Wational Bureau of Standards Library, E-01 Admin. Bldg.

MAY 1 4 1971

MENT OF

Reference bank not to be taken from the library.

NBS SPECIAL PUBLICATION 333

Research Materials Developed Under the NBS Inorganic Materials Program

U.S. RTMENT OF MMERCE National Bureau of itandards

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

UNITED STATES DEPARTMENT OF COMMERCE • MAURICE H. STANS, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscome, Director

Research Materials Developed Under the NBS Inorganic Materials Program

Edited by F. E. Brinckman and J. B. Wachtman, Jr.

Inorganic Materials Division Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

U. S.National Bureau of Standards. Special Publication 333. ***Nat. Bur. Stand. (U.S.), Spec. Publ. 333, 71 pages (September 1970) CODEN: XNBSA

Issued September 1970

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C 13.10:333), Price 70 cents.

NATIONAL BUREAU OF STAND/ MAY 17 1971 11 J aco. --10 J J

Library of Congress Catalog Card Number: 70-608227

Contents

1.	Introduction	Page V
2.	Definition of Research Materials	v
	Definition of Research Materials 2.1. General Definition	v
	2.2. Differences in Degree of Characterization Needed for Research on Properties With Vary-	
	ing Degrees of Structure Sensitivity	VI
	2.3. Inhomogeneity	
	2.4. Metastable Materials	VI
	Relation to Standard Reference Materials	
4.	Organization of the Tables	VI
	4.1. Rationale	VI
	4.2. Use of Tables—Key	VII
5.	References	VII
	Tables	
	I. Gases	
	II. Liquids	
	III. Glasses	
	IV. Single Crystals	20
	V. Polycrystals	41
	VI. Multiphase Systems	61

Research Materials Developed Under the NBS Inorganic Materials Program

F. E. Brinckman and J. B. Wachtman, Jr.

The National Bureau of Standards develops many specialized materials in the process of carrying out research supporting its measurements, standards, and service activities. These materials include gases, liquids, glasses, single crystals, and various multiphase materials; their compositions (including trace elements in some cases) and physical characteristics are tailored to specific research needs, but the materials are often of use for other research purposes. Production is usually limited to immediate internal needs and samples are not generally available for distribution, but knowledge of production techniques and materials characteristics which may be helpful to other scientists is available. The present listing of research materials developed in the Inorganic Materials Division accordingly gives names of scientific staff members who may be contacted for this type of information as well as giving a brief summary of the nature, method of preparation and properties determined for each material.

Key words: Chemical properties; composition; gases; glasses; liquids; multiphase materials; physical properties; polycrystals; preparation; research.

1. Introduction

Improved materials are critically needed in many areas of technology. Attempts to provide such superior materials are frequently empirical and sometimes wasteful of time and funds [1].1 An empirical component will probably always be present in any materials development program, but the establishment of a science of materials that increasingly affords predictable and reliable results in devising new materials for specific tasks is most desirable. Not only will this increase the efficiency of materials development programs, but also can ultimately lead to development of completely new materials or new applications. Much thought has been given to opportunities arising from recent developments in materials science [2] and to roadblocks preventing engineering achievement of scientifically feasible materials including the areas of characterization [1] and processing [3]. Advances in materials science assist materials development on the one hand, but depend upon development of materials suitable for research on the other. This interdependence of materials development and materials science is widely recognized and new programs on the properties of materials increasingly have as a major component a research material development subprogram. The experimental and theoretical competence needed to produce and characterize specimens is frequently quite different from that needed for the subsequent property study so that the decision to undertake a property study on a new material frequently means that a large investment of time and resources, perhaps comparable to the property measuring effort itself, must be made before the property study can begin. In these circumstances the availability of a few trial specimens, even if not of completely satisfactory quality for the final study, can be very valuable in permitting a test of the experimental feasibility of the contemplated measurements and perhaps in providing guidance on how closely the character of the specimen must be controlled for the final study. When trial specimens are not available, knowledge of previous preparation techniques and of the nature and quality of specimens which have

¹ Figures in brackets indicate the literature references on page 3.

been produced successfully is usually quite valuable in planning and carrying out the sample preparation aspect of a new research program. The present listing of research materials produced in the Inorganic Materials Division is offered as a means of promoting direct scientist-to-scientist exchange of information on production and characterization of materials for which the division has some special competence. In some cases, specimens may be on hand and available on request; in other cases, facilities and staff may be available to produce additional specimens for purposes coming within the NBS mission. Provision of information, rather than specimens, is the principal goal, however, because maintenance of a stock of the numerous and extremely varied materials produced in small batches or maintenance of specialized production facilities on a standby basis is not feasible.

Information concerning nationwide sources of many research materials, especially single crystals, is available from the Oak Ridge Research Materials Information Center [4].

The present listing of materials may be useful to scientists and engineers interested in the production of a material or its general availability for purposes other than research. No claim is made concerning exhaustive knowledge of the materials listed, but the staff members involved in the production or characterization of unusual materials sometimes have special knowledge relevant to other applications in addition to research.

2. Definition of Research Materials

2.1. General Definition

A research material is here considered to be one sufficiently well-characterized to be useful for a particular type of current research. Ideally, a fully characterized material is desirable; that is, the character (chemical composition, structure, microstructure, etc.) should be uniform and held within such narrow and known limits that all the chemical and physical properties of the material are well determined. Practical considerations usually limit the characterization to the factors thought to control the property being studied and limit the accuracy of the characterization. Thus, a material useful at a particular stage of research may no longer be useful for the same type of research as measurement techniques improve and finer details of behavior are studied or as new factors are discovered to have an influence on properties at the level being studied. A valid research material can cease to have this distinction as a field of study progresses but the same material can sometimes again become an important research material as new phenomena are investigated. For example, ruby grown by the Verneuil process for bearings, wear surfaces, or jewels suddenly became an exciting research material when the ruby laser was invented.

2.2. Differences in Degree of Characterization Needed for Research on Properties with Varying Degrees of Structure Sensitivity.

The characterization needed for certain research, such as phase equilibria, is sometimes limited primarily to the major element composition and such factors as trace impurities or surface condition are relatively unimportant. This fact is reflected in the listing, for example, of a number of crystalline materials developed for phase equilibria studies and a number of glasses developed for bulk optical or elasticity studies; major component characterization was sufficient for these purposes. Some of these materials have subsequently become the object of renewed research interest in connection with other properties dependent primarily upon major component composition such as electro-optic properties, photoelasticity, and mechanical properties under pressure. Certain structure-sensitive properties, such as transport. plastic deformation, and fracture depend upon trace impurities and upon small deviations from stoichiometry. Samples made for research in these areas, even though of the same major component composition as some of those mentioned previously, require more careful processing and characterization and are accordingly listed as separate entries with an indication of their special features.

2.3. Inhomogeneity

Among both the bulk composition and trace impurity types there are cases where a deliberate degree of inhomogeneity is required. Thus, a series of glasses with the same total composition but differing degrees of phase separation forms an interesting family of research materials. An example of an even finer scale of deliberately produced inhomogeneity is a series of crystals of CaF_2 all having the same level of Gd additive but differing in the degree of association of point defects with Gd atoms. This last example illustrates another feature of some of the listed materials; in this case specimens of given bulk composition were produced by a commercial supplier to NBS specifications. The NBS contribution was the development of special treatments and measurement techniques needed to produce and determine different degrees of association.

2.4. Metastable Materials

Still another category of research materials involves those which are not stable or have a very short lifetime under ordinary conditions but which occur as important components under special conditions such as high temperature vapor species, high pressure crystalline phases, or short-lived reactive intermediates. Such materials generally cannot be kept in stock but the technology of preparation and the techniques for measurement of concentration and properties during the brief lifetime of the material are important aspects of research material information. An overlapping family of research materials consists of those which are dangerous (toxic, explosive, or corrosive) and so require special handling procedures during processing, storage, or property measurement. An example of such a difficult research material is the high pressure polymorph of the detonator explosive lead azide.

3. Relation to Standard Reference Materials

A few of the research materials listed here have been developed into Standard Reference Materials and many of the Standard Reference Materials are used as research materials but the two categories should not be confused despite the fact that there is some overlap. Standard Reference Materials are kept in stock by the National Bureau of Standards and sold by the Office of Standard Reference Materials. Each Standard Reference Material is certified with respect to the aspects of chemical and/or physical properties relevant to the material's intended application. Perhaps the greatest use of these materials is for calibration of instruments and checking of measurement procedures, but the high degree of homogeneity and extensive characterization associated with Standard Reference Materials frequently makes them useful as research materials. A full listing of Standard Reference Materials is available [5].

4. Organization of the Tables 4.1. Rationale

As noted in the Introduction, entries have been tabulated into sections derived chiefly from gross physical state at ordinary conditions (e.g., gases, polycrystals, multiphases, etc.). Clearly a number of exceptions occur, particularly for research materials of low stability or transient existence, but their location will be fairly obvious to the reader.

Since this compilation tends to emphasize composition rather than properties, special care was taken in organizing the tables. Use of the widely accepted Chemical Abstracts Formula Index does not always generate familiar empirical chemical formulae, nor does this system readily lend itself to classification of glasses, but we chose it for its rational basis. Moreover, significant progress has been achieved for computer searching and retrieval; indeed, the parent program is now in use by the Patent Office.

4.2. Use of Tables-Key

a. The arrangement of symbols in formulae is alphabetic except that in carbon compounds C always comes first followed immediately by H if hydrogen is also present.

b. The arrangement of formulae or entries is also alphabetic, except that the number of atoms of any specific kind influences the order of listing; e.g., all C_1 compounds appear before C_2 , thus CCl₂O, CCl₄, CHCl₅, CHN, CH₂O, CO, C_3Ca , $C_2H_4O_2$.

c. Water of hydration is not made a part of the formulae indexed.

d. Polymers having different names and recognized as different substances, e.g., acetaldehyde and paraldehyde, are all entered under their accepted formulae; but a definite compound for which different polymeric formulae are in use is entered under the simplest formula.

e. For series of compounds listed under a single entry heading "M" refers to metallic or metalloidal components (e.g., K, Li, Rb) and "X" denotes electronegative substituents such as C1, F, O, S, etc.

f. Approximate compositions are indicated by enclosing listing in quotation marks, "—", such as in interstitial compounds or alloys.

g. Glasses, polyphases, and compounds of given stoichiometry but indefinite structure are cited alphabetically by M, followed by X; thus B₂O₃·3Nb₂O₅; Cr₂O₂-1rO₂; B₂O₂-BaO-SiO₂; etc.

h. Isotopic compositions are presumed to be of terrestrial abundance unless otherwise indicated.

i. Wherever practicable conventional formulae and/or nomenclature is listed to the right of the index formula.

j. Great effort has been made to maintain accuracy and provide current information. In some instances, through staff changes, some authors cited are no longer in the Inorganic Materials Division, yet inclusion of their recent efforts was deemed significant to this compendium. Hence, these individuals are signified by an asterisk. The reader may contact these individuals for further information, but it would probably be more expedient if the editors were contacted.

Many of the materials listed in this report were produced as part of programs sponsored by other agencies. Acknowledgements for specific materials are given in the references and are too numerous to repeat in detail here. The support by the Air Force Materials Laboratory, the Air Force Cambridge Research Laboratory, the Army Research Office (Durham), the Advanced Projects Research Agency (Materials Office), the Atomic Energy Commission (Research Division), the National Aeronautics and Space Administration, and the Office of Naval Research is 'gratefully acknowledged.

5. References

- Characterization of Materials, prepared by the Committee on Characterization of Materials of the Materials Advisory Board, H. W. Leveraz, Committee Chairman, National Academy of Sciences-National Academy of Engineering Publication MAB-229-M, March 1967.
 Research in Solid-State Sciences-Opportunities and Rele-
- [2] Research in Solid-State Sciences—Opportunities and Relevance to National Needs, prepared by a Committee of the Solid State Sciences Panel for the Coordinating Committee for Materials Research and Development of the Office of Science and Technology. R. Smoluchowski, Committee Chairman, Publication 1600, National Academy of Sciences, 1968.
- [3] Ceramic Processing, prepared by the Committee on Ceramic Processing, of the Materials Advisory Board, Joseph A. Pask, Committee Chairman, Publication 1576, National Academy of Sciences, 1968.
- [4] J. W. Cleland, Purity and Perfection of Research Specimens of Oxides in Mass Transport in Oxides, Nat. Bur. Stand. (U.S.), Spec. Pub. 296, (224 pages) edited by J. B Wachman, Jr. and A. D. Franklin, issued August 1968. The address of the Research Materials Information Center is Building 3001, Oak Ridge National Laboratory, Box X, Oak Ridge, Tennessee 37830.
- Idor et als Databage South (alge, Fanchsee 3783).
 [5] Catalog of Standard Materials, Nat. Bur. Stand. (U.S.), Spec. Publ. 260, July 1970. See also supplements for price lists and changes.

NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL REFERENCES (Author, INFORMATION Title, Journal)	rrar	<pre>yyle (1) T. C. Farrar and</pre>
NBS STAFF MEMBE TO BE CONTACTED FOR ADDITIONAL INFORMATION	T. C. Farrar	T. C. Farrar h.
COMMENTS	attempt to determine chemical exchange rates in equilibrium	qualitative structural defms; only hnown mono- hydride; synth. reagent; dir// sensitive sensitive
METHOD OF CHARACTERIZATION	NMR (¹¹ B, ¹⁹ F) spectrometry	mol. wt.1.infrared NR (11, 118, 19;) Spectrometry, active H, chemical reactivity
NATURE OF PREPARATION	BCl3 + BF3 ➡ at < 25°C	(3) BF3+ BJ6 BF3+ CH3 BF3+ CH3 022BH CH3 022BH (CH3) 351H + hy 351H
NATURE OF MATERIAL	equilibrium soln. of all species, where n = 0-3, studied as liquids	also studied as liquid (1,2)
COMPOSITION	BC1nF3-n	BF2H HBF2 difluoroborane

I. GASES

<pre>(1) W. J. Lafferty, A. G. Maki, and T. D. Coyle, With and T. Resolution Infrared Spectrum and Struc- ture of Diborane J. Mol. Spectroscopy, 3. 345 (1970). B. Johanesen, and T. D. Coyle, Wagnetic Hon-Equivalence in the High Resolution MRR Spectra of Diborane", J. Cuble. Phys., <u>49</u>, 281, (1969). See also C₂H¹¹ Db₆O₂ in SECTION II.</pre>		V. H. Dibeler and S. K. Liston, "Mass Spectrometric Study of Photoinization. IX. Hydrogen Cyanide and Acetonitrile", J. Cham. <u>44</u> , 4765 (1968).	
T. D. Coyle T. C. Farrar R. B. Johannesen	T. C. Farrar	T. D. Coyle ss: N	T. D. Coyle
parent mat- erial for synthese of selected (i, j'bb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb,lb) b,lb	model com- pound for pound for liquid, aniso- tropic motions in liquids; anglian momen- tum cross- sections	used for photoioni- zation studies: parent com- pound for X-CN series	prepd. for photoioniza- tion study
infrared (1), NMR (H.10B.11B) spectrometry (2)	infrared, NMR (19F, 3521, 3721) spectrometry, volatility, m.p.	infrared and mass spectro- metry	infrared, ultra- violat, mass sectrometry; vapor phase chromatography
$ \begin{array}{l} $	commercia1	NacN + H ₂ SO4	NaNO2 + CH ₃ OH + H ₂ SO4
studied as liquid	also studied as liquid, solid		
ⁿ b _{2H6} diborane	CCl ₃ F Freon-11	сни нси	CH ₃ NO ₂ CH ₃ ONO methyl nitrite

J. J. Ritter J. J. Ritter, T. C. T. D. Coyle Coyle, and J. M. Bellama, "Synthesis f Ethynyboron Halldes", Chem. Comm., 908 (1969).	<pre>J. J. Ritter See ref. under T. D. Coyle C_HBCl2. M. J. Lafferty, J. J. Ritter, "Microwave Sectrum, Structure, and Dipole Moment ive Act Ethynyldfiuoro- chem. HCEBE2", Chem. 999 (1969).</pre>	T. C. Farrar	F. E. Brinckman (1) R. B. Johannessen, T. D. Coyle T. D. Coyle T. C. Farrar Magnetic Resonce Studies of Inorganic Fluoridaes V. 60 (1968). (2) See refs. under BF ₅ OSi. (3) See ref. under (3) See ref. under
first ethy- J nyloride iovel anterior iso- lated, novel lated, novel acetylane suitable for suitable for suit	first ethy- vylbbron fluoride iso- fluoride iso- for ethesive for ethesive anal, air/ moisture sensit	see CCl ₃ F T	model com- pounds for structural, T fipole moment (n = 1,3), and magnetic magnetic properties; pyrtheties; intermediates
mass, infrared mass, infrared cleavage with propionic acid + C_2H_2 + HCl	mass, infrared, and microwave spectrometry, cleavage proping and + C2H2 + SiP,	see CCl ₃ F	infrared, mass (full isotopic (full isotopic [197,(197(391)] spectrometry; volatility, mol. wt.; vapor phase chromatography
trans-CICH = CHBCl ₂ + hv	(CH ₃) ₃ SnC [±] CH + BF ³ at -80°C	commercial	SiClu + SiFu + AICl 3 (cat () at 150°C () at 150°C () at 150°C () + 150°C () + 150°C () + 150°C () + 151°C () + 150°C ()
	C _{2V} symmetry	also studied as liquid, solid	n = 1-3 also studied as liquids
C2HBCl2 ethynyldichloro- borane	C ₂ HBF ₂ ethynyldifluoro- borane	ClF0 ₃ FCl0 ₃ perchloryl fluoride	ClnFu-nSi chlorofluoro- silanes

M. Linzer, "Measure- ment of the proton ment of the proton person and the Flec- hexane and the Flec- hexane from the flec- tronn g-factors in Atomic Deuterium and Atomic Mitrogen", bill. Am. Phys. Soc., 12, 507 (1967).	 R. W. Fudolph and R. W. Farry, "Thuoro- Phosphime Ligands. I. The Freparation of Characterization of Difluorophosphine", 1007 G. B. Johannesen, 1333 (1965) R. B. Johannesen, "WRR Studies of Inorganic Fluorides. IV. Relative Signs of Coupling Constants in Coupling Constants in Generative Signs of Coupling Constants in HPF2," J. Chem. Phys., 47, 3088 (1967). 	 F. E. Brinckman, and G. Gordon, "Formation of u- OryFluorophosphines and Puyphosphines and Puyphosphines in Gaseous Discharge Reactions", wth Middla Atlantic Regional Mrg of the Am. Chem. Soc., Wash. Abstr. of Papers, p. 41. 	<pre>T. D. Coyle, R. B. Johannesen, F. E. Brinckman, and T. C. Farvar, WNR Turnes, WNR Flucides of Inorganic Flucides of Inorganic flucides fluc flucides fluc fluc fluc fluc fluc fluc fluc fluc</pre>
experimental M. Linzer test of quantum electro- dynamic calculations	MMR relative T. D. Coyle sign messure- ments; reagent uses; air/ moisture sensitive	related to F. E. Brinckman study of T. C. Farrar (2) discharge rxns discharge rxns in PP 101; model compounds for study of structures and electron aniso- tropies (2)	Si-F coupling T. D. Coyle constant: 23Si MMR by double resonance
measurement of measurement of electron g-factor relative to g_J of H atoms	mol. wt.; infrared NMR (H, 9F, 31P)(2) spectrometry	infrared, mass (1), NMR (19F, 31P)(2) spectrometry; volatility	infrared, mass, MRR ("95 spectro- metry, volatility, mol. wt. vapor phase chromato- graphy
microwave discharge in D ₂ O(g)	PF ₂ I + HI (1)	commercial; fractional distillation	commercial, fractional distillation
	ų	studied as liquids also	Also obsd. as liquid (1)
D D(atoms)	F ₂ HP HPF2 difluorophosphine	F ₃ OP OPF ₃ F ₃ P PF ₃	F ₄ Si SiF ₄ tetrafluorosilane

obsd as microwave dis- direct inlet make candidates F. E. Brinchman See rel. 2 under parent and charge rxns. spectrometry full for molecular daughter of GeR, and isotopic anal. bond dissn. ions GeR, + SiF, in bond dissn. SiO ₂ reactors SiO ₂ reactors ments; yields very small	also studied Si ₂ OC16 ⁺ NNR [¹ 9 _F ,(¹ 9 _F (² 8 _{Si}))] suitable for F. E. Brinckman (1) R. B. Johannesen, sb ^F (1); (1); mass (2) determination electric spectrometry of S ₃ -O-Si discharge rxm of Silp, with spectrometry bond angle; of Silp, with sinckman, and T. D. sio ₂ (2) with sinckman, and Silp, and Silp, so (1966). sensitive Brinkman, and Silp, sensitive Brinkman, and Silp, so (1966).	also studied Si ₂ Cl ₆ + NMR [¹ 97,(¹ 97,(² 95i))] parent com- F. E. Brinckman (1) See ref. 1 under as liquid Sb ² ₃ (1) (1); spectrometry pound for chemical pertuorc- chemical disilaryl (2) (10, F. B. Brinckman, T. D. COYLS, and able for detmo- of Si-Si bond at reflucro- disilaryl (2) F. E. Brinckman, "Coma- commetry (2) (2) F. E. Brinckman, "Coma- disilaryl (2) F. E. Brinckman, "Coma- commetry (2) (2) F. E. Brinckman, "Coma- disilaryl (2) (2) (2) F. E. Brinckman, "Coma- disilaryl (2) (2) (2) F. E. Brinckman, "Coma- disilaryl (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	<pre>Ga_0_0(s) mass spectrometry R.C.Paule heated to 1200-1500°C</pre>	<pre>Ga_0_0(s) + mass spectrometry R. C. Paule W heated to</pre>
F. (0.1) 2.0 (0.473)2.0 F. GeoSi GeF. 3OSIF.3	F ₆ 051 ₂ Si ₂ 0F ₆ hexafluoro- disiloxane	F ₆ Si ₂ Si ₂ F ₆ odisilane	Ga ₂ 0	Ga ₂ 04W

(S REFERENCES (Author, Title, Journal)	R. Kuczkowski and Lida, Microwave Spectrum, Structure, Dipple Moment, and Barrier to fripphoual Barrier of Fiopphoual Fotation of Fiopphoual Chem. Phys., <u>46</u> , 357 (1967).	P. L. Timus, T. C. Ehlert, J. A. M. Pargave, F. D. Brinokan, T. C. Brinokan, T. C. Coyle, "Silicon-Borne Oyle, "Silicon-Borne II. Silicon-Borne II. Silicon-Borne II. Silicon-Borne Chem. Soc., 87, 3319 (1965).
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	T. D. Coyle	F. E. Brinckman T. D. Coyle T. C. Farrar
COMMENTS	rotational spectrum, internal rotation	series of novel Si-B compounds; qualitative derm. of structure; sensitive sensitive
METHOD OF CHARACTERIZATION	synthesis, microwave spectrometry	infrared, NMR (118,19F) spectro- metry
NATURE OF PREPARATION	FF ₃ +B ₂ H ₆ (deuterated)	prepd. at Rice Univ. Br (g) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
MATURE OF MATERIAL	n = 1-3 (2)	
NOILISOMMOO	^{BD} 3-n ^F 3 ^H ^P F3 ^P BH _n ^D 3-n	BF7Si ² ŠiF3SiF2BF2 BF9Si3 n-Si3F7BF2

LIQUIDS II.

 T. Wartik, et. al., "Diboror Tetra- chloride", Inprg. Syn. <u>10</u>, 118 (1967); Syn. (2) V. H. Dibeler and y A. Walker, Mass Spectrometric Study of Photoinization. XIII, Boron Trichlo- ride and bhoron and J. Ritter, "Reac- teracholde", Inprg. (3) T. D. COVR and J. J. Ritter, "Reac- tions of Diboron tions of Diboron tions of Diboron bounds", J. Organnet. 	<pre>(1) T. D. Coyle, F. E. B. Johannesson F. E. Farrar, "Muclear C. Farrar, "Muclear C. Studies of Inorganic Studies of Inorganic Fifects on J(3)S10-ent Fifects on J(3)S10-ent fin Silicon Tetra- in Silicon Tetra- fin Silicon Tetra- fin Coyle, J0, 1682 (1966). 20, 1682 (1966). 20, 1682 C. Coyle, "Muclear Magnetic Resonnese Studies of Inorganic Filuorosilanes", J. Phys. Chem., 22, Phys. Chem., 22, Chem., 22, Chem.,</pre>
J. J. Ritter	F. E. Brinckman T. D. Coyle
parent mat- chemistry of chemistry of diporonds; detm.ond B-B bond energy	dipole douments detmd. for sifjer,f duth A. NBS) Marryot, NBS)
infrared, mass (2) spectrometry; chemical reactiv- ity (3)	infrared, mass [19: tometry, NMR [19: top:2951,)] (1,2) spectrometry; volatility
electric dis- change reuc- (1) of BCl3 (1)	SiF., + Albr, + Albr, cata- 1955 at 160°C
unstable liquíd	n = 1-3 s studied as gases gases
B2C14, tetrachlorodi- borane-4	Br F ₃ -Si bromofiuoro- silanes

T. D. Coyle and J. J. Kitter, "eccent Studies in Organo- boron Chemistry. Some corn diseal Consequences of the Boron Sub- halides", Fourth Int. Conf. on Organo- metallic Chemistry, July 1969, Proc. of the Conf., P. RI.	See also C ₂ H4O ₂ .	<pre>(1) T. C. Farmar, T. Cooper, and T. D. Cooper, mreton Broad-Line WR Study Broad-Line WR Study FI 13Dborane, how. Comm., 610 (1966). Comm., 610 (1966). Comm., 610 (1966). Comm., 610 (1966). Comm., 610 (1966). Gurowsyy, J. R. Hansen, wuclear Magnetic Relaxation Studies Chem. Phys. 46. Chem. Phys. 46. Study of CDD, 281, 40. Chem. Phys. 46. Study of Brancis Resonance and T. Tsang, "A Nuclear Magnetic Resonance and Falaxation Study of Branchoxyborne", J. Bes. NSS, 73A, 195 (1969).</pre>
unsymmetrical J. J. Ritter dibron halide: uec- ful for studies of additions to olefinic and and acetylenic systems; air/ moisture sensitive	model com- T. C. Farrar pouds for itudy of 1 ³ C T ₁ and T ₂ values	isotopic T. D. Coyle composition T. C. Farrar provides eal- ected nuclear epin properties only example distance mea- distance meas- cordinate motional studies; precursors of HBr2
infrared, mass spectromerry; clearge rxns; with Ag2 + NH3(aq)+ CH4, + H2	infrared, NMR (1H, 13C) spectrometry; m. p.	infrared, MMR (11,11b) spectro- metry; mol. wt.; m. p.
B ₂ Cl ₄ + (CH = 0.4),M (M = 60.5n, or Pb or Pb	commercial, high-vacuum degassed	nB2H6 +
unstable	also studied as gas	n = 10,11; also studied as solid
CH ₃ B ₂ Cl ₃ methyltrichloro- diborane-4	13CH ₃ I 13CH ₄ O [13CH ₄ OH [13C]_methanol	C ₂ H ^{II} B602 (CD ₃ 0)2 ^{II} BH

<pre>T. D. Coyle and J. J. Riter, "Structure, Isomerization, and Cleavage of 1,2- Bis (dohorobory1)- Bis (dohorobory1)- chem. Soc., <u>99</u>, 5739 (1967).</pre>	<pre>(1) J. J. Ritter, T. D. Coyla, J. M. D. Coyla, W. M. D. Coylama, With Inter- action of B2C1, with Abstracts, 156th Abstracts, 156th National Meeing of Amer. Ohen. Soc., Amer. City, N. J. Alantic City, N. J. (1980) p.NOR 165; (1980) p.NOR 165; (1980) p.NOR 165; (1981) p.NOR 165; (1980) p.NOR 165</pre>
established J. J. Birtur the mode of T. D. Coyle addition of B.Cl. to D.Cl. to D.Cl. to D.Cl. to D.Cl. the urtility out the urtility irradiating at irradiating at irradiating at in distinguishing between J. J and 1.2 demonstrating the demonstrating the demonstrating the demonstrating the demonstrating the demonstrated structures on the structures on the demonstrated assigning structures on the demonstrated assigning structures on the demonstrated structures on the demonstrated structures on the demonstrated structures on the demonstrated structures on the structures on the demonstrated structures on the structures on the structures of demonstrated structures on the structures of demonstrated structures on the structures on the structures of demonstrated structures on the structures of demonstrated structures on the structures of demonstrated structures on the structures of demonstrated structures of demonstrated structures of demonstrated structures of structures of demonstrated structures of demonstrated	further con- J. J. Ritter firmation of T. D. Coyle between B_2Clu between B_2Clu to produce a known compound; air/moisture sensitive
infrared, mass, MMR spectrometry; cleavage run of deutero-compund deutero-compune + trans_ + trans_ dideuteroethylene	elemental anal. mol. wt., rxn. ratios
ois- (8C12)2∩.H2 + hv	01CH=CHBC1 ₂ + 282C1, or HC=CH+28,C1,
	white solid, melts at 30°C
- H A (B C) (A	r_HLB.Cl., 1,1,2,2-tetrakis (dichloroboryl) ethane

nder	nder (1	H
(3) n	ref. u 2MX3. ref. (H2B4C1	13CH 5
See ref. (3) under B ₂ Clu.	 See ref. under C₂H₃B₂Cl₂MK₃. See ref. (1) under C₃H₂B₄Cl₄. 	See also ¹³ CH I and ¹³ CH40.
J. J. Ritter T. D. Coyle and organo-	J. J. Ritter T. D. Coyle fins rts ori ter- pon- duct;	T. C. Farrar
provides J. J scries of T. D model com- model com- structure- structure- in vicinal- and geminal- and geminal- and geminal- and substituted organo- metal systems	demonstrated J. a reaction T. pathway Dr- tween B ₂ Ole and halo olefins contrary to earliar reports of no reaction; suggested "BOL" as a possible reactive inter- mediative inter- mediative inter- sible for the observed product; sensitive sensitive	model compound for study of T_1^{-1} and T_2^{-1} values
elemental anal.; mal. wt.; rxn. ratios	complete elemental anal.; mol. wt.; infrared, MR spectrometry, rxn. ratio	infrared, NMR (1H,13C) spectro- metry; m.p.
B_CL14+CH2= CHNX3	CH_=CHC1 + 2B_C14 or CH_=CHBC12 + B_5C14	commercial; high-vacuum degassed
invlatile liq. or cils	1 9 9	
C2H3B2C12MX3 (M=C,Si,Ge,Sn; X=C1,CH3)	C2H3B3C16 1,1,2-tris(dichloro- 1,bory1)-ethane	C2H4O2 CH3 ¹ 3C00H a[1 ³ C]-acetic acid

	F. E. brinckman, T. F. E. brinckman, T. Fishman, "Formation of a Perfuoro- disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: disilanyl-silazane: meratilar Chenksuy, meratil: Chenksuy, meratil: Chenksuy, Bistol, England, July 1999, Proc. of the conf., P. Dl4.	 T. C. Farrar, F. E. Brinchman, T. D. Coyle, A. Davidson D. Coyle, A. Davidson Marcod-Line Froton Magnetic Resonance Study of Cobalt Tetra- Inperg. (cobalt Tetra- carbonyl Hydride", Inperg. Chem., 6, 161 (1967). L. VanderHart, H. S. Gutowsy, and T. C. Farrar, "Dipole- Dipole Interactions Study of a Spin I/2 Nucleus Mith a Quadrupole- otin A Chem. Soc., 89, 5056 (1967). 	See C ₅ HMnO ₅ .
F. E. Brinckman anes	ded compound for derivative perflucropolf based cleavage of S1-M Cleavage of	model com- pund for ppund for application MMR inon defm. metal- defm. metal- tances; basis aton of basic theory; see C;HhnOs	candidate F. E. Brinckman compound T. C. Farvar for Fe-H distance detm., JFe-H
infrared, mass, NMR (1H, 19F) spectrometry, elemental anal, sub- sequent rxns.		NMR (¹ H) spectrometry (1,2)	infrared, NMR (11) spectro- metry
E (CH ₁) ₃ Sil ₂ NH + SiF ₄	L (CH ₃ ₃ S11 ₂ NH +S1 ₂ F ₆ +	studied as see ref. (1) solid; liquid unstable at > -45°C	studied as liquid
° (H ₁ 0F3NSi2 (CH3)3SiNHSiF3	C ₃ H ₁₀ F ₅ NSi, (CH ₃),SINHSi2F ₅	C ₄ HCoO ₄ HCo(CO) ₄	C ₄ H2FeO ₄ H2Fe(CO) ₄

see ale taff. T.	M. Linzer, "Measure- ment of the Proton ment of the Proton factors in Oyclo- hexane and the Elec- tron g-factors in Atomic Deuterium and Atomic Deuterium and Atomic Mirrogen", Buill, Am. Phys. Soc., 12, 507 (1967).	B. Johannessen R. B. Johannesen, C. Tange Jahn- T. Tsung, Jahn- Teller Discortion: Megnetic Studies of Vanadium Tetra- chloride", J. Chem. Phys. <u>19</u> , 5544	See ref. 2 under Br, F _{3-n} Si. R. B. Johannesen, F. E. Brinckann and T. D. Coyle, "Nuclear Magnetic Resonance Studies of Some Studies of Some Studies of Some Aminani Beach, Fla. Am. Cham. Soc., Ami. Cham. Soc.,
анта Спорта Спорта	M. Linzer, ment of the B.factor in hexator in tron g-fact tron g-fact Atomic Deut Atomic Nitry Bull. Am. P 12, 507 (19	en R. B. G. A. C T. Tsang Teller I Magnetic Vanadium Chloride Phys. 1 (1968).	See ref Br F 3-n Br F 3-n F 3-n F Br Jor F Br Jor Mar Coyle Mar Coyle Studies Studies Studies Studies Studies Studies I 53rd Né Mam Dem Mam Dem Mam Dem
application T. C. Farrar of Fast- Fourier trais- form MMR spectrometry to natural abundance 13C	measurement M. Linzer of 1H g- fitve to gJ of H atons; gJ of secondary standard for standard for check on cal- culation of sheiding para- meter for H2 molecule	detm. magnetic R. B. Johanness parameters, dastortion dastortion daramagnetic relaxation relaxation air/moisture sensitive sensitive	first ex- ample of tr. D. Coyle halogenated halogenated "tag" permits double- resonance NMR of Si nuclei
NMR (14,1°C) spectrometry	NMR (1H) spectrometry	EPR spectrometry (as a function of freepenty, temp.); magnetic suscepti- 78-307%; optical spectrophotometry of VCl, in TiCl,	infrared, mass variable inf [15, (197 [2951))] spectrometry
Les l'automatiques	commercial, spectro- grade	commercial, fractionally distilled	Sizcl ₆ + Sif ₄ + Alcl ₃ (cat.) at 150°C
Short of the sector of the sec		obsd. as neat liquid and in TiClu, soln.; also obsd. as poly- crystalline solid	
L'.H6 betterre	C ₆ H1. cyclohexane	cl ₄ V Vcl ₄	Cl5FSi2 Si2Cl5F Pentachlorofluoro- disilane

F. E. Brinckman, F. E. Brinckman, J. Cooper, and T. D. Cooper, and T. D. Cyrje, "Interactions of Some Haloslianes", Some Math. Mrg. Am. 1527d Math. Mrg. Am. Chem. Soc., Miami 1967d, Netr. of Papers, p. L112. See SECTION I under F ₆ Si ₂ .	
parent mat- F. E. Brinckman erial for synthesis of compounds compounds bearing 51-51 bearing 51-51 b	attempt to T. C. Farrar astablish E. D. Lippincott nature of protons in sample (work with M. Malmberg, NBS)
infrared, mass (iull isotopic anal.), spectro- metry, vapor prase chromato- graphy, volati- lity, cleavage rxn with $H_20 \rightarrow$ H_2+C1-	infrared, NMR (1H) spectrometry
commercial, fractional distilation; electric dis- charge in SiCl,	not available
	polymeric
Cl6Si2 hexachloro- disilane	H ₂ 0 "polywater"

COMPGSITION	NATULE of MATULE of	NATUED OF PREPARATION	METHOD OF CHARACTERIZATION	NE TO FO TO MENTS	NH: STAFF MENNER TO BE CONTACTED FOR ADDITIONAL INFORMATION	REFERENCES (Author, Title, Journal)
barium aluminoboro- fluorosilicate glasses example: Algos te mol Bar Bar Bar Slog 44	microspheres, 5-50 u dia.	melting, chill- ing, size reduction, flame spheriz- ing	refractive index, thermal expansion, sphere size	filler mat- G. erial for dental composites	G. W. Cleek	<pre>R. L. Bowen and G. W. Cleek, ""-Ray Opaque Reinforcing Fillers for Composite Mat- erials", J. Dental Res., <u>48</u>, 79 (1969).</pre>
glasses from Al ₂ 0 ₃ -BaO-SiO ₂ system	glass blocks	melting, annealing	refractive index, transmittance, liquidus temp.	specimens may G. be used for detm. of other propertie:	W. Cleek	
aluminosilicate glass, alkali- free	NBS Standard Reference Material # 715	melting, chilling	Knoop hardness	not NBS certified for this method but suitable as standard; used in ASTM round robin tests	A. Napolitano	ASTM draft in preparation.
glasses from B ₂ 0 ₃ -Ba0-SiO ₂ system	glass blocks	melting, annealing	chemical analysis; refractive index; density; liquidus temp.	specimens G. may be used for deth. of other properties	W. Cleek	E. H. Hamilton, G. W. Cleek, and O. H. Fareer, "Graeses" Properties of Glasses properties of dlasses finte System Barium Oxide-Boric Oxide- Silica", Amer. Ceram. Soc., 41, 203 (1958).
glasses from B203-Ln203 System	small fragments	gravity separated from two immiscible liquids	polarizing microscopy	high-index E. solid state	M. Levin	E. M. Levin, "Liquid Immiscibility in the Rare Earth Oxide- Boric Oxide Systems", Phys. Chem. Glasses, <u>2</u> ,90 (1966).

III. CLASS

glasses from B ₂ 3-Na ₂ 0-S10 ₂ System	glass blocks	. melting, chilled	domain develop- ment kinetics; immiscibility temp.	specimens W. Haller used for theoretical studies of immiscibility	W. Haller, D. H. Blackburn, F. E. Wagstaff, and R. J. Charles, "The Neta- stable Immiscibility Surface in the System N. Am. Ceram. Soc. J. Am. Ceram. Soc.
10B-enriched borate glasses doped with Co, Dy, or In	glass prisms	melting, chilling, grinding	neutron acti- vation anal.	tested as D. H. Blackburn possible method to detm. neutron flux	"Glass Beads for Neutron Flux Measure- ments", NBS Technical Highlights, 1965, p. 86
glasses from BaO-La ₂ 0 ₃ -Si0 ₂ system	glass blocks	melting, annealing	refractive index, trans- mittance, liquidus temp.	specimens G. W. Cleek may be used for detm. of other properties	
a base glass: Bao 5 mol% Siôo 15 Siôo 75 Caro 6 dored with various rure earths: Eu, Er, Nd	blocks 3 x 3 x 3 cm.	melting, chilling, annealing	evaluation for laser use	specimens G. W. Cleek are being evaluated for fluorescence lifetime	E. J. Sharp, M. J. Weber, and G. W. Filet, Energy Trans- filet, Energy Trans- quenting in Eu and Md Doped Sliteare Glasses ^m J. Appl. Phys. <u>41</u> , 364 (1970).
glasses from BaO-Nb ₂ 05-Si02 system	glass blocks	melting, annealing	refractive index, trans- mittance, liquidus temp.	specimens G. W. Cleek may be used ofter detm. of other properties	
glasses from BaO-SiO ₂ -TiO ₂ system	glass blocks	melting, annealing	refractive index, transmittance, liquidus temp.	specimens G. W. Cleek may be used for detm. of other properties	

	. 5	arry		t y	
	 ASTM C598 and H. E. Hagy, "calibration of Beam Bending Ap- paratus", J. Amer. Ceram. Soc., <u>46</u>, 93 (1963). 	<pre>(2) D. F. Secrist, Measurement of Sur- Measurement of Sur- Glasses by a Capillary Glasses by a Capillary Flow Technique", 9401, 563 (1969).</pre>		<pre>(4) J. E. Kelley, T. Barsobert, and H. M. Hanes, "A Penetro- meter for Measuring meter for Measuring the Absolute Viscosity of Glass", U. S. Bureau of Mines RI 6358 (1964).</pre>	
	 ASTM C598 and F E. Hagy, "Calibration of Beam Bending Appratus", J. Amer. Ceram. Soc., <u>46</u>, 93 (1963). 	<pre>(2) D. F. Secrist, Measurement of Suu face Tension of Glasses by a Capil: Flow Technique", B Amer Ceram, Soc, 563 (1969).</pre>	(3) ASTM draft in preparation.	<pre>(4) J. E. Kelley. D. Robert, and H. Hanes, "A Penetror meter for Measuri the Absolute Visc of Glass", U. S. Bureau of Mines RI 6358 (1964).</pre>	
	(1) E. H of E Para Cera	(2) face Glass Flow Amer 563	(3) prel		
W. Cleek	A. Napolitano	A. Napolitano	A. Napolitano	A. Napolitano	W. Cleek
	A. Nard	A. Na _I d	A. Nar d	A. Nar s t	
ls ⊔sed № of ?operti	ed s metho table dard	ed s metho table lard	ed s metho table a 1; used round ests	ed s metho d for ow poin	s s a s nt may for s rizati s copy
specimens G may be used for detm. of other properties	not NBS certified for this method but suitable as standard	not NBS certified for this method but suitable as standard	not NBS certified for this method but suitable as standad; used in ASTM round robin tests	not NBS certified for this method but suitable as standard for ASYM flow point detm.	specimens G covering a vide range of Fe content may be used for bu used for by Mossbauer by Mossbauer spectroscopy
e index ance, temp.	by ing	ension ed	dness	by ter	try
refractive index, transmittance, liquidus, temp.	viscosíty by beam bending	surface tension at elevated temp.	Knoop hardness	viscosity by penetrometer	Mossbauer spectrometry
1 I I I I I	vi be	s t te	КИ	v i	sp
melting, annealing	ing,				ing, ling
melting, annealing	melting, chilling				melting, chilling
glass blocks	NBS Standard Reference # 710				30 × 2
glass	NBS Stande Reference Material # 710				30 × 3 mm
					0 0 0
glasses from BaO-SiO ₂ -ZnO system	alkali-lime- silica glass: cao 11.6 mol° K20 7.7 Na20 8.7 SiO2 70.5				Fe-containing silicate glasses
glasse BaO-Si system	alkali silic CaO K20 Na20 Si02				Fe-con silica

See ref. 2 under alkali-lime-silica glas. ASTM draft in preparation.	E. H. Hamilton and G. W. Cleek, "Pro- perices of Sodium Fitanium Silicate Glasses", J. Res. NBS, 61, 89 (1958).	 W. Haller, Rearvargement Rinetics of the Liquid-Liquid Im- machine Microphases machine Microphases machine Hars, J. Silicate Melts", J. Chem. Phys. 42, 686, (1965), M. M. Winslow and J. J. Shapiro, Man Instrument For the Mestrument For the Nestrument For the Size Distribution by Mercuy Fenetration", ASTM bull, <u>3</u> (Feb. 1959). 	
not NBS certified for this method but suitable as standard not NBS certified for this method this meth	specimens G. W. Cleek may be used of other glass pro- perties	possible W. Haller surface area and porosity standards	prisms cover- G. W. Cleek ing range of indices 1.5 to 1.9 measured by minimum deviation method for NF, ND, and NF
surface tension at elevated temp. Knoop hardness	refractive index, transmittance, liquidus temp.	mercury intrusion porosimetry, nitrogen absorption	refractive index
melting, chilling	melting, annealing	melting, chilling, domain develop- ment, dir- ment, dir- dissolution dissolution	melting, chiling, annealing, polishing
NBS Standard Macerial # 711	glass blocks	powders, 50-200 mesh particles	glass prisms
alkali-lead- kilica glass: kilica glass: kilica glass: ha20 2.6 bb0 45.3 5102 46.0	glasses from Na ₂ O-SiO ₂ -TiO ₂ system	porous silica glass SiO2	various

60
7
È
ŝ
겄
0
8
O
z
5
2

S REFERENCES (Author, Title, Journal)	<pre>S. J. Schneider and C. L. McDaniel. Effect of Environment upon the Melting Point of Al₂0³, J. Res. NBS, 7<u>1A</u>, 317 (1967).</pre>	S. J. Schneider, "cooperative Determin- monosertive Determin- point of Al ₂ 03", Point of Al ₂ 03", Pure and Applied Chemistry, to be published.	C. E. Weir, "Com- pressibility of Flaven Inorganic Materials", J. Res. NBS, <u>69A</u> , 29 (1965).	H. S. Parker and C. A. Hacding, Vapor forwth of Aluminum Oxide Biorystals", Abstracts, ACG- NBS Conference on Crystal Growth, Aug. 11-13, 1969, Mainigton, D. C., 9, 42.	C. M. Stickley, et al. "color centers and Ruby-Laser Output-Energy Degradation" J. Appl. Phys. <u>40</u> , 1792 (1969).
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	S. J. Schneider		C. F. Weir*	H. S. Parker	R. F. Blunt T. Chang
COMMENTS	melting point detm. for SRM		see also under BH ₃ 03, SECTION V	material of high physical perfection and chemical purity; suit- able for dif- fusion for dif- physical tudies, properties	laser properties (optical and x-ray damage)
METHOD OF CHARACTERIZATION	melting point		compressibility to l0Kb	spectrochemical and activation anal., optical microscopy, x-ray diffractometry	optical, EPR spectrometry
NATURE OF PREPARATION	 commercial powder and crystals purified powder by solar furnace 		commercial	chemical vapor de- vapor de- holition, Alli \rightarrow [0] \rightarrow 1760-1750°C	flame fusion, prepd. by D. E. Roberts
NATURE OF MATERIAL	also stud- ied as powder, see SECTION V		single crystal bar	single crystals and bi- crystals, 3 x 8 x 20 mm	° lem
COMPOSITION	Al203 alumina				pure and with following dopants: Cr, Mg Mg+Cr, Ti+Cr, Ti, V, Mn, Mh+Cr, Zn +Cr, Fe+Cr

	 (1) N. N. Winogradoff and H. Kessler, "White Chasaston and Electrical Chasaston and Electrical Epitastia Gala Lasers and Tunnel Diodes", Solid State Comm., 2) 119 (1964). 2) 119 (1964). 2) 110 (1964). 2) 110 (1964). 2) 110 (1964). 2) 110 (1964). 2) 120 (1967). 2) 20 (1967). 2) 128A, 1522 (1967). 2) 20 (1967). 2) 20 (1967). 2) 128A, 1522 (1967). 2) 138A, 1522 (1967). 4) N. Winogradoff and A. H. Wally, "Band dution in Semicon- ductors", Phys. Rev., (4) N. Winogradoff and A. H. Willy, "Band the Temperature Do- ductors", Phys. Rev., (4) N. Winogradoff and A. H. Milly, "Band the Temperature Do- ductors", Phys. Rev., (111 (1968).
G. A. Candela S. E. Stokowski# 2.	g A. H. Neill* ad; ad; hitates as a di- tates ful hance hul
ferro- electric, see also CrH4N0852	understanding of band of band for unusual for unusual for unusual dor unusual dor unusual edge orphion- edge orphion- dor semi- conductor injection provement of provement of
optical, magnetic	spectral examination of temp dependence of adjative recombination induced by induced by across p-n across p-n putcian or by optical excitation
grown from aq. soln.	vapor phase cafs substrate, cac13 + fac13 + prspared by Monsanto Co.
n = 1 to 0.02	highly doped and compensated
$ \begin{array}{lll} Al_{1-n}Cr_{n} k08^{S} 2 \cdot 12H_{2}^{O} & n = 1 \\ kAl_{1-n}Cr_{n} (S0_{4})^{2} \cdot & \\ kAl_{1-n}Cr_{n} (S0_{4})^{2} \cdot & \\ 12H_{2}^{O} \end{array} $	AsGa GaAs gallium arsenide

<pre>A. D. Mignell, A. Perloff and S. Flock, "The Crystal Structure of the High Temper- ature Form of Barium Borate, BaO B₂O,", Acta Crysts. 20, 919 (1966).</pre>	A. Perloff, paper in prepn. for submission to Acta Cryst.	A. Perloff anJ 5. Block, "The Crystal Structure of the Strontium and lead Tetraborates, Sro. 2820, "A deta Cryst., 20, 274 (1966).	See ref. under B ₄ 07Pb.	C. R. Robbins and E. M. Levin, "Phase Transformation in Barium Terradorate", J. Res. NBS, J. Res. NBS,	A. Hyman, A. Perloff, F. Muer, and S. f Block, "The Crystal Structure of Sodium Tetraborate", Acta Cryst., 22, 815 (1967).
A. Mirbell A. Perloff	A. Perloff	A. Perloff	A. Perloff	C. R. Robbins E. M. Levin	A. Perloff
high-temp form, meta- stable at room temp.		structure by analogy to isomorphous Sr0.28,03	see B ₄ 07Pb	piezo- electric at ambient temp. (ortho- rhombic form); transforms treversibly to tetragonal form at 700°C	high temp. form, meta- stable at room temp.
complete single crystal x-ray structure anal.	complete single crystal x-ray structure anal.	unit cell and diffraction symbol from single crystal data	complete single crystal x-ray structure anal.	spectrochemical ana.: optical, wray powdery diffractometry (from abient to 850°C); differ- ential thermal anal.	complete single crystal x-ray structure anal.
crystallized from melt of stoiohiometric composition on hot wire loop	crystallized from melt of stoichiometric composition	crystallized from melt of stoichiometric composition	crystallized from melt of stoichiometric composition	melt solidi- fication, required seeding for crystallization	crystallized from melt of stoichiometric composition on hot wire loop
small, tenths of mum	∿ 0.1 mm range	0.1 mm range	needles; length ~ 0.1 mm, cross- section ~ .01 mm	twinned crystal, 1 x 1 x 2 mm	small (~ 0.1 mm range)
a vau, haŭ-i - 0	b,bi0ų 2Bi₂O₃•b₂O₃	B₄07Pb Pb0•2B₂0₃	B407Sr0.2B203	4B203•BaO BaB ₈ 013	4B203.1B20 Na20.4B203

 C. R. Robbins and E. M. Levin, "Tetra- Esemantes of Stronatium of Formula Barium of Formula Barium of Formula Barium of Formula NBS, <u>65A</u>, 127 (1961). C. Robbins, A. Perloff, and S. Block, "crystal Structure of Bace [ee309] and its Relation" of Res. NBS, <u>70A</u>, 385 (1966). 	 Work in progress with particular in- terest in the crystal chemistry, domain structure and pizzo- structure and pizzo- structure and pizzo- the compound. (C. R. Robhins, 1969). C. G. Blasse, "Fluo- resence of Compounds (Mith Presnoite (Mith Presnoite (Mith Presnoite (Mith Compounds (1968). 	 (1) C. R. Robbins, "crowth of Fresnoite (darfision) From Relation to the System Barlo, System Barlo, 1<u>4A</u>, 229 (1970). (2) See ref. under BacGerogri.
C. R. Robins	C. R. Robbins	C. R. Robbins
type structure for AB.09 ger- mantes, see also Gei09 ^b and Gei09 ⁵ in SECTION Y	crystals exhibit pronounced domain struc- ture, show very strong pizzelectric response (1); phosphor (2)	piezoelectric (1); phosphor (2); type structure
optical and x-ray diffractometry (1), including single crystal structure detm. (2)	spectrochemical; powden diffracto- metry; differential thermal anal.	<pre>spectrochemical; optical, x-ray optical, x-ray metry (powder metry (powder metry (powder and single orystal), differential thermal anal. (1)</pre>
melt solidi- fication of stoichiometric composition	melt solidi- fication and melt solidi- fication using TiO2 as flux (1)	melt solidi- fication using TiO2 as flux (1)
L X L mm E X	l x l x 3 mm	1 x 1 x nm 8
BaGe, 09	Ba2Ge20a Ba2TiGe20a	Ba ₂ 0 ₈ Si ₂ Ti Ba ₂ TiSi ₂ 0 ₈

<pre>J. Ito, "The Synthesis of ado- Synthesis of ado- hoad." 41, 404 (1965). J. Ito, "A Note on the adolinte Syn- thesie", Proce Jan- hesie", Froce Jan- Acad., 42, 634 (1966). J. Ito, "Synthesis of J. Lo, "Synthesis of J. Sologaolinite", Amer. Mineral., 52, Amer. Mineral., 52,</pre>	C. Frondel and J. Tto, "Synthesis of the Scandium Ana- louse of Beryl', Jouse of Beryl', 943 (1968).		<pre>E. L. Venturini, E. G. Spencer and A. A. Ballana, "Elasto- Ballana," elasto- Bil2Ge02, Bil2Si020, SrkBal_MD206, J. Appl. Phys., 40, J.622 (1969).</pre>		
see under Be_in_201,512 (Me_ang_Mi_2n, Co,cu,Fe,Mi,2n, Co,cu,Fe,Mi, v Cd), SECTION v	H. S. Peiser	see Bi ₃₂ Ga ₂ O ₅₁ A. Feldman D. Horowitz	Faraday W. S. Brower rotation; piezoelectric electro-optic	W. S. Brower W. S. Brower	optically A. Feldman active, high D. Horowitz Faraday ro- tation; see also Bi ₁ 26024
precession and x-ray powder diffraction anal.	precession and x-ray powder diffraction anai.	optical	see also Bilg6e0.0,0 Bi326a2051		optical
slow cooling from Na_2W04 flux a_W207 flux a_W207	slow cooling from V ₂ O ₅ or Ba ₃ (VO ₄) ₂ flux	see Bi ₁₂ MO ₂₀	melt grown	melt grown melt grown	pulled from melt, prepd. by W. S. Brower
light mm; also ; lum; also ; budied as poly- crystalline material	bright blue, 2 mm		M = Ge, Si, Ti; 0.5 x 1 cm	0.5 x 1 cm 0.5 x 1 cm	
Be.cul.usiz%. CuYzBassion copper yttrium gadolinite	Be_O4Si(V ⁺⁴) Be_SiO4 doped with V+4	Bi ₁₂ Ge0_0 GeBi ₁₂ 0_0	Bi ₁₂ Mo ₂₀ 6Bi ₂ 0 ₃ .Mo ₂	7Bi ₂ 0 ₃ .Zn0 17Bi ₂ 0Ga ₂ 0 ₃	Bi₃2Ga₂051 l6Bi₂0₃·Ga₂0₃

bromine		from liquid at 20°C, 5Kb	x-ray diffracto- metry	unit cell; space group; phase equi- librium	S. Block G. J. Piermarini C. E. Weir*	C. E. Weir, G. J. Piermarini, and S. Block, "Crystallo- graphy of Some High Pressure Forms of CH8, CS2, Bry, CCL4, and KN03 ^d , J. Chem. Phys., <u>50</u> , 2089 (1969)
CC1 4	I structure II structure III structure	from liquid at 20°C, 1Kb from CCl4-I at 80°C, 8Kb from CCl4-I at 120°C, 10Kb	x-ray diffracto- metry	unit cell; space group; phase equi- librium	S. Block G. J. Piermarini C. E. Weir*	See ref. under Br2.
		frozen from liquid at 20°C, 12Kb	x-ray diffracto- metry	unit cell; space group; phase equi- librium	S. Block G. J. Piermarini C. E. Weir*	See ref. under Br2.
CjFeN6Na20.2H20 Na2Fe(CN)5N0 sodium nitro- prusside	L X L X L X X X	controlled growth from aq. soln.	Mossbauer spectro- scopy	crystal structure, structure, Referencial #725; Maschauer spectroscopy	A. T. Horton	<pre>J. J. Spijkerman, D. K. Shediker, F. M. Ruegs, and J. R. Bruegs, and J. R. Spectroscopy standard for the Chandrad for the Chandrad for the Chandrad Sift of Tron Compounds", NBS Misc. Publ. 260- 13 (1967). 13 (1967). Masterial for Moss Material for Moss Material for Moss Bauer Spectroscopy", NBS Tech. News Bull.</pre>
C ₆ H ₆	I structure, see also SECTION II	frozen from liquid at 20°C, 0.6 Kb	x-ray diffracto- metry	unit cell; space group; phase equi- librium	S. Block G. J. Piermarini C. E. Weir*	See ref. under Br ₂ .

R. W. Duerst and F. Kokosaka "Hyperfine Fields in Dimeric Coordination Complexes', J. Chem. (1969).		 A. D. Mighell, A. D. Mighell, C. W. Reimann, and F. A. Mauer, "The Crystal and Molecular Structure of Diaquo- Nickel (II) Dinitrate, Nickel (CH6M) 2 (H2O)2 Nickel (CH6M) 2 (H2O)2 Niskel (CH6M) 2 (H2O)2 Niskel (CH6M) 2 (H2O)2 Niskel (CH6M) 2 (H2O)2 	<pre>A. D. Mighell, C. A. Santoro, "The W. Stantoro, "The Crystal and Molecular Structure of Di- Structure of Di- Structure of Ci Structure of Ci Cryst , B25, 595 (199).</pre>	<pre>C. W. Reimann, A. D. Mighell, and F. Mauer, "The Crystal and Molecular Sruc- ture of Tetrakis- tyre of Tetrakis- Chloride, Chloride, Mi(Cgi,N2,),Cl2," Acta Cryst., 23 135 (1967).</pre>
metal-metal G. F. Kokoszka interaction study	infrared and A. T. Horton Raman spectra vibrational transitions	study of C. W. Reimann hydrogen bronding be- tween co- ordinated water molecules with nitrate groups	role of C. W. Reimann hydrogen bond in detm. elec- tronic energy levels of Nit	
optical and EPR spectrometry; chemical anal.	infrared and Raman spectrophotometry	single crystal x-ray anal.	<pre>x-ray anal.,single crystal structure detm., optical ure spectrophotometry</pre>	
grown from methanol soln.	melt solidi- fication	C ₆ H ₆ N ₄ (2,2'-+ bi-imidazole) + Ni(N03)2 + H ₂ O	C ₃ H ₄ M ₂ - (pyrozole) + Nibr ₂ + H ₂ O	C ₃ H ₄ N ₂ (pyro- zole) + NiCl ₂ + H ₂ O
1 x 1 x 1 to 5 x 5 x 5 mm x 5	l x 4 in			- de
C10H10Clounz02 UU(C4H5N02Cl2 UU(C4H5N02Cl2 With the foilod- ing doparts: BayddN1 N1 (0.1-28),Pb, and Zn and Zn bis(pyridine-N- oxide)copper (II)	C ₁₀ H ₁₀ Fe (C ₅ H ₅) ₂ Fe ferrocene	C ₁₂ H ₁₂ N ₁₀ Nio ₆ , 2H ₂ 0 Ni (C ₆ H ₆ N ₄) ₂ (H ₂ O) ₂ (NO ₃) ₂	Cl2H16Br2NgNi (C3H4N2)(MiBr2 tetrakis (pyrazolo)- ničkel (II) bromide	C ₁₂ H ₁₆ Cl ₂ N ₉ Ni (C ₃ H ₁ M ₂) ₁ NtCl ₂ tetrakis(pyrazolo)- nickel (II) chloride

	<pre>C. W. Reimann and M. Zocchi. whe Stucture of the Trhucture of the Isic Lucture of the Isic Lucture of the triacolo N1, N1, 2, 1+ triacolo N1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,</pre>	C. W. Reimann, A. Santoro, and A. D. Santoro, and A. D. Santoro, and A. Cry- stal and Molecular Structure of Hexa- pyrazolenickel- NiCCHL, MO2, Nitrate, NiCCHL, MO3, Acta Cryst., <u>B26</u> , (1970).	A. Santoro, A. D. Mighell, M. Zocchi, and C. W. Reimann, "The Crystal and Molecular Structure Molecular Structure for Hoxis (Inida- oc) Nickel (TI) Mitrate (CgH(M3)6 Mitrate (CgH(M3)6 Mitrate (CgH(M3)6 Mitrate (CgH(M3)6 Mitrate (CgH(M3)6 Mitrate (CgH(M3)6 Mitrate (CgH(M3)6)
crystal A. T. Horton structure; phase tran- sitions; lattice dynamics	optical and C. W. Reimann magnetic properties of polymuctear species	study of C. W. Reimann competition between hydro- gen bonding and coordinate bonding in cationic packing	studies of C. W. Reimann single crystal visible and vibrational spectra
x-ray, neutron cry diffractometry; str diffreential pha thermal anal. sit	single crystal opt x-ray anal. pr sp	single crystal stu x-ray anal. bet get an car	single crystal sti sir vis vis vib sp
melt solidi- fication	C2H3N3 (1.2.4- triazole) + Ni(N03)2 + H20	C ₃ H ₄ N ₂ (pyra- zola) + Ni(NO ₃) ₂ + H ₂ ON ₃) ₂ +	C3H4N2 (imida- zole)+ M(N03)2 + H20
H ₁₈ 1" dia. x (H ₃) 3" c(CH ₃) 6 bearene bearene	C12H18N24N13018 BH20 E(H20)3(C2H3N3)3 Nil2-Ni(N03)6(H20)2	2H ₂₄ N ₁₄ Nio ₆ (C ₂ H ₄ N ₂) ₆ Ni(NO ₃) ₂	<pre>BH2.4MN 1.406 M = Cd.CO, CC3HAN2) 6 d(N03)2 CC3H4N2) 6 6 d(N03)2 CC3H4N2) 6 6 0 (N03)2 CC3H4N2) 6 M 1 (N03)2 CC3H4N2) 6 M 1 (N03)2</pre>
C ₁₂ H ₁₈ C ₆ (CH ₃) ₆ hexameth; benzene	C ₁₂ H ₁₈ N ₂ [(H ₂ 0) Ni] ₂ -N	C12H24N14N06 (C2H4N2)6Ni	C18H24MN1406 (C3H4N2)6C (C3H4N2)6C (C3H4N2)6C (C3H4N2)6C

C₂0H₄∂ n-C₂0H₄₂ n-eicosane	2" dia. x	melt solidi- fication	electrical, optical ab- sorption measurements	detm. free carrier mobility and G values; radiolysis measuremet by use of optical ab- sorption techniques	A. T. Horton	
CaF ₂ also Gd-doped (0.1 to 1.0%)	х м нап г-1 ю	commercially obtained; cry- stais annealed in Ha HF at 500-120°C; quenched	absorption (200 to 2500 nm), EPR spectrometry; confeantal anal. for 6d and accidental impurities	controlled point-defect equilibria studies; oxygen free	A. Franklin	 A. Franklin, "Mase Transport in Non- metallic Solids", Proc. of Mrg. of Basic Science Div. of Basic Science Div. of Basic Diritish Ceramic Sc., Lundon, Dec. 1969, London, Dec. 1969, In Pressitian S. Maruhlo, "Orignation fingerstital Pairs interstital Pairs interstital Pairs of Baitish Institute of Physics, to be
CaGe05Ti CaTiGe05	1 × 1 × 2 mm	melt solidi- fication from stoichiometric composition	spectrochemical anal; optical, x-ray diffracto- merry (podder and single crystal)	isostructural with synthetic CaO ₅ SiTi	C. R. Robbins	<pre>C. R. Robbins, Synthetic Carlislos "Synthetic Carlislos and its Germanium Analogue (Carriseo,)", Mat. Res. (Lauli, 3, 693 (1968).</pre>
CaMoO ₄	see un <mark>d</mark> er MMoO ₄					

 W. S. Brower and C. R. Robbins, "grewth of carissios by the caroinalski Method", J. Cryst. Method", J. (1969). See ref. under (2) See ref. under Caeoo5Ti. 		<pre>J. Ito and C. Frondel, "Synthetic Zirconium and Titan- ium Garnets", Amer. Mineral., 52, 773 (1967).</pre>			P. Eisenberger and P. S. Pershan, "Jlectron Spir-Resonance and Infrared Studies of Semiconducting, Semiconducting, Rare-larth-Doped CdP2," Phys. Rev. 1627, 292 (1968).
<pre>serves as C. R. Robbins type structure W. S. Brower Carlslos Carlslos F. M. S. Brower Carlslos P. M. S. Brower Carlslos P. M. S. Brower Carlslos P. M. S. Brower Carlslos C. S. See also CaGe0511</pre>		crystallo- graphic sites detm.for both Ti and structure structure			W. R. Hosler W. S. Brower
<pre>spectrochemical anal: optical, anal. optical, and single crystal (2)]</pre>		powder and precession x-ray diffraction anal.			electrical
melt solidi- fication (2), and Czochralski growth (1)		slow cooling of Li ₂ MoO ₄ flux			Bridgman growth
1 x 2.5 cm (1) 0.5 x 0.5 x 1.5 cm (2)	see under MO ₄ W	M = Ti,Zr	titanium garnet, dark brown, 2 mm also poly- crystalline	zirconium garnet, chestnut brown, 0.55 mm, also polycrystal- line	1 cm
Ca0,51Ti CaTiSi0,5	Ca0 ₄ W CaW04	Ca ₃ Fe ₂ M012Si2	CagTiFe2Si2012	Ca ₃ ZrFe ₂ Si ₂ O12	CdF ₂ also with dopings

F. Sterzer, et al., "Cuprous Chloride Light Modulators", J. ppt. Soc. Am., <u>54</u> , 62 (1964). A. Feldman and D. A. Feldman and D. Index of CuCl. ' upt. Soc. Am. <u>59</u> , 1406 (1969). MBS Tech. Rpt. 10013.	M. Linzer and R. A. Forman, "NMR A. Forman, "NMR Crucies of Single Crucies of Single Crystal Nu _g cl, teon Phys; <u>46</u> , 4690 (1967).	 8. D. Deslattes, B. Horton, "Solution Folishing of Oriented Folishing of Oriented Folishing of Oriented Sigla Cyrata", Rev. of Sci. Inst., Sev. of Sci. Inst., Brooks, A. T. Horton, and J. L. Torgesen, "Occlusion of Mother Liquor in SolutionGrown Crowth, 2, 279
optical A. Feldman modulator D. Horowitz	measurement R. A. Forman of quadrupole M. Linzer couping const. for D on NDu+ for D on NDu+ torional motion of Nu+', crystal structure	optical, x-ray A. T. Horton measurements
optical, dielectric	NMR (D,1 ⁴ N) spectrometry	optical micro- scopy (etch pits); x-ray topography
Vapor and Bridgman Browth; prepd. Browth; prepd. Promers, also supplied by A. F. Armington A. F. Armington Mass., and by A. Linz, Mass. Cambridge, Mass.	evaporation aq. soln. ND4Cl + deuterourea.	controlled soln. growth
	3 x 3 x 13 mm see also H ₄ NX	1 x 1 in.
1 18 a CuCl	ClD ₄ N ND ₄ C1	clo ₃ Na Naclo ₃

			· · · · · ·
R. Z. Bachrach and "E.C. Brown. "Txciton Structure frict and TiBr", phys. Rev. Ltrs., 21, 685 (1969). A. Feldman, "Anoma- the Structure of the Exciton Peak in the Exciton Peak in the Exciton Peak in the Phys. Soc., <u>14</u> , 131 (1969).	C. K. Moller, "structure of "structure of perovskite allel Ce PD Trihaldes", Ygell Danske Salskab, Widenskab, Redd, Mat. Tys. Nedd, Aat. Tys. Nedd, Aat. 1959);also see Nature; 122, 1436 (1958).		J. Ito and H. S. Discor, Wistorted Tetrahedra inter Strontine "Opper Akermanite", J. Res. MBS, <u>73A</u> , 69 (1969).
A. Feldman L. H. Grabner	K. F. Young	A. T. Horton	H. S. Peiser
piezo-optical luminescent properties	measured from 4.2K through phase trans- îtion at 320K	second and higher order phase transitions	
optical	dielectric constant	ultra-sonic attenuation	x-ray powder diffractometry
Bridgman growth; prepd. by D. E. Roberts	grown by W. S. Brower, Bridgman method	controlled evaporation, from soln.	slow cooling, flux Na2MO4
~ 2 mm, very soft	yellow, 1 cm. dia. x 2 cm.	∿ mm size	<pre>M = Ca,Sr; dark blue; dark blue. and Sr cobalt also poly- also poly- also poly- aralogues with M = vith M = vith M = dard Mn</pre>
cIT1 TIC1 with also with dopants Cd, Pb, Nd, T	Cl ₃ CsPb CsPbCl ₃	Cl ₆ K ₂ Re K ₂ ReCl ₆	CoM207Si2 Ga2CSSi207 Sr2COSi207

 A. Perloff, "The Crystal Structure of Sodium Hexanolyb- dochromate (III) Octhydrate: OctMogO24Hg)' BH30", Horos. Chem., in press. 	<pre>(2) A. Perloff, Doctoral Dissertation, Georgetown Univ. (1966), (3) G. A. Tsigdinos,</pre>	poctoral ulsseration, Boston Univ. (1961). (1) A. Perloff, paper in prepn.		4	
A. Perloff				G. A. Candela S. E. Stokowski [‡]	A. T. Horton
readily A dehydrates to a com- position approximating (Na)CrMo ₆ 0 ₂₄ H ₆) 2H ₂ 0		readily dehydrates	to a lower hydrate	ferro- electric see also Al _{n-1} Cr _n - KO ₈ S ₂ ·12H ₂ 0	NMR spectro- scopy, wave guide experiments
complete single crystal x-ray structure anal.		complete single crystal	x-ray structure anal.	optical, magnetic	NMR spectrometry
aq. soln. of Na ₂ MoQ.2H ₂ O + Cr(NO ₃) ₃ .9H ₂ O at pH = 4.5		crystallizes on evaporation	or aq. soin. or octahydrate at room temp.	from aq. soln.	controlled evaporation from soln.
<pre>n = 8, prepn. leads to mm size orytals, no conm- ercial supply available</pre>		n = 13, prepn. leads	to mum size crystals, no commercial supply available		l cm ²
CrH ₆ No ₆ Na ₃ O ₄ . nH ₂ O ₄ Na(CrMo ₆ O ₄ H ₆). nH ₂ O				CrH4,N0.52.12H.0 NH4,Cr(S04,)2.	CuO ₄ S•5H ₂ O CuSo4•5H ₂ O

Cu ₂ o	1.5 × 6 cm	grown from melt		optical and W. S. Brower lectrical H. S. Parker measurements; air sensitive	<pre>W. S. Brower and H. S. Parker, "Welt Growth of Large cuprous Oxides cuprous Oxides Single Crystals", Abstracts, ACG- NBS Conf. on Crystal Conf. on August 11-13, August 11-13, 196, Washington, D. C., p. 115.</pre>
		prepd. by W. S. Brower	electrical	oxide- R.A. Forman semiconductor W. R. Hosler dielectric K. F. Young constant	
F ₂ M ₆ Na ₂ O ₂ 4Si ₆ M = Gd Nd Pr Sm	largest crystal 2 x 2 x 6 cm colorless purple green yellow	flux (MaF) isothermal evaporation	x-ray powder diffraction anal.; visible emmission spectrometry	strong red H. S. Peiser and greence fluorescence when activated by Eu and Tb in Gd analogues	J. Ito, "Silicate Apatites and Oxya- patites", Amer. Mineral., 53, 890 (1968).
₽₂Mg MgF₂ MgF₂	~ 1 cm ³	pulled from melt, D. E. Roberts	optical; EPR spectrometry	color M. I. Cohen centers, optical coatings	R. F. Blunt and M. I. Cohen, "Irradiation- Induced Color Centrers in Magnesium Rev. 153, 1031 1967).
F2 ^{Pb} PbF2 also Y, rare- earth dopings		Bridgeman growth		W. R. Hosler W. S. Brower	<pre>D. A. Jones, "Growth of Lead Fluoride crystals from the Malt", Proc. Phys. Soc., 68B, 165 (1955).</pre>

C. E. Weir, S. Block, and G. Block, and G. Crystal X-ray Diffraction at High Pressures, J. Res. NBS, <u>69C</u> , 275 (1965).		<pre>R. D. Deslates, J. L. Torgesen, B. Faretzkin, "Preliminary Studies of Neth Charton. AD Crystals", Adv. in X-ray Anal. 8, p. 315 (1965). R. D. Deslattes, J. Paretzkin, and A. T. Horror, "Observation of Dislocations in ADP: Production of Dislocations in ADP: Production of Crystals", J. Appl.).</pre>	J. Ito, "Synthetic Indium Silicates And Hydrogarmet", Am. Mineral., 53, 1663 (1968).
S. Block G. Piermarini C. E. Weir*	R. A. Forman	A. T. Horton	H. S. Peiser
unit cell, space group, phase equi- librium	relation to alkali halides	monochro- meters, electro- optics, x-ray reference crystals	see also NaO ₆ ScSi ₂
x-ray diffracto- metry	optical	optical microscopy (etch pits); x-ray topography	powder and precession x-ray diffraction anal.
from liquid at 100°C and 30 Kb	from aq. soln. by evaporation	controlled growth from soin.	slow cooling from Na ₂ WO ₄ or Na ₂ MoO ₄ flux
structure VII	4. 1 cm ³	3/4 x 3 in	colorless indium aegirine, 1 cm; also obtained as polycrystal- line
H ₂ O - VII ice VII	H ₄ NX NH ₄ X X = Br,Cl,I also with Tl doping	H ₆ N0 ₄ P NH ₄ H ₂ P0 ₄ "ADP"	InNaO ₆ Si ₂ NaInSi ₂ O ₆

See ref. under Brz.	<pre>M. I. Cohen, et al., "Lattice Absorption in Strontium Tita- nate", Bull. Am. Phys. Soc., <u>14</u>, ugg (1969). w R. Hosler and H. W. R. Hosler and H. W. R. Hoslerikse, "Magnetoresistive Effects in KTaO," Sol. State Comm., <u>7</u>, 1443 (1969).</pre>
S. Block G. Plermarini C. E. Weirt	M. I. Cohen W. R. Hosler
detm. unit cell, space group, phase equilibrium	oxide semiconductor
x-ray diffracto- metry	electrical, optical
obtained from KN03 II at elevated temp. and pressure from satu- rated aq. soln KN03 acloc, 20 KD	prepd. by W. S. Brower; W. S. Brower; also obtained from A. from A. Inst. Tech. Mass., Rass., Flux Rass., Flux Rass., Flux
structure III structure IV	
KNO ₃ III KNO ₃ IV	K0jra Kra03, also doped with Mn

W. S. Brower and P. H. Fang, "Dielectric Constants of PbMoO,	and CaMoU ₄ ", Phys. Rev., <u>149</u> , 640 (1966).	W. S. Brower and F. H. Fang, "Distacting Constants of PbW0, and CaW0," , J. Appl. Phys. 33, 2391 (1967).	<pre>J. Wachtman, Jr. J. B. Wachtman, Jr., W. S. Brower, Jr. and E. N. Farabaugh. "Elastic Constants of Single Crystal Calcium Molybdate (CaNoo,)", J. Am. Geram. Soc, 51, 341 (1968).</pre>	W. A. Bonner, "Crowth of Large Single Crystal Lead Molyb- date for Acousto- Optic Applications", Abstr. ACGG-NBS Conf., AUGUS, 1969, p. 116.	See refs. under MMoO,.	
	W. S. Brower		J. Wachtman, Jr		W. S. Brower	R. F. Blunt
see also MnModu	acousto- optic	C€VLCES €VLCES	elastic constants of CaMoO4		acousto- optical devices	magneto- optical properties
	x-ray topography; dielectric constant,		mechanical		x-ray topography; dielectric constant; etch pits	optical
	melt grown				melt grown	
M = Ca,Pb, Sr	l w j cm				M = Ca,Pb, Sr,Zn; 1 x 3 cm	l cm
MNOO4	CaMeD. PbMod.	700000			Mo ₄ W CaWo ₄ PbWo ₄ SrWo ₄ ZnWo ₄	⁴ OMuZ

флМоО ₄	l cm	pulled from melt; prepd. by D. E. Roberts	optical	magneto- optical properties	R. F. Blunt	See also under MMOQ, and MQ,W for additional refs. to Scheelite crystals.
	1 cm	pulled from melt; prepd. by D. E. Roberts.	optical	magneto- optical properties	R. F. Blunt	See also MO ₄ W.
MoO4,Pb MoO4,Sr	see MMoO ₄					
Na06ScSi2 NaScSi206	colorless, scandium aegirine, 0.5 cm; also as poly- crystalline	slow cooling from Na ₂ WO ₄ or Na ₂ MoO ₄ flux	powder and pre- cession x-ray diffraction anal.	see also InNaO ₆ Si ₂	H. S. Peiser	J. Ito and C. Trondal. "Synthesis of Scandium Wynthesis Analogues of Aegirine, Analogues of Aegirine, Aegirin
	wire	obtained from, NUL, White Oak, Md.	electrical and magnetic	exhibits martinsitic transition; i.e., shows mechanical memory through transition	W. R. Hosler	F. E. Wang, B. F. Buehler, and W. J. Buehler, and W. R. Hosler, whe Ic- Hosler, the Iic- Range in the Tili Range in the Tili Parasition', J. Appl. Parasition', J. Appl. (1968).
	2 × 1 × 1 cm	selected from arc meit by G. R. Findlay, Norton Co.	Laue diffraction	elastic constants	J. Wachtman, Jr.	P. B. Macedo, W. Capps, and J. B. Capts, and J. B. "Elastic constants of Single Crystal Ann Coran. Soc., 47, 651 (1964).

see ref. under Al ₂ 03.	T. Chang, "Electron Not Resonance of Not Resonance of Phys. Rev. 133, Aluta (1964); "Ramagnetic Resonance Spectum. of W ³ in Rutile of W ³ in Rutile	H. P. R. Frederikse, Recent Studies on Rutile", J. Appl. Phys. Suppl., <u>32</u> , 2211 (1961).	<pre>J. B. Wachtman, Jr., W. E. Tefft, and D. G. Lam, Jr., "Elastic Constants of Rutile (Ti0,)", 465 (1962).</pre>	<pre>S. Spinner and J. B. Wachtman, Jr. Nsome Elastic Compliances of from 25 to 1000°C", Gen 25 to 1000°C", Gen (1964).</pre>	J. B. Wachtman, Jr. and L. R. Doyle, "Internal Friction in Rutile Containing Point Defects", Phys. (1964).	J. B. Machtman, Jr., S. Spinner, W. S. Brower, T. Fridinger, and R. W. Dickson, "Internal Friction in Rutile Containing Ni or Cr", Phys. Rev., <u>148</u> , 811 (1966).
u. ⊑. Weir*	R. F. Blunt T. Chang T. C. Ensign≉ W. R. Hosler		J. Wachtman, Jr.			
	maser, high dielectric constant, oxide semi- conductor		elastic constants; internal friction			
compressibility) to 10 KD	FK spectrometry; electrical, optical		Laue diffraction patterns			
Vern-uil pro-ss, re- huated in U.	flame fusion, prend. by D. E. Roberts		flame fusion			
single Profession Profession	1 -cm		single crystal rod			
a (11 T10)	TDU pure, aloo with dopantsi Al, Cr,Cu,Fe,Mo, Nb, rare earths, V,W,Zn		TiO2 pure, also with dopants: Cr, Ni; oxidized and reduced conditions			

<pre>J. Wachtman, Jr. J. B. Wachtman, Jr., M. L. Wheet, H. J. Anderson and J. L. Bates. Wilsafric Constants of Single Crystal U0, at 257° J. Nuclear Materials, <u>16</u>, 39 (1965).</pre>	J. Ito, "Synthesis of Some Lead Calcium Zinc Silicaces, Amer. Mineral., 53, 231 (1968).
J. Wachtman, Jr	H. S. Peiser
elastic constants	structure
density, coulometric titration, spec. analysis, jaue diffraction	x-ray structural anal. (M. Wydlar, Ceramic Engr. Dept., Univ. of Mo.)
selected from Hr. J. Anderson of Anford Artonic Products Operation	hydrothermal, spontaneous nucleation isothermal
3 x 1 x 1 cm	alamosite, colorless, 2 mm; also prepd. as polycrystal- line
0 ₂ U U0 ₂	0 ₃ PbSi PbSi0 ₃

A. H. Kahn and A. J. Leyendecker, Bergy Bands in Strontium Titanate", Phys. (1964).	H. P. R. Frederikse, W. R. Hister, and W. W. Thurber, "Experi- mental Evidence mental Evidence concerning the concerning the concurtion and J. Phys. Soc. Japan, J. Phys. Soc. Japan, (1966).	J. F. Schooley and W. R. Thurber, "Super- conductivity in Semiconducting Srilo," J Phys. Soc. Jepan, 21, Suppl., 639 (1966).	A. Feldman and D. Horowitz, "Stress- Induced Dichroign at the Absorption Edge of Strontium Ticanate", Sol. Ticanate", Sol. (1968).	<pre>C. R. Robbins, "Growth of Strontium Titanate from a Silica Flux", J. Cryst. Growth, 2, 402 (1968).</pre>
insulator; T. Chang semiconductor, M. I. Cohen super- conductor; L. H. Grahner conductor; L. H. Grahner peeudo- ferroelectric; A. H. Kahn photochromic				C. R. Robbins
insulator; T. semiconductor, M. super- A. conductor; L. pseudo- W. ferroelectric; A.				prepd. in absence of fluorides, etc.
optical, electrical; EPR spectrometry				spectrochemical, optical and x-ray powder diffracto- metry
flame rugion; also supplied by D. Beals, National Lead Co., South Amboy, N. J.				melt solidi- fication using SiO ₂ as flux
E.				l – 2.5 mm
OʻarVi SrTiOʻpure, also with dopanes: Al,Ga,Nb				SrT103

COMPOSITION	NATURE OF MATERIAL	NATURE OF PREPARATION	METHOD OF CHARACTERIZATION	NBS ST TO BE FOR AL FOR AL COMMENTS INFORM	NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	REFERENCES (Author, Title, Journal)
양 북	high-purity rod, 1/4 in. dia. x 2-1/2 in.	special prepn. for Office of Reference Materials, SRN # 748	Knudsen, torque Knudsen, and mass Knudsen, and mass of vapor pressure at vapor pressure temperature; detm. heat of sub- limation	calibrn. of R. C. vapor pressure vapor pressure techniques (10.8 to 10.10.4600 K); this and other this and other this and other elements (see W) will each cover w) will each cover erature range; erature range; erature cover these five mat- these five mat- these five mat- these five mat- these five mat- these five mat-	C. Paule	R. C. Paule and J. Mandel, NBS Special Publication # 200.
			vapor pressure, Knudsen effusion collection	develop E. R. vapor pressure standard	R. Plante	See ref. above.
AgNO ₃ "high-AgNO ₃ "	polycrystal- line surface, ¤∿50µ	high temp- erature x-ray diffracto- meter furnace	x-ray powder diffractometry	unstable at E. M. room temp.	M. Levin	E. M. Levin, "X-Ray Determination of the Thermal Expansion of Silver Mitrate", J. Am. Ceram. Soc., <u>52</u> , 53 (1969).
AlN aluminum nitride	100-300 mesh	four commer- cial sources	x-ray diffractometry	parent com- F. E. pound for study of transport chemistry	E. Brinckman	
Al ₂ Ba0 ₄ BaAl ₂ 04		Y-A1203 + Bac03 at 1200°c for 1.5 hr.	x-ray diffractometry; petrographic microscopy	H. Swa J. de6 H. McM	Swanson deGroot McMurdie	H. Swanson <u>et al.</u> , "Standard X- <u>Ray</u> Diffraction Powdes" Patterens", NBS Ronograph No. 25, Sect. 5, p. 11 (1967).

V. POLYCRYSTALS

S. J. Schneider and C. L. McDaniel, "Effect of Environment Upon the Melting Point of Al20," J. Res. M25, 71A, 317 (1967)S.	<pre>S. J. Schneider, "coperative of the "coperative of the Melting point of Al203", to be publish- al203", to be and Aplish- chemistry (1970).</pre>	<pre>R. C. Paule and J. Mandel, "Analysis of Intertaboratory Masurements on th Vapor Pressure of Gold", NBS Special Gold", NBS Special 19.</pre>	See ref. above.		C. E. Weir, "Compress- ibility of Eleven In- organic Materials", J. Res. NBS, <u>69A</u> , 29 (1965).
melting J. J. Schneiden point stand- ards; Standard Reference Material		temp. range R. C. Paule 1300-2100°K; see also under Ag	see under E. R. Plante Ag	model com- f. E. Brinckman pounds for T. C. Farrar and broad- line NNR; JBr as related to solvents	see also Al203 under Section IV.
meltin poin detm.		see under Ag	see under Ag	NMR (118, 19F) spectrometry	compressibility to 10 Kb
(a) commercial powder and crystals(b) powder purified by solar furnace		special prepn. for Office of Standard Reference Materials, SRM # 745	available as SRM # 745	commercial	commercial
See also IV. SINGLE CRYLIALS		high purity wire, 0.055 in. dia. x 6 in; standard Reference Material # 745	0.055" wire	M = K, Na; obsd. also in aq. soln.	
10-TF		- The second sec		BF ₄ M KBF ₄ NaBF ₄	BH ₃ 0 ₃ H ₃ B0 ₃

T. C. Farrar and T. Tsang. "A Nuclear Magnetic Resonance and Relaxation Study of Dimethoxyborane", J. Res. W18, <u>73A</u> , 195 (1969).	E. M. Levin, "System Sc20 ₃ B20 ₃ " J. Am. Ceram. Soc., <u>50</u> , 53 (1967).	See ref. under BH ₃ 0 ₃ .	E. M. Levin, "Phase Equilibria on the System Miobium Pentcoaide-Boric Oxide" J. Res. NBS, 70A, 11 (1966).	C. E. Weir and R. A. Schroeder, "Infrared Spectra of the Crystalline Incganic Borates", J. Res NBS, <u>68A</u> , 465 (1965).	C. E. Weir, "Infrared Spectra of the Hydrated Borates", J. Res. NBS, 70A, 133 (1966).	See ref. under Al2Ba04, p. 35.
T. C. Farrar	E. M. Levin	C. E. Wein*	E. M. Levin	C. E. Weir*	C. E. Weir* on,	H. Swanson J. deGroot H. McMurdie
model com- pounds, detm. phase trans- itions and motions in solids	phase diagram		phase diagram	correlation of anion and spectra	evaluation of limita- tions of spectra in identification, effects of treatment on spectra	
NMR (¹ H, ¹¹ B) spectrometry	x-ray powder diffractometry, polarizing microscopy	compressibility to 10 Kb	x-ray powder diffractometry	infrared (2000- 300 cm ⁻¹) spectro- metry	infrared spectro- metry, principally in 2000-300 cm ⁻¹ region	x-ray diffracto- metry, petrographic microscopy
commercial	solid state rxn. of Sc203 + B203 in sealed tube	controlled dehydration of H ₃ BO ₃	solid state rxn. of B203 + Nb205 in sealed Pt tube	metal oxide + H ₃ BO ₃ at elevated temp.	obtained from the Smithsonian Inst. U. S. Geological Survey, Wash- ington, D. C. and Menlo Park, Calif.	fuse stoichio- metric amt. LiF + BaF2 at 800°, annealed at 500° to re- move BaF2 ppt.
M = Li, K, Na; obsd. also in aq. soln.	<pre>^50µ part- solid state icles, calcite rxn. of Sc203 type + B203 in sealed tube</pre>		~50 µ	v80 in number, fine powders	042 natural and synthetic	
BH ₄ M KBH ₄ LiBH ₄ NaBH ₄	B03Sc ScB03	B203	B ₂ 0 ₃ •3ND ₂ 0 ₅ "3ND ₂ 05•B ₂ 03"	Borate minerals, anhydrous	Borate minerals, hydrated	Bar ₃ Li Libar ₃

C. R. Robbins, "The compound Barlice;99", J. Am. Ceram. Soc., 43, 610 (1960).	J. Ito, "The Synthesis of Synthesis of Japolinite", Proc. Japo. Acad., "Into Uqu (1965). "Into uthe Gaddlinite on the Gaddlinite Synthesis", Proc. J. (1966). "Synthesis dcad:jogadolinite", Amer. Mineral., 52, 1523 (1967).	R. S. Roth and J. L. Waring, "ynthesis Maring, "ynthesis Bismuotantalite Crabiorantalite and Crabiorantalite and Chamically Similar Mineral., <u>49</u> , 1348 (1963).	See ref. under BiNbO4.	See ref. under BiNb0,.
Competender Competender L13, 1413, 1	J. T. Syntl Gadoid Gadoid Huqu J. T. Syntl Acad (1960 (1960 C. C. C. C. C. C. C. C. C. C. C. C. C.	R. S. Re Waring, and Stal Bismutot Stibiot Chemical ABO4 Con Mineral (1963).	See ref BiNbO4.	See ref BiNbO4.
stable from C. R. Robbins 1132 to 1235C but acadiy obtain- able by quench- ing to ambient ing reves a structural as a structural between BaCs,09 and BaTiSi309	H. G. Peiser	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring
optical and x-ray powder diffracto- metry	precession and powder x-ray diffractometry	x-ray powder diffractometry	see BiNbO4	see BiNbO ₄
solid state rxn. of BaTiO ₃ + GeO. of BaTiO ₃ sealed pt tube at 1160°C	slow cooling of solute in Na_W0, or Na_W207 flux d	solid state rxn. of Bi ₂ 03 + Nb ₉ 05 Pi tubes at 950 - 1250°C	solid state rxn. of Biz03 + Ta205 in sealed Pt tubes at 845 - 1150°C	solid state rxn. of Bi203 + V205 in sealed Pt tubes at 500-1000°C
20 - 40 µ	polycrystal- s line for all of posible for all of posible with Mun2005 NM with Mun2005 NM s2010, mmg, Ni, Zn, Mc, Ni, Zn, Mc, ot, Studied crystal (1mm) also studied	see also: Bloura Nbouysb OusSTa OusSTa		
BaCe,09Ti BaTiGe,09	Be ₂ Cu010Si ₂ Y ₂ CuY ₂ Be ₂ Si ₂ O10	BiMbo ₄	Bio ₄ Ta BiTaO ₄	Bio ₄ V Bivo ₄

rphism VBS,		min	n and 367).	n and Mag- Lities ects m.,
"Polymor "Polymor "Polymor I. Pure J. Res. P (197-200 , 197-200	under p. 32.	<pre>ierfey, n-(III) and Titt omide", onth., 6).</pre>	<pre>R. B. Johannesen and . L. Gordon, Tritanium (IV) romide", Inorg. iynth., <u>9</u>, 46 (1967).</pre>	ohanneser dela, " sceptibil tion Effe bin d ⁴ orn org. Che 963).
E. M. Levin and R. S. Roth, "Polymorphism of Bismuth Ses- guioxide. I. Pure Bi20, 199 (1964); IB9 (1964), ID14, II, 197-206.	See ref. under Al ₂ BaO,, p. 32.	<pre>U. M. Sherfey, mitanium(III) Dhloride and Titanium (III) Bromide", IIIOPES, Synth., 6, 57 (1960).</pre>	R. B. Johannesen and G. L. Gordon, "Titanium (IV) Bromide", Inorg. Synth., <u>9</u> , 46 (1967).	<pre>R. B. Johannesen and G. A. Candela, Mag- and Diution Effects in Low-Spin d⁴ ffects in Low-Spin d⁴ in Low-Spin d⁴ (10)⁴, Inorg. Chem., 2, 67 (1963).</pre>
		B. Johannesen	B. Johannesen	B. Johannesen
M. Levin	Swanson deGroot McMurdie	B. Joh		B. Joh
le H	н г г	R. t: air/	• ~	î ty
obsd. at room temp. as metastable phase		sublimes R at 0.00°C R at 0.00°C R proportionation, strong react, catalyst for- catalyst for- merization; air/ meliture sensitive	strong Lewis Acid properties, air/moisture sensitive	parent com- pounds for magnetic susceptibility studies
obsd. at room tenn as metasn phase		sublimes at ~ 500 with dis- proporti strong re ducing ag catalyst olefin po merizatine moisture sensitive	strong Lewis / propert air/moj sensitj	parent co pounds fo magnetic susceptib studies
differential thermal anal.; X-ray diffracto- metry	x-ray diffnacto- metry, petrographic microscopy	elemental anal. for Ti, Br	elemental anal., m.p., b.p.	elemental anal., x-ray diffracto- metry
high- temp. trany dif- fractometer furnace; programmed heating and cooling	heat stoichio- metric Pb0 (red) + PbBr2 in Au boat, <u>350°C for</u> 45 min.	ribru+H2 ~ using hot Ir filament	Ticl4+HBr + at b.p. of Ticl4_nBrn	(a) 0504 + HBr(aq) (b) (a) + NH4Br
cubic tetragonal		dark purple, fine powder or small crystals; crystals; 01311	yellow, m.p. 38°C	mixed crystals (rystals (nH4,)- (NH4,)- (SPPP4) also PrbP4, also Pos/O5 where Os/O5
Bi ₂ 0 ₃	Br ₂ 02 ^{Pb} 3 Pb ₃ 02Br ₂	Br ₃ Ti TiBr ₃	Br ₄ Ti TiBr ₄	Br ₆ H ₈ N ₂ Os (NH ₄) ₂ OsBr ₆

2Ma_04 NBS stand- Ma_C_204 sodium oxalate			a.mcc.a.rd	sent, C- contaminated		
		NBS stand- ard sample No. 40đ	assay 99.9% Na C24, x-ray diffractometry, defrographic microscopy		H. Swanson J. deGroot H. McMurdie	H. Swanson, et al. "standard X-Ray "biffraction Powder Patterns", NBC Monggraph No. 25, Secc. 6, p. 70 (1968).
large cry- stallites embeded in polycrystal- line matrix	cry- tes ed in ystal- atrix	Al(1) + C at 1400°C	x-ray diffracto- metry, vapor pressure	usually contains excess C; moisture sensitive		E. R. Plante and C. H. Schreyer, Dissoci- Ation Pressure of Aluminum Carbide Using a Rotating Mudsen Cell ^V , 253 (1966).
unstable liquid, studied as solid		see SECTION II	see SECTION II	see SECTION II	T. C. Farrar	See SECTION II.
colorless crystals m. a.83°C els-stereo- isomer only	coloriess crystals m.p. 13-830C ciss-streo- isomer only	WF6 + 4CH3 OSi(CH3) in C6F6	NMR(1H,19F) mol. wt. elemental analysis	one of a F. stable of L. stable compounds; compounds; compounds; easily publ- fied by subl- field by subl- fiel	F. E. Brinckman L. B. Handy ⁸ reo-	L. B. Handy, F. E. Brinckman, "chem- istry of the Methoxyflucro- tungsten (UI) Series", (1970).

G. F. Kokoszka, M. Linzer, G. Gordon, "Electron Paramagnetic Resonance Spectra of polycrystalline polycrystalline polycrystalline Dimeric Complexes. Copper Projonate Opped Copper Pro- Doped Copper Pro- Doped Copper Pro- prionate Monohydrate", Inorg. Chem., <u>7</u> , 1730 (1968).	 E. Wiberg, et. al, "Recent Developments in the Chemistry of Min the Chemistry of Type M(SIR)," Angew. So7 (1983). Angew. So7 (1983). Angew. C. Eaborn, R. A. Jacksen, and R. W. Malsingham, "The Reduction of Organo- silicon Radicals in Solution". Chem. 	<pre>D. Mootz, A. Zinnius, and B. Zinnius, and B. in the Solid State of Bis(trimethyl-liyl) midolithium and Methyltrimethyl- silamatoberyllium", Angew. Chem. 81, 398 (1969).</pre>	R. W. Duerst, S. J. Baum, and G. J. Kokozka, "Exchange Coupling in Yao Dimeric Copper Alenine Complexes", Mature, 222, 665
model com- M. Linzer pounds for pounds for parameters in dimeric cu(II) alkanoates from polycrystalline samples	source of F. E. Brinckman trimethyl- L. B. Handy ^{&} sor radical (2); toxic, volatile Hg compound, sonsitive	first ex- M. Linzer ample of NMR mesure- ment of a mixed dimeric electron- deficient com- pound in the solid state	metal-metal G. F. Kokoszka bond inter- actions pertinent to processes involving involving nucleic acids
EFR spectrometry	NMK (¹ H) spectrometry	see ref. ⁷ Li, MMR (¹ H, ⁷ Li, ¹⁴ N, ²³ Aa) ¹⁴ N, ²³ Aa) spectrometry a,	chemical anal. optical and EPR spectroscopy
heat Cu(Zn)C03 + [CH3CH2C0]20 + H20	(CH ₃) s1X + Na/Hg at 55°C (X=Cl,Br) (1)	metallation ss of N-H on M dislicatnes; N-H on ample supplied sl by Prof. U. Managat, T. U. Braunschweig, Germany	Cu(ClO4,)2(aq) + adenine, adjust pH
also Zn- doped	yellow		(C ₅ H ₅ N)= adenine moiety
C ₆ H ₁₀ CuO ₄ •H ₂ O Copper (II) propionate monohydrate	C ₆ H1 ₈ HgSi2 [(CH3)3Si12Hg	C _{1 2} H ₃ 6LiN ₂ NaSi ₄ [(CH ₃) ₃ Sil ₂ N ² Li _a >N[Si(CH ₃) ₃] ₂	C20H16CU2N20+H20 Cu2(C5H,N5)4. Cu2(C5H2N5)4. C20H20CL4CU2N30016 C20H20CL4CU2N30016 C20H2N5,N4- C104,94.3H20

		60				
under p. 21.	under p. 59.	under /	under p. 19.	under p. 6.	under p. 38.	under p. 41. 43.
See ref. under Al ₂ BaO4, p. 21.	See ref. under C ₂ Na ₂ 04, p. 59.	See ref. under Ag.	See ref. under Al ₂ BaO ₄ , p. 19.	See ref. under Al2BaO4, p. 6.	See ref. under AlzBaO4, p. 38.	See ref. under Al2BaO4, p. 41. Same, p. 43.
Se Al	5 S C	S S	Se	Se	Se	Se Al Sa
Swanson deGroot McMurdie	H. Swanson J. deGroot H. McMurdie	C. Paule	Swanson deGroot McMurdie	H. Swanson J. deGroot H. McMurdie	Swanson deGroot McMurdie	H. Swanson J. deGroot H. McMurdie
H. Swanson J. deGroot H. McMurdi	H. Sw J. de H. Mc	К. С.	H. Swanson J. deGroot H. McMurdi(H. Sw H. Mc	H. Swanson J. deGroot H. McMurdie	H. Sw H. Mc
		temp. range 400-600°K; see also under Ag				
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	see A m	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy
x-r met					x-r met	
CsCl + CaCl2 at ~ 900°C	<pre>Cacl2+Na_2SO4, in aq. soln.; intermediate casO4, forms, desired product after several hr., washed with alcohol</pre>	special prepn. for Office of Standard Reference Materials; SRM # 746	stoichiometric CsCl+CdCl2 fusion	<pre>stoichiometric NH4.C1+CdC12 (aq. soln.) + ppt.</pre>	fuse KCl + CdCl ₂ •2•5H ₂ 0 at 550°C	<pre>ppt. from aq. soln. Rbcl + Cdcl2 fuse Rbcl + Cdcl2 (anhydr.) at ~ 500°C</pre>
	glauberite	high purity rod, 1/4 in. dia. x 2-1/2 in.				orthorhombic tetragonal
cacl.us CsCaCl ₃	CaNa ₂₀₈ 2 NaçCa(SO4)2	Cd	cdcl ₃ cs cscdcl ₃	CdCl ₃ H4N NH4CdCl ₃	cdcl ₃ K Kcdcl ₃	CdCl_3Rb

See ref. under AlzBaO4, p. 16.	See ref. under C2Na204, p. 10.	same, p. 8.		 G. F. Kokoszka and F. E. Brinkman, "Electron Paramagnetic Resonance Studies of Prospincus-containing Reactive Inter- mediates" (phem. Comm., 349 (1969). G. F. Kokoszka and F. E. Brinckman, "Electron Paramagnetic Resonance Studies" Containing Reactive Unermediates", U. Am. Chem. Soc.
H. Swanson J. deGroot H. McMurdie	H. Swamson J. deGroot H. McMurdie	high humid- try necessary to prevent formation of monohydrate	study of T. C. Farrar phase changes and motions in solids	formation of F. E. Brinckman sequential swatuation of molecular molecular relation to relation to relation to ation via radical inter- mediates
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	ω	NMR (1H) spectrometry, vapor pressure	EPR spectrometry
<pre>(a) Cd0 + Cr₂03 heated <u>30.9 vecuo</u> at hr. hr. pelletized, heated at l050°C for 1.5 hr. 1.5 hr.</pre>	 (a) crystal- lized from aq. (b) also prepd. (c) also prepd. (from cdSO, or from cdSO, or from prolonged (c) also prepd. (c) also prepd.	obtained from Johnson, Mathey Co., Ltd.	obtained from Naval Ordnance Plant, Indian Head, Md.	PC1_4+bu + PC12+PC14+ C1 2+PC14+
				at 77K in PCl3 matrix, C2v symmetry C2v symmetry
cdCr204	Cd04,5.H20 CdS04.H20	3Cd04S•8H20	C1H4,NO NH3OHC1	Cl2P PCl2 (free radical) Cl4P PCl4 (free PCl4 (free

ਮ ਜ	£. •	г.	r. 2.	2.	5.at	Э.	SI +
. p. l	. p. 5	. p. 5	. unde	. unde	, p. 2 in IV.	. unde	. under . p. 9.
See ref. under C ₂ Na ₂ O4, p. 11.	See ref. under C2Na204, p. 5.	See ref. under C2Na204, p. 57.	See ref. under Al2BaO4, p. 22.	See ref. under C ₂ Na ₂ O4, p. 12.	See ref. under Al2BaO4, p. 24. See also in SECTION IV.	See ref. under C ₂ Na ₂ O4, p. J.3.	See ref. under Al2BaO,, p. 9.
Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie	Swanson deGroot McMurdie
i''E	÷́́́́́́	нун	ë 5 ë	н'н	÷.н	н.н	
	hydrates readily in moist air	moderately hygroscopic					
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy
<pre>co-pptd. CsCl + CoCl2 heated in sealed glass tube at 500°C</pre>	co-pptd. NH4Cl + CoCl2 heated in sealed glass tube at 500°C	co-pptd. RbCl + CoCl2 heated in sealed glass tube at 500°C	crystallized from aq. CsCl + CuCl2	co-pptd. CsCl + NiCl ₂ heared in sealed glass tube at 500°C	fuse CsCl + PbCl2 at ~ 500°C	SrCl2 + CsCl melted at 900°C	pptd. from soln. of NH4C1 + HgC12
			dark red hex. prisms terminated by bipyramids				
01,400Ca CsOorL ₂	cl ₃ CoH ₄ N NH ₄ CoCl ₃	Cl ₃ CoRb RbCoCl ₃	Cl ₃ CsCu CsCuCl ₃	Cl ₃ CsNi CsNiCl ₃	Cl ₃ CsPb CsPbCl ₃	Cl ₃ CsSr CsSrCl ₃	Cl ₃ H ₄ HgN NH ₄ HgCl ₃

Cl ₃ H ₄ NNi NH ₄ NiCl ₃	<pre>(a) NiCl2. 2H₂O + HCl at 150°C + NiCl2 of (a) + (b) (a) + NH₄Cl in Sealed glass tube at 300°C for 72 hr.</pre>	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 6.
Cl ₃ HgNa·2H ₂ O NaHgCl ₃ ·2H ₂ O	crystalli- zation from aq. soln. of equimolar amts of NaCl + HgCl2	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Ma ₂ O ₄ , p. 66.
Cl ₃ MiRb RbMiCl ₃	co-pptd. RbCl + NiCl2 heated in sealed glass tube at 500°C		moderately hygroscopic	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 58.
Cl_4P see Cl_2P					see Cl2P
CoF ₃ K KCoF ₃	pptd. from mixt. KF + CoF ₂ soln., washed	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O4, p. 37.
CoNa_0 ₈ S_+4H_0 Na_Co(SO ₄)_+4H_0	crystallized from aq. soln. Na ₂ SO ₄ + CaSO ₄ at room temp.	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O4, p. 61.
co0 ₆ Sb ₂ O ₆	CoC204 + Sb205 + at 1000°C for 30 min. in Au boat	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al2BaO4, p. 26.
Co ₂ K ₂ O ₁₂ S ₃ K ₂ Co ₂ (SO ₄) ₃	K ₂ S04 + CoSo4 melted at 600°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 35.

1 1 1 1

See ref. under Al ₂ BaO4, p. 38.	See ref. under Al2BaO4, p. 27.	See ref. under AlșBaO4, p. 29.	<pre>D. L. VanderHart, H. S. Gurowsky, and T. C. Farray, MMR Study of BaPP01: Study of BaPP01: Study of Fachenical- and the Absolute Sign of the P-P Coupling of the P-P Coupling of the P-P Coupling forstant", J. Chem. Phys.; <u>50</u>, 1050</pre>	See ref. under C2Ma204, p. 39.	See ref. under CaNagO4, p. 42.
See ref Al ₂ BaOu	See rei Al ₂ BaOu	See red Al ₂ BaOu	D. L. V. H. S. G. T. C. H. S. Study of Shift / and the of the Constar Phys., (1969).	See rei C2Na2OL	See rei C2NazOu
H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	T. C. Farrar A. Perloff D. VanderHart	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie
			first detm. of absolute sign of a spin-coupling constant; high resolution jgh pulleed and wide-line NMR		
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, NMR (¹⁹ F, ³¹ P) spectrometry	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy
add CuCl2 to excess KF in soln. ~ ppt.	solid state rxn. of CuO + Sb205 in Ag boat at 945°C in vacuo for Zhr.	ErC204 + V205 head at 1100cc for 30 min.	Na2POF + MC12;M= Ba,Ca,K	aq. soln. FeCl2 + KF + ppt., washed, heated to 400°C <u>in</u> vacuo	HF + slurry. of K_2C3 + MgC0, evapo- rated to rated to attern by heating sample to m.p.
			also studied in soln.		
CuF ₃ K KCuF,	CuO ₆ Sb ₂ CuSb ₂ O ₆	Ero4V Ervo4	FMP03 Car03F Car03F K2P3F Na2P03F Na2P03F	F ₃ FeK KFeF ₃	F ₃ KMg KMgF ₃

F ₃ MnMa NaMnF ₃ F ₃ NaZn NaZnF ₃	T LULM UN				
F ₃ NaZn NaZnF ₃	ag. nuci2 ⁷ excess KF in soln. → ppt.	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 65.
	soln. ZnCl2 + conc. soln. NaF + ppt., washed, annealed at 500°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C2Na2O4, p. 74.
FeNbO4	solid state rxn. of Fe203 + N205 in sealed Pt tube at 1000- 1475°C	x-ray powder diffractometry	polymorphism	R. S. Roth J. L. Waring	R. S. Roth and J. L. Waring, "Ixiolite L. Waring, "Ixiolite Other Polymorphic Types of FeND0," Am. Mineral., <u>49</u> , 242 (1964).
GdO4,V GdVO4	Gd2(C204)3 + V205 at 8006C for 15 min.	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 30.
Ge02.9Nb205 ~ 50µ	solid state rxm. in sealed Pt tube	x-ray powder diffractometry	stable below 1420°C, phase diagram	E. M. Levin	E. M. Levin, "Phase Equilibria in the System Miobium Pertoxide-Germium Dioxida", J. Res. NBS, <u>70A</u> , 5 (1966).
Ge409Pb 20-40 u See Bade under Si Under Si	20-40 y solid state see BaCs.0.9 rxm. of PD0 under SECTION + 660.2 in IV sealed Ft tube at 700°C	optical and x-ray powder diffracto- metry	isostructural with Bade,09 SrGe,09	C. R. Robbins	C. R. Robbins and E. M. Levin, "Tetra- germantes of and strontium Lead and Barium of Formula Type Abaog, J. Res. NBS, 654, 127

aee tet. under O _{r a} o,11.	<pre>T. Negas and P Roth, "High Temper- ature behydroxylation of Apatitic Phos- phates", J. Res. NBS, 72A, 703 (1968).</pre>	T. C. Farrar and J. J. Rush, "Muclear Magnetic Resonance and Neutron-Scattering Studes of Polecular Motions in Phos- phonium Iodiae", Proc. Recond IMR Symp. Molicular Nymanica and Structure of Solids), NBS Special publ. 301 (1969), p. 245.	T. Tsang, T. C. Farar, and J. J. Rush, "Proton Magnetic Resonance and Hinderof Reston in Phos- phonium Halides and Ammonium Iodide", J. Chem. Phys. <u>49</u> , 4403 (1968).	J. J. Rush, A. J. Melveger, T. C. Farar and T. Tsang, "Laser- Rama Spectra and Hindered Rotation in the Phosphorium Hallee", Chem. Phys. Letters' <u>2</u> , 621 (1968).
c. k. Natating	T. Negas R. S. Roth	T. C. Farrar	T. C. Farrar	
isostructurul with Bafean0, PbGea0,	illustrate nature of non-stoichio- metric phases	phase trans- mitions and motions in motions in toxic, toxic, air/moisture sensitive	model com- pounds, phase transitions and motions in solids	
arizel and x-ray powder diffracto- metry	x-ray diffracto- merry; infrared, prod-line NMR spectrometry; gravimetric anal.	infrared, NMR (41,31) spectro- metry, vapor pressure	NMR (14,31P), Laser Raman spectrometry, vapor pressure, neutron in- elastic scattering	
solid state rxm. of Sr0 + CeU, in sealed Pt tube at 1200°C	solid state rxn. of BaO, PbO, SrO + P ₂ O5 in air at elevated temp.	+ HI + 6Hd	РН 3 + Н Х	
n na-an	1-25 μ M = Ba,Pb,Sr		X=Br,C1,T; volatile solid	
and particular	H,M.100.6P6 Ba10P6024(0H)2 P110B6024(0H)2 Sr10P6024(0H)2 Sr10P6024(0H)2	I ⁴ ⁶ H	H ₄ PX PH4_Br PH4_CI PH4_I	

H₃K₂ReH K₂ReH9		supplied by A. P. Ginsbar P. Bell Tele- Murray Hill, N. J.	neutron, x-ray diffactometry, NNR (¹ H) spectro- metry; elemental anal.	study of molecular two crystal- lographically different different different reorientation	T. C. Farrar R. B. Johannesen	T. C. Farrar, T. Tsang, and K. B. Johannesen, "I'nternal Recordration in K. ReH, via Wide- Line and Pulsed Frocon Magnetic Frocon Magnetics", J. Chem. Phys., J. Chem. Phys., J. Chem. Phys.,
Iro ₂	powder	oxidation of trby meat treat- ment in air and/or 02	x-ray diffracto- metry, phase equilibrium	illustrates behavior of container materials; dissociate; at t020°C in at t020°C in at t01r+02; see also 02Ru	C. L. McDaniel S. J. Schneider	<pre>C. L. McDaniel and S. J. Schneider, "Phase Rulations of the Ru-Ir-0, System", J. Res. NBS, <u>72A</u>, 213 (1968).</pre>
KNaO4.S KNaSO4		<pre>melt equimolar K2SO4,+Na2SO4, annealed over- night at 600°C</pre>	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ 04, p. 50.
K ₂ Mg ₂ 01 ₂ S ₃ K ₂ Mg ₂ (SO4) ₃		melt K ₂ SO ₄ + MgSO ₄ at 1000°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O4, p. 40.
K ₂ Mn ₂ O1 ₂ S ₃ K ₂ Mn ₂ (SO ₄) ₃		melt $K_2 SO_4$ + $MgSO_4$, annealed at $500^{\circ}C$ for 15 hr.	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot F. McMurdie	See ref. under C2Na204, p. 43.
K ₂ Na ₄ 0 ₁₂ S ₃ K.67Na _{1.33} (SO ₄)		melt stoi- chiometric amts. K ₂ SO ₄ + Na ₂ SO ₄	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under CaNa ₂ O4, p. 48.

30e ref. under	See ref. unde <i>n</i>	See ref. under	See ref. under	See ref. under	See ref. under
C₂Na₂Oų, p. 46.	C ₂ Na ₂ O4, p. 54.	C ₂ Na ₂ 04, p. 52.	C ₂ Na ₂ O4, p. 24.	C ₃ Na ₂ O ₄ , p. 22.	C ₂ Na ₂ O4, p. 26.
H. Swanson	H. Swanson	H. Swanson	H. Swanson	H. Swanson	H. Swanson
J. de6root	J. deGroot	J. deGroot	J. decroot	J. deGroot	J. deGroot
H. McMurdie	H. McMurdie	H. McMurdie	H. McMurdie	H. McHurdie	H. McMurdie
x-ray diffracto-	x-ray diffracto-	x-ray diffracto-	x-ray diffracto-	x-ray diffracto-	x-ray diffracto-
metry, petrographi	metry, petrographic	metry, petrographic	metry, petrographic	metry, petrographic	metry, petrographic
microscopy	microscopy	microscopy	microscopy	microscopy	microscopy
<pre>F₂ SO₄+NiSO₄ heated at 750°C, cooled slowly ground, anneled at 550°C for 30 min.</pre>	K ₂ SO4+ZnSO4 melted, ground, remelted	stoichio- metric K_SO4 + Na_SO4 melted, annealed at 700°C for 72 hr.	equimolar Li2804 + Na2804 melted, annealed at 500°C	obtained from CIBA, from CIBA, Rare Metals Div. Summit, crystallized by W. S. pulled from melt, anneal- ed under 02 at ludor 02 at ludor 02 at ludor 02	Li2S04.H20 heated at 600°C for 24 hr.
		glaserite			
K2Ni20125J	K ₂ 04S ₃ Zn ₂	K ₃ MaO ₈ S ₂	Linao ₄ S	LiNb0 ₃	Li ₂ 04S
K2Ni201253	K ₂ Zn ₂ (S04) ₃	K ₃ Na(SO4) ₂	Linaso ₄		Li ₂ S04

soln. MajV0, x-ray diffracto- + Lu2 (SQ,) + metry, petrographic J. deGroot Al2baO, p. 37. ppt: annealed microscopy H. McMurdie Al2baO, p. 37. Al 300°C for 15 hr.	crystallized x-ray diffracto- from aq. soln. metry, petrographic U. deGroot C2Na204, p. 68. NiSO4, at microscopy H. McMurdie C2Na204, p. 68. NiSO4, at room temp.	crystallized x-ray diffracto- From solı. of metry, petrographic U. deGroot C ₂ Na ₂ O ₄ , p. 72. Na ₂ SO ₄ + microscopy H. McMurdie C ₂ Na ₂ O ₄ , p. 72. ZnSO ₄ at room temp.	solid state see BiNbO ₄ R. S. Roth See ref. under rwn. of Sb203 twb.905 sealed Pt tube at 100- 1100°C	<pre>igh-low" solid state x-ray powder E. M. Levin E. M. Levin and 50µ rxn. of diffractometry System Niobium Nb20{+Paos in sealed Pt. tube tube</pre>	0-25 µ solid state x-ray powder and systematics R. S. Roth R. S. Roth and A. D. Wadsley, "Mixed transformer and a systematics R. S. Roth R. S. Roth and A. D. P. N. Of Til2, of Titamium and Nickles of Titamium 1450°C at diffractometry; stoichiometry" curvetal Structure detm.
				"high-low" ~ 50µ	10-25 µ
Lu04 V LuV04	Na_NiO_8S4H_20 Na_Ni(SO_4)2.	Na ₂ 0 ₈ S ₂ Zn·4H ₂ 0 Na ₂ Zn(SO ₄)2·	hdd, Sd SdNdo ₄	"Nbo ₅ P" "NbPO5" 22Nb2O5.P2O5	Nb ₂₄ 0 ₆₂ Ti TiNb ₂₄ 0 ₆₂

See ref. under Irda.	J. B. Wachtman, Jr., "Mechanical and Electrical Relaxa- tion in TPO2 containing Cao", Fhys. Rev. <u>131</u> , 517 (1963).	J. B. Wachtman, Jr. and W. C. corwin, Jr. Internal Friction in 2r02 containing cao, J. Res. NBS, 69A, 457 (1965).	See ref. under Al ₂ BaO4, p. 40.	See ref. under BiNbO ₄ .	See ref. under BINDO
illustrates C. L. McDaniel container of S. J. Schneider containes dissociates at 1045C inte at air to Ru + 02; see also	character J. Wachtman, Jr. of point tecet: elec- trical and mechanical relaxation	spans range of cubic schild of cubic schild solution and includes 2 pincludes 2 pincludes 2 pincludes 2 stest of as test of change in change in change in point defects	E. Swanson J. deGroot H. McMurdie	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring
x-ray diffracto- metry, phace equilibrium	spectroscopic analysis	porosity, grain size	x-ray diffracto- metry, petrographic microscopy	see BiNbO4	see BiNbO ₄
oxidation of Ru by heat treatment in air	isostatically cold pressed and sintered 1 hr. at 1800°C	isostatically coul pressed and sintered 1800°C 1800°C	Pr2(C204)3 + V205 heated at 850°C for 30 min.	solid state rxn. of Sb ₂ 03 + Ta ₂ 0 ₅ in sealed Pt tube at 1000- 1200°C	solid state rxn. of Sb203 + V205 in sealed Pt tube at 700- 865°C
powder	porous bar	porous bar			
n Bu kuô.	(1-×)0₂Th + ×CaO 0≤×≤0.10	(1-×)022r + ×Ca0 .04 <u>-</u> ×≤.20	04, PrV PrV04	O ₄ SbTaO ₄ SbTaO ₄	04,SbV04

04, SmV SmV04,		Sm ₂ (C ₂ O ₄) ₃ + V ₂ O ₅ heated at 850°C for 45 min.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al2BaO4, p.47.
O4,TbV TbVO4,		Tb ₂ (C ₂ O ₄) ₃ + V ₂ O ₅ heated at 1400°C for 1 hr.	x-nay diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al2BaO4, P. 56.
04,TmV TmVO4		$T_{m_2}^{m_2}(C_2^{0,\mu})_3 + V_2^{0,5} H_{meated}^{1,0,0,0}$ at 1400°C for 1 hr.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 57.
04,VYb YbV04,		Yb ₂ (C ₂ 04) ₃ + V ₂ 05 heated at 1400°C for 1 hr.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 58.
Pt	high- purity rod, 1/8 in. dia. x 1.5 in.	special prepn. for Office of Standard Reference Matereals, propred SRM	Langmuir detm. of vapor pressure s function of temp.; detm. of heat of sublimation	temp.range R. C. Paule 1800-2500K; see also under Ag	See ref. under Ag.
		SRM # 747 SRM # 680	vapor pressure Langmuir method	evaluated as E. R. Plante ontainer for high-temp. atudies (up to 2000K); vapor pressure standard	See above ref.
Re	rod, .25 cm. dia. x l.5 cm.	commercial, zone refined	vapor pressure	container E. R. Plante for high- temp. studies	E. R. Plante and R. Szwarc, "Vapor Pressure and Heat of Sublimation of Rhenium, J. Res. NBS, 7 <u>0A</u> , 175 (1966).

E. M. Levin, "System Y ₂ 09-V ₂ 05", J. Am. Ceram. Soc., <u>50</u> , 381 (1967).	See ref. under Pt.	R. Szwarc, E. R. Plante, and J. J. Diamond, wrapor Pres- blamond, wrapor Pres- sure and Heat of Sublimation of Tungster", J. Res. NBS, 694, 417 (1965).
E. M. Levin	R. C. Paule	E. R. Plante
phosphors	о е е Р С	vapor pressure stadard; container for high-temp. studies
x-ray powder diffractometry	0 9 1 1	vapor pressure, Langmuir method
solid state rxn. in sealed Pt tube	special prepn. for Office of Standard Reference Mareorials, proposed SRM # 749	commercial
8 5 0 ki	high- purity rod, 1/4 in. dia. x 2-1/2 in.	polycry- stalline rod
$\begin{array}{c} V_{2} 0_{5} \cdot \mathfrak{t} Y_{2} 0_{3} \\ \mathfrak{t} Y_{2} 0_{3} \cdot \mathfrak{t} V_{2} 0_{5} \\ V_{2} 0_{5} \cdot 5 Y_{2} 0_{3} \\ S Y_{2} 0_{3} \cdot \mathfrak{t} V_{2} 0_{5} \end{array}$	3	

REFERENCES (Author, Title, Journal)	<pre>J. L. Waring, "Phase Equilibria in the System Aluminum Oxide- Tungsten Oxide", J. Am. Ceram. Soc. <u>49</u> ug3 (1965). C. Craig and N. C. Structural Study in the System Alzod; W03," Acta. Cryst. <u>824</u>, 1250 (1969).</pre>	<pre>J. L. Waring and R. S. Roth, "metragonal Phases of the General Type 100,5,90%26 apparently isostruct- tural with Ta,05, ND2,0," Acta Cryst., ND2,0," Acta Cryst., ND2,0," Acta Cryst., ND2,0," Acta Cryst., R. S. Roth and A. D. Wadslay, "The Crystal Structure of Phb925 (P20,910;26,5)," Acta Cryst, 18, 643</pre>		R. S. Roth, J. L. Waring, and E. M. Levin, "Polymorphism of AB0-Type Rare Earth Borate Solid Solutions' Rare Earth Research II, Gordon & Breach, N.Y., (1964), P. 153.
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	J. L. Waring	J. L. Maring R. S. Roth		R. S. Roth J.L. Waring E.M. Levin
COMMENTS	phase equilibria	illustrates nature of apparent iso- structural related systems; see also: AS205-9Nb205; 9Nb205-PND255; 9Nb205-VP05; SNb205-VP205; P205-9Ta505; P205-9Ta505; P205-	0 ₂ 0 ₅	most specimens exhibit polymorphic inversions
METHOD OF CHARACTERIZATION	phase equilibria; x-ray powder and single crystal diffraction studies	phase equilibria; x-ray diffraction powder and single crystal structure	partial system, see comments and ref. under $\mathrm{As_205}\text{-}\mathrm{9Nb_205}$	x-ray powder hiffractometry; high-temp. x-ray phase equilibria
NATURE OF PREPARATION	solid state rxn. of com- ponents in sealed Pt tubes	solid state rwn. in sealed Pt tube	1, see comments al	solid state rxns. of mix- tures of M203 + B20 in sealed Pt tubes
NATURE OF MATERIAL	polycrystal- líne, 1-25 µ	polycrystal- line, 1-25 µ	partial system	solid solns. of solns. of borates, M = by,Er,Eu,Gd, HD,La,Lu,Nd, Sm,TN,Yb, polycrystal- line
COMPOSITION	Al203-W03 entire system	As205-9Nb205 partial system	As ₂ 0 ₅ -9Ta ₂ 0 ₅	Bo ₃ M MBo ₃

T. Negas and K. S. Roth. "gynthesis of Barium Errates in Oxygen J. Res. NBS, 7 <u>3A</u> , (1969).	R. S. Both and J. L. Niprium Relations in the binary System the Binary System Pentoxide", J. Res. NBS, 65Å, 337 (1961).	<pre>S. J. Schneider and C. L. McDaniel, "The Bao-pr System in Air", J. Am. Ceram. Soc. 52, 518 (1969).</pre>	<pre>R. S. Roth and E. M. Levin, "Phase Equi- levin, "Phase Equi- Barium Disilicate Dibarium Trisilicate", Jase. NBS, 62, 193 (1959). R. S. Roth and E. M. Levin, "Polymorphism im Barium Disilicate", 492 (1959).</pre>	R. S. Roth and J. L. Waring, Phase Equi- Waring, Phase Equi- Userian Relations in the Binary System Simuth Securioxide- Michium Pentoxide, Michium Pentoxide, 451 (1962).
T. Negas R. S. Roth E.	R. S. Roth J. L. Waring I.	S. J. Schneider S C. L. McDaniel	E. S. Roth M. Levin	J. L. Waring
illustrate influence of stoichiometry on structure		all inter- mediate phases dis- sociate; illustrates behavior of container material		
phase squiltbria; x-ray diffractometry	x-ray powder diffractometry; phase equilibria	x-ray diffracto- metry, phase equilibria	x-ray powder diffractometry; hose equilibria; single crystal x-ray diffractometry	x-ray powder diffractometry; phase equilibria
solid state rxn. in Au tubes under 02	solid state rxns. of com- ponents in sealed Pt tubes	solid state rxn.conducted in air in Pt and Au con- tainers	solid state rxn.	solid state rxns. in sealed Pt tubes
<pre>U*ivU.5; system in the vicinity of 1:1 cation of 1:1 cation ratio; poly- crystalline, 1-25 µ</pre>	polycrystal- line	powders	polycrystal- line	polycrystal- line
ëufe0 _{3−n} Ba0. "iron oxide"	BaO-Mb ₂ 05 entire system	BaO-Pt entire system	BaSi ₂ O ₅ -Ba ₂ Si ₃ O ₈ entire system	Bi ₂ 03-Nb205 entire system

Cr ₂ 03-IrO ₂ entire system	powders	solid state rxns. in Pt. Vycor, Ir containers, conducted in air	x-ray diffracto- metry; phase equilibria	illustrates C. L. McDaniel behavior of S. J. Schneider container materials	C. L. McDaniel and S. J. Schneider, "Phase Relations between CryO3 and TrO2 in Air", J. Am. (1966).
"Cr0"-Sr0 "chromium oxide" - Sr0 entire system	polycrystal- line, 1-25 µ	solid state rxns. in air and O ₂	x-ray diffracto- metry; gravimetric anal.; phase equilibria	illustrates T. Negas redox behavior R. S. Roth of Cr in system	T. Negas and R. S. Roth, "The System Sro-"chromium oxide" in Air and Oxygen" J. Res. NBS, <u>73A</u> (1969)
Dy ₂ 03-Ti02	partial system,	m, see comments a	see comments and ref. under ${\rm Gd}_2{\rm O}_3{\rm -Ti}{\rm O}_2$	2	
Er ₂ 03-2Ti02	partial system,	see comments	and ref. under $Gd_2O_3-TiO_2$	2	
Eu ₂ 03-Ti0 ₂ Eu ₂ 03-2Ti0 ₂	partial system,	m, see comments a	see comments and ref. under $\mathrm{Gd}_2\mathrm{O}_3\mathrm{-TiO}_2$	N	
Gd ₂ 03-Ti02 entire system	polycrystal- line, 1-25 µ	solid state rxn. in un- sealed Pt tubes	x-ray diffracto- metry; polarizing microscopy: phase equilibria	<pre>illustrates J. L. Waring nature of S. J. Schneider and relation- guis promano- guis systems; See also: See also: be also: troo, 2r102, Ergo-2r10, Ergo-2</pre>	J. L. Waring and S. J. Schneider, "Phase Equilibrium Relation- Ships in the System Od ₂ 0 ₅ -T10 ² ", J. Res. NBS, <u>69A</u> , 255 (1965).
Ge02-9Nb205	partial system,	m, see comments a	and refs. under As205-9N	see comments and refs. under ${\rm As_205\text{-}9Nb_205};$ also see Ge02.9Nb205 in SECTION	STION V
Ho ₂ 03-2Ti0 ₂	partial syste	m, see comments a	partial system, see comments and ref. under ${\rm Gd}_2{\rm O}_3{\rm -TiO}_2$	2	

Ir02-SNG entire system Ir02-Ti02 entire system	powders	solid state rxns. in Pt, Vycor, and Ir containers, conducted in air	x-ray diffracto- metry, phase equilibria	illustrates béhavior of container materials	C. L. McDaniel S. J. Schneider	<pre>C. L. McDaniel and S. J. Schneider, "Phase Relations in the "phase Relations in the "systems TiO2-IPO2 and "nO2-IPO2 in Air", " Relation", and " Relation"</pre>
Ln ₂ 0 ₃ -PdO entire system	powders	solid state rxns. in Pt, Vycor con- tainers	x-ray diffracto- metry; phase equilibria	all inter- mediate phases dissociate; illustrates behavior of container materials	C. L. McDaniel S. J. Schneider	C. L. McDaniel and S. J. Schneider, "Phase Relations between Palladium Oxide and the Rare- Earth Sequioxides in Air", J. Res. NBS, <u>72A</u> , 27 (1968).
Lu ₂ 03-2Ti02	partial system,	see	comments and ref. under ${\rm Gd}_2{\rm O}_3 {\rm -Ti}{\rm O}_2$	2		L
9Nb205-P205	partial system,	Sec	comments and refs. under ${\rm As_20_5-9Nb_20_5};$ also see "Nb0_5P" in SECTION	b205; also see	'Nbo ₅ P" in SECTION	Λ
2Nb205-Ta205	partial syster	m, see comments a	partial system, see comments and refs. under $\mathrm{As_20_5-9}\mathrm{Mb_20_5}$	b205		
Nb205-V205 entire system	polycrystal- line, 1-25 µ	solid state rxns. in sealed pt tubes	x-ray powder diffractometry; phase equilibria	illustrates nature of multi-phase formation and non- stoichiometric phases see also 9Nb205- V205	J. L. Waring R. S. Roth	J. L. Waring and R. S. Roti, "Phase Aguilibria in the System Vanadium Oxide-Niobium Oxide", J. Res. NBS, <u>69A</u> , 119 (1994).
9Nb ₂ 0 ₅ -V ₂ 0 ₅	partial syster	m, see comments a	partial system, see comments and refs. under ${\rm As_20_5-9Mb_20_5};$ also see ${\rm Nb_20_5-V_20_5}$	b ₂ 0 ₅ ; also see 1	Vb205-V205	
P205-9Ta205	partial system,	n, see comments a	see comments and refs. under ${\rm As_20_5-9Mb_20_5}$	b205		
Sm ₂ 0 ₃ -Ti0 ₂	partial system,	n, see comments a	see comments and ref. under $\mbox{Gd}_2\mbox{O}_3\mbox{-Ti}\mbox{O}_2$	2		

Ta_05-TiO2 entire system	polycrystal- line	solid state rxms. in scaled Pt tubes	x-ray powder diffractonetry; high-temp. x-ray powder diffracto- metry; phase equilibria	illustrates J. L. Waring various stable R. S. Roth and metastable phases formed in the system	J. L. Waring and R. Roth, "Effects of Oxide Additions of the Polymorphism of Tantalum Potoxide (System Ta ₀ 05-Ti22)", J. Rees. NBS, <u>72A</u> , 175 (1967).
9Ta205-V205	partial system	n, see comments ar	partial system, see comments and refs. under $\mathrm{As_20_5-9Mb_20_5}$	tb205	
2T102-Tm203	partial system	m, see comments ar	partial system, see comments and ref. under $\mathrm{Gd}_2\mathrm{O}_3\mathrm{-TiO}_2$	02	

Latest developments in the subject area of this publication, as well as in other areas where the National Bureau of Standards is active, are reported in the NBS Technical News Bulletin. See following page.

.

HOW TO KEEP ABREAST OF NBS ACTIVITIES

Your purchase of this publication indicates an interest in the research, development, technology, or service activities of the National Bureau of Standards.

The best source of current awareness in your specific area, as well as in other NBS programs of possible interest, is the TECHNICAL NEWS BULLETIN, a monthly magazine designed for engineers, chemists, physicists, research and product development managers, librarians, and company executives.

If you do not now receive the TECHNICAL NEWS BULLETIN and would like to subscribe, and/or to review some recent issues, please fill out and return the form below.

Mail to: Office of Technical Information and Publications National Bureau of Standards Washington, D. C. 20234
Name
Affiliation
Address
City State Zip
D Please send complimentary past issues of the Technical News Bulletin.
Please enter my 1-γr subscription. Enclosed is my check or money order for \$3.00 (additional \$1.00 for foreign mailing). Check is made payable to: SUPERINTENDENT OF DOCUMENTS. SP-333

U.S. DEPARTMENT OF COMMERCE

Washington, D.C. 20230

OFFICIAL BUSINESS Penalty for Private Use, \$300

POSTAGE AND FEES PAI U.S. DEPARTMENT OF COMMERC

