measure w of the
medium is small. As before, we shall consider the dissipation per scattering
1 — X to be small, and co to be arbitrary. In this case, too, it is found that
for XQ >> 1 we can obtain important information about the depth- dependence of
the source function without solving the equation for S(x). As was shoAvn

above, the primary source function S*(x) has its maximum at x = xo/2, so that
for X << xq
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T
J.0

f sJ(T)dT <<
J sJ(T)dT

0

The considerations of Sec. 7,7 therefore make it possible to assert that when
T is much smaller than the thickness of the boundary layer T\y (and if tq < n^,
then when t is significantly smaller than tq/2), the source function S(t)
should be asymptotically proportional to the solution of the generalized Milne
probl em S

(

t) , i.e.

S(t) = S(Tq-t) - S(0)S(t)
^

(8.24)

for

T << min

The fact that the source function increases in proportion to S(t) from
the boundary down to rather large depths allows us to draw a useful qualita-
tive conclusion about the form of the central parts of the line. That is to
say, it can be asserted that in the central region of the line the intensity
should depend on frequency in approximately the same way as in the generalized
Milne problem, i.e. the intensity should increase with the distance from the
line center.

NUMERICAL DATA. Let us proceed to a discussion of the available numerical
data. All of this material is from the work of D. G. Hummer (1968) and was
obtained from a numerical solution of the transfer equation by the method of
discrete ordinates. The depth dependence of the line source function S(t)
for media with t o

= fT— 10 ^ and to = ''t—1/2 10 4 is shown in Fig. 57. We recall
that we have set Bvf,(T) = 1 for simplicity. These results are for the
Doppler profile and 1 — X = 10—6. por all values of g shown on the curves
for the case of To = 'n—1/2 10

2 , the dissipation measure w of the medium is small
and decreases as B decreases. The curves for To = 'n—l/2lo4 show the transition
from weakly dissipative (3 ~ /tt 10—5) to strongly dissipative (3 ~ /ir 10—4)
media.

—1/2 2
For Tq = -n '10 the continuum optical thickness Btq of the medium is

small for all values of 3 appearing in Fig. 57. Nevertheless the continuum
exerts a tremendous influence on the line source function because when 1 — A

is small the primary excitation by continuum radiation dominates the electron-
impact excitation (curves with 3 ~ /tt 10—6). has been explained above,
in this case the line source function is given by (8.23). It should be pro-
portional to 3, i.e. the shape of the graph of S(t) should not depend on 3.

These conclusions are well illustrated by the curves corresponding to 3 =

/rf 10—5 ^ ^ 10—4 (for 3 = /rT 10—3 dissipative processes begin to be
felt, and for 3 = /rf 10—6 the role of electron impact in primary excitation
becomes significant). The similarity in the shape of the curves for 3=0
and 3 = /tt 10—5 is in accordance with the approximately constant value of the
ratio S^(t)/S2(t) discussed above.

—1/2 4
A consideration of the three lower curves for tq = tt 10 once again

illustrates that the dependence of S(t)/S(0) upon X and 3 is very weak for
media with co << 1. When the dissipation measure is large the source function
S(t) for T < tq/2 coincides almost exactly with the corresponding source func-
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Fig. 57. The source function in a homogeneous isothermal layer with a

Doppler absorption coefficient, t /ri" = 10^ and 10^ and
1 - X = 10-6. 0

tion for a semi-infinite medium (in Fig. 44, p. 341, and Fig. 57 the curves
for B = /tt 10—3 ape indistinguishable).

In Table 42 values of S(t)/S(0) are given for tt-^^^tq = 10^ and 10"^, with
several values of 6 and 1 — X = 10—6 (Doppler profile). A comparison of
Table 36 (p. 340) and Table 42 shows that near the boundary the source func-
tion is proportional to the solution of the generalized Milne problem, in
agreement with the conclusion reached earlier.

The intensity of the radiation in the direction y = 1 ,
corresponding to

each source function shown in Fig. 57, is given in Fig. 58. The line pro-
files are complicated, and in many cases the distinction between an absorp-
tion and an emission line is meaningless. The equivalent widths of such
lines have very little physical significance.

The depth dependence of the source function for a Voigt profile, with
several values of tq and 6, is shown in Figs. 59-61. When the Voigt parameter
a is small and tq << 1/a, we expect that the source function will differ
little from the corresponding source function for a = 0, i.e. for the Doppler
profile (see end of Sec. 8.6). The closeness of the curves for a = 0 and
a = 10~3 in Fig. 59 shows that even for aiQ of order unity, the deviation of
the absorption coefficient from the Doppler form has little effect. However,
when aT„ is large the form of the profile has a significant effect on the
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TABLE 42

THE FUNCTION S(t)/S(0) IN A HOMOGENEOUS ISOTHERMAL LAYER

(DOPPLER PROFILE, 1-A=10"^)

T /ir t/tt
0

0 10
- 7

10
-6

10
-5

10
- 4 10"

1 1

.

67 1 . 68 1 . 70 1 . 71 1 . 71 1.71

10 4. 54 4. 63 4 . 78 4. 83 4 . 83 4 . 76

50 8. 12 8 . 33 8. 71 8. 83 8 . 80 8.37

10^ 1 1. 68 1 . 68 1 . 69 1 . 69 1

,

69 1 . 70

10 4, 81 4 . 83 4 . 87 4. 88 4. 87 4 . 79

100 16 . 9 17. 1 17 . 4 17. 4 16 . 7 12 . 8

500 30 . 3 30 . 8 31

.

5 31

.

4 28. 1 16 . 0

A B

0 I 2340 I 234
X

Fig. 58. The intensity of normally emergent radiation from a homogeneous
isothermal layer (Tq>^ = 10^ and 104, 1 — A = lO"^, Doppler
profi le)

.
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^ A/3 =10"

.41
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/A= 10-

= 10"

a =0_
a = 1 0_
a^lO

0 I 2

log r/A

Fig. 59. The source function in a homogeneous isothermal layer with
tq/A = LO-^, 1 — X = 10-6, fQj. various values of the Voigt
parameter a.

depth dependence of the source function. A detailed comparison and discus-
sion of the features of the curves shown in Fig. 45 (p. 342) and Figs. 59-61
has been given by D. G. Hummer (1968). The most outstanding feature of these
curves is the fact that as a increases, the values of S(t) near the boundary
increase for strongly dissipative media (see Fig. 45, p. 342) and decrease
for weakly dissipative media (Fig. 59). The intersection of the curves in
Figs. 60 and 61 indicates the transition between these limiting cases.

8.9 MEAN NUMBER OF SCATTERINGS

BASIC RELATIONS. The mean number N of scatterings experienced by photons of
the diffuse radiation field, for a given primary source function S^(t) with
the normalization

/ S-^(T)dT = 1 (9.1)
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-2-10
1 2 3 4

log r/A

Fig. 60. The source function in a homogeneous isothermal layer with
tq/A = 104, 1 _ A = 10"6 for various values of the Voigt
parameter a.

is obviously equal to (for details, see Sec. 6.8)

^0

^ ^ y S(T)dT . (9.2)

0

This expression (and all the following analysis) is valid for arbitrary 3^0.
We shall consider the primary emission of a line photon as its first scatter-
ing.

At depth T = T, a plane isotropic source is emitting in line frequencies.
Then

I

S*(T) = 6(T-T^)
,

and the source function S(t) is equal to the Green's function:
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-2 -10 1 2 3 4 5 6

log t/A

Fig, 61. The source function in a homogeneous isothermal layer with
tq/A = 10^, 1 — X = 10"^, for various values of the Voigt
parameter a.

S(t) = r(T,T^;TQ) + 6(t-t-^) . (9.3)

Denoting the mean number of scatterings in this case as 17(1 -t^), we have
from (9.2) and (9.3)

N(t^;tq) = 1 + y r(T,T^;TQ)dT (9.4)

Setting z = oo in (2.2), we find

N(t^;Tq) = S(t^,oo;Tq) .

' (9.5)
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Therefore according to (1.17) N(t;to) satisfies the equation

^0

N(t;Tq) =
I J'k^CIt-t- I

,B)NCt' ;TQ)dT' + 1 , (9.6)

i.e., is equal to the source function in a medium in which Si = 1. Its expli-
cit expression in terms of X(«>) and the resolvent function $(t;to) follows
from (9.5) and (1.22) :

N(t ;Tq) = X(oo;Tg)h + f $(t;TQ)dt - J <I'(TQ-t;TQ)dtj . (9.7)

^ When the source distribution is described by the primary source function
S^(t), then

^0

S(t) = S*(t) + J sJ(T^)r(T,T^;TQ)dT^ , (9.8)

0

*
and if we assume that S, (t) is normalized according to (9.1), then (9.2) and
(9.4) give

f sJ(T)N(T;TQ)dT . (9.9)N =

0

Thus, if equation (9.6) is solved, i.e. if the source function is known for a

medium with a uniform source distribution, the mean number of scatterings
for any source distribution can be found by simple integration. In this con-
nection it is worth recalling that numerical solutions of (9.6) have been
published by several authors (for references, see Sec. 6.7).

From (9.9) it follows that whatever the dis^tribution of sources, the
mean number of scatterings cannot be less than N(0,Tq), nor can it exceed
N(Tq/2; Tq), i.e.

N(0;Tq) < N < N^Tq/2; Tq^ , (9.10)

or, if (9.5) and (2.55) are used,

X(oo;Tq) < N < x2(»;Tq) . (9.11)

The more strongly the sources are concentrated toward the center of the layer,
the closer N is to N(tq/2;tq). However, even for a uniform distribution of
sources the mean number of scatterings differs from N(tq/2;tq) by less than a

factor of two (V. V. Sobolev, 1967b). Moreover, it is only when the sources
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are much weaker deep within the medium than near the boundary that the mean
number of scatterings approaches its minimum value o£ N(0;Tg) = X(o°;tq).
Incidentally, the relation N(0;Tq) = X(oo;Tq) elucidates the physical signifi-
cance o f X (o°)

.

We note that for 1 — X << 1 and Tq >> 1

N(T;Tg) = N(Tq-t;Tq) - X(oo;tq)S(t) , t << min(T^,TQ/2) . (9.12)

The large-scale behavior of N(t;to) in the conservative case (physically,
for weakly dissipative optically thick media) is

T ^^xY(l-x)^
N(xTr,;T^) , w << 1 , >> 1 . (9.13)

0 0 r(2Y + l)Kl/To) ' ' 0

This expression is valid for distances from the boundaries that are large
compared to the mean free path of a line center photon. It is readily ob-
tained from (9.7) with the help of (5.56).

Comparison of (9.12) and (9.13) suggests an asymptotic expression for
the mean number of scatterings that is valid for an arbitrary x, 0 < x - Tq

,

provided that Xq >> 1 and co << 1:

2

N(x;x.) ~ lLIXls(x)S(x -X) . (9.14)
" 2r(2Y) ^

This simple expression, which was found by A. P. Napartovich (1969), properly
describes both the boundary regime_(9 . 12 ) and the large-scale behavior (9.13)
of the mean number of scatterings N(x;xq).

UNIFORMLY DISTRIBUTED SOURCES. For a medium with uniformly distributed
sources (S* = const.), the mean number of scatterings, which we shall hence-
forth denote as Ng , can be expressed in terms of X(oo) . From (9.9) and (9.5)
we have

^0

Nq = Js(x,oo;xQ)dx . (9.15)

° 0

Setting z = 0° in (2 . 7) , we find

^0

J*e"^/^S(x,<»;Xg)dx = X(oo
; x^ ) [X ( z

;
x^ )-Y ( z

; Xq) ] z . (9.16)

0

letting z go to infinity and using (2.33) and (2.34), we get

J S(x,-;xQ)dx = X(-;Xq) [y^(xQ)-x^(xQ)] , (9.17)
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so that

X(«';t )

Nq = —[y^(T^)-x^iTQ)] . (9.18)
"^0

^0

Finally, using (2.42) we have

Nq = ^ y X^=°;T)dT . (9.19)

° 0

We note in passing that by combining (9.19) with (2.26') we obtain an alter-
native representation of Ng in terms of the X- and Y-functions. We shall not
reproduce it here since it is not used below.

Let us discuss the most important special cases in a little more detail,
beginning with monochromatic scattering in an optically thick layer.

In Sec. 8.4 it was shown that '

-1/2 ^'^^O'^^^e^
Xj^^(co;tq) = (1-X) ^/"th ^y—^ + ••• (9-20)

Hence, having rewritten (9.19) in the form

N,^ = ^ (1_X) ^

J
th^ \ dx ^

J
(x^(oo;,) __l_th2-_^jdx

for >> 1 we get

N
^

where

(l_A)-l|^l - J- ^thll^l^^^Iil-th kTg - |(1-X)Q^ + ...j , (9.21)

n 2 12 k(T+2T )\

0

-1.
The neglected terms in square brackets in (9.21) are o(to ) as tq ~. In
particular, for kig >> 1 and 1 — A << 1

Nq^ = (1-A)~^fl - ^ + ...1 , (9.23)

and for kXp -> 0

2

Nq^ = ^+|q(-)x + 3q2(-)+l22[a3q(co)_aJ ^ ... , (9.24)
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where the a- are the moments of the conservative Ambartsumian H- function:

and q(<») = 0.710446 ... is Hopf's constant.

The curves of Ng^ versus tq are shown i_n Fig. 62 for several values of
X. For weakly dissipative media (o) << 1) ,

Nq grows with tq in approximately
the same way as for the conservative medium. For larger values of tq, when
to becomes of t_he order of unity, saturation sets in, and for strongly dissi-
pative media Nq is close to its maximum possible value (1 — X)—1.

The general features of the behavior of Ng discussed in the preceding
paragraph are clearly valid for an arbitrary_line profile. Although the
general asymptotic (tq >> 1) expression for Ng , valid for an arbitrary dissi-
pation measure and an arbitrary line profile, is unknown, its limiting forms
for strongly and weakly dissipative media are easily obtained.

Let us first consider strongly dissipative media (w >> 1). We shall
assume that continuous absorption is negligible (B = 0). From (9.19) and
(5.85) we get

Fig, 62. Mean number of scatterings in a layer with uniformly distributed

sources (monochromatic scattering).
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r
'0

-1
1 _^ J_ /"k + Od/Tp) . (9.25)

I£ a line has infinitely extended wings, the integral appearing in this for-
mula diverges as Tq <». Since, according to (2.6.40),

^0

j'K2(t)dT ~ 2AnilJx(To)
,

0

(9.25) can be rewritten in this case as

,-1
Nq = (1-X) ^ZaUIiI + 0(l/j ) . (9.26)

-A 2y+1 ^0 J
0

1 -
1-A 2y

Of much greater interest is the case of a weakly dissipative optically
thick medium. From (9.19) and (2.60) (or directly from (9.13)) it is readily
shown that

where

r = . (9.28)
0 24y-' ^ ^ '+ 2^2^2Y + 3

j
Specifically, for the most important line profiles:

Milne : N^^ ~ ^ ^ ^ '
(9.27a)

Doppler: Nq° ~ —Iq/ItTT^
,

(9.27b)

Lorentz: n/ ~ ^TT^^o'^' •

2 TT

For the Milne (rectangular) and Doppler profiles, the asymptotic forms (9.27a)
and (9.27b) can be refined. The refined form of (9.27a) is given by (9.24).
For the Doppler profile it may be shown (V. V. Ivanov, 1970b) that

N„°^ (./4,l/^„(.„x„,l/2[l 0((.nx„)-^)] -

(9.27e)

TT-*-/^ rn ^l/2ri 0.40454 ^ ,-2^
= - T^iln Tq)

1^1
- - 0((£n Tq) )
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Estimates for the higher-order terms in [9.27c) and (9.27d) are unknown.

Table 43 gives values of Nq found by E. H. Avrett and D. G. Hummer (1965)
from a numerical solution of the equation for the source function for 3=0
and Si = const, using (9.2). Values of Nq for the limiting cases tu << 1 and
0) >> 1 agree well with those obtained from the expressions derived above.

HOMOGENEOUS SPHERE WITH UNIFORMLY DISTRIBUTED SOURCES. Let us now find the
m.ean number of scatterings of a photon in a homogeneous sphere with uniformly
distributed sources (V. V. Ivanov, 1969). If the optical diameter of the
sphere is tq, the line source function is the solution of the equation

S(T) =
4tt

exp(-6|T-T' |)M2(|t-t' I)
S(T')dT' + 1 (9.29)

T—

T

in which integration extends over all t_' with J_x'

mean number of scatterings will be denoted by Nq

^0

To/2

24

T 3
0 0
/ S

(

t) T dx

< Tq/2. The corresponding
C lear ly

,

(9, 30)

We set, for 0 < t < Tq/2,

TABLE 43

MEAN NUMBER N^ OF SCATTERINGS FOR A UNIFORM DISTRIBUTION OF SOURCES AND B = 0

log(l-X)
a

- 4 -6 - 8

0 2 8 20 + 1 8 28 + 1 9 09 + 1

4 5 52 + 3 1 34 + 4 1 36 + 4

6 9 88 + 3 6 10 + 5 1 71 + 6

8 1 00 + 4 9 90 + 5 6 45 + 7

0. 001 2 7 95 + 1 8 05 + 1

4 2 71 + 3 3 77 + 3

6 7 22 + 3 2 60 + 4

8 9 60 + 3 2 15 + 5

0.01 2 6 51 + 1 6 56 + 1

4 8 27 + 2 9 03 + 2

6 4 51 + 3 8 30 + 3

8 8 87 + 3 7 71 + 4

00 2 8 14

— - 4 8 31 + 1

6 7 72 + 2

8 4 52 + 3

522-519 O - 74 - 29
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S^(t) = (T-TQ/2)S(T-Tg/2) (9.31)

and extend Sj^(t) to Tq/2 < t < Tq in such a way that

S^Ctq-t) = -S^(t) . (9.32)

It is readily shown (see Sec. 2.4) that S^(t) is the solution o£ the equation

S;^(T) =
I

/ K^(|t-t'
I

,S)S^(T')dT' + t-Tq/2 . (9.33)

Using (9.30) — (9.32), one can show that

% = J S^(T)TdT
, (9.34)

^0 0

or, if use is made of (9.33),

_*

0 '0 0

where s^(t), i = 0,1, are the solutions of the equations

s.(t) =
^ J K^(|t-t'

I

,B)s. (T')dT' + , i = 0,1 .

0

(9.36)

The integrals appearing in (9.35) can be expressed in terms of the stan-
dard functions of radiative transport theory. Indeed, we have

2 9
Sq(t) = S(t,";Tq)

;
s^(t) = limz — S(t,z;Tq)

, (9.37)

where S(T,z;Tg) is the usual auxiliary function defined by (1.17). Proceed-
ing from either of the equations (2.7) and using (9.37) and (2.33) — (2.34),
after some manipulation we obtain

—

*

^0
=̂

:r3[^1^^0^y2^'^0^-^l^'^0^^2f^0^ - i^f~'^0^(y3^^0^-^3^^0))
"

-|TQX(cc;TQ)(y2(Tg)-X2(To))j .

(9.38)

This expression for N„ is valid for arbitrary t^. A, and 3 and an arbitrary
line profile.
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In the conservative case we find from (9.38), using (2.60) and (5.8) —
(5.10), that

A

^0 ~ iTirn^o'" > - = 0 « -0 ~ '
^9.39)

K1/Tq)

where

C* = 3^2 ^'^ ^(2y + 3) "(^-V^) . (9.40)

Comparison of (9.39) and (9.27) shows that the asymptotic value of the mean
number of scatterings for a homogeneous sphere of optical diameter tq >> 1

and for a plane layer of thickness tq has the same functional^ dependence on
Tg. As one would expect, the difference in geometry causes Ng* to differ
from No by a constant factor of order of unity, namely.

In the particular case of the Doppler profile the asymptotic form (9.39)
can be refined. It can be shown (V. V. Ivanov, 1970b) that in the conserva-
tive case for Tq >> 1

* 3 1/2
^0 = 16 " ^0

r *
>l/2

-,
3+8iln2-4Y ^ r^fm ^-2\

(InTf.) 11 i— + 0 ((£n Tf.) )

L 8£n Tq ^
.

3 1/2 ^^/^L 0. 77954 ^ nfror. -r ^'h= / XQ(£nTQ)
^1

- . 0((to Tq) )

(9.42)

The derivation of this expansion is omitted.

CONCLUDING REMARKS. In a similar way it is possible to estimate the mean
number of scatterings in other cases as well. Usually the exact value of
N is of less interest than an estimate of its order of magnitude. Sometimes
one can obtain this estimate without determining the source function, as was
done for a medium with uniformly distributed sources. As an example, we shall
estimate N in the problem considered in Sec. 8.8. As has already been noted,
the primary source function S]^*(t) in this case has its maximum at t = to/2
and its minimum at t = 0. Consequently, from (9.9) we obtain the following
rigorous estimates for N:

S*(0)
0)dT

or
*

5^(0)
<
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Since SjCt) varies within narrow limits, this inequality imposes rather nar-
row limits on N/Nq . We note that the estimates o£ N for this problem obtain-
ed by D. G. Hummer (1968) are incorrect, since his original expression for N
in media with 3 / 0 is erroneous.

Estimates of the mean number of scatterings have been discussed by V. A.
Ambartsumian (1948, 1960), V. V. Sobolev (1966, 1967b, c), D. G. Hummer (1964),
D. E. Osterbrock (1962), E. R. Capriotti (1965) and others to whom we direct
the reader for further information.

ENERGY BALANCE IN A MEDIUM. Energy released within a medium in line frequen-
cies is either absorbed or escapes. For media with negligible continuous
absorption (3 = 0) the relative importance of the two processes can be esti-
mated when the mean number of scatterings is known. When 3=0, the proba-
bility 1 — X of photon destruction times the mean number of scatterings N
gives the fraction of the energy expended in primary atomic excit^ation that
is reabsorbed in multiple scatterings. The quantity 1 — (1 — A)N is the mean
escape probability, i.e. the fraction of the released energy that escapes
from the medium.

For media with 3 7^ 0 the situation is different, since photons are de-
stroyed both in scattering processes and in fl_ight. Hence, to obtain the
mean es£ape probability one has to know both N and the mean photon path
length T. Since the probability of photon destruction per unit optical path
is 3, the total probability of photon dest_ruction in flight is 3T, and the
mean escape probability is 1 — (1—A)N — 3T.

BASIC RELATIONS. To find T we can proceed as follows. In the stationary
case the ratio of the total radiant energy present in the medium to the ener-
gy released by primary sources per unit time is clearly the mean time that
the photon spe_nds in flight. Multiplying this ratio by the velocity of light
c, we obtain T.

Since T depends only on the distribution of primary sources, and not on
their absolute strength, without loss of generality we can assume that

Let us denote by p(t) the radiation density integrated over all line frequen-
cies at depth t. From the argument of the preceding paragraph we have
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1 (10.1)

0

T

(10.2)

0

or, using (1.50),

(10.3)

0 0
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Therefore, i£ the source function is known, one can obtain T by simple inte-
gration. One can also express T in terms of the intensities of the emer-
gent radiation

T = 1/2 J [2N - (l(0,z')H-I(TQ,-z')z')]GQ(c')dz'
, (10.4)

0

where N is the mean number of photon scatterings and I(t,z) is related to the
intensity of radiation I(t,p,x) by (1.37). We omit the derivation of this
express i on

.

It can be shown that to find T in a layer with given optical properties
and an arbitrary source distribution it suffices to solve the basi^c integral
equation (1.1) with a particular source term S2(t). Indeed, let T(t-|^;tq) be
the mean path length of a photon in a layer with the source at depth t = t-^.

The source term in this case is S]^(t) = 6 (t— T]^) , where 6 is the Dirac delta-
function, and the source function is

S(t) = 6(t-t^) + r(T,T-^)
, (10.5)

where r(T,T]^) is the resolvent of the basic integral equation. The mean
length of a photon path in a layer with an arbitrary source distribution nor-
malized according to (10.1) is obviously

_ ? . _
T =

J
S^*(T)T(T;TQ)dT . (10.6)

0

Hence to find T for an arbitrary source distribution it_ is sufficient to ob-

tain T(t;Tq). Let us derive the integral equation for T(t;Tq).

We proceed from the identity

y* K^^(|t-t'
I

.6)dT = y*(2-e-^'/"'-e ^ ""^^
)GQ(i;')dz' (10.7)

0 0

which is easily verified with the help of (7.1.13). Let us consider, further,

the usual auxiliary function S(T,z;Tg), which is the solution of the equation

S(t,z;To) =
^ y K^(|t-t'

I

,3)S(T' ,z;TQ)dT' + e . (10.8)

0

It is related to the resolvent V by

lo

S(t,z;Tq) = e--^/^ + j e"^ ' / (t
,
x '

) dx ' (10.9)
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Substituting (10.7) and (10.5) into (10.3) and using (10.9), we get

T(t;tq) =
I
y* [2S(t,~;Tq)-S(t,z' ;Tq)-S(tq-t,z' ;Tq)]Gq(^ ')dz' • (10.10)

0

Comparing (10.10) and (10.8), using the superpos_ition principle and recalling
(7.1.13) we arrive at the desired equation for T(t;tq):

T(t;Tq) Kj(It-t'
I

,6)T(T' ;TQ)dT' +T*(t;Tq)
, (10.11)

where

^.0 lo-"^

T*(t;Tq) = K^^(t' ,3)dT' + K^^(T',6)dT' . (10.12)

0 0

A is

Setting A = 0 in (10.11) we find T(t;to) = T (t-.tq); thus T is the mean op-
tical path length of the first flight of a photon born at a depth t. If
(10.11) is solved, we can use (10.6) to obtain T for a given source distribu-
tion Sj(t). There is no need to find in advance the source function corre-
sponding to S*(t).

ESTIMATES AND ASYMPTOTIC_FORMS . Equation (10.11) can be used to impose close
bounds on T(T;Tg). Let N(t;tq) be the mean number_of scatterings of a photon
born at a depth t. In Sec. 8.9 it was shown that N(t;to) satisfies the equa-
tion

N(t;Tq) =
I

/ K^(|t-t'
I

,B)N(T' ;TQ)dT' + 1 . (10.13)

0

_*
Let us compare (10.12) and (10.13). According to (10.12), T (t;Tq) varies
within narrow limits:

^.0 lo

i J K^^(t' ,3)dT' < T*(t;Tq) < f3)dT' < T (t;tJ < / K^^(T',6)dT' . (10.14)

Hence

,

T

T(t;Tq) = t(T;TQ)N(T;TQ) J K^^(T',6)dT'
, (10.15)

where

1/2 < t(T;TQ) < 1 . (10.16)
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Therefore_j_ knowledge o£ N(t;Tq) enables one to obtain rather accurate esti-
mates of T(t

; Tq) •

For a layer with an arbitrary source distribution we obtain from (10.6),
(9.9), and (10.15)

T = Nt / K^^(t' ,6)dT'

0

(10 .17)

where

1/2 < t < 1 (10. 18)

We note in passing that for monochromatic scattering with 3=0

XT(t;tJ = N(t;tJ - 1
, (10 . 19)

which follows from (10.11) and (9.6). Hence, for an arbitrary source distri'
bution

AT = N - 1 . (10 . 20)

The physical significance of this result is that for monochromatic scatter-
ing, the mean optical path length per scattering is unity.

Let us consider in a little more detail the case of a layer with uniform-
ly distributed sources. The corresponding mean photon path length will_be
denoted by Tg . Combining (10.4) with (7.17) and (9.19) we can express Tg in
terms of X- and Y- functions, namely

Tg = (1/

0

r
J x2(=o;T)dT-X(oo;TQ)[x(z' ;Tq)-Y(z' ;Tg)]z'

0

Gg(c')dz' .(10.21)

This expression can be used to find the asymptotic form of Tg for large tq
in the conservative case. Vie quote the result, omitting the proof. It can
be shown that if a line has infinitely extended wings,

0

(1-Y) (2Y-M) ^^^0^

4y ^'(^0^

where y is the characteristic exponent.

In particular, for the Doppler profile

7?T D

, 0) = 0 , Tp, (10.22)

0
(10. 22a)
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while for the Voigt and Lorentz profiles

t/ ~ T^ ~ C9/4)Tq (10.22b)

For 0 < Y < 1/2 equation (10.22) can be rewritten in the form

. ^ (1-Y)(2y-^1) ^
0 4y(1-2y) 0

(10 .23)

The functional dependence of Tq on tq is in this case universal. The fact
that Tg grows proportionally to tq implies that for y < 1/2, the zigzag
nature of the trajectories can be ignored. This conclusion was already
reached in Sec. 7.3 from other considerations; cf. also Sec. 4.5. According
to (10.22a), for the Doppler profile (y = 1/2), Tq increases slightly faster
than TQ which means that the zigzags become important. For conservative
monochromatic scattering (10.20) and (9.27a) give

M
^0 ToV4 ,

(10.22c)

so that essentially in this case the displacement of a photon is proportional
to the square root of its path length. This is the well-known result of the
usual random-walk theory.

Finally, we mention that the function

S(t) = (1-X)N(t;Tq) + X3T(t;Tq)

satisfies the basic integral equation with the source term

S^*(t) = 1-^ +47 K^^(|t-t'
I

,3)dT' .

The value of 1 — S(t) is evidently the mean escape probability from depth t.

At the same time, as we have seen in Sec. 8.8, S(t) is the source function
for a homogeneous isothermal layer. Hence the values of the source function
for this particular problem given in Sec. 8.8 can be used to discuss the
energy balance in a layer with an arbitrary source distribution.

This section is based on the author's paper (V. V. Ivanov, 1970c) where
further details can be found.

' 8.11 APPROXIMATE SOLUTION OF THE BASIC EQUATION

BASIC FORMULA. In this section an approximate expression is given for the
resolvent function $(t;to) of the basic integral equation for the line
source function in a layer with negligible continuous absorption (3 = 0)

(V. V. Ivanov, 1972). This approximation is a natural outgrowth of the above
study of the asymptotic solutions of the integral equation for the line source
function. The approximation is sufficiently accurate for use in practically
all the physical applications of the theory.
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The resolvent function <I)(t;t^) is the solution of the equation

.0
T,

0

where

Ct;tq) = A y k^(|t-t' hnx' ;TQ)dT' + |k^Ct) , (11.1)

00

K^(t) = ^ J Cx)E^(a(x) T)dx . (11.2)

00

We postulate the following approximate form for 'I'(t;Tq):

(A/2)K^(t) [I-A+AK2 (tq) ]^^^

*.(t;t„) = —
, (11.3)

[1-A+AK2(t) ]3/2[i_a+xK2(Tq-t) ]l/2

where

00

K2(t) = j K^(T)dT . (11.4)

T

As a rule, the accuracy of this approximation increases as the value of the
characteristic exponent decreases.

This approximation is based on the following considerations, Yu. Yu.
Abramov, A. M. Dykhne , and A. P. Napartovich (l-969a, 1969b) have found (see
also Sec. 8.5) for the limiting cases of weakly dissipative (1 — X << K2(tq))
and strongly dissipative (1 — A >> K2(to)) media of large optical thickness
the asymptotic relation

T(T -t)
$ At\x^) = $(t)

, (11.5)

where $(t) e $(t,°°) is the half-space resolvent function, and

T

H'(t) = 1 + J $(t)dt . . (11.6)

It may be expected that the right side of (11.5) will give rather a good
approximation to $(t;to) for a layer of arbitrary thickness tq with an arbi-
trary dissipation measure. To obtain (11.3) it suffices to substitute into
the right side of (11.5) the approximate expression for <I>(t) derived in Sec.
5.5

(A/2)K (t)

$.(T) =
3/2 •

[I-X+AK2 (t) ]

t
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Let us consider some limiting forms of (11.3). Setting t = Tq , we get

(X/2)K^(tq)

'a^^O'-^O^ = l-X.XK^(Xo) •

Hence, for 1 — A >> K^dg) (strongly dissipative medium)

(X/2)K (t.)

*3(to;to) ^-i
, (11.9)

which coincides with the exact asymptotic form (5.74) of $(TQ;Tg) for an opti-
cally thick, strongly dissipative medium. In the opposite limiting case of
1 - X << (tq) , (11.8) gives

When TQ is large, we have Ki(to) ~ (2y/to)K2 (tq) (see Sec. 2.6), and (11.10)
gives for $(tq;tq) the asymptotically exact value of y/tq (cf. (5.2)).

It follows directly from the integral equation (11.1) for the resolvent
function, that as tq ^ °° the function $(t;to) diverges as (X/2)K^(t). The
approximation (11.3) has the same property.

We also note that substituting (11.8) into the exact equation

dX(co;TQ)
= X(~;TQ)$(Tg;TQ)

, (11.11)

found in Sec. 8.2 (cf. (2.40)), leads to the approximation

Xg(~;TQ) = [1-X+XK2(Tq) ]~1/^
. (11.12)

This approximation was obtained in Sec. 8.2 from different considerations.

UNIFORMLY DISTRIBUTED SOURCES. Let us use the approximate form (11.3) to find
an approximate solution for the line source function in a plane layer with
uniformly distributed sources. Let us set S* = 1. Then the corresponding
s_ource function S(t) is numerically equal to the mean number of scatterings
N(t;Tq) of a photon born at depth t (see Sec. 8.9) and satisfies the equation

N(t;tq) =
I J K^(|t-t' |)N(T' ;TQ)dT' + 1 . (11.13)

0

As we have seen in Sec. 8.9, N(t;to) can be expressed in terms of X(°°,to) and
the resolvent function $(t;t^) as

N(t;Tq) = X(oo;tq)M + f $(t;TQ)dt - ^ $ (T^-t ;Tq) dtj . (11.14)
jV n n

'
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To obtain an approximate expression for NCt;!^) let us consider the
integral ^

'a(t;To)dt

0

with ^At;t^) given by (11.3). Integrating by parts, we obtain

T

'3(t;TQ)dt =

(11.15)

/ i_x + AK2(Tq) t

I
—

J + / $^ (T^-t
; T^) dt

\[1-X + XK2(t) ] [l-X + AK.dn-T) ] / / ^ ° °

Substituting (11.15) into (11.14) and replacing X(oo;t„) by its approximate
form (11.12), we finally get

r T-l/^r -,-1/2
N^(t;Tq) = |^1-A + AK2(t)J |^1-A + AK2 (Tq-t)J . (11.16)

This approximate expression has qualities that seldom appear together: sim-
plicity, high accuracy and a wide range of validity. We note that the
function K2(t) appearing in this expression may be regarded as known (see
Sec. 2.6 and 2.7).

The accuracy of the approximate form (11.16) can be slightly improved
by replacing the K2-functions by l/S^ (cf. Sec. 6.3), where S(t) is the
solution of the corresponding generalized Milne problem. The disadvantage
of the resulting approximation

S(t)S(t -T)

^a = ^2 T72 ^2 T7T (11.17)
[l+(l-A)SnT) ]-^/Ml+(l-X)S^(Tg-T)

is that it can be used in practice only when the solution of the corresponding
Milne problem has been tabulated.

Let us discuss the accuracy of the approximation (11.16). It can be
shown that for A = 1 and -> °°

TT^(to/2;to) NJO;Tq) \ 2ijT(2y)/

From these and other analytical considerations one may expect that in cases
of practical interest the error of the approximation (11.16) does not exceed
a factor of 2. This estimate is in perfect agreement with the direct numeri-
cal tests of the accuracy of (11.16). Relevant data made available by D. G.

Hummer are lis_ted in Tables 44 and 45 (the third digits are unce rtain)_j^ In
these tables N(t;to) is the numerically exact solution of (11.13) and N^(t;tq)
is the approximation (11.16). We can conclude that, in general, the accuracy
of the approximate form (11.16) is similar to that of the basic assumption of
complete frequency redistribution.
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TABLE 44

ACCURACY OF THE APPROXIMATION (11.16) (DOPPLER PROFILE, 1-X=10"^)

/ttt /tt'TTT

N (t,t )

/ttt /ttt
o o

N(t,t^)
o 0 a 0

N(t,t )o

0 1. 47 1. 55 1 05 10^ 0 5 08 + 2 6 .39 +2 1 26

1 _l 1. 55 1. 62 1 05 1 -1 5 57 +2 6 .90 + 2 1. 24

5 _l 1. 67 1. 69 1 01 5 -1 7 08 + 2 8 .30 +2 1. 17

0 2. 59 3. 47 1 34 1 8 54 + 2 9 .87 +2 1. 16

1 _l 2. 80 3. 69 1 32 5 1 69 + 3 2 .21 +3 1. 31

5 _l 3. 37 4. 20 1 25 1 + 1 2 46 + 3 3 .50 + 3 1. 42

1 3. 80 4. 63 1 22 5 + 1 6 12 + 3 9 .09 +3 1. 49

0 3. 65 5. 48 1 50 1 +2 9 05 + 3 1 .39 +4 1. 48

1 _ I 3. 97 5. 88 1 48 5 + 2 2 22 +4 3 .21 +4 1 45

5 _l 4. 90 6. 89 1 41 1 + 3 3 20 +4 4 .65 +4 1, 45

1 5. 70 7. 92 1 39 5 + 3 7 45 +4 1 .07 +5 1. 44 .

5 8. 17 1. 20 + 1 1 47 1 +4 1 03 +5 1 .49 +5 1 45

0 1. 33 + 1 2. 10 + 1 1 58 5 +4 1 75 +5 2 .50 +5 1. 43

1 _l 1. 46 + 1 2. 26 + 1 1 55 10^ 0 9 21 +2 9 .39 + 2 1. 02

5 _l 1. 85 + 1 2. 72 + 1 1 47 1 -1 1 01 +3 1 .01 +3 1. 00

1 2. 22 + 1 3. 23 + 1 1 45 5 -1 1 28 + 3 1 .22 +3 0. 95

5 4. 30 + 1 7. 06 + 1 1 64 1 1 55 +3 1 .45 +3 0. 93

1 + 1 6. 05 + 1 1. 08 +2 1 79 5 3 07 + 3 3 .26 + 3 1. 06

5 +

1

1. 09 + 2 2. 03 +2 1 86 1 + 1 4 45 + 3 5 . 15 +3 1. 15

0 4. 84 + 1 7. 31 + 1 1 51 5 + 1 1 11 +4 1 .34 +4 1. 21

1 _1 5, 30 + 1 7. 90 + 1 1 49 1 +2 1 64 +4 1.97 +4 1. 20

5 -1 6. 73 + 1 9. 51 + 1 1 41 5 +2 4 02 +4 4 .74 +4 1. 18

1 8. 12 + 1 1. 13 +2 1 39 1 +3 5 81 +4 6 .87 +4 1. 18

5 1. 61 +2 2. 53 +2 1 57 5 +3 1 37 +5 1 60 +5 1. 17

1 +

1

2. 32 + 2 3. 99 + 2 1 72 1 + 4 1. 93 +5 2 26 +5 1. 17

5 +

1

5. 67 + 2 1. 01 + 3 1 78 5 + 4 4. 06 + 5 4 69 + 5 1. 16

1 +2 8. 15 +2 1. 45 + 3 1. 76 1 +5 5. 24 + 5 5 96 +5 1. 13

5 + 2 1. 47 + 3 2. 54 + 3 1, 73 5 +5 7. 37 +5 7 86 +5 1. 06

0 1. 67 +2 O
Z . 41 + Z 1

i .
A A 00 0 1 00 + 3 1 .00 + 3 1. 00

1 " 1 1. 83 +2 Z . dU + 2 1 A 14 Z 1 -1 1. 10 + 3 1 .08 + 3 0. 98

5 "1 2

.

32 +2 O .
1 A14 + 2 1 .

7 tr 5 -1 1 39 + 3 1 .30 + 3 0. 94

1 2

.

80 + 2 o

.

7 X
1 J + 2 1

I , oo 1 1 68 + 3 1.55 + 3 0. 92

5 5

.

55 + 2 8. 35 + 2 1 50 5 3 33 + 3 3 .47 + 3 1 04

1 +

1

8

.

05 +/ 1. 32 + 0 1. 64 1 + 1 4 83 + 3 5 48 + 3 1. 13

5 +

1

2. 01 + 3 3. 43 + 3 1. 71 5 + 1 1 21 + 4 1 .42 + 4 1. 17

1 + 2 2. 96 + 3 5. 03 + 3 1 70 1 + 2 1 78 + 4 2 . 10 + 4 1. 17

5 + 2 7. 12 + 3 1. 19 + 4 1. 67 5 + 2 4 37 +4 5 .04 + 4 1. 15

1 + 3 1. 00 +4 1. 67 + 4 1. 67 1 + 3 6 31 + 4 7 .31 + 4 1. 16

5 + 3 1. 78 + 4 2. 89 + 4 1. 63 5 + 3 1 49 +5 1 .70 +5 1. 14

1 + 4 2 09 +5 2 .41 +5 1 15

5 + 4 4 43 +5 5 .00 +5 1 13

1 + 5 5 73 +5 6 .39 +5 1 11

5 + 5 8 62 +5 8 .86 +5 1.03

1 +6 9 31 + 5 9 .39 +5 1 01

5 +6 9 92 +5 9 .87 + 5 0. 99

1 + 7 9 94 + 5 9 .94 + 5 1. 00

10

10

10'

10
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TABLE 45

ACCURACY OF THE APPROXIMATION (11.16) (VOIGT PROFILE WITH a=10 1-X=10'^)

N(
o

N
a 0

a ' 0
T
0 T

N( T, T
0

N
a
(t, t

N
a

T, T

A
T, T

N(
' o

A A 0
N( T, T

V
n
1 . 40 i .

C /ID 4 i . U 0 i u U
r
b . 4 Z + 2

r
b 7 C

. / b + z 1 , U D

1
t
1 . 5 3 1

.

6 1 1 . 0 5 i - i b , + 2
/;

D 9 1
. 2 1 + Z i A C

. U b

5 1 . 6 4 1

.

69 1 . 0 3 5 - i
•7 A O4 o + 2 /

A 7
. 4 / + 2 i A A

0 3 . 0 4
r
D . 4d i . D U i y

.

u y + Z QO . 8 0 + Z U Q Q
. y o

1 3 .
n 7 r

D .
0 c 1 . 4 y

r
O 1

.

oU . 7+ o 1 O Q J. 7 11 .XX

5 4 . 8 4 6 . 86 1
1 . 4 Z i + i 2 . b y . 7 7b 1 A

. i 4 , 7 i 9 1
. Z X

1 5 . 69 7 . 8 7 1 . 38 5 +1 6 .
o oz o

. 7+ 3 / . y 0 , 7
i

9 7
. Z /

5 8 . 1

5

1

.

19 + 1 1 . 46 1 +2 y

.

A AU 4
, 7+ 3 i 1 A

. I 4 + 4 i 9 A
. Z 0

0 1 . 3 1 +

1

1 . 9 8 +

1

1 . 5 1 5 +2 1 . y U + 4 2 7 n
. bU + 4

1
I 9 1

. Z X

1 1

.

42 +

1

2 . 1

4

+

1

1 . 5 1
1 I 7
1 +3 2 . 4 4 t A+ 4 2 0 7 + 4 1

1 . X 0

5 ~ ^ 1 . 79 +

1

2 . 5 7 +

1

1 .

A A44 r 75 +3 73 . D 4 + 4 4 . U U J. A+ 4 i . X u

1 2 . 1 7 +

1

3 . 0 4 +

1

1 . 40 1 +4 4 . 1 3
I A+ 4 A4 . 40 J. A+ 4 i

A Q
. U 0

5 4 . 20 +

1

6 . 6 7 +

1

1 . 59 5 +4 5 . 6 2
• A+ 4 6 . U 0 + 4 1

A 7
. U /

1 + 1 5 . 90 +

1

1 . 0 3 + 2 1 . 75 1 +5 6 . 5 5 + 4
-7

/ . (J 4 + 4 i A 7
. U /

5 +

1

1 . 05 + 2 1 . 9 1 + 2 1 . 82 5 +5 9 . 5 8 + 4 1 . 0 4 + 5 1
A A

. U y

0 4 . 00 +

1

4 . 9 8 +

1

1 . 2 5 i + D 1 . i o + b
1
1 9 7

. Z J + b 1 n Q
. u y

1 - 1 4 . 35 +

1

5 . 38 +

1

1 . 2 4 5 +6 1 . 6 4 + b 1
7 0 + b 1 A Q

. u y

5 - 1 5 . 5 2 +

1

6 . 47 +

1

1 . 1 7 1 +7 1 .
o n89 + b 2 . U b + b

n
X

A C

1 6 . 70 +

1

7 . 69 +

1

1 . 15 5 +7 2 .
7 £36 + b 2 C 7

. b / + b
1
1 A Q

. u y

5 1

.

32 + 2 1 . 7 2 + 2 1 . 30 oo 0 1 . U 0
. 7 i . U U , 7 1 A A

. u u

1 +

1

1 . 9 1 + 2 2 . 7 1 + 2 1 . 42 1 - 1 1 . u y
. 7+ 3 i . U o

. 7+ b U . y y

5 +

1

4 . 56 + 2 6 . 80 + 2 1 . 49 5 - 1 1 .
7 0J O

. 7+ b i . bU . 7+ b
AU Q A

. y 4

1 + 2 6 . 46 + 2 9 . 59 + 2 1 . 4 8 i
1
1 . 0 o

. 7 1
i . b 4 . 7+ O Au Q 9

. y z

5 + 2 1

.

09 + 3 1

.

60 + 3 1 . 4 7 b 7 ^ 1J 1
. 7 7o . 4 b

. 7+ J 11 . U 4

0 7 . 26 + 1 7 . 75 +

1

1 . 0 7 1 +1 4 .
1 0
/ o

. 7+ b
r
b A A

. 4 0 . 7 i 1 A
. X 4

1 - 1 7

.

89 +

1

8 . 37 +

1

1 . 06 C J. 1b + i
1 1 0 + 4 1 X Q

. oy + 4 1 9 n
. z u

5 - 1 1

.

00 + 2 1 . 0 1 + 2 1 . 0 1 1 +2 11 . O / + 4 1 . y o + 4 1 1 Q
. X y

1 1

.

2 2 + 2 1 . 20 + 2 0 . 9 8 D +2 7o . b U + 4 A4 n n
. u u + 4 11 1 A

5 2 . 4 1 + 2 2 . 68 + 2 1

.

1

1

1 _L 7
1 +3 A4 . b U J. /I+ 4 /I4 Q fl

. y 0 + 4 1 . X X

1 + 1 3 . 48 + 2 4 . 2 3 + 2 1

.

2 2 0 + o
£:D .

7 9 + 4 0 Q
• y J 4. A 1

1

5 +

1

8 . 42 + 2 1 . 0 7 + 3 1

.

2 7 1 J- /I
i +4 •7

/ . D Z J. A+ 4 7 7 c: 4. 4+ 4 1
1 n 9
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NOTATION

A necessary (though not sufficient) condition for a symbol to appear in
the following list is that it be used in more than one section of the book.
Occasionally a symbol .appearing below may be used in another sense elsewhere
in the book (for example, the letter a, which we use extensively as a param-
eter of the Voigt function, is also used as the constant in the Stefan-
Boltzmann law in §1.1, etc.). In all such cases the meaning is either men-
tioned in the appropriate place or is clear from the context.

As a rule, in the following list the meaning of each symbol is explained
and the page number is given where the symbol first appears. Occasionally
the page numbers where the quantity in question is discussed more fully are
aiso appended. When for any reason it is not feasible to explain a symbol
in this list, reference is made to the appropriate part of the book. Commonly
used symbols (such as h for Planck's constant and c for the velocity of light,
etc.) are not included below.

The subscripts D, V, L and M are widely used to indicate quantities refer-
ring to Doppler, Voigt and Lorentz profiles and to monochromatic scattering,
respectively. The subscript p indicates that a quantity refers to a point
source in an infinite medium while the subscript <» indicates functions refer-
ring to an infinite medium.

a constant, normalizing to unity the integral of the profile
of the absorption coefficient over the entire range of dimen-
sionless frequencies, x, 28

Einstein coefficient- for spontaneous emission, 13

the number of recombinations onto the level i per second per
ion and unit electron density, 16

ratio of collisional and radiative damping width to Doppler
width, 26

80

80

Planck's function, 3

ci

a

.

B (T)



NOTATION

Einstein coefficients for absorption and stimulated emission
(calculated for mean intensity of radiation rather than radia-
tion dens ity) ,13

number of photoioni zations from the level i per second per
atom in that level, 16

number of stimulated photo - recomb inat ions into the level i per
second per ion and a unit electron density, 16

Menzel parameter, 8

number of i-k transitions induced by electron impact per second
per atom in the level i and unit electron density, 10

number of collisional ionizations from the level i per second
per atom in that level and unit electron density, 12

number of three-body recombinations into the level i per second
per ion and unit electron density, 12

coefficient in the asymptotic form of the resolvent function
$(t) for conservative scattering in a spectral line (for a
semi - infini te medium), 226

coefficient in the asymptotic form of the Green's function
for an infinite homogeneous medium, (conservative case), 166

coefficient in the asymptotic form of X('»,t ) as t for
conservative scattering, 368

first exponential- integral function, 11

n-th exponential- integral function (n = 1,2,...)> 77

78

. 78

statistical weight of the level i, 6

the H-function for scattering: (a) in media with no continu-
um absorption, 201, 212, 222; (b) in media with continuum
absorption, 327

function appearing in the asymptotic form of H(z) for z >> 1

,

221

intensity of radiation, 2, 50

mean intensity of radiation, 2

mean intensity of radiation in the i->k line weighted with the
profile of the absorption coefficient, 13, 15

the kernel of the basic integral equation for media without
continuum absorption, 68, 76-82

77-82
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76-78

the kernel o£ the basic integral equation for media absorbing
in the continuum, 67, 302-306

67, 302-306

root o£ the characteristic equation (monochromatic scattering),
101-105

atomic absorption coefficient in the i^k line, 14

atomic absorption coefficient in the i-th continuum, 16

.66

mean number of scatterings of a photon, 107, 285-289, 423-434

population of the level i, 6

electron density, 6

density of ions in the ground state, 6

the probability of photon escape from depth x, 205, 295-299

Hopf's function, 139-140, 289-294

102

115

line source function, 40, 51, 54

continuum source function, 43

primary line source function, 51, 54

primary line source function for media with continuum radia-
tion, 66 , 325

auxiliary functions, 201, 205, 352

source function for the Milne problem: (a) monochromatic
scattering, 139; (b) line scattering, 253

146, 178

temperature, electron temperature, 3, 11

excitation temperature, 9

radiation temperature, 4

78- 83

307-310
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U(a,x) normalized Voigt function, 25

V(u) 79-83

V(u, 3) 307- 310

X(z) ,

X(z,T ) generalized Ambartsumian- Chandrasekhar X- function, 352,
° 358-370

X dimensionless frequency, measured from the line center, 26, 27

x(z) 78

X. (t ) 364- 365
1 ^ o-^

Y(z)
,

Y(z,T^) generalized Ambartsumian- Chandrasekhar Y-function, 352, 358-370

y- (t )^ 1
^ 365

z = 194
a(x)

z =
. \ . 326

a(x)+3

= ^ 303
c 6

a(x) profile of the line absorption coefficient normalized so that
a(0) = 1, 28

*
a.,a_-| weighted moments of the H- and X- functions, (i = 0,1,... )>
^ 128-130, 361-363

3 ratio of the continuum to the line center opacities, 58

3^ weighted moment of the Y-function, 362

r(s) Euler's gamma- function , 81

r(T,T') resolvent of the source function equation for a semi- infinite
medium: (a) monochromatic scattering, 126; (b) line
scattering, 198-199

Y characteristic exponent, 83-86

Y* = 0.577216 Euler's constant

Av characteristic frequency interval in units of which the dimen-
sionless frequency x is measured, 25-26

6(3) 316

(v), e (v) line emission coefficient, 40
1 K
p

£ (v) continuum emission coefficient, 42-43

C = —^ 303
l-3z
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X

X

y = cos

V

V .

IC

0

T

^0

$Ct)

in problems with plane geometry, the angle between a certain
direction and the external normal to the boundary x = 0,
57-58

survival probability pe-r scattering o£ a photon, 50, 53

survival probability per scattering of a photon in media with
continuous absorption, 302, 316

57-58

central frequency of the line, 10, 24

threshold frequency for ionization from the level i, 8

(a) monochromatic scattering, 110; (b) line scattering, 167

(a) monochromatic scattering,

(a) monochromatic scattering,
225-226

230

117; (b) line scattering, 186

134; (b) line scattering,

volume line absorption coefficient, 40

volume continuum absorption coefficient, 42

optical depth at line center, 58-61

optical thickness, 58

boundary layer thickness, 258, 340

diffusion length (monochromatic scattering)
,

thermalization length, 178-180, 315-322

resolvent function for semi - infinite medium:
matic scattering, 126; (b) line scattering.

resolvent function for layer of thickness t

137, 229-231

dissipation measure of a medium, 370-372

0'

103

(a) monochro-
199, 223, 228

350-355
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