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Abstract

The volume contains 38 papers prepared for the Symposium on Accurate Characterization of the

High-Pressure Environment held on October 14-18, 1968, at Gaithersburg, Maryland, under the spon-

sorship of the National Bureau of Standards and the Geophysical Laboratory of the Carnegie Institution

of Washington. The papers are presented with the discussions that occurred during the sessions. The

book also includes reports of several informal committees of the conferees on choices of reference

pressure materials and on other matters relevant to improved measurement and calibration. The

Symposium was intended to provide an authoritative survey of problems and techniques presently

in use or proposed for precise high-pressure measurement and for temperature measurement at high

pressure.
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Preface

This Proceedings volume includes all the papers, for which manuscripts were received,

presented during the Symposium on Accurate Characterization of the High-Pressure Environment,

October 14 to 18, 1968. In addition, the Appendix includes one panel discussion and reports

of three informal committees, and two papers prepared subsequent to the meeting as an extension

of discussions during the meeting. There were several informal presentations during the symposium

for which no manuscripts were prepared, including opening remarks by the Session Chairmen and

a keynote discussion by the opening speaker.*

The Symposium was intended to provide an authoritative survey of problems and techniques

presently in use or proposed for precise high-pressure measurement and for temperature measure-

ment at high pressure. It was hoped that a tentative consensus could be reached by the conferees

on several important aspects of the measurement of high pressures and high temperatures, and a

panel and three committees, whose reports appear in the Appendix, were established for this

purpose. Since the list of prospective participants represented the majority of the high-pressure

laboratories in the world, it was felt that the floor discussions would be of particular value. Thus,

time priority was given during the sessions to the discussion, and both a stenotype record and a

magnetic tape record were made of all discussions. Edited versions of these discussions appear

with the papers. The Symposium organizers feel that these arrangements were successful, and it

is hoped that the added value of the Proceedings volume will compensate for the delay in publica-

tion which is due, in part, to the extensive editing and correspondence required with the conference

participants.

While no formal "referee system" has been used for the papers, it is felt that the discussion

accompanying the papers has served this purpose in many cases, at least on important points.

The organizing group included C. W. Beckett, E. C. Lloyd, and D. P. Johnson of the National

Bureau of Standards, and F. R. Boyd, Jr., and P. Bell of the Geophysical Laboratory, Carnegie

Institution of Washington. Dr. Beckett acted as General Chairman. Enthusiastic cooperation of

Dr. P. H. Abelson of the Carnegie Geophysical Laboratory and A. van Valkenburg of the National

Science Foundation gave important support to the effort.

The staff of the NBS Office of Technical Information and Publications, particularly Mr. R. T.

Cook, made important contributions to the successful arrangements for the conduct of the Sympo-

sium. Mrs. Barbara Mayo-Wells has prepared the text material for the printers, with the assistance

of the Graphic Arts Section under Mr. C. F. Peters in preparing the illustrations and graphs. Mr.

Raymond Gates of that Section prepared the key to the group photograph of the participants.

Special thanks is due Miss Judy Eyler of the NBS Mechanics Division Office for her untiring

efforts before, during, and after the Symposium in efficiently handling many of the essential details

concerned with arrangements for participants and preparation of the Proceedings volume.

Edward C. Lloyd
February 15, 1971

*Dr. H. G. Drickamer, University of Illinois, opened the symposium with a discussion concerning the role of high pressure calibration in scientific research.
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Introduction and Summary*

The importance to science and technology of

precise measurements characterizing the high-

pressure environment is demonstrated by the

rapidly increasing activity in research, develop-

ment, and industrial technology, involving such
measurements. It has already become apparent
that at an appropriate time it would be desirable

to reach agreement on a pressure scale somewhat
analogous to the temperature scale, over the range
from 5,000 to 200,000 bars, and possibly higher

pressures. Such a scale would be particularly helpful

in coordinating the results being reported by the

many laboratories now engaged in research involv-

ing the high pressure environment. Accuracy of

measurement of elevated temperatures at high pres-

sures is also limited, and the need for development
of additional reference techniques for temperature
measurement up to 2000 K at high pressures should

be assessed.

This symposium was intended to provide an
authoritative survey of precise measurement prob-

lems and techniques now in use or proposed. It

was hoped that the symposium would permit critical

evaluation of the need for efforts toward the develop-

ment of improved measurement standards, and
identification of probable fruitful lines of investiga-

tion toward establishment of such standards. The
survey should provide the information needed to

evaluate the feasibility of obtaining early agreement
on a provisional pressure scale.

The symposium was attended by about 140
participants from the United States and abroad.

Other countries represented included Canada,
England, France, Japan, South Africa, the Soviet

Union, Sweden, and West Germany. Thirty-eight

papers were presented, and four panel sessions

held, covering research at high pressures in static

systems and in shock wave experiments.
The tone of the meeting was effectively set by

the opening speakers, who emphasized the im-

portance of improved accuracy in measurements
at high pressures and in calibrations relevant to

such measurements. The point was made that in

current work, involving a wide range of phenomena
and many types of apparatus, a series of "inter-

locking" standards is needed.
About one-fourth of the papers dealt with matters

relevant to selection of reproducible and reversible

reference points on the pressure scale— so-called

"fixed points"— indicated by phase changes in

selected substances. The importance attached to

establishing such agreed-on fixed points was in-

dicated by these papers and the discussions through-

out the week. On the final day these matters were
considered by an informal committee, and the foUow-

*Largely from a meeting report by the same authors appearing in Science 164,
860-2 (May 16, 1969).

ing outline of the report of this committee and of

the ensuing floor discussion summarizes the

informal consensus reached.

It was recommended that phase transitions and
accompanying pressures shown in table 1 be used
as pressure fixed points. The fixed points recom-
mended represent equilibrium values.

Table 1.

Transition

Fixed-point

pressure

(kilobars)

Present
estimated

uncertainty

(kilobars)

Mercury freezing point at 0 °C.. 7.569 0.002

Bismuth I to II transition at

25 °C. 25.50 0.06

Thallium I to II transition at

25 °C 36.7 0.3

Barium I to II transition at

25 °C 55 2

Bismuth III to V transition at

25 °C 77 3

Users are to consider the fixed points as exact.

The values of "present estimated uncertainty"

are given only to indicate the range within which
a value may be expected to shift as a result of

improved measurements in the future. The re-

producibility of pressures based on these phase
changes niay be better or poorer than these un-

certainties and, in any given case, depends strongly

on technique. It is the responsibility of the ex-

perimenter to establish reproducibility and hys-

teresis for his own apparatus and technique, and
the relationship between his experimental values

and the above equilibrium values.

In addition to the five points listed in table 1

covering the pressure scale up to 77 kbar, a consen-

.sus was reached that the cesium ll to III and III to IV

transitions on increasing pressure be taken as

42.5 kbar and 43.0 kbar, respectively, with a present
estimated uncertainty of 1 kbar, and that the

tin I to II transition be tentatively used as a fixed

point with an equilibrium transition value of 100 kbar
and a present estimated uncertainty of 6 kbar.

In addition to the fixed point of 7.569 kbar at the

freezing pressure of mercury at 0 °C, the committee
favored use of the mercury melting curve to estab-

lish other reference pressures up to 15 kbar, cor-

responding to the freezing pressure of mercury at

about 36.8 °C. It recommended that such reference
pressures be based on the Simon equation, adjusted
to agree with the value 7.569 kbar at 0 °C as

foUows:

1



P= 38227
234.29,

1.1772

where T is the temperature in K on the International

Practical Temperature Scale (1948), and P is the

pressure in bars. Small adjustments in this equation
will be needed when the new temperature scale,

IPTS 1968, is used.

Several pressure scales derived from equations

of state of cubic solids were proposed at the meet-

ing. Both metallic and nonmetaUic substances,

such as the cesium halides, were considered. So-

dium can be treated most accurately from the

theoretical viewpoint, but its high chemical reac-

tivity is inconvenient. Aluminum can be treated

by quantum mechanical methods if parameters are

adjusted to fit some of the observed properties.

Both aluminum and copper have been investi-

gated experimentally as standards in shockwave
measurements. These metals also could be used
as standards in x-ray measurements.
The new data on copper and aluminum shock

standards have been used to reevaluate the equa-

tion of state of several other metals that have been
used in determination of pressure based on x-ray

measurements of lattice constants.

Sodium chloride has been used most often as a

reference material in recent applications of x-ray

methods for estimating pressure. An informal

committee on equation of state standards consid-

ered requirements in this application such as high

compressibility, low yield strength, chemical sta-

bility, availability of accurate data over a wide range

of pressure, and other properties. The committee
selected sodium chloride first, with copper and
aluminum as alternates.

Four evaluations of data relevant to the sodium
chloride scale now are avaiilable, including two
which were presented. In these evaluations dif-

ferences in reported pressures are less than the

combined errors (about 4 percent) at pressures

from 25 to 300 kbar. When these sodium chloride

scales are combined with x-ray data on sodium
chloride media in which transitions of bismuth and
barium have been studied, the computed transition

pressures lie within the uncertainties indicated in

the table above for barium and for bismuth III to V.

The committee recommended that a single sodium
chloride scale be adopted and that it be adjusted

to give values of pressure as close as possible to

those selected for the fixed points. An average of

the two most recent sodium chloride scales would
very nearly fulfill these requirements. An exact

fit of selected fixed points appears unlikely without

arbitrary adjustments in the equation of state.

Nevertheless, a provisional sodium chloride scale

consistent to within experimental error with the

fixed points selected for the region below 100 kbar
is attainable and, if accepted, could be very useful.

The committee suggested more comprehensive
theoretical and experimental investigations of the

equation of state of cubic sohds in order to improve
currently available scales. In particular, changes
in the vibrational energy states of sohds with volume
are required in order to obtain accurate theoretical
formulations of the equation of state and related
properties.

Temperature in high-pressure experiments is

normally measured by thermocouples. However,
pressure affects the relation between electromotive
force and temperature for a thermocouple, provided
there is a thermal gradient within the pressurized
region. The reaUty of this effect is readily shown by
subjecting two dissimilar thermocouples (such
as Pt-Pt 10 percent Rh and chromel-alumel) to the
same conditions of high temperature and pressure
and monitoring the difference in apparent tempera-
ture. In various solid-media apparatus there are
differences on the order of 25 °C between the ap-

parent temperature simultaneously read by chromel-
alumel and Pt-Pt 10 percent Rh couples at 1000 °C
and 40 kbar.

Quantitative evaluation of these effects is most
difficult. Direct determinations have been made
both in internally heated, sohd-media apparatus
and in externally heated, gas apparatus. The latter

results have not thus far been extended to sufficient-

ly high pressures to permit critical comparison
with the soUd-media results. Indirect methods have
utilized a comparison of phase boundaries deter-

mined by experiment with boundaries calculated

from thermochemical data. Temperatures deter-

mined by thermocouples have also been compared
with those determined by the thermal noise

technique.

All investigators agree that the pressure effect

on the chromel-alumel couple is less than ~ 5 °C
in the range up to 1000 °C and 40 kbar. Unfortu-

nately, this couple is considerably less stable than
Pt-Pt 10 percent Rh in high-pressure cells due to

chemical contamination and strain effects. AU
investigators also agree that the effect of pressure
on the Pt-Pt 10 percent Rh couple is considerably
larger and that the magnitude of the effect increases

with both increasing temperature and increasing

pressure. Estimates of the pressure correction for

this couple range up to 35 °C at 1000 °C (for a cold

seal at 0 °C) and 40 kbar, but there are sizable

differences in the results of various investigations

in this range.

A conference concerned with the accuracy of

pressure and temperature measurement at high

pressures must necessarily be concerned with the

"nuts and bolts" of high-pressure experimentation.

A number of developments in technique were de-

scribed which considerably extend the range, quality

or accuracy of high-pressure measurements.
Liquid cells have been constructed for use in

piston-cylinder and multi-anvil apparatus which
permit measurements under perfectly hydrostatic

conditions to be made at pressures up to 50 kbar
at room temperature. These cells are jacketed with

plastic or stainless steel and are filled with hquids
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or mixtures of liquids such as pentane, isoamyl

alcohol, and methanol. Such cells have remarkable
mechanical stability and can be cycled over a wide
pressure range. Their use eliminates shearing

stresses which are inevitably present in systems
employing solid pressure media and which in some
instances affect the thermodynamic properties of

materials under investigation. An analogous tech-

nique for high temperatures is to use molten glass

as a pressure medium. Experience with molten
Pyrex in high-pressure cells suggests that thermo-
couples are more stable in such an environment
than with more commonly used ceramic insulation.

Until recently the pressure range of single-stage,

piston-cylinder apparatus was limited to approxi-

mately 50 kbar. This limitation was imposed by the

crushing strength of unsupported, carbide pistons.

However, such pistons wiU support stresses up
to 80 kbar if the ratio of the unsupported length of

the piston to its diameter is kept considerably

below 1. Failure along 45-degree shear planes is

thus inhibited. A variation of this technique which
permits greater stroke is to segment the unsup-
ported length of the piston with binding rings.

These binding rings slide back along the piston

as they make up on the face of the pressure vessel

during the compression stroke.

The possibility of using second-order phase
transitions as secondary calibration standards
has aroused considerable interest. Second-order
transitions proceed without volume discontinuities

and theoretically without hysteresis. The change
in Curie temperature with pressure is promising in

this regard although the effects thus far studied

are rather small. For example, the dTjdP slope of

the Curie temperature curve for nickel is 0.35 °C
per kilobar. Other materials, such as ferrites, may
show larger effects.

New developments in shockwave research now
permit a derivation of the fusion curve {P versus T)

of copper extending into the million-bar range. When
combined with accurate measurements of tem-

perature and pressure in the static high-pressure

range (1100 to 1300 °C and 0 to 60 kbar) the fusion

curves of several substances, such as copper,

silver, and others, could be used for in situ check-

ing of calibrations of high-pressure, high-tempera-

ture apparatus. However, in a broader perspective,

accurately determined fusion curves may permit

solution of some rather fundamental questions in

geophysics and astrophysics involving extrapolation

of phase diagrams to very high pressure and high

temperature.

The kinetics of shockwave processes are being

investigated from several viewpoints. These in-

clude lattice dynamic models of shocks in solids

and experimental investigation of nonequilibrium

processes at relatively low shock strengths in many
cases. The behavior of shocks in regions of phase
changes are especially interesting. The rate at which
such changes occur depends upon the types of

lattices involved and the orientation of the lattice

with respect to the direction of the shock. From the

viewpoint of pressure standards, additional studies

of the transformation of iron at about 126 kbar were
reported in the meeting.

The symposium was sponsored by the National

Bureau of Standards and the Geophysical Labora-

tory of the Carnegie Institution of Washington.
Expenses were covered by a grant from the National

Science Foundation.

Edward C. Lloyd
Charles W. Beckett

Institute for Basic Standards,
National Bureau of Standards,
Washington, D.C.

Francis R. Boyd, Jr.

Geophysical Laboratory,

Carnegie Institution of Washington,
Washington, D.C.
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session I

Chairman: P. H. Abelson
Geophysical Laboratory

Carnegie Institution of Washington

Hydrostatic Pressures of 50 kbar in a Piston-Cylinder Device:

Measurement of Pressure and Characterization

of the Pressure Medium

A. Jayaraman and R. G. Maines

Bell Telephone Laboratories, Incorporated, Mountain Avenue, Murray Hill, New Jersey 07974

A method suited for making resistivity and other electrical measurements to 50 kbar hydrostatic

pressure, using a conventional piston-cylinder device, is described. In this method a Teflon cell is used
to contain the pressure medium, which is a 1:1 mixture of n-pentane and isoamyl alcohol. After the

fluid mixture freezes (at about 46 kbar), further advance of the piston results in uniaxial stress. How-
ever, this can be readily relaxed by heating the medium to 70 °C. The resultant isotropic pressure dis-

tribution stays when the pressure medium is cooled back to room temperature. The technique of

probing the pressure distribution inside the cell, as well as pressure calibration procedure, is described.

1. Introduction

A technique for generating hydrostatic pressures

in excess of 30 kbar using a conventional piston-

cylinder device was recently described [1].' In this,

a Teflon cell contained the pressure medium, and
leads were brought out of the cell for electrical

measurements. The hydrostatic pressure limit of

about 38 kbar was dictated by the freezing of the

pressure medium at this pressure at room tem-
perature. To evaluate friction correction, the Bi

I ^11 transition at 25.4 kbar was used and it was
shown that true pressure could be obtained from
the indicated pressure by multiplying the latter

with the ratio PtrBi I~*n/Pindicated the transition

point. In the present paper, efforts to extend the

hydrostatic pressure regime to 50 kbar, the methods
used to characterize the pressure medium, and the

measurement of pressure will be described.

2. Experimental Arrangement

Figure 1 is a schematic of the Teflon cell assembly
in position in the pressure chamber, while Figure 2

shows the Teflon cell and lead arrangement in

some detail. The materials used and the dimensions
of the cell are given in the figure. Consistent with

lower frictional correction and effective contain-

ment of the fluid, the optimum wall thicknesses

for the V2-in and 1-in diam Teflon cells are 50 and

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

100 mils respectively. The Vs-in-thick Teflon disk

shown in the figure (see fig. 2) next to the cap serves

the purpose of an additional seal. In the bottom
side of the Teflon cell next to the piston, we use a

10-mil-thick steel shim as an additional seal and
this permits the use of a longer cell. We find that

leakage problems are virtually eliminated by slightly

offsetting the drilled holes in the Teflon disk with

respect to the holes drilled in the cap.

3. Characterization of the Pressure
Medium

The pressure medium could be conveniently

characterized by following the piezoresistance

effect of an n-type silicon plate. The piezoresistance

[2-5] effect relates the change 8p of the resistivity

tensor to the stress tensor. For a cubic substance,

the piezoresistance coefficient tt can be described

in terms of its 11, 12, and 44 components, referred

to the coordinate axes chosen along the cubic direc-

tions. In the case of hydrostatic stress — 8p/p
= P{ttii + 2tti2) , where P is the pressure in

dynes/cm^ and the best value for the coefficient

(77-11 + 27712) is about 3.1X10-12 cm2 dyn-i for

n-siUcon [6]. For the uniaxial stress and the current

and field directions as used in our experiments, the

appropriate component is 7721 = 7112 which has the

value — 53.4XlO-'2 cm^ dyn~' for n-silicon. Be-

cause of this large difference in piezoresistance for

the hydrostatic and uniaxial stresses, any deviation

from hydrostaticity shows readily in the resistivity

versus pressure curve of a (100) oriented n-type

siUcon plate. It should be noted here that the piston-

cylinder geometry favors a uniaxial stress dis-

tribution, after the pressure medium freezes.
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Figure 1. Teflon cell assembly inside the pressure chamber.
The diagram to the right is an enlarged view of the cell.

LEADS

PYROPHYLLITE-

STAINLESS STEEL

ALUNDUM
CEMENT

INSULATION
(TAPE)"-^

PYROPHYLLITE

1950

TEFLON

|«-0.744-

- 0.994 > (C)

Figure 2. The dimensions of the parts in inches, for V2-m and
1-in diam (O.D.) Teflon cell assembly.

The connection of leads from inside the cell to the leads carried by the ceramic
tubing are shown to the right.

We used in our experiments a phosphorus-doped
(p = 4.4 ohm cm) silicon sample of square geometry
(160 mils to a side and 15 mils thick) cut parallel

to the (100) crystal plane. (The advantage of using
silicon is that there are no other conduction band
minima, excepting the ones located near the [100]

R/Ro

1.00

0.90

0.80

0.70

0,60

0 50

0.40

0.30

piezoresistance of (100) oriented

n- silicon plate

o n- pentane + isoamyl alcohol

I.I mixture (I)

A isoamyl alcohol (2)

0 20 30

P (kbar)

40 50

Figure 3. Resistivity ratio of an n-type, (100) oriented silicon

plate, plotted as a function of pressure.

directions in k space. Further, the resistance re-

sponse of 7i-silicon is almost linear with pressure.)

The plate was oriented inside the Teflon cell with
the plane perpendicular to the axis of the piston-

cylinder geometry, so that when uniaxial stress

appeared, it was in the direction normal to the (100)

plane. Ohmic contacts were made at the four

corners of the plate to which copper leads were
soldered. Two adjacent leads were used for current

while the opposite two served as potential leads.

Since the change of resistance Ap is small, both the

current and potential measurements have to be
very precise. A very convenient arrangement is to

use a well stabihzed current source in conjunction

with a potentiometer, such as the Leeds and North-

rup K3 for potential measurement. In figure 3 is

shown the measured resistivity ratio plotted as a
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function of pressure for a 1:1 mixture of n-pentane

and isoamyl alcohol (curve 1) and for pure isoamyl

alcohol (curve 2) as pressure medium.
The R/Ro versus pressure plot shows an abrupt

change of slope near 38 kbar, when isoamyl alcohol

is used as the pressure medium, and near 45 kbar

when the n-pentane + isoamyl alcohol (1:1 ratio)

mixture is used as the medium. This change of

slope is due to the appearance of uniaxial stress

perpendicular to the (100) plane of siUcon, after

the pressure medium freezes. Above the freezing

point, almost the whole of the applied stress appears

as uniaxial stress. We find that this uniaxial stress

can be relaxed by heating the pressure medium to

about 70 °C. Resistance measurements on n-silicon

obtained after heating and cooling back to room
temperature fall on the extension of the hydrostatic

data, showing thereby that the heating and cooling

procedure is an effective method to restore hydro-

static stress distribution, after the pressure medium
solidifies.

In describing the Teflon cell technique in earlier

publications, it was stated that the 1:1 mixture of

n-pentane and isoamyl alcohol solidifies at about

38 kbar. However, our present results show this to

be incorrect. The reason for the discrepancy is

due to the fact that n-pentane evaporates from the

Indicated Pressure (k bar)

Figure 4. Pressure calibration with the freezing point of Hg
at 22 °C {11.85 kbar), Bi I-U transition (25.4 kbar), the tran-

sition in Tl at 37 kbar, and Cs U—Ul at 42.5 kbar.
The ordinate gives the true pressure and the abscissa the appUed pressure.

mixture somewhat rapidly and after a length of

time, only isoamyl alcohol is left behind. This is

what has apparently happened to the mixture used

in previous experiments.

4. Pressure Measurement

For pressure calibration we have used the freez-

ing point of mercury [7] at 22 °C (11.85 kbar), the

Bi l-ll [8] transition at 22 °C (25.4 kbar), the transi-

tion in thallium [9] at 22 °C (37 kbar) and the

Cs II—III transition at 42.5 kbar. All the transitions

fall within the freezing pressure of n-pentane-
isoamyl alcohol mixture. In figure 4 is plotted the

true pressure in kbar against the indicated pressure

(computed from the dial gauge) using the above-

mentioned three fixed points. The linear relationship

between the two pressures shows that the friction

correction is proportional to the pressure indicated;

^true~ (0-925)Pind- The multiplying constant is

highly reproducible for the cell dimensions and
geometry shown in figure 2 and for n-pentane-
isoamyl alcohol as pressure medium. Thus the

measurement of pressure is straightforward.

As a further check of the accuracy of our cahbra-

tion, we have compared the resistance data obtained

at Harvard by Kosicki and Paul on a sulfur-doped

1000

100

0.1

5 10 15 20 25

P(k bar)

Figure 5. Comparison of the resistivity of sulfur-doped n-GaSb
measured in Harvard University Bridgman-type hydrostatic

apparatus and in the piston-cylinder device (Teflon cell

technique).

385-762 O - 71 - 2



n-GaSb in a Bridgman apparatus (calibrated using

a manganin gauge), with resistance measurements
on the same sample in our hydrostatic setup.

The results of these measurements are in very
good agreement (see fig. 5). We estimate that our
pressures are true to within one percent.

5. Conclusion

With the present technique it is possible to study
the transport properties of metals and semiconduc-
tors at least up to 50 kbar hydrostatic pressure, at

room temperature. This extension of the hydrostatic

pressure range may be expected to yield valuable

information, particularly on the energy band struc-

ture of semiconductors. Such usefulness has already

been demonstrated at least in two cases. Using the

technique of pressure generation detailed above,
the energy of the higher-lying conduction band
minima and the associated electron mobilities have
been determined in GaSb [10] and Ge [11, 12].
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DISCUSSION

R. E. Hanneman {General Electric Research and
Development Center, Schenectady, New York):

What are the upper Umits in pressure and tempera-
ture in using your technique?

G. C. Kennedy {Institute of Geophysics and Plane-

tary Physics, University of California, Los Angeles,

California): There is an interesting extension of

this technique to higher temperatures. We have
been doing experiments for several years in which
the sample is immersed in molten glass. Glasses

are available that melt from 150 °C on up to quartz

1800 °C. An advantage is the self-seaUng of leaks.

When a leak occurs it is stopped by the glass

freezing off. Molten glasses work beautifully at

1200 °C to 1500 °C. We characteristicaUy run our
experiments in molten pyrex, and it is a hydrostatic

medium under good conditions.

H. T. Hall {Brigham Young University, Provo,

Utah): I have a question about the calibration and
the effect of friction. I presume that the calibration

was made on rising pressure. How much friction

do you have, and where is it located?

This hydrostaticity-detecting device is interest-

ing. Have you done experiments with Bridgman's
mixture of iso-pentane and ra-pentane in this device?
While your present mixture appears to be limited

to about 50 kilobars, I believe that there is evidence

that higher pressures can be reached with Bridg-

man's mixture.

S. E. Babb, Jr. {University of Oklahoma,
Norman, Oklahoma): On the matter of the pressure-

transmitting liquid, Bridgman used impure pentane
to 30 kilobars. The purity greatly affects the degree
of subcooling, and I am suggesting that the pentane
becomes a subcooled liquid.

H. G. Drickamer {University of Illinois, Urbana,
Illinois): I doubt if necessarily the mixture is

subcooled. A very long time ago we made some
viscosity measurements at one atmosphere, down
to the freezing point. We found that if you are careful

the mixtures can be supercoUed 10 to 15 degrees,

but the viscosity goes up enormously as the freez-

ing point is approached. In general, you have some
kind of eutectic. If you are really subcooling, you
will get the kind of things you did with the siUcone.

I think you have a low melting-point eutectic of

some kind, and you are above the melting point on
that particular mixture.

R. H. Wentorf, Jr. {General Electric Research and
Development Center, Schenectady, New York):

I remember once talking with Bridgman on the use
of pentane. He said that when he used very pure
pentane in his equipment it broke. A mixture is
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best, because you get the well-known depression
of freezing point with most organic mixtures, and
some kind of eutectic. Bridgman went back to the
conglomeration of different kinds of molecules in

order to get the low freezing point he wanted.

R. Zeto {U.S. Army Electronics Command, Fort
Monmouth, New Jersey): I would like to point out

two problems in the calibration procedure. In

your hydrostatic system you are calibrating on the

initiation of the transformation which is not the
real equihbrium point measured by Bridgman and
Heydemann. At the bismuth I-II point there is a

V2 to 1 percent error involved. Also, if you are

changing pressure in 1 kilobar increments there is

an additional uncertainty due to overpressurization.

This can lead to an error of up to 4 percent for the
bismuth I-ll point.

We use an equivolume mixture of normal-pentane

and iso-pentane without indication of freezing to

50 to 60 kilobars. We find this pressure medium to

be hydrostatic and can cycle any number of times.

J. D. Barnett {Brigham Young University, Prove,

Utah): I would like to know what your time scale is

both on these piezoresistance effects and also on
the bismuth transitions. Let me suggest that on
your bismuth transition the time scale is dra-

matically influencing the hysteresis effect, as you
will see from Zeto's paper. A difference of the order
of several hundred bars, at least, can occur depend-
ing on how fast the pressure is changed.

M. Contra {Commissariat a I'Energie Atomique,
Paris): I am concerned about your use of Teflon.

Metals under pressure become elastic. Teflon be-

comes fragile under pressure. Has this caused
trouble in your apparatus?

AUTHORS' CLOSURE

In reply to Ur. Hall: All the measurements and
calibrations were done with increasing pressure. At
25.4 kilobars the friction was equivalent to 2 kilo-

bars, and I think was mainly waU friction between
the piston and cylinder. We have not tried to relieve

this since we are able to correct for it.

Concerning use of a mixture of iso-pentane and
n-pentane, we have tried this but we encountered
leakage problems.

In reply to Dr. Zeto: We make sure that the tem-
perature rises minimally. Since the bismuth I-ll

transition on the phase diagram has a fair slope, a

definitely lower pressure would exist at the calibra-

tion point if an appreciable temperature rise occurs.

In reply to Dr. Contre: I think Teflon can be used

at temperatures up to 200 °C or 300 °C quite easily.

We have repeatedly experimented in the range up
to 100 °C but have not done many experiments
above that. At higher temperatures, the problem of

leakage becomes more serious, particularly when
electrical leads are brought out.

We have had no trouble with Teflon due to its be-

coming fragile. Our experience is that this material

can be cycled many times to 50 kilobars, and it

comes out in fairly good shape. There is some defor-

mation. I think Teflon is probably one of the best

materials to use for this kind of experiment. It's

better than any metal, especially when electrical

leads are to be brought out.

9





Ultrasonic and Dilatometric Measurements at Very High Pressures

Peter L, M. Heydemann and James C. Houck

National Bureau of Standards, Washington, D.C. 20234

A short-cylinder and piston assembly and its use for dilatometric and ultrasonic measurements
on solids and liquids at pressures up to 40 kbar are described. All necessary corrections for the evalua-

tion of measurements are discussed and the systematic uncertainties are given. It is demonstrated
that ultrasonic methods can significantly reduce the uncertainties in the determination of density and
bulk modulus of both, solids and liquids.

Key words: Bulk modulus; density; dilatometric measurements; high pressure; liquids; solids; ultra-

sonics.

1. Introduction

Simple piston and cylinder assemblies are widely

used to compress solids and liquids [1] ' and to study

their mechanical, electrical, magnetic, and optical

properties over a range of pressures of up to about
60 kbar. We have developed a particularly economi-
cal high-pressure cylinder and have also used ultra-

sonic methods extensively in connection with

high-pressure investigations on solids [2] and
liquids [3]. In the present report we investigate

the systematic uncertainties of such measurements.
Although we are dealing with our particular setup,

the uncertainties and corrections discussed are

nevertheless representative of this general type of

equipment. The magnitude of the uncertainties is

in many cases larger than was previously expected.
In investigating the estimated systematic uncer-

tainties of ultrasonic measurements on compressed
materials, we beheve we can demonstrate the rela-

tively greater accuracy that can be achieved— under
favorable conditions— with such methods.

2. Piston and Cylinder Assembly

2.1. For Ultrasonic Measurements in Solids

Figure 1 shows a piston and cylinder assembly
for ultrasonic and dilatometric measurements on
polycrystalhne materials and on polymers. The
cyUnder consists of tungsten carbide with 6 percent
cobalt binder. It has a bore of about 1.2 cm diameter
and is about 1 cm long. A steel ring, press-fitted

with 1.2 percent interference on the carbide
cyUnder, provides radial support. The normal stress

at the cyUnder-support ring interface is approxi-

mately 11 kbar. At the upper end the cylinder is

closed with a tungsten carbide backup plate, and
at the lower end with the tungsten carbide piston.

The assembly is clamped against the top platen

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on,'Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

of the press (not shown in fig. 1) for axial support

of the cyhnder. A washer is used to transmit most
of the clamping force to the tungsten carbide cylin-

der. A clamping stress of 14 kbar at the faces of

the cylinder is sufficient to support the cylinder at

internal pressures up to 40 kbars. No attempt has
been made so far to generate higher pressures.

A ram concentric with the one supplying clamping
force is used to press the piston into the sample.
A handle is provided as part of the piston stack

for rotation under load. Travel of the piston stack is

monitored by two dial indicator micrometers
arranged diametrically on either side of the piston.

The travel of the piston stack is measured at a

point immediately below the lowest surface shown
in figure 1 relative to the surface on which the lower
face of the bridge plate rests. Rather large cor-

rections have to be applied to obtain the advance
of the front end of the piston relative to the cylinder

from the dial indicator readings (see sec. 5).

The piston is fitted with about 5-/u,m diametral
clearance into the cylinder. Delta (anti-extrusion)

rings are used for very soft materials.

An ultrasonic transducer is cemented to the

backup plate as shown in figure 1. Several backup
plates with different lengths and with shear or

longitudinal transducers are usually at hand in

the laboratory. In cases where simultaneous

Transducer

Figure 1. Piston-cylinder assembly for solids.
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measurement of shear and longitudinal wave
propagation times is imperative, a stepped piston

as shown in figure 1 is used. This carries a trans-

ducer at its larger rear surface. In all other cases,

the expensive stepped piston is replaced by two
tungsten carbide pieces of 2.54 cm and 1.27 cm
diameter. The transducers are accommodated in

recesses of the adjoining parts. Electrical leads are

brought out through radial grooves to BNC con-
nectors mounted on the outside of the assembly.
Since the transducers are not subjected to mech-
anical stress from the high pressure on the sample,
a glyceryl phthalate resin (Glyptal 1202 varnish),

or a cyanoacrylate cement (Eastman 910), are suf-

ficient to make bonds.
Samples are often precompacted into the cylinder

in an auxiliary press and then machined inside the

cyUnder for plane and parallel surfaces. Alinement
of the piston stack is carefully checked prior to

each measurement.

2.2. For Ultrasonic Measurements in
Liquids

Figure 2 illustrates the assembly used to contain

hquids in the cylinder. The cylinder is lined with

a polyethylene (PE) sleeve. The length of the liner

is slightly smaller than the length of the cylinder,

so that the piston can enter and close the lower end
of the cylinder. Liquid is filled into the cylinder

with piston and cylinder in situ in the press. The
backup plate is then put in place and the assembly
is clamped.

If the bulk modulus of the liquid is smaller than
that of polyethylene, as is the case with most hquids
(see, for example, water in fig. 3), then the piston

will push against the sleeve as the contents of the

cylinder are compressed. This small excess of stress

in the piston-sleeve interface over the hydrostatic

pressure in the cylinder is sufficient to seal the

liquid, even at pressures as high as 40 kbar.

The extent to which this excess stress reduces
the internal hydrostatic pressure below the nominal
pressure computed from ram force and effective

area, was investigated at two pressures. The melt-

ing pressure of ice VI at about 22 °C was measured
as a function of the wall thickness of the sleeve.

There was no discernible variation of the nominal
pressure with sleeve wall thickness. Considering
the accuracy of pressure determination, to be dis-

cussed later, we assume that at the melting pressure

of ice VI of about 9200 bar at room temperature, the

internal pressure is reduced by less than one per-

cent below the nominal pressure by polyethylene

sleeves with wall thickness as large as 0.25 cm.
Two kinds of experiments were made at the Bi

I-II transition pressure. In the first experiment,
about 0.11 cm^ of polycrystalline bismuth was placed

inside the polyethylene sleeve. The rest of the vol-

ume was filled with isoamyl alcohol. The Bi I-II

transition pressure was then determined for three

different sleeve wall thicknesses. The result is

shown in figure 4. Plotted (X) for each of five ex-

periments is the mean of the nominal pressures at

which transition was observed under compression

30 kb

Pressure p

Figure 3. Bulk modulus Bt of water andj)olyethylene asJunc-
tion of pressure.

40 60 80 %
Sleeve wall thickness

T 1 1

.3 cnn

Figure 2. Piston-cylinder assembly for hauids.

Figure 4. Ram pressure necessary to reach the Bi I-II transition

as function of the sleeve wall thickness.
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and decompression against the volume of poly-

ethylene in percent of the total volume contained in

the cylinder at zero pressure. With no polyethylene

present the curve should extrapolate to a ram pres-

sure of 177.8 bars corresponding to an internal

pressure of about 25,660 bars, the Bi I II transition

pressure at 22 °C [4].

In the second experiment, an electrical lead was
introduced into the cylinder through the backup
plate, as shown schematically in figure 5. The
change of electrical resistance of a bismuth wire

connected to the electrical lead and to ground was
used to detect the transition. The results are also

plotted in figure 4. In three cases (#) isoamyl
alcohol was used as pressure transmitting liquid,

and in one case (+) methanol was used. The com-
pression of both liquids to 25 kbar is quite similar

[5, 6]. At this pressure the volume of methanol is

67 percent and that of isoamyl alcohol is 70 percent

of their volumes at atmospheric pressure. Different

curves in figure 4 would be expected for liquids of

widely different bulk modulus. For the most fre-

quently used sleeve wall thickness of 0.15 cm, the

pressure correction amounts to only 1.1 percent at

25 kbar.

The pressure on liquids contained in these poly-

ethylene sleeves can be cycled several times be-

tween zero pressure and pressures leading to com-
pressions V/Vo of less than' 0.75. We have often

been amazed about the repeatability of these meas-
urements, which usually is within the sensitivity of

both the dilatometric and the ultrasonic measure-
ment. No such repeatability was found when, in the

beginning of this development, polytetrafluoro-

ethylene was used as sleeve material. In this latter

case very significant plastic deformation occurred
even at moderate compressions.

3. Ultrasonic Measurements and
Typical Results

It is difficult to maintain parallelism of better

than 30 s between the front and rear face of the

samples in the assemblies of figures 1 and 2.

Therefore, the ultrasonic measurement can not

be of the precision of which it is inherently

capable [7]. In most of our experiments, a wave
train of about one-half /is duration with a carrier

frequency of about 10 MHz was emitted from the

transducer. The reflections from various interfaces

in the acoustic path are picked up by the trans-

ducer, amplified and displayed on the screen of an
oscilloscope. Times between pulses or echoes are

then determined using a calibrated sweep delay.

The echo pattern is often complex because of the

number of interfaces. Multiple reflections usually

further complicate the pattern. A typical echo
pattern is shown and interpreted in figure 6.

Although we have not made any attempt to study
ultrasonic attenuation as a function of pressure,

the amphtude ratio of echoes and transmitted

pulses is often recorded during a measurement.

back-up plate

silver solder

joint \^

stieathed wire

y steel button

sleeve

liquid—
seal

cylinder

~Bi wirei

piston

1 1

Figure 5. Electrical feedthrough.

Distance Time

Figure 6. Ultrasonic echo pattern from isopentane (2-methyl

butane) at 20 kbar.

Sample echo sequences are marked with groups of arrows of equal length.

Significant changes of this ratio are observed at

phase transitions in solids (fig. 7, compare also

[23]), or in the vicinity of the glass transition

of certain liquids. In the first case this change of the

signal amplitude is a facile way of detecting a tran-

sition. In the second case it indicates the increase

of the viscosity as the glass transition is approached.
Both with liquids and many solids, times between

pulses are usually measured to within ± 5 ns.

These times are usually reproduced to within

better than 10 ns from one pressure cycle to the

next. When multiple echoes can be observed the

transit time t can often be determined to a few
nanoseconds.
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f = 30 MHz
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Figure 7a. Variation of amplitude of reflected pulses at the

Bi I-II transition.

Mixtures of Aviation Instrument Oil with isopentane

Relative amplitude of first echo. f=l2 MHz

(numbers indicate oil/pentane ratio)

pressure

Figure 7b. Variation of amplitude of reflected pulses in the

vicinity ofthe glass transition ofmixtures ofaviation instrument

oil with isopentane.

Difficulties arise with materials showing large

anisotropy of the speed of sound along different

crystallographic axes, particularly when the grain

size is large compared to the wavelength. This leads

to high attenuation due to scattering and also to

disintegration of individual echoes into a group of

smaller echoes. Figure 8 demonstrates this eff"ect

with an example of the transmission of a 30 MHz
wave train through a bismuth sample of about 1 cm
length. Such samples are ground to a fine powder,
passed through a 325-mesh sieve, and precom-
pressed into the cylinder. Nevertheless, after one

or two pressure cycles, very significant grain growth
is observed. Similar eff"ects have been observed

in other materials.

4. Determination of Pressure

The internal pressure p for an upstroke is cal-

culated from

P = R{1 + firpr) ( 1 - /3cyl/?Pr) [Pr " (o + bpr) ] (1)

Change in transit tinne

kb

Figure 8. Ultrasonic pulse transmission through bismuth show-

ing the effect of changing grain structure: separation of pulse

into two or more components.

Areas of black rectangles indicate width and amplitude of pulses. Hatched area shows
very large pulse amplitude in Bi 111.

where a bar above or below a symbol denotes rising

or falling pressure respectively, and where
R is the ratio of ram area to piston area,

pr is the ram pressure,

1 + firPr is a correction factor for ram cylinder

expansion,

1 ~ jScyiPr/? is a correction factor for high-pressure

cylinder expansion,
a is a parameter representing the reduc-

tion of internal pressure due to friction

extrapolated to zero ram pressure, and
6 is a parameter representing the change
of the internal pressure due to friction

per unit ram pressure.

Both /3cyi and R depend to some extent on the seal

in the high-pressure cylinder (eff"ective area) and
on the fraction of cylinder length exposed to high

pressure. The reduction of the internal pressure due
to friction is determined by including several small

loops in the upstroke or downstroke as illustrated

in figure 9. The friction data obtained from these

loops on the upstroke are fitted to the equation

reduction of internal pressure = /? (a + 6pr). (2)

On the downstroke a special provision has to be
made for correction in the range where the reversal

14



I n ram pressure
friction

Figure 9. Determination offriction.

of friction takes place (B to C in fig. 9). An exponen-
tial function was found to describe the friction

reversal very well.

P = Ril + l3rPr){l- iScylRpr) [pr+{a+bpr)

— 2(a + bpr) exp [- F(pr, max - Pr)]] , (3)

where F is a factor chosen to fit the friction

reversal (it is determined with the help

of the OMNITAB FIT instruction [17]

and taken to be constant for a particu-

lar kind of experiment), and
Pr,max is the maximum ram pressure applied

during the run.

The mass A/of the ram piston reduces the internal

pressure by MgR/A, where gis the acceleration due
to gravity and A is the area of the ram. A similar

correction must be applied for oil head in the line

connecting the ram and the gage measuring the ram
pressure.

Figure 10 illustrates how ultrasonic data taken
during one fuU pressure loop are reduced to a curve
of transit time versus internal pressure by applying
eqs (2) and (3) to the upstroke and downstroke ram
pressure.

Typical values for the constants in eqs (1) and (3)

taken from measurements with polyethylene sleeves

are:

R = 146.12

7.5X 10- ' bar-i

Pcyl
— 5.0X10- ' bar-i

a 2.62 bar

h 0.035

F= .013

Pr, max 248 bar

A

I r 1 1 1 »
0 10 20 30 40 kb

pressure

Figure 10. Dependence of time offlight of ultrasonic pulses on
pressure with and without correction for friction.

Open circles upstroke, dots downstroke, both corrected for friction, triangles without
correction for friction.

In these runs no rotation was used to reUeve

friction. The friction at the highest ram pressure

therefore amounts to about 4.5 percent of the ram
pressure.

The systematic error in the internal pressure p is

determined from the total differentials of eqs (1)

and (3). The terms of the total differential for p, the

uncertainties in individual constants or variables,

and their contributions to the total uncertainty are

listed in table 1. We believe that this list contains

all of the significant contributions to the systematic

uncertainty.

The uncertainty contribution of the ram-to-piston

area ratio could be reduced by determining the

diameter of the high-pressure cylinder with higher

accuracy. The contribution of the ram cylinder ex-

pansion is obviously negligible. The expansion of

the high-pressure cylinder makes by far the largest

contribution to the total uncertainty in the pressure

determination. We have described ultrasonic meas-
urements of cylinder expansion in an earlier paper

[2], and are presently planning further experiments
to determine more accurately the expansion of cyl-

inders under pressure. If necessary, the contribu-

tion of the ram pressure measurement can be re-

duced by replacing the Bourdon gage, used by us,

with a piston gage. The contribution of friction can

be reduced considerably by rotation of the piston.

In this computation of internal pressure we as-

sume that friction on an upstroke equals that on a

downstroke at a given internal pressure, if the loop

is reasonably small. The loop should be large enough
to develop friction fully in both directions of piston

travel. When liquids are pressurized in a poly-

ethylene-lined cylinder, small loops close within

the precision of our measurement. This is not the

case for many solids.

A solid under pressure in this apparatus is not

under hydrostatic pressure, but is under axial load-

ing by the piston and radial loading by the reaction
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Table 1. Total differential of p and contributions to estimated uncertainty of p.

Terms of total differential iicci idiiiiy oi iiic varidDic Contribution to total uncertainty

at 30 kbar

(1 +;8.p.) (1 - /3eyl/Jpr) [Pr" (a+ bPr)]dR 0.1 (ram area to piston area ratio) 20 bar

Rpr(\- /3ey,«Pr) [p, - (a + bpr)]dPr 1.5 X 10"' bar"' (ram cylinder exp.) 1 bar

R'Pr{l+ PrPr)[pr- {a + bpr)Wcyl 1 X 10"' bar"' (high-pressure 98 bar

cylinder exp.)

A (1 + fSrPr) (i — PcylAPrj U OjaPr 0.275 bar (ram pressure) oO D3,T

R(l + /3,.Pr)(l-j8cyi«Pr)a!a .2 bar ] 29 bar

\ (friction)

/? (1 + /3rPr) ( 1 - j8c_vl«Pr)Prrf6 .002 J 64 bar

Total uncertainty of p at p = 30 kbar 250 bar or 0.8 percent

force of the cylinder walls. This nonhydrostatic

stress distribution can result in axial stress com-
ponents exceeding radial stress components by the

yield strength of the material on increasing pressure,

and the reverse on decreasing pressure. This causes

the size of the displacement versus pressure loops

to be dependent on the extreme pressure to which
the sample has been subjected [8, 9]. Therefore, we
do not expect a large downstroke to come close to

points C (fig. 9) of small loops included in an up-

stroke, if solid material is compressed. With liquids

contained in polyethylene sleeves the downstroke
does, however, approach points C closely.

5. Evaluation of Dilatometric
Measurements

The advance of the piston into the cylinder cannot

be measured directly with mechanical means.
Instead, the travel of a piece in the lower part of

the piston stack is measured relative to the support

of the large bridge plate (fig. 1). Two diametrically

arranged dial indicator micrometers are read to

0.00001 in (0.25 fim) and their readings averaged.

A three-point measurement with gages spaced
120° would be preferable to the present setup, as it

would permit detection of tilt of the piston stack

around any axis.

To arrive at the advance of the front end of the

piston relative to the cylinder, several corrections

have to be applied. The complete equation used
for an upstroke is

AL = L(p) — Lo = ho — h{p) + ^pr + r)pl

+ 7[1 -e-Pr] +/3ey,LoP (4)

where AL is the adjusted change in sample
length;

L{p) is the adjusted length of the sample
at pressure p;

Lo is the length of the sample at zero

pressure;

ho is the dial gage reading at zero

pressure;

h{p) is the dial gage reading at ram pres-

sure p,-;

(f)Pr and rjpl are corrections for compression of

the piston stack and distortion of

other parts (the square term was
omitted from most equations in this

paper because its contribution is

neghgible)

y[l — e~*^r] is a correction for initial slack in the
setup at low pressures, and

jScyi^-oP is a correction for the effect of cylinder

expansion which adjusts the length

to the length the sample would have

in a rigid cylinder, permitting the use

of L(p)/Lofor VIVo.

Typical values for the terms of eq (4) are:

Lo = 0.85 cm

4>
= 1.5 X 10-4 cm bar '

V = 1.0 X 10-« cm bar^

7 = 6.7 X 10-3 cm

e — 0.005 bar- 1
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h(p)-ho

Figure 11. Sample length and correction terms as function

of pressure for polyethylene and tellurium.

The dial gage reading h{p) increases as the piston

advances. Figure 11 illustrates the relative magni-

tude of the terms of eq (4) with data taken from a run

with polyethylene as sample material. The curve

for h{p) shows a large change at very low ram
pressures. This is mainly due to slack between
various parts of the piston stack, which is picked
up rapidly as the ram pressure increases. The fact

that this large initial change is not due to sample
compression only is illustrated in figure 12. Here
the cylinder was omitted, and the piston is pushing
directly against the tungsten carbide backup plate.

Even after all the slack is eliminated, the piston

stack is further compressed. This compression
can be computed from the stress-dependent elastic

constants and the dimensions of the parts involved.

We prefer, however, to use the data shown in figure

12 to obtain the correction terms by fitting the

equation

h{p) = ho + y[l - e-'Pr] + (f>pr
+

-np-j- (5)

to the experimental data to determine ho, y, e, (p,

and rj. Zero weight is assigned to ho, since a rea-

sonable zero pressure dial indicator reading can-

not be obtained either with, or without, sample
and cylinder. From the curve fitting operation,

an extrapolated value for the zero pressure dial

indicator reading ho is obtained.

To solve eq (4), a value for ho has to be chosen
by extrapolating the h{p) versus pr curve to pr
= 0. This is, however, often a very arbitrary value,

which may be off from the true value by as much as

0.005 in. A refined way of arriving at a value for

ho closer to the true value will therefore be discussed
below. With the sample length L known as a func-

tion of pressure, we can now proceed and determine
the density and bulk modulus. Assuming that a

solid sample was used we have

Figure 12. Elastic distortion of piston stack.

o\ 1 1 1 1 1—
0 2 4 6 8 10 kb

pressure

Figure 13. Bulk modulus and density ofpolyethylene. Influence

of extrapolated zero pressure dial indicator reading.

where pip), po are the densities of the sample
material at pressure p and at p = 0, and
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where Brip) is the isothermal bulk modulus.
Figure 13 shows the results for the data used in

figure 11. A quick glance at the p(p) curve does
not reveal any noteworthy effects. The Brip)
curve shows a break at the low-pressure end, while

the rest of the curve is more nearly a linear function

of pressure. If more runs than this one are com-
pared, it appears that this break varies widely from
run to run. It is, in fact, the arbitrary choice of

ho which affects the lowest point of the Bt{p)
curve, since it appears as the difference of two
similar values h{p) and ho in the denominator
of eq (7). Experience shows that Bt is a hnear
function of pressure at least for compressions up
to F/Fo = 0.85. If we assume that for a limited

range

Bt{p)=Bo + BiP (8)

we can rewrite eq (4) and extrapolate ho from some
value of hip) taken at a higher pressure but from
within the range where eq (8) holds

, L/ \ Bo+ Bip
ho= h{p) -^In (fypr

Hi Do

-y[l-e"''']-/3ey,LoP, (9)

noting that

L{p)-Lo_

Lo

dp

Jo Bo + Bii

1 ^^^fl o + gip

Bx Bo
(10)

This extrapolation has been made for the data
in figure 11 and the extrapolated value for ho is

indicated on the ordinate.

The extrapolated value for ho was then used to

recompute L{p), p{p), and Brip). The dashed lines

in figure 13 indicate the improved values.

The computation of AL = L{p)—Lo for a down-
stroke is quite similar except that no correction
needs to be made for pickup of slack. Therefore,
we have for the downstroke

AL = L(p) —Lo=ho — h{p) +(f)pr+ (3cy\Lop. (11)

If the sample is a fluid contained in a polyethylene
D^TT

sleeve, L{p) is determined as above. L{p)——,
4

with D diameter of the cylinder, is the total volume
of sample plus sleeve. The volume of the polyethy-
lene to be subtracted from the total volume is

VpAp) = Vo,vE\l—^\n
L Oi.pE

Bq.PE + B\^pyJ)

Bo,PE
(12)

where Vp^{p) , Vo,pe are the volume of polyethylene
at pressure p and at p = 0, respectively,

and Bo,PE, fii,PE are the coefficients of a linear

bulk modulus equation analogous to eq (8).

D'^ — cF
Furthermore, Fo,pe =— ttLo, where c? is the in-

4
internal diameter of the polyethylene sleeve.

The volume of the fluid then is

^Fiuid(p) =—7-J^(p) 4 ttLoI 1^0

1 ^p.pe+ ^i.peP

Bl,PE Bo,PE

the density is

PFluid(p) =PFluid(o)

and the bulk modulus is

^^Fluid(o)

^r, Fluid (P) — ~ ^Fluid(o)

^Fluid(p)

Ap

Fluid

(13)

(14)

(15)

Again an extrapolation for ho will be necessary. It

is complicated somewhat by the presence of two
different materials in the cylinder. The expression to

be used is

ho = h{p) —Lo

,
Lo

+ d'[ 1

{D'^-cf) 1

Bx,
In

^0, PE'^ Bi, peP

PE B0, PE

_
1 ^0. Fluid + ^1, FluldP \

^1, Fluid ^0, Fluid /

y[l-e-'Pr]-(/)p,-j8cyi^op. (16)

The systematic uncertainty of L{p) for a solid

sample is determined from the total differential of

eq (4). The significant terms of the differential and
their contributions to the systematic uncertainty

are shown in table 2 for 2 kbar and 30 kbar internal

pressure. We believe this to be a complete list of

all significant contributions. The total systematic
Uncertainty in the determination of L{p) is about
0.4 percent at 2 kbar and 1 percent at 30 kbar. As in

the determination of pressure, one of the largest con-

tributions comes from cyUnder expansion. The
term prC?</) is related to the compression of the piston

stack. It could be reduced significantly if all meas-
urements were referred to, say, p = 2000 bar, as is

frequently done by other researchers [10] following

Bridgman's example [5] to avoid the difficulties

arising from the initial pickup of slack in the setup.

The large uncertainty in the determination of the

bulk modulus from dilatometric data is demon-
strated in table 3 (compare also fig. 11). Listed are

the most significant terms only. A variation of all

dial gage readings h{p) by the same amount in the

same direction does not have any influence on

Bt{p) , which depends on the difference between
two readings. Likewise, Br at some high pressure is

not affected by a variation in ho.
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Table 2. Significant terms of the total differential of L(p) and their contributions to the systematic

uncertainty of L(p)

Contribution to systematic

Terms of uncertainty

uilcciLdlJliy Lii iiic vdiiauic

at 2 kbar at 30 kbar

dho 0.00075 cm
]

0.0007 0.0007

[
(piston stack travel)

dh .00025 cm J .0003 .0003

dy .00075 cm (slack) .0007 .0007

LopdPcyi 10"' bar' (cylinder exp.) .UUUo .UUzD

dLo 0.0013 cm (sample length) .0013 .0013

Prd<}) 1.5 X 10~^ cm bar"' (stack compr.) .0003 .0033

0.0036 cm 0.0088 cm
or 0.4 1 percent

percent

Table 3. Contributions to systematic

uncertainty o/Bx of tellurium at 35 kbar

Uncertainty of variable

Contribution to

total systematic

uncertainty

dPcy\ = 10"' bar"' (cylinder exp.) 17 kbar

dL = 0.008 cm (sample length) 0.5 kbar

d(f) = 1.5x10"^ cm bar"' (stack compr.) 141 kbar

Total systematic uncertainty 159 kbar

or 26 percent

of fi7-=590

kbar

These contributions to the total systematic uncertainty of Br were not determined
from differentials but from variation of input data of the computer program used to
evaluate Bt. The reference value for Br was obtained from ultrasonic measurements
with appropriate corrections to convert from adiabatic to isothermal conditions.

Clip)
_ L{p)

riip)"
ctip)

_ L{p)

r,ip)

We must note, however, that L{p) as defined in

eq (4) is corrected for cyhnder expansion and that

for accurate evaluation t has to be corrected for

the same effect so that, with "cyi^ H")8cyiP?

Ci
L{p)

Ti(p)acyl'

Lip)

Tf(p)«cyl
(17)

The adiabatic bulk modulus Bs [24] is

«cyl \7iip) 3 T?(P

and since in a rigid cylinder or when suitable cor-

rections are apphed

6. Evaluation of Ultrasonic
Measurements

The ultrasonic transit times r measured for

longitudinal waves (t;) and transverse waves
(tj) in soUds are readily converted into velocities

by division into the measured length Lip) of the

transit path

pip) = po
•

we have

Lip)

a cyl

1 1

tKp) 3 Tfip)

(19)

(20)

The conversion of the adiabatic modulus Bs to

the isothermal modulus Bt is made with the relations
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Bt — ~ Vo
dp

dV (21)

where ap is the thermal coefficient of volume
expansion, ya is the Grlineisen constant,

7G

and
pCp

T is the temperature in K.

The problems encountered in the determination

of yc have been treated in several recent papers

[11, 12, 13]. If literature values for yc are not

available for the temperature and pressure range
in question, we can replace jg by ys at least for

simple solids from the modified Slater equation

[13]

1

3

1^ d In Ci _ 2 d \n Ct

3 a In (1/p)
~3 a In (1/p)

(22)

or we can determine yc as described below for

fluids from measurements along at least three iso-

therms. Often the term Tapy is small compared to

unity and can be assumed to be constant.

Because of the large uncertainty in the determi-
nation of sample length [22] it may be advantageous
to eliminate L{p) in eq (20) and to compute Bs or

Bt from ultrasonic data only. We note that the varia-

tion of L(p) with pressure for solids is relatively

small

L{p)=U 1

We can therefore replace Brip) under the integral

by Bsip) assuming apycT < 1 and, after combining
eqs (20) and (21), write for Brip)

BAp)
poLl

ItUp)

4 1

dp

JO a cyl

1 4 1

3-2
t J

(24a)

Furthermore, we can assume that L{p) under the

integral in the correction term is constant and equal

to Lq. Whence it follows for Bt determined from
ultrasonic measurements alone:

The significant terms of the total differential of Bt
are listed in table 4, together with their contributions

to the systematic uncertainty of the bulk modulus
of tellurium at 35 kbar. The total systematic un-

certainty is 9.3 kbar, which is about 1.6 percent of

the bulk modulus (^7= 590 kbar). This result com-
pares very favorably with the large uncertainty

shown in table 3 for the same material but from
isothermal measurements. Even if we allow for a
larger uncertainty of the term apycT, which was
not considered in table 3, the ultrasonic method is

superior in those cases where ultrasonic measure-
ments can be made.
We have not, for example, been able to make

ultrasonic measurements in polyethylene or in the

low-pressure form of polytetrafluorethylene because
of high attenuation. In the high-pressure polymorph
of polytetrafluorethylene, ultrasonic attenuation is

quite low and ultrasonic measurements could be
made and evaluated, if the density were accurately

known at some pressure above the transition.

A word of caution must be said, however. The
solid samples in the piston and die assembly are

subject to shear stresses, which may introduce

enough anisotropy to invalidate the ultrasonic

method [21]. This method should therefore only be

used for materials which have small shear strength,

small grain size, and a high degree of crystal

symmetry.
With liquids, no such problems exist, and it is

therefore quite interesting to apply the ultrasonic

method to liquids contained in the polyethylene

sleeve described above.

Only longitudinal waves can be used. As in the

evaluation of eq (20) above, we choose not to use

the experimentally determined L{p) because of

its rather large uncertainty. Instead, bulk modulus,

speed of sound, and density are determined from

ultrasonic data alone.

The volume of the fluid Vf at pressure p is

Vfip) = ^fo exp — (l + apyoT)
i:

» dp

Bsip)
(25)

where Vfo= d^TrLoj^ is the fluid volume at ambient

pressure.

If the adiabatic bulk modulus of the fluid

5 Up)
.it(p)

P(P) (26)

is not known as a function of pressure, a first

approximation is made

Bt{p)-

1 4 1

tUp) s'tUp)

a^yi ( 1 + apycT)

poLl

«cyldp

1 4 1

rr(p) 3t?(p)

Bs.iip)
Lo

(27)

With this approximation we can now proceed to

determine the approximate volume of the fluid

(24b) F/, 1 at pressure p. The volume of the polyethylene

sleeve is obtained from previous isothermal meas-
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Table 4. Significant terms of the total differential of Bj determined from ultrasonic measurements, and
their contribution to the systematic uncertainty of Bx of tellurium at 35 kbar

Terms of

differential

Uncertainty of

variable

Contribution to

systematic uncertainty

2^»^»(r?(p) 3 r?(p))^^°

9 J i

3x?(p)

0.0013 cm (sample length)

5 X 10'" s (transit time of longt. mode)

10~* s (transit time of transv. mode)

2210 bar

5150 bar

1925 bar

Total systematic uncertainty 9285 bar or 1.6 percent of

^7X35 kbar) = 590 kbar.

urements of the bulk modulus fitted to a linear

function of pressure (see eq (12) and fig. 3).

From the sum of these volumes divided by the

cross-sectional area we obtain a first approximation

for the length of the fluid column

^ VPE{P) + Vf,l{p)

Z)27r/4
(28)

A first approximation for the density is obtained

from

PfAp)-Pfoy^- (29)

The first approximation length and density are

now introduced into eqs (25, 26) and the computation
is repeated. This iteration is performed until the

change of the computed data from one cycle to the

next falls below a specified value. With water as a

test substance and pressures up to 12.5 kbar, four

iteration cycles were usually sufficient.

If measurements are made along three isotherms,

jG can be determined directly [14, 15, 16] by first

computing the approximate volume along the

isotherms and then calculating

apc'-

Cp

with ocp^ji^^) and (^)^= -r(|^)^

(30)

An iteration process such as described above
but with two loops can be used to compute complete
and very accurate equation-of-state data over the

entire pressure-temperature plane.

We have made ukrasonic measurements on vari-

ous liquids at pressures up to 40 kbar. Data obtained

for water along the 22 °C isotherm are used to illus-

trate the merits of the method. The bulk modulus
data obtained from the iteration process using the

experimental transit time data [3] were fitted to a

linear function of pressure. The OMNITAB [17]

POLYFIT instruction was used for the least squares

fit. The result of the least squares fit for Bs and p
in bar is

5s = 23,222 + 6.677p.

The standard deviation of the fit was 743 bar. This

equation was integrated assuming constant apjGT
and converted to density. The density is plotted in

figure 14. For comparison, density data from the

works of P. W. Bridgman [18, 19] and L. H. Adams
[20] are entered. Our data are also in good agree-

ment with the data by Vedam and Holton [16], who
used a fixed-path length interferometer. This

method provides greater accuracy but is Umited to

much lower pressures.

Table 5 lists the contributions of various experi-

mental data to the total uncertainty of density,

velocity, and bulk modulus of water at 10 kbar. It

is very interesting to note that the major uncertain-

ties do not come from the transit time measure-
ment, but from the pressure measurement and the

determination of the initial length of the poly-

ethylene sleeve. This is even more obvious, when
the transit time t is determined with the pulse super-

position method rather than from a simple delay

measurement. Pulse superposition will permit esti-

mated uncertainties of less than one nanosecond
with a resultant contribution to the total uncer-

tainty of the bulk modulus of less than 80 bar.

g

cm'

1.3

density of water

at 22° C
integrated 6^= 23222 + 6.677 p

ultrasonic data

.Bridgman 1912

• Adoms 193!

5000 10000 bar
pressure

Figure 14. Density of water as function of pressure.
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Table 5. Contributions of uncertainties in experimental data to the total uncertainty of the ultrasonically

determined equation of state of water {at 10 khar)

Experimental U ncertamty of
Contribution to total uncertainty of

nilnntitv €xp€rifn€rit(il QUCLfitity
i-* c ii^iity rt 11 /If Tti fiH II 1 HQ

P 90 bar (rjim pressure) 0.00156 g/cm^ 5.5 m/s 478 bar
T
Lo 0.004 cm (sample length) .00186 g/cm^ 11.5 m/s 633 bar

Bt), I'K 1200 bar (bulk modulus of PE) .00017 g/cm^ 1.6 m/s % bar

0.0007 (Griineisen constant) .00021 g/m' 0.4 m/s 9 bar

Po 0.0005 g/cm' (density at p= 0) .00047 g/cm-' .3 m/s 52 bar

T 5 X 10-** s (transit time) .00064 g/cm^ 6.6 m/s 402 bar

Others .00025 g/cm3 4.5 m/s 149 bar

0.00516 g/cm^ 30.4 m/s 1819 bar

or 0.4 percent 1.1 percent 2 percent

P(io kbai = 1.235 g/cm^ C(,o kbar) = 2705 m/s fimo kbar) = 90350 bar.

7. Conclusions

The present evaluation of systematic uncertainties

of dilatometric measurements in simple piston

and cylinder assemblies demonstrates the large

influence of the deformation of the piston stack

(term </)pr) and of the expansion of the high-pressure

cylinder (term Lopftcyi) on the systematic un-

certainties of density and bulk modulus derived

from such measurements. It also shows the rela-

tively greater accuracy that can be achieved by
using ultrasonic methods under favorable conditions

to determine the mechanical properties of the

compressed materials. It appears that the develop-

ment of improved dilatometric methods is impera-

tive and that cylinder expansion and piston stack

distortion have to be known much better before

more sophisticated ultrasonic methods are

employed.
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DISCUSSION

P. M. Bell (Geophysical Laboratory, Carnegie

Institution of Washington, Washington, D.C.): There

are three ways to measure ultrasonic transit times

in an experiment of this type: a variable, cahbrated

delay for a comparison pulse, the pulse superposi-

tion or phase comparison techniques; and a direct

delay for a comparison pulse; the pulse superposi-

method. But I think your sample length of about 1

cm is too short for that and I am surprised that you

get the stated accuracy. Have you used frequencies

above 10 MHz?

G. C. Kennedy (Institute of Geophysics and
Planetary Physics, University of California, Los

Angeles, California): The aim of your investigation

was to develop better compressibility measure-

ments. We have been working on the evaluation

of precise shock wave data. These data are incredibly
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good, far better than most of the people who made
them think they are. The difficulty, of course, lies

in the reduction of the Hugoniot to isothermal

conditions. Depending on who evaluates one and the

same curve you get different results. The problem

comes down to the variation of Griineisen gamma
with volume.
We have measured the specific volume of ten

compressible substances to three significant

figures. These include indium, calcium, potassium,

and so on. We find that our data agree to three

significant figures with data derived from shock
wave measurements, if the Dugdale-MacDonald
relation for the volume dependence of gamma is

used.

For indium at 50 kbar our specific volume is

0.841, from shock waves we obtain 0.841. Bridg-

man's value is 0.802 or something like that.

Bridgman's values for gold and zinc agree both with

our numbers and with those derived from shock
wave data.

Since with the Dugdale-MacDonald relation for

Griineisen gamma shock wave and static experi-

ments yield the same results, we now have a way
to determine the variation of gamma by measuring
isothermal compressibihties and comparing these

with shock wave data. Our derived variation agrees

with Dugdale-MacDonald.
As a result tables of compressibilities of a large

number of standard substances are now being
recomputed at Livermore.

L. Thomsen (Columbia University, Palisades,

New York): In a paper by Orson Anderson and
myself we have derived yet another expression for

the Griineisen parameter as a function of density
which avoids all of the special assumptions that go
into the various curves which Dr. Kennedy just

drew. This paper will be presented on Wednesday
morning and we should then be able to pursue this

discussion considerably further.

D. J. Pastine (U.S. Naval Ordance Laboratory,

White Oak, Maryland): There is not any magic
formula that will give you the volume dependence of

the Griineisen parameter. Formulas like the Dug-
dale-MacDonald relation are essentially one-mode
approximations. There are, however, relations

which relate the Griineisen parameter to other
readily measurable thermodynamic quantities.

These will give you the first and second derivative

with respect to volume at low pressure.

AUTHORS' CLOSURE

In reply to Dr. Bell: We have in a few cases of

samples with low attenuation and the perfectly

alined endfaces used the more accurate phase com-
parison method. Usually we make a direct deter-

mination of pulse spacing with the help of a

calibrated sweep delay. The position of the unmodu-
lated rf-pulse is read at the peak of the pulse. This
reading is reproducible to within 10 ns. We also ex-

pect it to be reproduced when we return to the same
pressure setting following a small loop. The time
between pulses measured in this way is equal to

twice the transit time through the sample. How-
ever, in many cases five or more echos are observed
and the actual transit time can then be determined
to much better than 10 ns. Measurements are usu-

ally made at 10 to 12 MHz, but occasionally we go as

high as 30 MHz.

In reply to Dr. Kennedy: If you have very accurate

isothermal data for the bulk modulus then we can
also use our ultrasonic data and, of course, thermal
expansivity data, to determine the Griineisen

parameter. We have tried this with our isothermal

data. But the accuracy of our isothermal data,

especially in the case of liquids, was not high enough
to yield really meaningful results.

The purpose of our paper was to emphasize how
much the accuracy of the determination of the

equation-of-state parameters can be improved by
using ultrasonic methods. This is particularly true

in those cases where the ratio of isothermal to

adiabatic bulk modulus is close to unity. In all other

cases we do have to rely on somebody's data for

the Griineisen parameter.
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Characterization of the Bismuth I-II and Barium I-II Points

Under Hydrostatic Pressure

R. J. Zeto, H. B. Vanfleet*, E. Hryckowian, and C. D. Bosco

Institute for Exploratory Research
U.S. Army Electronics Command, Fort Monmouth, N.J. 07703

Hydrostatic pressure experiments were made which have new and important relevance to high-

pressure calibration in both liquid and sohd pressure systems for the bismuth I-II and barium I-II

points on the high-pressure scale. The bismuth I— II transformations were characterized and the mech-
anism of the solid-state reactions was related to pressure cahbration. The strain hysteresis commonly
associated with the bismuth I-II point was shown to be invalid and was alternatively explained on the

basis of a thermally activated nucleation and growth mechanism which was demonstrated to govern
these transformations. With hydrostatic pressure, initiation of the bismuth i-ii transformation was
observed as a function of kinetic times as long as 15 hours while pressure and temperature were
maintained constant. The transformation behavior was a function also of the microstructure, purity,

and thickness of the sample. The bismuth I-II transformation was not necessarily sharp with respect

to kinetic time. As long as 42 hours were observed for completion of the transformation with very thin

samples. Under hydrostatic pressure the bismuth I-II equilibrium point was not midway between the

initiation of the I-II and II—I transformations but was located appreciably closer to the former trans-

formation. The bismuth I—II calibration point was correlated between liquid and solid pressure systems.

For sobd systems it was shown that the "apparent" hysteresis was completely one-sided toward
the low-pressure side and that the equilibrium point coincided with the initiation of the I-II trans-

formation which should be employed as the pressure calibration point. The bismuth I-II region of

indifference was characterized with respect to nature of the sample and manner of measurement. An
experimental technique was indicated by which the center of the region of indifference was reproducible

within ±5 bars. The barium I-II point was measured at 56.27 kbar on the basis of a manganin gage
under hydrostatic pressure.

1. Introduction

The current high-pressure scale is based upon
fixed-point pressures of soUd-soUd phase transforma-

tions. Ahhough the bismuth I-II point at 25.380 kbars
at 25 °C is fundamental to the high-pressure scale

and is universally employed for high-pressure

calibration, very Uttle work has been done to

characterize the nature of the I ^ II phase trans-

formations upon which the fixed-point calibration

pressure is based. In view of experience and theory
on the variable nature of solid-solid phase trans-

formations, such a characterization and relation to

the calibration pressure is warranted, both for

hydrostatic pressure systems which calibrate on the

equilibrium point and for solid pressure systems
which calibrate on the initiation of the transforma-

tions. This is particularly important for ultimate

accuracy of the bismuth I-II calibration point in the

former pressure systems in which pressures can be
measured with a sensitivity of 1 bar. The behavior
of the phase transformations can certainly be ex-

pected to display an influence on the calibration

point in terms of this degree of sensitivity of pres-

sure. More practically important at the present time

is the resolution in terms of phase transformation

theory of the several different calibration procedures
employed in solid pressure systems. During the last

several years in the high-pressure laboratory at

Fort Monmouth, a unique hydrostatic pressure

capability was developed with a hexahedral press,

and hydrostatic pressure experiments were made
which have new and important relevance to high-

pressure calibration in both solid and liquid pressure

systems for both the bismuth l-II and barium I-II

points on the high-pressure scale. In view of the

—
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Figure 1. Schematic representation of the relative resistance of
bismuth for increasing and decreasing pressure in the vicinity

of the I-II calibration point.
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large amount of information which resulted from
these experiments, the important results pertinent to

pressure calibration and the goals of this conference
are presented in the manuscript in summary form.

More elaborate discussion and experimental detail

will be orally presented and will be submitted to

J. Appl. Phys. and to J. Phys. Chem. Solids in the

near future.

To place the results of the present paper in con-

text, it is helpful to review briefly the present
concept of the bismuth MI and II-I transformations.

A perusal of the literature reveals that the general

nature of these transformations, whether examined
by means of electrical resistance, volume change,
or x-ray measurements in either liquid or solid

pressure-transmitting systems, can be schematically

depicted as in figure 1 for the vicinity near the cali-

bration point. With increasing pressure on a sample
composed completely of bismuth I, the I-II trans-

formation initiates at a pressure corresponding to A.

After sufficient overpressurization to completely
convert all bismuth I to bismuth II, decreasing
pressure causes the II-I transformation to initiate

at a pressure corresponding to B, which is sub-

stantially lower than A. Both transformations occur
isobaricaUy in liquid systems but may have to be
pressurized to completion in solid systems. Thus
the transformations to completion, C and D, exist as

illustrated for soUd systems but are vertical for

liquid systems. The pressure interval between
points A and B is commonly denoted as a hysteresis

for the transformations. In liquid systems this

pressure interval has been reported to have an
average value of about 0.71 kbar [1]', whereas in

solid systems the value is observed to be much
larger and is of the order of kbars due to the attend-

ant and additional hysteresis of the pressure-

transmitting medium, e.g., pyrophyllite or AgCl.
The transformations can be made to reverse over a

much smaller pressure range near the equilibrium

pressure if the hysteresis is entered, either by
reducing pressure during the I-II transformation or

by increasing pressure during the II-I transformation,

so that both phases are in intimate contact.

In his liquid system, Bridgman [2] measured a

pressure range of about 60 to 100 bars within which
the transformation would not perceptibly run in

either the I-II or the II-I direction and denoted this

pressure range as the region of indifference. It is

generally assumed, primarily because of a lack of

data, that the equilibrium pressure, E, is situated

halfway between the pressures at which the I-II

and II-I transformations occur when measured
either at the hysteresis or at the region of indif-

ference. Several investigators [3, 4], however, have
stated that such an occurrence might not be true

' Figures in bracicets indicate the literature references at the end of this paper.

with respect to the hysteresis, but in fact might
be located at a higher pressure, £".

2. Experimental

The basic apparatus was a hexahedral press with

2000-ton-capacity rams and a cubic pressure
chamber 2.25 inches on an edge. Hydrostatic pres-

sures were generated within a stainless steel cell

which contained an equal-volume liquid mixture
of normal- and iso-pentane. The stainless steel cell

was situated within a pyrophyllite cube. As force

was applied to the pyrophyllite cube, the cell

experienced the uneven solid pressures within the

cubic volume, but the sample within the stainless

steel cell was exposed only to those forces trans-

mitted by the liquid. The original hydrostatic pres-

sure cell [5] was improved to increase its reliability

and usable high-pressure volume (Vie in diam X 1

in length) and to give 10 electrical leads for measure-
ment from the hydrostatic pressure chamber. This

capability of volume and leads permitted four-

terminal measurements, simultaneous comparison
of several samples in the same experiment, and
simultaneous measurement of manganin and
samples. For example, one experiment comprised a

manganin coil, mercury (for calibration of the coil),

and four different bismuth samples. Four-terminal

measurements were always made on manganin
and also on the samples whenever possible. The
resistance of the manganin coil was measured with

a Leeds and Northrup Model 8069 G-2 Mueller

Bridge with a sensitivity of ±0.1 mil, which, for

our coils, was equivalent to about ±0.5 bar. Quan-
titative experiments were conducted with a properly

seasoned and caUbrated (mercury L-I and bismuth
I-II points at 25 °C) manganin gage. Relative pres-

sures from an uncalibrated manganin coil sufficed

for the examination of quahtative features of the

mechanism of the bismuth I-ll and II-I transforma-

tions. The sample parameters investigated were
purity (six nine's versus two nine's), microstructure

(single crystal versus polycrystal), and thickness

(0.040 in diam versus 0.013 in diam). Samples were
monitored with a sensitivity of at least 0.1 percent

either by means of a Keithley Model 150A microvolt-

ammeter with the output recorded on a Varian

Model G-11 strip chart recorder, or directly by
means of a four-channel Model 240 Brush oscil-

lograph-recorder. In order to avoid heating the

samples, the current level was adjusted such that

the power through the sample was kept at approxi-

mately 1.54 X 10"^ W. Temperature was measured
to 0.001 °C by means of a platinum resistance

thermometer immersed in a well of water which
made contact through a brass plug with the anvil

bearing on the pressure cell. Temperature correc-

tions to 25 °C were applied for the resistance of

manganin and for the temperature coefficient of

50 bars/deg C for the bismuth MI point.
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3. The Bismuth I-II Point Under Hy-
drostatic Pressure

3.1. The Apparent Hysteresis*

The hysteresis has important relevance to pres-

sure calibration in solid pressure systems which
comprise the bulk of pressure apparatus in current

use. Two caUbration procedures are generally

employed in these systems: in one procedure only

the MI transformation pressure is measured and
the cahbration point is associated with point A in

figure 1, and in the other procedure both the I-II

and II-I transformation pressures are measured and
the cahbration point is associated with point E in

figure 1. Obviously these are different calibrations,

and pressures reported on the basis of the one type

of cahbration will be different than those pressures

based on the other type of calibration. To resolve

this discrepancy it has been suggested [4] that the

former calibration method should add a pressure
corresponding to one-half of the hysteresis width,

i.e., A-E in figure 1. In any case, all of this type of

cahbration in sohd pressure systems depends upon
the hysteresis (both for bismuth and for the pressure

medium) exhibiting a fixed and reproducible value.

Two pubhcations [1, 4] associate a real hysteresis

with the bismuth I-II point, but each also implies the

possibihty of a thermally activated nucleation and
growth mechanism. Since a fixed strain mechanism
and a thermally activated mechanism are mutually
exclusive of one another, and in view of the obvious
importance of the hysteresis for solid pressure
calibration, it was considered desirable to conduct
hydrostatic pressure experiments to determine the

mechanism of the I-II and II-I transformations and
the basis of the hysteresis. Actually, results pub-
lished in the literature appeared to indicate a
nucleation and growth type of mechanism. Also,

our general experience with multiple cycles in

the hydrostatic system failed to reproduce a closed

loop with respect to resistance or to reproduce
either boundary with respect to pressure and cast

additional doubt on a fixed strain basis for the nature

of the hysteresis A-B as represented in figure 1. It

was of particular interest to determine whether or

not this pressure hysteresis was real, i.e., if the

initiation of the transformations beyond the equilib-

rium point was dependent upon a fixed strain energy
which would yield a fixed pressure interval /i-fi. The
alternative explanation of this pressure interval as

being due to a thermally activated nucleation and
growth mechanism requires that the pressure inter-

val ^-fi be time dependent.
Experiments made under hydrostatic pressure

showed that the hysteresis A-B of figure 1 was not a

real strain hysteresis but was time dependent
according to a thermally activated nucleation and
growth mechanism.

*See also "Interpretation of initiation pressure hysteresis phenomena for fixed-point

pressure cahbration", Zeto and Vanfleet, J. Appi. Phys. (1970, in press) for later and

more complete analysis.

By holding a sample composed completely of

bismuth I at constant pressure and temperature

below that represented by point A in figure 1, the

I-II transformation initiated as a function of kinetic

time. The observation of waiting periods prior to

initiation of the I-II and II-I transformations at con-

stant temperature and pressure within the apparent
hysteresis has been noted numerous times for the

I-II transformation and also for point B and the II-l

transformation. Furthermore the pressure coeffi-

cient of the waiting periods for the I-II transforma-

tion, for example, was consistent with a thermally

activated nucleation and growth mechanism; longer

waiting periods were observed for lower pressures

toward the equilibrium pressure. For the I II trans-

formation, point A was located with a very slow
pressurization rate of 1 bar/min and then on dif-

ferent cycles pressure was maintained constant at

various lower values. Waiting periods as long as 15

hr at constant pressure and temperature were meas-
ured prior to initiation of the I-II transformation.

The waiting periods can be explained as a direct

consequence of the kinetic time for nucleation of the

new phase in a soUd state transformation. In the

vicinity of 150 to 200 bars over the equilibrium

pressure, the pressure coefficient of the waiting

periods appeared to be very large, about — 6 min/bar.

The waiting periods for the ll-I transformation did

not vary in a consistent manner with hydrostatic

pressure. The initiation pressure of this transforma-

tion appeared to be dependent on the pressure with
which the I-II transformation was overpressurized.

Hydrostatic pressure experiments in which
several different samples were simultaneously

examined and recorded showed very clearly that

the transformation behavior was a function of sample
purity, microstructure, and thickness. At constant

pressure and temperature, appreciably different

waiting periods for initiation of the l-Il transforma-

tion were observed for different samples. Also, the

times required for complete transformation to bis-

muth II varied not only from sample-to-sample but

also as a function of the holding pressure. Slower
transformation rates were observed for lower
holding pressure in accordance with a nucleation

and growth mechanism. Dramatically slow trans-

formation rates were measured for very thin

samples. For example, a bismuth strip sample 0.0004

in thick required about 42 hr for complete trans-

formation, whereas under the same conditions in

the same experiment a bismuth strip sample 0.011

in thick transformed completely in 1 hr. In the

literature, "sharpness" of the transformations is

sometimes invoked as a criterion for "hydro-
staticity" of pressure, but the role of kinetic time
in a solid-solid transformation must not be over-

looked. Even though the transformations occur
isobarically in a hydrostatic pressure system, the
transformations may be very sluggish with respect

to kinetic time. The slow transformation rates are

further support for a thermally activated nucleation

and growth mechanism. The fastest initiation and
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transformation rates were observed with thick
(0.040 in diam) polycrystaUine samples.

All evidence from these hydrostatic pressure ex-

periments was consistent with a thermally activated

nucleation and growth mechanism. The hysteresis

which is generally associated with the bismuth I II

point is not a real strain hysteresis but is actually an
apparent hysteresis due to a large activation energy
for nucleation and/or growth and the sluggish rates

of a solid-solid phase transformation. This apparent
hysteresis is variable with respect to kinetic time,

pressurization rate, and sample characteristics. The
assumption that the bismuth l-ll equilibrium point

is centered within the apparent hysteresis is also

invalid. The relationship of the equilibrium point

within the apparent hysteresis for liquid pressure

systems was determined and is illustrated in figure

2. The apparent hysteresis A-B was found with a

slow and constant pressurization rate and was then
entered as described earlier for the measurement of

the region of indifference within which is the

equilibrium and calibration point. The region of

indifference was not at all midway between the

initiation pressures of the I-II and II-I transforma-

tions but was located appreciably toward the I-II

side. The calibration point, E, was about 150 bars

below point A which corresponded to about Va
of the pressure interval A-B in the liquid system.

The transformations to completion, C and D, are

represented as vertical lines since each trans-

formation occurred isobaricaUy. The initiation

pressure of the II-I transformation, point B, was not

reproducible on different pressure cycles and after

completion of this transformation the initial bismuth
I resistance was not recovered. Additional evidence
of the variable nature of point B is shown in the

next section.

C I^I
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Figure 2. Schematic representation of the relative resistance of
bismuth for increasing and decreasing pressure in the vicinity

ofthe I-II calibration point under hydrostatic pressure.

Superficially these results have serious and detri-

mental implications for pressure calibration in

solid pressure systems since the "hysteresis" is

not a stable transformation feature upon which to

fix a calibration. Consider, however, a nucleation
and growth mechanism in the context of general
experience with the kinetics of solid-solid phase
transformations. The observed waiting periods at

constant pressure and temperature may be associ-

ated with induction times for the nucleation of the
new phase. It is known that scratching or grinding a
material wiU reduce and remove an induction
period, lower the activation energy for nucleation,
and facilitate the nucleation rate of the new phase.
Clearly, a scratching and grinding effect on the
bismuth sample can be expected from the solid

pressure medium and this would tend to eliminate
the waiting periods observed under hydrostatic
pressure. Theoretically, then, it would be expected
that initiation of the I-II transformation in a solid

pressure system should take place at a pressure
which corresponds, or at least is close to, the real

equilibrium point. Evidence that this correlation is

valid is presented in the next section.

3.2. Correlation of the Calibration Point
Between Liquid and Solid

An experiment was designed to test the trans-

formation hypothesis just mentioned in the previous

section. An experiment in the hydrostatic pressure

cell was conducted with two identical bismuth
samples: one sample was directly exposed to the

pentane-mixture pressure medium and the other

sample was completely embedded in an epoxy
solid (about 0.040 in wall thickness) which in turn

was directly exposed to the same pentane-mixture

pressure medium. These samples were simul-

taneously examined in the same experiment and
gave a direct comparison of the bismuth I ^ II

transformations for a specimen subjected to a

hydrostatic pressure and one subjected to a solid

pressure-transmitting medium. The samples were
first pressure cycled with a slow, constant pressuri-

zation rate of about 15 bars/min in order to deter-

mine the apparent hysteresis for both samples. In

cycling the samples, pressure was taken well beyond
the bismuth II-III transformation in order to insure

the presence of only one or the other of phase I and
II at the initiation of the transformations. The true

equilibrium pressure was then measured with the

sample which was directly exposed to the hydro-

static pressure medium.

The correlation of the bismuth I-II equilibrium

point within the apparent hysteresis for liquid and
solid pressure-transmitting media is schematically

illustrated in figure 3. The equilibrium point, E,

measured with the sample in the liquid medium
corresponded within a few bars to the pressure. As,

at which the bismuth I-II transformation initiated
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Figure 3. Location and comparison of the equilibrium point

in solid and liquid pressure transmitting media for the bismuth
I^ II transformations.

in the sample which was embedded in the solid

pressure transmitting medium. Verification of the

theory of the mechanism of the transformation was
obtained and these results provided striking cor-

relation between liquid and solid pressure systems
for pressure calibration at the bismuth I-II point.

The hysteresis observed in solid pressure systems
is completely one-sided towards the II-I transforma-
tion. In solid pressure systems, calibration should
be conducted with a slow pumping rate and should
be fixed to the initiation of the bismuth I-II trans-

formation.

This phenomenon was investigated in another
experiment in which an AgCl pressure-transmitting

medium was employed. The same effect was clearly

evident, although it was less pronounced than for

bismuth in epoxy. Comparison of the transformation

curves from initiation to completion of the trans-

formation, C, revealed a dependence on the nature

of the pressure transmitting media. This observation

was consistent with a thermally activated nuclea-

tion mechanism in which nucleation of the new
phase was accelerated by the pressure medium
which was more non-isotropic, i.e., from pentane to

AgCl to epoxy. Initiation of the I-II transformation

occurred at the highest pressure,^/,, for the bismuth
sample in the liquid medium. The II-I transforma-

tion, D, was very fast in all cases but the initiation

of this transformation, B, occurred at a much lower
pressure when the II-I transformation was preceded
by the ll-lll transformations in the pressure cycle.

In this case the equilibrium point, E, was located

about the same pressure interval below Al as when
the II-III was not included in the pressure cycle, but

Ai,-E became only about one-sixth of the apparent

hysteresis Al-B.

3.3. The Region of Indifference Equilibrium
Point

The region of indifference comprises the equilib-

rium point and is employed for pressure calibration

in hydrostatic pressure systems. According to

Bridgman [2], the region of indifference is measured
as the pressure range over which the transforma-
tions can be made to run in opposite directions when
starting from a pressure at which no transformation

is perceptible. The region of indifference is deter-

mined with about equal amounts of both phases I

and II present in the sample. Nucleation is no
longer a consideration as the apparent hysteresis

and the transformations can be made to reverse

over a pressure range less than 100 bars. Although
hydrostatic pressure systems comprise the minority

of pressure apparatus in current use, there are an
increasing number of laboratories utilizing these

systems in which small pressure changes of about 1

bar can be measured with a manganin pressure

gage. This precision cannot be utilized for pressure
calibration with a comparable accuracy, however,
since the equilibrium point has not been characteri-

zed with respect to the purity, microstructure, and
thickness of the sample, the width of the region of

indifference, the pressure direction of measurement,
and the variation of the equilibrium point with

respect to the relative proportions of bismuth I and
bismuth ll present in the sample. The pressure cali-

bration point must be evaluated and considered in

the context of the solid-solid phase transformation

upon which it is based. General experience with

high-temperature transformations shows that trans-

formations in the solid state are influenced by these

factors mentioned above. Characterization of the

I-II equilibrium point is therefore important for the

ultimate accuracy of hydrostatic pressure calibra-

tion, particularly in terms of the current techniques
which measure pressure with a sensitivity of 1 bar.

Hydrostatic pressure experiments were made to

bear on such a characterization.

The technique which was experimentally em-
ployed to investigate the region of indifference was
as follows. The sample potential was recorded for 15-

min intervals at constant pressure. After the comple-
tion of an individual sample trace, pressure was
altered either up or down in increments of 5 to 8
bars and the sample potential was again monitored
for about 15 min at each pressure. The rate traces

of sample potential versus time were zero within the

region of indifference, positive for the II-I trans-

formation, and negative for the I-II transformation.

The manganin resistance was measured at the

beginning and at the end of each trace and was
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monitored on the recorder simultaneously with
the sample trace. Pressure was constant within 1

bar over the duration of each rate record of the

sample. The MI and II-I boundaries of the region of
indifference were noted as the pressure at which
the sample rate trace deviated from zero in the

negative and positive direction, respectively. The
equilibrium pressure was then taken at the center
of the region of indifference. By this procedure and
with the sample and manganin sensitivity employed,
20 bars was commonly measured for the width of

the region of indifference. This is the smallest

region reported to date.

With respect to the equilibrium point the question

arises as to the existence of a pressure region or a

single pressure value over which or at which the

transformation will reverse. Theoretically there

cannot be a single value of pressure for the equilib-

rium point. The bismuth I-II point is based on a

solid-solid phase transformation in which strain

energy is a thermodynamic variable. In the phase
rule sense, this extra degree of freedom means that

the transformation must occur over a range of

pressures at constant temperature instead of at

a single pressure as normally expected for a pure

compound. While greater sensitivity than that em-
ployed in the present investigation might reveal

a region of indifference less than 20 bars, the region

of indifference will nevertheless not be zero. The
small value of 20 bars, however, is favorable for

utilization of the bismuth I-II transformation for

high-pressure caUbration. In terms of this discus-

sion, the nature of the region of indifference is based
on the strain energy resulting from the volume
change between phases I and II and this is really the

strain hysteresis for the bismuth I-II point.

The nature of the region of indifference with
respect to pressure direction of measurement was
investigated with a polycrystalline bismuth sample
of six nine's purity and 0.040 in diam. Since the

determination of an equilibrium point should be
made by approach from each side of the equilib-

rium, there are two possible ways in which the

region of indifference may be measured: (1) I-II in

the up-pressure direction and II-I in the down-
pressure direction, and (2) I-II in the down-pressure
direction and the II-I in the up-pressure direction.

Four determinations were made by each method
with 45 to 55 percent bismuth I present in the sample
for each determination, and the results favored the

former procedure as employed by Bridgman. The
width of the region of indifference determined in

this manner was 20 ±6 bars, whereas a region of

indifference of 27 ±12 bars was determined by
the latter procedure. The average of each set of

four determinations gave the same absolute value

for the center of the region of indifference for each
method of measurement.

If the region of indifference is a strain hysteresis,

as mentioned above, then this region could be a func-

tion of the relative proportions of bismuth I and

bismuth II present in the sample. Consequently,
measurement of the equilibrium point for high-

pressure calibration might Ukewise be a function of

the phase composition of the sample. To examine
this phenomenon the region of indifference was
measured at bismuth I proportions between about
20 and 80 percent with a polycrystalline sample of

six nine's purity and 0.040 in diam. In this percent-

age range the widths of the region of indifference,

about 20 bars in each case, overlapped. For bismuth
I proportions between about 20 and 60 percent, the

centers of the region of indifference were within

about 5 bars of each other; however there appeared
to be a definite bias, about 10 bars, towards lower
pressures for the measurements at higher propor-

tions of bismuth I. This effect was also observed for

different samples with larger grain size (single

crystal) and less purity (two nine's). In terms of the

sensitivity of our pressure and sample measure-
ments, this bias appears to be real, although it is

difficult to make such a conclusion with certainty

for such small pressure values in view of possible

and unknown systematic errors of measurement.
Investigation of this point by other laboratories

seems desirable. In any case, it appears that highest

reproducibility (several bars) of the calibration point

is achieved when the pressure is adjusted so that

about 50 percent of phase I exists in the sample
when the region of indifference is measured.

As indicated above, the region of indifference was
investigated as a function of the purity (six nine's

versus two nine's), microstructure (single crystal

versus extruded polycrystal), and thickness (0.040 in

diam versus 0.013 in diam) of the sample. The center

of the region of indifference was reproducible within

±3 bars with respect to microstructure and thick-

ness. Surprisingly, but favorable for pressure

calibration, there was very little difference between
six nine's and two nine's purity, the center of the

region of indifference being about 10 bars higher

for the less pure sample. The widths of the region of

indifference overlapped for all samples. The most
noticeable effect of these sample characteristics

was that the width of the region of indifference

became twice as large as a function of sample
thickness from 0.040 in diam to 0.013 in diam, even
though the center of the region was the same in each
case. This width of the region was even 50 percent

larger (about 70 bars) when measured by method (2)

rather than by method (1) mentioned earlier. For
all samples except the latter, the width of the region

of indifference was about 20 bars.

The results described above have the following

relevance to hydrostatic pressure calibration with

the bismuth I-II point. First of all, the caUbration

point is reproducible at least within 50 bars regard-

less of pressure direction of measurement, propor-

tion of bismuth I in the sample (between 20 and 80

percent), and sample characteristics (within the

sample variation investigated) of purity, micro-

structure, and thickness, except for the wide region
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for very thin samples. With the exception noted,

all of these factors displayed their influence within

±25 bars of the calibration point. The influence

of these factors on the nature of the I-II transforma-

tions has been assumed to be negligent in previous

high-pressure calibration, but these factors have a

basis in phase transformation theory and in ex-

perience with high-temperature transformations

and it is comforting to have experimental verifica-

tion of the extent of their influence. These results

further indicate that the absolute reproducibility and
accuracy for pressure cahbration could be reduced
to about ±5 bars for the center of the region of

indiff'erence and to about ± 13 bars for the complete
width of the region of indifference by employing a

pressure and sample sensitivity comparable (or

better) than that in this work and if the calibration

is conducted starting with a pure single crystal

sample about 0.040 in diam and by measuring the

region of indiff^erence after the manner of Bridgman
with about 40 to 60 percent bismuth I present in

the sample.

4. The Barium l-II Point Under
Hydrostatic Pressure

Most high-pressure measurements above 40 kbar
depend upon a calibration curve based on the barium
I-II point. The importance of the point for accurate

high-pressure measurements is clearly evident,

particularly for pressures greater than 60 kbar.

The barium l-ll point has been measured [6, 7, 4, 8]

with piston-cyUnder devices and rotating free-

piston techniques and with tetrahedral apparatus

and x-ray techniques in conjunction with equation-

of-state. In view of the present uncertainty

associated with the cahbration pressure for this

transformation, the hydrostatic pressure cell

described earlier was employed to provide an inde-

pendent measurement of the barium I-II point, this

one with hydrostatic pressure and based on a cali-

brated manganin pressure gage.

Pressure is hydrostatic to the extent that the vis-

cosity of the pressure medium permits a fast relaxa-

tion time for bulk stresses. The pressure-transmit-

ting medium in the hydrostatic pressure cell was a

1 : 1 volume mixture of normal- and iso-pentane in

which pressures equalized by viscous flow through a

prescribed capillary tube in times of the order of

seconds at 50 kbar and of minutes at 60 kbar [5].

An approximate value of 10^ poise at 60 kbars has
been measured for this pressure medium [9]. The
pressures generated at the barium I-II point were
hydrostatic within this context.

The relative resistance change, Ar/ro, of a

properly seasoned manganin coil was calibrated

with pressure by means of a quadratic equation

P= ^(Ar/ro)+fi(Ar/ro)2.

whose coefficients A and B were determined by a

two-point calibration with the accepted pressures
and the measured relative resistance change of the

manganin coil for the mercury L-I [10] and bismuth
I-II [11] transformation at 25 °C. At the barium
point slow pressurization rates were employed and
adequate time for pressure equilibrium was ahowed.
The manganin relative resistance associated with
the region of indiff^erence of the barium l-II trans-

formation was measured and the pressures corres-

ponding to the width of the region of indifference

were calculated from extrapolation of the manganin
cahbration curve. Using this same experimental
and extrapolation technique, good agreement was
obtained for measurement of the thalhum II-III

cahbration point.

The width of the barium I-II region of indifference

was 2.32 kbars according to manganin. This width
is appreciably larger than the region of indifference

measured with this same technique for bismuth
I-II and thaUium Il-lll, and is probably a reflection,

at least to some extent, of the decreasing degree of

"hydrostaticity" of the pressure medium. Neverthe-

less the pentane-mixture pressure medium is

certainly more hydrostatic than the solid systems
employed for the barium I-II point, and the present

measurement of the region of indiff'erence is the

smallest reported for this transformation. According
to the usual procedure the equilibrium pressure was
determined from the center of the region of indif-

ference and was 56.27 kbars. This value is 2.5 kbars
lower than the presently accepted value of 58.8

kbars employed for high-pressure calibration.

Based on this data, therefore, either the presently

accepted equilibrium pressure for the barium I-II

transformation is high by about 2.5 kbars or the

curvature of the manganin curve changes quite

sharply between 37 and 59 kbars. Several other

recent measurements of this transformation have
indicated that this calibration point should be
lowered. Both of these measurements, 54.4 kbar

[4] and 55.0 kbar [8], are still lower than the value

obtained on the basis of manganin.

The results presented earlier for the comparison
of the bismuth I-II point in solid and liquid pressure

media have an interesting and potentially significant

implication for measurement and calibration at

the barium I-ll point. If the mechanism of the barium
I-II transformation is one of thermally activated

nucleation and growth then, analogous to phase
transformation theory and verification in the case

of bismuth I-II, in solid pressure systems one would
expect the real equilibrium point to be closer to

initiation of the barium I-II transformation than

to the average of the I-II and II-l initiation pressures,

particular in view of the very wide pressure interval

measured between these transformations in the

solid systems.
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DISCUSSION

G. S. Kell {National Research Council of Canada,
Ottawa, Canada): We measured the phase equilib-

rium between ice-I and ice-III and got a similar sort

of result in that as you increased the pressure the

transformation is rather sharp. When you lower the

pressure, you can lower the pressure by hundreds of

bars, without the transformation going back. We
explained this by saying that as you lower the pres-

sure, the low-pressure phase gives mechanical
support to the high-pressure phase, which is then at

a higher pressure than the hydrostatic pressure in

the system.

Now I ask: Could this sort of phenomen apply in

your case or, if not, is it possible that we have com-
pletely misdiagnosed our system? The phenomenon
is quite asymmetric that as you raise pressure, once
your transformation starts it runs to completion. As
you go from high to low, it can be undershot many
hundreds of bars and, if fact, perhaps you always
have high-pressure nuclei left.

J. D. Barnett {Brigham Young University, Provo,

Utah): You say you experience more consistency

going from I-II than II-I. Is this not just due to the

fact that generally you always run that transition

going I-II initially and, therefore, you have no nuclei

in the II phase at all? If you would cycle several

times in the region of transition, wouldn't you get

as much variability going either way? If you were to

go to 50 kilobar and come back, then would it be
reproducible? I wouldn't want to leave the impres-

sion that the II-I transition is inherently unreliable.

It looked as though, if you go to high enough pres-

sure or low enough pressure, and get far enough
away from the transition so that no nuclei are pres-

ent at all, it would be reproducible either way.

R. E. Hanneman {General Electric Research and
Development Center, Schenectady, New York):

Perhaps it would be instructive if we discussed the

nucleation expressions and maybe it would become
clearer as to why this hysteresis can occur on either

side, in principle. If one simply takes the normal
nucleation type expression, one obtains a pre-ex-

ponential term which I have shown to be essestiaUy

pressure-independent.' One obtains the pressure
dependence in the activation energy for the nuclea-

tion term. As you increase the super-pressure at

fixed temperature, the critical nucleus size becomes
smaller.

The main point is that these are heterogeneously
nucleated transitions and not homogeneously nu-

ated systems; in order to heterogeneously nucleate

a tetragonal phase versus an orthorhombic phase
the terms that go into the heterogeneous nucleation

barrier would be different going toward the ortho-

rhombic phase versus toward the tetragonal phase.

For instance, we have an interfacial energy term
that goes into the nucleation expression. This term
can be much more pronounced in either direction,

depending on a specific heterogeneous nuclei

present, be it the cell walls or impurities in the

system. So I would submit we cannot assume the

hysteresis would always be on the low side. It could

be either way for transitions in different materials.

One other point related to this is if you use a

homogeneous nucleation you end up with the largest

possible activation pressure or super-pressure

needed, so one might explore around and look for the

most heterogeneous nuclei that you can find to

minimize the hysteresis. In other words, you are

working with a purposely dirty system, if you will,

in terms of surface contact properties.

Another possibility would be working with a

calibration type system where the free energy driv-

ing force versus super-pressure is very large and,

therefore, as you go up just a Httle bit in super-

pressure, it will enormously decrease the activation

of free energy needed to nucleate the process.

As you run a bismuth transition at a higher tem-

perature, if this model is correct at all, then the

region should converge between hysteresis loops

' R. E. Hanneman, in Reactivity of Solids, John Wiley & Sons, Inc., New York,

edited by J. W. Mitchell et al., pp. 789-802 (1969).
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because your activation barrier for nucleation is

dropping.

S. E. Babb, Jr. {University ofOklahoma, Norman,
Oklahoma): It seems to me, if you are interested

in measuring pressures better than say a tenth of a

kilobar, that you have got all kinds of problems with

this region of indifference. It is not clear where the

center is in terms of technique. For example if I

measure a region of indifference of 70 bars, it is

not clear that my 70 overlaps your 20.

I suggest if it is at all possible, when you are

interested in pushing towards the bars, you should

avoid the solid-solid transition for calibration.

Therefore, in the 20-kilobar region, I would like to

suggest, on the basis of Kennedy's measurements,
we go to melting and gallium.

R. Roy (Pennsylvania State University): I wish to

expand on a point related to Dr. Hanneman's
remark. There is little question that the phases

formed either up or down pressure are in general

heterogeneously nucleated. However, what is

seldom considered is, the nature of the phase nucle-

ated. The way we write our equations misleads us

into thinking that each phase comes out in some
thermodynamically standard state as a single crys-

tal. Experimentally, in most cases even a single

crystal wiU transform into an array of microscopic

crystals with all kinds of residual strains, enormous
grain boundary energies and possible orientation.

(Very often so-called semiconductor-metal transi-

tions only measure the low resistivity of the grain

boundaries). Hence we actually observe the transi-

tion A —* B*. Conversely on the down pressure

cycle depending on how well annealed the sample is,

we certainly observe a reaction of the type B*—* A*
oxB-^A*.
The free energy differences between A and A*

and B and fi* may be sufficient to cause a displace-

ment of a few degrees or bars of the equilibrium

curve. (In the case of MgO, the difference can be
equal to 10 percent of the total enthalpy, see Weber
and Roy, Am J. Sci. 263, 668 (1965). Even in atmos-
pheric pressure work we do not know a transition

any better than ± 1 °C in the very best cases;

perhaps to ±0.2°C in quartz. Hence I beheve that

we are up against the limitations of the physical

realities involved and will not be able to obtain

meaningful improvement of precision or accuracy
beyond the point now reached by these authors.

F. P. Bundy {General Electric Research and
Development Center, Schenectady, New York):

I have a question on the mechanics. You showed
very, very slow increase and decrease in pressure

with time. I wondered, if you are reading the pres-

sure on the manganin gage in the fluid cell, whether
you observed any jumps? Most apparatuses where
you have solid gaskets, and so on, between the

flanges and punches will go by steps. Did you ob-

serve that? The phenomenon I am referring to is

stick-slip in the solid portion of the cell between the

punches and the gaskets, and the punch faces and
the pyrophyllite, as you increase the force on the

punches. Did you observe jumps in the cell pres-

sure due to the stick-slip phenomenon? The pres-

sure in the center of the cell doesn't necessarily

go smoothly.

AUTHORS' CLOSURE

In reply to Dr. Kell: We do not believe that the

large under-pressurization of the equilibrium

pressure required for initiation of the bismuth II-I

transformation was due to mechanical support from

the low-pressure phase to the high-pressure phase,

primarily since the under-pressurization was com-
pletely eliminated when pressure was released

before the l-II transformation was completed such

that phase I was present in the sample. Also the

II-I transformation always proceeded to completion

even after initiation instead of halting due to the

increase of pressure or mechanical support caused

by the volume change. Actually in our system we
measured a pressure increase of about 10 to 20 bars

concomitant with the transformation but completion

was attained nevertheless. Also it seems unlikely

to us that the formation of the first amounts of the

transformation could cause a higher pressure in the

matrix of the high-pressure phase equivalent to the

1.5 kbar under-pressurization observed in some
cases.

In reply to Dr. Barnett: Our data showed that the

initiation of both the I-II and II-l transformations

were a function of the microstructure of the sample

and we suggest that the II-I transformation is more
sensitive to this variable. We believe that this effect

is real, since we pressure-cycled the same sample in

the same experiment many times and for the I-II

transformation only on the first pressure cycle

there was no possibility for phase II nuclei present

in phase I. In order to insure as best we could that

only one phase was present in the sample prior to

the measurement of any initiation pressure, the

sample was generally allowed to sit overnight at a

pressure several kilobars from the equilibrium

pressure. Under these conditions it seems unlikely

that residual nuclei of the old phase remained in

the sample although, of course, we cannot be

unequivocally certain. Perhaps the II-I transforma-

tion would be more reproducible by going to the

50 kbar or some other pressure but the sample

microstructure can also be expected to be a function
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of the pressure treatment of the sample, particularly

in solid pressure media. Fortunately for pressure

calibration with the bismuth I<=^II point the results

that we presented showed that the initiation pres-

sure of the II I transformation should not be included

in the calibration technique in any case.

In reply to Dr. Hanneman: Our data were related

specifically to the bismuth I^II transformations and
we agree entirely that for other transformations the

location of the equilibrium pressure between the

initiation pressures is characteristic of the particular

material and may be toward either the high- or the

low-pressure side, it being less likely to be centered

due to the factors involved in the nucleation process

of each transformation. More detailed discussion

of the present results in terms of the thermodynamic
and kinetic aspects of phase changes will be found
in the separate publications of this work. We also

believe that nucleation of these transformations

is heterogeneous but regarding the use of impurities

to facilitate nucleation it should be mentioned that

one must be careful that the purity and the calibrant

do not form a two-component system so that the

equilibrium pressure is altered. In this context we
showed that initiation of the I-II transformation

occurred first in two nine's purity bismuth versus

six nine's purity bismuth but the important point for

calibration was that the equilibrium pressures

measured for the same samples differed by less than
10 bars and were within the experimental un-

certainty of the determinations. Also it should be
emphasized that the initiation of the bismuth I-II

transformation is important for calibration only for

pressure systems in which the equilibrium pressure,

that is the true calibration point, cannot be meas-
ured. Our data showed that, in solid pressure-

transmitting media, the initiation pressure of this

transformation with slow pressurization rates

corresponded quite closely to the equilibrium pres-

sure and provides a good calibration. We have not

yet examined bismuth I <^ II above room tempera-
ture, but at higher temperatures we also would
expect to observe a smaller pressure interval be-

tween the initiation pressures with convergence of

the initiation pressures toward the region of

indifference.

In reply to Dr. Babb: We agree in principle that a

solid-liquid transformation rather than a solid-solid

transformation would be better for calibration, since

then there would be no region of indifference and
also initiation would always occur at the equilibrium

pressure. We have just commented on the favorable
coincidence of the initiation and equihbrium pres-
sures for bismuth l-ll in sohd media and also we
extensively examined the width and reproducibility
of the region of indifference and found it to be quite
satisfactory for cahbration. We made 28 determina-
tions of the region of indifference as a function of
the purity, microstructure, and thickness of the
sample, of the pressure direction of measurement,
and of the relative proportions of the two phases
present in the sample. The standard deviation of the
center of the region of indifference for these 28
determinations was ±0.008 kbar, which appears to

be good evidence that the region of indifference
should be reproducible from laboratory to laboratory.

In reply to Dr. Roy: We agree that the region of

indifference of bismuth I «^ II is a good calibration

point even though it is a solid-solid transformation.

Although a solid-liquid transformation with zero

region of indifference is ultimately desirable, the

width of the region for bismuth l-li is smaller than
the present accuracy of absolute measurement and
also compares favorably with the precision of tem-
perature measurements if one considers from P-T
equilibrium boundaries a rough equivalent of 50 to

100 bars per degree.

In reply to Dr. Bundy: For the slow pressurization

and depressurization rates of 1 to 25 bars/min that

were employed for detection of initiation of the
transformations and for the slower rates employed
for the region of indifference measurements, jumps
in the liquid cell pressure were only observed when
the hydraulic pressure behind the rams was in-

creased externally to purposely change the cell

pressure. These jumps in the cell pressure were
probably not due to stickslip in the pyrophyllite

since there was no noticeable time delay between
the external hydraulic pumping and the response of
the manganin recording. After manganin started to

change due to the external pumping the manganin
increased smoothly and leveled off at the new value
without discrete jumps in the recorded manganin
trace except in very infrequent cases. In these

cases the jump in the trace was always less than the

increment in the pressure rate. The sensitivity of

the recording was such that pressure changes of 1

bar were clearly perceptible. Consequently for slow
pressure rates the external pressure changes
appeared to be accommodated in the pyrophyllite

part of the pressure chamber and gaskets by relaxa-

tion rather than by discrete stick-slip phenomenon.
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The Bi ni-v and IV-V equilibrium boundaries were studied by monitoring electrical resistance

changes. Extrapolation of the III-V data to 25 °C yields an equilibrium transition pressure of 77.5 ± 1.0

kilobar (kbar). The extrapolation also agrees within experimental error with the pressure of 78.2 kbar

determined in a separate experiment at 22 °C. The use of the transition as a calibration point is dis-

cussed, and a procedure for estimating the compression-stroke transition pressure from the equilibrium

transition pressure is proposed.

1. Introduction

In this paper, we describe a redetermination of

of portions of the bismth III-V and IV-V equihbrium
boundaries, with particular emphasis on a more
accurate estimation of the pressure of the bismuth
III-V transition at room temperature.

2. Experimental Procedure

End-loaded piston-cylinder apparatus as described

by Boyd and England [1] * was used, with modifica-

tions to enable it to reach higher pressures. The
pressure vessel used in this study had a core of
tungsten carbide cemented with 6 percent cobalt

(Carboloy 883). It was found that Carboloy 883
cores suffered a maximum of 0.1 percent permanent
enlargement of the bore diameter after exposure to

the highest pressures, only one-tenth of that suffered

by Carboloy 55A. The pistons, diameter 1.270 cm,
were of Carboloy 999, which contains 3 percent
cobalt binder. The phase transformations were
detected by following the electrical resistance of the
sample. The setup is shown in figure 1. Silver

chloride was used as a pressure-transmitting
medium.

There was no visible evidence of reaction between
the bismuth and silver chloride. Examination of the

samples after the runs with an electron microprobe
failed to reveal the presence of any silver in the

bismuth.

' Publication #674, Institute of Geophysics and Planetary Physics, University of

California, Los Angeles.
2 Present address; Institut fur Physikalische Chemie und Elektrochemie, Uni-

versitat Karlsruhe, 75 Karlsruhe, Kaiserstrasse 12, W. Germany.

^ Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

The resistance of the sample was followed by
passing a constant current through it and observing
the change of potential difference across it. The
potential drop across the sample was suitably biased
and displayed on one channel of a two channel
Honeywell "Electronik 16" recorder with a sensi-

tivity of 1 mV. full scale deflection. Changes of

resistance of about 0.5 percent of that due to the

III-V transition were detectable.

The transition temperature at a given compression
was found by raising the temperature until the

transition was partially completed, then reducing
the temperature until the back reaction began to

run. A dead span temperature interval in which the
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Figure 1, Apparatus and sample assembly.
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reaction does not run detectably in either direction

with both phases present was found. This tempera-
ture interval was independent of the relative amounts
of the two phases present. It ranged in size from
about 4° at the lowest temperature to about 0.5°

near the triple point for the III-V boundary, and was
0.5° for the IV-V boundary near the triple point and
less at higher temperatures. The transition temper-

ature was taken as the mid-point of this interval.

This method of locating the boundary is referred

to later as the isobaric method.
The III-IV boundary was detected, and found to be

associated with large hysteresis, confirming the

findings of Klement et al. [2]. The hysteresis was so

large that occasionally the metastable III-V boundary
was observed in the neighborhood of the III-IV-V

triple point. The III-IV reaction was sc sluggish that

no attempt was made to delineate accurately the

equilibrium boundary.
The III-V boundary was also studied at a number

of constant temperatures by cycling the pressure.

This is referred to later as the isothermal method.
The III-V boundary was also observed at room

temperature using a setup similar to that described
for the barium transition [3]. In this case the pres-

sure was varied continuously at about 0.2 kbar per
second.

In aU experiments, the pressure of the oil activat-

ing the hydrauhc ram that drove the piston was
measured with a Heise Bourdon-type gage.

3. Results and Discussion

The data from the isobaric experiments were in

the form of thermocouple emf s and oil-pressure

values for measurements taken on compression and
decompression. They were plotted and resulted in

two similar curves whose separation was the double-

valued friction. It ranged from about 1.2 kbar at the

highest temperature to 1.6 kbar near the triple point

for the IV-V boundary, and from about 1.6 kbar near
the triple point to about 3.0 kbar at the lowest tem-
perature for the III-V boundary. On the assumption
that the friction was symmetrical, the mean of com-
pression and decompression values was taken at

fixed values of thermocouple emf.

The results are plotted in figure 2. Circles repre-

sent points from the isobaric measurements, ex-

cept that points on the metastable projection of the

III-V boundary are shown as squares. Triangles de-

note points derived from the isothermal experi-

ments, and the point represented by a diamond is

the result of the room temperature experiment.

The data for the isobaric experiments, in which
the equilibrium transition temperature was meas-
ured, were fitted to polynomials of degree two
through ten using a least-squares technique with the

U.C.L.A. IBM 360 computor. For both the III-V

and IV-V boundaries the standard deviation was
essentially constant for all the polynomials of second
degree and above.
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With P in kilobars and T in ° K, the second degree
equations were

P///-. =96.343-1.4431 X 10-3^-2.0774 X 10-"^

and

P,v-y = 54.192 + 1.0425 X lO'T- 2.3354 X \Q-*T\

The standard deviations were 0.08 kbar and 0.09

kbar respectively. Combination of these expressions
gives the III-IV-V triple point coordinates as 174.6°,

54.3 kbar, which compares well, expeciaUy as to

temperature, with the result of Klement et al.

[2], 174°, 52.6 kbar.

Equations for the III-V boundary give the value for

the transition pressure at 25°, as 77.5 kbar; and pre-

dicted an abolute zero transition-pressure of 96.343
kbar. The extrapolated transition pressure at 22°

is 77.9 kbar, in good agreement with the measured
value of 78.2 kbar.

The pressure proposed for the lll-V equilibrium
boundary at 25° is 77.5 ±1.0 kbar, allowing for

absolute uncertainties in both pressure and tem-
perature determinations. The standard deviation

of the data from the expression with which they were
extrapolated is less than one-tenth of the accuracy
estimation. Previous estimates of the III-V transition

pressure at room temperature have ranged from
88 to 90 kbar by Bridgman [4] and Vereshchagin
et al. [5] to 73.8 ±1.3 kbar by Jeffery et al. [6].

The consensus of recent opinion has favored a value
near 80 kbar as reported by Klement et al. [2],

Stark and Jura [7], and Giardini and Samara [8].

Of the four [2, 4, 6, 7] papers in which the esti-

mated pressure is assumed to be the equilibrium

pressure, only two [2, 4] describe the use of appa-

ratus appropriate to measuring pressure directly.

The others [6, 7] describe techniques in which an
indirect method of calibration was used. The value

of 78 to 82 kbar suggested by Klement et al. [2] was
tentative and based on a long extrapolation of sparse

data obtained in double-stage piston-cylinder appa-

ratus, where pressure determinations are less

certain than with single-stage apparatus. Consider-

ing this, the agreement with the present result is

good. The fact that Bridgman [4] reports a value

about 10 kbar above the present value is consistent

with the finding that Bridgman overestimated the

pressures of a number of transitions frequently

used as calibration points [3, 9]. It is difficult to

discuss the values reported by the other workers
because of the indirect pressure calibration pro-

cedures [6, 7, 8] and the fact that the equilibrium

pressure was not determined in all cases [5, 8].

On room temperature compression, Bi III persists

about 2 kilobars beyond the equilibrium transition

pressure into the Bi V field. Thus in normal calibra-

tion experiments the III-V transition may actually be
detected a few kilobars above the equilibrium

value reported above.
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DISCUSSION

R. Zeto {U.S. Army Electronics Command, Fort
Monmouth, New Jersey): I would like to point out
that likely you have a systemic pressure error in the

isothermal IIl-v measurements due to the fact that,

in changing pressures and temperatures, only about
one minute was allowed to observe whether a trans-

formation occurred from one phase to the other. For
pressure calibration with sluggish transformations,

kinetic time at constant pressure should be allowed
for initiation of the transformation; otherwise the

observed initiation pressure is erroneously high.

depending on the pressure required to overcome the

kinetic barrier to nucleation.

R. E. Hanneman {General Electric Research and
Development Center, Schenectady, New York): The
nucleation theory predicts that as the temperature
rises the dead band or hysteresis region will become
narrower, and the fact that the dead band is down to

a small pressure interval at the temperature of the

triple point indicates that in this particular case

nucleation time does not have too important an
effect.
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R. Roy {Pennsylvania State University, University

Park, Pennsylvania): Referring to the bismuth
phase diagram, are you sure that the metastable
projections between III and IV are, in fact, between
the same phases? What is the evidence that the

reverse transition is between the same phases as the

transition in the forward direction? In looking into

similar systems in detail we have found tremendous
complexity. So I am asking a general question as to

whether we should all make the assumption that

when A goes to B, then B goes back to A, when in

cases like germanium and sulfur we find there are

many, many phases involved.

P. N. La Mori (Battelle Memorial Institute, Colum-
bus, Ohio): I would like to raise a question con-

AUTHORS
We agree with Dr. Zeto that our uncertainty in

determining transition temperatures and pressures

could have been further reduced by our spending
more time on the measurements. However, in our

isobaric measurements we determined the transi-

tion temperatures with both phases present, and
we believe that this procedure allowed us to approxi-

mate the equilibrium temperatures with the preci-

sion quoted. In our experiments at constant tem-
perature, the pressure was varied in increments of

V2 kbar every V2 minute or V2 kbar every
2V2 minutes. The variation of rate did not affect

the values of transition pressures obtained, and
the transition pressures determined in this way
agreed with those determined in the isobaric

experiments. The important point in this work
is that the transition pressure at 25° for the III-V

transition is shown to be near 77.5 kbar, rather than

89 kbar as previously accepted, and certainly not

as low as 73 kbar.

In reply to Dr. Roy: The evidence we have that

the metastable III-V boundary is observed just

below the III-IV-V triple-point pressure is that

on heating Bi III or cooling Bi V under these condi-

tions we observed on occasion a single resistance

change whose magnitude was equal to that of the

III-V transition at pressures above the triple point,

rather than two distinct resistance changes corre-

sponding to the III-IV (or IV-lIl) and IV-V (or v-iv)

transitions. The reason why the metastable projec-

tion of the III-V boundary may be observed at all

is that while the lll-v and V-III transitions occur
rapidly with little hysteresis under these conditions

while the III-IV and IV-III reactions are very sluggish

with large hysteresis, and the V-IV reaction is

slower than the V-III reaction and shows some hys-

cerning the pressure correction you made for lateral

expansion or dila'tion of the piston under pressure.

I have made some measurements at 40 kilobars in a

similar type system using a 6 percent cobalt pres-

sure vessel. Both by calculation from elastic con-

stants as well as from measuring compressibilities

of known materials, I found a correction of ap-

proximately 1.4 percent at 40 kilobars. In your work
at 80 kilobars I believe the correction should be at

least as large.

G. S. Kell (National Research Council of Canada,
Ottawa, Canada): You put weight in your argument
on the fact that your midpoint values with iso-

thermal and isobaric changes were the same. Do
you have a proof for this?

CLOSURE
teresis. Thus, it is possible to heat Bi III into the

stability field of IV without IV forming, and as soon

as the metastable projection of the III-V boundary

is crossed, Bi V forms. Because of the sluggishness

associated with the V-IV reaction, Bi IV does not

form at once. Similarly, rapid cooling of Bi V will

result in formation of Bi ill just below the triple

point pressure; Bi IV does not have time to form be-

fore the metastable projection of the III-V boundary

is crossed.

In reply to Dr. La Mori: We feel that the discrep-

ancy between his and our estimate of the dilation of

the piston under pressure may be due to the fact

that we used a grade of cemented tungsten carbide

containing only 3 percent cobalt. We estimated the

effective area of the piston by taking the diameter

of the piston after the experiment, and making a

correction for the elastic enlargement due to the

axial load, and for the thickness of the indium layer

between the pressure vessel wall and the piston.

The magnitude of the correction to the diameter of

the piston at 80 kbar was thus about + 0.6 percent

of the initial diameter. It is important to reaUze that

the effective diameter may be calculated by con-

sideration of the piston alone, since it is under radial

constraint by the pressure vessel, and the two are

thus separated only by the indium layer, whose
thickness may be measured.

In reply to Dr. Kell: We made the assumption that

the mechanical components of the total friction are

symmetrical for compression and decompression.
The fact that the mean of the compression and
decompression values for the isothermal and iso-

baric determinations coincide would appear to

indicate that the hysteresis for the transition itself

is also symmetrical.
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Optical Interferometry at High Pressures*

K. Vedam

Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

After a brief review of the present status of optical interferometry at high pressures, the experi-
mental technique of measuring the variation of refractive index with pressure to 7 and 14 kbars with
one- and two-stage optical pressure vessels respectively, is described along with some typical results
obtained. The need for such measurements on liquids and gases which are used as fluid pressure
media is emphasized.

1. Introduction

It is well known that optical interferometry is one
of the standard techniques by which one can make
precision measurements on the optical path length
and its variation with parameters hke temperature,
pressure, etc. This article describes a brief review
of the state of the art today in the field of optical

interferometry at high pressures.

A glance at the literature reveals that the optical

interferometric technique has been applied mainly
in the study of pressure dependence of the refrac-

tive index of gases [1],' Hquids [2, 3], and solids [4].

Since most gases and liquids solidify even at moder-
ately low pressures of the order of 5 to 10 kbars, such
measurements were perforce Umited to this range.
Even in the case of solids the upper limit of pres-

sures that can be safely employed is rather limited,

due to the inherent low strength of the optical

windows in the pressure vessel. By using a two-stage
pressure vessel with sapphire optical windows it is

possible to increase the upper limit of pressure only
to about 15 kbars— or at best to 20 kbars. Even so,

one can carry out precise, reproducible measure-
ments which often yield linear relationship between
pressure and the change in refractive index. In view
of the reasons mentioned above this article will

deal mainly with the experimental procedure and
results obtained with solids. However, with sUght
modification the same techniques and procedures
are valid for liquids and gases as well.

2. Experimental Procedure

2.1. Single-Stage Optical Pressure Vessel

Until recently most of the experiments were
conducted with a single-stage optical pressure
vessel, which is described below in detail. In

principle, the experimental method of measuring
the variation of refractive index of solids with pres-

sure involves the adaptation of Ramanchandran's
[5] interferometric technique to an optical high-

*Work supported by a grant from the National Science Foundation, Grant No.
GK-1686-X.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

pressure vessel, and is somewhat similar to the

techniques described by Cardona, Paul and Brooks
[6] and Waxier and Weir [4]. A schematic drawing
of the experimental arrangement is shown in

figure 1. The experimental sample to be studied

is suitably cut or cleaved, ground, and polished to

be nearly optically parallel, so that one can easily

observe locaUzed interference fringes of the

Newtonian type produced by interference of Ught
reflected from the two surfaces of the crystal plate.

The final dimensions of the specimens are usually

about 0.8X0.8X0.3 cm. In the case of birefringent

crystal the edges of the specimen are usually made
parallel to the principal axes. In the case of cubic
crystals as well as with isotropic sohds, no such
crystallographic orientation is necessary. The sur-

faces of the crystal were silvered by an aluminum
evaporation process so as to increase the reflectivity

and thus render the fringes sharp.

The optical pressure vessel is of conventional
design with a single-crystal alumina window whose
optically flat poUshed surface presses against a

matched optically flat steel plug as shown in

figure 1. Seals at other closures have been effected

using Daniels' armored O-rings [7]. A combination
of Buna-N Tetraseal and a flat ring of copper have
also been found to be equally effective seals at

these pressures. The c-axis of the alumina window
is parallel to the direction of propagation of hght.

The pressure-generating system employed for these

to

CAPS , ,

vy LIGHT
SOURCE

Figure 1. Schematic diagram of the experimental arrangement,
for measurement of the variation of refractive index of sclids

with pressure.
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measurements is a fairly conventional screw pump
in conjunction with a Harwood intensifies Sovasol,
an optically transparent and colorless fluid marketed
by Mobil Oil Company, was used as the fluid pres-

sure medium. The pressure was read on a 16-in-diam
100,000 psi, Heise gage which itself was calibrated
by a deadweight piston gage with an estimated
accuracy of 3 parts in 100,000.

The specimen, supported suitably in the bomb, is

illuminated with parallel light from a sodium lamp
or a low-pressure mercury arc with appropriate

filters. In the case of birefringent crystals, a sheet

polarizer assembly is kept suitably oriented, be-

tween the alumina window and the specimen. This
allows the measurements to be made with appro-

priately polarized light without any interference

from the birefringence of the optical window. The
localized interference fringes are observed in the

telemicroscope for measurements in the visible

region of the spectrum.

As the specimen is subjected to hydrostatic pres-

sure both the thickness and the refractive index of

the specimen change, with a consequent shift of the

fringes across a fiducial mark on the specimen. The
change in the refractive index An can be evaluated

from the well known interference formula

p\ — 2n-^t

where p is the number of fringes shifted, to the

initial thickness of the specimen. A? the change in

thickness of the specimen due to the applied pres-

sure, and A. the wavelength of light employed. In

actual practice the values of An and Af at each
pressure (corresponding to some known fringe shift)

are evaluated from a programmed calculation on an

IBM 360 and the value of n corrected by this An
before it is used for the computation of An' for the

additional pressure producing the next fringe shift.

Since the pressure employed is fairly large, Af the

change in the thickness of the specimen, is evalu-

ated with the help of the nonlinear theory of elastic-

ity developed by Murnaghan [8], Birch [9], and
others [10]. According to this theory, if the deforma-
tion produced by the applied stress T,j does not

involve any rotation, as is the case in our present

measurements that employ hydrostatic pressures

only, then nj can be expressed in terms of rjij as

(Barsch [11])

Tij— Cijkir}i;i + Dij, klmny]kl'nm)i, (2)

where

Dij, klmn =1/4 {Cinkl^jm + CJnkt^jm + C imkl8j„

+ Cjynkl^in ~l~ C Umn 8jk ~l~ Cjlmn^ik ~l~ C ikmn 8jl ~l~ Cjkmn Si/

— 2Cijkl8mn ~ 2C ijmn 8kl + 2C ijklmn) , (3)

and Cijki are the second-order elastic constants,

C ijklmn are the Brugger's third-order elastic con-

stants. In the case of cubic crystals and isotropic

solids under hydrostatic pressure P, eq (2) reduces
to

T= P= -{cu + 2c^2)r)

+ ^Cn + 2Ci2 — |cni — 3Cii2 — Ci23
^

T?'^ (4)

where tj the Lagrangian strain is given by

litojz^tTjzA (5)

^ 2 tl

and the usual convention of replacing the index

pairs 11, 22, ... 12 by 1, 2 ... 6 has been
adopted for the suffixes of the elastic constants.

In the case of crystals of symmetry lower than
cubic system, eq (2) reduces to second-degree equa-

tions in the principal strains and hence the strain

components cannot be determined in a closed form.

However, starting from the approximate values

obtained by neglecting the higher order terms, we
can easily compute the true values by an iterative

procedure with the help of a computer. Thus,
whenever data on third-order elastic constants are

available the foregoing equations can be used to

evaluate Af and hence An.

The third-order elastic constants are available

for only very few crystals. On the other hand,
Bridgman [12] has made extensive measurements
of the linear and volume compressibilities and their

variation with pressure of a number of solids and
fitted his data with quadratic equations of the type

^V^i = i^lLo) 1
=- a,P + b^P'^ (6)

and

^^^^{^VIVo)=-aP+ bP-\ (7)
0

Using his values of a and b, the change in the

thickness of the sample and hence the value of

An can again be evaluated.

Typical Results and Discussions

Figure 2 shows the results obtained on the varia-

tion of the refractive indices of CaF2, BaF2, and
^-PbF2 with pressure to 7 kbars for X.5893 A. While
some crystals like CaF. [16], MgO [17], a-Al203

[18], diamond [19], etc., exhibit a perfectly linear

behavior in the pressure range investigated, some
others like BaF2 [16], the alkali halides [20], vitreous

silica [21], ct-quartz [22], etc., exhibit a nonlinear

variation of the refractive index with respect to
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HYDROSTATIC PRESSURE (Kilobars)

Figure 2. Variation of the refractive indices of CaF2, BaF2, and /3-PbF2 with

hydrostatic pressure (T = 22 °C)
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Figure 3. Variation of the refractive indices of CaF2, BaF2, and /3-PbF2 with

Lagrangian strain (T = 22 °C).

pressure, particularly at high pressures. But the

same results are found to show a perfectly linear

dependence between An and the volume strain

when the latter is computed, using the nonlinear

theory of elasticity, as can be seen from figure 3 for

the case of BaF2. In the case of potassium iodide

[20], even though the total volume strain is as high

as 9 percent, the linear relation between An and
AF/Fo is stiU found to be valid. A somewhat similar

linear relationship between the isothermal volume
strain and the melting temperature of various mate-
rials has been found by Kraut and Kennedy [23],

even for strains as large as 60 percent in some cases.

However, this does not mean that such a linear rela-
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tion between the change in refractive index A.n and
the Lagrangian strain will be valid universally. On
the contrary, pronounced nonlinearity between An
and the strain is observed even at fairly low strain

levels in a and j8-ZnS, CdS, etc., for \5893 A in-

dicating the influence of the nearness of the absorp-

tion edge in these cases. This aspect has been dealt

with elsewhere [24] and will not be described further

here.

During the course of these studies, some crystals

like /3-PbF2 [16J, rubidium halides [25], etc., ex-

hibited phase transitions at high pressures and by
this interferometric technique it has been possible

to measure the variation of the refractive index of

these crystals with pressure up to the phase transi-

tion point, as in the case of the cubic form ^-PbF2
(fig. 2) which transforms irreversibly to the ortho-

rhombic modification a-PbFo at 4.8 kbars at 23 °C.

2.2. Two-Stage Optical Pressure Vessel

A two-stage optical pressure vessel shown sche-

matically in figure 4 has recently been constructed
and put into operation for pressures up to 14 kbars.

The principle of operation of this vessel is essentially

similar to the single-stage vessel described earlier

except for a few slight modifications. The two single-

crystal alumina optical windows are positioned in

such a way that at any time no one window experi-

ences a pressure difference greater than 10 kbars.

The telemicroscope used to observe the localized

fringes in the single-stage vessel (fig. 1) has been
replaced by a vidicon camera attached to a TV
monitor. Such a procedure has two distinct advan-
tages, namely (i) safety of the operating personnel
and (it) capability of carrying out these measure-
ments over a wide spectral range from ultraviolet

to the near infrared, just by changing the vidicon

tube. Since sovasol, the fluid pressure medium used
in the single-stage vessel, solidifies around 8 kbars,

plexol 262, or n- or iso-pentane is used in the two-

FlGURE 4. Schematic diagram of the experimental arrangement
with two-stage optical pressure vessel.

Stage vessel. For studies in the ultraviolet, n- or
iso-pentane are preferable over plexol 262 in view
of their increased transparency at shorter
wavelengths.

Figure 5 shows a typical result obtained on a Type
I diamond with the two-stage vessel. Above 7 kbars
the pressure was read with a manganin cell in con-

junction with a Carey Foster's Bridge. It is seen
from figure 5 a perfectly linear behavior between
An and pressure and strain is observed in the case
of diamond for A,5893 A.

2.3. Optical Interferometry as an Interpola-

tion Device in High-Pressure Techniques

From the above survey of the status of optical

interferometry at high pressures, it is seen that all

the work so far has been limited to pressure systems
which employ gas or a liquid as the pressure medium
and further only to the pressure range where pure
hydrostatic pressures can be realized. This is

understandable, for, under quasihydrostatic condi-

tions normally attained at much higher pressures,

the experimental sample (which itself acts as the

interferometer), will be subjected to shearing
stresses as well, in addition to the hydrostatic

stress component. This invariably results in an
irreversible plastic deformation of the specimen.
If interferometric measurements are carried out

under such circumstances it is doubtful whether
any meaningful physical interpretation can be made
from the results so obtained. In other words, optical

interferometry can be used as an interpolation de-

vice for precision measurement of pressure only

in the region where it is possible to develop pure
hydrostatic pressures. One possible exception may
be the use of materials like Diamond as the inter-

ferometric sample and fairly soft materials like

AgCl or NaCl for the pressure medium, so that

VOLUME STRAIN (%)

1 I I I ^ 1 1 -i—
O 5.0 lO.O IS.O

PRESSURE (Kilobars)

Figure 5. Variation of the refractive index of Type I Diamond,
with pressure (T = 22 °C).
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the permanent shear deformation under quasihydro-

static pressures can be minimized. Further, it would
be advantageous to use suitable crystallographic

orientation of the sample such that the stress-optic

birefringence introduced by the shear stresses is

either zero or negligible. In any case, further

research work in this direction is necessary before

any definite statements can be made.
Having thus limited our range to the region of

pure hydrostatic pressures attainable in the labora-

tory it will be useful to consider the relative merits

of gas, liquids, and solids on which the interfero-

metric measurements can be made to obtain an
accurate value of the pressure being used. As men-
tioned earlier, the use of solids for this purpose is

not particularly advantageous, even though one can
use a material with a perfectly linear relationship

between pressure and the parameter measured. This
is due to the fact that the elastic constants of the

material and their variation with pressure must be
known rather precisely. However, at any particular

pressure, if one is interested in small deviations or

fluctuations of the pressure the interferometer can
be used with advantage, since then one is interested

only in a slight shift of the fringes which can be
measured with precision.

Here again the use of a liquid or gas would
definitely be more advantageous. For then one can
use Fabry-Perot etalons as the interferometers, with

their easy capability of measuring fringe shifts of the

order 0.01. Furthermore, since the compressibility

of these materials is much greater than that of solids,

the change in the refractive index for them is larger

by 2 to 3 orders of magnitude. Thus, even though
the elastic constants of the etalon-spacer material

may not be known precisely, the error introduced on
this account will be negligible.

However, experimental data on the variation of

the refractive index of gases [1] and liquids [3] are

at present limited to rather low pressures of only

1 to 3 kbars. Thus, this type of measurement, par-

ticularly on such gases and liquids which are cur-

rently used as fluid pressure media, appears to be a

fruitful line of investigation.
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DISCUSSION

P. M. Bell {Geophysical Laboratory, Carnegie
Institution of Washington, Washington, D.C.):

Have you made measurements on the change in

index of refraction of glass as a function of pressure?

O. E. Jones {Sandia Laboratory Albuquerque,
New Mexico): I believe there has been some work
on change of index of refraction of glass under

shock loading, particularly by the Stanford Research
Institute people. Ahrens [J. Appl. Phys. 37 , 4758
(1966)] did this on hquids. Then last year at the

Paris meeting on high dynamic pressures I think

there were some results reported on alpha quartz.

How do your results correlate with these made,
in general, at quite a bit higher pressure levels?
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J. L. Cross {National Bureau of Standards, Wash-
ington, D.C.): In referring to the accuracy of the

pressure measurements, you mentioned the use
of a 100,000 psi Heise gage calibrated by a dead-
weight piston gage with an estimated accuracy of

3 parts in 100,000. I know of no piston gage capable
of this accuracy in this pressure range and, in any
event, I think that the dial gage could not be used
with this accuracy.

B. Vodar {Laboratoire des Hautes Pressions, Centre
National de la Recherche Scientifique, Bellevue,

France): The method of measuring pressure by
change in refractive index is presently being done
by Coulon at the University of Marseilles, at pres-

sures up to about one kilobar or possibly higher.

Voice from the floor: Presumably there is a
relationship between refractive index and volume
change that comes about because the index of
refraction is related to the polarizability of the
system and the density. Thus, in selecting materials
for pressure calibration purposes, you would want
to pick materials in which the dimensions of the
atoms, which are being polarized, are small com-
pared to the interatomic separation between atoms.
Presumably, the deviation for cadmium sulphide
occurred because the spacing between atoms
was of the same order of magnitude as the atomic
diameters.

AUTHOR'S CLOSURE

Yes, we have carried out measurements on vitre-

ous silica. In this case the refractive index increases

linearly with pressure up to about 4 kbars, thereafter

it increases nonlinearly. It is interesting to note that

at high pressures the points fall above the extrapo-

lated straight line. This is unlike the crystalline

materials where the points fall below the line. This
unique feature of glasses arises from the increase in

compressibility with pressure as the voids are

closed. We have made measurements on vitreous

silica only to 7 kbars. At higher pressures, perhaps
30 or 40 kbars, when all the voids are closed the

refractive index will increase at a slower rate with
pressure.

I have not compared my results with those ob-

served from shock loading experiments referred to

by Dr. Jones. Under shock loading conditions in

solids significant shear stresses are present, making
the conditions unhke those in my work. Further, the

shock experiments yield values under adiabatic

conditions whereas the hydrostatic measurements
yield the isothermal values. The difference between
these two can be significant, particularly in the case
of liquids.

In the choice of materials for pressure measure-
ment by refractive index change, the departure from
linearity of many substances is an important prob-

lem. In many substances the refractive index de-

creases with pressure due to the fact the polariz-

ability of the ions or the atom is itself a function of

interatomic distances. In the case of gases, where
the atoms are widely separated, you would expect

the linearity to hold good. Unfortunately it does not.

*
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Equipment for Generating Pressures up to 800 Kilobars

IVaoto Kawai

Department of Material Physics, Faculty of Engineering Science,

Osaka University, Toyonaka, Osaka, Japan

A type of high-pressure apparatus has been developed which extends considerably the range

of attainable very high static pressure. It consists basically of a sphere segmented into tapering trun-

cated pistons. Hydrostatic pressures in the sample chamber in the centre of the sphere have reached
800,000 bars (11,600,000 psi). Pressures of over one million bars should be possible with the present
technology. Some new and interesting results from high-pressure studies are described.

1. Apparatus and Method

The apparatus consists basically of a metal solid

of revolution segmented into a number of tapering
sections. The preferred and usual form is a sphere,
but a solid cyhnder has also been used [1, 2].^ The
general array of pistons is illustrated in figure 1.

The actual model for an eight-piston sphere is shown
in figure 2(a). The regions where four pistons meet
are flattened and covered by corner caps. The sec-

tions act as multipistions, directing an external

stress towards the center. The innermost apex of
each piston is truncated to form a polyhedral sample
chamber. The assembly of pistons acts as a pressure
intensifier, with the stress on an enclosed sample
being a function of the ratio of its surface area and
the outer area of the multipiston sphere.
An inter-piston separation, initially several milli-

meters, is necessary to allow inward motion of the
pistons. The pistons are separated by a distribution

of compressible spacers, usually pyrophyllite. A
sample holder is machined to surround the sample,
and fit in the central chamber (see fig. 1). It converts
the stress directed by the pistons to an approxi-

' Figures in brackets indicate the literature references at the end of this paper.

(a)

Figure 1.

Paper presented at the Symposium on Accurate Character-
ization of the High-Pressure Environment, held at the National
Bureau of Standards, Gaithersburg, Md., October 14-18, 1968.

mately hydrostatic pressure. Pyrophyllite, es-

sentially AI2O3 • 4Si02 • H2O, is favoured for such
application because of its good compressibility but
high coefficient of friction and shear strength. Such
a sample holder preserves its shape and can hold the

sample firmly to a temperature of over 2500 °C.

The metal sphere is sealed in two thick hemi-

spherical rubber shells (see fig. 3). The appropriate

wire leads, for measurement of temperature, elec-

trical resistance, etc., are circuited out, and the

sphere is rested on a support cylinder. The whole
assembly is then placed in a high-pressure oil

reservoir. In the experimental setup used, a con-

fining oil pressure of 4 kilobars may be produced in

the reservoir chamber, using a uniaxial hydraulic

press (Mitsubishi Atomic Power Industries, rated

at 2,000 tons). With this external pressure acting

on the jacketed sphere, the multipistons move
inward and exert a stress on the material in the

central sample chamber.

(a)

Tungsten Carbide

Figure 2.
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Figure 3.

Pyrophyllife Somple

Thermocouple

Graphite
Tube

Figure 4.

With increasing stress, the material in the gasket

structure between the pistons, and some of that

enclosing the sample, is extruded outward between
the pistons. As the pistons move closer together as

well as inwards, this filler becomes thinner. It

thus inhibits further outflow of the material from the

sample space, and supports the inner portion of

the pistons laterally.

The large radial pressure gradient means that

only the inner region of the pistons need be made of

the hardest, most expensive material. The flow

of the gasketing material acts to confine the pistons

laterally where the stress is most concentrated.

This discourages their destruction by compressive
failure and shear, and lateral ductile flow. No
appreciable plastic deformation has occurred on

the truncated piston inner faces, whereas this is

frequently the case at a pressure of a few hundred
kilobars for apparatus with only two opposed
pistons.

The sample space may be equipped with instru-

mentation to monitor experimental proceedings.

Figure 4 shows a sample prepared for thermal treat-

ment. It is confined in an octahedral pyrophyUite

block. A graphite heater and thermocouple are en-

closed. The electric leads are taken out between
pistons, through a seal in the rubber shell, and
through the wall of the oil reservoir. A pressure-

calibrating unit may similarly be imbedded in the

sample space. In conjunction with application of

pressure, the temperature of a sample may be
elevated to about 2,000 °C.

2. Calibration and Capability

There are many known indicators for calibrating

pressure. There are phase changes as evidenced by
an abrupt decrease in volume, sudden changes in

electrical resistance, and second-order transitions

such as resistance maxima. Some calibration points

are listed in table 1. One aspect of using resistance

measurements for calibration is that there are two

Table 1. Some transitions for calibration of
pressure, based on changes in volume (AV) and
electrical resistance (AR) at 25 °C.

Conditions Sub-
stance

Transition

pressure

(kilobars)

Abrupt AF KBr 18.0

KCl 20.2

AgCl 88

Abrupt AF and AR Bi 25.3, 26.8, 89

Tl 37

Ba 59

Abrupt AR Fe 133

Ba 144

Rb 193

GaAs 250

Resistance maximum Cs 42

Ca 375

Rb 425

CdS 465
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causes of a change in resistance. There is the effect

of pressure on the specific resistance, and the

change due to possible aheration of the specimen
shape in the sample chamber.

In experiments here, a good reproducibility has

been obtained for calibration. The caUbration

is dependent on the particular apparatus used, be-

cause of different relative sizes of sample chambers,

and on the arrangement of inter-piston spacers.

The values of extreme pressure are deduced by

extrapolation, since there is a lack of known refer-

ence points at the very high experimental pressures

obtainable. The calibration is sufficiently uniform

to make this procedure of extrapolation acceptable.

The cahbration of pressures above about 500

kilobars, however, is presently not well known.
More known pressure-dependent changes at very

high pressure are needed. These could be discon-

tinuous changes such as volume or resistance

changes, or continuous changes such as in resistivity

or solubility of one component in another.

The maximum pressure attainable depends on the

radius of the sphere and the amount of truncation

at the centre. The smaller the central sample
spacer, the higher the possible pressure. It also

apparently depends on the number of pistons in

the assemblage. It may be noted that the eight pis-

tons of the spheres described here are more than

in any of the other types of apparatus mentioned
earlier. However, in a sphere the more numerous
the pistons are, the smaller their apex angle be-

comes. This gives less support to the highly stressed

piston apex regions, and allows failure at a lower

stress. This problem is counteracted by the pressure

of some gasketing material on the inner flanks, but

optimum results are not obtained by continuing

to increase the number of pistons.

The first sphere, constructed about three years

ago, had a diameter of 8 cm. The maximum pressure

obtained with it was about 200 kilobars. The highest

operating pressure used since then has been 800
kilobars, in the large-diameter, small-sample-

chamber sphere. This does not necessarily represent

the maximum pressure feasible with these particular

pieces of apparatus.

The extension of the range of pressure in the

future will most likely require pressure inten-

sification by multi-stage apparatus. Now being

constructed is a design of multi-stage piston assem-

blages, with a central octahedral sample space.

This cascaded device is expected to allow a central

hydrostatic pressure in excess of 1 megabar (about

14,500,000 psi).

3. Conclusion

The apparatus described extends considerably the

range of possible very high static pressures. The
apparatus has significant advantages over other

existing devices. It opens the way for further re-

search into the nature and properties of substances
under great pressures. For example, the deep in-

teriors of the earth and other planetary bodies are

pressure regimes. It is estimated that conditions in

the earth vary from a pressure of 10 kilobars and
temperature of 500 °C at a depth of 20 miles beneath
the surface to a pressure of 1,700 kilobars and tem-
perature of about 3,000-4,000 °C at a depth of 1,800
miles. The latter is at the earth's solid mantle-liquid

core boundary. The presently available pressure of

800 kilobars corresponds to a depth of about 1,200

miles.

The new technology described here provides a

means for probing further into the realm of super-

pressure science. It should allow investigation of

material, properties, and phenomena as yet

unknown.
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DISCUSSION

F. P. Bundy {General Electric Research and
Development Center, Schenectady, New York):

After the sample chamber has been pressurized

to, say, 400 or 500 kilobars, and then unloaded, do
the pistons remain as integral pieces or do they
fracture?

In estimating pressures in the 200 to 400 kilobar

region, I would suggest that you try the iron cobalt

alloys. I have more faith in the linearity of these
materials than in the Unearity of cadmium sulfide.

P. N. LaMori (Battelle Memorial Institute, Colum-
bus, Ohio): What are the dimensions of your
apparatus?

F. R. Boyd, Jr. (Geophysical Laboratory, Carnegie
Institution of Washington, Washington, D.C.):

Would you tell us the grade of carbide that you used,

and whether any failures of the carbide have
occurred?
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J. D. Barnett {Brigham Young University, Provo,
Utah): I note your use of the cadmium sulfide

transition for calibration of your apparatus in the

400 kilobar range. The reliabihty of a transition

reported by Drickamer in CdS is questionable. I

have done considerable work on calibration in a

tetrahedral apparatus up to about 100 kilobars,

and have found the relationship between true pres-

sure and load to be very nonlinear, the curve be-

coming almost flat at the higher loads. We used
samples of about the size you used — around 4 mm
on an edge — and our equipment was capable of

applying a load of 600 tons force to each ram.
The pressure was monitored continuously by an
x-ray beam on sodium chloride. We find that in

apparatus of this type most of the ram force is

taken by the gaskets, with the pressure reached in

the sample being correspondingly limited.

G. Jura {University of California, Berkeley, Cali-

fornia): Concerning your high calibration point,

there has been a reported bismuth transition at 415
to 425 kilobars. Did you look for that one?

AUTHOR'S CLOSURE
In reply to Dr. Bundy: When the pressure is re-

lieved the pistons remain together, but they are

easily separated by hand.
In reply to Dr. La Mori: In our present apparatus

the outside diameter of the sphere is 250 mm, and
the diameter of the central sample chamber is 2 mm.
The area ratio is thus 15,000.

In reply to Dr. Boyd: The tungsten carbide used
for the piston contains 3 percent cobalt. We have
not experienced breakage, and we believe that this

is due to the lateral pressure of the gaskets exerted

on the pistons. This is unlike the situation with two

flat pistons (Bridgman anvils) in which relatively

large deformations take place at 200 or 300 kilobars.

Our gaskets are initially about 2 mm in thickness,

and after pressure has been applied are found to be
0.1 to 0.2 mm in thickness.

Concerning Dr. Barnett's comment: His apparatus

had only four pistons while ours had eight, which I

believe would reduce the load taken by the gaskets.

We hope to adapt the apparatus to use x-rays, and
to use sodium chloride as a reference material.

In reply to Dr. Jura: We could not find a bismuth
transition in the 400 kilobar region.
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Manganin Resistance Gages as Accurate Instruments for High-Pressure

Measurements

Yu. A. Atanov and E. M. Ivanova

All-Union Research Institute for Physical
and Radiotechnical Measurements,
Moscow Region, Mendeleevo, U.S.S.R.

The rapid development of modern science and technology foretells the wide application of high
hydrostatic pressures from 20 to 40 kbar in the near future. The measurement of pressures in this

range is usually carried out by manganin resistance gages. Many authors, however, report different

metrological characteristics of individual manganin gages and present widely differing values of

pressure coefficient, reproducibility, stability, nonlinearity, etc. There is no common basis for the selec-

tion of interpolation and extrapolation equations relating the change of resistance of a manganin gage
with the measured pressure.

In this work an attempt is made to investigate the scatter of metrological characteristics of a large

group of identical manganin gages by means of an absolute free piston gage, to find the best extrapola-

tion equation and to evaluate possible errors of pressure measurements over 15 kbar.

1. Manganin gage

The spiral-wound manganin coil is mounted in

the groove of a ceramic holder which is fixed to

the closure plug. Overall dimensions of the com-
pleted coil are 9.5 mm o.d. and 7 mm height. The
diameter of the wire is 0.08 mm. The nominal
coil resistance is 40 fl. Pieces of 0.12-mm copper
wire are welded to the ends of the manganin coil.

Soldered copper joints improve the stabiUty of

the gage.

Seventy-two gages were manufactured. The same
batch of manganin wire was used. The completed
gages were seasoned at temperature + 140 °C for at

least 80 hr with periodic dipping into the liquid

nitrogen bath (— 196 °C). Usually the high-voltage

pulse technique [1] > is used for seasoning of manga-
nin gages in our laboratory. In this method, however,

it is difficult to control precisely the temperature of

seasoning, which influences the value of the pres-

sure coefficient. In view of the fact that we tried

to minimize the scatter of gage characteristics, it

was decided to use the low-temperature seasoning.

After seasoning the average decrease of the gage
resistance was equal to 0.28 percent of the initial

value. Any additional seasoning did not change
appreciably the gage resistance. This is of course
the evidence of satisfactory seasoning.

2. Calibration of the Manganin Gages
Against the Free Piston Gage

Twenty-four gages were taken from the group for

caUbration against the 15-kbar free piston gage
having the precision of 1 part in 1,000. Four gages

' Figures in brackets indicate tlie literature references at the end of this paper.

were being placed in the pressure vessel at the same
time. The temperature was maintained at 25 ±0.1
°C. The measurements were taken every 1 kbar. To
reduce the errors associated with the setting of the

temperature equilibrium in the pressure vessel the

readings were registered 3 to 4 min after every

application of pressure. Every gage was calibrated

three or four times.

3. Pressure Coefficient of Resistance

The pressure coefficient of resistance A;= -J-^^Ro r
is one of the fundamental characteristics of man-
ganin gages. (Here /?o is the resistance of a manganin
gage at atmospheric pressure. A/? the increment of

resistance at pressure P.) The pressure coefficients

of all gages decrease with pressure over 4 kbar
(fig. 1). Below 4 kbar the behavior of pressure coef-

ficients is irregular. In most cases the values of

pressure coefficients increase with pressure in

this range, so there is the maximum in A:-versus-p

curve. Since k values decrease practically linearly

with pressure, the calibration data were analyzed
on the basis of the second-order expression
P = aAR + (3{AR)'^, where a and ft are constants

2,'hZ

2.1^0

2ie>

Paper presented at the Symposium on Accurate Characteriza-

tion of the High-Pressure Environment, held at the National
Bureau of Standards, Gaithersburg, Md., October 14-18, 1968.
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found by the least squares method. The expression

fits the calibration data with an accuracy better

than 0.1 percent. The pressure coefficient can be
written then

1

Ro {a + |3^R) oRo
my ko{l-y^R)

(1)

where ko -

aRo
is the pressure coefficient of the

gage at P^O, and y— ~^ the slope of the A-versus-

AR plot. The scatter of metrological character-

istics can be judged by the scatter of ko and y
values. For the gages calibrated the average pres-

sure coefficient A:o= 2.41-10"^ bar~\ the standard

deviation cTko being 0.013-10"^ bar~^ At higher

pressures the scatter of k values diminishes. This

is the consequence of a correlation existing between
^0 and y values of individual gages. The correspond-

ing values for y were:

7=0.00698, o-y= 0.00201.

The measured pressure can be expressed through

the pressure coefficient obtained in eq (1)

Ro k Ro ko{l-yAR) (2)

The substitution of ko and y into eq (2) gives the

approximate interpolation equation for any gage out

of the group investigated:

P=
1

Ro 2.41 • 10-6(1 -0.00698A/?)

The experimental pressures were compared with

pressures calculated from the approximate equation

for 4, 12, and 15 kbar. The mean difference is 19.6

bars (or 0.49 percent) for 4 kbar. The corresponding
values for 12 and 15 kbars are 40.2 bars (0.33 per-

cent and 45.8 bars (0.31 percent).

The pressure seasoning of the gages was carried

out in apparatus of the piston-cylinder type, per-

mitting generation of hydrostatic pressures up to

30 kbar in the 30 cm'' cell. A versus F plot is pre-

sented on figure 2. The average pressure coefficient

A'o showed no change after pressure seasoning and
the standard deviation cr/,„ decreased to 0.007 • lO"*"

bar~^ The new averaged equation for the group of

pressure-seasoned gages is

1

(3)Ro 2.41 • 10-«(l-0.00678Ai?)

The maximum difference between the experimental

K-ZOJ

pressures and calculated from eq (3) is less than 0.5

percent at pressures from 4 to 15 kbar. In other
words, eq (3) can be used for measurements of

pressures with an accuracy 0.5 percent with any
manganin gage of the group in the range from 4 to

15 kbar.

4. Intercomparison of
Manganin Gages

The intercomparison of manganin gages over 15
kbar was accomplished in the same 30 kbar hydro-

static apparatus. The measurements were carried

out at the room temperature without any tempera-
ture control. The readings of four to six gages were
registered at certain pressure in the cell. In all, 23
gages were intercompared. As a rule, after the

release of pressure the Ro values were higher than
initial ones but in a few hours they recovered
completely.

The treatment of data was as follows. The general

equation (3) was used to get the pressure values

from the readings of individual gages. The scatter

of pressure values thus obtained was then calculated

for every pressure at which the intercomparison
was carried out. The maximum deviation from the

mean value is less than 0.49 percent in the range
from 15 to 28 kbar. If the individual equations are

used for each gage which were found from the

results of calibrations against the free piston gage,

the corresponding maximum deviation wiU be 0.12

percent.

5. Conclusions

The results obtained show that the scatter of

pressure coefficients of resistance does not increase

with pressure in the range from 15 to 28 kbar. The
manganin gages exhibit very good stability and
reproducibility in this range. It goes without saying

that the intercomparison of identical resistance

gages does not permit determination of the total

error of pressure measurements over 15 kbar. The
0.12 percent deviation cited above can be associated

with the random error of measurements. Neverthe-

50



less the analysis of the pressure dependence of the

pressure coefficient k=f(P) in the range from 4 to

15 kbar makes it possible to claim rather low sys-

tematic error of pressure measurements over 30

kbar by means of extrapolation equations of the

type (3). For most practical needs, one can success-

fully use such extrapolation equations with the

constants determined from the calibration data.

Undoubtedly, for high-precision experiments one

needs to correct the constants of the extrapolation

equation on the basis of the mercury melting

pressure scale. At the moment such a comparison

is being prepared in our laboratory. We expect that

manganin gages calibrated against the mercury
melting pressure scale will have the total error less

than 1.5 percent in all the range of hydrostatic

pressures to 40 kbar.
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J. L. Cross (National Bureau of Standards,

Washington, D.C.): On the matter of the departure

from linearity of the pressure vs. resistance charac-

teristic of manganin, we have observed a second-

order effect of opposite sign from that reported by

Adams and Goranson.' I believe that this is probably

due to our use of a strain-free coil configuration.

The elimination of residual strains in the wire may
have a large effect on the linearity observed, par-

ticularly at lower pressures. This may mean that

taking our zero at atmospheric pressure may not

be the most desirable way to use manganin gages.

It may be desirable, when possible and when the

accuracy required warrants it, to base the calibra-

tion upon points taken at elevated pressures only.

A matter that hasn't received much attention is

the fact that the temperature coefficient of resistivity

of manganin is a function of pressure, so that the

temperature of the resistivity peak of manganin
increases as the pressure goes up, and in order to do
the best work with manganin, it may be necessary
to include the temperature and the resistivity

dependency on temperature in the calculations.

J. D. Barnett (Brigham Young University, Provo,

Utah): I notice that you season the manganin coils

by the Bridgman technique of cycling between
annealing temperature and liquid nitrogen. Is this

your standard procedure, or have you used other

seasoning techniques?

AUTHORS' CLOSURE

From the results of our measurements we felt

that behavior of the manganin coils below four

kilobars was not representative of the behavior

at higher pressures. Accordingly, when the data

below four kilobars was not used all the curves of

pressure coefficient of resistivity vs pressure had
slopes of the same sign.

On the matter of temperature effects on the pres-

sure coefficient of resistivity, we believe there

are too many other sources of error to justify strict

temperature control. If you work in the range from
say 20 to 40 degrees Celsius, you are on the flat

portion of the temperature dependence of resistivity,

and the error due to the instability of temperature
is very low as compared with the other sources of

instability. Of course, the flat portion of the curve

moves with the pressure, but we do not take this

into account.

In reply to Dr. Barnett: The objective of this

investigation was to obtain a large group of man-
ganin gages with very similar characteristics. We
tried to obtain a very homogeneous group of manga-
nin gages. That is why we used the Bridgman cycle.

But usually when we do the work in our lab with
standard 100-fl resistance gages, we use the very

fast technique of temperature seasoning. It is a sort

of standardized procedure in our laboratory. It

takes just a few milliseconds for the pulse from a

capacitor bank to flow through the gage. The
temperature is raised for a very small time up to

500 °C. After that, the residual stresses are elim-

inated and stability of zero resistance is very good.

We also tried to stabilize our manganin gages
subjecting them simultaneously to very high pres-

sures and high temperatures, but results were not

satisfactory.

' L. H. Adams, R. W. Goranson, and R. E. Gibson, Construction and Properties of

the Manganin Resistance Pressure Gauge, Rev. Sci. Instr. 8, No. 7, 230-235 (July 1937).
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General Electric Company
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A Critical Review of the Effect of Pressure on Thermocouple emrs

R. E. Hanneman, H. M. Strong, and F. P. Bundy

General Electric Research and Development Center, P. 0. Box 8, Schenectady, New York 12301

The effects of high pressure on the emrs of thermocouples are critically reviewed and best cur-

rently available thermocouple corrections are presented. The important factors affecting these thermo-
couple corrections are discussed, including pressure-temperature gradients, contamination, and
deformation. A novel method for simultaneous and continuous in situ measurement of pressure and
temperature within a high-pressure cell through use of dual thermocouples is briefly described.

1. Introduction

As high-pressure research has progressed in the

past few years to include more quantitative experi-

ments, the need for more accurate measurement of

temperature and pressure has become more critical.

Temperature is a particularly sensitive variable

because of its importance in numerous thermally

activated processes prevalent in materials. Since
thermocouples provide the primary means for in situ

temperature measurement in most high-pressure

experiments carried out at elevated temperatures,

the effect of pressure on the electromotive force

(emf) of thermocouples is often very important.

The central purpose of this paper is to review
critically our current knowledge of the effects of

pressure on the emf of thermoelectric materials

and to discuss the consequences of these effects on
the accurate in situ measurement of temperature
at high pressure. In addition, the concept of using

thermocouples to monitor continuously any local,

in situ pressure changes will be described.

2. Determination of Pressure Effects
on Thermoelectricity

The current theoretical understanding of thermo-
electricity and the electronic properties of metals
and alloys is inadequate to permit any reliable

quantitative calculations of the effect of pressure on
thermal emf s. Thus, we must rely upon experi-

mental determinations of the effect of pressure on
thermoelectric behavior.

2.1. Moderate Temperature-Hydrostatic
Pressure Range

The pressure effects on thermal emfs of metals
and alloys have been measured in hydrostatic sys-

tems by either single wire or composite thermo-

couple methods. Bridgman [1] ' carried out the first

measurements of the effect of pressure on thermal

emf s of various materials using the single wire

method illustrated in figure la. Bridgman's results

were accurate to within a few percent for the con-

ditions studied (0 to 12 kbar and Tz-Ti^ 100 °C).

His work included some 20 metals and alloys but

his measurements did not include most of the

thermocouple materials commonly used.

Bell, England, and Boyd [2] have recently ex-

tended the single wire hydrostatic method to meas-

' Figures in braclcets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

I (b)

Figure 1. (a) Schematic diagram of Bridgman single-wire

method for determination of pressure dependence of thermal

emf. (b) Composite thermocouple methodfor measuring pressure

effects on thermocouples.
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ure accurate corrections on Pt—Pt 10' percent Rh
and chromel-alumel thermocouples up to ~ 10

kbars and ~ 500 °C. The magnitude of the correc-

tions obtained is in reasonably good agreement with

experimental data from non-hydrostatic experi-

ments to be discussed later in this section. Since a

detailed paper by Bell et al. [2] on these results is

included in this symposium, no further discussion of

their results needs to be included here.

The related composite thermocouple method for

measuring the pressure effects on thermocouples in

a hydrostatic system is shown schematically in

figure 1(b). This method was first attempted by
Birch in 1939 over the limited pressure interval

0 to 4 kbars and for temperatures up to ~ 470 °C

[3]. Unfortunately, Birch failed to take into account

that only that part of the temperature gradient

lying within the pressurized zone can contribute to

the pressure correction of thermocouples. Thus,
his deduced corrections were substantially smaller

than the true ones. It is perhaps fair to remark that

at least several other researchers have been caught

by the same trap in attempts to measure pressure

effects on thermocouples.

Bloch and Chaisse [4] have correctly used the

composite thermocouple method to determine the

effect of pressure on copper-constantan thermo-

couples over the range 0 to 5 kbars and — 196° C to

89° C. This is the most reliable data available for

low-temperature work and it is of particular inter-

est for quantitative hydrostatic studies of magnetic
and crystaUographic transitions at low tempera-

tures. Their copper-constantan results are in excel-

lent agreement with Bridgman over the limited

mutual range of measurement. Figure 2 summarizes
some of the best current data available for thermo-

Cu/CONST

Pt /Pt 10 RH

Fe/CONST

0 Kb

5 Kb

10 Kb

10 Kb

200

"C

300 400 500

Figure 2. Compilation of some key pressure corrections for

thermocouples from hydrostatic systems.

couple corrections obtained from hydrostatic

systems.

In both of the above methods of measurement the

pressure gradient in the seal regions from Pj to Po is

essentially isothermal. In addition, the internal

temperatures Tj and To are at the same tempera-
ture as the known external baths. As the internal

pressure is increased from the atmospheric pressure

Po to a higher value, Pj, the thermal emf output of

a composite thermocouple (or single wire) will con-

tinuously deviate from its corresponding value at

Po for fixed values of Tj and To. Thus, accurate, abso-

lute corrections for pressure effects on thermo-
couples can be obtained. The available physical

properties of seal and pressure vessel materials

have restricted measurements under the above
hydrostatic circumstances to pressures less than

about 15 kbars and temperatures of no more than

several hundred degrees.

2.2. Higher Pressure-Temperature Range

2.2.1. General Problems

Thermocouple corrections at much higher pres-

sures and/or temperatures than discussed above
are often needed. Such corrections have been
achieved with much experimental difficulty using

non-hydrostatic systems but they are only approxi-

mate because of: (1) uncertainties in the absolute

pressure associated with non-hydrostatic systems
used, (2) lack of a precise knowledge of the tempera-
ture within the high-pressure region, (3) non-

isothermal pressure seals and (4) other effects in-

cluding plastic deformation. In general, the higher

the superimposed range of temperature and pres-

sure the more difficult it is to obtain reliable,

approximate corrections.

These and other problems in achieving accurate

high pressure-high temperature measurement
using thermocouples have been discussed by

Hanneman and Strong [5, 6]. They show that

chemical contamination of thermocouples can

frequently occur within high-pressure cells at ele-

vated temperatures and that this can strongly alter

the output of a thermocouple. Chromel-alumel
thermocouples are particularly susceptible to

sizable high-temperature drift with time in pyro-

phyUite cells, while Pt/Pt 10 Rh thermocouples

appear to be relatively inert.

The magnitude of the effect of plastic deformation

(such as experienced within seal regions of non-

hydrostatic cells) upon the thermal emf of Pt/Pt

10 Rh and chromel/alumel was found generally

to be within a few percent of the total pressure

correction at high pressures. As long as a high

resistance insulating tubing such as BN or alumina

surrounds thermocouple wires at high temperatures,

the electrical shunting effect on thermocouple

output should be negligible.

One of the most important modifications of
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thermocouple corrections that can vary from one
type of cell to another is the presence of temperature

gradients within a pressure gradient region. The
total pressure-induced contribution to the emf of

a thermocouple is given by the following general

expression [6]:

dQ
BP

P{T)dT (1)

where dQjdP is the pressure dependence of the

thermopower of the couple andP(T) is the pressure-

temperature function along the thermocouple

path into the cell. One can independently express

P in terms of T in eq (1) without explicitly including

the distance variable, since both follow continuous

paths simultaneously. The quantities Tj and To

are the internal couple junction temperature and
the temperature where the pressure drops to atmos-

pheric pressure, Pq, respectively. The quantity

dQIdP is, to a first approximation, a constant for

the most common thermocouple materials and
dEp is nearly proportional to a temperature shift.

Thus, the resultant decrease in temperature correc-

tion produced by a superimposed pressure-tempera-

ture gradient is approximately proportional to the

normalized area under a plot of the temperature-

pressure path of that thermocouple. Figure 3 shows
schematically a diagram of a typical temperature-

pressure path of a thermocouple (i.e.. To CD) in a

typical cell. The area ADTgTj corresponds to the

maximum theoretical correction if seals were iso-

thermal. The ratio CDTjTqIADTjTq is the fraction

of the maximum correction applicable to the par-

ticular cell and Pj, Tj, and To of interest. Correction

modifications due to the superimposed pressure-

temperature gradient effects sometimes exceed
10 percent of the total temperature correction. The
above types of gradient modifications apply to both

relative and absolute pressure-induced thermo-

couple corrections in any kind of apparatus.

Actual measurement of the approximate pressure-

temperature gradient function along a thermocouple
path within any given cell assembly is a difficult

problem. To determine approximate temperature
gradients within a cell and its seal region, thermo-
couples are placed with their junctions in a series

of positions from the center of the cell sequentially

toward the seal. The raw mv values of all thermo-
couples (and hence the approximate temperatures)
along the path are determined from experiments
where both the cell pressure and internal tempera-
ture are varied over the desired range. Care must be
taken so that the extra thermocouples do not sub-

stantially alter the temperature gradients within

the cell. The pressure gradients within a cell can
be similarly approximated by a series of localized

pressure calibrations as described earlier by
Hanneman and Strong [6]. In carrying out such
experiments, it should be borne in mind that the

local pressure within a non-hydrostatic cell at fixed

applied load can be dependent upon the temperature.

2.2.2. Methods of Determination and Results

Three major classes of measurement methods
have been utilized to evaluate absolute emf correc-

tions in non-hydrostatic systems including: (1) a

modified Bridgman method [7], (2) direct thermal
noise technique [8], and (3) indirect, self-consistent,

caUbration methods [5].

Modified Bridgman Method. A modified Bridgman
method was used in a key study by Bundy to obtain

thermocouple corrections aver a much wider
pressure range than previously studied (e.g., 0 to

72 kbars) [7]. Figure 4 illustrates schematically the

St(°c) PI/PR/

Cu /Const^

Mi/NiMo____-J

Chr/Alu

20 40

Figure 3. Schematic of the pressure-temperature profile along
a thermocouple path in typical and ideal high-pressure cells.

IDEAL ISOTHERMAL PRESSURE SEAL
ACTUAL CASE

to

Q_

TEMPERATURE

Figure 4. Schematic diagram of modified Bridgman methodfor
measuring effect of pressure on thermal emfs.

55

385-762 O - 71 - 5



HtAlING

COIL

i
I UNDER

TEST

Figure 5. Summary of pressure corrections for thermocouples

for temperature gradient of 100 °C in non-hydrostatic range by
the modified Bridgman method.

Bundy apparatus. The maximum temperature
gradient that could be achieved by this apparatus

was approximately 100 °C because of the sizable

thermal conductivity of the system between the

hot and cold pistons. It was shown that errors due
to a small temperature gradient in the seal regions

of the cell did not exceed 5 percent of the thermo-

couple corrections obtained. Bundy's results for

three common types of thermocouples are shown in

figure 5. Recent similar measurements by I.

Fujishiro, H. Mii, and S. Sakaida [9] have recently

extended the single wire alumel data of Bundy out

to 130 kbars for a 100 °C gradient with an opposed
anvil apparatus.

Getting [10] has attempted the very challenging

task of obtaining absolute thermocouple corrections

for Pt/Pt 10 Rh couples up to 40 kbars and 1000 °C
by the single wire modified Bridgman technique in a

piston cylinder apparatus. Although these experi-

ments have met with the great difficulties inherent

in obtaining accurate corrections in this high-tem-

perature range, some approximate corrections have
been deduced. While in common agreement with

nearly all workers over the range 0 to 100 °C up to

40 kbars these results do come into substantial

disagreement with other higher temperature meas-
urements to be described later as well as extrapola-

tions of the lower pressure high-temperature
measurements of Bell et al. [2].

Since aU of the methods described so far have
relied essentially upon external heat sources for

the known temperature gradients set up within the

high-pressure cell, the corresponding range of

experimental results have been mostly restricted

to rather limited temperature differentials within

the cells, especially at higher pressures. In order
to extend thermocouple corrections to the important
region of higher temperatures at high pressures,

new methods of measurement using internally

heated cells have been devised. These will be
described in the next two sections of this paper.

Thermal Noise Method. Studies using the thermal
noise method to obtain thermocouple corrections
at high pressure and temperature have recently
been initiated [8]. Briefly, this method is based on
the fundamental principle that a small pressure
independent thermal noise is present in a resistor

(or conductor). This may be given by:

{M:yiiRAf)=UT

where (A£')2 is the mean squared voltage fluc-

tuations in a conductor of resistance R measured
over the frequency interval A/, and kT is the usual
thermal energy term [11]. Experiments using this

technique are very difficult, as they require ex-

tremely low noise measurement circuitry and a low
noise ambient. Furthermore, d.c. heating is neces-
sary in internally heated high-pressure cells to hold
noise to a tolerable level. Thus, salt type cells cannot
be used because of electrolysis effects. Since the

magnitude of the mean voltage fluctuations is of

the order of a microvolt per 1000 °K, measurements
must be carefully made.
The most notable results to date at high pressure

and temperature using the thermal noise method
are those of Wentorf [8]. He has determined approxi-

mate corrections for Pt/Pt 10 Rh thermocouple up
to 1000 °C and 40 kbars. The very limited data
available are in reasonable agreement with the

absolute corrections of Hanneman and Strong [6]

obtained by a totally different approach that is

described in the next section. For example, at 40
kbars and 1000 °C the absolute correction to a Pt/Pt

10 Rh thermocouple determined by Wentorf is

+ 40 °C compared to a value of + 36 °C deduced pre-

viously by Hanneman and Strong.

Indirect Self-Consistent Methods. The most ex-

tensive approximate determinations of absolute

type pressure corrections for thermocouples have
been obtained from indirect, self-consistent meas-
urements. Until recent advances in low-noise elec-

tronics made the thermal noise technique possible,

only indirect type measurements could be used to

obtain corrections in the important range of high

temperature at high pressure.

The first major effort to determine corrections in

this region was that of Hanneman and Strong [5],

who used the following indirect methods to deduce
approximate absolute couple corrections: (1) com-
parison of experimental and thermodynamically cal-

culated results of the effect of pressure on nu-

merous single-component phase transformations and
diamond growth from metal-carbon systems, and
(2) correlation of results of high-pressure-high-

temperature diffusion data. The scheme upon which
the first class of indirect methods was carried out

can be described most simply by referring to figure

6. This figure shows schematically three independ-
ent types of phase transformation common to vari-

ous systems at high pressure. The solid curve A
with a very steep temperature-pressure transfor-
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mation boundary is typical of phase changes with a

large ratio of volume change to entropy change, such
as graphite to diamond. Solid curve B shows a trans-

formation with a relatively low slope (dT/dP), which
is typical of melting curves of metals with low vol-

umes of fusion. Solid curve C depicts a transforma-

tion with a volume decrease on going to the higher

temperature phase. Typical examples of this trans-

formation include the melting of many semiconduc-

tors and the y transformation in iron. The
dashed lines are representative of uncorrected, ex-

perimental curves that are found for each of the

types of transformations. By designing a high-

pressure cell to measure simultaneously two or

more phase transformations (of different types)

within the central isobaric pressure region, approxi-

mate thermocouple corrections to obtain a best fit

of both sets of data can be deduced. Such data pro-

vide not only the approximate temperature correc-

tions at pressure, but also the temperature co-

efficient of the internal cell pressure at fixed load.

A series of such experiments over various pressure-

temperature ranges with a variety of different ma-
terials permits a reasonable self-consistent approxi-

mation of absolute thermocouple corrections of a

given type of thermocouple. The most sensitive

types of combinations of transformations are A
versus C or B versus C, since the C transitions have
opposite slopes to the other two types. Numerous
experiments of the above types have been carried

out by Hanneman and Strong with self-consistent

results.

PRESSURE

Figure 6. Schematic diagram of various types of phase trans-

formations used in indirect determinations of thermocouple
corrections.

Figure 7. Present approximate absolute pressure corrections for PtIPt 10 Rh thermo-
couples up to 1300 °C and 50 khar for gradient factor equal to unity.
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The second independent method they used to

test the approximate magnitude of the thermocouple
corrections was based on high-pressure diffusion

experiments and theory. This approach has two
indicators of the size of the correction. The first

is to find, by a best fit of data, the appropriate

temperature correction at a given pressure and
composition which gives a constant value of activa-

tion volume for diffusion, V*, over the temperature
range of experimental data while maintaining a

linear log Dp versus l/T plot, where Dp is the dif-

fusion coefficient at a pressure P and temperature
T. The second approach is based upon a comparison
of the value V* calculated from the experimental
atmospheric and high-pressure diffusion coefficients

at fixed temperature with that obtained from experi-

ments in the hydrostatic range and from theory.

The approximate absolute thermocouple corrections

deduced from diffusion data in the iron-vanadium
and iron-nickel systems at 20 and 40 kbars are in

reasonably good agreement with those obtained up
to 1300 °C by the other methods described above
(i.e., within ~ 20 percent). Further details on the

diffusion analysis are treated in reference [5]. A
complete plot of the approximate absolute correc-

tions for Pt/Pt 10 Rh couples deduced from the

best fit of all the indirect data of Hanneman and
Strong and the thermal noise results of Wentorf
adjusted for a pressure gradient factor of unity

are presented in figure 7. Corresponding approxi-

mate absolute corrections for chromel/alumel
couples are shown in figure 8. The corrections shown
should be added to the uncorrected temperature.

For comparison the Getting-Kennedy corrections

[10] are shown as dashed lines in figures 7 and 8.

3. Effects of Pressure on the Relative

Differences Between Various Ther-
mocouples

The relative correction differences due to

pressure-induced effects on thermocouples can be
deduced by simply subtracting the known absolute

Figure 9. Approximate relative corrections between PtjPt 10 Rh
and chromeljalumel thermocouples up to 1000 °C at 20 and 40
kbar intervals. Gradient factor equal to unity.

corrections of two different types of thermocouples
at a given temperature and pressure. In the limited

pressure-temperature region where hydrostatic

measurements have been made and for small

thermal gradient regions (i.e., Ar ^ 100 °C) this

yields satisfactory relative corrections because the

absolute corrections are fairly reliable.

In the more uncertain high-pressure—high-

temperature region, more accurate relative cor-

rection measurements can be obtained by direct

experiments than can be deduced from absolute

data. Such experiments have been reported for a

direct comparison of chromel-alumel versus Pt/Pt

10 Rh couples by Hanneman and Strong [6] and
by Peters and Ryan [12].

In order to obtain direct relative data at high

temperature, two different types of thermocouples
are brought into an internally heated high-pressure

cell via equivalent pressure-temperature paths.

Their junctions are both placed at the same position

(i.e., pressure and temperature) and the wires are

insulated throughout the cell. When the emf out-

puts of the two different thermocouples are referred

to standard thermocouple tables, there is an ap-

parent temperature discrepancy which increases

with pressure at a given temperature. These data,

together with a knowledge of the approximate cell

pressure and internal gradients, permit a good
approximation of relative corrections.

The best approximate relative corrections (for
|

a pressure-temperature gradient correction factor

of unity) for Pt/Pt 10 Rh versus chrome!/alumel
couples are shown in figure 9. The estimated ac-

curacy of these relative measurements is approxi-

mately ± 10 percent. Since these data are more
reliable than any absolute corrections at high tem-

peratures, any absolute data obtained on both types

of couples must be in approximate agreement with

the data in figure 9 if it is correct. Limited additional
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relative correction data has been published for

Pt/Pt 13 Rh and iron/constantan [5].

More extensive measurements of relative thermo-

couple corrections, especially at higher tempera-

tures and pressures and for other types of couples,

are needed. These data will be particularly helpful

for the direct quantitative comparison of the

published results of various workers on the same
physical phenomena who have used different

thermocouples. In this regard, it is urged that

workers evaluate the pressure-temperature gradient

effects in their cells and beware of the other sources

of errors from thermocouple measurements de-

scribed earlier in this paper.

4. Discussion and Conclusions of
Absolute Corrections

The present theoretical knowledge of thermo-
electricity and electronic properties of metals is

insufficient to predict quantitatively the pressure
dependences of thermocouples. We have shown
that quantitative measurements of corrections for

the pressure-induced deviations of thermocouples
are very difficult in the high-pressure-high-iempera-
ture regime.

The most accurate corrections to date have been
obtained in the range —200 to several hundred
degrees centigrade and 0 to 15 kbars where hydro-

static cells can be used and deformation, contamina-
tion, and other problems can be minimized. A
summary of some of the key results is shown in

figure 2. Many of the results in this region are

accurate to within a few percent.

Outside of the hydrostatic pressure range, the

next most reliable data to date have been obtained
from the modified Bridgman technique within a

limited temperature range (0 to 100 °C). These
results are generally believed to have an accuracy
of better than 10 percent. Some of these by data
are shown in figure 5.

The uncertainties in absolute corrections rise

substantially in the range up to 50 kbars and 1300 °C
where approximate corrections have been proposed.
Nearly all of the indirect and thermal noise data

[5, 6, 8] are compatible with the corrections given

in figures 7 and 8. In addition, the magnitude of the

corrections are compatible with extrapolations from
lower pressure data achieved from direct deter-

minations [2, 7].

As shown in figure 7, the Getting-Kennedy correc-

tions [10] determined by the modified Bridgman
approach do deviate substantially at higher tempera-
tures from the other methods mentioned above.
Although these corrections are of the same sign and
magnitude as those from work in this laboratory,

they are smaller by nearly one-half at the highest

temperatures mutually examined. Possible inherent
errors in the Getting-Kennedy approach would tend
to make their corrections as lower limit values.

whereas the thermal noise method would tend to

give upper limit values. Thus, the actual absolute

corrections probably lie somewhere in between the

solid and dashed curves in figures 7 and 8.

Until more quantitative measurements can be
carried out, it appears that one could obtain reason-

able but approximate absolute corrections by
averaging between the dashed and solid lines given

in figures 7 and 8, and applying liberal error limits

which span both sets of corrections. More accurate
and complete measurements are clearly needed
for better absolute corrections, but such tests will

be very difficult.

5. Simultaneous and Continuous in
situ Measurement of Pressure and
Temperature

One of the major problems in research and
applied technology in the area of high pressure has
been the lack of an accurate, reliable method for

continuous and simultaneous in situ measurement
of high pressures and temperatures. Since accurate

thermodynamic or kinetic studies under high

pressure require a means of independently evaluat-

ing the true pressure and temperature at the sample,
preliminary work in our laboratory was undertaken
to develop a reliable, convenient method to accom-
plish this requirement.

Pressure measurement in most previous high-

pressure investigations has relied completely on
precalibration methods, which use first-order phase
transformations of standard materials at room tem-
perature to determine the relation between external

press load and internal cell pressure for a given

apparatus and cell geometry. In some cases approxi-

mate continuous measurements of pressure have
been possible by use of resistance measurement of

manganin or similar wire, but this is limited to

< 250 °C and is sensitive to several variables. For
various reasons, the apparent pressure based upon
press load in a subsequent experiment often does
not indicate the true internal cell pressure. For
example, the pressure within a high-pressure cell

varies as a function of temperature and time due to

thermal expansion, phase changes in the sample
holder or specimen, gasket leakage, and relaxation

of stresses in the apparatus. Concurrently, the

measurement of the true temperature in an inter-

nally-heated, high-pressure cell requires a knowledge
of the effect of pressure on the electromotive force

of thermocouples as described above.

By ulilizing two different thermocouples which
have differing, known pressure dependences, one
can uniquely monitor continuously both pressure

and temperature within any high-pressure cell. In

this method the junctions of two different thermo-

couples are placed together at the desired location in

a high-pressure cell and both couples are sur-

rounded by insulating material leading out of the
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Figure 10. Direct mv versus mv comparison of two different thermocouples for in situ

pressure determination within a high-pressure cell.
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Figure 11. Pressure effect on calibration ofAu/Pt 40 Rh
thermocouples for temperature determination.

cell to cold junctions. These leads are then con-

nected to sensitive potentiometers or other devices

for accurately reading the emf output of both

thermocouples. Such measurements require choice

of thermocouple materials wrhich m\\ not be sus-

ceptible to chemical contamination drift. Figures 10

and 11 show the approximate pressure effects for

Pt 40 Rh/Pt 10 Rh and Au/Pt 40 Rh thermocouples
which have been used for simultaneous in situ

measurements of pressure and temperature. The
concurrent placement of both thermocouple emfs
on figure 10 fixes the pressure. Then, by reference to

a more detailed graph similar to figure 11, the cor-

responding temperature can be directly determined.

Such determinations have absolute accuracies only

as good as the absolute corrections available for

thermocouples. However, relative changes of pres-

sure within a cell during a given experiment can
be seen to less than a kilobar under optimum
circumstances [13].
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DISCUSSION

D. B. McWhan (Bell Telephone Laboratories,

Murray Hill, New Jersey): Are there any data on
pressure corrections for thermocouples using some
of the newer materials, such as chromel versus

gold-iron, at low temperatures? This thermocouple
has a sensitivity of 15 fxY per degree at 4 K.

M. C. Krupka (Los Alamos Scientific Laboratory,

University of California, Los Alamos, New Mexico):

Do you have any information in the relative correc-

tion of an increased rhodium content couple — for

example a Pt-Pt 13 percent Rh couple?

I. Getting (Institute of Geophysics and Planetary
Physics, University of California, Los Angeles,

California): In some work I did on platinum-
rhodium alloys other than platinum 10 percent

rhodium, I found that the absolute correction

increases shghtly as the rhodium content increases.

Within the uncertainties of our measurements, the

correction could be taken to increase linearly with

the rhodium content.

G. C. Kennedy (Institute of Geophysics and
Planetary Physics, University of California, Los
Angeles, California): In applying two thermocouples
to measurement of the pressure by means of the

differences in pressure effect on thermo-emf,
wouldn't the most sensitive pressure-measuring
device be obtained by using a couple made of a

metal of minimum compressibility versus a metal of

maximum compressibility?

I'd hke to comment on the indirect method of

measuring the pressure correction for a thermo-
couple. A number of years ago you published a

suggestion as to the size of the correction, and
the basis of it was the difference between the

computed thermodynamic diffusion slope of a
boundary and the measured slope. One of the

boundaries used was the germanium melting curves
that we published. We had also just done eight other
melting curves. For over half of our curves, a com-
parison of the thermodynamic computed slopes

versus measured slopes would suggest a thermo-
couple correction in an opposite direction. My view
is that the uncertainties of the thermodynamic
parameters are such that from data of this sort

Uttle can be said about thermocouple corrections.

Finally, in very careful experiments with well-

characterized materials and thermodynamic
parameters, I believe that useful, approximate
thermocouple corrections can be obtained by com-
parison of experiments and calculation. This is

demonstrated by comparing our previous results

with those from "direct" methods reported at this

Conference.

H. Tracy Hall (Brigham Young University, Provo,

Utah): In some multi-anvil devices it is convenient
to make a thermocouple lead connection directly to

an anvil rather than to bring the wire out. This is

particularly true in a cubic press. Now, in a cubic

type of press with an internal heater containing a

charge of good thermal conductivity — diamond
powder or something like that — leads have been
brought out to the anvil surface and then enfolded
in a metal, nickel in one instance, so that the contact

is between platinum-platinum rhodium wire and
nickel. Then the nickel is in contact with the tung-

sten-carbide (6 percent cobalt) anvil.

If you make a temperature calibration in the usual

way by controlling power input (say watts of electric

power) versus thermocouple temperature taken

from the tables, you will obtain a certain curve using

these nickel tabs. Now if the ends of the thermo-

couple wire are enfolded in, say, copper tabs, the

result will be different. And I suppose if you pick

some other metal it would still be different.

Because of the high symmetry of this system, it

would appear that pressure gradients ought to be
pretty much the same in all cases, and the tempera-
ture at the anvil surfaces ought to be about the same.
At 1500 degrees there is about a 40-deg C differ-

ence between results using copper and using nickel.

The difference increases as you go to higher and
higher temperatures. At 400 or 500 degrees, there's

not much difference. At 1000 degrees, there may
be 20 deg C difference. Wherein would you say lies

the cause of this discrepancy? What effect is there

that gives you those differences? What would be
the basis for choosing a metal for the tabs so that

the temperature correction is very small?

A. Taylor (Westinghouse Research Laboratory,

Pittsburgh, Pennsylvania): I'm wondering whether
we are really looking at the problem from the right

point of view. Rather than saying what the tempera-
ture is at a particular pressure, should we not state

what the pressure is at a particular temperature?
If, from your curves, the temperature is approxi-

mately 40 degrees off at 1500 degrees, that is only a

relatively small percentage error in the temperature.

But at that temperature, a nominal pressure of about
60 kilobars in the tetrahedral anvil press can, in a

matter of a few seconds, drop from let's say 60
kilobars down to only 40 kilobars, and you might
never know it from the outside conditions.

So the question reaUy is: How can we measure
the pressure at these high temperatures rather than
the temperature at the high pressures?
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AUTHORS' CLOSURE

In reply to the question by McWhan: I believe that

data on copper-constantan from — 200 °C to room
temperature is significantly better than any other in

this temperature range. Thus, determination of the

relative correction between copper-constantan and
other couples would be worthwhile. No direct data

on pressure corrections of chromel versus gold-iron

couples at cryogenic temperatures has been ob-

tained to my knowledge.
In reply to Dr. Krupka: The effect of increased

rhodium content in Pt-PtRh couples is to increase

the correction shghtly on going from 10 to 13 percent

Rh. Some explicit results are given in our 1965

paper (ref. 5).

In reply to Dr. Kennedy: Selection of metals of

high and low compressibility for pressure-measuring
thermocouples would not necessarily give the great-

est sensitivity.

The thermopower, Q, of a material can be given

by:*

^ r a In ^
,
a In \ 1

where k, T, and e have their usual meanings and A
and A. are the effective area of the Fermi surface and
the electron mean face path, respectively, evalu-

ated at the Fermi energy cf . Although the pressure
dependences of A and X are not known sufficiently

weU in real metals and alloys to predict the effect of

pressure on thermocouples, it is instructive to esti-

mate the order of magnitude of the effect.

Applying the free electron approximations to the

terms in A and A. and differentiating with respect to

pressure, it foUows that:

dQ ttW )8— ~ ot
—

dP e €f

where a is factor of the order of unity, /3 is the iso-

thermal compressibility, and the other terms have
the previously stated meanings. Substituting in

typical values of 1,000 °K, ft of the order of
10"^- to 10"'^ cm^/dyne, and ~ few eV and using

equation (1) in the text, emf corrections of the order

of 0.1 to 1 mV are indicated at 50 kbar, for example,
for a given metal. Thus the total expected pressure

dependence of a thermocouple should be of this

magnitude or smaller, since it wiU arise from differ-

ences in (jS/e/r) of the two materials used.

In the situation described by Dr. HaU, if the

pressures are really about the same in the two cases,

and if there is not a significant temperature gradient

through the metal, then one is forced to assume that

the difference between results with nickel tabs and
copper tabs is due to stress effect, deformation, or

something of this sort. Chemical contamination
could be also rather important. A further key to

the cause of the discrepancy might be obtained by
studying the effect of copper and of nickel tabs as a

function of time.

In choosing materials for the tabs, I would favor

materials which are as chemically inert as possible

and which keep the temperature-pressure gradients

as smaU as possible.

In reply to Dr. Taylor s question: I would submit
that for quantitative work, in situ measurement of

both pressure and temperature are important. That
is why I presented the dual thermocouple idea in

my paper. Thus an in situ pressure drop would be
immediately noticeable.

In addition to phase diagram definition under
pressure which seems to have been of most past

concern, it's clear to me that thermaUy activated

processes including nucleation, growth, diffusion,

and other kinetic processes are going to require

increasingly accurate in situ characterization of

both temperature and pressure. In these latter

processes an error of 40 °C in 1,000 °C to 1,500 °C

would generally lead to much greater errors than,

say, 10 kbars out of 50 kbars.

*J. M. Ziman, Electrons and Photons (Oxford Univ. Pitss, London, 196U).
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The Effect of Pressure on the Thermal Emf of the Platinum/Platinum 10
Percent Rhodium Thermocouple

P. M. Bell, F. R. Boyd, Jr., and J. L. England

Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008

Temperature in high-pressure experiments is

usually measured by thermocouples, which are
themselves subjected to pressure. The effects of
pressure on the thermoelectric properties of these
thermocouples are significant in many experiments,
and they need to be quantitatively understood. This
problem has become acute with the development of

solid-media pressure apparatus capable of operating
at temperatures up to 2,000 °C and pressures of
100 kbar or more. Corrections for the effects of
pressure on thermal emf may be as much as 50
to 100 degrees under these extreme conditions.
Other papers in this volume discuss the evaluation
of these effects by experiments with solid pressure
cells in the pressure range above 10 kbar (Hanne-
man. Strong, and Bundy, p. 53; Getting and
Kennedy, p. 77). The purpose of the present
study has been to provide more extended data for

the region below 10 kbar, which can be explored
with an externally heated gas apparatus. Measure-
ments that can be made with gas apparatus are
limited in range, but they are inherently more
accurate than measurements with solid-media
apparatus. It is hoped that the data obtained in

the present study will provide a useful base for the
solid-media experimentation.

Early measurements with gas apparatus on the

effects of pressure on thermal emf by Bridgman
(1918) were remarkably precise but extended to

only 100 °C and 12 kbar. Unfortunately Bridgman
did not study most of the alloys that are currently

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14^18, 1968.

used for thermocouples in high-temperature, high-

pressure experiments. He formed a thermocouple
by pressurizing part of a continuous homogeneous
wire. One pressure seal was heated, while the other

was cooled to 0 °C for reference. In such an experi-

ment—now called a "single-wire experiment"— the

absolute pressure effect is measured directly for a

given element or alloy.

Birch (1939) has provided data on chromel/
alumel and platinum/platinuni 10 percent rhodium
thermocouples to 580 °C and 4 kbar. He subjected

these thermocouples to nitrogen pressure in steel

tubes immersed in a lead bath and compared their

emf readings with those from reference thermo-
couples at the same temperature but at atmospheric
pressure. As discussed by Bundy (1961), Birch did

not cool the pressure seal ii> his apparatus to 0 °C,

and hence he did not observe a maximum or

"absolute" effect.

In the present study a platinum/platinum 10

percent rhodium thermocouple was subjected to

nitrogen pressure in a tube, one end of which was
heated by an electrical furnace while the other end
was cooled to 0 °C in an ice bath (fig. 1). The emf
of the pressurized thermocouple was read as a

function of pressure relative to a second platinum/

platinum 10 percent rhodium thermocouple heated
to the same temperature but held at atmospheric
pressure. The data obtained are "absolute" in that

they are tied to a 0 °C reference. Most modern high-

pressure apparatus does not have pressure seals

at 0 °C, and practical applications of these data

will generally require correction for the temperature
of the pressure seal.

furnace

to Heise

Bourdon-tube
gauge

standard cone T

-eal
'

to Manganin \

pressure gauge \

reference junctions

\ stirred ice batti (0°C)

copper leads to

potentiometer -

null detector

standard tiigti pressure seal

ttiermocouple to be

tested under pressure

Figure 1. Gas apparatus used for the measurement of the effect of pressure on the thermal emf of the platinumjplatinum 10 percent
rhodium thermocouple.

The pressure medium used was nitrogen.
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1. Apparatus

The apparatus is designed for the range 1000 °C
and 13 kbar, but most of the experiments reported

here were made in the range up to 5 kbar. The
pressure vessel (Rene 41) containing the pressurized

thermocouple was heated in an external electric

furnace constructed to have a thermal gradient less

than 17in at the hot spot and capable of precise

control. The monitor thermocouple at atmospheric
pressure was located in a small cavity in the outside

end of the pressure vessel. Leads from both thermo-
couples were brought into a stirred ice bath in which
the pressure seal was suspended. Two additional

thermocouples were employed, one in the ice bath
itself and another on the high-pressure side of the

cold pressure seal. Emf differences between
pressurized and unpressurized thermocouples were
measured with a potentiometer-nuU detector com-
bination, which can be read to 1 X 10~^ V.

Readings were taken at constant temperature at

intervals of pressure up to 10 kbar. The temperature
difference between the hot junctions of the pressur-

ized thermocouple and the monitor thermocouple
was reduced to about 0.1 °C. The Ar observed at

sjDqo|!)| 'sjnssajd

Figure 2. Measurements of the change in emf (negative) of a
platinumlplatinum 10 percent rhodium thermocouple with

pressure.

The cold junction and pressure seal were at 0 °C. This correction must be added to

the observed emf of a pressurized couple to give the true temperature.

atmospheric pressure at the start of an experiment
drifts slowly during the experiment, apparently

owing to the large increase in conductivity with

pressure of the gas. Thus observed Ar readings

required a small correction for shift of the base.

Data were not accepted if the potential difference

of the pressurized and unpressurized cold-junction

thermocouples indicated a temperature difference

of greater than 0.01 °C.

2. Results

Pressure decreases the thermal emf of a platinum/

platinum 10 percent rhodium thermocouple, re-

quiring a positive correction to the reading of the

thermocouple for some pressure above atmospheric.

This effect is not linear with pressure or tempera-
ture, but its magnitude increases with both pressure

and temperature.

Figure 2 shows the experimental data in a series

of isotherms ranging up to 509 °C, and these data

are plotted again in figure 3 as isobars. Some of the

points (fig. 2) were repeated in a series of heating

and cooling cycles and were found to be reproduci-

ble to better than a microvolt. The maximum effect

T

Temperature, °C

Figure 3. Measurements in fig. 2 plotted as isobars.

This correction must be added to the observed emf of a pressurized couple to give

the true temperature.

.80

.60

.40
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observed was 20 /xV at 509 °C and 3.5 kbar, cor-

responding to an apparent AT" of 2 °C. Birch's

determination (op. cit., fig. 2) shows about 13 fx\
at this same pressure and temperature. The differ-

ence between present resuhs and Birch's measure-
ment is most likely due to the fact that the pressure

seal was cooled to 0 °C in our experiment but was
at some temperature above room temperature in

his determination. Present results agree in sign and
are roughly comparable in magnitude to results

extrapolated from solid-media experiments at much
higher pressures. Our results must be extended to

higher pressures and temperatures, however, before

meaningful quantitative comparisons with the

sohd-media data can be made.
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Pressure Dependence of the Thermoelectric Power of Thermocouple
Materials

Paul J. Freud and Phillip N. La Mori

Battelle Memorial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Single-wire measurements of the pressure dependence of the thermoelectric power were made
hydrostatically to 8 kbar for chromel, alumel, copper, and constantan and in a piston cylinder apparatus

to 40 kbar for chromel, alumel, platinum, and platinum 10 percent rhodium. The temperature interval

covered for the hydrostatic measurements was — 195°C to 290 °C and for the piston cylinder measure-
ments it was 30 °C to 380 °C. A detailed discussion is given of the pressure-temperature distribution

within the piston cylinder cell. Pressure emf values are presented with an uncertainty of ± 7 percent.

1. Introduction

Measurements of the pressure dependence of the

thermoelectric power (T.E.P.) have been made on a

number of thermocouple materials using the single-

wire technique. The objective of this work was to

establish a pressure and temperature range in which
the pressure dependence of the T.E.P. could be
determined to an accuracy required for normal
thermocouple use. Therefore the main emphasis of

this study was to define the pressure and tempera-
ture conditions of the high-pressure ceU rather than
to push for the extremes of pressure-temperature
conditions. A number of high-pressure cell configu-

rations were investigated and calibrated before we
arrived at a configuration using solid AgCl for the

main pressure column. The temperature distribu-

tion within the high-pressure cell was determined
carefully, since the calculation of the pressure de-

pendence of the T.E.P. is crucially dependent upon
how the pressure and temperature are distributed

within the measuring cell.

We believe that it is valuable to restate the con-

cepts involved with the use of thermocouples under
high-pressure conditions so that a clear understand-
ing of the important parameters is established. The
simplest way to look at thermal emf's is to imagine
the thermocouple circuit as divided up into small

segments each with a particular Ar across it. An
emf will be induced across the segment which is pro-

portional to Ar. The proportionality constant is the

thermoelectric power (a) of the material being used.

The total thermal emf of the circuit is determined by
summing all the emf s from each segment. Thus,

V='2^'^Ti^j>a{T)dT.
(1)

Figure la is a schematic diagram of a typical

thermocouple circuit used in a high-pressure
environment. The circuit consists of two dissimilar

wires which go from ambient pressure through

Paper presented at the Symposium on Accurate Characterization
of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

pressure seals into the high-pressure and high-

temperature environment. The seal is represented
by the crosshatched region, and in this region the

pressure increases from the ambient pressure to

the high interior pressure. For this analysis it is

assumed that the sealing region is isothermal. The
errors introduced when this assumption is not valid

are discussed later.

The temperatures of significance in this circuit

are the reference temperature To, the temperature
of the seal region, Ti, and the junction temperature,
T2.

The T.E.P. of a given material is in general a

function of temperature and pressure and can be
written as the sum of a pressure-independent term
and a pressure-dependent term:

aa = (Xa{T) + ^aaip,T). (2)

The subscript refers to the particular material in

question. The first term is the T.E.P. of the material

at zero pressure, and the second is the change in

the T.E.P. due to pressure. The second term is also

a function of temperature. If we integrate the emf
around the circuit shown in figure la, the following

P = 0

i
; H 1g ti pressure

; |\^

Pi:;:;

Wire a ., ^ Wire b
•Vob •

To

High pressure . 1.

Wire o Wire 0

To

Figure 1. (a) Schematic diagram of thermocouple circuit for
high-pressure apparatus.

(b) Schematic diagram of high-pressure single-wire

circuit.
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expression results:

r fTi rT2

Vab--<badT=\ a„iT)dT+\ [cxaiT)

+ A«„(p„ T)]dT+ K(r)

+ ^a,{pi,T)]dT+
\

a„{T)dT.
JT,

This reduces to the following when the pressure-

independent and pressure-dependent terms are

separated:

Va, = r [aaiT) - at{T)]dT

+ r' [Aaaipu T) - Amipi, T)]dT. (3)
jTi

The first term is just the emf, Vq, which would be
induced in the circuit at zero pressure (the value
tabulated for the temperature interval Tq^Tz),
and the second term is the additional emf induced
due to the wires being pressurized to p,. Note that

the temperature interval over which the pressure-

dependent term is integrated is the seal temperature
to junction temperature.

To measure the change in the T.E.P. as a function

of pressure, the circuit in figure lb can be employed.
This circuit is used for the so-called' single-wire

experiment, an accurate means of measuring the

T.E.P. pressure dependence. In this circuit, a single

wire is brought into a high-pressure vessel through
an isothermal pressure seal at a temperature 7*1

and is brought out through a similar seal at a

temperature T2. The induced voltage, using eqs

(1) and (2), is the following:

V{pi) = r aa{T)dT+ [(Xa{r)
JTo JTI

fTo
+ Aa„(p„ T)]dT + aa{T)dT

JTi

= Aaaipu T)dT. (4)
jTi

The pressure correction term for a thermocouple
circuit, the second term of eq (3), can therefore be
determined by performing the single-wire experi-

ment for each material of the thermocouple pair.

The problem of simultaneous pressure gradient

and temperature gradient which normally exists in a

pressure seal and throughout a solid-media device

will modify this treatment. Equation (4) is still valid

but the variation of Aaip, T) has to be taken into

account, since the pressure is not constant over the

temperature interval within the cell. Hanneman and

Strong [1] ' have provided a means of approximating
the amount of uncertainty involved when the simul-

taneous gradients exist. They approximate Aq:(p, 7")

where ^ is a constant and piT) is the internal pres-

sure written in terms of the temperature. This is

possible since T and p are both functions of posi-

tion within the cell and therefore one can be written

as a function of the other. To determine the uncer-

tainty associated with this problem, one has to

determine the function piT). In other words the

pressure and temperature gradients within the high-

pressure cell have to be established. Equation (4)

reduces to

V=A j%iT)dT, (5)

which is a constant times the area under the curve

piT) versus T. The error introduced by assuming no
pressure gradients where there are temperature

gradients is just the difference in area between the

actual p ( T) versus T curve and the area calculated

if it is assumed that p= Pmax. from Ti to T2 and is

zero everywhere else.

We have made a detailed analysis of the pressure

and temperature distribution in our piston cylinder

cell and have established the piT) relation so that

the area is determined to an accuracy of 2 percent.

2. Experimental Procedure
2.1. Hydrostatic Measurements

Single-wire measurements were carried out both
in a hydrostatic gas apparatus to 8 kbar, and in a
piston-cylinder solid-media apparatus to 40 kbar. A
schematic diagram of the hydrostatic apparatus is

given in figure 2. The materials measured were
standard 36-gage teflon-coated thermocouple wire.

The wires were threaded through the 0.6-mm-diam.
bore of a stainless steel high-pressure tubing. One
end was brought out to ambient pressure through a

frozen gas U-tube seal which is immersed in liquid

nitrogen. Argon, which is used as the pressure
medium, is solid in liquid nitrogen and therefore acts

as the pressure seal around the wires coming out of

the U-tube. The temperature of this seal is there-

fore fixed at 78 °K.

The high-temperature seal is made by silver

soldering the thermocouple wire a small distance

into the high-pressure tubing. Since this region of

tubing is maintained strictly isothermal, no error in

the thermal emf is produced by shorting out this

section of the thermocouple wire with another ma-
terial. The high-pressure tubing in this region is

• surrounded with a tight-fitting, thick-waUed copper
cylinder which insures that no temperature gradi-

ents will exist across the silver solder seal. The
thermocouple circuit is grounded at this point while

the rest of the circuit and the potentiometer are

insulated from ground.

' Figures in brackets indicate the literature references at the end of this paper.
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To H.P argon

Thermocouple leads

frozen gas

lead out

Pressure transducer

Copper cylinder

(15cm longx0.5cm I.D.x|.25

cm O.D.

)

Silver solder plug around

thermocouple wires

( I cm long )

Figure 2. Hydrostatic pressure apparatus for measuring single-wire high-pressure

thermal emf.

Cold thermocouple Sample lead

Tungsten carbide

piston

Ceramic insuloting tube -/

Hot thermocouple Sample lead

Figure 3. Piston cylinder high-pressure cell for measuring
single-wire high-pressure thermal emf.

Pressure was generated with a three-stage intensi-

fier system and was measured with a strain gage

transducer which had been calibrated against a

manganin coil. The maximum temperature was
limited to 300 °C due to the strength of the silver

solder plug. At the dry ice point the pressure was
limited to 5 kbar due to the freezing of argon. At all

higher temperatures the maximum pressure used
was 8 kbar. A space was provided between the

low- and high-temperature ends for some slack

wire so that straining of the wires due to movement
in the cold seal would be minimized.

T-T,

Figure 4. Pressure temperature distribution in piston cylinder

high-pressure cell.

2.2. Piston Cylinder Measurements

The piston cylinder measurements were made in

an apparatus of standard design and of dimensions
1.27 cm diam X 5.08 cm long. The cylinder material

was 94V4 percent WC 5^/4 percent cobalt binder

(Plansee 850). Figure 3 shows a schematic cross

section of the cell design for this experiment.

The design of the cell is obviously quite important

and the key to success or failure of the experiment.

The cell had to provide the conceptual physical

ideas discussed in the introduction with minimum
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deviations from the ideal. Therefore, one require-

ment was to make the pressure seals as sharp as

possible and/or as isothermal as possible. Addition-

ally the pressure gradient over the temperature
gradient in the high-pressure cell was to be kept

to a minimum.

The reasons for these requirements are illustrated

in figure 4. If the pressure seals are infinitely sharp
and there is no pressure gradient in the high-

pressure cell, the dashed line represents the

p{T) versus T relation. This is the ideal or perfect

experiment. The pressure emf is proportional to

the area under the curve.

The actual experimental conditions are shown as

the solid line. The points on the graph have been
measured in our cell by use of thermocouples and
the bismuth transitions. This will be discussed in

detail below. The effects of the sUght temperature
gradient across the pressure seal have not been
indicated on the graph. The area under the dashed
curve is proportional to the value of the effect we
want to measure. We have chosen the experimental

pressure to be the pressure of the talc-AgCl inter-

face (piston end) as this gives the best representation

of the true area.

The pressure calibration was an important factor

influencing the final design of the cell shown in

figure 3. Large pressure gradients over the tempera-
ture gradients inside the high-pressure region would
cause large uncertainties in the results. We origin-

ally started with a cell using talc as the pressure
media, quite similar to that of Getting and Kennedy
[2]. This would correspond to replacing the AgCl
in our figure 3 with talc. A wire of bismuth 0.03 cm
diam X 0.6 cm long was placed axiaUy in the

furnace from the seal to the top of the furnace. The
bismuth 1 —* 2 transition started at 32 kbar force/

area on the compression stroke and took 7 kbar to

complete. Using this design we found it impossible

to go beyond the end of the bismuth 2^3 transition

without danger of piston failure (44 kbar on the

piston). If the bismuth wire extended the length of

the cell the maximum pressure of the 1 —* 2 transi-

tion should remain the same but the gradient would
be extended from 7 kbar to 12 kbar. This would
seriously compromise the determination of area in

a p(T) versus T plot and thus the final results.

An improvement was noted by replacing 0.64 cm
of the talc at the furnace end with AgCl. Here the

bismuth 1-^2 transition started at 28 kbar room
pressure but still took 7 kbar to complete. The
bismuth 2^3 transition was complete at 39 kbar on

the piston. Another improvement was made by going

to the configuration in figure 3 except that the BN
was 0.32 cm diameter. In this setup the 1-^2 transi-

tion started at 27.5 kbar and took 6 kbar to com-
plete. For the first time the bismuth 2 resistance had
a flat portion. The bismuth 2-^3 transition was com-
plete at 36 kbar on the piston.

The majority of the large AP from start to finish

of the transitions can be attributed to the AF of
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Figure 5. Pressure calibration for AgCl column in high-

pressure cell.

transition. As the metal transforms it decreases in

volume. The shear strength of the talc is large

enough so that pressure must be added to the sys-

tem to force the talc to follow the bismuth. Boyd
and England's [3] result using a 0.033 cm diam Bi

wire in 0.32 cm diam AgCl in talc confirm this. Here
the smallness of the of the small bismuth wire

and the weakness of the surrounding AgCl cause the

Af of the transition to be about 1.5 kbar.

Our setup used AgCl as the pressure media.

However, it was necessary to protect the thermo-

couple wires from the reactivity of AgCl, so they

were sheathed in BN. BN is stronger than AgCl
and therefore reacts to pressure in a similar manner
to talc. We quickly found that the diameter of the

BN was critical to the AP of transition. Figure 3

shows our final configuration with a 1 mm BN sleeve

and a 0.3 mm wire. Figure 5 shows the bismuth
pressure calibration for this cell with the Bi wire in

the 1 mm BN sleeve in the AgCl portion.

The AP of transition in this configuration is about

2 kbar and the bismuth 2^3 transition completes
at 31 kbar force/area. This represents a considerable

improvement over the all talc cell originally tried

(7 kbar and 44 kbar). In the actual experiment the

wire of thermoelectric material does not undergo a

AV; therefore, the AP down the wire is less than

2 kbar. Bridgman has shown AgCl to have a shear

strength of 0.8 kbar at 25 kbar. This is the lower

limit AP to be expected along the AgCI with no BN.
Based on measurements made with other diameter

BN tubes and the pressure calibrations discussed

above, we find the AP along the wire in the AgCl to

be 1.0 to 1.5 kbar. For figure 4 we have used the

value of 1.0 kbar. Using our measurements of pres-

sure drop in the talc portions of the hot and cold end
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Figure 6. Temperature distribution in the region of the high-

temperature seal in the piston cylinder cell.

of the cell and the similar results of Boyd and
England [3], we estimate the AP to be 2 kbar in

the talc.

Figure 6 shows the temperature calibration for

the furnace end of the high-pressure cell. These data

were taken in two runs of four thermocouples each;

the middle two thermocouples were common to both
runs. All the temperature caUbration data as well as

the experimental data reported in this paper were
taken after the cell had been cycled to 40 kbar
pressure. It was necessary to do this in order for

the temperature caUbration to remain constant from
run to run and also during a run. This was also useful

in checking for failures in the experimental setup.

All the information is shown in figure 4. It is

important to notice that the talc portions contribute

little to the measurement or its uncertainty and tend
to cancel out. The most important effect comes in

the AgCl portion of the cell. As long as the pressure
and temperature gradients are small or well-known
here, the uncertainty of the measurement is small.

If the pressure calibrations at room temperature are

vahd for high temperature the uncertainty of the

method is less than 2 percent when the pressure is

evaluated in the AgCl portion.

The location of the high-temperature thermo-
couple is shown in figure 3. Examination of figure 6

shows that this is the location of maximum tempera-
ture in the cell. A great deal of care was taken to

keep the location of this thermocouple as well as

the cold thermocouple in place. The ceramic tube

was epoxied to the stainless steel at the start of the

experiment. The seal design quickly locked the

ceramic tube in place as pressure was applied. AU
runs were inspected for movement of the thermo-
couple. This was not a problem at temperatures to

400 °C. We occasionally had movement before

using the epoxy but never after; those runs were
discarded. It will be necessary to modify the high-

temperature seal for work at higher temperatures.
Behind the seal was a tungsten carbide bushing

whose I.D. was slightly larger than the ceramic
tubing. The high compressive strength of the WC
was used to keep the pressure on the wire at 1 atm.

Because the magnitude of the pressure emf's are

lO's to lOO's of microvolts, it is necessary to measure
the voltage to an accuracy of l/xV. Large currents

in the vicinity of the thermoelectric element could

induce voltages and limit the accuracy of the meas-
urements. AC pickup would require filters, etc. We
have specially designed our high-temperature fur-

nace to eliminate or reduce these problems.

The furnace shown in figure 3 is a graphite spiral

in the talc. This is accomplished by making a

graphite screw which is threaded and cemented
into the talc and then has the center machined out.

The resistance of our furnace was about 30 d. We
were able to reach 400 °C with only 3 A current.

This low current and coil geometry combine to

eliminate problems with induced voltages in the

experiment. This is a much more desirable con-

figuration than the solid carbon resistance tube
heater normally used in high-pressure experiments.

We have described in detail the high-pressure cell

and its calibration, since it is imperative to establish

accurately the pressure-temperature distribution

within the cell before any valid interpretation of

pressure emfs can be made.

2.3. Measurements

2.3.1. Hydrostatic Experiments

Measurements were taken of four thermocouple
materials: chromel, alumel, copper, and constantan.

The cold seal was maintained at 78 K and the high-

temperature seal was maintained at a number of

fixed temperatures between 190 K and 560 K. With
the temperature interval between the seals fixed,

the pressure was varied between 0 and 8 kbar and
the induced emf was measured at each pressure.

In all cases, the induced emf was linear with pres-

sure so only the slope of the emf versus p plot is

presented. To insure that spurious readings gen-

erated in the frozen gas seal were not included in

the data presented, the emf generated over the

smallest temperature interval (i.e., 78 K to 190 K)
was subtracted from all the measurements at larger

temperature intervals. This eliminated any spurious
readings arising from the frozen gas seal, since they
would be independent of the temperature of the

high-temperature seal. The reproducibility of the
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Figure 7. Pressure emf per kilobar for temperature interval

190 K-^ T measured in hydrostatic apparatus.

data showed that if spurious emf s are generated,

they were consistent from run to run. The data are

therefore presented in figure 7 in terms of the emf
per kilobar generated by temperature intervals of

190 K to r where T ranges to 560 K. Scatter in the

data introduced an error of ±0.25 )U,V/Kbar which is

the total error of the measurement.

2.3.2. Piston-Cylinder Experiments

Measurements were made in the piston cylinder

apparatus on chromel, alumel, platinum, and
platinum-10 percent rhodium wires using the cell

described above. Attempts were made initially to

fix the pressure and measure the pressure emf as a

function of temperature interval between the seals.

This method proved to be difficult since the pressure

and pressure distribution could not be maintained

at a constant value due to thermal expansion of the

cell upon heating and a subsequent redistribution of

friction forces within the cell. AU data reported

here were therefore taken as induced emf versus

pressure at constant temperature intervals between
the hot and cold seal. The agreement between the

two sets of data was satisfactory, however.
The pressure on the axis of the cell undergoes an

unusual cycle due to the presence of the highly

incompressible tungsten carbide column that makes
up the high-temperature seal. As the piston ad-

vances, the pressure at the top of this column
increases rapidly, compared with the pressure in

the rest of the cell. This continues until the pressure

medium cannot support the stress gradient gen-

erated. Further piston advances increase the pres-

sure uniformly throughout the cell. On the pressure

release, the opposite effect occurs with the pressure

decreasing rapidly at the top of the seal column.

This pressure cycle wiU exhibit the opposite of the

40i

Figure 8. Pressure emf as a function ofpressure for alumel at a
constant temperature interval in piston cylinder apparatus.

Strain, percent

Figure 9. Effect of strain on the thermal emf of chromel thermo-

couple wire.

normal hysteresis cycle of a piston cylinder. Figure 8

shows the pressure emf for alumel at a fixed tem-

perature interval between the seals as a function of

the piston pressure. The reverse hysteresis effect

is quite apparent.

Another effect was found when the chromel wire

was measured. At zero pressure a negative emf was
measured in the circuit with a fixed temperature

difference maintained between the seals. The effect

72



280

Figure 10. Chromel and alumel pressure emf as a function of
temperature interval at 20 kbar and 40 kbar.

of pressure was to decrease this negative emf
toward zero. It was found that chromel wire is quite

strain sensitive and that in preparation it had been
strained slightly. Tests were made using a strained

and unstrained chromel wire as a couple. Figure 9

shows that the resulting emf is a linear function of

permanent strain and is about linear in temperature

difference. Similar strain tests were made with the

alumel, platinum, and platinum-10 percent rhodium
wire, but no measurable strain-induced emf was
detected. Hanneman and Strong [4] have reported

that they found no measurable strain-induced emf
for all four materials. Our experiments show that

chromel is strain sensitive.

In solid-media, high-pressure apparatus, the

methods used to bring leads out of a high-pressure

cell generally result in a high degree of permanent
deformation of the lead wires. Therefore, caution

should be used when using chromel-alumel couples,

since an emf can be induced by the strain effects of

the chromel. However, the amount of temperature

correction is small, compared with the total emf of

the couple. For instance, if a gradient of 350 °C

exists across a 10 percent strained wire, the result-

ing error would be only 1.5 °C. To minimize this

error, the high-pressure cell should be designed so

that regions of high strain are in regions of low-

temperature gradient.

Measurements were taken over a temperature

range 30 to 400 °C and a pressure range of 0 to 40

kbar. The pressure dependence of the emf was
obtained from the raw data, e.g., as shown in figure

8, using only the data where apparatus friction

effects were known. These would correspond to the

straight-line sections in figure 8. On the compression

T °C
' mox •

^

Figure 11. Platinum and platinum 10 percent rhodium pres-

sure emf as a finction of temperature interval at 40 kbar.

curve this gives data to the highest pressures and
on the release curve gives data to the lowest pres-

sure. The curves rarely went through the origin as

they should. This was attributed to apparatus

friction and/or small spurious emfs in the circuit.

This offset from zero was always small except for

the chromel. The chromel offsets from 0 emf at 0

pressure could be accounted for by the above
mentioned strain effects.

The curves were first displaced so that they went
through the origin. The compression and decom-
pression curves were then corrected for the com-
pression and decompression values of the bismuth
transitions. These results were averaged to give the

final curve of emf versus pressure at a fixed tem-
perature interval. During the experimental cycle

AT" drifted somewhat. Each individual experimental
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point was corrected to a constant AT before the

above data reduction was made.

For all temperature intervals, the cold seal was
at a temperature above 30 °C. Therefore an addi-

tional correction to the final curves was made so

that they would aU correspond to temperature

intervals of 30 °C —^ T.

In general data were taken at Ar's of approxi-

mately 75 °C, 150 °C, 200 °C, 275 °C, 325 °C for each

material with about 20 pressure data points at each

temperature. We estimate the uncertainty of the

data in the piston cylinder experiments to be ap-

proximately 5 percent. This results from differences

in the compression and release data. Added to the

2 percent error in the area determination of piT)
versus T plots, we believe that the measurements
are good to ± 7 percent.

3. Results and Discussion

The hydrostatic pressure results are given in

figure 7 for the four materials investigated. The
induced emf for a fixed temperature interval was
found to be a linear function of pressure for all four

materials within the accuracy of the measurements

(0.25 /xV/kbar). For the copper and constantan

wires, the induced emf per kilobar was also a linear

function of temperature interval up to an interval

of 190 to 560 K. On the other hand, the induced emf
per kilobar for chromel and alumel was zero be-

tween 190 and 300 K, and then increased nonlinearly

above 300 K. Values of emf are considered positive

when the low-temperature seal side of the circuit in

figure lb is positive.

The piston cylinder results are given in figure 10

for chromel and alumel and in figure 11 for platinum

and platinum-10 percent rhodium. It was found that

over the temperature intervals investigated alumel

and platinum had a pressure emf at constant

temperature intervals which was linear with pres-

sure up to 40 kbar. A nonlinear pressure dependence

was found for PtlORh and chromel, both of which

became less sensitive to pressure at higher pressure.

Due to this nonlinear pressure dependence, the

results are also tabulated in table 1.

The comparison between the piston cylinder

results and hydrostatic results on the chromel and

alumel wires indicates the two methods give the

same results within the experimental error. For a

temperature interval of 30 to 300 °C the piston

cylinder results at 10 kbar show a pressure emf of

39 ±3 AtV for alumel and 43 ±3 /u-V for chromel,

while the hydrostatic results if extrapolated from

8 kbar to 10 kbar yield 36 ±3 /xV for alumel and

39 ±3 ixY for chromel. Also, it is seen that over

this temperature-pressure range the pressure emf
of chromel is equal to that of alumel within the

experimental error for both the hydrostatic experi-

ment and the piston cylinder experiment. This

Table 1. Pressure emfifxV)for temperature interval
30°—> T of pressurized wire

T, °C 10 kbar 20 kbar 30 kbar 40 kbar

alumel

100 6 13 18 26

200 21 43 63 86

300 39 78 117 157

400 58 117 174 234

chromel

100 5 10 14 19

200 20 37 53 68

300 43 82 119 148

400 87 165 226 280

(chromel)-(alumel)

100 -1 -3 -4 -7

200 -1 -6 -10 -18

300 -f 4 + 4 + 2 -9
400 + 29 + 48 + 52 + 46

platinum

100 12 23 34 46

200 28 57 84 114

300 45 90 135 181

400 62 124 186 248

platinum 10 percent rhodium

100 5 11 16 20

200 14 27 38 50

300 25 48 68 90

400 35 72 105 130

(PtlORh)-(Pt)

100 -7 -12 -18 -26

200 -14 -30 -46 -64

300 -20 -42 -67 -91

400 -27 -52 -81 -118

shows that the two methods of measuring the

pressure emf give consistent results.

Other measurements are available for comparison

with our results, but we wiU only comment in general

about them.
Bundy's [5] single-wire experiment gave con-

sistently higher emf values than ours for alumel,

platinum, and platinum 10 percent rhodium. His

chromel value was negative which was probably the

result of the strain effect described above.

Bloch and Chaisse [6] measured Cu-Constantan

hydrostaticaUy and their results agree with ours
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within our experimental error of ± .25 /u,V/kbar.

Bridgman's [7] single-wire experiments on con-

stantan and copper yielded pressure emfs which

were the same as ours within our experimental

error.

The comparative measurements of Hanneman and

Strong [4] on Pt-PtlORh versus chromel-alumel

couples at 40 kbar with a temperature interval of

0 to 400 °C are within 10 percent of our results.

Their absolute values [8] for Pt-PtlORh are higher

than our values by 30 percent which is outside of

their stated experimental limits. In addition their

chromel-alumel corrections are positive while ours

are negative.

Of the results presented at this conference, our

results are most easily compared with those of

Getting and Kennedy [2]. The agreement is within

experimental errors for Pt, PtlORh, and alumel. For
chromel, their results are lower than ours by a

significant amount (the order of 30 percent at

20 kbar and Ar= 0-400 °C). It appears that the

strain effect described above could be the cause of

this discrepancy. However, our hydrostatic results

are in agreement with our piston cylinder data within

an error limit of ±7 percent. Since no strain effects

are present under the hydrostatic conditions, the

agreement of our two sets of data indicates our

piston-cylinder chromel data to be more accurate

than that of Getting and Kennedy.

4. Conclusions

We have only discussed the data, and the data
gathering procedure so far, but have not described
how to use the data. In the introduction, eq (3) shows
that as the result of the pressure dependence of the
thermoelectric power, an additional emf is generated
in a thermocouple circuit if the pressurized region is

in a region of changing temperature. It was also

shown that single-wire experiments could measure
directly the amount of additional emf generated.
To utilize the single-wire results, one must know the
temperature of the thermocouple junction ih the
high-pressure cell and the temperature of the seal

where the pressure drops to zero. The internal tem-
perature is measured by the uncorrected emf gener-
ated in the two-wire circuit. This temperature is the
uncorrected temperature, but for purposes of deter-
mining the amount of the correction, it is accurate
enough. The seal temperature must be determined
independently and in the case of certain belt and

piston cylinder cell designs, this temperature can

be considerably higher than ambient. Thus, having

established the temperature interval from seal to

high-temperature region (it is the temperature
interval which is needed, not just the difference)

and having established the pressure, one can deter-

mine the amount of additional emf induced in the

thermocouple circuit from an isobaric plot of pres-

sure emf vs. temperature interval, such as figures

10 and 11 or table 1. The total emf induced in the

thermocouple pair is just the difference between the

two pressure emfs. The sign convention here is

important. The pressure emf is positive if the high-

pressure seal at the low-temperature side of the

single-wire circuit is positive. This is the case for all

materials we measured. The pressure emf for the

wire of the pair which is negative (constantan,

alumel, platinum) is subtracted from the pressure

emf of the wire which is positive (copper, chromel,
platinum, 10 percent rhodium). The resulting emf
is subtracted from (or added to, if it is negative) the

measured emf of the circuit to arrive at the zero

pressure emf which can be converted to temperature
from a standard table. By adopting this convention,

no ambiguity wiU result when applying the pres-

sure correction. By leaving the corrections in terms
of emf values instead of temperature values, one
can easily apply the correction needed for his

particular high pressure cell with its own particular

seal temperature, reference temperature, and
thermocouple materials.

Although the data presented in this work are over

a limited temperature range, we have determined
a region of pressure and temperature where well-

defined experimental conditions were established

and where pressure emfs were measured to an
accuracy needed for precision thermocouple
applications.
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The Effect of Pressure on the E.M.F. of Thermocouples

Ivan C. Getting and George C. Kennedy

Institute of Geophysics and Planetary Physics,

University of California, Los Angeles, California 90024

A schematic diagram of a thermocouple as in-

stalled in a typical high-pressure apparatus is shown
in figure 1. There is, of course, no effect on the

reading of a thermocouple if the temperature of a

thermocouple junction at high pressure is the same
as the temperature at which the elements emerge
from the high-pressure environment to the low-

pressure environment. However, in many installa-

tions, the temperature at which the thermocouple
emerges from the high-pressure environment is

vastly different than the temperature of the thermo-
couple junction. Thus substantial effects on the emf
of the thermocouples may be expected. Pressure
thus creates various thermocouple junctions be-

tween compressed and uncompressed segments of

the thermocouple elements.

Both Bridgman and Bundy have examined the

emf generated by a thermocouple of compressed and
uncompressed segments of the same wire. However,
these measurements have been taken to modest
limits of temperature and pressure. It was the aim of

the present investigation to carry the measurements
on to very high pressures and temperatures.

In our experiments a tungsten carbide bushing
with a small axial hole was used to hold pressure off

the test wires over part of their length so that the emf
of a compressed-uncompressed thermocouple could

be measured. A furnace was used to heat the junc-

tion. Compressed-uncompressed junction tempera-
tures were measured with separate thermocouples.

Our measurements were limited by the pressures

and temperatures at which the tungsten carbide

sleeve failed. This experiment, which we call the

single-wire experiment, is shown schematically in

figure 2 and a detailed drawing of our experimental
arrangement is shown in figure 3. The emf of various

wires thus can be measured and the results com-
bined algebraically to give the correction for a

thermocouple made of any two elements at high

pressures with a junction at one temperature and
pressure seal at a different temperature.

Our experiments were conducted in an end-loaded
piston-cylinder apparatus to a maximum pressure of

30 kbars and a temperature of 1000°. A coaxial

graphite resistance heating element was used to heat

the junction of the compressed versus uncom-
pressed wire under study. It is, of course, necessary
to show that the pressure drop across the junction

is isothermal and the zones of temperature drop

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14-18, 1968.

Sample Temp.,T

Pressure Seal Temp., Tj

Test Pressure, P

Ice Bafh

Figure 1. Schematic view of typical high-pressure cell with

temperature and pressure distributions.

Hot Seal Ternp., T

Cold Seal Ternp., Tg

Figure 2. Schematic view of single-wire experiment cell with

temperature and pressure distributions.
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Figure 3. Detailed view of single-wire experiment pressure cell.

inside the cell are isobaric. Thus, six thermocouples
not shown in figure 3, were located in two groups of
three spanning the seal regions. It was shown that
the temperature variation across the seals was less
than 3 percent of the hot seal temperature. Bi I-II

transition experiments at room temperature led to
an expected 3-kb maximum pressure difference
within the cell.

In figure 4 we show experimental results at 10, 20,
and 30 kbars up to temparatures of 900°. These
results are the plots of the emf generated by single-

wire experiment- on platinum minus the emf gen-
' erated by the single-wire experiments on platinum-
10 rhodium.
The temperature axis shown in figure 4 represents

the difference in temperature between the hot junc-
tion of a thermocouple and the temperature where
the thermocouple wires merge from the high-pres-
sure apparatus. In our particular apparatus, when
the hot temperature junction is at 1000° the cool
seal, where the thermocouple emerges from the
high-pressure apparatus, is at approximately 100 °C.
The data are corrected for this rise in seal tempera-
ture and the results are presented in figure 5.

In most high-pressure apparatus, the seal tem-
perature rises as the sample temperature rises. If

the relation between these two temperatures is

known, the correction for the effect of pressure in
the thermocouple may be determined as shown in

figure 6. In the example shown in figure 6, we assume
a sample temperature of 800°, 30 kbars, and a seal
temperature of 150°. The voltage correction appH-
cable is the difference between the value at 800° and

,1V

150

Pt SW emf minus Pt 10 Rh SW emf

SW 7
" 8
"

1

1

„ 12

_L_ _1_ _L_ _L_

100 200 300 400 500 600 700 800 900 1000

PRESSURIZED TEMPERATURE INTERVAL (°C)

Figure 4. Pt SW. emf minus Pt 10 Rh S.W. emf.

150°, here llO/xV. To obtain the correction in de-
grees, the voltage correction must be divided by the
relative Seeback coefficient at 800°, 10.8/>tV/°C. The
correction is to be added to the observed value. The
pressure seal temperature must be known for every
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Pressure Corrections for Pt vs. PI 10 Rh Thermocouples

with Pressure Seal at 20 *C
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Figure 5. Pressure corrections for Pt vs. Pt 10 Rh thermocouples

with pressure seal at 20 °C.
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Sample Correction Colculolion for

Pt vs. PI 10 Rh Thermocouples.
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Figure 6. Sample correction calculation for Pt vs. Pt 10 Rh
thermocouples.
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Figure 7. Alumel S. W. emfminus Chromel S. W. emf.

Pressure Corrections for Chromel -P vs.

Alumel with Pressure Seal at 20 *C
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30 kb

temperature measurement to which these correc-

tions are to be apphed. Data for Chromel and Alumel
thermocouple wires are shown in figure 7. Here, as

before, the data presented are the algebraic differ-

ences between the voltages observed in single wire

experiments on each of the two thermoelements.
Unfortunately, in some of the runs chemical con-

tamination of the thermocouple elements took place.

These erratic readings are also presented. The solid

curves are drawn through results believed to be from
runs where no contamination took place. A smooth
plot with the pressure correction for Chromel-P
versus Alumel thermocouples with the pressure
seal at 20° is shown in figure 8. The relative Seeback
coefficient for Chromel/Alumel is nearly constant
at about 40jLtV/°. Thus, for temperatures up to about

-400^

Figure 8. Pressure corrections for Chromel-P vs. Alumel with

pressure seal at 20 °C.

600°, the corrections for Chromel-Alumel thermo-

couples are less than 2°. For pressure seal tempera-

tures other than 20° the corrections are calculated

by the same method demonstrated in figure 6.

Because of some uncertainties in the pressure of

the experiment and uncertainties in the temperature

as well as a small temperature gradient to the pres-

sure seal we estimate a maximum certainty in the

final corrections to be about ± 3° at the highest pres-

sures and temperatures of the measurement. Pro-

portionately the uncertainty is less at lower values.
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In typical high-pressure experiments where cer-

amic tubes surround the thermal elements, stress

distribution can make the corrections uncertain by
very much larger amounts. In a number of our runs,

grossly non-hydrostatic conditions were noted along

the thermocouple wire where bits of ceramic tubing

pressed against the wire or alternatively protected

the wire from pressure. Thus, if precise tempera-

ture measurements are made at high-pressure, care

must be taken to insure pressure uniformity along

the thermocouple wires in the high-pressure environ-

ment. Chemical deterioration of the thermocouple
wires can often introduce error several magnitudes
greater than the error introduced by ignoring the

effect of pressure on the thermocouple.

As a final check on the accuracy of these meas-
urements, we intercompared platinum-10 rhodium
thermocouples with Chromel-Alumel thermocouples
at high pressures and temperatures. We find the
difference in the reading of the two thermocouples
in our intercomparison experiment to agree with the
corrections we indicate for these thermocouple pairs

within the stated uncertainty of the measurements.

Note added in press

Subsequent work on this problem has led to a

slight revision of the data presented herein. A com-
plete discussion of the experiment and the revised

data are presented in J. Appl. Phys. Oct. 1970.
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Temperature Measurement by Thermal Noise at High Pressures

R. H. Wentorf, Jr.

General Electric Research and Development Center, P.O. Box 8, Schenectady, New York 12309

The temperature of a small carbon resistor (700 to 3,000 fl) in a high-pressure cell next to a Pt-PtlO
percent Rh thermocouple was measured by thermal noise. Runs were made at 40 and 50 kbar to tem-
peratures of about 1,400 K. The results suggest that at the highest temperatures the thermocouple
indicated temperatures from 40 to 60 K too low, in fairly good agreement with estimates made by
other methods.

1. Introduction

Many interesting phenomena occur at high

temperatures and high pressures, e.g., 1,500 K and
50 kilobars (kbar). However, it is difficult to deter-

mine pressure and temperature accurately at these

conditions. [1]'

One can mention two ways to determine the

temperature inside a high-pressure chamber:

(1) One method is based on the equipartition of

energy. The thermal agitation of the current car-

riers in an isolated resistor generates at its terminals

a minute, fluctuating voltage known as thermal or

"Johnson" noise [2, 3].

One may write:

E^-= 4:kTRB (1)

where E- is the average of the square of the fluctuat-

ing vohage due to thermal agitation,

k is Boltzmann's constant,

T is the absolute temperature,

R is the value of the resistance,

B is the bandwidth of the frequencies for which E
is measured; the frequencies are generally

below 10i'»Hz (optical).

Although it is simple in principle, the method
demands careful attention to experimental details

and it is not so convenient. Garrison and Lawson [4]

demonstrated that the method could be used at

high pressures.

(2) One might measure temperature by means of

thermocouples. This common and simple method
has some limitations. Apart from the annoyances of

broken or corroded wires, one notes that metals
change their electronic characteristics with pres-

sure, and so the emf of a thermocouple depends on
the pressure and temperature system to which it is

exposed. A satisfactory theoretical treatment of this

problem has not yet appeared, but several workers
have made experimental measurements at moderate
pressures or temperatures [5, 6, 7, 8, 9]. Hanneman

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization
of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

and Strong [10] have estimated the eft'ects of pres-

sure on common thermocouples for more severe
conditions.

One of the aims of the work reported in this paper
is to measure the same temperature simultaneously
by methods (1) and (2) and thereby help determine
the effect of pressure on thermoelectricity.

2. Experimental Considerations

2.1. General

The apparatus was intended to provide a stable

Pt-PtlO percent Rh thermocouple at essentially

the same pressure and temperature as a suitably

isolated resistor whose Johnson noise could be
amplified and measured. The temperature of the

probe resistor could then be estimated by using

eq (1), assuming that the observation period was
long enough to obtain a sufficiently precise value

of E\
Equation (1) could be used directly if one had an

ideal noiseless amplifier of known, stable gain. For
real, noisy amplifiers with somewhat unsteady gain,

it is better to compare the signal from the probe
resistor with that from a reference resistor which is

at a known temperature and has the same resistance

as the probe.

The amplifier noise (the first stage contributes

the most) is simply added to the noise from the

probe resistor; the sum appears in the output and
is called AE2 (amplified average E-). Thus a plot of

AE2 versus T is linear, as shown in figure 1 for vari-

ous values of the probe resistor R. The intercept at

T— 0 is the amplifier noise when the probe is at 0 K.
For an ideal but noisy amplifier the intercepts for

various /?'s would coincide and the slopes would be
proportional to R. The ampUfier used in this work
was not ideal, for reasons to be given later, and so
the intercepts did not coincide at T= 0 and the

slopes were not quite proportional to R because the

eff"ective bandwidth B changed with R. However,
one still had the important linear relationship

between T and AE2 for a given R.
Thus the following experimental information was

necessary to determine the temperature of the
probe:
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Figure 1. Plot of AE2 versus T for various probe resistances
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(a) The resistance R of the probe;

(b) The amphfier output AE2, averaged over a

sufficiently long time, with the probe at the input;

(c) AE2, with reference resistor, resistance R, at

input;

(d) The temperature of the reference resistor

(usually near 300 K);

(e) AE2 with shorted input {R =0) to monitor the

amplifier gain over periods of hours;

(f) A high probability that only a negligible

amount of external noise had been included in

AE2 during the measurements of (a) through (e)

above. External noise comes and goes, substantially

independently of the experimenter^s desires, and so

one always seeks the minimum AE2 values out of a

large number of observations.

Figure 2 is a block diagram of the amplifier and
switching arrangements used in this work. One can
read about them in greater detail further along in

the paper.

2.2. The Value of i?

Consider eq (1) and let R = 1,000 O, T= 1,000 K,

and 5 = 5 X 10*. Then E'^ is about 2.8 X 10- 12 V^, and
we can expect to deal with signals in the range 1 to 2

/xV. Larger signals could be obtained from larger

resistances, but there are practical limits:

1. The shunt capacitance of the system, of the

order of 50 X IO-12 farad (F).

2. The finite input impedance of the amplifier.

3. Inside a high-pressure chamber the volume
which is approximately isothermal is limited and
subject to various stresses. Long, thick wires are

impossible.

4. The resistor must be an electrically passive

element and tolerably isolated from its surroundings.

Available insulating materials at 1,500 K have
maximum resistivities of about 10'' ohm-cm and so

can provide isolation of 10^— lO'' fl.

Figure 2. Block diagram ofamplifier and detector.

Evidently many factors conspire to limit R to less

than 5,000 H. For the range 100 to 10^ Hz, it is diffi-

cult to achieve amplifiers with less noise than that

of 500 ohms at 300 K. Thus suitable values of R
appear to lie between 500 and 5,000 fi. In this work
values of R from 600 to 3,000 O were used.

2.3. The Value of B

Several factors limit the frequency band:

1. At frequencies above about 200 kHz one has

problems with tuned circuits, stray capacitance, and
feedback.

2. Ubiquitous 60 Hz power line frequencies and
their harmonics make it wise to ignore frequencies

below about 1,000 Hz.

3. The Miller effect operates to reduce the input

impedance of the amplifier and/or limit the ampli-

fication of higher frequencies unless tuned circuits

are used.

4. The time constants of the resistor used to

measure AE2 demand a small resistance which in

turn demands a transformer to feed it; broad-band
transformers do not operate too well above 100 kHz.

Thus the value of B comes to slightly less than
10^ Hz. In this work the amplifiers used made the

effective range for B to lie between 2 kHz and about

80 kHz; the cutoffs at each end were not perfectly

sharp but were more than 6 dB/octave.
The relative uncertainty in AE2 is given by {Bt)~^'^

where t is the observation time [4]. For 5 = 6 X 10^,

an observation time of 5 sec corresponds to an

uncertainty of about 0.6 X 10"^, i.e., 1 degree out of

1,500, which is well below the uncertainties from

other causes.
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3. Experimental Apparatus

3.1. The High-Pressure Sample

Figure 3 shows a sample arrangement which
proved satisfactory. (Several other kinds were tried.)

It fits in a "Belt" apparatus [11] with 19-mm-diam
piston faces.

The probe resistor, R, begins life as a strip of

Saran (polyvinyl chloride) about 0.013 mm thick,

0.13 mm wide, and 25 mm long. It is carbonized

in situ at about 40 kbar to yield a resistance in the

range 500 to 5,000 Cl, typically 1,000 H. The working
length of the resistor is about 7.5 mm, well inside the

walls of the heater tube, H. A rod of fused silica

about 7.5 mm long and 0.36 mm diam lies alongside

the Saran and fixes the working length. Two 0.25

mm platinum wires, a and b, butt against each end of

the silica rod and connect the ends of the resistor

to two 0.50-mm Formex-coated copper wires, A and
B, which pass through the compressible stone

gasket, F, to the outside. The Saran, silica, and parts

of wires a and b lie in a Lucalox (AI2O3) tube about

0.38 mm I.D., 1.5 mm O.D., and 19 mm long. This

tube is the most important electrical insulating

barrier between the resistor R and the heater tube

H. The Lucalox tube fits snugly inside a porcelain

tube 2.5 mm O.D. and 19 mm long. This tube shields

the Lucalox tube against mechanical intrusion of

material from the heater H as the sample is crushed
and sheared during compression and temperature
changes. The two tubes are labeled / in figure 3.

The Pt-PtlO percent Rh thermocouple is made
from 0.25-mm wires c and d with the junction in the

heated zone at J. Wires c and d lie in tubes of

Lucalox and porcelain like the resistor, to help J be
at the same temperature as the resistor. The 0.5-mm
Pt and PtlO percent Rh wires C and D pass through
the gasket and connect c and to a 0 °C cold junc-

tion and a Rubicon potentiometer. The thermocouple
gave very little trouble.

The various tubes, etc. are carried at the mid-

length of a cylindrical sample holder PS, about 24
mm long and 19 mm diam, made of pyrophUite pre-

viously fired in air to about 750 °C to remove much of

the water, etc., in the pyrophyUite which would
attack the procelain and Lucalox at high tempera-
tures. The heater tube H is pressed from a mixture
of graphite and hexagonal BN (1:2 by weight), so

that its hot resistance is about 0.15 fl. It is about 24
mm long, 9.2 mm I.D., and 10.5 mm O.D. Copper
disks 0.25 mm thick carry the heating current from
the pistons. Inside the heater is a rod, PC, of fired

pyrophyUite. After PC, H, and PS were assembled,
two parallel holes 2.5 mm in diameter and 0.45 mm
apart were bored through the assembly at the mid-
length to receive the various tubes, and then the
wires, etc., could be inserted and fixed.

The heater tube H was heated by direct current
from a bank of 12-V storage batteries via an adjust-

able series resistor. Electrolysis effects on the heater
and pyrophylhte were negligible.

Figure 3. High-pressure cell containing probe resistor {leads

A, B) and thermocouple (leads C, D).

The maximum furnace temperatures used were
about 1,450 K. At temperatures much above this,

the electrical isolation of the resistor was unsatis-

factory, partly because of the enhanced conductivity

of the insulation at high temperatures and partly be-

cause of the disruptions and intrusions from thermal
expansion forces.

Leads A and B were connected by low-capacity

coaxial cable to the switch box. Either A or B could

be connected to ground of the system. The top piston

(and hence the heater tube), the pressure chamber
cyliner, and the press frame were also connected to

ground. (The pistons are ordinarily insulated from
the press frame by about 10^ fl.) Thus the probe
resistor R had good electrostatic shielding. The
resistance between lead A or B and the heater tube
could be measured during a run by temporarily
disconnecting the ground to the heater circuit. The
resistance between^ or and ground was measured
for every data point; any persistent differences indi-

cated faulty isolation of R. (A portion of the voltage

drop along the heater tube was then acting to bias

the wheatstone bridge.) AE2 was also measured for

either lead A or lead B grounded, and persistent

differences in these readings or wild, unsteady varia-

tions in AE2 also indicated faulty isolation of R.
Such data points were ignored.

The thermocouple leads C and D went to an ice

bath where they joined copper wires to a Rubicon
potentiometer. Usually lead D was grounded as a

safeguard against feedback oscillation of the ampli-

fier. The resistance between D and the heater tube
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could be measured to insure that the thermocouple
was suitably isolated, but the low resistance of the

thermocouple wire reduces its isolation require-

ments below that of the probe resistor, and thermo-
couple isolation was not a problem.

3.2. Reference Resistor

The reference resistor was made of four rotary

adjustable carbon strip resistors with resistances of

10 KH, 5 Kfl, 1 Kn, and 500 fl. They were con-

nected in series and any reference value between
0 and 16,500 could be selected with the aid of the

wheatstone bridge. The resistors were mounted in

a small aluminum box and connected to the switch-

box by a piece of low-capacity coaxial cable having

about the same length as that used to connect leads

A and B, and adjusted so that the shunt capacity

across the reference closely matched that across

the probe. The reference temperature was read
from a calibrated thermometer next to the box.

For calibration purposes, such as constructing the

straight lines of figure 1, a number of metal film

resistors on alumina cores were placed in a cavity

in an aluminum block, together with a calibrated

Pt-PtlO percent Rh thermocouple, and heated over
a gas flame to about 525 K maximum. A cool switch

at the end of a stainless steel tube permitted one to

select various resistances. This assembly replaced

the probe R for calibration experiments.

3.3. Pre-amplifier

Figure 4 gives a circuit diagram of the pre-

amplifier. It was built inside a small aluminum box
and operated while buried in dry ice (195 K). Its

dynamic input impedance, as determined by the

value of input series resistance needed to reduce

FROM
SWITCHBOK

«OUT

FET PREAMPLIFIER

ALL RESISTANCES IN OHMS

ALL CAPACITIES IN MICROFARADS

Figure 4. Preamplifier.

All resistances in ohms. All capacities in microfarads.

the output by half, went as follows:

kHz 5 10 20 50 60 80 100

kO, 220 220 260 210 120 75 52

Cooling the pre-amplifier from 300 K to 195 K
reduced the shorted input noise by 25 percent and
increased the gain by about 10 percent with negligible

effect on the bandwidth. The small input capacitor

and the dynamic input impedance caused the

amplifier gain spectrum to vary somewhat with input

(probe) resistance.

3.4. Power Amplifier

3.4.1. First Section

A schematic diagram of the first section of the

power amplifier is given in figure 5. A l-ixV signal at

the pre-amplifier input appeared as a 0.1-V signal

at the output of the first section of the power
amplifier.

3.4.2. Second Section

A schematic diagram of the second (final) section

of the power amplifier is shown in figure 6. This
amplifier delivered a signal of about 1.5-W maximum
to a 4-ohm output load resistor, to provide the AE2
power in the detector described below. The output

transformer must be of high quality to provide good
frequency response.

3.5. Detector

If the fluctuating output voltage is impressed
across a resistor, then the power dissipated in the

resistor is proportional to or AE2. The power
appears a-; heat, and a suitable resistor can thus be
heated and its temperature measured by means of

a thermocouple attached to the resistor.

A suitable resistor-thermocouple detector for this

work was made from 0.13-mm-diam chromel and

+ 22V

POWER AMPLIFIER

FIRST SECTION

Figure 5. Power amplifier, first section.

All resistances in ohms. All capacities in microfarads.
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Figure 6. Power amplifier, final section.

All resistances in ohms. All capacities in microfarads.

alumel wires. Three pieces of chromel wire and one

of alumel were fused together at one end in a small

bead. A chromel-alumel pair was taken out as a

thermocouple and the remaining chromel pair was
wound non-inductively into a small helix with the

bead inserted partway into the core of the helix

so that the bead would be as hot as possible. The
chromel pair was about 50 mm long and had a

resistance of about 4 ft. The ends of all four wires

were soldered to terminals bolted through an

aluminum plate and insulated from it by mica
washers. The aluminum plate formed part of a

sealed can which was immersed in an ice bath.

Thus the resistor dissipated its heat to a sink at

constant temperature and the thermocouple cold

junction was kept at 0 °C. The can was electrically

grounded.

The chromel wire load resistor was connected to

the output of the power amplifier in series with a

100-)U,F capacitor. The potentiometer which meas-
ured the emf of the thermocouple was connected

in series with a 1-H, 60-ft choke. In this way the

potentiometer was isolated from the amplifier.

This resistor-thermocouple detector had a thermal

half-life of about 5 sec, a desirable value for both

accuracy and waiting time in the presence of

ambient noise, etc. Two were made and calibrated

with the direct current heating, using the average

of both current directions to cancel the effect of a

small voltage drop across the thermocouple bead.

The maximum calibration temperature was about

350 °C, produced by about 1 W, and in use the

resistor temperature never exceeded about 230 °C,

except when one detector was decisively incinerated

by throwing the wrong switch.

3.6. Calibration of the Entire Electronic
Apparatus

As remarked in section 2, a plot of AE2 versus T
should be linear, and the slope of the Une should

depend upon R. Various practical considerations

made it necessary to work with an imperfect

amplifier and so the slope of the line was not

exactly proportional to R. However, the dependence
upon R was obtained in a series of experiments

done at 1 atm with hot resistors having resistances

in the range 831 to 4730 ft at temperatures up to

about 525 K, as mentioned in section 3.2. When the

probe resistor and the reference resistor, both at

one atmosphere, were at the same temperature, one
could determine the small effects, e.g., 0.1 percent

for 1600 ft, of the slightly greater shunt capacitances

for the probe— the noise from the probe was slightly

less than expected. The noise measurements from
the hot probes were used to construct the lines of

figure 1. The ratio of line slope to resistance de-

creased by about 2.0 percent upon going from 830
to 4,730 ft, in agreement with a simple circuit

analysis and the measured dynamic input imped-

ance of the amphfier.

A second type of cahbraiion was performed as the

last step in a high-pressure run after the pressure on
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the probe resistor had been reduced to about 2 kbar.

At this pressure the thermocouple error due to pres-

sure is very small, and noise measurements could be
obtained on the actual resistor which had been used
at high pressure. The mechanical strains of decom-
pression followed by heating limited the tempera-
tures attainable with satisfactory isolation to about

1,000 K, and usually the probe resistance was much
higher than it had been at high pressures, but these

measurements permitted estimates of the effective

shunt capacitance of the probe resistor as well as a

partial check on the slope of the AE2 versus T line

and the performance of the amplifier and detector.

4. Experimental Procedure

4.1. Pressure Calibration

The pressures existing inside the high-pressure

cell of figure 3 were estimated from the oil pressure
driving the press ram pushing the pistons of the

Belt apparatus. The apparatus was calibrated at

room temperature by reference to the resistance

transition in thallium at 36.7 ±0.3 kbar. It was also

calibrated at higher cell temperatures by comparing
the emf of a Fe-Pt, 10 percent Rh couple with that of

a Pt-Pt, 10 percent Rh couple according to the

method of Strong et al. [12]. This method permits one
to detect the a — y transition in iron in the range 40
to 50 kbar at temperatures of about 900 K. The cold

and warm calibrations agreed well for 40 kbar, but

differed by a few kilobars at 50 kbar. There is much
evidence of several kinds which indicates that the

pressure inside a pyrophyllite cell changes in com-
plicated ways in response to temperature changes,

and so the actual pressure in the hot cells is not

known to within 2 or 3 kbar. Further comments
on this problem appear in section 6.

4.2. Gathering Noise Data

After the sample shown in figure 3 had been as-

sembled and placed in the high-pressure apparatus,

the pressure was increased to about 40 kbar and
then the sample was slowly heated by direct current

to reach about 1,350 K in 1 to 2 hr. Thereby the

Saran strip was pyrolyzed and its resistance fell to

something less than 3,000 fl. After that the drift in

resistance was slow enough to permit noise tem-
perature measurements.
The noise temperature measurements were made

in the following way. At some pressure and heating
power level, after probe resistance and the cell

thermocouple temperature became relatively steady,

one could roughly balance the potentiometer which
read the output resistor thermocouple temperature

(which was related to AE2), and then watch the

galvanometer pointer on the potentiometer as it

swung in response to the thermal noise signal and
other electrical disturbances. In the absence of

disturbances, the galvanometer pointer asymptotic-
ally approached a rest position according to the

5-sec thermal half-life of the output resistor, so that

30 sec of freedom from electrical disturbance was
ample to establish a minimum emf value for the

output resistor temperature.

Usually the disturbances were caused by switches,

relays, commutating motors, ignition, etc., operating

in other parts of the building. Some periods of the

week were quieter than others, but disturbances
were abundant even at midnight. The disturbances

usually added about 1 percent to the output thermo-
couple emf, but not in a systematic way. The loud-

speaker on the output helped one identify periods

of intense disturbance during which measurement
attempts were futile.

Usually 5 to 15 min of observation sufficed to

establish the minimum output thermocouple emf
between disturbances. Once this had been estab-

lished, the Pt-Rh thermocouple emf and the probe
resistance could be determined in about 15 sees;

these two changed relatively slowly. Next the

reference resistor was adjusted to the same resist-

ance as the probe, and the output resistor thermo-
couple emf was determined for it. Fortunately this

circuit was not so sensitive to disturbances. Finally

the output resistor thermocouple emf was measured
with the preamplifier input shorted, to monitor the

amplifier behavior.

Following these steps, the probe resistor connec-
tions were reversed by means of the switchbox, e.g.,

lead A of the probe was grounded instead of lead B,
and the foregoing procedure was essentially

repeated. If all was well, the two sets of measure-
ments were in substantial agreement, after allowing

for slight changes in cell heating power. If the probe
resistor was poorly isolated, the two sets of measure-
ments did not usually agree very well and were
ignored.

From time to time the resistances between probe
and heater tube or between thermocouple and heater

tube could be determined as a check on the isola-

tion, and the reference resistor temperature was
noted.

Thus one accumulated a number of values of

output resistor thermocouple emfs, Pt-Rh thermo-
couple emfs, and probe resistances for various cell

pressures and heating power levels.

The data were gathered first at a pressure of about
40 kbar and with falling temperature steps; then at

25 °C the pressure was increased to about 50 kbar
and the temperature was increased in steps to a

maximum (usually limited by isolation failure) and
then decreased in steps (with improving isolation) to

room temperature. Finally the pressure was reduced
to a few kilobars and the temperature was raised

and lowered as described in section 3.6.
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4.3. Reduction of Data

The first step in obtaining useful information from

the data was to convert all good output resistor

thermocouple readings into AE2 values using the

relationship determined by the calibration w^ith

direct current heating of the output load resistor.

Next, one took into account the effe ct of probe

resistance on the slope of the line of AE2 versus

T. (See fig. 1 and section 2.6.)

One also made small corrections to allow for the

differences in shunt capacitance between probe and
reference resistor, on the basis of the room tempera-

ture high-pressure data and the low-pressure, high-

temperature data, for both of which the pressure

corrections to thermocouples are negligible.

Finally one estimated the probe temperature using

the linearity of the relationship between AE2 and
T for each particular value of R observed. I.e., one
knew two points on the straight line for a particular

R and determined the T corresponding to a given

AE2 on that line. The closer T is to the reference

resistor temperature, the more accurately it can be

fixed because the uncertainty in the slope of the

line affects it less.

5. Results

Three satisfactory high-pressure runs occurred.

The results are summarized in figure 7, for 40 kbar
and faUing T only, and in figure 8, for 50 kbar and
rising and falling T. In these two figures the abscissa

is the uncorrected temperature which one would
obtain from the emf of a Pt-Pt, 10 percent Rh ther-

mocouple, according to standard reference tables,

without allowing for pressure effects, and the ordi-

nate is the difference between the temperature esti-

mated from thermal noise and the uncorrected Pt-Pt,

10 percent Rh temperature. The temperature esti-

mated from thermal noise was always higher than
that indicated by the uncorrected thermocouple.

As noted in section 6.1.2 the effect of combined pres-

sure and temperature gradients is to make the pres-

sure corrections (the ordinates of figs. 7 and 8) from
5 to 10 percent too low.

6. Discussion

6.1. Errors

6.1.1. Fluctuation Errors

The scatter of the points in figures 7 and 8
indicates that the experimental conditions were not

as constant as one might have hoped in view of the

pains taken. The scatter is associated with the use
of high-pressure apparatus; at one atmosphere and
500 K the scatter in temperature estimation was
about 1 K. The most probable causes for this scatter

N ' PIRh

70 r

60 -

300 400 600 800 1000 1200 1400 1600

K by Pt-PIIO%Rh

Figure 7. Thermal noise estimated temperature minus Pt-Pt 10

percent Rh indicated temperature, versus Pt-Rh indicated
temperature at 40 kbar;fallingT only.

70 r

1600

K by Pt- PIIO%Rh

Figure 8. Thermal noise estimated temperature minus Pt-Pt 10

percent Rh indicated temperature, versus Pt-Rh indicated

temperature at 50 kbar.

The upper line is for increasing temperature; the lower line is for decreasing

temperature.

are the long-term (several hours) variations in

ambient electrical noise, the variations in cell

pressure resulting from temperature changes, and
slight variations in cell construction.

Past experience with high-pressure, high-

temperature reaction vessels has shown that the

actual pressure in the cell depends on its pressure
and thermal history [13]. The data indicate that the

Pt-Rh thermocouple experienced a higher pressure
during a slight temperature increase than it did

during a temperature decrease, i.e., the thermo-
couple correction (ordinate of figs. 7 and 8) was
larger for a slight increase in temperature. The
points of figures 7 and 8 also indicate this same
effect on a broad scale in that the thermocouple
correction is generally larger for the ascending
temperature path than for the descending path, so

that the points fall on a rough loop instead of a line.

Even though as much care as possible was used
during the construction of a cell, variations of from
0.2 to 0.4 mm in the positions of various elements
were possible. Furthermore, one should not expect
a cell made of such a wide variety of materials to

compress in a uniform manner; instead, erratic

motions are likely.

The emf of a thermocouple may be affected by
the amount of cold work it suffers. Variations of
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several degrees in the indicated temperature may be
produced by this effect [9, 14].

6.1.2. Systematic Errors

A likely cause for systematic error which can not

be detected by general examination of the data is

the generation of spurious extra noise by current
flowing through the probe resistor due to imperfect
isolation.

Such current noise power is generally inversely

proportional to frequency and is not too important
above 100 kHz. For most carbon resistors one
expects about 1.5 /xV per applied volt for the range

1 kHz to 100 kHz. In the high-pressure cell, if the

isolation resistance is 100 times the probe resistance,

e.g., 100 kn, and the spurious driving voltage is 1

percent of the total of 10 V, then the voltage on the

probe available to produce current noise is about
10"'' V. The current noise would then produce about
1.5 X 10""* /xV of noise compared with the thermal
noise of about 1.7jU,V. But power, not voltage, is to

be added or compared; on this basis the current

noise contribution would be less than 10"^ of the

thermal noise. Even if the probe resistor developed
100 times the usual current noise voltage, the con-

tribution of current noise would be less than 10~* of

the total.

The above considerations notwithstanding, when
the isolation resistance failed at high temperatures,
the noise from the probe suddenly increased and
became extremely erratic. It was not possible to

measure the emf of the output resistor thermocouple
because the galvanometer in the potentiometer was
too restless.

Therefore it appears likely that extra current noise

from the probe resistor was certainly not important
below 1,000 K where the isolation resistance was
excellent; and was probably not important up to the

highest temperatures for which results are given in

this paper.

In an ideal measurement of the effect of pressure
on a thermocouple, the temperature gradient occurs
at constant pressure and the pressure gradient

occurs at constant temperature [6]. In the apparatus
used in this work these ideal conditions did not

occur. As figure 3 indicates, the thermocouple wires

C and D experience the bulk of the temperature fall

along their radial portions. At the internal joint

where the wires begin to travel vertically in the

gasket, the temperature was at most 250 °C, judging
from the decomposition of traces of glue used in

assembly. In this radial portion the pressure on the

wires probably changes by less than 2 kbar, if other

types of experiments are used as a guide. In their

vertical travel through the gasket the wires en-

counter the major pressure drop to one atmosphere
in a region having a temperature of about 70 to

100 °C when the hot junction is at about 1,400 K.
The wire temperature finally drops to about 25 °C
while the wires are at one atmosphere.

These considerations indicate that the ideal

correction to a Pt-Pt, 10 percent Rh thermocouple
for the effect of pressure would be somewhat larger

than indicated in figures 7 and 8, probably 5 to 10
^{

percent larger, because only about 90 to 95 percent
of the temperature drop in the wires occurred at

high pressure.

6.2. Comparison With Other Work

As mentioned in the Introduction, some work hasj

been done on the effect of pressure on thermo-
couples at more moderate conditions of pressure or

temperature than attempted here.

The Work of Bundy [6] shows that at a pressure of !

50 kbar and a temperature of 100 °C, the Pt-Pt 10

percent Rh couple should indicate a temperature
which is about 6 °C too cool. The present work
agrees satisfactorily with this previous finding.

The work of Bell, Boyd, and England [8] carried

out to temperatures of about 500 °C at pressures of^

5 kbar shows that a Pt-Pt, 10 percent Rh thermo-
couple at 500 °C and 5 kbar should indicate a tem-
perature which is about 3 °C too cool.

Freud and Lamori [9] estimate from their work'
that at 40 kbar and 300 °C the Pt-Pt 10 percent Rh
thermocouple should read about 13 °C too low.

This work is in satisfactory agreement.
The work of Getting (1968) shows that a Pt-Pt,

10 percent Rh thermocouple at 600 °C and 30 kbar

should indicate a temperature which is about 13 °C
too cool. This is about two-thirds the correction

estimated from the present work.
Hanneman and Strong [10] and Bundy [14] con-

sidered a number of experimental phenomena at

high pressures and temperatures such as diffusion

in metals, melting curves of metals such as ger-

manium, gold, iron, etc., and phase equilibria such as

a — yFe and diamond-graphite to construct a self-

consistent set of pressure corrections to thermo-
couples. Their estimates and the results of the

thermal noise work in this paper are in fairly good
agreement. E.g., for a pressure of 50 kbar and a tem-
perature of 1 ,370 K, the foregoing authors estimate a

correction of 47 K; the average correction found by
the thermal noise method for the same nominal
conditions is about 60 K. At 40 kbar and 1,270 K the

foregoing authors estimate a correction of 36 K, and
40 K was found in the present work.

It appears that the present work is in satisfactory

agreement with results found by other or earlier

workers; the thermal noise temperature estimates

tend to be somewhat higher, in agreement with the

expectation that undetected extra noise may have
been added to the thermal noise signal from the

hot probe.
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DISCUSSION

H. T. Hall {Brigham Young University, Provo,

Utah): Are your results on corrections that are to be
applied to platinum-platinum rhodium couples con-

sistent with other results of your laboratory and with

results of other laboratories?

I. Getting {Institute of Geophysics and Planetary
Physics, University of California, Los Angeles,

California): May I suggest that if you used a dc
heater there is a likelihood of dc pickup on the

thermocouple. We tried the Bridgman single-wire

experiment with a dc furnace only once, due to

unsatisfactory results from this cause.

Question from the floor: Does the insulating

material surrounding the resistor have any effect

on the noise voltage?

M.Waxman (National Bureau ofStandards, Wash-
ington, D.C.): What is the ac loading on the noise

resistor?

Would you comment on the integrating time, and
describe the power fluctuations?

AUTHOR'S CLOSURE

On the question of agreement with results of

others, the corrections I found agree pretty well

with estimates of Hanneman and Strong, but are

about 50 percent larger than Getting has found.

I think that my results may tend to be high because
of the extraneous noise from the environment, but

I don't think they are 50 percent too high.

I was aware of the problem of dc pickup, and the

data from one run was discarded because of this.

However, I monitored the resistance between the

thermocouple and the heater, and between the noise

resistor and the heater and, at 1400 °C, these resist-

ances were usually of the order of 10^ to 10^ fi. The
key to this high resistance was the use of a very pure
shielded alumina insulator (Lucalox). I think that

this is one of the best materials available.

The insulating material has no effect on the noise

voltage because it is not carrying any current. While
the insulating material does comprise a resistor in

parallel with the noise resistor, they are both at the

same temperature, and the only effect is that the

resistance of the combination is slightly lower than

that of the noise resistor alone.

The ac loading of the noise resistor depends, of

course, on the preamplifier input impedance, and
was of the order of 50,000 ft. This affects the slope

of the calibration curves, and requires a separate

curve, done at low pressure, for each resistance

range.

On the matter of integrating time, the time con-

stant of the circuit was such as to give an integrating

time of about 5 seconds. However, random fluctua-

tions due to extraneous causes often required obser-

vations to be made over a period of 15 minutes or

more in order to obtain three measurements, say,

that had the same minimum, so that the integrating

time might reaUy be of the order of 10 to 20 seconds.
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Equations of state are calculated for sodium and aluminum. In each case this is done by first

calculating the 0 K isotherm and then adding the thermal contributions to the pressure. The calcula-

tions in both cases are theoretical and very few experimental data are used. Comparisons of theoretical

prediction and experimental data are very favorable.

1. Introduction

It seems wise to initiate any equation-of-state

calculation with a general expression for the spe-

cific Helmholtz free energy, A. For, by this pro-

cedure, one can at least ascertain what it is that

he must know to go further. Accordingly, since this

article treats two elemental metals in the solid

state, we will begin by writing the general equi-

librium expression

^=^0+ ^q.h.+^a.h. (1)

This equation is a legacy of statistical mechanics
[1] ' and it is very helpful because it makes an
orderly separation between three distinct contri-

butions to A. In eq (1) Ao is the total specific Helm-
holtz energy of the solid at absolute zero of^the

temperature, T, excluding all vibrational contri-

butions. Ao therefore has a definite value for every
fixed configuration of the nuclei of a solid and is a

function only of the relative positions of these

nuclei. Under conditions of uniform pressure, P,
the relative positions of the nuclei can in prin-

ciple be specified completely by the specific volume
V. Under these conditions therefore Ao is a function

of V only.

The quantity ^q.h. in eq (1) is the contribution to

A arising from thermal vibrations in the quasi-

harmonic (q.h.) approximation. In this approxima-
tion, the normal vibration frequencies of the solid

are assumed to be functions only of the mean nuclear
positions and therefore do not depend explicitly on
T. As in the case of these frequencies will be
functions only of v if the pressure is uniform, ^q.h.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characteriza-
tion of the High-Pressure Environment, held at the National
Bureau of Standards, Gaithersburg, Md., October 14-18, 1968.

has the general form

3n

A^,^,^kT 2 {eil2T+ln [1-exp (-Oi/T)]} (2)

! = 1

where di — hfijk, h is the Planck constant, k is the

Boltzmann constant, /, is the ith normal mode fre-

quency, and n is the number of atoms per gram.
The quantity Aa.\\. in eq (1) is the contribution

due to anharmonic effects not already included
(implicitly) in A^^ ^^ . It is therefore a correction to

^q.h. which in essence accounts for the fact that

the fi cannot really be independent of T at constant

volume. For most elemental metals at room tem-
perature ^a.h. is a very small correction, but in the

case of sodium, it is significant at low pressures and
therefore a crude (but effective) estimate will be
made in this case. In subsequent sections of this

article P, v, T equations of state are calculated for

solid sodium and aluminum. In each case it is done
by considering separately the important contribu-

tions of each term on the right side of eq (1).

2. The P, T Equation of State
of Sodium

2.1. The Evaluation oi Ao

Since in general P{v, T) =— (dAldv) t, then

according to eq (1) the contribution of to the pres-

sure is Poiv) =— {dAoldv)T=— dAoldv where Po{v)

is a function of volume only. It is convenient to

express volume in terms of the dimensionless param-

eter X — v/vo where vo is the specific volume at

P= 0 and r=0 K. For sodium i;o = 0.9873 cm^/g.

With this definition, the pressure becomes P{x, T)

^ — po{dAldx)r where po=l/vo is the density at

P = 0 and r=0 K. Likewise the expression for
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Po becomes

Po(x)--po •

(3)

From eq (3) it is clear that in the range of interest

one need consider only those contributions to

Ao which change appreciably with volume and there-

fore contribute significantly to the pressure. For
sodium this excludes a good deal. It excludes,

for example, the necessity of accounting for the

volume variation of the wave functions of the ten

core electrons in each sodium atom [2]. This is

because the core electrons are tightly bound rela-

tive to the valence electrons and are locahzed in

a region of volume, Vc, which is small compared
to the volume per atom, Va, in the solid. The com-
pression of core electrons is therefore unlikely to

become an important factor until Va — Vc, which in

sodium corresponds to jc — 0.2 and a pressure of

well over 500 kbars at room temperature. Therefore,

for sodium, the calculation of Po{x) requires an
evaluation only of the interaction energy between
the singly charged atomic cores themselves, the

interaction energy between cores and valence

electrons, and finally the energy of the valence

electrons themselves. Two small contributions

to the core-core interactions can be established

immediately. These are the repulsive contribution,

A^, due to the mutual overlap of core wave functions

and the attractive contribution, A^, due to the Van
der Waals interaction. Reasonable semitheoretical

expressions for the pairwise contributions to

A^ and A^ already exist in the literature [3-5],

and from these one finds

^f,'= (130.92 XIO^) exp [5.07 (1 - 2.0611x'/3)]

ergs/g. (4)
and

A^= -{0.U87Xl0^)lx^

ergs/g. (5)

Equations (4) and (5) represent the results of

calculations in which only nearest neighbor inter-

actions are included. The remaining contributions

to ^0 can be viewed as the sum of four conceptually
distinct energies. These are as follows:

(1) Ao'^\ the contribution (ground-state energy)

which one would have if all valence electrons were
in the ground state (i.e., not translating throughout
the lattice) and interacted with nothing save their

respective ion cores;

(2) Ai, a contribution (the Fermi energy) which
occurs because the exclusion principle prohibits

all the valence electrons from being in the same
energy state;

(3) AV\ a contribution (exchange energy)

which results from interactions between electrons

and degeneracies which occur because of their

indistinguishability;

(4) Ai"^'^, a contribution (correlation energy) :

which arises because valence-electron motions are

somewhat correlated because of the mutual Coulomb
interactions.

Of these four energies, A-d is presently the easiest

to evaluate. This is because the band structure of

sodium has already been calculated in considerable
detail. Bienenstock and Brooks (B-B), for example

j

[6], have given sphericalized analytic relations con-
|

necting valence electron energy with wave vector '

in sodium for various values of the lattice parameter.
The latter calculations are very detailed and are

|

based on the quantum defect method. Since the
j

Fermi surface of sodium is known to be very nearly
spherical [7], the energy versus wave vector rela-

tions given by B-B can be used to obtain the (mean)
Fermi energy for several values of the sodium lattice

parameter by simple integrations over wave vector

space. When this is done one finds in every case
that the mean Fermi energy of compressed sodium
remains within 3 percent of the free electron value

for electrons of equivalent number density. The
B-B calculations are particularly interesting be-

cause they were performed in several ways. One
set of calculations, for example, includes the effects

j

of core polarization and another does not. These
j

inclusions and exclusions were made so as to dis-

cover their effect on theoretical shift of the Lande '

^ factor for sodium.

The results are interesting in that the set of cal-
|

culations which provides the best agreement with

the pressure dependence of the experimentally !

measured ^-shift is also the set for which the mean !

Fermi energy is closest to the free electron value.

As a matter of fact, in this case the mean Fermi
energy remains within 0.7 percent of the free elec-

tron value over a range of the lattice parameter
which for sodium corresponds to 30 percent com-
pression (i.e., 0.7 ^ ^ 1.0). The indications are,

therefore, that for sodium A{^ is very close to the

free electron value, which is given by

A{ix) = (81.511 X 109) ergs/g.
(6)

The closeness of Af( to the free electron value is not

surprising. The free-electron-hke nature of the

metallic sodium valence electron has been empha-
sized by many authors for the past 35 years [8].

'

So far as the equation of state is concerned, it is a
j

fortunate fact, because it makes it sensible to cal-

culate A()^- and A'i/'^^- in the same approximation,

especially since these terms are only small correc-

tions to A^. Expressions for the free electron ex-

change energy may readily be found in the literature.

A particularly good treatment of this subject has

been given by Gombas [9]. Estimates of the free

electron correlation energy may also be found.

Here, an analytic expression given by D. Pines [10]

is used. Great accuracy is not attached to the latter

expression (±20 percent) but, as it happens, for

the monovalent alkali metals the two energies
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Jji^ and ^o""' tend to cancel one another and txs a

result their sum contributes very little to either Aq
or Fo. The possible inaccuracy of /4o"'''' is therefore

not a matter of great concern. Using the literature

mentioned above, one finds that for sodium ^

At^'ix) +A^r-'-{x) =109[41.2058M3- 79.887

+ 35.7213 In (3.933j»:>/3)-5.8515;c1/3] ergs/g. (7)

The constant term in (7) has been kept for the pur-

pose of calculating the cohesive energy later on.

The ground-state energy A^-^- may be evaluated

in either a semi-theoretical or a purely theoretical

fashion. From the standpoint of accuracy, the semi-

theoretical approach is most desirable because with

this approach one can incorporate some of the

observed experimental behavior in the final expres-

sions for pressure. This can be done by construct-

ing a reasonable and adjustable analytic expression

for the ground-state pressure P^'^- and then manipu-
lating the adjustable constants until satisfactory

agreement is obtained betw^een the theoretical and
experimental 0 K isotherms. The theoretical 0 K
isotherm Poo{x) is given by the sum

PooW=PoU)+PSU)

where Po{x) denotes the contribution of 0 K lattice

vibrations. In the range O^Poo{x) ^20 kbars, an
accurate experimental isotherm can be obtained

from the data of Beecroft and Swenson [11]. The
big advantage of the semi-theoretical approach is

that it permits errors arising either from smaU omis-

sions or from inaccuracies in the expressions (4)

through (7) to be absorbed in the adjustable con-

stants of Pq'^'. This is particularly important at low
pressures, where the theoretical isotherms are given

by the small differences between relatively large

quantities. In this region small errors in .any of the

terms contributing to the 0 K isotherm (^o"" for

instance) are likely to show up in a conspicuous way.
At higher pressures this is no longer true. Conse-
quently in the higher pressure region one should
expect good agreement between a purely theoretical

calculation and a good semi-empirical estimate of

the 0 K isotherm, provided of course that the error

in each contributing term of the pure theoretical

calculation is sufficiently small. It is therefore a good
procedure to check the results of an analytic, semi-
empirical calculation at high pressure by comparing
them with the prediction of pure theory. This is the

procedure which wiU be taken below.

As in the case with the other quantities which
contribute to Ao, it is easy to obtain a reasonable
analytic expression for Al'^-. The first such expres-

sion was derived for the alkaU-metals by Hellman

- The potential arising from the Coulomb interaction in the Hartree field is included
in eq (7).

and Kassatotschkin [12] (H-K) and in our units it

has the form

^fi-^ U) =10«{-435.273/x'/'''+ (201.0432/;c) [1

-il + yx'l^)e-y-^'l']} ergs/g (8)

where and y are adjustable constants. The expres-

sion (8) is used in subsequent calculations because
it is simple and analytic and because its theoretical

basis is sufficiently sound. The development of

eq (8) is based primarily on an approximation due
to Wigner and Seitz [8] (W-S), according to which
one assumes that Af^- =nX{t\\e ground state energy

of one valence electron and one core contained in a

spherical cell of volume Va). Corrections to this

approximation for sodium have been investigated

in considerable detail and have been found in gen-

eral to be quite small [13—14]. In the H—K develop-

ment it is further assumed that ground-state wave
function i//g s is equivalent to that of a free electron

(i.e., i//g.s. = l/fa. The energy in a single cell Ea
is then calculated with the expression

r R

where <p{R) is the effective valence electron core-

interaction, R is the distance from the center of

the core (which coincides with the center of the

spherical cell), and Rg is the cell radius. The ad-

justable constants appear in the expression for

ip{R)j for which (H-K) used the form

<p{R)^-{eVR)[l-Ae-'<'^]ergs. (9)

Here e is the electronic charge in e.s.u. and the

constants A and K must be determined from ex-

periment. In eq (8), z= (^/A:^) X lOi^cm^ and
y—KR^ where R° is the value of Rg at v— Vo.

As mentioned previously z and y can be evaluated

by forcing agreement (to within experimental error)

between the theoretical expressions for Poo{x)
and the experimental 0 K isotherm. To do this it

is necessary to jump ahead to the approximate
expression for Pq derived in the next section, that

is,

PS(;c) - (0.5435)/;ci ««- kbar. (10)

With Ao{x) given analytically by the sum of eqs

(4), (5), (6), (7), and (8), and with given by eq (10),

the 0 K isotherm is easily derived from the relation

Poo{x) =— po dAoldx + P'^{x). When this is done

and when z and y are adjusted to optimize agree-

ment with experiment, one finds z = 0.43258 and
y=6.71. The results of this adjustment are shown
graphically in figure 1, the complete analytic expres-

sion for the 0 K isotherm is given in Appendix A.
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THEORETICAL Table 1. Comparison of values of A^-^- and P^-^ calculated

using the Prokofjew Potential for sodium with those calculated

using (8).

0.850 0.900 0.950 1 .000

Figure 1. The result offitting the theoretical 0 K isotherm to the

experimental data.

As was mentioned earlier, there exist more purely

theoretical approaches to the calculation of ^§'*'. Of
these the most successful (for sodium) has been
that of Wigner and Seitz [8]. These authors merely
solved the Schrodinger equation for a single ground-

state valence electron in the spherical W-S cell. An
eigenvalue of the energy per valence electron, Ea,
was assumed and the Schrodinger equation for

'I'g.s. was numerically integrated until the proper
boundary condition was met. In this case, the

boundary condition compatible with the transla-

tional symmetry of the lattice requires [8] that

jAg.s.C^s) =0. By solving the Schrodii;iger equation
in this way (W-S) were able to generate the curve

of Ea versus Rs or equivalently the relationship

between A^-^- and x. The valence electron-core

interaction used by (W-S) in the Schrodinger equa-

tion was one originally derived from spectroscopic

data by Prokofjew. Here the W-S procedure has
been repeated to obtain theoretical values of Aq-^-

and Pq'^'. These values are much more accurate

(than those of (W-S)), since they were obtained by a

computerized Runge-Kutta integration technique.

In table 1 values of Af)-^- and Pt'^' calculated from
eq (8) are compared with the theoretical (W-S)
values as a function of x. It can be seen immedi-
ately that the agreement between the two sets of

values is quite good to about 40 percent compres-
sion. This agreement implies several important
things. First of all, it implies that the theory is sound
and that all the analytic terms which contribute to

Poo(^) are represented quite accurately. Secondly,
it impHes that the error in the calculated 0 K pres-

sures should amount to Uttle more than the dif-

ference between the theoretical and semi-theoretical

values of Pq-^-.

At x= 0.6 this difference is only 0.23 kbars,

whereas the calculated pressure. Poo, at this com-
pression is 94.2 kbars. Since the analytic version

of Pooix) is forced to reproduce the correct (ex-

perimental) pressures below 20 kbars and since

up to 94.2 kbars this same function agrees with the

theoretical values of Poo{x) everywhere to within

X
Prokofjew Equation (8)

pe.s.
' 0

pg.s.
' 0

1.0235

1.0133

0.9914

0.9701

0.9619

(lO^ergslg)

-347.10

-347.70

-349.02

-350.30

-350.80

(kbar)

-59.76

-60.19

-60.96

-61.66

-62.00

(lO^ergslg)

-347.71

-348.32

-349.64

-350.94

-351.45

{kbar)

-60.56

-60.86

-61.49

-62.09

-62.31

0.9215

0.8882

0.8569

0.7801

0.7374

-353.30

-355.40

-357.40

-362.40

-365.20

-63.34

-64.33

-65.14

-66.48

-66.46

-353.96

-356.06

-358.05

-363.02

-365.79

-63.37

-64.16

-64.80

-65.80

-65.78

0.6914

0.6441

0.6360

0.6009

0.5937

0.5367

-368.20

-371.2

-371.70

-373.80

-374.20

-376.90

-65.39

-62.80

-62.29

-60.27

-55.80

-40.65

-368.77

-371.78

-372.29

-374.44

-374.86

-378.05

-65.14

-63.41

-62.97

-60.50

-59.84

-52.50

0.8 kbars, it seems a fair conclusion that the analytic

0 K isotherm reproduces the true sodium isotherm
with an accuracy of 2 percent up to pressures of

95 kbars. For pressures beyond about 95 kbars the

two»^ calculations begin to deviate significantly and
one cannot be entirely sure which is the more
correct. Estimates of accuracy are therefore limited

to the region of f*oo(^) ^95 kbars. As a last test

of the analytic 0 K isotherm, the theoretical bulk

modulus and cohesive energy at ;c = 1 are compared
with the experimental values. The experimental

cohesive energy of sodium is [16] 48.28X10^

ergs/g at 0 K and the experimental bulk modulus
is [11] 78.2 kbars. The theoretical values are 47.314

X 10» ergs/g and 79.0 kbars.

2.2. The Contribution of ^q.h.

At high temperatures {dilT<l for all i), the

expression (2) ior A^ has the limiting form

3n

^,.h.= A:r^ In (dilT)- (11)

This makes a contribution Pq.h. to the pressure of

an amount

Pfi.hix, T)=po3nk iyoix)!

= 3.293 (yo/x) (r/300) kbars (12)
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3)1

where yo(-v) = — ^ yj, and yj,

1=1 fi \(^x It

=_£ (

Although the form of eq (12) is quite simple, the

theoretical evaluation of yo{x) (quasi-harmonic

Griineisen parameter) is full of obvious difficulties

and some rather drastic approximation must be
made. This isn't really a cause for concern because
it is already known [17] that for sodium near

x=\, yo should be of the order of unity and more-

over should diminish with decreasing x. This means
that at 40 percent compression (x = 0.6) and room
temperature (here r=300 K) the contribution of

h should be no more than five kbars. Since at

this compression Po{x) is 92.8 kbars, then a

50 percent error in yo (which is quite unlikely)

would lead at the most to a 2.6 percent additional

error in the total pressure. In estimating yo(^),
therefore, one can afford to be a little crude. The
approximation which will be used for yo(it;) is

the (apparently accurate) "two-mode" approxima-
tion [18-20]. In this scheme, one replaces the un-

wieldy average over the 2>n logarithmic derivatives

of the normal mode frequencies,/;, with an average
over only two types of long wavelength acoustic

modes. Of these two types of modes, one is purely

longitudinal (p.l.) with a propagation velocity

Ci, given by

(13)

whfre C?i is the usual elastic constant, evaluated

along the 0 K isotherm. The other type is purely

transverse (p.t.) (having two independent directions

of polarization) with a propagation velocity, Ct,

given by

Ct —xClil (14)

where C^4 is the usual elastic shear constant evalu-

ated [21] at 0 K. Since as a solid is isostatically

compressed, one expects the wavelength of a p.l.

or p.t. mode to vary as x^'^, then the propagation
frequency of a p.l. mode,/;, is given by/ °c Ci/x^^^

and that of a p.t. mode,/, is given by/ ^ Ctlx^l^.

With these relations for frequency and the expres-

sions (13) and (14) for velocity, one can calculate

Jo-
:——(^
/ \ dx

1

6 2C?iV dx

and

yo—T
x_/ dft_

ft \ dx

1 X (dC%,

6 2^4 \ dx

(15)

(16)

In the "two-mode" approximation, one assumes
\ 3n

that the average ^ ^ y{) is given approximately by
on j^j^

7- {"y&+ 2ray()}. In other words, the 3n values of
on

yf) are replaced by n of the type y{) and 2n of the

type y{). It remains now to compute C?i and C% from
theory.

For the alkali metals,^ the theory of the elastic

shear constants C44 and C°= (Cn — Ci2)/2 has been
developed by Fuchs [22]. According to Fuchs, the

electronic contributions to 0%^ and C" are given, re-

spectively, by 53.2/x'*'^ kbars and 7.146/x'*/^ kbars.

To the electronic term of C44 one should add the
contribution due to ion core-ion core repulsion [23]

(this contribution can be neglected [23] in the case oif

C°). When this is done the expressions which result

for C54 and C are

^4 = {53.2^3 + ( 1654.6/^1/3 _ 312. 1/^2/3)

exp [5.07(1-2.0611x1/3)]} kbar (17)

Co= 7.146M3 kbar. (18)

With Co given by (18), C?i can be calculated im-

mediately from the identity

dPn 4 -

(19)

With (15), (16), (17), (18), and (19) an analytic ex-

pression for the theoretical yo(x) can be constructed

Table 2. Calculated values of yo, yQ, yj,', and
P" /(T/300) as a function of x for sodium.

X

y'a y'a

(7/300)

(Dimension-
less)

(Dimension-

less)

(Dimension-

less)

(kbar)

1.06 0.895 0.214 0.957 2.784

1.05 0.893 0.205 0.933 2.803

1.04 0.891 0.196 0.905 2.824

1.03 0.890 0.187 0.897 2.845

1.02 0.888 0.178 0.891 2.867

1.01 0.886 0.169 0.875 2.890

1.00 0.884 0.161 0.845 2.913

0.96 0.879 0.128 0.788 3.015

0.92 0.874 0.097 0.745 3.130

0.88 0.871 0.068 0.693 3.259

0.84 0.869 0.042 0.640 3.406

0.80 0.868 0.017 0.596 3.571

0.76 0.867 -0.006 0.538 3.758

0.72 0.868 -0.026 0.473 3.970

0.68 0.869 -0.043 0.391 4.210

0.64 0.871 -0.057 0.290 4.483

0.60 0.874 -0.066 0.148 4.796
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in the "two-mode" approximation.

The resuhing values of yoix), its first and second
derivative (70 and 70), and the function Pq.h./(^/300)

are hsted as functions of x in table 2.

In the low-temperature limit eq (2) has the form

^q.h. = ^2e</2 = 2/i/i/2. (20)

i=l i=l

Using the Debye approximation [24] to estimate the

right side of (20), one finds

^q.h. - (9/8) nk doix)

= (4.0651 X 106) ergs/g (21)

where Ooix) is the Debye temperature which for

sodium at x=l is [25] = 152 K. Now since the

Debye temperature has the definition: h fmaxl^
where /max is the highest normal mode frequency,

then one should expect that the quantity

— {xlfmax)dfmaxlldx= - {xl do) ddoldx

behaves very roughly as yoix) which, as it happens,
is fairly constant (see table 2) with values remaining
near 0.86. As a rough approximation it will do to set

— {xIdD) dOoldx^yoix) 0.86. After integrating

this expression one has

0z)(:t) = 9z)(l )/%»•«" =152^«-86 K. (22)

By substitution (22) into (21) and differentiating,

one can obtain an estimate of which is the con-

tribution of /4q h to the pressure at 0 K. This is

Pji(x) = (0.5435)/xi-«« kbar (23)

which is the expression already given in (10).

2.3. The Contribution of ^a.h.

- From the outset it should be clear that /4a. h. will

modify the isothermal pressures near room tempera-
ture only in a minor way. In effect it is a small cor-

rection to a small correction.

It has already been said that in the quasi-harmonic
(q.h.) approximation the /; are assumed to be (for

all practical purposes) functions of x only and that,

in essence, /4a. h. could be viewed as accounting for

the temperature dependence of the If one finds

therefore that some of the /, vary appreciably with

temperature at constant volume (i.e., if ((9 In fi/d In T)x

is not small compared to unity), then a correction

should be made. In the case of the present calcula-

tion on sodium, consistency demands that whatever
corrections are made should be made only on the

frequencies (fi and ft) on the p.l. and p.t. modes
used in the approximation of Aq,h.- The necessity of
a correction in this case is easy to discover. Obvi-
ously, for the q.h. "two-mode'! approximation to be

perfectly correct it is necessary that and Cj be
given exactly by (13) and (14). In other words, it

requires that the elastic constants Cn and C44 be
functions of volume only (i.e., Cn C^,; Ci4 = C^^).

This is because in the q.h. approximation it is

assumed that the /, are independent of T, which
implies that for a given x they are essentially the

same at elevated temperature as they are on the

0 K isotherm. Consequently the temperature de-

pendence of/; and ft will show up in the temperature
dependence of Cn and C44. More precisely one can
write

and

a In /A /
> d In Cn

dlnT), ^

V a In r

a In/A .^ d In C44

V a In r

For sodium under normal conditions the deriva-

tives on the right side of (24) and (25) can be evalu-

ated from the experimental data of Diederich and
Trivosonno [23]. From these data one finds

(a In CiJd In r).r=i =- 0.351 and {d In Cn/d In r)x=i
= 0.0197. This tells us immediately that in the "two-

mode" approximation only the shear frequencies

ft will contribute appreciably t0/4a h - the contribu-

tions of /( being negligible by comparison. Since,

as has been said, ^a.h. will make only a small con-

tribution, Pa.h., to isothermal pressures, only a crude
estimate of Pa.h. is necessary. The most obvious

way to make this estimate is simply to examine the

correction to yi which results from the temperature

dependence of C44. To do this one needs an expres-

sion for C44, which gives the temperature de-

pendence of C44 at least to first order (i.e.,

C,, = CUl+gix)T],

where g{x) is a function of x only). It is not hard to

find such expressions [1] but unfortunately in the

case of C44 the function g{x) is not easily evaluated.

One can, however, estimate the temperature de-

pendence of the shear constant C = ¥2(011 — C12). To
first order in T it can be shown that

C= CHl + ~gix)T) (26)

in which g{x) is given roughly by [26]

g{x)=-syl>ia (27)

where s is a positive constant.

Now since Fuchs [22] has pointed out that C%
and C" should be almost exactly proportional to

each other, then it seems reasonable to expect that

the first-order temperature-dependent terms of C44

and C are also simply related. As a matter of fact,

from experimental data it is possible to deduce

that for sodium
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g{x) ^ agix) +b (28)

where a and b are constant. Daniels [27], for ex-

ample, has shown experimentally that for sodium
under normal conditions

dC 44

dx dx )i
(29)

This implies directly that, for some range of iso-

thermal compression, C44'^ C; or, using the the-

oretical expressions for C44 and C,

(i+g(;t)ro)-8C»(i+^(%)ro), (so)

where 8 is the proportionality constant and To
= 300 K. But Fuchs has shown (and also the ex-

perimental data) that C/C44 is very nearly con-

stant [28]. Therefore, setting the constant e = C'V^44 '

one can rearrange terms in (30) to obtain

g{x)^heg{x) + {he-\)IT^ = a~g{x)+b. (31)

Using (31) for g{x) and (27) for g{x), C44 becomes
C4A = OU{\ + bT) - {sale)y'J. Setting 5a/e = /3 this

becomes simply

C,,= {l + bT)Cl^-liy'J- (32)

With eq (32) it is possible to obtain an expression

for the first order effect of temperature on the

derivative

-(a In /,/alnx)r=-l/6-(l/2) {d\nCi^ld\nx)r

Using (32) for C44 and noting that the term contain-

ing the temperature is small relative to [29] (1

-\-bT)C%i one can obtain (Note also, bT < 1)

Pr—Pq.h. + Pa.h.

= 3.293(7o + A7)(r/300)/;t kbar. (35)

Since analytic expressions for 70 and C^^ have
already been given, it is necessary only to evaluate

/Lt. This can be done by demanding that the total

pressure (Po + Pt) be equal to zero at room tem-
perature (300 K) and the observed value of volume
[30] {x= 1.043). In this way one obtains /x= 17.345

kbar.

The evaluation of jx completes the P, v, T equation
of state for sodium, but it is interesting to pursue the

matter further and find the expression for A^.h.

implied by eq (34). This is done in Appendix B, from
which one finds

^a.h. = -/^(2.1674 X 10«) (r/300)Hy;/C<'J ergs/g.

(36)

With eq (36) it is possible to calculate the total

specific energy E in the high-temperature limit

{T>dD) through the relation £= - [a {AIT)ldT]jc.

This gives us

E^Ao+ (3.25118 X 10") (r/300) [1

+ (2/3)At(r/300)7;/C«J ergs/g. (37)

With eq (37) one can make a more stringent test of

the accuracy of ^a.h. by calculating quantities more
sensitive to it than the pressure. For example, one
can calculate the specific heat at constant pressure,

Cp, and compare it with the experimental [31] values.

One can use the identity

Cp— C(,+
(XX

Po "Mil (38)

din ft

d In X J T

d In CI,

d\n X
{Tim)IC% (33)

where several constants have been lumped into jx.

Viewed as a correction to yo the second term on
the right of eq (33), which we will call Ay', contrib-

utes an amount h to the pressure, which is given

by

Pa.h=poSnkmylx= 3.293(Ay/;c) (r/300) kbar

(34)

where Ay= (2/3) Ay'. The total pressure Pt due to

thermd effects is therefore

where both Cv= {dEldT)x and (dEldx)T are given by
eq (37) and a^\lx{dxldT)p^(dPldT):rl{-x{dPldx)T\

can be obtained from the P, v, T equation of state

already derived.

In this manner Cp has been calculated (with small

quantum corrections [32]) along the P = 0 isobar.

The results are compared with experiment [31] in

figure 2; the agreement is excellent. The derivative

{dCpldP)T was also calculated under normal condi-

tions and was found to have the value 1.657x10"*

cm^/g K. The experimental value is [33] 1.653 XlO~*
cm^/g K. The theoretical room temperature iso-

therm is compared with experimental data in table

3; values of Ay/(r/300) are also listed in this table.

The theoretical isothermal bulk modulus at 349 K
and normal pressure was found to be 64.3 kbars; the

experimental value [11] is 63.9 kbars.

The theoretical Hugoniot equation of state (which

is somewhat sensitive to yo+ Ay) was also calcu-

lated. An outline [34] of the procedure for doing so

is given in Appendix C. The results are compared
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Figure 2. Comparison of theoretical and experimental Cp values.

The Dulong-Petit value is 10.84 X 10+'^ ergs/g K.

with experiment [35] in table 4. The agreement is

again excellent.

At this point it seems a fair conclusion that, for

T in the neighborhood of room temperature, the

theoretical isothermal equation of state for sodium
gives pressures accurate to within 3 percent at a

given volume in the range of compression
(0.6 ^ ^ 1).

3. The P, V, T Equation of State of
Aluminum

3.1. The Evaluation of Aq

From the viewpoint of electronic structure,

aluminum is in many ways similar to sodium. Like
sodium, it has ten tightly bound core electrons

which will contribute little to Po{x) for sufficiently

small compressions. Also like sodium, it appears
that the mean Fermi energy of aluminum is close to

the free electron value. The band structure calcula-

tions of B. Segall, for example [36], indicate that for

aluminum, /i{,= 0.976 X the free electron value at

the normal volume. Calculations for smaller volumes
have not been carried out, but here it will be
assumed that A{ stays near the free electron value

for reasonably small compressions. We will there-

fore use the free electron approximation for
^eorr. +^ex.

g^^^^ 0.976 of the free electron value for

A-^. The appropriate expressions are

and
^^=109(734.35/a;2/3) ergs/g (39)

^eorr.+^ex. ^jQ9|-_j7o.755 + 91.283 In (2.9849x'/3)

-59.162/a;1/3-11.447x'/3] ergs/g (40)

where again x=vlvo, and for aluminum [30]

Table 3. Theoretical and experimental 300 K iso-

therms and values of A7/(T/300) as a function of
X for sodium.

1.06

1.05

1.04

1.03

1.02

1.01

1.00

0.96

0.92

0.88

0.85

0.80

0.76

0.72

0.68

0.64

0.60

P(kbar) P(kbar)

Theoretical

-1.034

-0.426

+ 0.206

0.883

1.591

2.323

3.081

6.518

10.637

15.569

19.92

28.671

37.368

47.991

61.061

77.280

97.604

Experi-

mental "

AP(kbar) A->'/(r/300)

Approximate
experimental

error

1.51 ±0.1

2.19 ±0.1

2.92 ±0.14

6.16 ±0.20

10.07 ±0.20

14.98 ±0.30

19.50 ±0.30

(Dimension
less)

0.290

0.275

0.260

0.250

0.240

0.229

0.215

0.176

0.144

0.115

0.090

0.067

0.050

0.033

0.019

0.008

-0.003

" Reference [11].

Table 4. The theoretical and experimental Hugo-
niots of sodium

X
n(kbar) P/,(kbar)

Theoretical Experimental "

0.7341 48.64 47.08

0.6762 71.06 70.47

0.6517 83.61 83.35

0.6404 89.67 90.54

0.6094 113.31 112.77

« Reference [35].

j;o= 0.36945 cm^g. These expressions are somewhat
different than eqs (6) and (7) for sodium. This is

because, unlike sodium, aluminum has three valence

electrons per atom. Also unlike sodium the inclusion

of ^0 the expression for Aq'\?, unnecessary

[37], as they make very small contributions to Po(x)
for low compressions (0.8 ^ x). They have therefore

been neglected. The remaining problem is that of

evaluating Af^- (in the W-S scheme).
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Unfortunately there exists as yet no Prokofjew

potential ifriR) for aluminum which will give the

interaction between a single valence electron and
the triply charged aluminum core. Without this

interaction one cannot integrate the Schrodinger

equation to obtain A^-'^-. The situation is not hope-

less, however, because near the normal volume the

pressure Pq^' for aluminum should depend primarily

on the value of ^pp{R) , near R — Rg and the integral

of (fi'iR) over the atomic volume Va. This is so be-

cause of the free electron like behavior of the

valence electrons in the region between cores.

For values of R greater than the approximate core
radius Re, ^Zs. "As s.

should behave hke 1/d„. In the

region R < Rc set i//g.s.
= Rg) where is the

wiggly part of the wave function in the region of high

kinetic energy. The energy per ground-state valence

electron Ea is given by

Ea^ + 4nTj'^^ iljiipp{R)R^dR

+— <pp{R)R^dR
Va Jrc

iPtV^ijjiR^dR (41)
2,m jo

where m is the electron mass. The pressure contri-

bution Pa arising from is Pa =— ( lI'lTrR'DdEaldRs
which according to (41) is given by

-4^RIPa=+^\ 2rjjnlj'i<ppiR)RhlR

\,f^^^^R'dR+^^,{Rs)Rl

J I I I L

0.600 0.700 0.800 0.900 1.000

Figure 3. Comparison between values of P''^- calculated using

Prokofjew potential with those calculated using (/)(R).

Table 5. Theoretical values of Pf^- (x) and Po (x)

for aluminum

X Pus.
' 0

P„

(kbar) (kbar)

0.9922 -1210.17 5.73

0.9852 -1218.85 11.93

0.9702 -1238.37 25.29

0.9606 -1251.05 34.38

0.9461 -1269.59 49.85

0.9311 -1289.70 66.44

0.9221 -1301.32 77.63

0.8941 -1338.12 115.75

0.8705 -1370.01 152.12

0.8389 -1412.04 209.70

0.8036 -1456.74 288.94

0.7950 -1467.47 306.86

0.7820 - 1468.24 360.82

(42)

where ^'i
= d^JdRs and Va = dvaldRs. All the terms

in (42) depend on integrals of (pp{R) over the volume
except one which depends on ipp{Rs). Thus it

can be expected that if (pp{R) is well known
outside of the core and approximately inside the

core (so that the integral of (pp{R) over vc is reason-
ably accurate), then Pf^- can be well estimated.

This is easy to demonstrate. If instead of the
Prokofjew potential for sodium one substitutes

<^(/?) =— (e^//?) (1 + 10e~"'*) ergs and adjusts a
so as to reproduce one theoretical value of Pq^\ it

is possible to closely reproduce the theoretical Pq^'

curve for sodium in the range 0.6 ^ x < 1.0. Calcu-

lations of this type have been carried out using

0= 4.3931X 10^ cm"^ The results are shown in

figure 3, where they are compared with values of

Pg.s. derived from the Prokofjew potential. This

procedure works because near Rs (when Rg > Rc)

,

<p{R) ~ — e-IR and so is the Prokofjew potential.

When a is adjusted to reproduce one theoretical P%'^'

value (calculated from the Prokofjew potential), it

forces the average value o{ (p{R) in the core region

to have nearly the same value as the average of the

Prokofjew potential itself. Aside from this, both
potentials have the same value near R = 0, namely
— lle'^/R. This is the procedure which will be used
to find Po'^- for aluminum. In this case, however, a
will be determined by adjusting so as to

force Poix) to zero at the observed value of volume
(fo = 0.369 cm^g). For aluminum, therefore, the

valence electron-core potential is taken as

(^(«)=-(e2/i?)(3+10e-^) ergs (43)

where the three accounts for the triply charged
aluminum core. To eq (43) one must add the poten-

tial contribution due to the presence (on the aver-

age) of two other valence electrons in the volume
Va. For a first approximation one can assume a
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charge density of —ejva per valence electron. In

this approximation one must add to eq (43) the po-

tential [38]

= [m-R'] ergs. (44)

Using eqs (43) and (44), P^-^- was calculated for

aluminum in the manner already described. The
parameter a was found to have the value

q:= 4.3459 X 10"^ cm~'. The results are given in

table 5. The total pressure Po(^) is also given in

this table.

3.2. The Calculation of Pq h.

Unlike sodium aluminum is not well above the

Debye temperature do under normal conditions.

For aluminum [39] do =^ 395 K. For T < dp the

contribution of eq (2) to Pq.n. is

.3// 3/1

/'q.h. = (Polx) 2 y?ei + ipolx)^ 7?(A/;/2) (45)
(=1 /=!

where e,-= /i/i/ [exp {hfilkT) — !] is the mean
thermal energy of the ith mode. If one defines

3/) 3/!

y{x, T) = ^yieil^ei,
i=t 1=1

then eq (45) may be rewritten as

3//

/'q.h.
= ipolx)y{x, T)Et+ (polx)2 yUhm) (46)

where Et is the thermal energy per gram

/ 3/1 \

yle., Et = ^ etj.

Barron [40] has pointed out that in most cases

for T > O.SOo. y{x, T) is practically independent
of T. Since the calculation here wiU be limited to

T > 0.300 then the first term on the right in eq

(46) will be viewed as a product of Et and a function

of X only (i.e., {polx)y{x)Er). The second term on
the right of eq (46) is the contribution P^' of the 0 K
vibration to the pressure. In a sense this has already

been included in the calculation of Po{x) since the

latter function was forced to zero at the observed
value of volume at 0 K. At the observed value of

volume (i.e., x= I) it is the sum Po{x) + P^j which
should be zero. Thus, in effect, Po has been absorbed
into the calculation of Po, and for aluminum the

calculated Poix) should be approximately equal to

Poo{x). Consequently the second term on the right

of eq (46) should not be included in the calculation

of /'q.h. for aluminum, and therefore when
O.SOd < T < 6d one should expect that

/'q.h. = {polx)y{x)ET. (47)

The evaluation of y{x) is somewhat simpler in

the case of aluminum. This is because for aluminum
one can expect Pa.h. — 0 (this point is discussed in

the next section) and therefore Pr — Pq.h.- This in

turn implies that y{x) can be obtained directly

from eq (C-7) (see Appendix C) if one sets Ay = 0
and F= 1. In other words one should expect that

for aluminum

P„ = {Po + ipoy{x)lx)[Ao(xi) -Aoix)

+ {ET)i]}l[l-yix)ixi-x)l2x] (48)

where Xi — Vi/vo, vx is the normal volume for alu-

minum [vi = 0.3740 cm^/g) and {EtIi is the specific

thermal energy under normal conditions [41]

[(£r), = 1.636 X 10^ ergs/g]. Since Pn can be
obtained from experimental data and since

Ao{xi) — Aq{x) — Po{x)dx [where Pq is

Po Jx
given in table 5 or by equation (52)], then yix) can
be calculated directly from (48). Calculations of this

type have been carried out earlier by P. McKenna
[43] . It should be noted that the latter computations
were effected in such a way as to compensate for

the effects of yielding on P/, at low shock pressures.

The results of these calculations are given in table 6.

Table 6. Calculated values of yo(x) and Pq.h. for
aluminum.

X y Pq.h.

300 K

(kbar)

0.98 2.15 9.63

0.96 2.06 9.05

0.94 1.93 8.41

0.92 1.78 7.61

0.90 1.58 6.84

0.88 1.38 6.12

0.86 1.23 5.45

0.84 1.12 4.90

0.82 1.09 4.52

0.80 1.00 4.34

The latter data can be represented accurately by

an expansion of the type

y{x)^yo + a{l-x)+b{l-xy + c{l-x^) (49)

where yo = 2.302, a =-3.86, 6 = -56.13, and
c = 215.4. Equation (49) reproduces the data of

table 6 to within 10 percent for a given x.

To complete the expression for Pt it remains to

evaluate Et{x, T). For this the Debye approxima-

tion [24] wiU be used according to which
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Et{x, T) = (2.771 X W)eD{TldDr
\

{rV(e''

-l)}c?yergs/g. (50)

The Debye temperature do has been determined
experimentally for aluminum by Raimondi and
Jura [39] . These authors have found that

ep = 395 exp {- 1.78(0.9877 v-l)}K. (51)

By substituting eq (51) into eq (50), Et can be cal-

culated as a function of x and T. Values of h

calculated at 300 K using eqs (47), (49), (50), and
(51) are listed in table 6 as a function of x.

3.3. The Smallness of Pa.h.

As has been mentioned earlier, the relative small-

ness of Pa.h. is indicated by the smallness of

{d In C44/3 In 3 )j- relative to unity. For sodium this

derivative is ——0.3, which leads to a contribution

of about 20 percent to Pt (the thermal pressure) at

low pressures. For aluminum the experimental

data [43] indicate that {d In d^ld In T)^ --0.03.
This is a factor of 10 less than the value for sodium,
indicating that C44 depends far more on volume than
temperature. One should expect then that for alumi-

num Pg.h. is quite small andPr ~ P^.h.-

Assuming Pa.h. — 0, the P, v, T equation of state

for aluminum above the Debye temperature is

then given by P = Po(x) + Pq.h.. The theoretical

room temperature isotherm of aluminum is given

in table 7, where it is compared with two p-v

points taken from Bridgman's [44] data, which
have been corrected according to a suggestion of

Jamieson [45, 46].

For convenience we have fit (by the method of

least squares) the calculated values of Po{o(,) to

an expression of the type

Pa{x)=K{ exp[2fe(l-;c'/3)]

-exp [6(l-^i/3)]}/^2/3 (52)

This expression eq (52) fits the calculated points in

table 5 quite well (to within 0.65 kbar) in the range

(0.8 ^ < 1.01) when 71 = 627.1 kbars and b

Table 7. Comparison of the theoretical 300 K
aluminum isotherm with corrected" Bridgman''
data.

X (Theoretical)'^ Corrected
experimental

P(kbar) P(kbar)

1.01245 0.00 0.00

1.010 2.55

I.IMJU 1 A 1 1lU. 1 1

1 7 Q7

0.980 26.34

0.973 32.53 29.0 to 30.5

0.960 44.51

0.950 54.39
fiA An

/o.yo

0.920 87.69

00.y4 o/.D to 00.0

0.900 113.38

0.880 142.33

0.860 174.95

0.840 211.78

0.820 253.39

0.800 300.41

" References [45] and [46].

" Reference [44].

^ Using eq (52) for PoW.

= 3.7721. Equation (52) should be recognized as the

result of assuming that ^o(.v) is given by a Morse
function.

In the range (0.9 ^ ^ 1.01) Pq^- is represented

accurately by the analytic relation

PI'=- 100 In [^ + + Ce-^'^]

- 1057.8/;k4/3 kbar (53)

where ^ = 26.9302, P=- 16.4253, C=- 208.096,

and £) = 3.4857. In the range (0.8 ^ ;c ^ 0.9) one
must add the correction — 4131.4 + 9378.5x
— 5322 x^ kbars to P^'- to obtain an accurate repre-

sentation of the calculated values.

Appendix A. Analytic Form of

Since Po — — podAoldx and Ao{x) is the sum of

several terms, it follows that Po is the sum of terms,
each of which corresponds to one term in the expre?*
sion for Ao{x). Thus,

Po{x) = P|-^- + Pf+P^^''- + P^""- + P« + P^'.

(A-1)

le Sodium 0 K Isotherm i^^ (;»:)

Taking the appropriate derivatives of the terms in

Ao, one obtains (units are kbars)

pg s. = _ 146.8015M3 + 203.4154z[l - (1 + yx^'^

+ y2^2/3/3)g-j/x./3]/^2 (A-2)



where z = 0.43258 and y = 6.71;

P/-54.9861M3. (^_3)

Pf,'"-'-- + Pl-^- = 13.9118M3 - 12.0602/X+ 1.9756M3;

(A-1)

n = 461.89{exp[5.07(l -2.061Lri/3)]}/.r2/3;

(A-5)

and
= - 0.2404/:t3- (A-6)

To obtain Poo(x) one must add to Pq{x) the vibra-

tional pressure PjJ at 0 K

Pg = 0.5435/;c'««. (A-7)

Appendix B. The Calculation of ^a.h.

According to eq (34),

Pa.h. = -po(^r^) =2.1953(Ay/:t)(r/300) kbar

where

Ay= ju. ^7o - To
, d In C«,

In
(r/300)/c«4

(B-2)

An expression for ^a.h. can be obtained quite sim-

ply by integrating eq (B-1) with respect to x. This

results in

^a.h. =- 10«(37.594) (jmWi,\C\, + q{T) ergs/g

(B-3)

where q{T) is a general function of T only. The
function q{T) introduces either a constant or a pure
function of T into the energy through the relation

E
dT

But general theoretical calculations of first order

anharmonic effects in solids indicate that there is

no pure function of T or non-zero constant which
contributes to the anharmonic part of the energy [1].

Therefore for purposes of this development q{T)
can be set equal to zero and for^a.h. one can use the

expression

^a.h.=- 10^(37.594) (r/300)2y;/C»4 ergs/g.

(B-i)

Appendix C. Calculation <

The shock Hugoniot is the locus of pressure

volume points obtained through the shock com-
pression of a solid. For a sohd which is initially in

the normal state, the stress, (Xh, specific energy.

Eh, and compression, x, of the material behind a

steady-state plane shock wave are related to the

initial conditions through the exact conservation

relations [34]

(Th = PoUsUp/xi (C-1)

x^XiH- Up/Us) (C-2)

Eh = Ei + Xio-h ( 1 — x/xi ) /2po (C-3)

where Xi— Vilvo, vi is the normal specific volume,

Ei is the initial specific energy. Us is the velocity of

shock propagation, and Up is the velocity of matter

in the shocked state. When the yielding stress of

the solid is small compared to CTh, then cTh is (for all

practical purposes) equivalent to a hydrostatic

pressure Pn- In this case eq (C—3) becomes

En ^Ei + XiPh ( 1 - xlxi ) /2po. (C-4)

the Theoretical Hugoniot

But Ph should be given by the sum Pq + Pt or in the

case of sodium

Pa = Po(x) +3.293 (yo+ A7)(n/300)/xkbar (C-5)

where Th is the temperature in the shocked state.

With eq (37) one can substitute for {Th/300) with

the expression

109 X 3.25118(^/300) = (£„ -^o)/[l

+ (2/3))Lt(n/300)(7;/C:j]. {C-6)

By substituting eq (C-4) for Eh into eq (C-6) and

then substituting eq (C-6) into eq (C-5) and solving

for Ph, one can obtain the expression

Po+ po(yo+ Ay) [Aojxi) -Aojx) + (£r),]/(xF)

I - (yo + ^y){xi-x)|{2xF)

where P = [1 + (2/3)/A(n/300)(y;/CS4)] and

(Pr)i is the specific thermal energy under normal

conditions [i.e. Ei = Ao{xi) + (ET)i]. For sodium



the quantity F decreases rapidly with volume at

constant temperature. For example at x = 0.8 and
(r/300) - 1, F - 1.003. As a consequence, little

error results in setting F equal to unity in eq (C-7)

provided Tn is less than about 2000 K. Since Th is

also contained in Ay in eq (C-7) an iteration is neces-

sary to obtain Pu. One first sets Ay = 0 in eq (C-7)
and obtains values of Ph as a function of x. Then
Th is calculated as a function of shock compression
via eqs (C-4) and (37). These same values Tn can
be used to calculate Ay, which can in turn be sub-

stituted into eq (C-7) to recalculate Pi,, and so on.

This is the procedure which has been used to

calculate Ph for sodium.
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DISCUSSION

R. Grover {Lawrence Radiation Laboratory,

University of California, Livermore, California): For
sodium, there appears to be a lack of agreement
between shock data, Bridgman's compressibility

data, and equation of state values. I believe that

some additional experimental or theoretical work
would be desirable to resolve this.

L. Thomsen {Columbia University, Palisades,

New York): You indicated that the pressure correc-

tion Pa.h. (eq 34) arose from the temperature de-

pendence of the eigenfrequencies. Now, the eigen-

frequencies for all eigen vibrations are rigorously

defined as functions of volume only, so this Pg.h.

is "correction" in which you made a two-mode
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approximation for gamma. To make this correction

you introduced the velocities of sound. By introduc-

ing these velocities of sound you introduce a pseudo-
temperature dependence of the eigenfrequencies

which is then subtracted out again with your

Pa h . Have I followed your logic correctly?

O. Anderson {Columbia University, Palisades,

New York): From a theoretical point of view, which
do you think we can rely most on in the long run:

equations of state of aluminum, or of sodium
chloride? Would you find that the equation of state

of sodium has advantages theoretically over
either of these?

R. H. Wentorf, Jr. {General Electric Research
and Development Center, Schenectady, New York):

Could calculated isotherms be readily calculated

AUTHORS'

In response to Dr. Gravers comment: The lack of

agreement with Bridgman's data depends to some
extent upon which of Bridgman's data comparison
is made with. There is reasonably good agreement
with his 1945 data, as indicated in my paper [Phys.

Rev. 166, 703 (1968)]. There is a later set of

Bridgman's data, however, with which agreement
is poor.

Concerning Dr. Thomsens comments: It is, of

course, true that eigenfrequencies are rigorously

functions of volume only. One can't have eigen-

frequencies if the modes of vibration aren't inde-

pendent. As soon as you add anharmonic content to

the vibrational spectrum, that is as soon as you make
the frequencies temperature-dependent, the normal
modes start interacting and are no longer independ-
ent. However, it turns out in certain cases that, to a

reasonable degree of approximation, you can look

at these normal modes as having shifted in fre-

quency due to anharmonic effect.

for sodium and aluminum at, say, 500 K and 1000 K,
for possible use of these materials as high-pressure,
high-temperature reference materials?

G. E. Duvall {Washington State University, Pull-

man, Washington): I'd hke to make a comment
which bears on this subject, remotely at least.

For several years R. M. Rosenberg* at the Univer-
sity of California has done some remarkable
work on the properties of lattices which have non-
linear forces connecting them. He has discovered
some quite remarkable things about normal mode
and eigenfrequencies. One of the things that aston-

ished me was that there is not necessarily any cor-

relation between the number of normal modes and
the number of degrees of freedom in a system,
once the linear force assumption is violated.

CLOSURE

In response to O. Anderson: The question of

whether equations of state are to be preferred

for sodium, sodium chloride, or aluminum is a

difficult one. I accept the accuracy limitations

placed on the equation of state by Fritz and Decker.

Perhaps the choice depends upon the circum-

stances in any particular case. If a very com-

pressible substance is desired, use sodium; if a

relatively incompressible material is needed,
aluminum might be chosen. In the case of sodium
chloride, distortion of the lattice probably occurs
under pressure, and thus the actual pressures will

not be the same as those predicted by the equation

of state. This is not as likely to happen with sodium,
because the pressures depend almost entirely on
the volume.

In response to R. H. Wentorf: The isotherms at

elevated temperatures are easily calculated. The
1968 paper referred to above describes calculation

of any isotherm.

*On non-linear vibrations of systems with many degrees of freedom. Advances
Appl. Mech. 9, 155-242 (1966).
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All Atomistic Theory of Shock Compression of a Perfect Crystalline Solid

D. H. Tsai

National Bureau of Standards

Washington, D.C. 20234

Lattice dynamical calculations have been employed to study the process of compression of a

perfect, two-dimensional, fee lattice by a strong shock wave. The interaction energy between the'

lattice points is assumed to be the Morse-type potential function, and the interaction is assumed to

extend to the fourth nearest neighbors. The formulation of the dynamical problem is described. The

details of the computation of the shock wave stress and density profiles, shock velocity, energy density

profile, local energy distribution, velocity distribution, and the components of the Grueneisen param-

eter are discussed. Of special interest is the thermal relaxation process behind the shock front. It is

found that the relaxation time is not constant, and that the steady, relaxed region in the shock profile

trails farther behind the shock front with increasing time. The implications of these results on the

calculation of the high-pressure equation of state of a crystalline solid are examined.

Key words: Equation of state of solids: lattice dynamics; shock compression; shock wave; thermal

relaxation.

1. Introduction

The study of high-pressure phenomena in solids

has become important in recent years in connection

with geophysical investigations of the earth's in-

terior, studies of the cratering phenomena on terres-

trial and lunar surfaces from meteoritic impact or

from nuclear explosion, research and development
in ballistics and high explosives, industrial manu-
facture of new high-pressure materials such as

synthetic diamonds, and other related problems of

interest to physics, geophysics, and technology. In

all of these studies, a central problem is the equa-

tion of state of solids under high pressure and high

temperature. In the laboratory, pressures up to

several megabars, accompanied by temperatures
of several thousand K, can be obtained by com-
pressing a material by means of a strong shock wave.
Such a shock wave may be generated by detonating

high explosives placed next to the material, or by
impact of a high-velocity projectile on the material,

or by a combination of the two. These methods
have been employed extensively in the past 20
years to study the shock compression of a variety

of solids. From the dynamics of the shock wave
propagation, and with suitable assumptions, the

equation of state and other thermodynamic prop-

erties of these materials under high-pressure con-

ditions have been obtained [1 , 2, 3].'

We would like to discuss briefly the basic assump-
tions which are usually made in these studies. For
the interpretation of the dynamics of the shock wave,
two assumptions are usually employed: First, the
compressed material behind the shock front is

assumed to be in thermodynamic equilibrium. This
implies that the shock stress profile is also steady in

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14-18, 1968.

time. Second, the compressed material is assumed
to have yielded completely, so that the stresses may
be assumed to be hydrostatic. This is based on the

observation that the stresses behind the shock front

are usually many times higher than the yield strength

of the material. These assumptions essentially re-

duce the solid to a fluid, obeying the continuum
theory of fluid dynamics. With these assumptions,

and with the aid of the Hugoniot relationships of
conservation of mass and of momentum across the

(steady) shock front, one easily obtains the pres-

sure and density behind the shock front from the

measured shock velocity and the particle velocity

behind the shock front. An additional assumption
giving the relationship between the Grueneisen
parameter and density is then employed, and this

directly allows the calculation of the PVT relation-

ship for the material behind the shock front. The
equation of state obtained this way is the Mie-
Grueneisen equation of state.

A closer examination of these assumptions reveals

a number of questions. In the first place, the yield

strength referred to above is the static yield strength

of the material. Under dynamic conditions, with the

shock wave propagating at a supersonic velocity,

the yield strength of the material probably is much
higher, perhaps approaching the theoretical strength.

In any event, yielding is known to be a strain-rate

dependent phenomenon. If the material behind the

shock front yielded to a hydrostatic condition, then
it would be important to know the density and the

stress histories behind the shock front before one
could apply the Hugoniot relationships. The problem
of time-dependent yielding under the transient con-

dition of shock compression is very complex. To our
knowledge, this problem has not been exhaustively

studied either experimentally or theoretically in the

high-pressure regime.

In addition to the yielding problem which may
affect the stress profile behind the shock front, there

is a basic question in the continuum assumption.
A solid may be considered as a material made up of

discrete particles (atoms) bound together rather in a
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regular pattern by attractive and repulsive inter-

atomic forces acting at close range. It is the purpose
of lattice dynamics to study the properties of such
a solid on an atomistic scale, and to relate the micro-

scopic properties to macroscopic properties. On
this subject there exists a vast and distinguished

body of literature. From a lattice viewpoint, the

continuum approach would be valid if the wavelength
of the shock wave were long compared with the

lattice spacing. For waves of shorter wavelength, the

discrete nature of the atoms causes a dispersive

effect. Now a shock wave has high- as well as low-

frequency components. Also, because of the an-

harmonicity in the interatomic forces, there is

coupling among waves of different frequencies:

for example, the wave front of a low-frequency com-
pression wave has a tendency to steepen in the

course of propagation and to generate high-fre-

quency components. The effect should be especially

pronounced in waves of large amplitude. Thus as the

shock wave propagates into the soUd, the dispersive

effect should progressively cause the high-frequency
components to separate out from the low-frequency
components, so that the stress profile of the shock
wave perhaps should change continuously with time.

If this be the case, one would not be justified in

using the Hugoniot conditions to calculate the

stress and the density behind the shock front, with-

out first investigating the process of approach to

equilibrium.

A few authors [4, 5] also have studied the theo-

retical problem of the shock wave structure in a

solid from a continuum viewpoint. They show that

if a dissipative, viscous effect in the solid is postu-

lated, then a steady shock wave proHle is obtained.

The thickness of the shock front in such a profile

increases with increasing viscosity. In our opinion,

these theoretical results are not satisfactory, be-

cause the physical nature of the viscous effect is not

clear. As the viscous effect is reduced to zero, the

theoretical solution produces a discontinuous shock
front, but without the effect of dispersion.

The foregoing considerations have motivated us to

study the process of shock compression of a solid

from a more detailed, lattice dynamical viewpoint.

In two earlier papers [6, 7], we have investigated the

propagation of a strong, one-dimensional shock wave
in a semi-infinite cubic lattice, with simple cubic,

fee or bcc configuration. Our main purpose was to

study the role of the interatomic forces and the range
of their interaction on the dynamics of the shock
wave. For our purpose, we assumed different inter-

action energies ranging from the simple harmonic
type of potential between nearest neighbors to the

more complicated Morse-type potential with inter-

actions extending to more distant neighbors. We
further restricted the motion of the lattice points to

only one- and two-dimensional motions by assuming
certain symmetries of the relevant interatomic

forces. Finally, we assumed that quantum mechan-
ical effects were unimportant at high temperatures,
and considered the lattice to be a simple system

obeving classical mechanics. Under these assump-
tions and some others Hsted in our earlier papers
[6, 7], we studied the dynamic response of the
lattice following an impact at the face of the semi-
infinite lattice model, by solving numerically the
equations of motion of the lattice points. From the
solutions we then obtained the density and stress
profiles of the shock wave, as well as other prop-
erties such as the average energy density and the
Grueneisen parameter in the compressed lattice.

Our earher papers were rather brief, because of
editorial requirements. In this paper, we would hke
to present a more complete account of our ca' ula-

tions, and to discuss additional results from our
investigations of the lattice energy, thermal stresses,
etc., with a view to examing in greater detail the
problems of studying the equation of state of a shock
compressed lattice by numerical computation, es-

pecially the problems of temperature rise behind the
shock front, and of thermal relaxation.

It may be noted that our numerical approach to

this problem is basically the same as that employed
by Fermi, Pasta, and Ulam [8], Alder and Wain-
wright [9], Northcote and Potts [10], Rahman [11],

and others, in their investigations of the dynamic
behavior of lattices, sohds, and liquids. Recently,

Payton, Rich, and Visscher [12] have also studied

the thermal conductivity of a lattice by numerical
computation. The scope of this line of investigation

is therefore quite broad. Numerical solutions suffer

from rather well-known limitations. In our present

problem cost considerations further restrict us to

studying lattices of small sizes, and over short

time intervals. From these solutions, it is not

easy to develop a broad understanding of the various

phenomena we wish to study. On the positive side,

it is clear that in the absence of a more powerful

mathematical theory which treats large anharmonic
and perhaps also anisotropic effects in a large system
of oscillators closely coupled in a complicated man-
ner, we must continue to rely on the numerical solu-

tions to provide insight to our problem. Fortunately,

in the approximation of classical mechanics, our
problem is fairly well adapted to numerical compu-
tation, and the results are often not difficult to inter-

pret on physical or intuitive grounds. Thus if the

validity of the lattice model could be established,

then the numerical results clearly would be useful

for the interpretation of experimental data, as well

as for the development of mathematical theories.

In section 2, we outline the formulation of the

mathematical problems of calculating the dynamics
of the lattice under shock compression. In section 3,

we discuss the numerical method of solution. In

sections 4 through 9, we discuss the calculation of

the properties of the lattice from the numerical solu-

tions thus obtained. These include the density and
the stress components, shock velocity, energy

density and energy distribution, the problem of

thermal relaxation, velocity distribution and the

problem is fairly well adapted to numerical compu-
of the Grueneisen parameter. In section 10 we give a
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summary of the results and discuss our view on the

problem of shock compression of solids in the light

of our results.

2. Formulation of the Numerical
Problem

In references [6 and 7] , we have described briefly

the formulation of the problem of the shock com-
pression of a semi-infinite lattice constrained to one-

and two-dimensional motions. In both cases, our
problem was formulated as an initial-boundary value

problem in a cartesian coordinate system which was
stationary with respect to the uncompressed lattice.

In the present report, we give a more detailed, alter-

native formulation of the same problem, in a car-

tesian coordinate system stationary with respect

to the compressed lattice behind the shock front.

This resulted in a slight simplification in the calcula-

tion of some of the properties of the compressed
lattice. In every other respect, the two formulations

are identical, because the relative velocity of the

two coordinate systems, Up, is constant.

We limit ourselves here to the case of an fee,

monatomic lattice.^ The 100, 010, 001 directions are

alined in the x, y, z directions respectively, and the

face of the semi-infinite lattice is normal to the x
axis. The lattice is constrained to two-dimensional
motion, in the x and y directions, the motion in the

z direction being identically zero, because an exact

balance of the z component of the interatomic forces

would foUow from the assumed symmetry in the z

direction. If there is also symmetry in the y direc-

tion, then the motion is reduced to the simple, one-

dimensional case.

We assumed that the interatomic forces were
central forces, and that the interaction energy (/)

between a pair of isolated atoms was given by the

Morse potential function:

(/) = Z)|exp 2aro( 1

2 exp aro ( 1 (1)

where D is the dissociation energy of the atom pair,

a is a constant related to the "stiffness" of the poten-

tial, r is the separation distance of the atom pair,

and To is the separation distance at the potential

minimum. If we define a "stiffness parameter" Ri
as that value of R (= r/r„) which makes 0 equal to

zero, then aro = ln 2/(1 — In the present paper,

we assumed /?i = 0.7. Earlier, we have also set R\
equal to 0.8 and 0.9. In keeping with the treatment

of lattice vibrations of crystals in the literature (see,

for example, the review article by Slater [13]) we
assumed that there was no damping in the inter-

actions between the lattice points.

Figure 1. A face-centered cubic lattice showing lattice point

OA and some of its neighbors.

The unit cell with dimension 2re in each direction, and with OA at a comer, is shown
in heavy outlines. \A and similar points in lattice plane A are the nearest neighbors

of OA in plane A. Similarly for 2A, iA in lattice plane 16, 3B in lattice plane B; and
2C, 3C, 4C in lattice plane C, \B' is in lattice plane B' which is on opposite side of OA
from plane B. There is also a plane C on opposite side of OA from plane C. The neigh-

bors in B' and C except for 15', have been omitted in order to keep the figure simple.

The unit area is formed by the perpendicular bisectors oi OA and \A in plane A, and
IS used in the calculation of stress across plane A.

To simplify our calculations, we assumed that the

interaction engeries were pairwise additive, so that

the total potential energy of an atom is given by

<I>
= (2)

^ We have also studied the bcc lattice in two-dimensional motion under comparable
conditions, but we shaU not specifically refer to the bcc results except in figure 5.

where j = l, 2, . . . denotes the various neighbors

with which the atom interacts, and the factor 1/2

arises because each is shared between this atom
and its neighbor. For our fee lattice, we assumed
that the interactions extended to the fourth nearest

neighbors (fig. 1). These neighbors are in lattice

planes two lattice spacings away from the atom in

question, and according to the results of reference

[6], with the Morse potential and /?i = 0.7, neighbors

farther than the fourth nearest neighbors, lying in

planes three lattice spacings away, would have no
appreciable effect on the propagation of the shock
wave in the lattice.

We obtained the equilibrium configuration of the

lattice by equating d^jdr to zero, and solving for the

equiUbrium lattice spacing r— Ve based on inter-

actions extending to the fourth nearest neighbors.

For Ri — 0.7, re was found to be 0.5313 ro. The cor-

responding force constant in the x direction was
A = 10.5437Ao, where ko^ {d-(t)ldr-}r=ro = 2dW is

the force constant for the iolated atom pair [6]. The
longitudinal velocity of sound was c=/v(A/m)^/^
= 1.7252 Co, where m is the mass of the atom, and
Co=ro(Ao/m)'/^ is the longitudinal volocity of sound in

a chain of atoms spaced at ro apart, and interacting

with nearest neighbor interactions given by (1). We
assumed that these properties extended throughout
the semi-infinite lattice, and we ignored the surface

effect near the face of the lattice.

107



Equations of motion . Under dynamical conditions,

the force between an atom and its nth neighbor is

given by

ifx)n=— {a^(f)/^r)„^

{fy)n = -{l3d<Pldr)„\

where fx and fy are the x and y components of the

interatomic forces, a and are the cosines of the

direction angles between r and the x and y axes,

respectively. The total force on the atom is given by
(3) summed over all the relevant neighbors,

^ _ "
. (4)

n

The equations of motion of the atom then become

Tnx — md'^xldT^ = ^x^
my=md'^yldT'- =^ y]

where x and y are respectively the coordinates of the

atom in question in the cartesian coordinate system.

Boundary conditions: For simplicity, we assumed
that the x-y lattice plane was divided into strips

running in the x direction, each strip containing

rows (A'^= 10 to 50) of lattice points in the y direction.

For the boundary condition in the y direction, we
assumed that the solutions in two neighboring strips

were mirror images of one another about the com-
mon boundary, and that the solution in the entire

x-y plane was pieced together with these alter-

nating strips of solutions. Actually, two sUghtly dif-

ferent conditions were used along the y boundaries:

(a) In the majority of cases, we assumed that the

mirror planes contained the first and the Mb row of

lattice points, and the y components of the velocities

of these points, therefore, were always equal to zero.

The lattice points in the other rows of two neigh-

boring strips were symmetrically disposed about

the common boundary, (b) In some cases, we also

moved the mirror planes one-half of a lattice spac-

ing outward, so that the Mb row of the lattice

points in one strip and the first row of the lattice

points in the adjacent strip were mirror images
of one another, and similarly for the (A'— l)th

row in the first strip and the second row in the

next strip, etc. This was done in order to investi-

gate the effect of the boundary condition on the

details of the numerical solution, especially the

velocity distribution.

The boundary condition described above is equiv-

alent to assuming that the boundaries in the y direc-

tion are rigid and perfectly reflecting. An incident

wave /„ impinging on the boundary is reflected as

wave Ra of the same strength, Ra= — Ia- Similarly,

an incident wave h impinging on this boundary from
the other side is reflected as Rb= — Ib- K Ia = ~Ib,

then Rb= Ia and Ra = Ib- Thus an alternative inter-

pretation of the rigid boundary condition is that as

an incident wave /„ reaches the boundary, it passes

through the boundary without change as Rb., but
l(, is always accompanied by h^ — Li approaching
the boundary symmetrically from the other side, and
passing through the boundary as /?&. This situation

is analogous to the "cyclic" boundary condition

which is often employed. In the cyclic case, we
assume that as 1(1 approaches the boundary of a

lattice strip, Ib= Li simultaneously approaches the

opposite boundary of the strip, /& and /« have the

same direction, and cross the boundaries at exactly

corresponding points.

Both the rigid and the cyclic boundary conditions

are physciaUy unreaUstic. Dean [14] has discussed

the effects of these boundaries, as well as the effects

of the "free" boundary, on the vibrational frequency

of a lattice. He showed that for a large lattice, the

effects of the different boundaries on the frequency
spectra were small, approaching zero as the number
of lattice points approached infinity. In several

cases, we have compared the solution of a lattice

with ^^=10 and that with A^=50. The solution in

the central strip (also 10 spacings wide) of the lattice

with A^=50 differed in minor details from the solu-

tion of the lattice with A'^= 10, but the time-averaged

dynamical behavior of the shock wave was not at all

affected. With A'^= 10, the boundary conditions (a)

and (b) resulted in some difference in the velocity

distributions in the transverse direction. However,
with A'^=50, this difference became very small.

Thus our results were in agreement with Dean's
analysis, and the lattice with A'^= 10-50 appeared
to be wide enough for our purpose.

In the x direction, we assumed that the boundary
condition at the face of the semi-infinite lattice was
the same as that of (b) described above. As the shock
wave propagated into the lattice, we terminated our

calculations of the shock wave profile when the

shock wave no longer produced an appreciable

disturbance to the lattice points ahead of the shock
front. We have also tried to isolate a piece of the

shock compressed lattice, in order to study the prob-

lem of approach to equilibrium. This was done by
replacing the boundary condition at the shock front

with the boundary condition (b) inserted somewhere
in the shock compressed lattice, and studying the

time-development of the oscillations of the lattice

now isolated by boundary conditions (b) on all

four sides.

Initial conditions: To simulate thermal motion in

the lattice before shock compression, we initially set

the lattice in transverse motion by first displacing

one or more of the interior lattice rows in the y
direction from their equilibrium positions, and then

allowing the lattice rows to oscillate freely as they

sought to reestablish equilibrium. With the assump-
tion of central forces, it was necessary to have lat-

tice motion in the y direction to provide a mechanism
for scattering longitudinal waves generated by the
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Figure 2. Schematic diagram in the x-t plane showing the events near the beginning of
impact of a semi-infinite lattice with its image.

shock wave in the transverse direction. We limited

the "thermal" oscillations to the transverse direc-

tion purely for reasons of economy. In this way, it

was necessary to calculate only the one-dimensional

motion of plane waves in the y direction. As the

shock wave moved in the x direction, the shock front

would encounter the uncompressed lattice at various

stages of transverse oscillations, so that the scatter-

ing of the shock wave in the y direction might be ex-

pected to become somewhat random, and thus simu-

lating thermal scattering. To test this hypothesis, we
tried several initial configurations, with different

lattice rows displaced in different directions, but

with the initial lattice energy kept constant. Our
results again showed only minor differences in the

details of the solutions, but the dynamical behavior

of the shock wave was not affected.

In addition to the transverse "thermal" oscilla-

tions, we also set the lattice in motion in the —x
direction toward the origin of the coordinate system,

with the X component of the velocity x—^Up for all

the lattice points. This was to simulate the conditions

of impact: We imagined that the mirror image of this

lattice was simultaneously (and symmetrically)

moving in the +x direction toward the origin from
the other side, and with a uniform velocity+Up, and
we considered that the impact started when the

faces of the two lattices were one equilibrium lattice

spacing apart from one another. At this point we
allowed the atoms in the two lattices to interact. As
the separation became smaller than the equilibrium

spacing, the repulsive potentials between the surface

layers would decelerate these layers, and cause them
to stop and rebound. Similarly, the interior layers

would progressively decelerate and compress. By
this process, we caused a shock wave to be gener-

ated at the interface, and the shock would propagate
into the lattice as long as the lattice continued to

move toward the origin. Figure 2 describes sche-

matically in the x-t plane the events near the

beginning of the impact for a simplified, one-dimen-
sional, semi-infinite lattice.

With these initial and boundary conditions, our
problem was to calculate the position, velocity, and
acceleration of all the lattice points affected by the

shock wave, by solving the equations of motion at

successive instants of time, Tp, Tq, etc. From these

solutions, we study the details of the shock wave
propagation and of the energy conversion, and
calculate the properties of the compressed lattice.

3. Numerical Computation

It is convenient to work with dimensionless

quantities. In table 1, we list the dimensionless

quantities used in our calculations. Most of the

symbols have been defined earher. In addition,

Ra = aro = ln2/(l-/?i), M^ = KRaRe, o-^-^ is the

normal stress in the x direction, p is the density, and
other symbols will be introduced as they are needed.
Numerical Method. In terms of the dimensionless

variables, the equations of motion become

X=d^Xldt^ = Fa:IMi

Y =d^Yldt^ = FylMA

We solved these equations numerically by the

"improved Euler-Cauchy method" [15]: Consider
two successive steps, p and q, in the t-X-Y co-

ordinate system (fig. 3). For step p, at time tp, points

Ip, 2p, etc., are in an X-Y plane which contains the

line Xp passing through the equilibrium positions of

these points in the X direction. In this plane, there

are also other points which are the neighbors of Ip,

2p, etc., but we do not show them here, in order to
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Figure 3. Schematic diagram of the numerical procedure of iteration.

keep the diagram simple. Point Ip is also in the
surface layer of the semi-infinite lattice, and 2p,

3p, etc. are in the successive interior lattice planes.
These planes are generally normal toXp. Notice that

for our fee lattice, point 2p is actually the projection

of the nearest neighbors of Ip and 3p onto the X-Y
plane: these neighbors are physically in the 2pth
lattice plane, but they lie above and below the X-Y
plane in the Z direction. With Ip and 3p, they form a

face of a primitive cell of the lattice. Similar con-

siderations apply to points 4p, 6p, etc. In figure 3, w^e

also show points Ipi and 2pi which are the image
points of Ip and 2p, respectively, about the plane
X— 0. The interactions between Ip and its neighbors,

including those in planes Ipi and 2pi, determine the

boundary condition at the face of the lattice.

At step p, the position, velocity, and acceleration

(X, Y; X, Y; and X, Y) of points Ip, 2p, etc., are

Table 1. List of dimensionless quantities

Dimensional quantity Normalizing
factor Dimensionless quantity

Name Symbol

Equilibrium lattice spacing re To Re = relro

Distance between lattice r=(r2 + r§)i/2 re R^rlre={R} + Riyi^
points.

Lattice point position X, y re X^x/re, Y^ylre

Lattice point velocity Ujc= x = dxldr, etc. c Ujc=X = dXldt = Ujclc, etc.

Time T Tele t - - TclVe

Velocity of sound c = re(A;/m)i/2 Co = ro{kQlm)^l^ cico

Potential energy
n

D Ep = ^ID

Kinetic energy efc =^ (aj + up D E, = RaReM,{U^+Ul)

Force ^x =-^ iad<f)ldr)n, etc.

n

2aD Fjc^.^xl2aD, etc.

Force constants k ko= 2aW K^klko

Stress (see text) (Txx, (Tyy, etc. Sxx = a-xxlpoc^, etc.
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known, either from previous calculations, or from
the prescribed initial conditions. Step q follows step

p at an interval Af later, tq= tp + At. At time tq, the

line Xp has moved to the new position Xq, and Ip,

2p, etc., to Iq, 2q, etc., respectively. Our problem is

to determine the position, velocity, and acceleration

for points Iq, 2q, etc.

As a first approximation, we assume

Xi^^=X nil-,
yd):

y(i)= y
-' nq 1 lip

X<H'^=X„p + AtX„p + i {Atyx„p

lip

rt= 1,2, (7)

The superscript (1) indicates the value of the first

iterate. The subscripts np and nq for n=l,2, . . .

correspond to the lattice points in figure 3.

To obtain improved values, we proceed as follows:

Let us fix our attention on particle 1. From (7) we
have the coordinates X[^^ and F*,y of particle 1 and
those of its neighbors. Note that some of these

neighbors are in the image planes Iqi and 2qi, be-

cause particle 1 is next to the boundary at ^^= 0. If

particle 1 is also next to a transverse boundary, then
it also has neighbors in the image planes across the

transverse boundary. The coordinates of these

neighbors in the image plane are obtained from (7)

by reflection. From these new position coordinates,

we calculate new pairwise force components on
particle 1 from (3). We then obtain the new total

force components by summing the pairwise com-
ponents over aU the relevant neighbors according
to (4). These are F'/i' and in dimensionless
form. The superscript (2) denotes the second iterate.

From (6) we have

V(2):^ iq

y (2) :

iq

^ XI,xlqlM^

y^qlM :}
(8)

These are the improved values of the acceleration

components for point Iq. From (8), improved values

of velocity and position may be obtained:

A:i|'=j,p+iAi(;f,^+l(2,))

X\l^=X,p + iAt{X,p+X%^)
(9)

We apply equations 3, 4, 8, and 9 repeatedly to all the
lattice points, starting from Ig in the F direction to

cover the width of A'^ rows, and then from 2q, . . .,

3g, . . ., etc., always using the newest available

values of Fj., Fy; X, Y; X, F; and X, Y. In this way,
we extend the calculation in the X direction until

we pass through the shock front and reach the

region undisturbed by the shock wave (see fig. 2).

To test this condition, we require that

\X^^^— 1)1 < C, for two successive ra's

(9a)

Here C is a prescribed tolerance. This completes
the second iteration.

In the undisturbed region, there are of course the

free oscillations in the F direction set up initially

to simulate the thermal energy in the lattice prior

to the arrival of the shock wave. The iterative pro-

cedure for computing these thermal oscillations is

identical to the procedure just described for the

shock compressed region, except that we are con-

cerned here only with the iteration of the motion in

the F direction, the motion in the X direction being
given by the uniform motion with a velocity equal
to —Up=— Up Ic, as described earlier.

The third and higher iterates are obtained in the

same manner. The computation for step q is termi-

nated when the maximum change in the values of

Xnq and Y„q between successive iterations is less

than the tolerance C:

n q

iy(/0-
\^ nq

'^ nq

-Y(k-
nq

-1)|

1)1

<c
<c for aU «'s. (10)

Numerical Accuracy, Step Size, and Other Details

of Computation. We employed a double-precision

scheme for computing the positions of the lattice

points in an effort to improve the numerical accu-

racy. This was necessary because the interatomic

forces depended on the differences between the

position coordinates of an atom and those of its

immediate neighbors, and when the position coordi-

nates assume large values, small errors in these

coordinates would cause large uncertainties in the

computed forces. Our scheme consisted simply in

dividing each position coordinate into two parts:

an integer part and a decimal part, and we per-

formed the arithmetic operations separately for the

two parts, and then combined them for the purpose
of calculating the interatomic forces. In this way,
we were able to keep the same number of significant

figures (~ 7 places) in the decimal part of the posi-

tion coordinates through the entire calculation. The
velocities and the accelerations of the lattice points

all were of comparable magnitudes, less than unity.

We used only the regular single-precision arithmetic

for these quantities in order to conserve storage

space in the computer.

The numerical accuracy was also affected by the

tolerance C (9a and 10) and by the step size At, their

choice being dictated by the accuracy requirement
as well as the economy of computation. We used a

value of 10 ~^ for C and 0.2 to 0.25 for At. These were
found to be satisfactory in our earlier work [6, 7].

With C=10~^, 2 or 3 iterations were usually re-
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quired for each step of Af. A value of — 0.2 corre-

sponded to a step size of 10"'^ s, if we took the

period of a lattice oscillation at the highest frequency
to be 10~'^ s (wavelength=2/v), cf. Rahman [11].

We obtained a further check on the numerical
accuracy from our study of the problem of approach
to equilibrium of an isolated system of 25 X 25 lattice

points taken from a lattice that was previously com-
pressed by a shock wave. For such a system, the

energy should remain constant in time. Our results

showed that after 860 steps, at Ai= 0.25, the energy
density had changed from 1.011424 to 1.010916, or

5 parts in 10^.

Apart from the above investigations, we have not

analyzed the problem of errors in our numerical
method of integration, although the need for such
an analysis clearly exists. In addition, we also should
examine other numerical methods which may be
more efficient than the improved Euler-Cauchy
method of integration. These problems have now
become important as our computation becomes
lengthier with the increased size and dimensionality
of the lattice.

The size of the lattice is determined by the size

of the computer, and even more importantly, by the

cost of computation. With a computer of 65 X 10'*

words (each word = 36 bits), we could study 3,000
lattice points by our present method of computation.
In a two-dimensional array, our maximum lattice

size was adjustable from 300x10 (.A^-F dimensions)
to 60 X 50. The 300 X 10 lattice was used mainly to

study the propagation of the shock wave in the X
direction, while the 60 X 50 lattice was used mainly
to study the boundary conditions and the problem
of approach to equilibrium. In both cases, we peri-

odically recorded the computed values of position,

velocity and acceleration of the lattice point on a

magnetic tape, for later analyses of the stresses,

energy density, velocity distribution, velocity auto-

correlation, etc., of the compressed lattice. In the

shock wave calculations, we have thus far carried

the computation to a maximum time o{ t= 160 in the

300 X 10 lattice, with the shock front reaching about
205 lattice spacings from the face, but for most of

the runs, we stopped at i= 60. Earlier, in a one-

dimensional lattice with harmonic as well as anhar-

monic forces, we had carried the computation to

t= 1000 [6], in order to investigate the steadiness of

the shock stress profile. Finally, in the equilibrium

calculations, we have carried the computation to

^= 250 in the isolated 25 X25 lattice mentioned
earlier, but without definitely ascertaining that

equilibrium had been established. The time required

for this last calculation was about 4 hr.

4. Density and Stress Calculations

In the fee lattice, if the unstrained equilibrium
lattice spacing is re, then the normal density po is

mjlrl, and the normal specific volume vo is 2r^ per
lattice point. Under compression from external
forces, the equilibrium lattice spacings of the de-
formed lattice become rej- and re,j {rpz = re in our
two-dimensional case), so that the density p now is

ml2rere.,rey, and the specific volume is 2rerexr,-i,. In
dimensionless terms, we define the relative density

p and relative volume V as follows

P'^plpQ^rj/rexrey (11)

V=vlvi)= rexrevlrl (i2)

These are geometrical quantities, and are easily

computed once the equilibrium positions of the
lattice points are determined. If the lattice points

oscillate, we can define the instantaneous local

density and specific volume, and their local spatial

and time averages. If the energy density in the

shock compressed region should be non-uniform,
we might expect the local average of the density and
specific volume to differ, also, from the values of

(11) and (12), since different parts of the lattice

would have different thermal expansions. However,
in the small lattice we studied, over relatively short

time intervals, we could not detect any difference

due to non-uniform energy density profile.

The calculation of the stress components in a

lattice with the lattice points at rest at their equilib-

rium positions has been discussed in detail by Love
[16]. The ideas are quite straightforward, and may
be summarized as follows:

Consider the unit area A (fig. 1) constructed from
the perpendicular bisectors between QA and its

nearest neighbors \A. The plane of A is normal to

the X axis. We wish to calculate the normal com-
ponent of all the interatomic forces (up to the fourth

nearest neighbors, by assumption) which intersect

A. This is the usual definition of the normal stress

over A. We denote this by ctj-xo with the subscript

o indicating that the lattice points are not oscillating.

For clarity, we imagine the center of QA (and those

of lA, 2A,^A) to be slightly to the right of A in the

X direction. Then the interactions between OA and
its neighbors to the right {\A, 2A, 4<A, IB', etc.) do
not intersect the plane of A, and need not be con-

sidered in the calculation of ctxxo- The interactions

between OA and its neighbors to the left (IB, 3B,
2C, 3C, 4C, etc.) intersect A at its center, and the

normal components of the interatomic forces (eq 3)

all contribute to (Xxxo- The interaction between IB'

and IB I is like that between OA and 4C. This type of

interaction also intersects A at the center, and the

normal component therefore also contributes to

CTixo- The interaction between 15' and 1^2 is like

that between OA and 3C This type of interaction

intersects A at the midpoint of an edge of ^, and is

shared between two adjacent areas having the edge
in common, therefore only one half of the normal
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Figure 4. Shock stress profile in a one-dimensional fee lattice at t = 60, U,, = 0.1,

other conditions as given for case (8) in figure 5.

component contributes to (Txxo- Finally, the inter-

action between IB' and IBa is like that between OA
and 2C. This type of interaction intersects A at a.

corner, and is shared among four adjacent unit

areas having the point at the corner in common,
therefore only one-fourth of the normal component
contributes to (Xxxo- The resultant aj-xo is the alge-

braic sum of all the components enumerated above.

In a similar way, cryyo and other stress components
may be calculated. We worked with dimensionless

stresses. These were obtained by dividing the stress

components by the factor poc '.

When the lattice points are oscillatory, we can
calculate the instantaneous stress components ctxx

and cTyy in the same way, except now some of the

neighbors lA, 2A and 4-A may be to the left of the

plane of ^4, and their interactions with OA also have
to be considered. (Jxx and dyy now fluctuate in

time and in space, so we must also calculate the

appropriate time and space averages of the stress

components: For example, ctxx may be averaged
over an area in the plane of A to give the instan-

taneous normal stress in the neighborhood of OA.

This local stress averaged over time is the normal
stress that would be measured on a macroscopic
scale at point OA. If the lattice as a whole is not

moving, the local macroscopic stress obtained this

way would be the same over the entire lattice. The
difference between the macroscopic stress ctxx and
CTxxo is the thermal stress component in the x direc-

tion. Similarly for cTyy and CTyyo, etc. These may then

be used for calculating the components of the

Grueneisen parameter.

In reference [7], we also computed the macro-
scopic stress (Txx by equating the work done by (Txx

per unit time (in a coordinate system which was
stationary with respect to the uncompressed lattice)

to the gain in the energy of the lattice per unit time,

and solving for (Xxx- The stress obtained this way
was the stress at the interface exerted externally

on the lattice, and we were able to verify that this

"external" stress was equal to the "internal" stress

computed by the method described above. This was
as it should be, since the interface did not have an
average acceleration in either coordinate system.

The disadvantage of the method of computing the

external stress is that the motion of the boundary
must have a component in the direction of the stress.

If the boundary does not move, as in the case of the

boundary in the y direction, then this method is

not applicable. But the internal stress always can

be calculated by the method outlined above.

5. Shock Profile, Us versus t7p, and
Summary of Earlier Results

Figure 4 shows the shock wave stress profile,

Sxx, in a one-dimensional lattice at a certain instant

of time. This was taken from reference [7]. It is a

typical profile for a stable lattice. The stress profile

in a two-dimensional lattice was found to be very

nearly the same as in the one-dimensional lattice,

when they were similarly compressed by a shock

wave of the same strength (same Up). We arbitrarily

defined the position of the shock front as that point

in the leading portion CD (fig. 4) at which the particle

velocity was equal to zero in the coordinate system

of figure 2. From the shock front position at succes-

sive instants of time, we determined the propagation

velocity Us of the shock wave.

Figure 5 shows the computed relationship be-

tween Us and Up for a large number of cases de-

scribed in the caption of the figure. This figure was
taken from reference [6], except that curve (8) for

the fee lattice, and curve (9) for the bcc lattice apply

to both one- and two-dimensional cases. The dashed
portion of curves (8) and (9) shows a change in the

slope of the Us versus Up curve for the fee and bcc
lattices with i?i = 0.7. At this point, C/p= 0.5, we
found that both lattices showed an interesting

instability.^ This resulted when a lattice point with

sufficient energy overcame the potential barrier of

the neighboring lattice plane, and jumped into the

neighboring cell. We observed that this jumping
seemed to occur first in the x direction of shock
propagation, and could take place also in the reverse

direction, thus causing the lattice to "heal" itself.

In the case of the two-dimensional bcc lattice, we
also observed instabilities in the y direction, which
followed those in the x direction in certain places

^ We wish to point out that in reference [7], we did not notice the instability which
also occurred in the two-dimensional fee lattice, /ii— 0.7, at t/,,= 0.5. This was an

error which we now wish to correct.
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Figure 5. Computed Us versus Up.

The conditions for the various curves are given in the table below. All the curves
apply to the one-dimenslona! lattice, except (8) and (9) which also apply to the two-

dimensional lattice. Experimental data for graphite, CA and CC, for shock wave
propagating in the A and C directions, are taken from Coleburn [17]. Experimental
data for quartz, QX and QZ, for shock wave propagating in the X. and Z directions,

are taken from Wackerle [18],

Lattice Linear

chain

Square
lattice

sc sc sc fee bcc

Farthest neighbor taken
into account Isl 2d 3d 6th 7th 4th 3d

"(1)

(2)

(3)

Parabolic

Morse R, = 0.7 (4) (5)

(10)

(6) (7)

(11)

(8) •(9)

(13)Morse, R, = 0.8 (12)

"/r = i(r-r„).
'•fj-=k(r-H) - {k'lro)(i -ioy\ k' = It tor case (2).

' See eq (l)-(4).

''Numbers in parentheses refer to similarly numbered curves in the figure.

^Curves apply to both one- and two-dimensional lattices. Others apply to one-

dimensional lattice only.

in the highly agitated region immediately behind the

shock front. This caused a progressive disarrange-

ment of the regular lattice structure, in a manner
suggestive of the phenomenon of melting. Presum-
ably a similar situation could occur in the three-

dimensional lattice as well. In the one-dimensional

case, since there was no motion in the y direction,

instability in the y direction was of course not ob-

served. We should note that these results are some-
what inconclusive, because in our computational

program we did not take proper account of the

changing role of the more distant neighbors after

the instability first occurred. But up to this point,

our results should be reasonably valid. The change
in the slope of curves (8) and (9) is especially interest-

ing, and may have a bearing on the interpretation of

phase changes observed in shock wave experiments

[3]. Further studies are needed to clarify the various

details of our results. For this report, we shall not
refer to this problem again, but shall confine our-

selves only to the stable fee lattice.

Figures 4 and 5 have been discussed in detail in

references [6, 7]. For the sake of completeness, we
give here a very brief summary of the main results:

(a) We found that in both the one- and two-dimen-
sional cases, the lattice was stable under fairly high

compression, and that in the stable region, the

computed Us versus Up in the two cases was very
nearly identical, (b) The computed Us was very
sensitive to the assumed interatomic forces, and
the assumed range of interaction. With realistic

anharmonic forces. Us increased with increasing

Up approximately in a linear manner, in good agree-

ment with experimental results (fig. 5). This suggests

the possibility of our using the shock wave data for

evaluating the repulsive part of the interatomic

forces and the range of their interaction, if the struc-

ture of the lattice is indeed the same as we have
postulated, (c) The typical shock wave stress profile

was made up of a steady shock front CD (fig. 4), a

compressed region AB with high frequency, small

amplitude oscillations trailing far behind the

shock front, and a transition region joining the

shock front and the compressed region. The transi-

tion region resulted from the interactions of waves
of various frequencies generated at the shock front

by the anharmonicity of the interatomic forces, and
propagating in the dispersive lattice. With increas-

ing time, the transition region also increased in

extent. Thus we found that the shock profile was
not steady in time, and that the stresses and specific

volume we computed for region AB were different

from those computed on the assumption that the

solid was a continuum with a steady stre'ss profile,

(d) The computed relationships between the specific

volume and the vibrational energy, and between
the specific volume and the Grueneisen parameter
were in qualitative agreement with published results

from other investigations on three-dimensional

solids.

The quantities we obtained in (d) above were
those averaged over the entire shock wave profile.

We would like to examine now in greater detail the

problem of energy calculations, with a view to study-

ing the temperature of the shock compressed lattice.

Also, in (a) above, although the computed Ug versus

Up was the same for the one- and two-dimensional

lattices, the details of the solutions were different.

For example, in the one-dimensional case, there

were no oscillations in the transverse direction and
we would like to know how this would affect the

temperature of the lattice. There are two parts to

the temperature problem: the calculation of the

local energy density and energy distribution in the

lattice; and the study of the relaxation process and
approach to thermodynamic equilibrium. Of these,

the second part is the more difficult, and our results

so far are still not extensive enough to give us a
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clear understanding on the existence of thermo-
dynamic equilibrium. In the following discussion,
our conclusions bearing on this part of the problem
are therefore necessarily somewhat tentative.

6. Energy Calculations

Two-dimensional lattice. The energy density em-

of a lattice of N lattice points may be defined as

follows:

= + {^j+muJI2) (13)

j j

where $j is the potential energy of the jth lattice

point computed from eq (2), and e^j is the kinetic

energy of the jth lattice point, and is equal to mu'jl2,

where uj is the velocity of the jth lattice point which
an observer would see if he were attached to the
lattice. A'^ is associated with the region whose energy
density we wish to calculate. A point on the
boundary or at the shock front is counted as one
half of a lattice point. In dimensionless terms, we
have

Eav=eavlD, E„j=^jlD, E,j=ekjlD ^RaReM.Uf.

Figure 6 shows the local energy density in the
shock compressed region as a function of lattice

position at several instants of time. The positions

of the shock front at different times are marked by
arrows at the top of the figure. A'^ was taken to be 90
for each local region. The energy density computed

this way fluctuated somewhat in different regions,

especially near the shock front. If were still

smaller, say N= 9, the local fluctuations would have
been larger. For this discussion, we consider only

the mean curves drawn through each set of com-
puted points. These curves show that in the tail

part of the shock profile (AB in fig. 4), the average
energy density remained very nearly constant in

time, and that in the front part of the profile {BC in

fig. 4), the energy density increased toward a maxi-

mum at the shock front. Beyond the shock front,

the lattice was not compressed, so that the energy
density was simply equal to the average "thermal"
energy given to the lattice as an initial condition.

This is indicated by a line marked £'(/,o= 0.037 on
on the ordinate scale. As we have found earlier [7],

the energy density averaged over the entire shock
profile also remained constant in time. This is in-

dicated by a line marked £,„ = 0.678 on the ordinate

scale. These results imply that the energy density

profiles at different times were actually geometrically

similar, i.e., we could reduce the different pro-

files to one by linear adjustments of the scale of the

abscissa. The mean curves in this figure, in fact,

have all been made geometrically similar this way.
Their fit with the computed local energy densities

is seen to be satisfactory.

Figure 7 shows a series of histograms of the local

energy distribution at various instants of time,

corresponding to the curves of figure 6. In each
histogram, successive abscissas give the range of

energy i^ + ek), and the ordinate gives the count
of the lattice points in each energy range. The values

of M gives the range of lattice positions covered by

SHOCK FRONT POSITION

118.9 143.2 167.5 191.9

t = IOOv t=l20A t = l40o t=l60o

0 40 80 120 160 200

LATTICE POSITION

Figure 6. Energy density profile in a two-dimensional fee lattice under shock compression.

Up = 0.2, other conditions as given for curve (8) in figure 5. Ep, is the lattice energy at zero temperature. £,„. is the energy
density averaged over the entire shock profile. is the thermal energy initially contained in the lattice.
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Figure 7. Local energy distribution in the two-dimensionalfee lattiee corresponding to the curves in figure 6

each histogram, as along the horizontal axis of figure

6. M=l— 20 denotes the first 20 lattice columns,
= 21 — 40 denotes the next 20 lattice columns, and

so on, until the shock front is reached. The count

in each block of 20 columns is 180 points. We shall

designate each block by the first value of M.
The histograms in figure 7 clearly show the time

and spatial development of the local energy distribu-

tion in the lattice under shock compression. For

example, consider the block Af=121 and its time

development from t= lOO to ?=160. At ?=100, the

shock has not yet arrived at this position, and the

energy distribution, not shown here, would have

been the distribution corresponding to the "thermal"

energy which the lattice initially contained, with

the average value at £'f/,o= 0.037, as in figure 6. At

t=120, the shock front has just passed this block,

and the energy distribution shows that a number of

lattice points have now acquired higher energies.

This distribution is typical for the part of the lattice

near the shock front, cf., M= 141 at ^= 140, M= 161

al t= 160. As the shock front passed farther into the

lattice, the energy distribution of M=121 relaxed

toward the distributions of those blocks at the tail

end of the shock profile. For these blocks (M=l,
21, 41, and 61), the energy distributions exhibited

fluctuations with respect to position and time. It is

clear, however, that their spatial and time averages

were very nearly the same, and, indeed, the average

energy density for this region remained constant, as

shown in figure 6.

In addition to the energy density, we are also

interested in studying the vibrational energy, Cvib,

of the lattice, defined as follows:

evib= eav — ^o (14)

where €av is computed from eq (13) and <i>o is the
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potential energy per lattice point in a lattice that is

compressed to the same specific volume as in eq
(13), but with all the lattice points at rest, so that

the lattice is at zero temperature. In dimensionless
terms, we have E,-ii,— CrihlD, Eav, and Ei,o = ^olD.
If E„r is the energy density of the lattice in thermal
equilibrium, then Ei-n, computed this way is directly

related to the temperature T of the lattice: in a

two-dimensional lattice, E,ib=2kTID, where k is

the Boltzmann's constant.

We shall postpone the discussion of the question

of equilibrium until section 8. For the present, it is

seen from figures 6 and 7 that in region BC, Env and
the energy distribution were both relaxing with

time, so that this region certainly was not in equilib-

rium. On the other hand, in region AB, both Eav and
the energy distribution and therefore the value of
£', (6 remained very nearly constant in time, so that

it is possible to define a steady-state temperature
based on Evu,. In figure 8, we have plotted the com-
puted AEvib^ Efii, — E,ho as a function of the relative

volume V. This figure is similar to figure 2 of refer-

ence [7], except that £",,,6 now is computed from Eav
for the local region AB (fig. 4) whereas in reference

[7], Evib was computed from Eav for the entire shock
profile. For comparison, we have also plotted

Pastine's results [20] on aluminum. Pastine em-
ployed a fee lattice model with nearest neighbor
interactions, and assumed a Morse potential func-

tion with /? 1 = 0.78, and uniform compression in

three dimensions. His method for computing tem-
perature was also different from ours. We converted
his computed temperatures to ^vib, by setting

^vib= ^kATID. With these qualifications in mind,
we found our results in qualitative agreement with
Pastine's.

One-dimensional lattice. The results for the one-

dimensional case were rather different. For a

linear lattice with harmonic interactions between
nearest neighbors, subject to boundary conditions

similar to those employed here, there is an exact

solution [19] given by the Bessel function of the

first kind. For such a solution, the lattice points at

the tail end of the shock profile become non-
oscillatory as t approaches infinity, and there is no
temperature rise in the compressed lattice. Our
numerical results for this case indeed agreed with
these conclusions, within the accuracy of our cal-

culations. For example, for f/,j = 0.2, at f=100, we
found that the local energy was distributed about an
average value of £"01;= 0.02 over the entire shock
profile. Near the shock front, the width of the dis-

tribution was about ± 15 percent of Eav and this

width decreased steadily toward the tail of the shock
profile. Presumably, after a very long time, the dis-

tribution would shrink to a single line at — 0.02.

The value of Evtb which we calculated was effec-

tively zero.

For a linear lattice with anharmonic interactions,

Eav no longer remained constant over the entire

shock profile but decreased from a maximum at the

2.0

1.5

AE
vib

1.0 -

0.5

n 1 1
1

,
-o- THIS CALCULATION

\ _ PASTINE'S RESULTS
1
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Figure 8. Computed AEvib versus V in region AB for the two-

dimensional fee lattice under shock compression, under
conditions givenfor curve (8) in figure 5.
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Figure 9. Local energy distribution in a one-dimensional fee
lattice under shock compression.

L',, = 0.2, other conditions are the same as those given in figure 6.

shock front toward the steady value at the rear of

the shock profile, as in the two-dimensional case
(fig. 6). In fact, as was found in reference [7], the

values of Eav averaged over the entire shock pro-

file were nearly the same for the one- and two-

dimensional cases. However, the energy distri-

butions for the two cases were very different: for

the anharmonic linear lattice, the energy distribu-

tion showed a tendency to become peaked at the local

value of E„v toward the tail of the shock profile,

similar to the harmonic linear chain, whereas in the

two-dimensional (anharmonic) lattice, no such
tendency was observed. This is shown in figure 9

which is to be compared with figure 7. It seems
likely that after a long time, the energy distribution

in the tail portion of the shock profile in figure 9
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also would shrink to a single line at £"01, = 0.545.

This means that there would not be any oscillation

in that part of the lattice, and that the Evib calcu-

lated from eq (14) and hence the temperature rise

would be zero.

Suppose we now interpose a rigid boundary in

the semi-infinite linear lattice to make it finite. Then
the shock wave, upon reaching this boundary, would
be reflected back and forth between the two bound-
aries and eventually the energies in the various

modes would be equilibrated [10]. The energy den-
sity of the whole lattice would be and there
would be a corresponding Emb and a temperature
rise. It seems rather curious that in the one-

dimensional lattice there should be no tempera-
ture rise in the tail part of the shock profile until

after the shock wave has had a chance to be re-

flected from the rigid boundary, whereas in a two-
dimensional lattice there should be a temperature
rise upon the first passage of the shock. We do not

have a simple physical explanation for this phenome-
non. Apparently the transverse boundary condition
for the one-dimensional model (Uy = 0) has the
effect of making the "temperature" in the transverse
direction zero, and this also makes the "tempera-
ture" in the longitudinal direction zero behind a

transient shock front. This suggests that the one-

dimensional model is not realistic. The results of

the two-dimensional model seem more reasonable,

but we really should study the three-dimensional

case in order to gain a deeper insight to this problem.
For the present, in the discussion of the temperature
rise behind the shock front, we limit ourselves to the

two-dimensional case only.

7. Thermal Relaxation Behind the
Shock Front

In the discussion of figure 4, we have noted our
earlier results which showed that the transition

region BC in the shock wave profile increased in

extent as the shock front propagated into the
lattice. We see from figures 6 and 7 that this

transition region corresponds to a region in which
the energy density relaxes from a maximum value
at the shock front to a steady value in region AB.
So the unsteadiness of the shock wave stress

profile is associated with the relaxation of the energy
density, and in our computation of the shock profile,

we have also obtained a description of the relaxation

process behind the shock front.

We may investigate the relaxation time behind
the shock front by studying the velocity Ub with

which point B moves behind the shock front. The
geometric simiUtude of the energy density profiles

(fig. 6) at diff^erent times indicates that region AB
is a constant fraction of the shock profile, so that

Ub is also a constant fraction of Us-

The precise location of point B is difficult to

determine from either the energy density profile

or the stress profile. In a further attempt to dis-

0 .1 .2 .3 .4 .5 .6

Up

Figure 10. Velocity of propagation of point B, Ut,, plotted as

Ub/Us versus Up.

tinguish region AB from BC, we also studied the

velocity distribution of the lattice points in these

regions. We found that in region AB the distribution

of the velocity components f/j and Uy was nearly

maxwellian, but in region BC, especially near the

shock front, the distribution was non-maxweUian.
Thus, by calculating the width of the distribution

curve for the lattice, starting from the tail end of

the shock profile and taking successively greater

portions of the lattice toward the shock front, we
could identify region AB as one with approximately

constant width of the distribution curve, and region

BC as one in which the width increased toward a

maximum near the shock front. We used this

method to locate point B, and computed the veloc-

ities of Ub at different values of Up. The results

are plotted in figure 10.

Figure 10 shows that Ub/Us was approximately

equal to 0.58 at low values of Up, corresponding to

low compression, and this value decreased to about
0.5 at Up = 0.4. If we consider AB to be a truly

steady region, with a steady temperature given in

figure 8, then these results give the propagation

velocity of point B at the front of this steady region.

The value of 0.58 is especially interesting: It is very

nearly equal to l/VS = 0.5774 which is the velocity

of second sound in a crystal at normal pressure and
low temperature [21] . We are naturally led to specu-

late that what we have computed here is the equiva-

lent second sound in a crystal under high-stress,

high-temperature conditions. Alternatively, we could

consider BC as a region of thermal relaxation. Our
results in figure 10 show that at higher shock com-
pression (higher Up and Us) the relaxation region is a

larger fraction of the shock profile.

8. Investigation of the Existence of
EquiHbrium in Region AB

Thus far our results show that in region AB the

local averages of the following quantities remained

uniform along the lattice and steady in time:
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(1) Specific volume
(2) Stress components Sxx and Syy

(3) Energy density and Evib

(4) Energy distribution

(5) Approximately maxwellian velocity distri-

bution.

However, even at ^=1000 (=5X lO"" s), the time

of our calculation was short on a macroscopic scale

(say 10"^ s or greater), so the question of the equilib-

rium properties of the lattice remains.

To study this problem, we investigated the time

development of the velocity distributions. Accord-
ing to the principle of equipartition of kinetic energy
in statistical mechanics (see, for example, Guggen-
heim [22]) the average kinetic energy in each classi-

cal degree of freedom is equal to AT/2 and the dis-

tributions of the velocity components are max-
wellian. Hence the average widths (standard devia-

tion) of the distribution curves should be identical.

Figure 11a shows the distributions of the velocity

components Ux and Uy when the lattice in region

AB was compressed more in the X direction than in

the Y direction. The velocity distribution in the X
direction was also narrower. Thus in this case, we
see that the "kinetic temperatures" have not been
equilibrated.

We could adjust the final unit cell configuration by
compressing the lattice statically first in the Y direc-

tion, and then dynamically by means of the shock
wave in the X direction. Figure lib shows that when
the final unit cell configuration was more nearly

square, the corresponding velocity distributions

were more nearly equal.

Closer examination of figure lib shows that the

two velocity distributions were actually not identical,

and one wonders whether this was due to the slight

difference in the average spaciugs in the X and Y
directions (0.846 in X and 0.850 in Y). To study this

problem, we isolated a portion of the lattice in fig-

ure lib, 25 X 25 lattice points in size, by introducing
the boundary condition (b) (see section 3) on all four

sides. We also adjusted the distances between op-

posite boundaries so as to make the average spacing
in both the X and Y directions equal to 0.847. We
then continued the computation with the conditions
of figure lib as the initial conditions. Our purpose
was to observe the time development of the velocity

distributions. Since the lattice was now identical in

X and Y directions, we would expect that at

equilibrium we would not be able to see any differ-

ence in the velocity distributions, or in any other
property of the lattice, in the X and Y directions. A
knowledge of the time required to reach equilibrium,
starting from the conditions of region AB behind the
shock front, is of considerable interest. Given this

knowledge we could then carry out similar calcula-

tions over a similar time interval for the case of
figure 11a with unequal strain and obtain a detailed

description of the equilibrium condition appropriate
to this case, assuming that the two cases required
similar times to reach equilibrium after shock
compression.

G(U)

.30

.20-

G(U)

.10 -

G(U)
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VELOCITY, U^.Uy

Figure 11. Velocity distribution in three two-dimensional fee
lattices.

The abscissa gives the range of the velocity components Ux and Uy. The ordinate
gives the value of G(t/), the fraction of lattice points having velocity in a given range.

(a) Region AB of shock profile, Uf = 0.2, i = 100. AB is 60 lattice spacings in X
direction and 10 lattice spacings in Y direction. /?.r= 0.833, Ry= 1.000.

(b) Region AB of shock profile. Up = 0.2, t = 35. AB is 25 lattice spacings in X direc-

tion and 50 lattice spacings in K direction. = 0.846, /fy = 0.850.

(c) Isolated lattice at / = 250. 25 lattice spacings in both X and K directions.

fi^= «„ = 0.847.

The data for figure lib were obtained dX t — 35.

Starting at this point with the isolated lattice, as

described above, we carried the computation to a

maximum of ? = 250. The velocity distributions at

t = 250 are shown in figure 11c. Comparing figures

lib and 11c, we see that during this time interval,

the velocity distributions had not changed ap-

preciably. The standard deviations for Ux were
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0.0245 at f = 35 and 0.0220 at t = 250, and those for

Uy were 0.0274 at f = 35 and 0.0279 at f = 250.

During this time interval, the velocity distribution

also fluctuated, and the averages of all the standard
deviations at the end of the interval, at f= 250,
were 0.0213 for Uj- and 0.0327 for Uy. Hence we
must conclude that no appreciable equilibration

had occurred during this time in the isolated lattice

of figure 11c.

We should point out that the isolated lattice of

figure 11c enclosed by reflecting boundaries on all

four sides was not the same as the lattice of figure

lib which was in contact with region BC toward the
shock front. The equilibration times for these two
systems need not be the same, because in the closed
system, equilibration could take place only through
the exchange of energies among different modes that

were coupled by anharmonic effects, but in the open
system, in addition to the exchange of energies, it

was also possible for the unequilibrated part to leave

the system.

Within the limits of our numerical data, we have
also calculated the velocity autocorrelation function

which may be defined as [10]

Ui{t + T)-Ui{r)dT

PiitJ) - , T > t

Jo
{U;{r)ydr

where p, is the velocity autocorrelation function of

particle i, and Uiir) is the velocity of i at time r. We
shall not discuss the details of our results, but
briefly, for a point near the middle of the lattice, we
found that p; did not decrease nearly so rapidly with

t as in the cases studied by Rubin [23], by Northcote
and Pott [10], and by Rahman [11]. This was con-

sistent with our conclusion of lack of equilibrium in

figure 11c, although it was also possible that we have
not made T large enough compared with t.

If in figure lib we did not achieve equihbrium in

region AB, we were not very far from it either. Pre-

sumably, for some case not too different from that of

figure lib, we could obtain very nearly identical

average velocity distributions in the X and Y direc-

tions. If we then followed this with additional cal-

culations, as in figure 11c, for the isolated lattice,

we would not expect to see appreciable change in

the lattice even in long times, and we would con-

clude that for this case, we might have reached
equilibrium. But then the question is why we should

be able to reach equihbrium rapidly only in this par-

ticular case. This is a curious question to which we
do not have an answer. Our basic difficulty at this

moment is twofold: We do not have an adequate
theoretical model of equilibrium for a small, anhar-

monic and anisotropic lattice, and we do not have
enough numerical results to permit us to construct

such a model. We also do not know how this possi-

ble lack of equilibrium affects shock wave calcula-

tions based on the assumption of equihbrium behind
the shock front [1-5]. Further study of these prob-
lems and further numerical computation are there-

fore needed in order to achieve progress in this

direction.

9. Grueneisen Parameter Calculations
and Summary of Results

The components of the Grueneisen parameter
(Grueneisen tensor) may be defined as follows [24]:

"Yxx— V ( o-jj— o-j-xo ) /evib

Jyy^vi (Jyy — (Tyyo)lCvib

etc.

In dimensionless terms, we have

Jrx = 2RaReMiV{S^^-S^^o)IEvib

yyy=2RaReMiV{Syy-Syyo)IE,ib\ (15)

etc.

Here a. ' yyoi etc. are the stress components
when the lattice points are at their equilibrium posi-

tions and not oscillating, corresponding to the lattice

at zero temperature.

The computed results for the steady region AB in

our two-dimensional fee lattice are listed in table 2
which also summarizes the other results. The values
are averages over the time (t) period shown. For the

isolated lattice, the averages were taken from the

first step after i= 35 to t— 250, and these values are

probably more rehable than the others because of

the comparatively long time of averaging. Here, the

unequal values of yxx and yyy for the lattice under
equal compression (R^ — R y — O.S'iT) indicate
again the lack of equihbration in the X and Y direc-

tions. The other values of the y components are less

reliable because of the shorter time average, and,
especially in the case of f/p= 0.1, because of the
small differences between Sxx and Sj-jco, Syy and
Syyo, and E„p and E,,,,- There seems to be a syste-

matic decrease of Epo with increasing time. We do
not have sufficient data to say whether this trend
would continue monotonically, or become oscilla-

tory as the lattice rebounds under shock excitation.

Despite the above considerations, the differences

between the y components for the lattice with equal
and unequal compression in the two directions are

probably real. Specifically, at Up— OA and Rx Ry,
the specific volume of 0.712 was approximately the

same as the specific volume of 0.719 with Rx — Ry
= 0.847, but the y components for these two cases

differed by a factor of almost 3 or 4. Thus we see that

the Grueneisen parameter depends not only on the

specific volume, but also on the details of the state of

strains (and of the stresses) in the crystal [25].
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Table 2. Summary of results

Up t

Lattice spacing Specific

volume
y

St ress

Eav Epo E int) yxx yyy
R, c ĉxxo ^yyo

u.

0.1

50

70

1.096

1.101

0.908

0.908

1.000

1.000

0.908

0.908

0.1103

0.1109

0.1099

0.1094

0.0500

0.0472

0.0471

0.0468

0.188

0.188

0.151

0.152

0.036

0.037

0.58 (0.7) (1.3)

100 1.217 0.833 1.000 0.833 0.243 0.230 0.111 0.106 0.619 0.549 0.070

0.2

120

140

1.216

1.219

0.833

0.834

1.000

1.000

0.833

0.834

0.241

0.245

0.230

0.229

0.113

0.112

0.106

0.106

0.618

0.617

0.546

0.544

0.072

0.073

0.58 5.2 2.3

160 1.221 0.834 1.000 0.834 0.246 0.228 0.112 0.105 0.619 0.541 0.078

0.3

50

60

1.311

1.317

0.766

0.767

1.000

1.000

0.766

0.767

0.395

0.396

0.369

0.367

0.196

0.194

0.182

0.181

1.306

1.303

1.177

1.168

0.129

0.135

0.55 5.1 2.5

0.4

50

60

1.416

1.423

0.711

0.713

1.000

1.000

0.711

0.713

0.567

0.570

0.512

0.508

0.293

0.293

0.267

0.264

2.222

2.223

1.945

1.922

0.277

0.301

0.50 4.6 2.1

0.5

50

60

1.489

1.470

0.660

0.660

1.000

1.000

0.660

0.660

0.747

0.734

0.673

0.673

0.408

0.406

0.369

0.369

3.255

3.284

2.909

2.908

0.346

0.376

3.9 2.2

0.2 35 1.316 0.846 0.850 0.719 0.404 0.398 0.394 0.394 0.990 0.966 0.023

Isolated

lattice 250 0.847 0.847 0.717 0.402 0.400 0.401 0.400 1.011 0.964 0.047 1.2 0.8

10. Conclusions

We have discussed in some detail the dynamical

response of a lattice under shock compression, and
the associated problems of calculating the proper-

ties of the lattice from the dynamical solutions. Our
results show that a perfect, two-dimensional lattice

(fee or bcc) is stable under fairly large one-

dimensional strain, but under still larger compres-

sion, the lattice develops instabiUties which are sug-

gestive of melting. In the stable regime, the shock

profile is made up of a relaxation region (BC in

fig. 4) and a steady region {AB in fig. 4). The relaxa-

tion time is not constant, but increases with time,

so that the steady region trails further behind the

shock front with increasing time. In the steady

region, the energy density, energy distribution, ve-

locity distribution, stress components all remain
steady with time. The computed steady-state tem-

perature for this region increases with increasing

compression (fig. 8). The propagation velocity of this

region decreases with increasing compression (fig.

10), and at low compression, this velocity is about

0.5 to 0.6 times the longitudinal velocity of sound, or

approximately equal to the velocity of second sound
in a crystal under zero pressure. Our results do not

show that there is equilibrium in this steady region.

The computed Grueneisen components do not ap-

pear to be a function of the specific volume of the

lattice alone, but show a strong dependence on the

state of strains in the lattice. Finally, we found that

although the energy density profiles in a one-

dimensional lattice may be nearly identical to those

in a two-dimensional lattice, the energy distributions

in region AB in the two lattices are different: In the

one-dimensional case, the energy distribution be-

comes narrower with increasing time, and presuma-

bly becomes a single line at very large times, so

that there is no vibrational energy or temperature

rise in a one-dimensional lattice; whereas in the two-

dimensional case, we do not observe a similar nar-

rowing of the energy distribution or a decrease of

the vibrational energy with time. We therefore con-

clude that the one-dimensional model is not a reaUs-

tic model for studying the energies of the lattice

under shock compression.

The above conclusions apply to the two-

dimensional lattice model. All real solids are three-

dimensional, and probably imperfect, and at this

moment we are unable to say what modifications are

necessary before we can apply our results to the

three-dimensional case. It is disturbing, neverthe-

less, that none of our results so far supports the

usual assumptions of a continuum solid employed
in the analysis of shock wave experiments. On the

other hand, our computed relationships between

Us and Up are in good agreement with experimental

data over a wide range of experimental conditions.

If this be taken as an indication of the "correct"

interatomic forces used in our calculations, then

the consequences also must be valid for the model
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postulated. We must therefore extend our calcula-

tions and refine our model as we continue our study
on an atomistic scale. For example, we should
extend our calculations to the three-dimensional
case and study its energy density and distribution.

If we included imperfections in the three-

dimensional model, we should be able to study the

problem of stress relaxation under shock compres-
sion. Also, by propagating the shock wave in an
arbitrary direction with respect to the crystalline

axes, we could study the effect of shear on the tem-
perature of the lattice. The stability problem and the

melting phenomenon of a three-dimensional lattice

are also important problems with some hope of

experimental verification. Finally, the problem of

equilibration is vital to the calculation of the

equation of state and other properties of the lattice.

These are very lengthy problems, but it seems clear

that they must aU be studied in comparable detail

if we are to complement more effectively the vast

amount of experimental work already in progress
in this area.

11. Acknowledgments

The author wishes to thank Dr. M. Klein, Chief
of the NBS Equation of State Section, for his interest

in this work and for his support. The author has
benefited from discussions with Dr. C. W. Beckett,
Mr. L. Harr, Dr. M. Klein, Dr. R. MacDonald,
Dr. R. Nossal, Dr. B. Robertson, and Dr. R. J.

Rubin. Mr. J. Barnett provided invaluable assistance

in the computational work in the latter part of this

investigation.

12. References

[1] Rice, M. H., McQueen, R. G., and Walsh, J. M., Compres-
sion of solids by strong shock waves. Solid State Phys.

6, 1-63 (1958).

[2] Deal, W. E., Jr., Dynamic high pressure techniques, in

Modern Very High Pressure Techniques, ed. by R. H.

Wentorf, Jr., pp. 200-227 (Butterworths, Washington,
D.C., 1962).

[3] Alder, B. J., Physics experiments with strong pressure

pulses, in Solids Under Pressure, ed. by W. Paul and

D. M. Warschauer, pp. 385-420, (McGraw-Hill Book Co.,

New York, N.Y.. 1963).

[4] Band, W., Studies in the theory of shock propagation in

[8

[9

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

solids, J. Geophys. Res. 65, 695-719 (1960).

Bland, D. R., On shock structure in a soUd, J. Inst. Math.
Applications, London 1, 56-75 (1965).

Tsai, D. H., and Beckett, C. W., Shock wave propagation in

cubic lattices, J. Geophys. Res. 71, 2601-2608 (1966).

Tsai, D. H., and Beckett, C. W., Shock wave propagation in

a two-dimensional crystalline lattice, in The Behavior of

Dense Media under High Dynamic Pressure, Symposium
H.D.P., International Union of Theoretical and Applied
Mechanics, Paris, September 1967, pp. 99-108 (Gordon
and Breach, New York, N.Y., 1968).

Ulam, S. M., A Collection of Mathematical Problems, pp.
109-113 (Interscience Publishers, Inc., New York, N.Y.,

1960).

Alder, B. J., and Wainright, T. E., Studies in molecular
dynamics. I. General method, J. Chem. Phys. 31,
459-466 (1959); II. Behavior of a small number of elastic

spheres, J. Chem. Phys. 33, 1439-1451 (1960).

Northcote, R. S., and Potts, R. B., Energy sharing and
equilibrium for nonlinear systems, J. Math. Phys. 5,
383-398 (1964).

Rahman, A., Correlations in the motion of atoms in liquid

argon, Phys. Rev. 136, A405-A411 (1964).

Payton, D. N., Rich, M., and Visscher, W. M., Lattice ther-

mal conductivity in disordered harmonic and anhar-

monic crystal models, Phys. Rev. 160,706-711 (1967).

Slater, J. C, Interaction of waves in crystals. Rev. Mod.
Phys. 30, 197-222 (1958).

Dean, P., Atomic vibrations in solids, J. Inst. Math. Appli-

cations 3, 98-165 (1967).

CoUatz, L., The Numerical Treatment of Differential Equa-
tions, 3d ed., pp. 54-57 (Springer-Verlag, Berlin, 1960).

Love, A. E. H., A Treatise on the Mathematical Theory of

Elasticity, 4th ed., pp. 616-627 (The University Press,

Cambridge, 1934).

Coleburn, N. L., Compressibility of pyrolytic graphite, J.

Chem. Phys. 40 , 71-77 (1964).

Wackerle, J., Shock wave compression of quartz, J. AppL
Phys. 33,922-937 (1962).

Bateman, H., Partial Differential Equations of Mathemati-
cal Physics, American ed.. pp. 228-236 (Dover Publica-

tions, New York, N.Y., 1944).

Pastine, D. J., An equation of state for face-centered cubic

metals. J. Appl. Phys. 35,3407-3414 (1964).

Chester, M., Second sound in solids, Phys. Rev. 131,
2013-2015 (1963).

Guggenheim, E. A., Boltzmann's Distribution Law, pp.
34-36 (Interscience Publishers, Inc., New York, N.Y.,

1955).

Rubin, R. J., Momentum autocorrelation functions and

energy transport in harmonic crystals containing isotopic

defects, Phys. Rev. 131, 964-989 (1963).

Pastine, D. J., Thermal expansion and structure of aniso-

tropic monatomic solids, Phys. Rev. 148, 748-758 (1966).

Anderson, O. L., Some remarks on the volume dependence

of the Grueneisen parameter, J. Geophys. Res. 73, 5187-

5194 (1968). See table 1, p. 5188 for acoustic transverse

gamma and acoustic longitude gamma compared with

thermal gamma and other calculated ''gammas."

DISCUSSION

D. J. Pastine {U.S. Naval Ordnance Laboratory,

White Oak, Maryland): Referring to figure 8, I

would like to make the point that the upper curve

ought to be reduced by one-third to compare with

yours, because you are dealing with a two-

dimensional calculation. This will put you in good
agreement on the low end. If you take into account

the more recent calculations, the upper curve will

be lowered even a little more on the high com-
pression side, so I think the agreement then will

be very good between the two.

L. Thomsen (Columbia University, Palisades,

New York): You said there was not thermal equihb-

rium. Is it possible to define a local thermodynamic
equilibrium or an instantaneous thermodynamic
equilibrium?

M. van Thiel (Lawrence Radiation Laboratory,

University of California, Livermore, California): It

is difficult at this stage to compare wave profiles

from the calculation with experiment because our

time resolution is much less than that which would
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be required. It is possible, of course, that over this

short a time scale the system has not equilibrated.

In figure 4, showing the wave profile, it looked as

though your phonon spectrum from an analysis of

the profile was peaked along certain frequencies.

We also mentioned earlier that the coupling be-

tween the various modes is slow. It is possible, if

you can put in the proper zero-point motion for the

lattice, that the order that you start with will be

disturbed enough that coupling between the vari-

ous modes becomes easier.

AUTHOR'S CLOSURE

It is true that if we reduced the ordinates of

Pastine's curve in figure 8 by one-third, our results

would be more directly comparable, and the agree-

ment would improve. However, it is not easy to

assess the significance of the improved agreement,
because of the differences between Pastine's model
and ours, including the unequal compression and the

apparently unequilibrated kinetic temperatures in

the X and Y directions in our model. Moreover,
Pastine's calculations did not consider the thermal
relaxation process behind the shock front. His
results therefore corresponded to

^\ib Eav ~" ^po £'tho

(in fig. 6). Indeed, as we showed in reference [7]

,

our A^vib based on £'av was in fair agreement with

Pastine's results. But there is a more serious

difficulty: Our one-dimensional results showed that

the oscillations in region AB tended to decrease to

zero with increasing time, so that in this region the

oscillatory (thermal) energy was not one-third of

the three-dimensional value, but zero. This clearly

indicates that the one-dimensional model was not

suitable for studying the problem of temperature
rise under transient compression. Whether this

difficulty is completely removed in a two-

dimensional model is uncertain at this moment.
On the question of local equilibrium, we found

that the oscillations in the Y direction, introduced
into the lattice initially to simulate thermal vibra-

tions, interacted rather strongly with the large

amphtude oscillations near the shock front, and
equilibrated rapidly along themselves, even in

region BC. The oscillations in the X direction

equihbrated more slowly, not until they reached
region AB, because of the combined effects of

dispersion, and of the moving shock front which
steadily lengthened the compressed region. In

region AB, the amplitude of the oscillations and
hence the anharmonic coupling between the X
and Y directions were both small. Our results

showed that if these oscillations were not equili-

brated before they entered region AB, they would be
slow in coming into equihbrium on the time scale of

our calculation.

In order to try to find at least a partial answer to

the question raised by van Thiel, we displaced

different rows in our model by varying amounts
before the shock arrived, so that the shock was
going into a lattice which was vibrating in the

transverse direction. This gives the possibility of

some transfer of momentum in the transverse

direction. The model still has a rather high

symmetry, but what we have done probably simu-
lates fairly well the zero-point vibrational energy
or even room temperature vibrational energy in the

solids studied experimentally.
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Effect of 2024 Aluminum Alloy Strength on High-Pressure Shock
Measurements*

M. van Thiel and A. Kusubov

Lawrence Radiation Laboratory, University of California,

P.O. Box 808,

Livermore, California 94550

A shock wave technique is described by which wave profiles may be determined in metals. Piezo-

resistive manganin gages were used to determine these profiles to 130 kbars ini 2,024 aluminum alloy.

The data are consistent with the assumption that the Hugoniot is the hydrostat. A maximum of 28

kbars is obtained for the maximum yield strength on the release wave following the strongest shock. The
derived loading-unloading curves in the pressure volume and pressure mass velocity planes indicate

that errors of about 2 percent are produced by use of purely hydrostatic release paths.

When we determine an equation of state from
shock wave data, we usually rely on the assumption
that the strength of the material is small. We say

then that, to a good approximation, the stress in

the shock direction is the same as that in the other

two directions. This is reasonable insofar as extrap-

olation of shock wave data to low pressures often

yields bulk moduli in good agreement with sonic

data. This assumption has, furthermore, been justi-

fied by the agreement of shock wave equations of

state with Bridgman anvil data. We say this, know-
ing that Professor Kennedy at the University of

California at Los Angeles, in cooperation with some
of our coworkers at Lawrence Radiation Laboratory
(LRL), have reopened the issue and have questioned
the term "reasonable agreement." This is, of course

what should happen when, with growing confidence
in the validity of our measuring techniques, we can
look more critically at possible discrepancies.

Disagreement with the assumption of fluid be-

havior of the high-pressure Hugoniot has, however,
appeared earlier in the shock wave literature.

Barker et al. [1]* and Hartman [2] have shown that

strength, indeed, is a factor— at least up to' a pres-

sure roughly equal to ten times the Hugoniot elastic

hmit. But Al'tshuler [3] demonstrated that, even at

higher pressure, a sizable strength effect exists in

the release process that follows a shock wave. The
magnitude of this effect is described by Erkman and
Christensen [4], by Barker [5], by the authors [6],

and by some unpublished work of Wilkins at LRL.
It is evident from this work that strength in metals,

even above 100 kbars, cannot be ignored. This
paper is intended to describe some further measure-
ments taken by us (with manganin gauges) of the

strength of the 2024 aluminum aUoy at high pres-

* This work performed under the auspices of the U.S. Atomic Energy Commission.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

sures and the effect of this strength on the tempera-
ture and the shape of the release curve.

The method used here consists of measuring a

wave profile. To understand this, we will consider

loading and unloading curves in the pressure

volume plane. The sample is initially compressed
by a shock indicated by the dashed line in Figure la,

where this loading curve is drawn to indicate a

two-wave process. This double-wave process occurs

for aluminum up to about 100 kbars, while above
this pressure the (first) elastic wave, moving with

a velocity corresponding to the Hugoniot elastic

2 3

P

ELASTIC-PLASTIC NOTE; NUMBERS CORRESPOND TO
RELEASE THOSE IN FIG. 3.

SHOCK LOADING

(o) SHOCK AND RELEASE PROCESSES (b) PRESSURE VS . TIME AT DETECTOR

TIME —
METAL INTERFACES

SHOCK CHARACTERISTICS
RELEASE CHARACTERISTICS

(c) POSITION TIME PLOTS

Figure 1. Shock and release processes.
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INSULATION

SILVER RIBBON

MANGANIN RIBBON

Figure 2. Target assembly.

limit (HEL), is overtaken by the plastic shock. When
the wave starts unloading, simple elastic-plastic

theory [7] indicates that initially the material unloads
along an elastic release curve until the difference in

the stresses in the x and y direction are sufficiently

large to cause dislocation flow and yielding. There-
after, the release curve is essentially that of a

hydrostatically compressed material, and the slope,

therefore, is given by the bulk modulus. In fact, this

release curve is a nonisentropic adiabat, with the
energy dependence

dE=-P^dV=^Y{V)dV-P{V)dV,

where Y is the von Mises yield strength. We also

assume that the material can be described by a

cubic or isotropic stress tensor.

The wave shape that each part of the loading and
unloading curve implies is illustrated in figure lb.

Here we show the pressure as a function of time at

a point in the sample. The velocity of the two loading

waves is different, since there is a break in the

loading curve at the yield point. The same is true of

the unloading curve. Each portion of the loading and
unloading curve is characterized by a velocity

dPxIdp^c'. Therefore, once we have determined
these velocities as a function of pressure, we can
construct the hysteresis curve in the f, V plane.

The shock and release wave loci are illustrated

in the time-space plane of figure Ic. A plate pro-

jectile impacts a target, sending shocks into the

target as well as into the projectile. We have drawn
these trajectories for the most general case, in

which elastic and plastic shocks run at different

speeds. A measurement of the velocity of these

shocks then yields the two loading curves. Similarly,

the detection of the unloading wave at an interface

jusec

Figure 3. Experimental manganin gauge record.

(1) Elastic precursor

(2) Plastic shock

(3) Start of semi-elastic release wave

(4) Point at which release wave velocity is comparable to (dPtdp)^''^

(5) End of release process

containing a pressure gauge yields the character-

istics c+u, where u is the local mass velocity, and

c is the desired velocity in the mass coordinate

system. We can calculate u from the Riemann
equation

dP~\ dP) pc

and solve for c by iteration. A characteristics code
was written to make these calculations as well as to

construct the P, p curves from the calculated c

values.

The experimental assembly used by us is sche-

matically represented in figure 2. Twelve-micron-

thick manganin ribbons spot-welded to silver

ribbons are placed between two 25-micron-thick

insulating sheets of Kapton.' A small amount of oil

is used to provide a hydrostatic environment for the

gauge and to hold the gauge in place on the insula-

tion during assembly. The Kapton insulation is

' DuPont polyimide film.
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sandwiched between two aluminum plates that

make up the target. Voltage and current leads

soldered to the silver ribbons are potted in epoxy
to strengthen the assembly. Pins are placed around

the gauge area to measure projectile velocity and
tilt. Shock velocities were not measured, since the

projectile velocity and the known shock properties

of the material yielded these to sufficient accuracy.

All the c values were, therefore, obtained relative to

the calculated velocity of the shock wave.

Figure 3 shows the results of a measurement. This

is a voltage-time trace of the gauge output. The
numbers indicate the various shock and release

wave features mentioned earlier. A small disturb-

ance produced by the elastic precursor is followed

by the main shock wave. We do not beUeve that the

gauge gives a good measure of the wave shape
during the first part of the compression process,

since initially it is not in intimate contact with its

immediate environment. The behavior, therefore, is

not reliable until any small gaps near the manganin
gauge element have been eliminated. These gaps
must certainly be closed when the release wave
reaches the interface between plates where the

gauge is located. We note here that the release

process does not start with a simple elastic release

wave. It starts as a ramp along which the velocity

decreases rapidly, from a value that corresponds to

a longitudinal modulus to one that corresponds to a

bulk modulus. After that, the shape of the release

wave is close to the one expected from the usual

variation of modulus with pressure.

The gauge is used here in its most reliable mode;
namely, as an interpolation device. This is possible,

since the peak pressure can be determined from the

known shock Hugoniot [8] and the measured
projectile velocity. The pressure coefficients of

resistivity obtained on the gauges used are some-
what lower than those determined by Keough [9] on
gauges potted in epoxy. He obtained coefficients

near 0.29 percent/kbar, while the values measured
here were near 0.26 percent/kbar; i.e., closer to the

statically measured coefficients.

A loading-unloading hysteresis curve calculated

from these data is shown in figure 4. The pressure

scale on the left shows a peak pressure of 131 kbars.

At this shock pressure no elastic precursor exists,

and the shock process is described by a single

Rayleigh line. The large curvature of the release

wave at high pressure is a direct consequence of the

shape of the unloading curve in the region where a

simple elastic release process was expected. While
the initial slope yields a reasonable Poisson ratio,

the slope rapidly decreases and goes over to a

normal bulk decompression curve. It seems,
therefore, that incipient yielding occurs almost
immediately at the start of the release process.

Related to this observation is the question of the

location of the hydrostatic release curve along which
the stresses, both in the direction of the wave and

Figure 4. Experimental loading and release curve with esti-

mated hydrostal.

30 -

1
THIS WORK

RESULTS OF ERKMAN AND
CHRISTENSEN FROM FREE

SURFACE MEASUREMENTS

RESULTS FROM OTHER FREE

SURFACE MEASUREMENTS
BY THE AUTHORS

100 200 300

P , kbar
X

Figure 5. Summary of experimental dynamic strength of 2024
aluminum alloy at high shock pressures.

at light angles to it, are the same. The release curve
must lie below this hydrostat before the direction of

the resolved shear stress is such that it can cause
dislocations to move. Since some yielding is ob-

served at the very beginning of the release process,

this suggests that the Hugoniot point from which
the release starts is hydrostatic— or at least close

to it. While this may seem surprising, there is no
evidence to the contrary. In fact, it is known from
double shock experiments [1, 10] that the Hugoniot
does not lie on a shock yield surface. In these ex-

periments, [1, 10] elastic compression waves
resulted from a second shock immediately following
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the first. Following this line of reasoning, we have
drawn the hydrostatic release curve through the

Hugoniot point. The total energy change along this

hydrostat is equal to the change along the release

curve plus a small residual energy at Px= 0, due to

the small elastic compression stresses that remain
in the y and z directions (see Appendix for details

of this calculation). After complete release, the final

temperature is 51 °C — greater than the initial value.

This is 24 °C higher than the final temperature
obtained from an isentropic decompression. We will

come back to temperature effects later.

In figure 5 we give a data summary of yield

strengths obtained in the work described here, as

well as three pertinent measurements taken
earlier [4, 5], using a free surface technique to detect

arrival and decay of the elastic wave. The data

obtained by the latter method were reduced,

assuming a simple elastic-plastic model. While not

entirely correct, this model yields reasonable yield

strengths. Turning first to the manganin gauge
results, we note that, starting at the Hugoniot
pressure (where, by our interpretation of incipient

yielding, the yield strength is zero), the yield

strength rapidly increases. This yield strength is

1.5 times the stress difference (APa-) between the

hydrostat and the release curve, consistent vfith the

von Mises' yield criterion

X(P;-p,)2=2r-,

and the assumption that

3

1/3 ^ Pi =f= hydrostatic pressure.

,1

Similar hardening of the sample during pressure

release was observed by Barker [5], who used an
interferometer method on a somewhat purer
aluminum alloy (6061). But, as the release process

approaches zero stress, the strength decreases,

which is the reverse of what is expected from
work-hardening.

From the other three measurements obtained with

a free surface technique, it would appear that there

is a gradual increase in the hysteresis or strength.

If the peak strength levels off at about 28 kbars and
then stays constant up to the melting point, we might
speculate at what shock pressure melting should
first be observed on the release curve. If the release

process were isentropic, melting would occur at the

foot (P= 0) of the release wave from a shock of

680 kbars or stronger. With a constant value of F,

the discrepancy from the isentropically calculated

temperatures is roughly proportional to pressure

above 300 kbars. This results in a reduction of the

shock stress required to initiate melting. Using
these data, a shock stress in excess of 520 kbars is

sufficient to melt some portion of the sample on
release. If the yield strength increases above 300
kbars, this number should further decrease.

One reason for the selection of 2024 aluminum
alloy for the present study is its use as a standard to
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Figure 6. Hugoniot and release curves in the stress-versus-

particle velocity plane showing the difference in the interface

condition between the duraluminum sample holder and a
sample with dynamic impedance poUj for isentropic and
measured release curves.
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determine Hugoniots of other materials. To note how
this is done, we turn to figure 6, where the data are

reproduced in the stress-versus-mass velocity plane.

The Hugoniot along which pressure increases with

mass velocity behind the wave is represented by the

solid line. Here the pressure of the experimental

release curves decreases as the mass velocity

increases. Calculated isentropic release curves

obtained with a fluid model [11] are given by the

dashed Hnes. These curves are used by many shock
wave experimentalists to obtain the mass velocity

behind a shock in a sample placed on an aluminum
'

plate, through which this shock pressure was applied.

The dynamic impedance line of the sample, which
has a slope poUg in this plane, meets the measured
release curve at the correct pressure and mass i

velocity of the interface between the sample and the

plate. In the example of figure 6, this is about 2 per-

cent lower than would be indicated by the isentropic

release curves.

Another, somewhat more approximate but quite

convenient, method for determining the particle

velocity behind a shock wave is the free surface

approximation, where one assumes that the velocity

achieved by the sample surface upon arrival of the

shock is twice as large as the particle velocity. Those
wh© have used this technique should turn to figure 7.
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Here we show the ratio of the free surface velocity

to the particle velocity as a function of the shock
pressure. Again, a fluid model calculation [11] using
the Griineisen equation of state with the Dugdale-
MacDonald [12] formulation for {dPldE)v was used
to derive the solid curve. Note that the free surface

approximation becomes progressively worse at

higher Px according to this model. The three experi-

mental release curves measured here, however, yield

a value less than two. One may expect, however,
that this approximation will hold at higher pressures
than expected prior to now, because of the com-
pensating effects of shock heating and strength.

Barker [12] has observed deviations in 6061 alumi-

num of 5 percent at even lower pressures.

In summary, we note that the effective yield

strength at high pressure increases drastically along
the release curve, but that the Hugoniot appears to

be hydrostatic, or nearly so. This strength increase
causes small but noticeable errors in equation-of-

state points measured by using hydrostatic release

curves for the 2024 aluminum standard. The free

surface approximation is similarly affected. It is also

noted that melting will occur on the release waves of
shocks weaker than those predicted from fluid

models.

Appendix

We consider a plate which has been shock-com-
pressed in the x-direction and subsequently decom-
pressed to Px= 0. We wish to calculate the yield

strength (the residual stress in the y and z direc-

tions) and the temperature.

The stress-strain condition after decompression
to Px— 0 are defined by

8P^= 8F, = 0-C„6ei + 2C,28e2 (i)

8Py=^8P, = 8P2 = C^28e^ + iC,, + C^2)8€2,
(2)

for an isotropic medium without shear. From eq (1),

(3)

since at the yield surface 8Py=Y {the yield strength)

we have from eqs (2) and (3)

therefore

8e2

(Cii + Ci2) 862; (4)

Cj^j + Ci 1C12 2Cj2

'

and similarly,

8ei =
•2C,2F

Cjj + CiiCi2 2Cj2
(5)

For small 8ei at the yield surface,

8V
8ei + 2862

Cn-Ci2

and

Y,

V'2 Cu-Ci-z

(6)

(7)

Therefore, by substituting eq (7) into eq (5), we get

1 8V Cn
862 = : (8)

2 V Cxi-Ci2*

The adiabatic energy change to the yield surface is

8E-
VY

(862 + 863) = me2.

Now, substituting eq (7) and (8),

V (8V\ 2 C„ (Q, + CnC,2 -2Q2)
8E= -

4 V F (Cn-Ci2)2 (9)

If the plate was compressed from VqPoEo then
decompressed back to Vf, Ej, with Px— ^ and
Py=Y=Pz, we must first estimate the thermal
energy increase before we know the value of the

total elastic volume change,

8V_ Vo-Vj l(dV\
V V ^V\dE)p^^'

where the thermal energy change, ^E, is the

difference between the final and initial energy plus

the elastic energy

AE^Ef-{Eo+ 8E).

Since 8E is usually small, the proper value of {8VIV)
and F may be obtained in a few iterations.

Note: The analysis given here was made by
estimating the elastic constants for duraluminum
from

Cn^povl and Ci2 = po

with vl— 0.63 cm//xsec and 1;^= 0.535 cm//xsec.

Therefore, we have

Cii = 1.1054 Mbar,

Ci2 = 0.7971 Mbar,

8V
862 =^-1.94,

129



and

^ 10.8324 , 8V^^^
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DISCUSSION

O. E. Jones {Sandia Laboratory, Albuquerque, New
Mexico): If you assume the von Mises yield criterion

holds on unloading, then how can you explain the

fact that work hardening doesn't occur on loading

as well as unloading?

D. J. Pastine {U.S. Naval Ordnance Laboratory,

White Oak, Maryland): I can understand how you
calculate the Px part of the curve on the release

portion, and I understand how you calculated the

energy difference between the release curve and
what ought to be the hydrostat. But it isn't clear to

me how you got the details of the release hydrostat.

G. E. Duvall {Washington State University, Pull-

man, Washington): I would like to comment on the

strain rate effects. I understand that the construc-

tion of this release curve was based on the calcula-

tion of propagation velocities point by point in the

profile that you showed. I assume that these propa-

gation velocities were then calculated by assuming
that you knew the form of the adiabat at the rear

face of the driver and the position of the gage, and
you could therefore calculate the time of propaga-

tion of each stress level from the rear face of the

driver to the gage. I would suggest that if there were
a strain rate effect in the aluminum, this could have
a significant effect on the shape, and you might very

well get a "smearing out" of what would otherwise

be a discontinuity in the release curve.

AUTHORS' CLOSURE

In reply to Jones: I can think in terms of disloca-

tions and dislocation tangles being produced. Let's

consider the pressure-time plane. A shock front

always has some finite width. And within this width

there is some sort of stress-time or stress-strain

profile. We know there are regions of very high strain

rate and regions of lower strain rate. One would ex-

pect that the production rate of dislocations would
certainly be different in these two regions.

The question is, whether dislocations will be
trapped or restrained from further motion in the

interval between their production and the stabiliza-

tion of the stress at the top of the stress wave. If the

production rate is very high during some portion of

the loading process, some dislocations may be
mobile at the top. We know that aluminum in the

annealed state is a very soft material and has a

strength of less than a kilobar. AU we need to do to

explain this profile is to say that the strength is less

that a kilobar due to the presence of mobile disloca-

tions. On the way down the process is considerably

slower. The dislocation production and trapping

rates are therefore more like those that occur in

normal work-hardening processes.

In answer to Pastine: We assume the Riemann
formulation for the actual release curve, which of

course is strictly correct only if the state points on

the wave are a function of stress only. Strictly speak-

ing, it should be redone in detail for the viscoelastic

model. The Riemann formulation used assumes that

the mass velocity of the medium plus the sound
velocity is a function of stress only. You need only

one wave profile because it gives you all the stress

states reached during the unloading process. So you
get sound velocity versus pressure. The hydrostatic

release curve is calculated using a Griineisen equa-

tion of state and a Dugdale-MacDonald form for y,
similar to the method originally used by the GMX-6
group. This approach actually assumes that the

Hugoniot state reached is hydrostatic.

On Duvall's comment: The actual deviations from

the hydrostatic isotropic derivation Riemann made
are not known at this time. We don't know how much
the trajectory of each stress point in the position-

time plane curves. All the reduction of velocity-time

measurements or position-time measurements were

done with this approximation so far. I haven't seen

any good viscoelastic model that is better than that.
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Calculation of Equation of State from High-Pressure Sound Velocity Data*

Albert C. Holt and Richard Grover

Lawrence Radiation Laboratory, University of California, Livermore, California 94550

We describe a method for calculating the Mie-Griineisen equation-of-state parameters for simple

metals from shock Hugoniot data and a knowledge of the volume variation of longitudinal sound
velocity at high pressure. The theory is applied to the calculation of the equation of state of aluminum.

1. Introduction

Shock-wave experiments are useful for equation-

of-state measurements because the quantities P, V,

and E behind a plane shock front can be calculated

unambiguously from the velocity [1$ of the shock
wave and the velocity Up of the material behind the

wave [1] ^ Thus, by determining Us as a function of

Up from the results of a series of experiments at dif-

ferent shock strengths, one obtains a line, the

Hugoniot, on the PVE equation-of-state surface of

the material. Measurement of the Us (Up) relation-

ship has, for some time, been a routine matter at

some of the nation's laboratories, and recent devel-

opment of improved measuring techniques [2] in-

sures that these experiments will continue to

provide interesting and useful scientific information.

More recently, however, some shock-wave experi-

mentahsts have turned their attention to the meas-
urement of material properties behind the shock
front [3] and to observations of the evolution of the

shape of the shock wave itself [4-5]. The most
striking characteristics of this wave evolution are the

effects of material rigidity and a number of useful

measurements have resulted from this work; for

example, the determination of material strengths for

the case of one-dimensional strain. Some conse-

quences of these particular measurements will be
discussed in a later paper of this Symposium, by
Jones and Graham [6].

Another material rigidity effect is the elastic re-

lease wave which overtakes the shock front from
within the shocked material. This wave travels at

the longitudinal sound speed for the shocked ma-
terial, so that observation of the wave shape at suc-

cessive points in the solid permits one to calculate

the longitudinal sound speed at a point on the

Hugoniot. The results from a series of experiments
yields the variation of the longitudinal sound velocity

along the Hugoniot line. As we have seen in the pre-

ceding paper, the shape of the elastic release wave
can be used to estimate the corrections to the

Hugoniot for the material strength of the shock com-
pressed material.

*This work was performed under the auspices of the U.S. Atomic Energy Commission.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14—18, 1968.

The object of this paper is to utilize the high-

pressure sound velocity data for simple metals to

estimate the thermal corrections to shock data

which are necessary to obtain isothermal compres-
sion curves. For this purpose, a thermal equation of

state is derived from a modification of Slater's

theory, and the theory is applied to recent release

wave velocity data on aluminum.

2. Theory

We now proceed to make some assumptions
about the nature of the solid and to show that these

assumptions are sufficient to permit one to calculate

the equation of state from Hugoniot data and the

longitudinal sound velocity data mentioned in the

introduction. We begin by assuming that the solid

is described by the Mie-Griineisen equation of

state [7],

P-P^{V)=^[E-E^{V)], (1)

where y is the Griineisen parameter. Vis the specific

volume, P is the pressure, and E is the specific

internal energy. The functions P^{V) and E^{V)
represent the pressure and specific internal energy
along the isentrope which crosses the Hugoniot at

P= 0. (Here, and in the remainder of the paper,

"the Hugoniot" means that Hugoniot whose initial

point is at P= 0, T— 300 K.) Further, we assume that

y is given by the modified Slater formula [9],

^1 \ d\nCi 2 d\nCt
^ 3 3alnF 3alnF'

where Ci and Ct are the longitudinal and transverse

sound speeds in the isotropic continuum approxima-
tion, and y is regarded as a function of volume but

independent of temperature.

Equation (2) improves on previous theories [8] in

the following way: Instead of inferring the volume
dependence of all the normal mode frequencies

from the volume derivatives of the pressure, eq (2)

infers this volume dependence from the actual

volume dependence of the three acoustic modes in

the isotropic continuum approximation. Thus we
allow for different average thermal properties in the

longitudinal and transverse modes of the lattice

vibration of the solid. This improved theory is still
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not adequate, however, for more complicated
atomic systems such as diatomic solids which con-

tain distinct optical modes of vibration whose be-

havior is not closely related to that of the acoustic

modes. We refer to the metals which do not have
these distinct optical modes as "simple" metals.

Finally, in this calculation we assume that the

normal stress in the shock wave, given by the jump
condition [1]

a-x=UsUnVo (3)

(where cr,v is the stress normal to the wavefront and
Vo is the initial specific volume) is equal to the

pressure behind the shock front. Thus we neglect

the effect of stress anisotropy in calculating the

pressure behind the shock front. For a more de-

tailed calculation, one would correct (T/m to P as

suggested in the preceding paper.

To derive expressions for y, P^, and E^, we note

that the pressure Ph and the energy Eh along the

Hugoniot curve are known as functions of Ufj and
Us by means of the jump conditions.

and
Eh=UII2

Ph = UsUpVo'.

The third jump condition,

1

(4)

(5)

(6)

and the experimentally determined relationship

between Us and Up,

Us-C + S^Up+ S2Ul, (7)

are sufficient to determine Eh and Ph as functions of

V along the Hugoniot. We could now, at least in

principle, substitute Eh and Ph for E and P in eq (1)

to obtain an identity in V among the three unknowns
y{V),P'{V),and E'(V).

At this point, we allow eqs (6) and (7) to define the

transformation to a new dimensionless variable,

x—UpIC, which will be used in place of V. By sub-

stituting eq (7) into eqs (4), (5), and (6), we obtain

Eh, Ph, and V as functions of x, and on substituting

these quantities into eq (1), we obtain the equation

+ {S^-l)x + CS2X^

l + Six+ CS2S^
X+ S^X'^ + CS2X^

VoP'^

y (8)

which holds identically in x. The quantities P\ E\
and y in eq (8) are now functions of which we would
like to determine.

Because of the limited range of data available,

adequate solutions to eq (8) can be found by means

of a Taylor series expansion in x for P\ E% and
yix). If we write

VoP'
ax+ bx^ + dx^ + ex'^+ . (9)

then the unknown coefficients a, b, d, . . . may be
determined by substituting y(x), E^(x), and P*(.v)

into eq (8) and equating coefficients of equal powers
of X. The expression for E^ follows easily, since

dE'

dV (10)

we have

' =- P'{V')dV'. (11)

By changing the independent variable in eq (11) and
substituting P^ from eq (9), we obtain

E'IC' =
ax""

,
6-2S,

x-'
2 3

{d-2Sxb + %Sia)
+ - — x^+ . . ., (12)

which is the desired expression for E^{x).

In order to determine y{x), given by eq (2), in

terms of a, b, d, e, . . ., we suppose that Ci{Up), the

longitudinal sound speed, has been measured at

points lying on the Hugoniot, and we write

C,/C= a + )8x+Sx2 + (13)

where a, ji,b . . . are obtained by fitting eq (13) to

the experimental data. We will use eq (13) and the

bulk modulus /3s, obtained by diff"erentiating eq (9)

to obtain a transverse sound speed Ct. An error is

introduced here, since /3s is the bulk modulus on the

isentrope, while Ci was measured on the Hugoniot.

Strictly speaking, Ci should be corrected for the

temperature difference between the two lines at

constant volume (or constant x). In the appendix, we
calculate {dCildT)\- for aluminum and find that the

temperature correction from the Hugoniot to the

isentrope would be much smaller than the other un-

certainties in this calculation, and consequently we
ignore this small difference.

The bulk modulus on the reference isentrope

can be obtained from eq (9) by means of the

differentiation,

dP'

dV
V{x)

dx dP'

dV dx
(14)

and we obtain Ct by substituting eqs (13) and (14)
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into the equation
1/2

(15)

Finally, we obtain an expansion for y from eq (2),

a A [\a A

-!(f-f)}- -- <-)

where A, B, D, . . . are expansion coefficients for

which are determined by eq (15). This expansion
is given by

CilC^=^{A+Bx + Dx^ + .}, (17)

A = a^-1,

fi-2a/3-(4Si-2),

and

D^2a8 + IB^-3CS2-3d-i5Si-l){Si-l).

The indicial equations for eq (8) require that

a = l, (18)

6 = Si, (19)

and

d= CS2-^\l+l3la +^y, (20)

so that the desired expressions for P^, E^, arid y are

obtained by substituting eqs (18)-(20) into eqs (9),

(12), and (16).

3. Calculation

We now apply the theory from the first part of the

paper to the problem of calculating the equation-of-

state parameters for 2024 aluminum. For this calcu-

lation, we use the following values for the Hugoniot
parameters of eq (7):

C = 0.5282 cm//is

Si = 1.4922

S2=- 0.7229 /Lts/cm.

These values represent a least-squares fit to 300
data points obtained at Livermore up to pressures
of about 800 kbar.

To obtain the coefficients for eq (13), we have
combined results from four sources. The high-

pressure sound velocity data came from the paper
of Kusubov and van Thiel [7], which preceded this

one on the Symposium program, and from an earlier

paper by Erkman and Christensen [10]. These data
are shown in figure 1. Because of the large un-

certainties in this high-pressure data, we have used
ultrasonic data [11, 12] to determine the intercept,

a, and the initial slope, )8. The curvature was
obtained from the high-pressure sound velocity data.

The three curves in figure 1 are fits to the data made
in the following way: For curve A we made a least-

squares fit to all of the high-pressure data by vary-

ing 8. This represents our best solution for the

problem. Curves B and C were made by omitting,

in the least-squares calculation, each of the last two
data points successively. We use these two curves
to test the sensitivity of the calculation to the data
and to determine how the experimental uncertainties

are reflected in the results of the calculations.

The most sensitive test of the theory is in the

calculated values of y. In table 1, we compare our
values of yo and d In y/d In V with values obtained
from ultrasonic and thermodynamic data. We also

include the values of yo and d In y/d In V predicted

from shock-v/ave data by means of the Dugdale-
MacDonald theory. Our value of yo is, like the

acoustic value, not in good agreement with the value

of yo obtained from thermodynamic data. On the
other hand, the value of 6 In y/d In F which we obtain

is within 20 percent of the value of d In yjd In V
obtained from acoustic data. Further, the acoustic

values of yo and d In y/d In V with values obtained
from curves B and C, so that one can say that there

is agreement within the uncertainty of the calcula-

tion. The large experimental uncertainties are
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Figure 1. Experimental values of the longitudinal sound
velocities are given as afunction ofshock particle velocity.

Both velocities are normalized to the quantity C, the Up = 0 intercept of the U,(Up)
relation. The parameters a and /3 for the curves were determined from ultrasonic data.

The curvature, 6, is obtained by the method of least squares. Curves A, B, and C are
used to test the sensitivity of the calculated quantities to the experimental results.
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Table 1. Values of yo and 3 In y/ 3 In V as obtained

from thermodynamic, acoustic, and shock-wave data.

The Dugdale-MacDonald value is calculated from shock-wave
data by means of the Dugdale-MacDonald theory.

Thermo-
dynamic

Acoustic
Dugdale-

MacDonald

This work

A B C

To

3 In 7

din r"

2.13 2.68

1.65

1.98

2.31

2.97

1.33

2.97

0.246

2.97

1.825

Table 2. Comparison ofthe reference adiabatfrom
this work with the same adiabat calculated by
means of the Dugda;e-MacDonald theory.

Pressure Energy
(Mbar) (X 103 -Mbar cm^/g)

This From DM This From DM
theory y theory y

1.0000 0 0 0 0

0.9534 0.0416 0.0416 0.33 0.33

.9127 .0878 0.884 1.25 1.27

.8766 .1377 .1397 2.68 2.74

.8441 .1902 .1952 4.51 4.68

.8147 .2441 .2546 6.65 7.05

.7877 .2984 .3176 9.01 9.81

.7628 .3520 .3844 11.52 12.95

reflected in the wide spread in dlnyjdlnV from
curves B and C.

Finally, we compare our reference adiabat with

an adiabat calculated for the same Hugoniot data

using the Dugdale-MacDonald y. This is shown in

table 2. The good agreement is not surprising since

this adiabat must lie very close to the Hugoniot for

the range of pressure we consider.

4. Concluding Remarks

We have shown how high-pressure sound velocity

data can be used, at least in principle, to calculate

Mie-Griineisen equation-of-state parameters for

simple metals. Although the results of the calcula-

tion for the case of aluminum are somewhat dis-

appointing, we feel that there are two strong

arguments in favor of pursuing this investigation

further.

First, the calculation is an extension of the ultra-

sonic definition of gamma, which agrees well with

the thermodynamic gamma for almost all metals

except aluminum. This aluminum anomaly is not,

at present, understood. Thus, the fact that high-

pressure sound velocity measurements are available

only tor aluminum is singularly unfortunate. The
calculation should be better on the average for other

metals.

Second, if the error bars on the sound velocity

data could be reduced and if the measurements
could be extended to higher pressures, then numer-
ical solutions of these equations can be carried out

to yield the high-pressure behavior of y. We believe

that the high-pressure longitudinal sound velocity

measurements can be extremely valuable for obtain-

ing more reUable values of the Griineisen y.
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6. Appendix

The purpose of this appendix is to calculate

{dCildT)v in order to estimate the magnitude of the

correction of Ci from the Hugoniot to the reference

adiabat. To this end, we use the thermodynamic
identity.

(f)r(f),-(f).7-

where a is the coefficient of thermal expansion, and

Xt is the isothermal compressibility.

The values of {dCildP)T and {dCildT)p were
calculated from the single crystal data of Schmunk
and Smith [12] and that of Kamm and Alers [13] by
means of the Voigt-Reuss-Hill-Gilvarry [14] averag-

ing scheme. The values for a and Xr were taken from
the tables given by Gschneidner [15]. Using the

values

= 1.821 X 10-3(cm//As) kbar-i

=- 0.747 X 10-''(cm/pts)K-i

a = 7.23x 10-5K-1

XT= 1.385 X 10-12 cm2/dyne,

we obtain

= 2.22X 10-5(cm/^s)K-i.

Since the offset of the Hugoniot from the reference

adiabat is on the order of hundreds of kelvins, we
estimate that the error introduced by neglecting this

difference is less than 1.0 percent. This is much
smaller than the uncertainties in the measured
values of Ci which we consider.
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DISCUSSION

D. J. Pastine {U.S. Naval Ordnance Laboratory,

White Oak, Maryland) : I would like to point out that

in your model, Poisson's ratio is not independent of

volume— that is, this approximation is not made—
since a continuum is assumed in calculating the

transverse and longitudinal sound speeds separately.

I would also like to make another point in favor of

this approach. Your method and the one that I dis-

cussed earlier are independent methods, but the

values obtained by the two approaches for the

Gruneisen parameter are in good agreement.

L. Thomsen (Lamont Geological Observatory, Co-
lumbia University, Palisades, New York): One pos-

sible source of trouble with this formulation is in the

high-frequency part of the dispersion curve where
the 0) versus A curve bends over so that the acoustic

velocity isn't well defined. In that case your expres-

sion for gamma is uncertain to the extent that the

velocity is uncertain.

G. E. Duvall (Washington State University, Pull-

man, Washington): I inferred that van Thiel thinks

that the slope of the release curve right at the

Hugoniot point already indicates some plastic flow.

If that were the case, his velocity, as indicated by
the slope, would represent a smaller velocity than
the actual elastic longitudinal velocity; I wonder if

this would seriously alter your results.

AUTHORS' CLOSURE

As Mr. Thomsen points out, the velocity is not well

defined at higher frequencies, and to some extent

our agreement must be considered fortuitous. This
seems, at least on the surface, to be a little surpris-

ing, but we hope that a further study may turn up a

reason for this surprising agreement.

Note added in proof: The question raised by Dr. Thomsen
may now be answered. Holt and Ross have calculated the in-

dividual normal mode gammas for several physically realistic

interparticle force laws and for a wide range of densities (see

Phys. Rev. Bl, 2700 (1970)). The calculated values for the trans-

verse modes are all very nearly equal to the average gamma for

the transverse modes and conversely the individual mode gam-
mas for the longitudinal modes are all very nearly equal to the

average gamma for the longitudinal modes. Thus it appears

reasonable to assume that the average gamma for the material

is approximated by the weighted average of the longitudinal and
transverse acoustic gammas. Since these calculations do not

rely on the concept of an "acoustic velocity" one need not

concern himself with the fact that an acoustic velocity is not

defined near the boundaries of the Brillouin zone.

In reply to Dr. Duvall: I believe that the velocity

right at the breaking point is the longitudinal sound
velocity. There is some disagreement on this be-

tween myself and Dr. van Thiel.
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Shock Temperature Calculations for Silicone Fluid

M. Cowperthwaite and J. H. Blackburn

Stanford Research Institute, Menlo Park, California 94025

The problem of calculating shock temperature indirectly from experimental data without assuming
thermodynamic properties is formulated and solved theoretically. In principle, the {e—p—v) and
(T—p — v) equations of state can be constructed in an overlapping domain of the (p — v) plane from a

family of Hugoniot curves centered at points of known energy and temperature.
Experiments were performed in an attempt to construct these equations of state for silicone fluid

210. Shock and free surface velocities were measured to determine Hugoniot curves in the 300-kbar
regime, and energies and densities were measured from — 30 to + 260 °C along the atmospheric isobar

to determine the initial states of the shock wave experiments. In practice, it was necessary to assume a

form for the (e—p — v) equation of state, since the differences in volumes between states on Hugoniot
curves at the same pressure above 40 kbar were found to be comparable with the experimental error in

measuring the volumes of each of these states. The data were fitted to a Mie-Griineisen type (e—p —v)
equation of state with variable Cv and (dpldT)v, since Hugoniot points indicated a linear dependence
of energy on pressure along an isochore, and Cv varied along the atmospheric isobar. Shock tempera-
tures on the 25 °C Hugoniot were calculated at points of intersection with isentropes and by integrating

with constant atmospheric pressure values of Cv The position of the 296 °C isentrope limits the tem-

perature calculation with isentropes to values below 522 °C and 58 kbar, and the values around 50 kbar
are 8 percent lower than those calculated with the 25 °C value of Cj,, since C„ increases along the

Hugoniot curve. Temperature calculations above 58 kbar assumed the 296 °C value of Cv Considerably
more experimental work would be required over the entire pressure range to permit determining
equations of state of silicone 210 without making assumptions.

1. Introduction

The use of shock waves to study the high-pressure

environment in the kilobar regime is based on the

assumption that thermodynamic equihbrium is

estabUshed behind the shock, where material be-

haves as a perfect fluid. The method is limited at

the present time, however, since the mechanical
state variables can be measured in shock wave
experiments but the thermal state variables cannot.

Thus shock wave data are insufficient to determine
an equation of state, and shock wave studies provide
an incomplete characterization of the high pressure
environment. In addition, shocked states are in-

complete thermodynamic systems unless shock
temperature can be determined, and their character-

ization is an equation of state problem equivalent
to that of determining the temperature-pressure-
specific volume {T—p — v) equation of state. In

practice, this problem has been solved by assuming
thermodynamic properties that allow the unknown
state variables to be calculated. More specifically,

the form of a complete equation of state is assumed
and shock wave data are used as boundary condi-

tions to determine arbitrary functions that would
otherwise be undefined. In some cases [1]* the form
of the complete equation of state is an expUcit
assumption, in others [2-4] it is implicit in the as-

sumptions that enable the state variables to be

*This work was supported by Physical Research Laboratory, Edgewood Arsenal,
under Contract No. DA-18-035-AMC-122(A).

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment; held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

calculated. But the significance of such a character-

ization depends upon the correspondence between
the assumed and the actual thermodynamic
properties of the material.

The present paper describes an attempt to deter-

mine shock temperature indirectly from experi-

mental data so as to provide a complete characteriza-

tion of shocked states without assuming thermody-
namic properties. The problem of calculating shock
temperature is formulated and solved theoretically.

The equations governing shocked states and the

identities of thermodynamics [5] are combined to

define the experimental data required to construct

equations of state without assuming their form. Dow
Corning silicone 210 fluid was used as a test liquid.

2. Theory

We first pose the problem of shock temperature
and formidate a theoretical basis for its solution.

Let e, 5, U, and u denote specific energy, specific

entropy, shock velocity, and particle velocity, and
let subscript o denote the constant state of stationary

fluid in front of the shock. Then the Rankine-
Hugoniot jump [6] conditions relating shocked and
unshocked states,

vU=Vo{U-u) (1)

uU^Voip-po) (2)

puvo=U{e— eo+ hu'^) (3)

express the balance of mass, momentum, and energy



across the shock discontinuity, and the inequality

s(e, v) > sico, Vo)

expresses the second law of thermodynamics for

the irreversible shock process.

Eliminating U and u from eq 3 gives the Hugoniot
equation [7]

e — Co= i(p + Po) {vo — v)

.

(4)

If an (e—p — v) equation of state satisfies the con-

dition {d'^pldv'^)s > 0, then eq (4) with v < Vo defines

the locus of compressed states on the (e —p — v)

surface that can be reached from an initial condition

(co, Po, Vo) by single shocks. The (e—p — v) equa-

tion of state and eq (4) define this locus of shocked
states as a curve in the (p, v) plane, p = Ph(Po , Vo , v),

which passes through the point (po, Vo) and is called

the Hugoniot curve centered at (po, Vo)- The eHmi-

nation of u from eqs (1) and (2) gives the equation of

the Rayleigh line.

p-po"^ (Ulvo)^(vo — v). (5)

Since a shocked state satisfies eqs (4) and (5), the

intersection of the Hugoniot curve centered on

(po, Vo) and the Rayleigh Une of slope — (U/vo)'^

passing through (po, Vo) defines the mechanical
thermodynamic state (p, v) behind a shock propa-

gating at constant velocity U into a stationary state

(Po, Vo).

With the assumption of thermodynamic equi-

librium behind a shock, the state variables of a

nonreacting shocked fluid satisfy the following

thermodynamic identities:

de— Tds — pdv (6)

(7)

The objective of the present work is to use shock
wave and low-pressure data to characterize com-
pletely the high-pressure environment in the kilobar

regime without additional thermodynamic assump-
tions. Since shock temperature cannot be measured
directly with present-day techniques and cannot be
calculated from knowledge of the energy along a

Hugoniot curve, it is necessary to construct the

(T—p — v) equation of state. Such a construction

must be based on the mechanical properties of

shocked states. At present the only feasible way to

achieve this objective is to construct the (e —p — v)

equation of state first, and then use it with the

identities of thermodynamics to calculate the

(T—p — v) relationship. Hugoniot curves form the

basis of the experimental method of constructing

the (e —p — v) equation of state using shock wave
data; the relationship between the (T—p — v) and
(e — p — v) equations of state forms the basis for

calculating the temperature of shocked states.

2.1. The (e—p— v) Equation of State

An experimental Hugoniot curve ph(Po, Vo, v) is

the locus of experimentally measured pressure-

volume states produced by passing constant velocity

shocks of various strengths into an initial state

(po, Vo). The change in internal energy along a

Hugoniot curve is given by eq (4). A family of

Hugoniot curves, each of which is centered on a

curve along which the energy change is known, is

therefore sufficient to determine the (e-p-v) equation

of state over the domain of the (p-v) plane covered
by the Hugoniots.

In the present work we choose to measure a

family of Hugoniots centered on the atmospheric

(p ~ 0) isobar, because the energy change can
easily be measured along this cross curve.

p(s, v) ^ (8)

For thermomechanical processes, a knowledge of

e, 5, T,p, and v provides a complete characterization

of a thermodynamic state. Thus, the (e— s — v)

equation of state is called complete because of the

identities (7) and (8) that define the (T— s — v) and

(p — s — v) equations of state, but all other equations

of state among these variables are incomplete. The
(e —p — v) equation of state is incomplete because

it cannot be used to calculate temperature and
entropy without additional data. Similarly, the

(T— p — v) equation of state is incomplete because

it cannot be used to calculate energy and entropy

without additional data. However, a knowledge of

any two incomplete equations of state provides a

complete characterization because of the identities

of thermodynamics.

2.2. Calculation of the (T—p— v) From the
(e—p— v) Equation of State

Since the (T—p — v) and (e — p — v) equations of

state are both incomplete, it is necessary to estab-

Hsh what additional data are required to calculate

temperature when the (e—p — v) relationship is

known. It follows from thermodynamic identities

that the (e—p — v) and (T—p — v) equations of

state are related through the isentropes. The posi-

tion of an isentrope in the (p — v) plane is deter-

mined by the (e — p — v) equation of state and the

isentropic condition de —— pdv obtained by setting

ds = Q in eq (6). The temperature along an isentrope

is given as

T=Ti exp (9)

138



by integrating the identity

*={i),.f-(il* <«»

subject to the isentropic condition ds = 0.

Thus to calculate the (T—p — v) from the

(e—p — v) equation of state, it is necessary first to

construct a family of isentropes in the (p — v) plane

and then to calculate temperature along them with

eq (9). It is important to note that temperature can-

not be calculated with eq (9) unless the temperatures

Ti at particular points (p,, Vi) on the isentropes are

known. Measurement of the temperature along any
curve which intersects the entire family of isentropes

permits a value of Ti to be assigned to each isen-

trope. Thus the (T—p — v) equation of state is deter-

mined in the domain of the (p — v) plane covered by
a family of isentropes. For a given (e—p — v) equa-

tion of state, there is a thermodynamically consistent

(T—p — v) equation of state for each assignment of

temperature along a nonisentropic curve.

Measurements of temperature and energy along

the atmospheric isobar are sufficient to calculate the

(T^p — v) and (e—p — v) equations of state from
a family of Hugoniot curves centered on this isobar.

However, the (e—p — v) and (T—p — v) equations

of state will necessarily be specified over different

but overlapping domains of the (p — v) plane. The
family of Hugoniot curves defines the domain where
the (e—p — v) equation of state is known, but the

family of isentropes constructed from the (e — p — v)

relationship defines the subdomain where the

(T—p — v) equation of state is known.

3. Experiments

Dow Corning silicone 210 fluid (100 centistokes)

was chosen because of its good thermal stability

and its large coefficient of expansion. Static experi-

ments were performed to measure the variation of

density and specific enthalpy h, along the atmos-
pheric isobar. Shock wave experiments were per-

formed to determine a family of Hugoniot curves
centered on the atomspheric isobar.

3.1. Static Measurements

The variation of volume with temperature at at-

mospheric pressure between — 30 °C and 150 °C was
measured with a density balance. A least squares
fit for the data, with Tin degrees Kelvin,

v-i = 1.2566+ 1.0577 X 10-37+2.604 X 10-^2

was used above 150 °C to calculate initial conditions
for the shock wave experiments. The standard devia-

tion from the least squares fit is less than 0.1 percent
of the largest volume measured.

The variation of specific enthalpy with tempera-
ture at atmospheric pressure between —26 °C and
318 °C was determined with a drop calorimeter.

A least squares fit for the data with T in degrees
Kelvin and = 0 at T, = 298 K is

/i= i6960(i/r- 1/r, ) -o.o98i8(r- r,

)

+ 4.842 X 10-4(^2-72).

The standard deviation from the least squares fit is

less than ^/4 percent of the largest enthalpy incre-

ment measured.

3.2. Shock Measurements

Four explosive shots were performed to obtain

high-pressure equation of state data using an
impedance match technique [1]. Each shot assembly
contained both cold and hot liquid samples.
A cross section of an assembly showing the brass

cells containing the liquid samples is illustrated in

figure 1. Plane shocks were induced in the liquid

samples by the interactions produced by a brass

flier striking the cells. The driver system for the

flier plate was a P-80 plane-wave lens in contact

with a 4-in pad of high explosive. Shocked conditions

in the liquid were varied by varying the composition

of the explosive pad.

Direct measurement of shock velocity in the

liquid and indirect measurement of the shocked
condition in the brass at the cell-liquid interface

suffice to calculate the shocked state in the liquid.

The measurements were recorded on 70-mm Tri-X

film with a Beckmann & Whitley 770 camera writing

at a speed of 10 mm//as; object-to-image ratio was
2.6/1 and the slit overwrite time was 0.01 /as.

Figure 2 shows a detailed drawing of a streak camera
view of the liquid cells. Changes of reflectivity of

Figure 1. Cross-section of shock experiment.
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COLD CELL HOT CELL

END OF BRASS FREE SURFACE (STEEL SHIM

START OF SHOCK IN BRASS (STEEL SHIMS)

END OF SHOCK IN BRASS AND START OF SHOCK
LIQUID AND BRASS FREE SURFACE

END OF BRASS FREE SURFACE (STEEL SHIM)

END OF SHOCK IN LIQUID (MIRRORED SURFACE)

END OF SHOCK IN BRASS AND START OF SHOCK
IN LIQUID

SECTION B -B
LIQUID

START OF SHOCK IN BRASS ( STEEL SHIMS)-

SECTION A-A

|^\\SS^1 BRASS Y''/y ''^'

A

<5I-ASS COVER

Figure 2. Hot and cold cells: Camera view of hot and cold cells

showing slit projection; and cross-sectional views through hot

and cold cells along slit lines.

the steel shims E and C, the brass surface DF, and
the mirrored surface H produce signals that depict

the series of events for the cold cell in the shock
experiment. A typical streak record is shown in

figure 3, where the letters identifying the signals

match the letters in figure 2. The figure shows (a)

the filter plate striking the cold cell at C and J;

(b) the time of arrival of the shock at the surface of

the brass at D, F, G, and /; (c) the time of arrival of

the free surface of the brass at E; (d) entrance of the

shock into the liquid at G and /; and (e) time of

arrival of the shock at the liquid-glass interface at

H. The shock velocity through the liquid was calcu-

lated from times recorded at G, I, and H. The shock
velocity in the cold brass and its free surface velocity

determine conditions at the brass-liquid interface.

The shock velocity in the cold cell was calculated

using the time differences of location C and D
divided into a corrected thickness of the brass at

location D. The corresponding free-surface velocity

was calculated from times at D, F, and E. The time

differences between locations were reduced by
0.022 /AS to account for the transit time through the

steel shim at location E. Similar calculations were
made for the hot cell.

Pressure in the brass was calculated using eq (2)

with Po= 0 and with the particle velocity assumed
to be one-half free surface velocity. Comparison of

the calculated (p — u) points for hot and cold brass

Figure 3. Streak camera photographs: (a) Static: (b) Dynamic.
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Table 1. Summary of shock-wave experiments

SRI
shot No.

Initial conditions Shock measurements Calculated shocked states

Initial

temp.

Specific

volume
Specific

energies

(ref.Oat 25 °C)

Shock
velocity ^

Particle

velocity r ressure

Specific

volume ^

Specific

energy

(°C) (cm^lg) UIg) {mm Ins) {mmlixs) (kbar) (cmVg) UIg)

12,326 -32 0.983 -92 '•6.72 + 0.02 3.18 ±0.02 '2\6±2 < 0.518 ±0.005 <^4952 ± 70

11,939 -20 .994 -71 6.91 ±0.07 3.46±0.03 240 ±5 0.497 ±0.009 5887 ± 84

12,228 -20 .994 -71 4.87 ±0.05 1.87 ±0.03 91±2 0.611 ±0.014 1684 ± 44

12,496 -10 1.004 -55 7.11 ±0.04 3.11±0.01 256 ±2 0.494 ±0.004 6474± 39

11,939 158 1.178 218 6.47 ±0.06 3.56 ±0.02 195 ±3 0.530 ±0.008 6548 ± 89

12,496 158 1.178 218 6.61 ±0.02 3.72 ±0.01 208 ±2 0.516 ±0.004 7225 ± 55

12,326 159 1.179 220 6. 16 ±0.04 3.28 ±0.03 171±3 0.550 ±0.008 5607 ± 160

256 1.299 399 4.08 ±0.02 1.94 ±0.01 61 ±1 0.679 ±0.008 2290 ± 30

12,326 279 1.330 445 6.09 ±0.07 3.31 ±0.01 ^ 152±2 ^0.606 ±0.009 ^5927 ± 40

12,496 296 1.350 481 6.39 ±0.05 3.91 ±0.02 M84±3 '0.526 ±0.010 -^8095 ± 74

"Errors in shock velocity calculated by summing estimated errors in length and time measurements.
* Errors computed with absolute values of estimated errors: see ref. [9].

*^ Points omitted from analysis.

with the {p — u) points of McQueen and Marsh [8]

for brass initially at 20 °C shows that only the 20 °C
Hugoniot curve need be considered for the im-

pedance match calculations. The mirror-image
approximation was used for the brass isentropes.

Thus pressure and particle velocity at the brass-

liquid interface were calculated at the intersection

of the Rayleigh Hne for the liquid and the brass
rarefaction curve, assumed to be a reflection of the

Hugoniot curve through the measured free surface
velocity. The specific volume of the shocked Liquid

was then calculated using eq (1), and the correspond-
ing change of internal energy was calculated using
the Hugoniot equation in the form e — eo= ia-.

The shock wave data are summarized in table 1.

The precision of the data is controlled mainly by
the pressure uniformity and planarity of the
explosive driver system.

4. Construction of (e—p— r)

Equation of State

The limited number of experimental Hugoniot
points and the restricted range of data along the
atmospheric isobar prohibit the construction of an
equation of state solely from experimental data.

It is important, however, to use both shock wave and
static data to indicate the most appropriate form of
the {e — p — v) equation of state. A graphic fit of

Hugoniot data in the 200-kbar regime, without the

three points from shots 12,326 and 12,496 that

indicate crossing Hugoniot curves, suggests a linear

dependence of internal energy on pressure along
lines of constant volume-isochores; static data show
that the partial derivative {deldp)v varies along the
atmospheric isobar. Thus, the {e — p — v) data were
fitted to the form

e= pf{v)+g{v) (11)

with {deldp)v—f{v) > 0 everywhere in the region of
interest.

Additional properties of this model follow from
thermodynamic relationships. The relationship

between specific heat at constant pressure Cp and
specific heat at constant volume Cv is

Cp=C„[l + T{dvldT)plf{v)] (12)

and Cv is constant along an isentrope, since

The equation for a Hugoniot curve centered at

(po= 0, Vo) is

p[f{v)-Hvo-v)]=g{vo)-g{v) (14)

the differential equation for an isentrope is

/dp\ _ pil + dfldv) + dgldv

\ dv) s f{v)
(1^)

and the equation [9] obtained by formal integration

of eq (15) shows that the first derivative of g{v)
must be positive, i.e., dgjdv > 0. The rapid increase
of pressure along an isentrope indicates that the
{e—p — v) relationship wiU satisfy the mechanical
stability condition {dpldv)s<Qiif{v) satisfies the
condition {l + df/dv) > 0.

Values of /(f) in the specific volume range
0.994 < v < 1.35 cm^/g along the atmospheric
isobar were calculated with the identity.

The values of Cp and (dvldT)p were determined
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experimentally. The values of {dpldv)s were calcu-

lated from the sound velocity data of McSkimin [10],

which were extrapolated to cover the range of initial

temperatures used in the shock experiments. Values
of / (v) in the volume range 0.515 < i; < 0.55 cm^/g
were taken to be the slopes of (e — p) isochores

calculated from the Hugoniot curves. Values of

f{v) in the intermediate range were assumed to lie

on a smooth curve because values of (deldp)^

calculated in the neighborhood of 0.54 cm^/g were
approximately equal to the value calculated at

0.994 cm^/g. Least squares fits of the data give the

following expressions for/(f):

/(t;) =-23.055 + 23. 134i; if ?; ^ 1.152 cm^g

/(i;) -60.502 -121.866?; if 0.9693 ^t;^ 1.152cm3/g
+ 62.916i;2

f{v) = 1.3822 + O.lOSi; if y ^ 0.9693 cm^/g

where the constants are given to a number of

decimal places for computation.

Since h='e = g{v) when p = 0, the measured
enthalpies at atmospheric pressure give values of

g{v) in the volume range 0.985 ^ f ^ 1.66 cm^/g.

A linear least squares fit for g{v) in this volume
range is given by the expression

16.107+ 15.517?;.

For values of volume less than 0.985 cm^/g, fits for

g{v) were generated by patching together the high-

pressure Hugoniot data and the atmospheric data
so as to satisfy the condition dgldv>0. The best
least squares fits for g{v) with a slight discontinuity

in the slope at i;== 1.01316 cm^/g are:

g{v) = 2408.116 + 7566.432?;

-7949.11t;2 + 2787.845j;3 is ?; ^ 1.0136 cm^/g

^(v) =- 16.107 + 15.517?; if?; ^ 1.0136 cm^/g

The fits for fiv) and g{v) define the (e—p — v)

equation of state and allow calculation of Hugoniots
centered on, and isentropes passing through points

on the p = 0 isobar in the (p — v) plane. The discon-

tinuous change in slope of the g{v) function at

?;= 1.01316 cm^/g is manifest in the shape of these
curves in the neighborhood of this volume.

5. Calculations

5.1. Construction of Hugoniot Curves and
Isentropes

The Hugoniot curves centered on p = 0 at — 20 °C,

25 °C, 158.5 °C, and 256 °C were calculated directly

with eq (14). The isentropes passing through p— 0
at 25 °C, 158.5 °C, 256 °C, and 296 °C were con-

structed by integrating eq (15) numerically with a

0.8 09
VOLUME, V— cm'/g

HUGONIOT

CALCULATED
CURVE

CENTER POINT

To

(°CI

25 1 037

ISENTROPES

CALCULATED
CURVES

THROUGH

To

(°C>

^0

(cm'/gl

25

296

1 037

1 36

VOLUME . V — cm' /g

Figure 4. Isentrope and three Hugoniots calculatedfor silicone Figure 5. Hugoniot and two isentropes calculated for silicone

210. 210.
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Runge-Kutta technique. The —20 °C, 158.5 °C, and
256 °C Hugoniots and the 296 °C isentrope are shown
in figure 4. The 25 °C Hugoniot and the 25 °C and
296 °C isentropes are shown in figure 5.

5.2. Calculation of Temperature

Equation (9) was used to calculate the tempera-
ture along the isentropes passing through 25 °C
and 296 °C on the atmospheric isobar. The values of

temperature along these isentropes are listed in

table 2. Calculation of temperature at points where
isentropes intersect the 25 °C Hugoniot defines

values of shock temperature along this Hugoniot
curve. The point of intersection (T'c= 522.1 °C,

Pc= 58 kbar, i;c= 0.661 cm^/g) of the 296 °C isen-

trope and the 25 °C Hugoniot is the highest point

on the 25 °C Hugoniot where shock temperature can
be calculated with the present data. The tempera-
ture on the 25 °C Hugoniot below 58 kbar can be
calculated with the isentropes lying to the left of the

296 °C isentrope. The temperature where the

256 °C isentrope intersects the Hugoniot is 456.7 °C,

and the temperature where the 158.5 °C isentrope

intersects the Hugoniot is 291.5 °C.

It is not possible to calculate temperature on the

25 °C Hugoniot above 58 kbar without making
further assumptions. The temperature along the

Hugoniot above 58 kbar was calculated with

constant C,, rather than by extrapolating the low-

pressure data further. The equation for shock
temperature [2] above a point {Tc, Vc) on a Hugoniot
centered at {po = 0, Vo),

with

/=exp
I

dvlf{v)

was used to calculate temperature on the 25 °C
Hugoniot above (re= 522.1 °C, i;c = 0.661 cm^/g).

The integral term in eq (17) was evaluated numeri-
cally with a constant value of Ci,= 1.3735 X 10

kbar cm^/g °C equal to the constant value along the

296 °C isentrope. Since d, is constant along an
isentrope, the significance of temperatures calcu-

lated with eq (17) depends on the variation of Cv
with volume along the atmospheric isobar above
t;=1.35 cm^/g. In the case that Cv increases with
increasing volume above i;=1.35 cm^/g, it also

increases with the increasing pressure along the

Hugoniot curve, and the values of temperature
calculated with eq (17) under the assumption of

constant d, would be upper estimates for shock
temperature above 58 kbar. The values of tempera-
ture calculated with eq (17) are listed in table 3.

For comparison the method of Walsh and Chris-

tian [2] was also used to calculate temperature along
the 25 °C Hugoniot curve with eq (17). The integral

Table 2. Calculated temperature along the 25 °C
and 296 °C isentropes

Volume 25 °C 296 °C
Isentrope Isentrope

(cm-'lg) ( (>) (

1.35 296.0

1.29 300.4

I.AD >5U4.U

1 in O 1 A O

1. 10

1.09 328.5

1.05 339.7

Zo.U

i.Ul 90 A ooo.y
A QAOU-VOV OO.U 371 AO / 1.0

.909 50.8 398.3

.849 64.3 426.1

.ouy 7Q AlO.O

7/1

0

fjo.U

7no
. /uy OQ 1 /IOA 9

.649 113.7 528.5

.609 124.5 551.0

.549 141.3 585.9

.509 153.1 610.1

Table 3. Calculated temperatures on the 25 °C
Hugoniot above 58 kbar

Calculated with

Pressure Volume
C„= 1.9353 X 10-2

kbar cm^/g °C

f{v) = 1.3822

+ 0.10798?;

C„= 1.3735 X 10-2

kbar cm^/g °C
1.7839

Temperature Temperature

{kbar) (cm^lg) (°C) (°C)

58.3 0.661 522.1 559.8

71.1 .641 541.4 698.8

85.7 .621 588.9 866.8

102.5 .601 640.3 1069.8

121.5 .581 725.4 1313.8

142.9 .561 839.3 1591.8

167.0 .541 986.4 1926.8

193.9 .521 1171.3 2316.8

223.8 .501 1397.3 2756.8
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was evaluated under the assumption that Cy and
f{v) were constant along the Hugoniot curve and
that the values of these constants were the values
of Cv and f{v) evaluated at 25 °C. The calculated

temperatures where the 158.5 °C, 256 °C, and 296
°C isentropes intersect the 25 °C Hugoniot are

296.8 °C, 507.1 °C, and 561.5 °C. The values of tem-
perature above 58 kbar calculated by this method
are also listed in table 3.

6. Summary and Conclusions

Because of the scarcity and inaccuracy of experi-

mental data, it was necessary to assume a simple
form of the {e—p — v) equation of state to calculate

the thermodynamic properties of silicone fluid. The
particular form of the {e—p — v) relationship,

e—pf{v)-\-g{v) with f{v) and g{v) arbitrary func-

tions of volume, was suggested from the shock wave
data and also from the variation of {deldp)v along
the atmospheric isobar. Values oi f{v) calculated

from the shock wave data and values of/(t;) calcu-

lated from atmospheric static data with the identity

(deldp) V—— Cpidv/dp) sidT/dv) p were used to

calculate values of f{v) in the volume range not

covered by the experimental data. The values of

g{v) calculated from shock wave data, the values
of giv) measured along the atmospheric isobar, and
the condition dgjdv > 0 were used to calculate

values of g{v) in the volume range not covered by
experiment.

The Hugoniot curves centered at —20 °C, 25 °C,

158.5 °C, and 256 °C on the atmospheric isobar were
calculated directly with the expression

p\f{v) — h{vo — v)] = g{vo) -g{v)

obtained by combining the Hugoniot equation with

the {e — p — v) equation of state. The calculated

Hugoniot curves were consistent with experimental
Hugoniot points up to a pressure of 240 kbar but

then started to deviate from them. The isentropes

passing through 25 °C, 158.5 °C, 256 °C, and 296 °C
on the atmospheric isobar were calculated by
numerically integrating the differential equation

for an isentrope with a Runge-Kutta method; the

temperature along these isentropes was calculated

with the equation T=Ti exp — I dvlf{v). Calcula-

tion of the temperature where the 158.5 °C, 256 °C,

and 296 °C isentropes intersect the 25 °C Hugoniot
curve defines values of shock temperature on this

Hugoniot curve. The temperature 7'c=522.1 °C at

the point of intersection (pc=58 kbar, i;c=0.661

cm3/g) of the 296 °C isentrope and the 25 °C Hugo-
niot is the highest temperature on the 25 °C Hugoniot
that can be calculated from the data without addi-

tional assumptions. To put a possible ujsper estimate

on shock temperature along the 25 °C Hugoniot
above 58 khar. the temperature was calculated by

integrating along the Hugoniot curve with constant

Cv. The method of Walsh and Christian was used to

calculate temperature along the 25 °C Hugoniot
pliove 0 kbar.

It is obvious from our calculations of the

{e—p — v) equation of state that many more experi-

mental Hugoniot {p — v) points are needed to con- I

struct an {e—p — v) equation of state without first

assuming its functional form. Indeed, to test the

feasibility of constructing an equation of state from [

experimental data it would be necessary to deter- !

mine, with accuracy, the positions of at least three

Hugoniot curves in the {p — v) plane. With well-

defined Hugoniot curves it is possible to test the

vahdity of thermodynamic assumptions such as

{dejdp) x)—f{v) , and if necessary to fit the data with

more complicated functions. However, with a hmited
amount of Hugoniot data and the positions of the

Hugoniot curves not well defined, it is not in general

possible to test or to determine any thermodynamic
properties conclusively. Specifically, it is not pos-

sible to test the validity of {de/dp) v=f{v) with our
data because the experimental Hugoniot points do
not lie on isochores in the {p — v) plane. Many more
data points obtained with explosive driver systems
producing an improvement in wave flatness and
pressure uniformity are required to achieve a more
definitive characterization of the (e-p-v) surface.

The temperature calculations in this paper use
more thermodynamic data than previous methods
of calculating shock temperature. The shock wave
Hugoniot data and the atmospheric data for silicone

fluid span a larger domain of the {p — v) plane than
either the water data used by Rice and Walsh [3] or

the metals data used by Walsh and Christian [2]. In

the domain of the {p — v) plane where it is possible

to calculate temperature without making assump-
tions about specific heat, the present method of

calculating temperature is considered to be better

than methods based on the assumption of a constant

specific heat. The comparison of temperatures on
the 25 °C Hugoniot curve below 58 kbar calculated

using the present method, with those calculated

using the Walsh and Christian model based on the

constancy of Cv and {deldp)v suggests that the

Walsh and Christian model gives an upper estimate

for shock temperature. The comparison of tempera-
tures on this Hugoniot above 58 kbar calculated

using the Walsh and Christian method but with

diff"erent values of Ci, substantiates this suggestion.

However, the diff^erence between the temperatures
calculated above 58 kbar resulting from the diff"er-

ence between the numerical values of the constants

emphasizes the problem of determining the tempera-
ture of shocked liquids. The fact that it is possible

with the Walsh and Christian model to calculate

different temperatures with a constant value of

{deldp),, once again reflects the independence of

the (e—p — v) and (T—p — v) equations of state.

Because of the identity (de/dp) l{dpldT)v,

the (T—o — v) equation of state is not determined
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by an {e — p — v) equation of state based on an
experimental Hugoniot curve and the assumption

of constant {deldp) r. The constancy of {deldp)v

provides no guarantee that Cv and {dpldT)v are also

constant. In fact different sets of values of C„ and

{dpldT)r that satisfy the condition of constant

{de/dp) v can be associated with different (T—p — v)

equations of state that wiU give different values of

shock temperature.

It is concluded that the values of shock tempera-

ture calculated along the isentropes are more
realistic than those that would be calculated with

models based on less thermodynamic information.
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DISCUSSION

A. Holt {University of California, Lawrence Radia-
tion Laboratory, Livermore, California): In your
present work I assume that you have concluded that

the Hugoniots lie too close to one another at high

pressure to make this method valuable in obtaining

equations-of-state. If this is true, would you say that

this result would be found with other materials

besides silicone?

D. J. Pastine {U.S. Naval Ordnance Laboratory,

White Oak, Maryland): I would like to make the

point that you can calculate the rate of change with

temperature of the initial slope of the Ug— Up rela-

tion, which gives you an idea of how the Hugoniots
are going to change with temperature, and this turns

out to be of the order of thermal expansions— that

is, very small. So you could expect that for a 300
degree temperature change in metal the Hugoniot
curves wUl be right on top of each other.

J. W. Forbes {U.S. Naval Ordnance Laboratory,

White Oak, Maryland): I'm interested in your choice

of brass as a material to shock as the bottom of your
cells, because, in work by Nat Colburn and myself,

we have found that due to preheating, brass gives a
large anomalous effect as far as Ug — Up relationship

is concerned. We reported this a year ago at Bethle-

hem. It is also my understanding that McQueen and
Marsh discontinued use of brass because they
found it is too difficult to use as a standard. In our
data the separations in Hugoniots show a decrease
in shock velocity of perhaps up to 20 percent for the

same free surface velocity. We don't understand
exactly why.

G. E. Duvall {Washington State University, Pull-

man, Washington): Your curves were plotted in the

p — v plane, and aU tend to fall on one another. If you
plotted in the p — T plane, they would have been
nicely spread out. Or, better yet, a three-dimensional

plot would be useful.

AUTHORS' CLOSURE

Reply to A. Holt: It is unfortunately true that at

the present time the method is limited by the accu-

racy of the Hugoniot measurements and the close

spacing of the Hugoniot curves which wiU be even
more pronounced for heated solids. The way to

obtain Hugoniot points away from the crystal density

Hugoniot curves of metals is to shock porous
samples of low density as in the equation of state

work on aluminum performed at Stanford Research

Institute by G. D. Anderson, A. L. Fahrenbruch,
and G. R. Fowles.

Reply to D. J. Pastine: I agree.

Reply to J. W. Forbes: I don't understand why
either. The brass was both heated and cooled in our
experiments and corrections were made accordingly.

Reply to G. E. Duvall: I think that is an optimistic

way to look at the data.
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The Equation of State of Selected Materials for High-Pressure References

W. J. Carter, S. P. Marsh, J. N. Fritz, and R. G. McQueen

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

1. Introduction

Establishing a standard for high-pressure dynamic
shock wave work requires more than precise meas-

urements of Hugoniot data. Indeed, ahhough a

P — V relation may in principle be determined (at

least under the Rankine-Hugoniot assumptions) in

terms of mass, length, and time with arbitrary accu-

racy if sufficient care is taken, in order for the mate-

rial to be useful as a standard it is also necessary to

extend the equation of state into regions off the

Hugoniot. For example, if the standard is to be used

in other shock wave experiments it is necessary to

calculate reflected shocks and isentropes in order

to perform the impedance-matching calculations.

If it is desired to transform the shock wave data to

a form useful in static experiments, it is usually

necessary to calculate isotherms. These calculations

all assume knowledge of thermodynamic properties

of the material in regions where such data are un-

obtainable at present. Although these calculations

are not difficult, the necessity of extending the shock
wave results to regions off" the Hugoniot probably

results in the major uncertainty in establishing a

dynamic pressure standard.

The Los Alamos Scientific Laboratory has long

been interested in establishing such a dynamic
pressure standard. To this end, we have devised

experimental techniques which measure directly

both the shock velocity and material velocity needed
to establish pressure-compression curves through

the Rankine-Hugoniot equations. Although these

techniques have been applied to a number of dif-

ferent materials, the direct or primary standards are

now considered to be deoxidized copper and 2024
aluminum alloy. Once these primary standards are

well established, it is possible in turn to measure
the equation of state of other materials relative to

the standards through the impedance match method
If the Hugoniot data obtained in this way are suffi-

ciently well-determined, these materials may in

turn be used as secondary standards, particularly if

they have properties useful in static experimenta-

tion. A number of such materials are included in

this report.

Familiarity will be assumed with the Rankine-

Hugoniot equations and some of their consequences,
as well as many of the techniques of dynamic high-

*Work done under the auspices of the U.S. Atomic Energy Commission.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau

of Standards, Gaithersburg, Md., October 14-18, 1968.

pressure work. For a more detailed discussion of

these questions, see reference [1].'

2. Direct Measurements of the
Hugoniot Equation of State

2.1. Experimental Techniques

Perhaps the simplest yet potentially most accu-

rate method of obtaining Hugoniot data is to meas-
ure the velocity of a shock front created by the

symmetrical collision of two plates moving at known
relative velocity. In the laboratory system, this can
be done by explosively driving one plate (the driver)

into a stationary one (the target); then the measure-
ments of interest are the velocity of the driver at

the time of impact (ud) and the corresponding shock
velocity in the target (ug). Provided the target and
driver are in the same thermodynamic state, sym-
metry requires that the particle or material velocity

(up) behind the shock wave be equal to one-half the

measured driver velocity. Varying the driver veloc-

ity by changing the driver thickness, the explosive

system, or the length of free run between the driver

and target then allows the Hugoniot locus in the

Us — Up plane to be determined. The Rankine-
Hugoniot equations centered at f= 0

P=PoUsUp (1)

polp=VIVo={us — Up)lus (2)

E-Eo=ll2PiVo-V) (3)

then serve to transform the experimental data to

other thermodynamic quantities such as pressure
(P), density (p), or energy (E). The method has
the obvious advantage that it is free of the necessity

of calculating isentropes and the usual accompany-
ing assumptions, and furthermore does not depend
on zero-pressure thermodynamic data not directly

obtainable in the experiment, such as thermal
expansions and specific heats. These limitations

are all inherent in the previous method used to

establish dynamic standards through the measure-
ment of free surface velocities [2, 3].

The experimental set-up is shown in figure L A
sweeping image camera is used to record shock-

wave arrival times by the flash gap technique devel-

oped by Walsh and Christian [4]. The shock velocity

is determined in the usual way by measuring the

• Figures in brackets indicate the literature references at the end of this paper.
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ACRYLIC FLASH
BLOCKS

GROOVE FOR MEASURING
SHOCK VELOCITY

SLIT PLATE

TARGET

GROOVE FOR MEASURING
DRIVER VELOCITY

DRIVER

POLYETHiYL'ENE
FILM

HIGH
EXPLOSIVE

Figure 1. Design of the experimental assembly used to obtain

shock velocity-particle velocity data.
The upper part of the figure shows the arrangement of the plastic flash blocks on

the target plate which in effect give four independent sets of u.s- — Urf data points. The
left hand side of the assembly is used to measure the shock velocity and the other side

the driver velocity. Each set of blocks is viewed through four or five slits. The poly-

ethylene film placed behind the driver plate helps prevent driver plate breakup before

collision.

transit time of the shock wave through a known
thickness of material. The driver velocity is deter-

mined by a differential measurem_ent of the transit

time of the front surface of the driver through a

shallow groove milled on the back surface of the

target plate. The resulting photographic trace is

shown in figure 2.

As simple and straightforward as the technique
appears to be, there are nevertheless a number of

potential sources of error. Perhaps the most serious

of these is the lack of hydrodynamic equilibrium in

the shock, which of course is a property of the mate-
rial and not of the technique. This will be discussed
in more detail in section 2.3. Other sources of

difficulty are the following:

1. The driver plate may not be moving at con-

stant velocity at the time of impact. Studies have
shown that a series of accelerations, caused by
shock reverberations, are produced when a plate is

driven by high explosives [5]. Hence, the driver

velocity may not be constant as the driver moves
through the groove and the measured particle and
shock velocities will not be compatible. Whether or

not an acceleration occurs as the driver is moving
through the groove depends on such factors as the

length of free run, thickness of the driver, and the

pressure level produced by the high explosive as-

sembly. These factors must all be considered in

design of the shot assembly in order to minimize

Figure 2. An enlargement of a photographic record obtained

using the assembly shown in figure 1.

In this record, time increases downward; hence, the early traces on the left hand

side represent the shock wave arrival at the bottom of the narrow groove. The corre-

sponding reference traces estabUsh the wave arrival at the top of the plate. Since the

flash blocks on the right hand side are at a lower level, the reference traces for the

measurements arrive earlier. The offsets represent the difference in the driver-shock

transit times through the small gap machined in the bottom of the plate.

such errors. However, one can guarantee that the

initial shocks on both the shock and driver velocity

sides of the plate are the same by machining the

groove directly into the back of the target plates.

Also, by placing the groove at this position, small

pressure pulses present in the driver plate at col-
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lision time are more likely to result in an increase in

the driver velocity than an increase in the shock
velocity. This is advantageous, since the Us — u,,

Hugoniot is relatively insensitive to errors in the par-

ticle velocity, especially at low pressures.

2. Rarefactions from the rear surface and from
edges in the assembly may give deceptively low^ ap-

parent velocities. Since a shock is propagated both

into the driver and into the target on coDision, it is

possible that the rarefaction wave from the rear of

the driver may overtake the shock wave moving
through the target before the measurements have
been made. The catch-up ratio, r= target thickness/

driver thickness, can be computed using the longi-

tudinal wave velocity at pressure; these calculations

show that values of r greater than 4 are suspect and
should be avoided. For a given desired pressure

level, this limits the thickness of the target plate and
hence the accuracy of the experiment. This hmita-

tion, of course, is most stringent at high pressures.

The width and depth of the groove must also be so

tailored that sidewise rarefactions do not pinch off

the wave front; this again Umits the depth of the Ud
groove and hence the accuracy of the experiment.

This limitation is most stringent at low pressures.

3. The thermodynamic states of the driver and
target may not be identical. This is certainly always
the case, since the driver has been shocked while

being accelerated but the target has not. However, a

correction for this shock heating of the driver can be
applied to the data if the shock history of the driver

is known. This is done by recentering the known
Hugoniot of the driver to an initial state of higher

energy and lower density through the equation

previous section. However, this method can be
used to determine the Hugoniots of a few selected

materials to be used as primary standards. Two of

the most satisfactory materials serving as shock
wave standards are deoxidized annealed Cu and
2024 Ai alloy; these materials have therefore been

HUGONIOT DATA FROM SHOCK - PARTICLE VELOCITY EXPERIMENTS

10

6

4

c

4

1

c

2024 ALUMINUM
92IT ALUMINUM
IRON
COPPER
URANIUM - 3 WT PER CENT MOL

1 i

fBDENUM

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

UP KM/SEC

Figure 3. Hugoniot u^-u^ datafor 2024 Al, 921-TAI, Fe, Cu,

and U-3 percent Mo alloy.

Each set of data points was obtained by independent symmetrical collision experi-

ments. The curves were obtained by the method of least squares.

E= EH+{P-PH)lpy. (4)

This recentered Hugoniot is then used in an im-

pedance match calculation to give the corrected

value of Up. At low pressures the correction in

particle velocity is negligible. Since almost all the

shock heating arises from the first strong shock
from the high explosive, an attempt was made to

minimize experimentally the magnitude of this

pulse. A small air gap between the high explosive

and the driver appears to accomplish this while

not appreciably lowering the final driver velocity.

This has the added advantage of reducing the ten-

sion waves due to the Taylor wave in the high ex-

plosive. Using thick layers of high explosive is also

helpful in the latter respect.

Other errors in these experiments are probably
random in nature, leading to scatter of about ±¥2
percent in shock velocity. These errors arise from
the high degree of precision required in machining
and assembly of the shots.

2.2. Hugoniot Data for 2024 Aluminum
and Copper

It is obviously impractical to obtain Hugoniot
data for all materials by the method outlined in the

4.0

UP KM/SEC

Figure 4. Hugoniot F — u,, datafor thefive standards.
'

The curves drawn through the data were calculated from the u^ — u,, fits shown in

figure 3. In this plane the Hugoniots for the two Al alloys are indistinguishable. A sub-

stantial area of the P — plane is covered by these five materials, so that any unknown
material can be studied by using a standard of comparable shock impedance. This

minimizes errors arising from long extensions of isentropes and reflected shocks away
from the Hugoniot.
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Table I. Thermodynamic constants at 293 K

Material Density Thermal
expansion

Specific

heat
Debye

temperature
Sound velocities Griineisen

parameter

po a Cp e Cl Cb C(,(e.c.) C6(comp) y

2024 Aluminum
g/cm^
2.785

deg-'
21.8 X 10-6

ergslg deg K
0.879 X 10'

deg K
350

kmjs
6.39

km/s
3.15

km/s
5.25 [14]

kmjs kmjs

2.00

Copper 8.930 16.3 0.386 306 4.76 2.33 3.93 [14] 3.91 [15
3.92 [16'

3.95 [17

3.98 [8] 1.96

Silver 10.490 18.8 0.234 225 3.14
3.14

3.08

[15]
:i8]

[19]

3.19 [8] 2.38

Sodium 0.968 20.8 0.122 160 2.54 [10]
2.61 [25]

1.17

1.17

Molybdenum 10.206 4.9 0.251 314 6.45 3.47 5.04 [14] 5.13

5.12
[15]

20]

5.19 [8] 1.52

Palladium 11.991 11.8 0.238 220 4.57 2.06 3.90 [14] 3.80 [8] 2.26

Periclase 3.585 8.7 0.913 760 9.70 6.01 6.76 [14] 6.54

6.58

6.80

6.74

15

21

22
23

6.82 [10] 1.32

Magnesium 1.740 23.9 1.025 237 5.74 3.15 4.44 [14] 4.46 [24] 4.45 [9] 1.43

Thermal expansion and specific heat data were obtained from refs. [11-13].

The sound velocities c;, C(, and Cb are longitudinal, transverse and resultant bulk velocities obtained by the pulse-echo technique
on polycrystalline samples. The velocity ctifi.c.) is the bulk velocity calculated from measurement of elastic constants on single-crystal

samples, while Cb (comp) is the bulk velocity from measurements of isothermal compressibility, transformed by us to adiabatic com-
pressibility. References to original sources are indicated in parentheses.

thoroughly studied. In order to check the resuhs
and extend them to regions of higher impedance,
similar studies have been performed on Fe and a

high-density alloy of U and Mo. Finally, because of

possible rigidity effects in the 2024 Al alloy, another
aluminum alloy (921—T) with a very small elastic

wave was also studied; unfortunately this material

proved to be unusable because of large variations in

porosity. The results of these Hugoniot measure-
ments are shown in figures 3 and 4 for all five of

these materials. Table 1 presents some of the im-

portant thermodynamic constants for Cu and 2024
Al as well as further selected materials. Table 2

lists the results of a hnear least squares fit of the

data in the form

Us — Co + SUp. (5)

Values of the bulk sound velocities for these mate-
rials from compressibihty, elastic constant, and
ultrasonic measurements are listed in table 1; com-
parison with the leading coefficient in eq (5) shows
excellent agreement for Cu but somewhat higher

values of the Hugoniot intercept for the 2024 Al
alloy. This is attributed to rigidity effects and is

discussed in section 2.3.

In order to check the consistency of the measured
shock velocity-particle velocity loci, we have tested

each material against each of the others by the im-

pedance match technique, using each in turn as a

Table 2. Coefficients of the Hugoniot Equation

Us= Co + SUp

Material

2024 Aluminum

Copper

Silver

Sodium

Molybdenum....

Palladium

Periclase

Magnesium

Co

kmis

5.328

3.940

3.229

2.629

5.124

3.948

6.597

4.492

1.338

1.489

1.595

1.223

1.233

1.588

1.369

1.263

Standard to remeasure the Hugoniot of all the others.

The overall agreement is quite satisfactory and
shows that all five standards satisfy this necessary

condition. It should be remarked, in view of the wide
range of impedances of these materials, that this

cross-check is a stringent test of the individual

Hugoniot loci and also a test of the adequacy of the

values of the Griineisen parameter y listed in table 1

and the widely used assumption of constant py.
It is of interest to compare the results of these

measurements with the free surface velocity meas-

urements originally used to obtain the Hugoniots of
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Figure 5. Shock velocity-free surface velocity for 2024
Al and Cu.

The data were obtained by flash-gap techniques quite similar to those described

earlier. The solid curves were obtained by evaluating the Riemann integral along the

isentropes calculated from the shock velocity-particle velocity Hugoniots.

the standards [3]. These measurements consisted of

shock velocity-free surface velocity pairs obtained
on the same shot. To obtain a. Ug — Up Hugoniot from
these, the Riemann integral

rvw
Ur= Ufs-Up= [-{dPldV)sVl^dV (6)

Jv(P)

was evaluated indirectly by an iterative procedure
in v^hich calculated free surface velocities were
made to agree with experimental free surface

velocities by varying the particle velocities. The
isentropes were tied down along the zero pressure
isobar by requiring the internal energy E{V) at the

foot of the rarefaction release wave to agree with

that calculated from specific heat and thermal
expansion data. In figure 5 the experimental Ug — Up

data points are compared with the Us — U/s locus

calculated directly from eq (6) using the new shock
velocity-particle velocity Hugoniots of Cu and 2024
Al. The agreement for Cu is satisfactory in view
of the uncertainty in the zero pressure data and the

approximations used in calculating the isentropes.

2024 Al, on the other hand, contains regions where
the agreement is poor. These deviations are prob-

ably real and might reflect the effect of phase
changes (melting and vaporization) that are not

handled precisely in the calculated rarefaction

release isentropes.

2.3. Effect of Rigidity

In order for the Rankine-Hugoniot equations to

apply across a shock front, it is necessary that

(a) (b)

X Up

Figure 6. The effect of rigidity on the Hugoniot curves.

In (a) are drawn possible curves for the various wave velocity loci as a function of

particle velocity. The upper curve represents a one dimensional Hugoniot and could

be used to find the instantaneous longitudinal, elastic wave velocity. The lowest curve

represents the transverse wave velocity due to the shear modulus along the Hugoniot as

a function of particle velocity. It has been estabhshed through static experiments that

the shear modulus increases with pressure so it has been drawn with a positive slope.

However, since the temperature along the Hugoniot increases in an exponential manner,

this curve has been drawn with a downward curvature. If the material melts on the

Hugoniot this curve will go to zero and the longitudinal and bulk velocity curves will

coincide.

The remaining figures correspond to the lower pressure region of (a) where rigidity

effects will be most pronounced. The relationship of the experimental Hugoniot and
true release isentropes with the equilibrium Hugoniot is indicated in (b). Here HEL rep-

resents the Hugoniot elastic limit on compression and REL the elastic limit on the re-

lease wave. Figure (c) represents the type of pressure profile curve that would result

from the collision of a finite driver plate with a target plate of the same material if its

shock-wave equation of state were given by (b). Figure (d) is the P — transform of (b).

In figures (b), (c) and (d) the relative amplitudes of the various waves are the same.

hydrodynamic equihbrium be obtained. Particularly

at lower pressures, it is always possible that

fingering effects of material rigidity can alter the

ideal Hugoniot behavior. The behavior of a plane
shock and rarefaction wave with rigidity present
is sketched in figure 6. The pressure and volume
are initially related by a one-dimensional equation
of state, since initially there can be compression
in one coordinate only. However, as the pressure
increases, the deviatoric shear stress increases
and the material begins to shear plastically, i.e.,

to relax to a three-dimensional equihbrium state. If

the maximum resolved shear stress tolerable to the

material is small compared with the shock stress,

and if plastic flow can occur sufficiently rapidly

(that is, if the relaxation time is small compared
to the measurement interval), rigidity will have no
pronounced effect on the Hugoniot and the material
should exhibit true hydrodynamic behavior. How-
ever, if the material does not relax completely

385-762 O - 71 - 11



from the 1-D to the 3-D equnibrium Hugoniot, then
all states on the experimental Hugoniot will be
slightly stiffer than the hydrostat. This means that

measured shock velocities will be higher than the
true equilibrium Hugoniot and the resulting

Hugoniot intercept in the Us — Up plane should lie

above the measured bulk sound velocity. As seen
earlier, this is indeed the case for 2024 Al, where
the Hugoniot intercept is 2.7 percent too high.

Previous free surface velocity profiles measured
here on 2024 Al and Cu by the dc capacitor tech-

nique have shown that the Hugoniot elastic hmit,

or dynamic yield point, of 2024 Al is about 5.5 kbar
but is practically nonexistent for Cu [6]. An
assumed residual stress of about 2 kbar in the ex-

permental 2024 Al Hugoniot, when subtracted to

obtain the equiUbrium Hugoniot, allows the

Hugoniot intercept and bulk sound velocity to agree.

On the basis of the sound velocity, the small ampli-

tude of the elastic precursor, and the very steep

wave profile observed even at low pressures, it

can be assumed that the experimental Hugoniot
of Cu is representative of a true hydrostat.

If the material does not relax entirely to the equi-

hbrium Hugoniot, an elastic precursor release wave
which is even larger than the shock precursor should

also be expected (see fig. 6). This should be mani-

fested by a smaller free surface velocity than the

true hydrostat would predict. Ideally, of course, in

our experiments the free-surface and driver veloc-

ities should be equal in the low-pressure regime.

Symmetrical-coUision cannon shots using 2024 Al,

however, show that free surface velocities are less

than the projectile velocity [6]. High-pressure

explosively driven experiments on 2024 Al, where
the free surface velocity and the driver velocity

were measured on the same shot, show a similar

effect. Even at driver velocities up to 3 km/s, a
deficit in free surface velocity of about 1 percent was

P

V V*
CRYSTAL 0

V

Figure 7. Schematic to illustrate how porous materials can be

used to measure the Gruneisen parameter.

The difference in internal energy between the two Hugoniots at is indicated by the

crosshatched area. The corresponding pressure difference is also indicated. By using

samples of low initial densities, very high temperatures can be reached in the shock.
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Figure 8. Experimental values for (dE/clP)i versus volume
determinedfrom shock wave studies on porous 2024 AL

In this and the following figure each data point was computed from the shock-wave
data for each porous sample and the fit of crystal density Hugoniot data. The curves

were computed from least square fits of the Ug — Up data for each density jiroup. Samples
with lower initial densities represent average values of {dEfdP)\ measured over larger

temperature ranges at a given volume. Within the experimental accuracy there does
not appear to be any measurable variation of y with temperature. The general appear-

ance of the data gives support to using the simple relationship py constant.
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Figure 9. Experimental values for (dE/dP)v versus volume

determined from shock wave studies on porous Cu.

In addition to the experimental curves the values of (dEldP)v versus V obtained

from the Dugdale-MacDonald relationship (solid line) and y constant (dashed line) are

also plotted. It can be seen that the data agree quite well with the Dugdale-MacDonald

calculation. At small volumes experimental data lie well above the y constant line,

which is known to be a poor representation of the volume dependence of y because it

predicts vanishing sound speeds at large compressions.
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found. Hence, elastic-plastic behavior is important

in 2024 Al even at high pressures. Copper does not

show this behavior except at very low shock
pressures.

Rigidity must obviously play a role when 2024 Al

is used as a standard for materials of lower shock
impedance since the impedance match solution re-

quires calculation of isentropes. It is not clear how a

residual deviatoric stress will affect the results

when a material of higher impedance, requiring cal-

culations of reflected shocks, is used with such a

standard. It is hoped that the increase in the shear
modulus due to the offset in pressure is compen-
sated by the increase in temperature also en-

countered in strong shock waves.

2.4. Experimental Studies on Porous Samples

In addition to a Hugoniot Us— Up locus, it is neces-

sary to know the properties of the Griineisen param-
eter y over wide regions of the P — V plane in order
for a material to be useful as a shock-wave standard.

This is because the impedance match technique re-

quires the calculation both of reflected shocks and
of release isentropes. Experimentally, this is ex-

tremely difficult to do. One way of attempting this is

to use porous samples of the material of interest in

equation-of-state shots using the impedance match
technique. An average value of the Griineisen ratio

is then determined by the pressure and energy off-

set from the crystal-density Hugoniot at a given

volume through the relation (see eq (4))

POROUS 2024 ALUMINUM
12

I I

2 1 ] 1 1 I \ I

0 1 2 3 4 5 6
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Figure 10. Shock velocity-particle velocity data for porous 2024

Al.

The curves were computed from the least square fit of the crystal density Hugoniot
and a constant value of {dEldP)i , obtained from the y and p in table 1, for the average
initial density of each group of samples. The data were also corrected for deviations

in initial density. In this and in figure 12 it can be noted that the calculated curves

originate at Ug= Up = 0. Thus the higher density curves have considerably more curva-

ture in the low-pressure region. The low initial density curves become almost linear,

since they are approaching the initial density po = pcrysT/(T + 2) which yields a vertical

P—V asymptote at crystal density.

This is shown schematically in figure 7. The values

of (dEldP)v computed from the crystal density

Hugoniot and the experimental data points are

shown in figures 8 and 9 for 2024 Al and Cu respec-

tively. Also shown in these figures are the smoothed
results obtained by fitting the experimental data

points with a quadratic Ug — Up fit which is then used
to find the pressure and energy offsets from the

crystal Hugoniot. It is obvious that the method is a

very sensitive one, and the precision requirements
to measure y accurately are quite severe. However,
there is no indication in these figures of a volume
dependence of {dEldP)v, so that the results are

compatible with the assumption of constant py.

It is possible to compute the Hugoniot of a porous
material from the crystal density Hugoniot through
the equation

P=Ph[1 - (py) (^0- n/2]/[l - (py) {V* - V)/2]

which gives the pressure as a function of volume
for a porous material centered at the volume
Fq. Here Vo is the initial volume of the crystal

POROUS 2024 ALUMINUM

« i.00\
o 0.91 / FRACTION OF
• 0.80 ) CHVSTAL DENSITY
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V/VO

Figure 11. Pressure versus relative volume for porous 2024 Al.

In this and in figure 13 the curves are the P—I'/' o Iransforqis of the computed Ug—Up
fits. The scatter in the data due to variation in density is more pronounced in these

plots. Vt, in the figures refer to the average density of each group of samples. Although

the compression is large for these low initial density samples, the final densities are

not. The approach to the asymptotic density is quite apparent.
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Figure 12. Shock velocity-particle velocity data for porous Cu. Figure 14. Hugoniot u^ — u„ data for Mo, Mg, Pd, Ag, andNa.
Where possible, bulk sound speeds derived from both compressibility and ultra-

sonic measurements have been included, although these have not been used in the

least square Bts of the Hugoniot data.
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Figure 13. Pressure versus relative volume data for porous Cu.

density material, and Th is the pressure on the

crystal density Hugoniot at the volume V. This

Hugoniot can be transformed to the Ug — u,, plane
through the equations

us-^v*[Pi{v*-v)yi^

u,= [P{v*-v)yi\

(8)

(9)

2 .5
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Figure 15. Hugoniot P - V/Vo data for Mo, Mg, Pd, Ag, and
Na.

The curves span a very large region in this plane. Although there is some scatter in

the data, it is evident that the compression curves are well determined.

In figures 10 to 13 the experimental Ug — u,, and
P — VjVn data are given for crystal density and
porous 2024 Al and Cu. The crystal data is the shock

velocity-particle velocity data fitted with the linear

relation listed in table 2. The other Hugoniots were
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calculated from eq (7) assuming py constant and

using the average initial volume of each group of

data points as the Hugoniot centering point. The
agreement with the data is quite good, a further

indication that this simple volume dependence of

the Griineisen parameter is adequate. Much of the

scatter in the data probably arises from the diffi-

culty of measuring initial densities accurately.

3. Indirect Measurement of the
Equation of State

Once the Hugoniot Ug—Up curves and the Griine-

isen parameters have been determined for the pri-

mary standards as outlined in section 2, it is

possible to use these materials to investigate the

equation of state of other materials by use of the

impedance match technique [4]. Although a large

number of materials have been studied in this way,

we have selected only a few substances which are

under particular consideration as static high-

pressure standards. These include five metals, Ag,

Na, Mg, Pd and Mo, and one oxide, MgO.
The Us— Up and P — V/Vo Hugoniot data for the five

metallic elements are presented in figures 14 and 15.

There is evidently considerable scatter in the data,

and the possibility of phase transformations along

the Hugoniots is certainly not precluded. However,
the volume changes at such transformations are

undoubtedly quite small, and since velocity meas-

urements are essentially differential P—V measure-
ments, as seen by eqs (8) and (9), the resulting

compression curves should be quite accurate.

The situation with periclase is not so favorable.

The Hugoniot Ug — Up and P-VjVo data for crystal

MgO and three lower density ceramics are pre-

sented in figures 16 and 17. The linear least square
fit of the crystal data extrapolates at zero pressure to

6.6 km/s, a value considerably below the currently

accepted bulk sound speed of 6.73 km/s. The dis-

crepancy is in the wrong direction to be explained by
rigidity effects. This discrepancy is larger than can
be explained by the rather large scatter in the ex-

perimental data. A possible explanation is that MgO
transforms to the CsCl structure somewhere on the

Hugoniot below about 200 kbar. Since the Hugoniot
data appear to be characteristic of the same phase,
a straightforward linear Hugoniot fit, together with

the thermodynamic value of the Griineisen param-
eter, has been used to calculate the Hugoniots of

the porous ceramics by the method of section 2.4.

The results are gratifying, and again give additional

confidence to the assumption of a constant value for

the product (py). The experimental values of

{dEjdP)v for periclase, also calculated by the

methods of section 2.4, are plotted in figure 18.

Although attendant with the usual large scatter

found with this sort of experiment, it is obvious that

a constant value of (dE/dP) v is again consistent with
the data.
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Figure 16. Hugoniot Uj — Up data for MgO.
The crystal density material (p() = 3.585) has been fitted by the method of least

squares to a linear u^ — Up relation. The resulting curve extrapolates considerably below
the bulk sound speed, indicating that the material has possibly transformed to a differ-

ent phase at these pressures. The curves through the data points for the lower density

materials have been calculated from this fit, using a thermodynamic Griineisen param-

eter with (dEldP)v = 0.2ll. The agreement is seen to be good.
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Figure 17. Hugoniot P — V/Vo data for MgO.
The solid curves are transformations of the calculated u, — Up curves from figure 16.
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Figure 18. Experimental values for (3E/aP)v versus volume
determinedfrom shock wave studies on porous MgO.

The data points were computed by the same method as used in figures 8 and 9.

4. Transformation of Hugoniot Data
to Isothermal Compression Data

As mentioned earlier, the extension of the Hugo-
niot data to regions off the Hugoniot represents the

major shortcoming in using dynamically established

standards in static experimental work. However, it

is nevertheless possible to approximate the room
temperature isotherms from the Hugoniot data

under certain assumptions. For such calculations

it is most convenient to work through the general

energy-pressure equation (eq (4)). This equation

states that the pressure and energy at any particular

volume can be related to these quantities on the
]

Hugoniot through some average value of the
Griineisen parameter y. In view of the experimental
evidence for porous Cu, 2024 Al, and MgO, as well

j

as theoretical considerations, y may be taken to be \'

independent of pressure and a function of volume '

alone; the relationship (dEIdP)v= constant ap-

pears to be satisfactory in the absence of a more
compelling choice. More complicated volume de-

pendencies of y lead to only slightly differing re-

sults for most materials. Calculation of isotherms
requires an arbitrary choice for the specific heat as

well, since data are unavailable in the region of in-

terest. We have chosen to use one of the simplest

forms of the Debye theory, characterized by a single

Debye theta, 0,(^)» which is a function only of

volume [7]. This form for the specific heat is con-

sistent with the assumption that the Griineisen

parameter depends only on the volume, since the

specific heat obtained in this manner is a function

only of entropy. In these calculations, &{V) has
been chosen so that the Debye theory will give the

correct room-temperature, zero-pressure value for

the specific heat. With this assumption, the thermal
energy, Et— E — E-zq^ (where £293 is the energy of

the solid at 293 K and the same volume) can be cal-

culated. In turn, this energy and the corresponding
thermal pressure, Pt— Ery/V, can then be removed
from the Hugoniot curve to yield the room tempera-
ture isotherm.

The thermodynamic and Hugoniot data used to

perform these calculations are listed in tables 1 and
2 respectively. The resulting P-p isotherms are

tabulated in table 3, and the P-V/Vo isotherms are
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Pressture
(Mb)

Calculated Density on 293 ''k Isotherm

2024
CopperAliiminum Molybdenum Silver PsLlladium Sodium

2.785 8.930 10.206 10.490 11.991 ,968
2.803 8.963 10.225 10.539 12i024 1,037
2,821 8.995 10.244 10.587 12.056 1.096
2.838 9.027 10.263 10.635 12.088 1.147
2.855 9.059 10,282 10.681 12.119 1.193
2.872 9.090 10.301 10,726 12.150 1.235
2.888 9.120 10.319 10.771 12.181 1.274
2.90* 9.151 10.338 10.815 12.211 1.310
2,920 9.180 10.356 10.858 12.242 1.344
2,935 9.210 10.374 10.901 12.271 1.376
2,950 9.239 10.393 10.942 12.301 1.407
2.965 9.268 10.411 10.983 12.330 1.436
2.980 9.296 10.429 11.024 12,359 1.464
2.995 9.324 10.447 11.064 12.388 1.491
3.009 9.352 10.465 11.103 12.416 1.517
3.023 9.380 10.482 11.142 12.444

12.472
1 .541

3,037 9.407 10.500 11.180 1.565
3,051 9.434 10.518 11.217 12.500 1.588
3.064 9,460 10.535 11.255 12.527 1.611
3.078 9,487 10.553 11.291 12.554 1.632
3.0?l 9.513 10.570 11.327 12.581 1.653
3,104 9.538 10.587 11.363 12,608 1.674
3,117 9.564 10.605 11.398 12.634 1.693
3.130 9.589 10,622 11.433 12.660 1.713
3,142 9.614 10.639 11.468

11.502
12,686 1.731

3. 155 9.639 10.656 12,712 1.750
3.167 9,664 10.673 11.536 12.737 1.768
3.179 9,688 10.690 11.569 12,763 1.785
3.191 9.712 10.706 11.602 12.788 1.802
3.203 9,736 10.723 11.634 12.813 1.819
3.215 9.760 10.740 11.667 12.837 1.835
3.328 9,987 10.902 11.972 13.075 1.980
3.431 10,198 11.059 12.251 13.297 2.102
3.527 10.394 11.210 12.508 13.506 2.206
3.616 10.579 11.356 12.747 13.703 2.298
3.701 10.754 11.497 12.972 13.891
3.781 10.920 11.635 13.183 14,069
3.858 11.079 11,768 13.383 14.240
3.931 11.230 11,898 13.573 14.403
4.001 11.375 12,0:^5 13.754 14,561
4,068 11.514 12,149 13.927 14,712
4,132 11.648 12,270 14.093 14,858
4,195 11.777 12,388 14,252 14.999
4,255 11,902 12,504 14,405 15,135
4,313 12,022 12,617 14,552 15.268
4.369 12,139 12,728 14,694 15,396
4,424 12,252 12,837 14,831 15,520
4.477 12.362 12.944 14.963 15.642
4.528 12.469 13.050 15,091 15,759
4.578 12.573 13.153 15,216 15,874

12.674 13.255 15,336 15,986
12.773 13,355 15,453 16,095
12.869 13.453 15,567 16,202
12.962 13,550 15,677 16.306
13.054 13.645 15,785 16.407
13.143 13.739 15,890 16.507
13.231 13.832 15,992 16.604
13.316 13,924 16.091 16.699
13.399 14.014 16.792
13.4B1 14,103

14 . 1 "*0

14.277
14.363
14.447
14.531
14.613
14,695
14,776

16,884
16,973
17,061
17,147
17,232
17,315
17,396
17,476
17,555

Magnesium MkO

0.000
.005
.010
.015
.020
.025
.030
.035
.040
• 045
,050
,055
.060
.065
.07o
.075
,080
.085
.090
.095
.100
.105
.110
.115
.120
.125
.130
.135
.140
.145
.151)
.200
.250
.300
.350
.400
.450
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950

1.000
1.050
1.100
1.150
1 .200
1.250
1.300
1.350
1.400
1,450
1.500
1.550
1.600
1 .650
1 .700
1.750
l.tloo
1 .850

1 .900
1 .950
2.00U

1.740
1.765
1.789
1.812
1.834
1.856
1.876
1.896
1.916
1.935
1.954
1.972
1.969
2.007
2.023
2.040
2.0S6
2.072
2.088
2.103
2.118
2.133
2.1*7
2.161
2.176
2.189
2.203
2.216
2.230
2.2*3
2.256
2.376
2.483
2.581
2.671
2.75*
2.832
2.904
2.973
3.038
3.100
3. 158

3.585
3.597
3.608
3.620
3.631
3.642
3.653
3.664
3.675
3. 685
3.696
3.707
3.717
3.727
3.737
3.748
3.758
3.768
3.777
3.787
3.797
3.806
3.816
3.825
3,835
3.844
3.853
3.863
3.872
3.881

3.890
3.976
4.057
4,133
4.205
4.273
4,339
4.401
4,461
4,519
4.575
4.629
4.681
4.731
4.780
4.828
4.874
*.9l9
4.963
5.005
5.047
5.088

Table 3. Calculated 293 K isotherms
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Figure 20. Comparison of Bridgman isothermal data with
calculated 293 K isotherms from shock wave data.

The agreement to 30 Icbar, with the exception of the data for MgO, is acceptable. The
Bridgman data are from reference [9]. The solid lines are the lower ends of the calcu-

lated 293 K isotherms from figure 19.
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plotted in figure 19. These isotherms have been
calculated to pressures only slightly below the

maximum pressures reached on the Hugoniots,
and therefore represent small extensions of the

data. They should therefore be used with caution

in the very high pressure ranges.

The calculated isotherms are compared with the

work of Bridgman [8, 9, 10] in figures 20 and 21 for

most of the materials included here. The agreement,
at least to pressures of 30 kbar, is in general quite

good. Above about 50 kbar there is considerable

disagreement for both Na and Mg, with the 1948
Bridgman data being consistently too high in pres-

sure. The most serious disagreement is with MgO.
In view of the difficulties with the sound speed and
the likelihood of a phase change below 200 kbar in

this material, the Bridgman isotherm is probably
more correct in this low-pressure region. It may be
remarked that if the Hugoniot intercept is made to

agree with the ultrasonic value of 6.73 km/s, then
the Bridgman isotherm and our calculated shock
wave isotherm agree very nicely as well.
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1. Introduction

There has been considerable interest on a pressure

scale in lead chalcogenides and nickel arsenide-type

compounds. Lead chalcogenides exhibit the first-

order transitions at 24,680 (PbS), 43,320 (PbSe),

and 41,200 (PbTe) kg/cm^ in the Bridgman's

P-V data [1],' accompanied by the extremely sharp

rise in electrical resistance [2]. Nickel arsenide-type

compounds exhibit the large negative pressure

dependence of magnetic transition temperatures in

the rate of - 12.3(MnAs) [3]. -3.3(MnSb) [3, 4].

-6(CrTe) [5], and -6(NiS) [6] degree/kbar, etc.

Bassett, Takahashi, and Stock [7] have observed

the x-ray powder patterns of high-pressure poly-

morphs in lead chalcogenides, using diamond anvils,

which have a correspondence with the SnS-type

patterns, but are not yet identified completely at

present. Lynch [8] has measured the lattice param-

eters of MnSb as function of pressure up to 150

kbar, using diamond x-ray cell and discussed the

negative pressure dependence of Curie temperature

in the relative changes of three shortest Mn-Mn
distances; c/2, a, and {c^l4-+ a^)^'^.

In this experiment the lattice parameters have

been measured in two lead chalcogenides (PbS and
PbTe) up to 90 kbar and in four nickel arsenide-type

compounds (MnSb, MnTe, CrSb, and CrTe) up
to 170 kbar.

2. Experimentals

Table 1 summarizes the materials, sources, and
atmospheric lattice parameters. The materials were
diluted in 5 to 13 times of weight by amorphous
boron powder for reduction of x-ray absorption. The
x-ray powder photographs were taken at quasi-

hydrostatic pressure and at room temperature, using

' Figures in bracicets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

a Drickamer-type high pressure cell [9]. The x-ray

diffraction angles allowed about 20 degrees using

Mo target at the maximum pressure of 170 kbar.

Pressures were determined by markers of NaCl,
which was scaled by Bridgman's P-V data [10] and
Drickamer's x-ray data [11]. The lattice parameters
calculated by least square method.

3. Results and Discussions

3.1. Lead Chalcogenides

The normal forms of lead chalcogenides have
NaCl-type structure. The x-ray powder patterns

which have a correspondence with the SnS-type
patterns were observed in PbS above 25 kbar and
in PbTe above 45 kbar. Tables 2 and 3 show the

observed and calculated c?-spacings of the ortho-

rhombic patterns in PbS at 45 kbar and in PbTe at

Table 1. Materials, sources, and atmospheric

lattice parameters

Materials Sources Structures a c cja

(A) (A)

PbS Kanto Chem.

Co.

NaCl 5.935

PbTe Dr. Y. Sato of

Electrical

Communi-

cation Lab.

NaCl 6.439

MnSb Dr. T. Kaneko

of Tohoku

Univ.

hex. 4.13 5.78 1.40

MnTe Dr. S. Anzai

Keio Univ.

hex. 4.15 6.71 1.62

CrSb Dr. T. Kaneko

of Tohoku

Univ.

hex. 4.11 5.44 1.32

CrTe Dr. T. Kaneko

of Tohoku

Univ.

hex. 3.98 6.21 1.57
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Table 2. Observed and calculated d spacings for
orthorhombic phase of PbS at 45 kbar and rela-

tive intensities of SnS-fype compounds

Orthorhombic unit cell

hkl ///i(SnS) ///i(GeS)

(A)

3.35 vs 120 3.39 10 OA80

3.18 s 021 3.17 15 40

2.84 vs 040 2.85 100 100

2.53 5 (boron ?)

2.30 s 131 2.32 15 50

2.00 s 150 2.01 10 10

1.87 w 230 1.88 50

1.79 w 151 1.78 5 50

Table 3. Observed and calculated d-spacings for
orthorhombic phase of PbTe at 80 kbar and rela-

tive intensities of SnS-type compounds

^obs. hkl ^^calc. ///i(SnS) ///.(GeS)

(A) (A)

3.69 m 120 3.68 10 80

3.38 s 021 3.37 15 40

2.99 5 040 2.97 100 100

2.435 131 2.43 15 50

2.31 m 210 2.30 1 30

2.15 w 141 2.14 10 40

2.01 m 230 2.02 50

1.91 w 151 1.91 5 50

80 kbar, where the smoothed data of lattice param-
eters were used for the calculation, and the relative

intensities of SnS and GeS. The other calculated

patterns, such as 101 and 111 lines etc., were not

detected for our instruments, because of their low
resolution. However, assuming the SnS-type struc-

ture as the high-pressure polymorph in lead chalco-

genides throughout this paper, the diffraction

patterns were indexed to orthorhombic set of indices.

Figure 1 shows the unit cells of NaCl-type and
orthorhombic structures. The orthorhombic lattice

parameters were calculated from 120, 021, and 040
lines. Figures 2 and 3 are a plot of lattice parameters
versus pressure in PbS and PbTe. Tables 4 and 5

summarize the smoothed date of a/ao, b/bo, c/co,

VI Vo, and P in the NaCl-type and orthorhombic
structures. Figures 4 and 5 are a plot of VIVo versus
pressure. The crosses are Bridgman's data. The
P—V data suggest the first-order phase transition

from the NaCl-type to the orthorhombic structures

which accompanies the volume discontinuity of

about 3 percent in PbS and about 2 percent in PbTe.
The c axes are slightly more compressible than the

a and b axes in the orthorhombic phase.

o Pb atom

\ % Calcogen atom

NaCl-type unit cell

Figure 1. NaCI-type and orthorhombic unit cells.

1.00

090

080

Figure 2. Lattice parameters versus P in PbS.

3.2. Nickel Arsenide-Type Compounds

Table 6 summarizes the pressure dependence
of magnetic transition temperatures and the volume
magnetostriction given by the thermal dilatation

data at the atmospheric pressure in MnSb, MnTe,
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Table 4. Lattice parameters and compressibility

o/Pbs

p ajaa c/co VIVo

NaCl-type structure

hbar

0 1.000 1.000 1.000 1.000

10 0.992 0.992 0.992 0.973

20 0.983 0.983 0.983 0.950

Orthorhombic structure

30 1.014 0.966 0.919 0.902

40 1.009 .962 .914 .887

50 1.005 .960 .905 .873

60 1.000 .958 .902 .864

70 0.998 .956 .900 .858

*NaCI-type structure is also described in terms of orthorhombic axes.

Table 5. Lattice parameters and compressibility

o/PbTe

p a/oo bibo c/co viv,

NaCl-type structure

kbar
0 1.000 1.000 1.000 1.000

10 0.992 0.992 0.992 0.978

20 .986 .986 .986 .956

30 .978 .978 .978 .938

40 .972 .972 .972 .920

Orthorhombic structure

50 1.030 0.931 0.926 0.889

60 1.029 .927 .917 .874

70 1.028 .922 .902 .859

80 1.027 .919 .897 .844

90 1.026 .915 .888 .832

*NaCl-type structure is also described in terms of orthorhombic axes.

Table 6. The pressure dependence of magnetic
transition temperatures and the volume mag-
netostriction at the atmospheric pressure

Compounds dTc.NldP

Volume magnetostriction

^a Ac

(K) (KIbar) (percent) (percent)

MnSb 586 (Tc) -3.3[3,4] + 0.3 [12] 0

MnTe 307 (Tx) + 2.6[13] 0 -0.8[14]

CrSb 713 (r,v) + 1.2[15] -2.9[15]

CrTe 339 (Tr) -6[5] + 0.16[16] + 0.14[16]

CrSb, and CrTe. Figure 6 shows the unit cell of

nickel arsenide-type compounds. The hexagonal
lattice parameters were calculated from the follow-

ing hnes: 101, 102, 110, 103, and in some cases

202, 004, 211, 212, 114, 213, in MnSb; 101, 102, 110,

201, and in some cases 202, 203 in MnTe; 110, 102,

101, and in some cases 103 in CrSb and CrTe.

1. 10

1.00

0,90

1

"—-I

Q /Qo

a/Qo , b /bo , c/Co

b/bo

/

1

C/Co

0 50 100

P . kbar

Figure 3. Lattice parameters versus P in PbTe.

080-
1 1 1 I

0 20 40 60 80 100

P. KBAR

Figure 4. V/Vo versus P in PbS.

p. KBAR

Figure 5. V/Vo versus P in PbTe.

Figures 7-10 are a plot of lattice parameters

versus pressure. MnSb exhibits the Curie tempera-

ture at 65 kbar decreases up to the room tempera-

ture. The small but measurable irregularity in the
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NiAs-type unit cell

O Ni atom

As atom

(Q) Interstices

Figure 6. NiAs-fype unit cell.

4.15

4,10

405

400

3.95

3.90
50 100 150

P, kbar

Figure 7(»). a versus P in MnSb.

580

5.70 -

5.60 -

C,A

550

5.40

530

520
50 100

P. kbar

Figure 7(b). c versus P in MnSb.

a-P curve is observed at about 65 kbar, as shown in

figure 7(a). The distortion in the a axis below 65
kbar from the dotted curve which is drawn by the

extrapolation from the curve above 65 kbar is con-

sidered as the magnetostriction. CrSb exhibits the

sharp rise in c axis and the sharp drop in a axis

at about 80 kbar, which is not yet established, but

may suggest the first-order or second-order phase
transitions. The experiment on the pressure

dependence of Neel temperature in CrSb is in

progress.

Tables 7 to 10 summarize the smoothed data of

a/ao, c/co, (c/a)/(c/a)o, and V/Vo, and P. The lattice

parameters are expressed by the following function

of pressure:

4.15

4.10

4.05

a,

A

4.00

3.95

3.90
50 100

P, kbar

Figure 8(a). a versus P in MnTe.

50 100

P. kbar

150

Figure 8(b). c versus P in MnTe.

MsSb,
- Aa/ao =1.32X10-^P+ 4.64 X 1 Q-^P^ (below

65 kbar),

-Aa/ao = 2.7 X 10"^ + 4.64 X lO-^F - 1.21

X 10-6P2 (above 65 kbar),
- Ac/co = 9.42 X lO-^P - 2.50 X IQ-^P^;

MnTe,
- Aa/ao = 5.52 X lO-^P - 1.18 X 10-^P\
- Acico = 10.6 X 10-*P - 2.79 X lO-^P'^;

CrSb,
Aa/ao = 3.9 X lO-^P - 1.7 X 10-«P%
Ac/co = 5.8 X 10-4P - 1.0 X 10-«P2.

CrTe,
- Aa/ao = 1.6 X IQ-^ + 3.0 X lO'^P,
- Ac/co = 1.4 X 10-3 + 8.0 X lO-^F.
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4.10

4.00

4.10

4.00

Figure 9(a). a versus P in CrSb.

5 60-

5.20

Table 7.

50 100

P , kbar

Figure 9(b). c versus P in CrSb.

Smoothed data of a/ao, c/co, (c/a)/(c/a)o,

and V/Vo in MnSb

p a/ao c/co (c/a)/(c/a)o VIVo

kbar

0 1.000 1.000 imo 1.000

10 0.998 0.989 0.992 0.985

20 .995 .980 .984 .971

30 .992 .971 .979 .955

40 .987 .964 .976 .940

50 .982 .957 .975 .923

60 .976 .951 .975 .905

65 .972 .949 .976 .895

70 .970 .946 .975 .891

80 .968 .941 .972 .882

90 .966 .937 .970 .873

100 .964 .932 .967 .866

110 .962 .928 .965 .859

120 .960 .925 .964 .852

130 .958 .921 .962 .846

140 .957 .918 .959 .840

150 .955 .914 .957 .834

160 .954 .911 .956 .829

170 .953 .908 .954 .825

a,A

4.00f

390

3.80
50 100

P. kbar

Figure 10(a). a versus P in CrTe.

C.A
6 30r

620

6.10

6.00

5.90

5.80

5.70

5.60

550
0 50 100

P, kbar

Figure 10(b). c versus P in CrTe.

Figure 11 shows the smoothed data of c/a ratio

versus pressure. Empirical exchange interaction

curves relating magnetic transition temperatures
to interatomic distances have been frequently

discussed in nickel arsenide-type compounds.
How^ever, the pressure dependence of magnetic
transition temperatures may not be quantitatively

understood by the relative change in the neighboring

atomic distances (c/2 or a) and the bonding angles

of nearest neighboring atoms (c/a).
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Table 8. Smoothed data of a/ao, c/co, (c/a)/(c/a)o,

andYIYoin MnTe

p a/ao c/co (c/a)/(c/a)o VIVo

kbar

0 1.000 1.000 1.000 1.000

10 0.996 0.988 0.994 0.977

20 .989 .978 .988 .956

30 .984 .969 .985 .938

40 .980 .962 .982 .924

50 .975 .955 .979 .907

60 .971 .947 .975 .893

70 .967 .942 .972 .881

80 .964 .935 .970 .868

90 .960 .929 .967 .856

100 .957 .922 .964 .844

110 .954 .917 .962 .835

120 .951 .913 .960 .826

130 .948 .909 .958 .816

0 50 100 150

P . kbar

Figure 11. (c/a)/(c/a)o versus P.

Table 9. Smoothed data of a/ao, c/co, (c/a)/(c/a)o,

and V/Yo in CrSb.

p a/ao c/co (c/a)/(c/a)o VIVo

kbar

0 1.000 1.000 1.000 1.000

10 0.996 0.994 0.998 0.986

20 .993 .989 .996 .976

30 .990 .983 .993 .964

40 .988 .977 .989 .954

50 .985 .972 .987 .944

60 .983 .968 .985 .935

70 .982 .965 .983 .930

80 .981 .961 .980 .925

90 .980 .959 .979 .921

100 .980 .958 .977 .920

Table 10. Smoothed data of a/ao, c/co, (c/a)/(c/a)o,

and V/Vo in CrTe.

p a/ao c/co (c/a)/(c/a)o VIVo

kbar

0 1.000 1.000 1.000 1.000

10 0.999 0.995 0.996 0.993

20 .995 .987 .992 .977

30 .992 .979 .987 .963

40 .989 .969 .980 .94a

50 .985 .963 .978 .934

60 .982 .953 .971 .919

70 .980 .947 .966 .910

80 .977 .939 .961 .897

90 .974 .931 .956 .883

100 .971 .923 .951 .870

According to the molecular magnetic field ap-

proximation [17], the internal energy E of magnetic

substances includes the elastic energy Egi and the

magnetic exchange interaction energy E^^

E= Eel+ Eex' (1)

where
Ee,^i^Vyi2kV (2)

and

1 3k
£'ex=—

2
^^^^~'2~^*- ''^~ const - — VexSi S2 (3)

AFis the volume magnetostriction, k the compressi-

bility, y the coefficient of molecular field, cr the

intrinsic magnetization per unit mass at absolute

zero temperature, Tc,n the Curie or Neel tempera-

tures, and Jex the exchange integral between spin

Si and spin S2. The differentiation of eq (3) as
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regards P,

1 dTc.x 1 SJe 2 da-

Ta,x dP Je^ dP adP'

dEldV^O leads using eqs (1), (2), and (3),

AV^ 3^ dTc,N

Vo 2Fo dP
•

(4)

(5)

When the volume magnetostriction is only in a axis,

eq (5) is replaced by

^^2—
Vo Co

' (6)

Figure 12 is a plot of the magnetostriction in a
axis of MnSb versus pressure. The pressure

dependence of Curie temperature reported by
Samara and Giardini is expressed by the function

of P with the critical pressure 150 kbar and the

constant a = 1.52.,

15

Obs. smoothed curve

Figure 12. Magnetostriction of a versus P in MnSb.

where

and

r,= r«|i+a^)(i-£'

Jex= Jo (
l + «p^ )'

(T—(To{ 1 (7)

Equation (7) leads the initial pressure dependence
of Jo and ctq,

if=^=iox,o-.b„-.

o-o dP Pc
6.7x10-6 bar-i

These values coincide within experimental errors

with the data reported by Hirone et al. [4]. The
negative pressure dependence of magnetic transition

temperature is due to the negative change in in-

trinsic magnetization, which may be caused by the

relative change in band structure or redistribution

of electrons between the spin orientations.
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DISCUSSION

W. A. Bassett {University of Rochester, Rochester,

New York): We have calculated the intensities for

the diffraction pattern produced by lead and sulfur

in the SnS structure using the SnS lattice param-
eters (see accompanying table). These intensities

differ significantly from those for tin and sulfur in

the SnS structure. We feel that these differences

should be taken into consideration in identifying the

structure and in determining the lattice parameters.
In table 2 you do not report a reflection having the

index (110), yet the calculated intensity is ///i = 49
and should be observable. Your reflection d— 2.84 A
is indexable as (111) and (130) as well as (040). Of
these, the (111) should contribute the most to the
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intensity. The reflection d= 2.00 A may be indexable

as a combination of (141), (002), and (150). Of these

the (141) would contribute the most to the intensity.

The reflection d= 1.87 A may be indexed as a com-
bination of (211) and (230) of which (211) contributes

the most intensity.

Table of calculated intensities for PbS in the SnS
structure

Wavelength= 0.70926 A

a=4.34 A, 6= 11.20 A, c=3.99 A
Pb: A?=0. 1 150, y=Q. 1 180, z=0.2500

S: x=0.5220, >=0.1500, 2=0.7500

d hkl ///.

4.047 110 49
3.430 120 67
3.250 021 100

2.937 101 53

2.841 111 86
2.830 130 9

2.800 040 64
2.308 131 51

2.130 210 25
2.027 141 39
1.995 002 28
1.991 150 17

1.879 211 35
1.876 230 23
1.789 112 13

1.781 151 19

1.725 122 23
1.715 160 11

1.698 231 17

AUTHORS' CLOSURE

We have compared the intensities of the high-

pressure phase of PbS with those of GeS and SnS
obtained at atmospheric pressure. But this must be
done only occasionally as you suggested. We also

think that the intensities of the high-pressure phase
of PbS should be compared with the computed
values for SnS-type PbS in order to identify the

structure of the high-pressure phase of PbS. The
relative intensities at high pressures, however, have
been found to change to a considerable extent with-

out phase transitions. This may be due perhaps to

some strains etc. Therefore, the computed values at

atmospheric pressure are thought to be not nec-

essarily directly appUcable to the pressure
measurements.
We have used MoKa-radiation and d= 4.047 A

corresponds to 0= 5.03°. This angle is the limit

where the direct beam disturbs x-ray patterns, so we
could not detect the diff"racted beam at this angle.

In our study, we have calculated the lattice param-
eters and the compressibilities of high-pressure

phases of PbS and PbTe assuming that their phases
have SnS-type structures, although the problem of

identification of these structures at high pressures
has not been solved yet.
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The Compressibility and Thermal Expansion of LiF to 60 kbar and 600 °C

as Determined by X-Ray Diffraction: Report of Progress*

L. C. Garrison** and C. B. Sclar***

Battelle Memorial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Measurements were made of the compressibility of LiF to 60 kbars over the temperature range

25 °C to 600 °C by high-pressure high-temperature x-ray powder diffraction methods. Pressures were

determined by using NaCl as an internal calibrant. These results also provide data on the thermal

expansion of LiF between 25 and 600 °C at pressures of 38 and 57 kbar. This paper demonstrates

the feasibility of determining the unit-cell volume of crystalline solids under concomitant high pressure

and high temperature by in situ x-ray methods.

1. Introduction

An important area of crystal physics which has

been relatively unexplored because of the limita-

tions of existing experimental apparatus is that of

the compressibihty and thermal expansion of crys-

taUine soUds at high temperature and high pressure,

respectively. The recent development of a high-

pressure, high-temperature x-ray powder diffraction

apparatus by Freud and Sclar [1, 2]^ provides a

means of determining the unit-cell volume of crys-

taUine soUds at concomitant high pressure and high

temperature to at least 100 kbar and 1000 °C. This

paper presents the results obtained to date on a

study which demonstrates the feasibility of this

experimental approach.

The authors respectfully acknowledge the interest

and support of Dr. J. N. Plendl and Mr. L. C. Mansur
of Air Force Cambridge Research Laboratories

during the course of this program.

2. Experimental Approach

2.1. High-Pressure High-Temperature X-Ray
Diffraction Apparatus

The apparatus used in this study is a modified
miniaturized "belt" apparatus which belongs to the

family of internally heated compressible-gasket
solid-media devices. The unique feature of this de-

vice is that the die-support ring assembly is fabri-

cated in two parts which mate along a plane normal
to the piston axis. This split-die design permits entry
of filtered MoKa radiation into the high-pressure

volume and egress of both the diffracted rays and the

undeviated beam through suitable grooves and fan-

shaped slots ground in the mating surfaces. The

•Supported by Air Force Cambridge Research Laboratories under Contract No.
Fl%28-68-C-{)123.

**Present address: General Electric Co., Worthington. Ohio 43085.

***Present address: Department of Geological Sciences, Lehigh University, Beth-

lehem, Pa. 18018.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

high-pressure x-ray windows are either a beryllium

ring with a wedge-shaped cross-section or epoxy
resin stops at the bore of the die.

The high-pressure medium is either "amorphous"
boron or boron nitride, and the sample is in the form
of a thin cylinder which is coaxial with the pistons

and normal to the x-ray beam. The extrudable

gaskets between the pistons and the die are made
of pyrophyllite as they are in conventional devices

inasmuch as they are not part of the x-ray path.

High sample temperatures are attained by resistance

heating of carbon rods adjacent to the sample.

Temperatures are determined with a thermocouple
in contact with the sample. The apparatus is

portable and is used in conjunction with a conven-
tional x-ray source.

The diffracted rays are recorded on the cyUn-

drical film of a Debye-Scherrer camera 114.6 mm in

diameter. In this study, lattice parameters were
determined with a precision of about ±0.2 percent.

The diffraction lines used for this purpose were as

foUows: for NaCl (200), (220), (222), (400), (420),

(422); for LiF (111), (200), (220), (311), (222). A
photograph and a schematic drawing of the appa-

ratus are shown in figures 1 and 2, respectively.

2.2. Calibration of High-Pressure Apparatus

The high-pressure apparatus was caHbrated by
means of the established fixed points on the room-
temperature electrical-resistance absolute pressure

scale, viz., Bil^II transition at 25 kbar and Bi

III V transition at 75 kbar. However, in a minia-

turized compressible-gasket apparatus like the

"belt," it is recognized that the internal sample
pressure may not be the same for successive ex-

periments at a constant ram force. Furthermore, the

electrical-resistance scale is a room-temperature
scale, and it is not possible to predict the effect of

elevated temperature on the internal sample
pressure. Consequently, an internal pressure cali-

brant is needed if one is to know the sample pres-

sure accurately at high pressure and high tempera-
ture. Such an internal calibrant is available in NaCl
through the use of the semi-theoretical equation of
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Figure 1. Photograph of high-pressure high-temperature x-ray

powder diffraction apparatus.

The scale is in centimeters.

State for sodium chloride proposed by Decker [3].

As a means of exploring the reproducibility of

internal sample pressure as a function of applied
load and to obtain information on the magnitude of

the errors involved, a series of calibration experi-

ments was carried out. The results are summarized
in figure 3. Each line in this figure represents for an
individual run the change in internal sample pres-

sure, as revealed by the lattice parameter of sodium
chloride (Decker scale), for a given internal geometry
with increasing applied load. Although a fairly good
linear relationship exists between ao and applied
load, if reproducibility has been achieved all the

lines for a common geometry would have over-

lapped. Obviously, this is not the case, and the

spread in the line positions shows the magnitude of

the nonreproducibility of internal sample pressure.

As a result of these experiments, it was concluded
that an internal calibrant, namely, sodium chloride,

would have to be used with each run. All the data
reported in this paper are based on pressures deter-

mined by the lattice parameter of sodium chloride

as related to the Decker equation of state.

A second type of calibration experiment was run
at elevated temperature to determine for a constant

applied load the variation in internal sample pres-

sure as a function of thermal cycling. The results

are presented in figure 4, in which the numbered

Figure 2. Schematic drawing of high-pressure high-temperature

x-ray powder diffraction apparatus.

/^^hydraulic ram, B= lungsten carbide pistons, C= steel die and high-pressure

volume, Z) = water cooling tubes, £== rubber shim for positioning, F= Debye-Scherrer
Camera, 6= x-ray film, //= electrical power lead, /= press positioning table, 7= ad-

justing screws for table.

points represent sequential runs at which the lattice

parameter of NaCl was determined. These results

show that it is not possible to thermally cycle from
room temperature to an elevated temperature and
back at constant apphed load without significant

changes in the internal pressure. There appears to

be a cumulative loss in internal pressure with an
increasing number of thermal cycles at constant

load providing that each successive run is carried

out at a higher temperature. In any event, it is

clear that an internal pressure calibrant must be
used to determine sample pressure if the run is

cycled thermally.

3. Experimental Results on Lithium
Fluoride

3.1. Compressibility

Data on the isothermal compressibility of LiF
were obtained to 60 kbar at temperatures of 25, 200,

400, and 600 °C. The lattice parameters (ao) used for

NaCl and LiF at 1 atm and 25 °C in calculating

Aa/ao were 5.6402 A and 4.0270 A, respectively.

X-ray diffraction patterns were obtained of LiF-NaCl
mixtures at high-pressure and elevated temperature
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300

Temperature, C

Figure 4. Graph showing variation in lattice parameters of NaCl for an individual experiment in which the sample was thermally
cycled at a constant applied load of 4000 psig.
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Figure 5 is a plot of the data for LiF and for ad-

mixed NaCl used an as internal caHbrant carried out

in duplicate experiments at 25 °C. These results

agree with earlier data published by Bridgman [4]

and by Pagannone and Drickamer [5] within 0.2

percent. Figure 6 shows Aa/ao versus pressure for

LiF at elevated temperatures; thermal expansion
data at room pressure are those given in [6]. The
numerical data on which these graphs are based
are given in table 1.

Table 1. Aa/ao versus pressurefor uiF

Pressure
Temperature, °C

25 200 400 600

kbar

0

8.5

20

29

38

40

42

53

57

65

0.000

-0.0062

-0.0087

-0.0116

-0.0171

-0.0177

* + 0.0070 * + 0.0158

-0.0114 -0.0030

+ 0.0045

-0.0220

-0.0206

-0.0264

**- 0.0166 ** -0.0099 **- 0.0037

Figure 6. Aa/ao versus pressure for LiF at 25, 200, 400, and
600 °C.

*From reference [6]. , «,
"Estimated pressure; unable to measure lattice parameter of NaCl accurately

because lines were weak.
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3.2. Thermal Expansion Under Pressure

Data on the thermal expansion of LiF at 38 and
57 kbar are presented graphically in figure 7. For
comparison, the thermal expansion of LiF at room
pressure, based on data in the literature, is also

shown. The results show that the coefficient of

thermal expansion of LiF is essentially the same at

38 kbar up to 600 °C as it is at room pressure. On
the other hand, the coefficient of thermal expansion
appears to show a sUght decrease at 57 kbar in

the same temperature range.

4. Conclusions

Despite the experimental difficulties and the

limited accuracy of the results relative to room-
pressure measurements, useful data on the com-
pressibility and thermal expansion of crystalline

solids at high pressure and high temperature may
be obtained by in situ x-ray diffraction methods. An
internal calibrant, such as NaCl, is necessary,
however, jn order to determine the pressure
accurately.
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DISCUSSION

I

J. D. Barnett (Brigham Young University,

Provo, Utah): The vertical dispersion of your points

appears to me to be simply a result of not having the

sample in the appropriate spot within the high-

pressure volume. With a camera of only five-

centimeter radius it is necessary, in order to obtain

an accurate calibration by use of sodium chloride,

to have the sample location fixed within about

I,

five-thousandths of an inch. I question whether you
can do this repeatedly and maintain the position, at

' pressure in a sample that is several milHmeters
across, particularly in view of the motion due to the

distortion of the pyrophyllite. A displacement of

your sample five-thousandths of an inch towards the

film wiU account for the spread that you are getting.

In a study we have made of lithium fluoride,

using something like 50 x-ray patterns rather than

the 8 or 10 that you used, our data differ only slightly

from your average values. If you take the median of

your points, and assume that your sample was
misalined to fit the average of the scattered points,

all of your compression data on lithium fluoride are

shifted. The resultant lattice spacing of lithium

fluoride is thus inaccurate, since it shifts the curves
on your graph in different directions in different

experiments. This is one of the disadvantages of the

small camera, since precise x-ray work requires

that sample-to-film distance be controlled very
accurately.

I believe that you could correct your data by
"calibrating" the x-ray patterns, using your meas-
ured lattice parameters at zero pressure as a

reference in each run. That would, in effect, deter-

mine the position of the sample within the apparatus.

171



AUTHORS' CLOSURE

I believe that Dr. Bamett has a valid point on the

matter of the effect of position of the sample on the

indicated pressure. In checking position of samples
after completion of the runs, however, we find that

the shifts from center after pressurization are less

than one-tenth of a millimeter (0.004 in). I don't

know how much less, because it is very difficult to

make this measurement accurately.

It is also important to note that the cylindrical

sample is only 0.3 mm in diameter. As I indicated

in my opening remarks, the data that we have pre-

sented are fragmentary and preliminary, and are

only illustrative. There are a number of factors

that can be responsible for the scatter shown, and
the problem is one of resolving the magnitude of

contribution from the diff"erent factors.
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Ultrasonic and Static Equation of State for Cesium Halides
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1. Introduction

In spite of several promising attempts, the

problems of accurate pressure measurement and
of an accurate pressure scale above 30 kbar are not

yet completely and satisfactorily solved. The
present paper is concerned with the equation of

state of solids as one of several possible approaches
to this problem. If the equation of state, i.e., the

relation between pressure and volume, is known for

a standard, it is possible to calculate the pressure
from the dimensional changes of a gage specimen
subjected to hydrostatic compression that can be
measured by x-ray or by optical methods.
At present, theoretical equations of state will

contain a high degree of uncertainty because of the

many simpUfying assumptions which are necessary,
even for the simplest solids, to make the calculations

feasible. Therefore it seems more promising at

present to utilize empirical equations of state for

the task of pressure calibration and measurement.
Naturally those empirical equations of state are

less useful for setting up a pressure scale which
presume the availability of a pressure scale, such as

direct volumetric data obtained from x-ray methods.
The remaining two methods utilizing shock wave
and ultrasonic data should be regarded as mutually
complementary.
While the former has the advantage of being

based on direct measurements at very high pres-

sures, it suffers from uncertainties that arise in the

conversion from the shock-Hugoniot to pure iso-

thermal conditions and from the fact that the pres-

ence and effect of nonhydrostatic stress in shock
loading is not fully understood. On the other hand,
an equation of state based on ultrasonic data of the

elastic constants and their pressure derivatives is

free from arbitrary assumptions, but is confined to

comparatively low pressure. As has been shown by
Anderson [1],' however, the ultrasonic equation of

state is valid over a larger pressure range than that

*This work was supported by the U.S. Atomic Enerev Commission.
' Figures in brackets indicate the literature references at the end of this paper.
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of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

required in the ultrasonic measurements. It is this

fact which makes it possible to use the ultrasonic

equation of state as a pressure standard for high

pressure, because it is based on measurements at

low pressure in a range where the pressure scale is

already established more reliably. It has been shown
by Anderson [1] that the pressure-versus-volume

compression curves of 14 materials calculated from
Murnaghan's equation of state [2] by using the bulk
modulus and its first pressure derivative measured
ultrasonicaUy below 10 kbar agree with directly

measured data up to 100 or 200 kbar, and in the

case of very incompressible substances even up to

1 Mbar. With increasing pressure, increasing

discrepancies between the two sets of data occur
which may be attributed to one or several of the

following causes.

First, Murnaghan's equation of state is based on
integration of a linear relation between bulk modulus
and pressure and contains only two empirical -

parameters, the zero pressure values of the bulk
modulus and its first pressure derivative. One must
expect, however, that the pressure dependence of

the bulk modulus becomes nonlinear at sufficiently

high pressures and that more than two parameters
corresponding to the higher pressure derivatives of

the bulk of modulus are necessary for the character-

ization of the equation of state over a wider range of

pressure. The second possible cause of the dis-

crepancy consists of experimental errors, statistical

or systematic, of the ultrasonic or of the directly

measured compression data.

The improvements that can be obtained by using

a three-parameter equation of state have also been
investigated by Anderson [3] on the basis of an
equation of state proposed by Keane [4]. A very

good fit of the directly measured compression curves

of all five materials considered can be obtained in

this manner up to the highest pressures measured if

two parameters— the initial bulk modulus and its

first pressure derivative— are determined from
ultrasonic data, and the third parameter— the

2 One must distinguish between empirical parameters (which can be determined
from experimental data other than high pressure measurements) and adjustable

parameters (which are determined by fitting directly measured pressure vs volume
compression curves to some phenomenological or theoretical equation of state). In
this paper empirical parameters will be considered only.
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limiting value of the bulk modulus at infinite

pressure — is adjusted to fit the empirical compres-
sion data. As emphasized by Anderson [3], the

usefulness of this approach consists of combining
the merits of the low-pressure ultrasonic data and
the shock wave data which are more reliable at high

pressure so that the resulting equation of state can

be used for predictions beyond the pressure range

of the shock wave data. The question that remains
unanswered in this approach is whether the third

parameter is compatible with the second pressure

derivative of the bulk modulus or whether it provides

only an approximate fit of the empirical data at high

pressure which may be sufficiently accurate,

though, for interpolating and extrapolating the data

at high pressure. Since for the five materials con-

sidered by Anderson [3] the second pressure

derivatives of the bulk modulus have not yet been
determined ultrasonically this point must await

future clarification.

For the cesium halides CsCl, CsBr, and Csl the

second pressure derivatives of the elastic constants

have been measured recently by an ultrasonic

method [5], so that for these materials the second
pressure derivatives of the bulk modulus are avail-

able in addition to the bulk modulus and its first

pressure derivative. This provides the opportunity

of investigating the consequences and improvements
which can be attained with a purely ultrasonic

three-parameter equation of state. For Csl the

previous measurements have been repeated with

increased accuracy and extended as a function of

temperature. On the basis of the resulting ultrasonic

equation of state, it is possible to use Csl as a pres-

sure standard over a wide range of pressure and
temperature.

To this end a special mathematical representation

must be adopted for the equation of state. Possible

forms with three parameters are, for example, (1)

a truncated Taylor expansion of the volume with

respect to pressure up to and including third order

terms in pressure, (2) a generalized form of Murna-
ghan's equation based on integration of a quadratic

expression for the pressure dependence of the bulk

modulus [46], (3) the second-order approximation of

Birch's equation of state [6-8], (4) Keane's equation

of state [3, 4], (5) a semi-theoretical equation of

state based on a special model for the interatomic

forces containing empirical parameters. All these

forms may be designed to agree in the bulk modulus
and its first two pressure derivatives, but they will

differ in the higher than second-order pressure

derivatives of the bulk modulus, or equivalently, in

the quality of approximation to the true equation

of state.

It is well known, for example, that the Taylor

expansion (1) is so slowly convergent that it is in-

sufficient for the description of empirical compres-

sion curves even over a moderate range of pressure

[7, 1]. Therefore, this form need not be considered

in the present paper. Objections have also been

raised against the quadratic expression for the pres-

sure dependence of the bulk modulus [7, 3], because
a negative second pressure derivative of the bulk
modulus which is demanded by shock wave data

implies that the bulk modulus decreases with

pressure after passing through a maximum, which is

unlikely on physical grounds. In this paper addi-

tional evidence against the use of the corresponding
form (2) for the equation of state will be presented.

The quality of the remaining equations can be
verified by comparison of the compression curves
calculated from ultrasonic data with direct experi-

mental data, in connection with a careful error

analysis. In addition, theoretical considerations on
the rate of convergence of any form based on a

truncated Taylor expansion permit an evaluation.

It is therefore the purpose of this paper to compare
several representations of the three-parameter
ultrasonic equation of state with static experimental

data of Bridgman [9, 10] and of Perez-Albuerne and
Drickamer [11, 12] that were obtained with a free-

piston apparatus and with a high-pressure x-ray

camera, respectively. A complete error analysis

will also be carried out. In addition, the convergence
of the equations of Murnaghan, Birch, and Keane
will be checked by comparison with a lattice

theoretical equation with empirical parameters
which are determined from the bulk modulus and
its first two pressure derivatives.

While the present paper was inspired by the

observation of Anderson [1, 3] that the ultrasonic

equation of state is valid over a considerably larger

pressure range than the ultrasonic measurements
themselves, it extends the previous work of Ander-

son insofar as (1) the second pressure derivative of

the bulk modulus is included from ultrasonic

measurements and a purely ultrasonic three-

parameter equation of state is used, (2) several

alternative expressions for three-parameter equa-

tions of state are critically compared and finally

Birch's equation of state in second-order approxima-

tion is used, (3) the effect of the omission of higher

order terms is estimated, (4) a careful analysis of

the effect of the errors of all input data is performed,

and (5) the variation with temperature is taken into

account.

The credit and priority for having proposed a

pressure standard on the basis of the equation of

state of an alkali halide, NaCl, belongs to Decker
[13, 14]. However, only one of his three empirical

parameters, namely the zero pres^sure value of the

bulk modulus, is obtained from ultrasonic measure-
ments. The remaining parameters are determined

from the lattice constant and the thermal expansion

as a function of temperature. Decker's equation of

state does not agree with the ultrasonic value for

the first pressure derivative of the bulk modulus
and, strangely enough. Decker dismisses the

ultrasonic value for the pressure coefficient of the

bulk modulus of Bartels and Schuele [15] as inac-

curate because it differs from his theoretical
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; equation of state [14]. Instead, it is just as likely that

Decker's equation of state is in error because of the

uncertainty in the empirical parameters and/or
because of the special assumptions about the

interatomic forces which are implicit in this equation
of state. This point will be discussed below in

section 3.2.

Since the bulk modulus and its pressure deriva-

tives completely characterize the equation of state

for constant temperature, it is an undisputable
requirement that any theoretical equation of state

must agree with these experimental data. In view
of our very limited knowledge on the interatomic

forces in solids, the most natural way in meeting
this requirement is to use a model potential with

adjustable parameters which are fitted to the

experimental values of the bulk modulus and its

pressure derivatives. It will be shown below in

section 3.2 that in the pressure range of interest

the Birch equation of state [6-8], which is an
empirical equation of state based on a rapidly con-

verging Taylor expansion of the interatomic poten-

tial, is within the limits of experimental error

indistinguishable from such a semitheoretical

equation of state. For this reason the ultrasonic

equation of state proposed in this paper will be
based on Birch's equation of state.

Objections have also been raised against the use
of NaCl as a pressure standard because a phase
transition to the CsCl structure occurs at high
pressure [16]. Although the magnitude of the tran-

sition pressure is stiU controversial and may be
as high as 300 kbar [17, 18], it seems more advan-
tageous to use alternative materials for which no
high-pressure transition is known. Therefore the

three cesium halides, CsCl, CsBr, and Csl, were
selected. Of these materials, CsCl has the disad-

vantage that its use as a high-pressure standard
is restricted in temperature to the range below
470 °C because of the phase transition to the
NaCl structure [19-21]. In spite of this limitation

Table 1. Bulk modulus Bo, first pressure derivative

B^'', and second pressure derivative B^-^ of CsCl
and CsBr at 300 °Kfrom ultrasonic measurements

(calculated from the experimental values underlying the results

reported in ref. [5])

CsCl CsBr

fio= B''(kbar)
167.4

±0.9

143.4

±.8

" \ dp 't

5.98

±.09

5.95

±.08

-0.042

±.04

-0.050

±.004

a detailed discussion of CsCl will be presented in

this paper because, of the three cesium halides

considered, CsCl is the only one for which equation
of state data from direct measurements are available

above 100 kbar [11, 12] which allow a more critical

comparison of the ultrasonic and the directly

measured equation of state than Bridgman's com-
pression data below 100 kbar [9, 10].

Another advantage of the three cesium halides

is that they are the most highly compressible of all

alkali halides which made it possible to determine
the second pressure derivatives of the bulk modulus
from ultrasonic measurements below 10 kbar [5]

and to propose a purely ultrasonic three-parameter

equation of state. The high compressibility is also

advantageous since it corresponds to a high sensi-

tivity of the pressure measurement with respect to

the dimensional changes of the crystal.

2. Dependence of Bulk Modulus on
Pressure and Temperature

The pressure dependence of the elastic constants
of one or of several of the cesium halides CsCl,
CsBr, Csl has been measured by several authors

[22-24, 5], but only in one case was the precision

sufficiently high so that not only the first, but the

second pressure derivatives also could be deter-

mined [5]. These data will be used in the present
paper.

The isothermal bulk modulus and its first iso-

thermal pressure derivative have been calculated

for CsCl and CsBr from revised data for the adia-

batic bulk modulus and its isothermal pressure
derivative of reference [5] by using the thermal
data tabulated in reference [25] and the conversion
formulae of Overton [26]. The results are listed in

table 1 together with the isothermal second pressure
derivative of the adiabatic bulk modulus correspond-
ing to the unproccessed ultrasonic data. These sec-

ond pressure derivatives were not converted to the

purely isothermal quantities since this would re-

quire the value of the temperature derivative of the

first pressure derivative of the adiabatic bulk modu-
lus, which was not available for the data of reference

[5]. It will be shown below that for Csl the difference

between the intermediate isothermal-adiabatic and
the pure isothermal derivative is not much larger

than the experimental error. For the comparison
of the ultrasonic equation of state with direct experi-

mental data it is therefore sufficient to use the un-

converted intermediate second pressure derivatives

listed in table 1, the more so since in the pressure

range to be considered the contribution from this

term is small.

The experimental error shown in table 1 was
calculated from a careful statistical analysis of the

raw data underlying the values reported in reference

[5]. This was done by fitting the pressure dependence
of the bulk modulus to a parabola and taking into
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account that the bulk modulus is a linear combina-
tion of two elastic constants, 5= (1/3) (cii+2ci2),
which were determined from four independent
series of measurements for the three elastic con-

stants Cii, Ci2, and C44. The method used is described
in chapter 6 of ref. [27]. The errors shown in table 1

correspond to the standard error arising from the

statistical mean square deviation plus an estimate

for all other errors which are represented primarily

by the uncertainty in the pressure reading. The
pressure was measured by means of a manganin
cell in connection with a resistance calibration curve
provided by the Harwood Engineering Co., Walpole,
Mass., and stated to be as accurate as 10 The
resistance was measured with an ac bridge in con-

nection with a Foxboro automatic recorder with
an accuracy of 2 percent. This was the weakest
hnk in the chain of accuracy limiting factors.

Part of this error appears in the statistical error,

and the remaining possible systematic error has
been estimated as 1 percent and is included in

the total error shown in table 1. Also included in

the error shown is the uncertainty arising in the

conversion from the adiabatic and intermediate
ultrasonic data to the purely isothermal data, which
was calculated from a liberal estimate of the un-

certainty of the thermal data used in the conversion.

Very recently, for Csl we have repeated the ultra-

sonic measurements of the pressure dependence of

the elastic constants. The objective was, first, to

attain higher accuracy by measuring the resistance

change of the manganin pressure cell with a Carey-
Foster bridge. Moreover, the measurements were
carried out at four different temperatures up to

250 °C. It was possible to determine the temperature
derivative of the pressure coefficient of the bulk
modulus and to convert the second pressure deriva-

tive of the bulk modulus from the intermediate to

the purely isothermal value. The ultrasonic values

of the bulk modulus and its derivatives with respect

to temperature and pressure are shown in table 2

together with the converted purely isothermal

values. The first and second temperature derivatives

of the adiabatic bulk modulus were taken from
reference [28]. Details of the measured elastic con-

stant data and the conversion formulae not con-

tained in Overton's paper [26] will be published

elsewhere.'^ The data of table 2 agree within experi-

mental error with those of reference [5], but they

are more accurate than these previous values. The
errors shown in table 2 were calculated in the same
manner as those in table 1, and for the possible

systematic error of the pressure measurement a

value of 0.5 percent has been assumed. For the

thermal quantities which are required for the con-

version from the adiabatic to isothermal conditions,

smaller errors have also been assumed. With the

The formula for converting the isothermal second pressure derivative of the adia-

batic bulk modulus to the isothermal pressure derivative of the isothermal bulk modulus
has been published recently by Yu [47].

Table 2. First and second derivatives of the

adiabatic and isothermal bulk modulus with
respect to temperature and pressure for Csl
at 25 °C

B (kbar)
126.2

±0.2

118.9

±0.5

(-^)^(kbarrC)
— U.UOD /

•'±.0034

— U.lUZo

3 ±.0060

(^,)^(kbar/rCn '-5.0X10-^ -1.3X10-^

(-)
5.70 5.93

\dp / T ±.06 3 ±.08

-0.061

±.004

-0.073

"±.008

1.4X10-3 2.6x10-3

' From reference [28].

- Estimated error: 5 percent.
^ From error of data listed in table 3.

'Estimated error: twice the value of A(,d'B^ldp')T.

Table 3. Density po, linear thermal expansion
coefficient a with temperature derivative (da/dT),

and specific heat Cp with temperature derivative

{d(.pjdT)p and estimated errors for Csl at 25 °C

poig cm-3) 4.525 + 0.3% Ref. [29]

a (10-M°C)-') 4.05 ± 2% Ref. [30]

(daldT)p (10-«(°C)-2) 6.6 ±3% Ref. [30]

Cp (Jg-M°C)->) 0.200 ±1% Ref. [31]

(dCplST),, (10-3Jg->(°C)-2) 0.043 ±3% Ref. [31]

increased accuracy of the pressure measurement,
the effect of these errors becomes now comparable
to the error of the ultrasonic data. For the pressure

coefficient of the bulk modulus, for example, the

error is increased by as much as 33 percent due to

the conversion from the intermediate to the purely

isothermal value. Since this error turns out to be
one of the main accuracy-limiting factor for the

equation of state, the thermal data that were used
in addition to the data of table 2 for the conversion

are listed in table 3, together with their estimated

errors. Since the formula for the conversion of the

second pressure derivative is so lengthy and de-
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pends on a large number of variables, no rigorous

error analysis has been carried out, and an estimate

will be used in this case. It is assumed that the error

of (d'-B''ldp'-)T is twice as large as the error of

Since the temperature dependence of the bulk

modulus is nonlinear, and since there is no theoreti-

cal evidence that the pressure coefficient of the

bulk modulus depends linearly on temperature, the

data of table 2 wiU not be used for calculating the

high-pressure equation of state as a function of tem-

perature. Instead, the bulk modulus and its first two
pressure derivatives will be calculated from the

formula

(2.1)

with the superscript R referring to the reference

temperature tR. Further it is [6, 32]:

R(i)= ^
95o (2.2)

fiofi<?'=^- [1 + ^'']^''+^ (2.3)

where C and D are linear combinations of the third-

and fourth-order elastic constants, respectively.

Their room temperature values are listed in table 4

together with their first temperature derivatives.

Since at high temperatures (above the Debye tem-
perature) the temperature dependence of the higher

order elastic constants is linear in the first-order

approximation of the quasiharmonic approximation

[33, 34], the experimental data taken at different

Table 4. Linear combinations C— Ciii~l"6cij2~l~2c]23

and D = Ciiii + 8cni2 + 6cn22 + 12cn23 of the in-

termediate and ofthe isothermal third- andfourth-
order elastic constants, and their temperature
derivatives for Csl at 25 °C

Intermediate Isothermal

C (kbar) -6.13 X 1(F -6.32X103

(|),*b.r,^) 3.6 2.6

D (kbar) 1.02 X 10^ 1.03 X 10^

-11.0 -16.0

temperatures were interpolated linearly,

C = C, +
(^^J

it-t,) (2.4)

/dDVD= Dn + i^—j it-tn). (2.5)

For the temperature dependence of the high-pres-

sure equation of state, the bulk modulus and its

first two pressure derivatives will be calculated in

section 4 as a function of temperature according to

eqs (2.1) to (2.5) with the coefficients Bo, {dB/dT),
(d^Bldr), C, (dCldT), D, and {dD/dT) listed in

tables 2 and 4 for the isothermal case.

3. Evaluation of Several Three-Param-
eter Equations of State

3.1. Phenomenological Equations of State

A variety of mathematical expressions have been
proposed for the description of the equation of state

of solids at high pressure, i.e., for the relation be-

tween pressure and volume for specified thermo-
dynamic conditions. Most of these are based on
some truncated Taylor expansion and can therefore

be expressed in terms of an arbitrary number of

parameters, corresponding to the order of the ap-

proximation. Which one of these expressions for a

given number of parameters is best suited for an
accurate representation of experimental (or theoreti-

cal) data over a specified pressure range depends
on the rate of convergence of the underlying Taylor
expansion and can only be determined a posteriori,

i.e., by comparing this approximate phenomenologi-
cal equation of state with experimental or rigorous

theoretical data. Such a comparison wiU be made in

sections 3.2 and 3.3 by using the equations pre-

sented subsequently and in section 3.2.

For convenience,, isothermal conditions wiU be
assumed and all quantities will be given in dimen-
sionless form. All parameters occurring in the

explicit expressions for the equation of state are

therefore dimensionless quantities also, which
depend only on the temperature and the material

considered. Let

R=VIVo (3.1)

and
tt = pIBo (3.2)

denote the compression ratio of the volume V and
the pressure p in units of the bulk modulus Bo,

respectively, with the index 0 always referring to

zero pressure.

The classical expression for the equation of

state consists of a truncated Taylor series of the

volume with respect to pressure (see, e.g., [1]):
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N

^0 (3.3)

From the definition of the bulk modulus at arbi-

trary pressure,

and its Taylor expansion with respect to pressure
(written here for later reference in the Mh order
approximation),

Bm{p)=J^\b^^P^ (3.5)

i=o

the expansion coefficients ti can be expressed in

terms of the zero pressure values of the bulk
modulus and its pressure derivatives Bj,''. The first

four expansion coefficients are [1]

to= 1,

fi = -l,

i2-(l/2)(B(i)+l),

«3=(l/6) [l + 3B(i)+ 2(fi(i))2-Bo5(2)],

U={im) [l + 6fi(i)+ll(5(i))2 + 6(5<i')'

-2(2 + 35(i))fiofi[,2'+ B?5ff'] • (3.6)

It has long been recognized that (3.3) is very
slowly convergent and therefore useful only for

small pressures, tt <^ 1 [1, 7, 9]. If this form with a

given number of terms is used as an empirical equa-
tion, then the coefficients that are obtained by
fitting the experimental compression data depend
for larger pressures, e.g., tt<\, on the pressure
range of the experiments and must be extrapolated

to zero pressure [1, 7, 24].

These disadvantages are avoided in the equation
of state proposed by Birch [6-8]

,

7T,{R)=-R-^l^^bAR-"'-iy (3.7)

i=i

which is based on the Taylor expansion of the strain

energy with respect to the Eulerian strain

components.
Again the expansion coefficients can be expressed

in terms of the pressure derivatives of the bulk

modulus. The first four coefficients are

6, = 1,

62= (3/4) (5(0^) -4),

63=(l/24)[143 + 9(By)-7)fi(,')+ 95o5[f)]

64 = (l/192)[-1888+1122B(,i>-288(B(o'))2

+ 27 (fi(i')=^ + 36 (3fi(i' - 8)Bo5o<2'+ 21B%B^i^'\ . (3.8)

The advantage of (3.7) is that it is much more
rapidly convergent than (3.3), and that even in the

pressure range as large as tt ^ 0.5 the approxima-
tion with only two terms corresponding to N=2 is

sufficiently accurate for many practical purposes
such as arise, e.g., in geophysics.

Another approach to the equation of state is

due to Murnaghan and consists of integrating the

Taylor expansion of the bulk modulus (3.4) under
the assumption that the linear approximation in

(3.5) corresponding to A'^= 1 is sufficient [2]. The
resulting "first-order Murnaghan equation of state"

is [2, 11]

Rr^il + mn)-'"" (3.9a)

or

7Ti = m-'iR-"'-l). (3.9b)

Correspondingly, one obtains by integrating (3.4)

in connection with (3.5) for A'^^2 the "second-order
Murnaghan equation of state" [46]:

R2 = {[2+ (n+l)m7r]/[2- (ra-l)ra7r]}-i/«"'

(3.10a)

or

7T2 = 2m-^[R-'""-l][(n-l)R-'""+(n+l)]-K

(3.10b)

The parameters occurring are

m = Bi'\ [1 - (2SofiS,2))/(5(}) ryi\ (3.11)

For fi[,-'= 0 it is n=l, and the second-order

Murnaghan equation (3.10) reduces to the first-

order form (3.9).

The three types of equations considered so far

are based on different kinds of Taylor expansions

and can be used with any desired number of param-

eters. In this paper only the two- and three-parameter

forms of Birch's and Murnaghan's equations will

be considered.

Another three-parameter equation of state has

been proposed by Keane [4] and recently been dis-

cussed by Anderson [3]. This equation is not based

on any Taylor expansion, but on the assumption

that the bulk modulus is a monotonously increasing

function of pressure, and its pressure coefficient

a monotonously decreasing function of pressure,

according to
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(3.12)

fi'j' is the limiting value of the pressure coefficient

of the bulk modulus for infinite pressure. Kean's
equation of state is obtained by twofold integration

of (3.12) in connection with (3.4) [3, 4]:

7r,-=(fi|;vfiL'')^) [/?-"*^'-i]

+ [(fi(^Vfi<i>)-l]ln/?. (3.13)

By comparing the Taylor expansion of (3.13) with

(3.3) and (3.6) the third parameter, fl^' be

expressed in terms of the second pressure deriva-

tive of the bulk modulus as follows:

fiO)= fiy)+(5o5<2VfigO- (3.14)

The two assumptions of Keane (B{p) monoto-

nously increasing with p, (dB/dp) monotonously
decreasing with p) lead to the following condition

for the bulk modulus and its first two pressure

derivatives:

-(fiy))2<5o5(f)<0. (3.15)

Both inequalities are fulfilled for the experimental

data of CsCl, CsBr, and Csl listed in tables 1 and
2 so that it is consistent to use, for these materials,

Keane's expression (3.13) for the representation

of the equation of state.

3.2. A Lattice Theoretical Equation of State

and Comparison With the Phenomeno-
logical Equations of Section 3.1

An ionic crystal, such as one of the alkali halides,

seems ideally suited for deriving a theoretical equa-

tion of state because the interatomic forces can be
described quite adequately and successfully in

terms of Coulomb and van der Waals attraction,

and in terms of a Born-Mayer type repulsive poten-

tial with empirical or adjustable parameters. In

view of the considerable success of the classical

theory of ionic crystals, it is not surprising that this

approach has been used also for the equation of

state of alkali haUdes [12-14, 35]. It should be
remembered, however, that these equations of

state are semi-empirical, and that their accuracy
is limited by the accuracy of the empirical quan-

tities that were used for the determination of the

parameters in the repulsive potential. Since these

parameters are determined from experimental
data measured at low pressure one must expect
that the effect of their errors increases with in-

creasing pressure. Thus from this point of view
there would be no advantage in using a lattice

"theoretical" equation of state instead of a phe-

nomenological equation as discussed in section 3.1,

provided the phenomenological equation selected

converges sufficiently fast and differs in the pres-

sure range considered from the lattice theoretical

equation with the same number of parameters by
an amount smaller than the effect of the experi-

mental error of the input data.

Another limitation of the kind of lattice theoretical

equation of state considered is that it is based on
several simplifying assumptions and that their

effect on the results is not easy to determine and
would require a much higher theoretical effort.

First, it has been noted that the inverse power law

for the van der Waals potential should be screened
at smaller interatomic separations due to the inter-

penetration of the electronic shells [36]. Also, the

use of an exponential law for the repulsive inter-

action is only an approximation because the radial

dependence of the electronic wave functions cor-

responds to a series of terms consisting of products

of polynomials and exponential functions and is

reflected in the radial dependence of the cohesive

energy [37, 38]. More specific approximations of

dubious justification made in previous lattice

theoretical equations of state consist of the use of an
inverse power potential for the repulsive interaction

and neglect of second nearest neighbor effects [35],

or of the evaluation of the repulsive parameters
for the second nearest neighbor interaction from the

electronic polarizabilities [13]. The equation of

state of Decker is further based on the Debye-
Grueneisen approximation, and the Grueneisen
constant and its first pressure derivative are deter-

mined jointly with the first nearest neighbor repul-

sive parameters from empirical data of the thermal
expansion as a function of temperature [13].

In view of the considerable difficulties encoun-
tered in deriving a sufficiently reliable lattice

theoretical equation of state, the question arises

whether an empirical ultrasonic equation of state

based on any of the phenomenological equations

discussed in section 3.1 agrees within the uncer-

tainty limit caused by the experimental error of

the empirical parameters with the corresponding
lattice theoretical equation of state. In order to

explore this possibility, a simple lattice theoretical

equation of state with four empirical parameters
was compared with the phenomenological equations

discussed in section 3.1. This equation of state is

based on the expression

ae~ CD -- <2/V3)r

= p. +^26 p^ (3.16)

for the lattice energy per ion pair where the symbols
have the usual meaning [39], and the effect of

thermal motion has been neglected. This expression

contains the usual Coulomb and van der Waals
terms, and first and second nearest neighbor repul-

sive interaction. In general, two exponential terms
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are required for the second nearest neighbor inter-

action, but these two reduce to one if it is assumed
that the same constant pz describes both cation-

cation and anion-anion interaction. The van der

Waals constants C, D were taken from references

[40] and [41], respectively, and the repulsive con-

stants Ai, A2, p\, p-i were determined from the zero

pressure values of the lattice constant, and of the

bulk modulus and its first two pressure derivatives.

The equation of state based on (3.16) according to

_ d(f) _ I dcj)

was compared with (a) Murnaghan's first-order

equation (3.9); (b) Birch's equation (3.7) in first-

order approximation; (c) Murnaghan's second-

order equation (3.10); (d) Birch's equation (3.10)

in second-order approximation; and (e) Keane's
equation (3.13). The same ultrasonic values for

the bulk modulus and its first two pressure deriva-

tives were used for these phenomenological equa-

tions so that the difference Ap = p lattice ~Pphen-
between the lattice theoretical equation of state

based on (3.16) and the phenomenological equations

(a) to (d) arises from differences in the second and
higher pressure coefficients of the bulk modulus
(cases (a) and (b)), or from differences in the third

and higher order pressure derivatives of the bulk

modulus (cases (c) to (e)). This difference Ap is

therefore an indication of the quality of the dif-

ferent phenomenological equations in approximating

the lattice theoretical equation based on (3.16),

and a measure of the rate of convergence of the

various Taylor-expansions underlying the phenom-
enological equations (a) to (e). Although the exact

or true potential energy of the lattice will be given

only approximately by (3.16) and the thermal energy

has been neglected, one may expect that the dif-

ference between the two values of Ap referred to

(3.16) and to the volume dependence of the true

free energy is a higher order quantity, so that for

ionic crystals the difference Ap based on (3.16)

may be considered as a fair estimate of the deviation

of the phenomenological equations from the true

equation of state.

The difference |Ap| is plotted for Csl in figure 1

for the five cases (a) to (e) as a function of pressure.

The ultrasonic data of table 2 were used in connec-
tion with the room temperature value of the lattice

constant from reference [30]. For CsCl and CsBr
curves very similar to those of figure 1 were ob-

tained. It is apparent that in the entire pressure

range up to 500 kbar the quality of the second-order
Birch equation in approximating the lattice theoreti-

cal equation is one order of magnitude better than

Keane's equation, and about two orders of magni-

tude better than the second order Murnaghan
equation. As all three equations contain the same
number of three empirical parameters, this drastic

100 200 300 400 500

Pressure p (kbar)

Figure 1. Pressure difference between phenomenological and
lattice theoretical equation of state versus pressure for Csl.

Figure 2. Comparison of compression data for CsCl, CsBr,
and Csl by Bridgman [9, 70] with ultrasonic Birch equation

of state in first- and second-order approximation.

superiority of Birch's equation is quite surprising.

The first-order Birch equation also can be seen to

be superior to the first-order Murnaghan equation,

but the difference is not quite as pronounced. As
expected, the two three-parameter equations accord-
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ing to Birch and to Keane are superior to any of the

two-parameter (first-order) equations of Murnaghan
and Birch, but interestingly enough the second-

order Murnaghan equation gives above 80 kbar

larger deviations than the first-order Murnaghan
equation and shows, in fact, the largest deviation

from the lattice theoretical equation of all cases

considered.

These results suggest the superiority of the

second-order Birch equation over all other phe-

nomenological equations considered containing

an equal or smaller number of parameters.

The absolute magnitude of the discrepancy

ranges for the second-order Birch equation from 65

bars (or 0.065 percent) at 100 kbar to 4.6 kbar (or

0.9 percent) at 500 kbar. It wiU be shown below in

section 4 that this discrepancy is considerably

smaller than the errors that may be expected from

the error of the ultrasonic input data and from the

measurement of the lattice constant. Thus in the

pressure range up to 500 kbar it seems sufficient

to use a second-order (three-parameter) Birch

equation instead of a lattice theoretical equation

with an equal number of empirical parameters.

3.3. Comparison of Ultrasonic Equations of
State With Piezometric Data

In this section phenomenological equations of

state discussed in section 3.1 will be calculated

from the ultrasonic data of tables 1 and 2, and com-
pared with direct piezometric data of Bridgman

[9, 10] and Perez-Albueme and Drickamer [11, 12].

The purpose is first, to determine whether the ultra-

sonic and the piezometric data are compatible

within experimental error; second, to check whether
the contribution from the second pressure deriva-

tive of the bulk modulus is noticeable in the pres-

sure range considered and improves the agreement
with the piezometric data; and third, to provide

further support for the above conclusions concern-

ing the superiority of the Birch equation of state

as compared with Murnaghan's equation.

From the comparison of the ultrasonic equation of

state (based on the first- and second-order Birch

equation) with Bridgman's piezometric data in

figure 2, one may make the following observations.

First, the effect of the second pressure derivative

of the bulk modulus is noticeable in the pressure

range below 50 kbar, but is within the limit of error

of the ultrasonic data, calculated from the errors

shown in tables 1 and 2 by means of the Gaussian
error propagation law. Second, the agreement
between ultrasonic and piezometric data is im-

proved by including the second pressure derivative

for Bridgman's data of 1940 [9] for CsCl and

CsBr, but worsened in aU other cases. Third, for

CsCl and CsBr Bridgman's data of 1940 [9] agree

well above about 15 kbar (within experimental
error) with the ultrasonic data, but below that pres-

p (kbar)

Figure 3. Comparison of compression data for CsCl by Perez-

Albuerne and Drickamer i2] with (a) ultrasonic Murn-
aghan equation of state in first- and second-order approxi-

mation, (b) ultrasonic Birch equation of state in first- and
second-order approximation, and (c) extrapolated compression
data by Bridgman [9, 70].

sure and in all other cases, diff"erences which are

outside the range of error of the ultrasonic data

occur.

One must conclude then that Bridgman's earlier

data of 1940 are more accurate than his later data

of 1945 [10], and that the results for the less com-
pressible materials CsCl and CsBr are more
accurate than for the more compressible Csl.

In figures 3a and 3b the ultrasonic equation of

state as based on the first- and second-order ap-

proximations of the equations of Murnaghan and of

Birch, respectively, are for CsCl compared with the

data obtained by Perez-Albuerne and Drickamer
[11] with a high-pressure x-ray camera. The error of

the ultrasonic data is indicated by the broken curves
in figure 3a, and by a few selected error bars on fig-

ure 3b. The x-ray data were fitted to a third-order

Birch equation (four parameters) and are plotted as

the full curve. In figure 3b the individual data are

plotted also in order to show the large scatter pres-

ent. The error was calculated from the standard
deviation according to the method described in ref-

erence [27], section 6.25, and is shown as error bars.

It is apparent from figure 2a that the ultrasonic

data agree well with the x-ray data up to about 225
kbar in the first-order Murnaghan approximation,
but only up to about 150 kbar in the second-order
Murnaghan approximation. Thus the inclusion of the

second pressure derivative B'^^ actually deteriorates

the agreement between the two sets of data. Since
the second-order Murnaghan equation shows an in-
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flection point near 150 kbar, which is unlikely on
physical grounds, one has to discard the second-

order Murnaghan equation as inappropriate. This
confirms the conclusion arrived at before on the

basis of figure 1, and substantiates similar expecta-

tions expressed earlier by Anderson [3].

Figure 3b shows that the difference between the

Birch equations in first- and second-order approxi-

mation is much smaller than that for the Murnaghan
equations, and that both the first- and the second-

order equations are in substantial agreement with

he x-ray data. Surprisingly enough, the first-order

ultrasonic Birch equation agrees within experi-

mental error with the x-ray data, but the second-

order ultrasonic Birch equation deviates markedly
above about 400 kbar from the x-ray data. Since the

effect of a possible systematic error in the pressure

scale used in the ultrasonic measurements is in-

cluded in the error of the ultrasonic data, and since

the error indicated for the x-ray data is based on the

mean square deviation only, one is compelled to

suspect the presence of a systematic error in the

x-ray measurements which becomes excessively

large above about 400 kbar. This conjecture is sub-

stantiated by the fact that the least square fit of the

x-ray data to a third-order Birch equation exhibits an

inflection point near 300 kbar, which is unlikely on
physical grounds. Although any discussion of a

possible source for such a possible error is purely

speculative, one may expect the pressure scale

used in the x-ray measurements to be a very likely

cause. This pressure scale is based on the equation

of state of Ag and Mo that were obtained from the

conversion of shock wave data.

A feature worth noting is that the total error of

the ultrasonic data is smaller than the purely statis-

tical error of the x-ray data in the entire pressure

range considered.

Since significant differences were found for the

cesium halides between the ultrasonic data and
Bridgman's volumetric data, it was deemed worth-

while to compare Bridgman's data with the x-ray

data. To this end Bridgman's data were fitted to a

third-order Birch equation and then extrapolated

over the pressure range covered in the x-ray meas-
urements. The results are compared in figure 3c

with the x-ray data. Also shown are the error limits

of Bridgman's data based on the mean square

deviation. It is apparent that Bridgman's data of

1945 [10] are much more precise, but of so low ac-

curacy, that they differ from the x-ray data above
about 180 kbar. On the other hand, Bridgman's
data of 1940 [9] show a very large statistical error

when fitted to a third-order Birch equation, so that

the agreement with the x-ray data within the joint

experimental error is extended to as high pressures

as about 380 kbar. Since both curves of Bridgman
fall quite close to each other, it is still safe to con-

clude that the agreement between Bridgman's
data and the x-ray data is quite poor. The fair agree-

ment found between the x-ray data and the ultra-

sonic data must therefore be taken as evidence in

favor of both these sets of data, and against the

reliability of Bridgman's data. The observation

that Bridgman's data are of rather limited accuracy
only has been made by several authors who also

discuss possible causes of error [42-44].

4. Ultrasonic Equation of State in Second-
Order Birch Equation

From the discussion of the preceding section

it seems justified to propose an ultrasonic equation

of state for use as a high-pressure standard. For
this purpose Csl has been selected, and an equation

of state calculated from the ultrasonic data of tables

2 and 4 on the basis of the second-order Birch equa-

tion. The results are expressed in terms of the lattice

parameter and are listed in table 5 and plotted in

figure 4. The absolute values of the lattice parameter
at zero pressure were taken from the thermal ex-

pansion data of references [30],

a = 4.549+1.767Xl0-^i+1.528Xl0^^f2 (4j)

with a in angstrom units and t in degrees Celsius.

The relative compression a{T, p)la{T, o) is, how-
ever, independent of these data (except for the

thermodynamic conversion from the mixed ultra-

sonic to the pure isothermal data).

Since for practical applications the reliability

of these results is of crucial importance a detailed

error analysis has been carried out at room
temperature.

The pressure is according to (3.2), (3.7), and
(3.8) in second-order Birch approximation a func-

tion of the bulk modulus i5o, of its first two pressure

derivatives fi^' and fijf', and via the temperature

dependence of these quantities, a function of

temperature. If instead of the volume compression

Pressure p (kbor)

Pressure p (kbor) ,

Figure 4. Equation of state of Csl, calculated in second-'

order Birch approximation from ultrasonic data of tables 2

and 3.
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Table 5. Pressure according to ultrasonic equation of state for Csl as a function of the lattice constant a

and temperature.

a{p, T)

a(0, 25)
inn °c 900 °PZUU \j Ann °c i^OO OUU Li

1.030 4.691 0.54

1.025 4.668 0.30 1.26

1.020 4.645 1.23 2.12

1.015 4.622 1.10 2.29 3.13

1.010 4.600 0.98 2.36 3.50 4.31

1.005 4.577 0.95 2.43 3.77 4.89 5.66

1.000 4.554 0.00 1.11 2.60 4.05 5.36 6.45 7.21

0.995 4.531 1.52 1.87 2.96 4.43 5.85 7.14 8.21 8.97

0.990 4.508 3.58 3.92 4.99 6.44 7.84 9.12 10.19 10.96

0.985 4.486 5.83 6.17 7.22 8.65 10.05 11.33 12.41 13.20

0.980 4.463 3.29 8.63 9.67 11.09 12.48 13.77 14.88 15.71

0.975 4.440 10.98 11.31 12.35 13.77 15.17 16.48 17.62 18.52

0.970 4.417 13.91 14.25 15.29 16.70 18.12 19.47 20.7 21.6

0.965 4.395 17.11 17.45 18.49 19.92 21.4 22.8 24.0 25.1

0.960 4.372 20.6 20.9 22.0 23.4 24.9 26.4 27.8 29.0

0.955 4.349 24.4 24.8 25.8 27.3 28.9 30.4 31.9 33.2

0.950 4.326 28.5 28.9 30.0 31.5 33.1 34.8 36.4 37.9

0.945 4.304 33.0 33.4 34.6 36.1 37.8 39.6 41.4 43.1

0.940 4.281 37.9 38.3 39.5 41.1 43.0 44.9 46.9 48.8

0.935 4.258 43.3 43.7 44.9 46.6 48.6 50.7 52.9 55.0

0.930 4.235 49.0 49.5 50.8 52.6 54.7 57.0 59.5 61.9

0.925 4.212 55.3 55.8 57.3 59.1 61.4 64.0 66.7 69.4

0.920 4.190 62.1 62.7 64.2 66.2 68.7 71.5 74.5 77.6

0.915 4.167 69.5 70.2 71.8 73.9 76.7 79.8 83.1 86.5

0.910 4.144 77.6 78.3 80.1 82.4 85.4 88.8 92.5 96.3

0.905 4.121 86.3 87.1 89.1 91.5 94.8 98.6 103. 107.

0.900 4.099 95.7 96.7 98.9 101. 105. 109. 114. 119.

0.895 4.076 106. 107. 110. 112. 116. 121. 126. 131.

0.890 4.053 117. 118. 121. 124. 129. 134. 139. 145.

0.885 4.030 129. 131. 134. 137. 142. 148. 154. 160.

0.880 4.008 142. 144. 147. 151. 156. 163. 169. 176.

0.875 3.985 156. 158. 162. 166. 172. 179. 186. 194.

0.870 3.962 172. 174. 178. 182. 189. 197. 205. 213.

0.865 3.939 188. 191. 196. 200. 208. 216. 225. 234.

0.860 3.917 207. 210. 215. 220. 228. 237. 247. 256.

0.855 3.894 226. 230. 236. 241. 250. 260. 270. 280.

0.850 3.871 247. 251. 258. 264. 273. 285. 296. 307.

0.845 3.848 270. 275. 283. 289. 299. 311. 324. 335.

0.840 3.825 295. 301. 309. 316. 327. 341. 354. 366.

0.835 3.803 323. 329. 338. 345. 358. 372. 387. 399.

0.830 3.780 352. 359. 369. 377. 391. 407. 422. 435.

0.825 3.757 384. 392. 404. 412. 427. 444. 461. 474.

0.820 3.734 419. 427. 441. 449. 466. 485. 503. 516.

0.815 3.712 456. 466. 481. 490. 509. 529. 548. 561.

0.810 3.689 497. 508. 525. 535. 555. 577. 597. 610.
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where the factor

100 200 300
Pressure p (kbar)

400 500

Figure 5. Sensitivity of equation of state of Csl with respect

to changes of the bulk modulus Bo, its first two pressure deriva-

tives B*J* and Bjj^', temperature T, and lattice parameter a,

at 25 °C in second-order Birch equation.

ratio R according to (3.1) the hnear compression
ratio

a{p, T)
(4.2)

a(o, T)

is used as independent variable according to

= (4.3)

then the functional dependence of the pressure on
all variables is of the form

p=p{BoiT), fi(>»(r), Bi'KT), L) (4.4)

The pressure as calculated from the ultrasonic

equation of state will therefore be subject to the

errors ^B,^{T), AB{,'^{T), AB^'^{T) of the ultrason-

ically determined input data at a given tempera-

ture, which will be taken as 25 °C. These errors

limit, therefore, the accuracy of the pressure scale

based on the ultrasonic equation of state. In addi-

tion to these errors in the pressure scale, the actual

pressure measurement will be limited in accuracy
because of insufficient control and characterization

of the temperature, corresponding to an error AT,
and because of an error Aa in the measurement of

the lattice constants. The relative error in pressure

due to each of these errors considered separately is

given by

_ d In p
d In X

(4.6)

Ap^

P

Ax
(4.5)

represents the sensitivity and x denotes any of the
five variables B^^, 5,*,", Bj^^K T, and a. The sensitivity

was calculated according to (4.6) from the data of
tables 2 to 4 for Csl and is plotted in figure 5 as a
function of pressure for these five variables. The
sensitivity with respect to errors in the bulk modulus
Bo and the lattice constant decreases with pressure,
while that with respect to all other variables in-

creases with pressure. At pressures above 65 kbar
the sensitivity increases in the sequence B^^\ T, Bo,
B[}\a.
Of greater practical interest is the actual uncer-

tainty in pressure Ap which occurs for any given
error Ax of the five independent variables. These
errors were also calculated for Csl as a function of
pressure from the values for ABq, Afij," and AB^^
given in table 2 for the purely isothermal quantities,

and by assuming a temperature error of AT= 1 °C.

For the lattice constant an error of Aa/a= 10"^ was
assumed which corresponds to the best accuracy
attainable at present with high-pressure x-ray cam-
eras [45]. The results are plotted in figure 6 which
contains also the total error according to the Gaus-
sian error propagation law.

It is apparent that below 100 kbar the accuracy
limiting factor is the measurement of the lattice

constant, and between 100 and 150 kbar it is the

first pressure derivative of the bulk modulus, and
above 150 kbar it is the second pressure derivative

of the bulk modulus. The contributions from the

errors of all other variables are in the pressure
range up to 500 kbar much smaller than the larger of

the two contributions arising from the lattice con-

stant and the first and second pressure derivatives of

the bulk modulus, and may therefore be ignored for

all practical purposes.

The total accuracy of the ultrasonic equation of

state if it is used in connection with x-ray measure-
ments of the lattice constant at high pressure ranges
from 600 bars at 10 kbar (6 percent) over 3 kbar at

100 kbar (3 percent) to 33 kbar at 500 kbar (7 per-

cent). In the pressure range from 25 kbar to 150 kbar
the total error in pressure is always smaller than
3.5 percent. In this pressure range the ultrasonic

equation of state of Csl should therefore be useful

as an auxiliary pressure standard.

A similar error analysis can be carried out for

temperatures above room temperature. Since the

ultrasonic measurements were carried out up to

250 °C one should expect that the accuracy of the

equation of state of Csl proposed here will be ap-

proximately the same. The values above 250 °C are

calculated by extrapolation of the third- and fourth-

order elastic constants and are based on a linear

approximation for their temperature dependence.
Above 250 °C the accuracy will therefore be lower

than at room temperature.
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Strictly speaking, the accuracy plotted in figure 6

refers to the sample of Csl only, which was used for

the ultrasonic measurements. Since it is known
that the elastic constants and therefore the bulk

modulus depend somewhat on the concentration of

impurities, dislocations, and crystal imperfections,

one may have to consider the possibility that an

additional uncertainty is introduced by this effect.

One should expect, however, that this effect is

more pronounced for the bulk modulus and its

second pressure derivative than for its first pressure

derivative, because the first pressure derivative is

given by a ratio of third- and second-order elastic

constants, so that this effect may partly cancel.

Since the first pressure derivative is the accuracy
limiting factor below 150 kbar and since the accu-

racy of this factor amounted to as much as 1.3

percent for the ultrasonic data used here, one may
expect that this value should not be significantly

increased by the effect of crystal imperfections.

If the accuracy of the first and second pressure

derivatives of the bulk modulus could be increased

by factors of three and four, respectively, so that

the error would amount to about 0.4 and 2.7 percent,

respectively, then the uncertainty in the lattice

constant measurement would be the accuracy limit-

ing factor up to 500 kbar. The total error at 500

kbar would amount to 6.8 kbar (1.4 percent) only.

This increase in accuracy seems quite feasible at

present and would require more accurate pressure

measurement in the ultrasonic experiments, and
more reliable measurements of the thermal expan-

sion coefficient, of the specific heat, and of the

temperature dependence of these quantities. It is

through the temperature derivatives of the thermal

expansion coefficient and of the specific heat that

an additional error is introduced in the conversion

from the ultrasonically measured isothermal

pressure derivative of the adiabatic bulk modulus
to the purely isothermal value. The potential benefit

of this increased accuracy seems to justify the

pursuit of this work as a future task.

5. Conclusions and Summary

A three-parameter equation of state based on

ultrasonically measured values of the bulk modulus
and its first two pressure derivatives has been
proposed for CsCl and CsBr at room temperature,

and for Csl between 0 °C and 600 °C. The phe-

nomenological equation of state of Birch has been
used in the second-order approximation and has

been found to be superior to the equations of

Mumaghan and Keane. The ultrasonic equation of

state does not agree within the carefully established

limits of experimental error with the piezometric

data of Bridgman, but it does agree up to 400 kbar
with data obtained from high-pressure x-ray meas-
urements by Perz-Albuerne and Drickamer.
Even at these high pressures the accuracy of the

Pressure p (kbar)

Figure 6. Total error of pressure of equation of state of Csl
and contributions from individual errors of material param-
eters (ABo= 0.5 kbar, AB<,'»= 0.08, AB<f'= 0.008 (kbar)-'), of

temperature (AT= 1 °C) and of lattice parameter (Aa/a= 10~^)

at 25 °C in second-order Birch equation.

ultrasonic equation of state is better than that of the

x-ray data. Although at present the total accuracy
of the ultrasonic equation of state is at high pressure
limited by the error of the first and second pressure
derivatives of the bulk modulus, it seems possible

to improve this accuracy and to present an ultra-

sonic equation of state for cesium halides with high
enough accuracy so that the predominant accuracy
limiting factor will be the error in the x-ray measure-
ment of the lattice parameter.

6. Acknowledgments

The authors would like to express their sincere

appreciation to Prof. H. G. Drickamer for sending
a table of the numerical results of his equation of

state data for CsCl which were published in refer-

ences [11] and [12] in graphical form. Thanks are

also extended to Mrs. J. Schiff for most of the com-
puter programming required for the numerical
calculations.

Note added in proof:

The ultrasonic data reported in tables 1, 2, and 4 differ slightly

from the numerical values presented at the Symposium in 1968.

This change is due to the fact that the earlier data were based on
an approximation used in the processing of the ultrasonic data

which was later found to be unjustified. While the resulting

changes in the room temperature data for the ultrasonic equation
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of state shown in figures 2 and 3 are insignificant a more pro-

nounced change accrued for the ultrasonic equation of state data
at high temperatures, which are reported in table 5 and figure 4.

Whereas for the earlier data the isotherms were found to inter-

sect at high pressures, the revised data lead to an equation of

state with isotherms which are quite evenly spaced apart, and
which do not exhibit the unusual behavior of negative thermal
expansion at high pressure.
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DISCUSSION

D. J. Pastine {U.S. Naval Ordnance Laboratory,

White Oak, Maryland): While it is apparently
true that the Murnaghan and Birch equations-of-

state may converge rapidly, this depends upon
the second and higher derivatives of bulk modulus
with respect to pressure. However, the values of the

second derivatives are not well known, and the

values of the higher order derivatives are not

known at all. The second derivative may also be
obtained from shock data, and this might be ad-

vantageous in cases where the values are difficult

to obtain otherwise.

In obtaining your results from ultrasonic data,

are you comparing isotherms with isotherms?

AUTHORS' CLOSURE

The reason we chose to work with the cesium
halides was because these substances are very
compressible, and the plot of the elastic constants

versus pressure shows sufficient curvature to permit
the second derivatives to be readily determined at

pressures below 10 kilobars. It would be more
difficult to pick up the second derivative ultrasoni-

cally below 10 kilobars with equal accuracy for less

compressible materials. But if we have a pressure

scale based on cesium halides, then we could use

an iterative procedure based on ultrasonic measure-

ments at higher pressures, say up to 50 kilobars,

and use the second pressure derivatives obtained

to calculate another equation-of-state for less

compressible materials up to one or two megabars.

AU we have shown here concerning convergence
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is that the deviation of the second order Birch
equation from an exact lattice theoretical equation

based on a model potential, which includes first

and second nearest neighbors, is small in the

pressure range of interest. We have not included
thermal motion, which was justified in our case
because the pressure dependence arises mainly
from the cohesive contribution, and because the

thermal equation-of-state is based on so many other

assumptions.
On the matter of reducing our ultrasonic data,

I should have made the point that all these data
were first converted to isothermal conditions. For
the first pressure derivatives, for example, we must
know the pressure derivative of the Griineisen con-

stant, which we have calculated from thermal data
by means of thermodynamic identities.
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Calculation of the P-V Relation for Sodium Chloride up4:o 300 Kilobars at 25°C

J. Scott Weaver, Taro Takahashi, and William A. Bassett

Department of Geological Sciences and Space Science Center, University ofRochester, Rochester, N.Y. 14627

The P-V relation for the Bl phase of NaCl was calculated up to 300 kilobars at 25 °C by means of the
Hildebrand and Mie-Griiniesen equations. The effect of (1) the uncertainty in the parameters used, (2)

the functional form for the temperature-dependent part of internal energy, (3) the anharmonic contribu-

tion, and (4) the second nearest neighbor repulsion on the calculated P-V relation is discussed. It was
found that the calculated P-V relation for NaCl is sensitive to the value chosen for Bto, and that the

effect of (2), (3), and (4) on the calculated P-V relation is small. The precision for the present calculation

has been estimated to be ±2.5 percent. The calculated P-V relation is in agreement within experi-

mental uncertainties with the fixed points on the absolute pressure scale, with that determined by
Bridgman up to 100 kilobars, and that obtained by Fritz from shock wave data up to 260 kilobars.

Simultaneous determinations of the effect of pressure on the volumes of NaCl and MgO were made by
x-ray diffraction on an intimate mixture of these two materials. It was found that the pressure values
calculated from the volume of NaCl using the calculated P-V relation are in agreement with those
calculated from the volume of MgO using the P-V relation calculated from the values of Bto and Bto

with the Murnaghan equation. This agreement verifies not only the calculated P-V relation for NaCl,
but also establishes the validity of the internal standard method for pressure determination.

1. List of Notation

The subscript zero denoted quantities evaluated

at P= 0, V= Vo. For example: Vo; 8"^; etc.

The other notations used and not defined in the

text are:

A^{d In yid In V)t
Bs= —{dPld In V)s the adiabatic bulk modulus

B's^{dBsldP)T
B'^^{dB'sldP)T

Bt=- {dPId In V)t
B[={dBtldP)T
B';={dB'JdP)T

B* = -V{dP*ldV)T
Cr= dipole-dipole van der Waals coefficient.

Cd= specific heat at constant volume.

Dr— dipole-quadrupole van der Waals coefficient.

e= electron charge or Naperian base.

E*{V, 7") = temperature dependent part of the in-

ternal energy.

P= pressure.

P*^- {dE*ldV)T+T{dPldT)v
PM^idre^Irt
Ps^Crlrl
Ps= iDrlrh'
Pr= brol^p

r= nearest neighbor distance

S= entropy

T= temperature (K)

U{V, T) — internal energy
V= molar volume
x=VIVo
a = {d In VldT)p isobaric thermal expansion co-

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

efficient

Qir= Madelung constant

y=TaBtVIC„ thermodynamic Griineisen parameter
ds^-{aBs)-'{dBsldT)p
8t= -iocB,)-'{dBtldT)p
e= (d In aid In V)t
6= Debye characteristic temperature

p = interaction length in the repulsion energy

(f)
= lattice energy

2. Introduction

In the internal standard method of pressure deter-
mination in high pressure x-ray diffraction studies,
the pressure is inferred from the molar volume of a
standard substance mixed w^ith the material being
studied. Hence the pressure-volume (P — V) rela-

tion of the standard must be accurately known over
the pressure range of interest. However, due to the
lack of direct and accurate means of determining the
P—V relation at pressures above 60 kbar, desirable
experimental data are not available in the pressure
range. One experimental approach to the deter-
mination of the P — V relation is the study of the
propagation of a shock wave through a material.
Such studies yield values for both pressures and
volume along a non-adiabatic, non-isothermal path
known as the Hugoniot from which the required iso-

thermal P — V relation may be calculated. In the
conversion of the Hugoniot to an isotherm, the re-

sults depend critically on the assumptions made
about the form of the equation of state. Another ap-
proach involves calculation of the P — V relation
from a suitable approximation to the equation of
state whose parameters are fixed on the basis of the
properties of the material determined at low pres-
sures. In such an approach, however, large errors
in a calculated P-V relation can result from small
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errors in the values of the various low-pressure
parameters or from inadequacy in the form of the

equation of state used. Hence, neither of these ap-

proaches is free from objection.

This paper presents a discussion of the P — V
relation of the Bl phase of NaCl for pressures up to

300 kbar at 25 °C. The approach taken here is an
attempt to calculate the P — V relation from low-

pressure properties, and then to compare the re-

sulting f— V relation with the results of shock-wave
propagation studies. An additional test of validity of

the calculated P — V relation and the internal stand-

ard method is obtained from simultaneous deter-

minations of the molar volumes of NaCl and MgO.
The results of a study of the sensitivity of the calcu-

lated P — V relation for NaCl to the form of the equa-
tion and to the value of the low-pressure properties

for NaCl are used to estimate the precision of the

P — V relation.

NaCl offers a number of advantages as a sub-

stance for use as an internal standard. Properties

contributing to its usefulness include:

(1) The small bulk modulus of NaCl (237.4 kbar
at 25 °C) yields good sensitivity since a given change
in pressure results in a relatively large change in

volume.

(2) The isometric structure of NaCl yields an
x-ray diffraction pattern containing relatively few
lines, thus minimizing interference with the sample
pattern. In addition, each NaCl reflection yields a

value for the molar volume.

(3) The low yielding strength of NaCl aids in

producing a more hydrostatic pressure environment
than other sohd media having higher yielding

strength. In addition, NaCl has a low absorption co-

efficient for a wide range of the electromagnetic

radiations including x-rays, visible, and infrared.

(4) NaCl has been the subject of a great number
of theoretical and experimental studies, so that most
of the properties necessary for calculation of the

P — V relation are available from the literature.

3. Previous Studies

Figure 1 shows the results of calculations of the

P-V relation for NaCl at 25 °C byj)ecker (1965,

1966), who used the vibrational Mie-Griineisen equa-

tion, and by Perez-Albuerne and Drickamer (1965),

who used the thermal Hildebrand equation. These
are compared with the shock Hugoniot data ob-

tained by Christian (1957) and with five points along

a 25 °C isotherm calculated by Fritz (1967) from

shock wave data. The discrepancy between the cal-

culated P — V relations and the experimental data

appears to be due to the values of Bto chosen by
Decker and by Perez-Albuerne and Drickamer.

A family of isothermal P — F relations may be ob-

tained from the expansion of Bt as a Tayler series

in P:

PRESSURE (kbar)

Figure 1. Comparison of the P-V relations for NaCl calculated

by Perez-Albuerne and Drickamer (1965) using the thermal
Hildebrand equation and by Decker {1966) using the vibra-

tional Mie-Gruneisen equation, with the Hugoniot data ob-

tained by Christian (1957) and with five points along a 25 °C
isotherm calculated from Hugoniot data by Fritz (1967).

The last of these has been superseded by more recent work (Fritz et al., this volume)
and may be disregarded.

Bt^- (dPId In F)r-fio+5o^-P/2 B'^P^+

(1)

Neglecting P'^ and higher terms, eq (1) leads to the

Murnaghan equation (Anderson, 1965; Murnaghan,
1944):

P=iBtolBQ [(F/Fo)-«'o-l].
(2)

If the P'^ term is retained, eq (1) leads to an equation

of the form:

P={2Bt,jBt',) [(r/ro)-''%'-l] [1 + g

-d-g) (r/ro)-''«'o]-i (3)

where q= [\ -2BhBtll {Bt'^YY^ Rose (1967) has

derived a similar equation.

Another family oi P—V relations may be ob-

tained from finite strain theory (Birch, 1938, 1952),

by noting that the free energy is a function of strain,

e, where 2e = y= [{VlV^y^l^ -\]:

P= (3/2)fiioy(l + y)5/2(l-^y+Tjy2+ )

(4)

where

f=- (3/4)(fi?;-4) and rj= (3/8) [fitofifp

+ {BtlY-^Btl + U?,|9^.
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The values of Bto and Bt^ for NaCl used to eval-

uate these relations are given in table 2. The value of

Bt'o for NaCl is not known at present. However, the

values for Bso, Bs'q, and Bs'q for CsCl, CsBr, and Csl

determined by Chang and Barsch (1968) yield a rela-

tion, BsoBso~ — Bso for these three compounds.

Hence the effect of Bt'^ was investigated by calcu-

lating pressure values for the two cases: (1) fifj,'= 0

and (2) Btl= -Bt'JBh. The calculated P-V rela-

tions for NaCl are shown in figure 2. It is seen that

none of these P—V relations agrees with the shock
compression results of Fritz (1967). In particular,

pressure calculated from Mumaghan equation is far

greater than Fritz's values. This suggests that

Btl is a negative number and that the effect of

Btl can not be neglected for VIVq ^ 0.8. The Rose

equation (1967) appears to be in better agreement
with the shock data for Bt'^—— BtQlBto. However,
use of this equation with Bt'^ < 0 leads to a physically

unreasonable condition at high pressures. For ex-

ample, '\i BIq —— Bt'JBto, Bt increases to a maximum
at P— Bto, and thereafter, it decreases and becomes
negative for P > fifo [1 + (1 + 2/fifo)'/2]. A negative

value of Bt violates the First Law of Thermody-
namics, while a negative value of Bt' seems un-

likely for a single-component system in the absence
of any phase transformation.

Four P — V relations calculated with the Birch
equation are shown in figure 2. The curve Birch 1

was calculated assuming that ^= 17 = 0. The effect

of the ^ term is shown hy Birch 2, which was calcu-

lated with rj = 0 and ^= -1.013 (or fi?o = 5.35).

The effect of rj and the value of BtQ is shown by
Birch 3a in which 17 = 2.65 and 5fo = 0, and by
Birch 3a in which t} = 0.64 and Btl^ — Bt'JBtn.

From figure 2 it can be seen that both the ^ and 17

terms exercise a significant effect on the calculated

pressure. Thus, eqs (2), (3), and (4) failed to describe
adequately the P—V relation of NaCl up to 300
kbar from the parameters determined at low pres-

sures. On the other hand, with the refined experi-

PRESSURE (kbar)

Figure 2. Various P-V relations for NaCl calculated by means
of the Murnaghan, Rose, and Birch equations.

The values for the parameters used are: B(o= 237.4 kbar, BJ^= 5.35, and B"^= 0.00

or —0.0225 kbar"'. The equations shown are; Murnaghan^ eq (2); Rose^ eq (3); Birch 1,

eq (4) with f=T) = 0; Birch 2, eq (4) with ^=-1.013, 7) = 0; Birch 3a, eq (4) with

f = -1.013, i) = 2.648 (B';„=0); Birch 3b, eq (4) with ^= -1.013, t) = 0.642

(B"= ~0.0225 kbar"'). Five points along a 25 isotherm calculated by Fritz (1967)

from Hugoniot data are shown for comparison. These points have been superseded
by more recent work (Fritz et al., this volume) and may be disregarded.

mental values for Bto. the Hildebrand and Mie-

Gruneisen equations appear to be capable of

accounting the compression of NaCl in the pressure

range of present interest.

4. Calculation of the P—V Relation

The internal energy of a solid may be written in

the form

U{V, T)^4>{V)^E*{V, T).

In the vibrational formulation of the equation of state.

Table 1. Definition of the models of solid used for the calculation of the P— V relation for NaCl.

E* is the energy due to the lattice vibrations; P* the pressure resulting from the lattice vibrations; and B* the contribution of the lattice

vibrations to bulk modulus.

Model E* p* B* Remarks

I constant 0 0 Thermal formulation at 0° K.

II (9/4)R6l (9/4)7«6l/F (l + y-A}P* Vibrational formulation at 0° K.

III 6RTDe(eiT) + (m)Re yE*IV -(A-l)- (yE*IVy- (yVV) (TCv-E*) Vibrational Mie-Griineisen

IV 6RTDe(eiT) yE*IV -(yE*IV)-{yVV){TCv-E*) Thermal Mie-Griineisen

V ^**^ ra„Bf„(y/y„)(F„/F) -(A-l)P* Vibrational Hildebrand

VI ^**^ ToaBto 0 Thermal Hildebrand

reiT

De(dlT)=3(Tiey
j

[u^l {e" - l)]du Debye function. 6»=Debye temperature.

*For these two cases, E* should be a function of temperature alone. However, it is not necessary to know the functional form of E *, since it is not used in the calculation.

191



(f>
is the potential energy due to the static lattice while

E* is the energy due to the lattice vibrations in-

cluding the zero point vibrations. On the other hand,
in the thermal formulation, the energy due to the

zero point vibrations is included in (/>, and hence
E* is taken to be the thermal energy. A relation for

the pressure is found by combination of the expres-

sions for the internal energy with the thermodynamic
identity:

P^-{dUldV)T+TidPldT)v,

and then

P=-d4>ldV+P*,

where P* is the pressure resulting from the lattice

vibrations. For NaCl, P* is less than 10 kbar so that

the lattice energy (/> predominates at high pressure.

The isothermal bulk modulus then assumes the

form:

B, = V{d^(j)ldV^)+B*,

where fi* is a contribution of the lattice vibrations

to the bulk modulus.
Since the elastic constants of NaCl determined by

Slagle and McKinstry (1967) closely obey the Cauchy
relation (C12 — C44), a central-force model for </> is

reasonable. For an ionic solid, the principal terms
in the attractive part of

(f)
result from the Coulomb

and van der Waals (dipole-dipole and dipole-quadru-

pole) interactions. Since a unique form for the repul-

sive part of (/) is not available, the Bom-Mayer
exponential form between the nearest neighbors
containing two adjustable parameters was adopted.

Thus, the adopted form for 4> in terms of the nearest

neighbor distance, r, becomes:

0=- are^r- Crlr^ - Dr/r^+ be-'lp

and hence

P=- PmX-^I^ - Pex-^ - Psx-^'l^

+ PrX-^I^ exp (- + p*

and

Bt= - W)Pmx-'I^-3P6X-^- (11/3)P8a:-ii/3

+ {ll3)PRX-^IH2+roxlp) exp {-rox'l^lp)+B *

x=VIVo,

where a new set of parameters, Pm, Pq, Ps, Pr, with

the dimensions of pressure have been introduced for

convenience. The quantities characterizing the

repulsion {b and p; or Pr and ro/p) can be determined

by two boundary conditions: that the expressions for

P and Bt yield the correct values of 0 and Bto respec-

tively when F= Fo (or%= I)

.

A number of approximate forms for the tempera-
ture dependent part of the internal energy E* are

possible. The P — V relation was calculated for six

different choices for the form of £'* in order to test

the sensitivity of the final results to the choice of a

model for the vibrational energy. The models se-

lected are shown in table 1. Models I and II are ex-

treme cases in which the thermal contribution to E*
is ignored. Hence these models are appropriate for

calculation of the 0 K isotherm only.

Models III and IV are based on the Mie-Griineisen

approximation to the vibrational and thermal formu-

lations of the equation of state. The Mie-Griineisen

approximation may be derived if £'* has the func-

tional form T • Q{djT), where 0 is a purely volume-

dependent characteristic temperature, and there-

fore, — d\n Old In V is equal to the thermodynamic
Griineisen parameter, y. In the present study, the

Debye functional form was adopted for £*, since the

specific heat values calculated for NaCl using this

form agree closely with experimental values. The
Griineisen parameter y was assumed to obey a

power law in the volume of the form:

y=yoiVIVo)^

where the value of ^4 was obtained from the thermo-

dynamicaUy exact relation derived by Bassett et al.

(1967):

A={dln yid In V)t

= 1+ {1 + y a - T)8s-Bs' + y+TidyldT)v.

The term T{dyldT)v is zero from the assumptions
inherent the Mie-Griineisen approximation. The
power law form for y leads to a relation for the

Debye temperature as a function of compression:

d=do-exp {yoA-'[l-{VIVo)^]}

where the subscript "0" denotes the values evalu-

ated at zero pressure. Fumi and Tosi (1962) have

shown that the assumptions leading to the vibra-

tional formulation of the Gruneisen approximation

are valid for temperatures somewhat less than the

Debye temperature or greater, and that the thermal

formulation is not appropriate in a temperature

region near the Debye temperature. Therefore,

Model IV is less satisfactory than Model III.

The Hildebrand approximation, on which Models

V and VI are based, results from the assumption

that £* is a function of the temperature only, so that

P* = TidPldT)y = T a -Bt. This implies that Cv is

a function of temperature only, and therefore Cv is

constant in a isothermal condition, and the relation-

ship below holds:

P* = P*{ylyo)l{VIVo),
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Table 2. Physical parameters for NaCl used for the calculation of the P — V relationship at 25 °C

Parameters Values References

(A) Experimentally Determined Parameters

oo 5.6403 A

Bso 250.0± 1.8 kbar

- {dBsldT)p 0.109±0.007 kbar "C-'

5.27 ±0.25

(11.85±0.20)10-5°C-'

10. ±1

290 ±12 K

1.74756

(180 ±36)10-'"' erg cm"

(180 ±90) 10-'" ergcms

00

a-T

Cr

Dr

(B) Parameters Derived From the Values Listed Above

Vo 27.012 cm3 mole"'

Pm 106.214 kbar

Ps 15.95 ±3.19 kbar

Ps 2.64± 1.32 kbar

Cvo 0.4760 ±0.0018 kbar cm^ deg-' mole-'

To 1.597 ±0.030

Bto 237.4 ±1.7 kbar

5.35 ±0.30

3.67 ±0.25

1.20 ±0.36

(C) Equations Used for Deriving the Values in (B)

Sso

A

Cvo= 6R-3(Tieo)^
J

[u''e"/(e"-l)2]dM

yo(l + yoOtoT) = aoBsoVolCvo

Sso=— (dBsldT)plaoBso

-4 = 1+ ( 1 + yoao?-) 8i„ - Bs^ + y„

Bt; = ( 1 + -yoaoT-) -' [Bs^, + yoaoT(Sto+ A)]

Sto= Sso -I- ( 1 -I- yottoT') [yo + yooioT(eo+ A)]

Clark (1967).

Slagleand McKinstry (1967), 250.8 ± 1.8 kbar; Haussuhl (1%0), 250.0

±1.3 kbar.

Slagle and McKinstry (1967), 0.103; Bartels and Schuele (1965), 0.108;

Haussuhl (1960), 0.117 ± 007 kbar °C-'.

Bartels and Schuele (1965).

Slagle and McKinstry (1967), 11.48; Collins and White (1964), 11.85; Enck
cited in Decker (1965), 12.00 X 10-^ °C->.

Slagle and McKinstry (1967), 9.03; Collins and White (1964), 11.07.

Yates and Panter (1962).

Tosi (1964).

Mayer (1933).

Mayer (1933).

Anderson (1967).

Bassett et al. (1967).

Bassett et al. (1967).

Bassett et al. (1967).

193



where the subscript "0" indicates the quantities

evaluated at zero pressure. According to Fumi and
Tosi (1962), the vibrational Hildebrand approxi-

mation is appropriate for temperatures exceeding a

temperature somewhat greater than the Debye tem-

perature, whereas the thermal formulation is less

satisfactory at temperatures near the Debye tem-
perature. Model V is the vibrational formulation of

the Hildebrand approximation, and Model VI is

based on a simple case of the thermal Hildebrand
approximation, in which F* is assumed to be con-

stant. In this latter case, the Gruneisen parameter
is proportional to volume, or equivalently, the bulk
modulus is a function of the volume only. This is the

model used by Perez-Albuerne and Drickamer
(1965), and should be inferior to Model V.

The values adopted for the various parameters of

NaCl are listed in table 2. The values shown in

table 2a were adopted from the literature, while the

values in table 2b were calculated from the values in

table 2a using the relations indicated. Since the iso-

thermal bulk modulus at zero pressure, Bto, is used
as a boundary condition, the calculated P—F rela-

tion is quite sensitive to the values chosen. In the

present study, the value of Bto was calculated from
the value of adiabatic bulk modulus, Bso, determined
by Slagle and McKinstry (1967) by means of the

pulse superposition technique. Their value was
selected rather than a smaller value found by Bartels

and Schuele (1965) in view of the high precision ex-

pected from the pulse superposition technique and
the agreement with the value obtained by Haussuhl
(1960). Since there was no compelling reason to

select one value of — {dBsjdT) p over another, the

arithmetic mean of these values listed was adopted
with an uncertainty calculated by assuming that the

values are independent measurements of the same
quality. Similarly, an intermediate value was chosen
for cto.

The P—V relations calculated using the six

models are compared in figure 3, which also shows
the results of Decker's revised calculation (1968) of

the Mie-Gruneisen equation and five points along a

25 °C isotherm calculated from shock data by Fritz

(1967). Models I and II are seen to be inconsistent

with the results of experiments and with other

models. Such a discrepancy is expected due to the

lack of a temperature-dependent term in the internal

energy. The other four models yield a range of pres-

sures of only 4 kbar at 280 kbar, showing that the

calculated pressures are not sensitive to the exact

form chosen for the temperature-dependent part of

the internal energy. However, Models IV and VI,

which are the thermal formulations of the Mie-

Griineisen and Hildebrand approximations respec-

tively, are probably inferior to Models III and V,

the vibrational formulations, as already discussed in

the previous page. The close correspondence be-

tween pressures calculated on the basis of either of

Models III or V and Decker's 1968 recalculation

P-P-x (kbar)

" Fritz (1967)

o

IT ^ Decker
(1968)

'

1 -z

0 100 200 300
Pvtkbar)

Figure 3. Effect of the form of the temperature dependent part

of the internal energy on the P-V relation for NaCl.

Curves I—VI correspond to different choices for E* (see table 1). Decider's (1968)

revised calculations are included to illustrate the effect of the second nearest neighbor
repulsion. The calculated P-V relations are compared with five points along a 25 °C

isotherm calculated by Fritz (1967) from Hugoniot data. These points have been super-

seded by more recent work (Fritz et al., this volume) and may be disregarded. The
uncertainty in the pressure values for Model V (P\ ) resulting from the uncertainties

in the parameters used in the calculation is shown by curves + 6 and — S.

Table 3. The sensitivity of the pressure values

calculated with the Mie-Gruneisen equation

{Model VI) to the uncertainties in the parameters
at a compression of V/Vo= 0.650 (~ 300 kbar).

In order to show the direction of the change in the pressure

values, only the positive values for the designated uncertainties

were considered. The sensitivity for the Hildebrand equation

(Model V) is similar to that for the Mie-Gruneisen equation

shown here.

Parameter

U)
Uncertainty

(8xlx)

Effect on P
(8F/P)

Sensitivity

(bPIP)l(bxlx)

(Percent) (Percent)

Bto 0.6 + 1.1 + 1.9

y 1.9 -0.2 -0.1

A 34 + 1.8 + 0.05

e 4.1 -0.01 -0.003

Cr 20 -0.5 -0.03

Dr 50 -0.2 -0.004

indicates that the effect of the second-nearest neigh-

bor interaction which was included in his calculation

is negligibly smaU.
The total uncertainty in the calculated P was esti-

mated to be ±2.5 percent on the basis that the un-

certainties in the individual parameters are in-

dependent and Gaussian. If the change in P re-

sulting from the uncertainty in the ith parameter is

bPi, then the total uncertainty in P can be calcu-

lated by:

[{bPiYyi\
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As can be seen from table 3, the main sources of the

uncertainty in P are the uncertainties on Bto and
A. The total uncertainty thus calculated is shown
with two curves labelled + 8 and — 8 in figure 2, and
is sufficiently large, so that the two models are in-

distinguishable. Hence it does not appear reason-

able to use the shock experiment data for selecting

one of these models over another.

The sensitivity of Models III and V to the un-

certainties in the parameters used was examined by
recalculating the repulsion parameters and the

P — V relation with each parameter individually

veried to the uncertainty limit given in table 2.

The change in pressure divided by the uncertainty

in the parameter provides a measure of the sensi-

tivity of the P — V relation to the value adopted for

the parameter. The results are presented in table 3

for F/Fo= 0.650. The calculated pressure is in-

sensitive to the values of all the parameters except

BtQ. The sensitivity of P to the BIq value is due to

the use of this parameter as a boundary condition,

and hence, a change in this value is not compensated
by a change in the repulsion parameters.

5. Internal Consistency of Calculation

Thomsen and Anderson (1968) have pointed out
that once a functional form for the lattice energy (/>

has been chosen, then the vibrational spectrum and
hence y are determined. Therefore, in principle,

4> and y cannot be chosen independently as was done
in the present study. However, in practice, this in-

consistency in </) and y probably does not affect the

results of calculations significantly. Using the same
values for the parameters for NaCl as used in this

work, they have calculated yo= 1.526 and ^ = 0.40

by means of a relationship derived by them on the

basis of the lattice dynamic treatment given by
Leibfried and Ludwig (1961). Their value for 70 is

consistent with the value of 1.597 ±0.030 obtained
on the basis of the exact thermodynamic relation.

On the other hand, their value for^ differs from the
value of 1.20 ±0.36 which was obtained in the pres-

ent work on the basis of the thermodynamically
exact treatment of the experimental data. The dis-

crepancy between these two values for A may be
attributed to (1) failure of the fourth-order anhar-
monic theory used by Thomsen and Anderson (1968),

or (2) failure of the lattice energy form adopted in the
present work. It is also possible that this discrep-

ancy may disappear when an allowance is made for

the uncertainties in the values of the parameters
used, since the discrepancy corresponds to only
twice the uncertainty estimated iox A in the present
work. If the value for A obtained by Thomsen and
Anderson were adopted, it would yield calculated
pressure values about 3.5 percent smaller than the
results presented here.

The internal consistency of the present calcula-

tion can also be examined by a comparison of the

calculated value for Bt^ and the experimental

value. This test is valid, since the experimental

value for Bs'q was only used for calculating the value

for A and was not used as a boundary condition.

The vibrational formulation of the Hildebrand
approximation (Model V) yields a value of 4.90

for , whereas the experimental value obtained

Bartels and Schuele (1965) is 5.35 ±0.30, and that

by Chang (1965) 5. 18 ±0.09. Since the uncertainty

in the volume determination by the x-ray diffraction

technique is 0.3 percent, the error in the P-V
relation for NaCl resulting from the discrepancy in

the calculated and experimental Bt^ is not signifi-

cant in comparison with the uncertainty in the

volume determination. However, more work is

required before this discrepancy is resolved.

6. Comparison Between the P-V
Relations for NaCl and MgO

The calculated P-V relation for NaCl may be
verified by a comparison of the effect of pressure

on the volume of NaCl with that of a material of

a known P-V relation. For this purpose, the effect

of pressure on the molar volumes of NaCl and MgO
was obtained by simultaneous determinations of

their volumes by means of the x-ray diffraction

method. An agreement in the pressures calculated

from the volumes of NaCl and MgO would not

only verify the calculated P—V relationship for

NaCl, but would also indicate the validity of the

internal standard method for the determination of

pressure by means of NaCl and the diamond-
anvil type x-ray camera.

6.1. Techniques

The measurements reported in this paper were
made by means of the diamond-anvil x-ray diffrac-

tion camera described by Bassett et al (1967). In

this device, an intimate mixture of powders ofMgO
(ground synthetic single crystal prepared by J.

Swica, Ritter-Pfalder Co.) and NaCl (Baker analyti-

cal reagent) having particle sizes less than 1 fxm

was placed between two flat, parallel faces of

diamond anvils. One anvil face is approximately

0.3 mm in diameter, and the other is 1.8 mm in

diameter. The diamond anvils mounted on the ends

of pistons are driven together by a simple screw

device. An x-ray beam of filtered molybdenum
radiation, 0.07 mm in diameter, is directed through

one of the diamonds along the axis of compression

to impinge upon the portion of the sample at the

center of the area while the sample is under pres-

sure. The x-rays diffracted by the sample emerge
through the other diamond and are recorded on a

cylindrical film, of which the center of curvature

coincides exactly with the sample as in the case of

Debye-Scherrer geometry. The x-ray diffraction
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Table 4. The results of simultaneous determina-
tions of the effect of pressure on the molar volume
o/MgO and NaCl at 25 °C

Pueo indicates the pressure values obtained on the basis of
the P-V relation for MgO calculated from the Mumaghan equa-
tion using Bto=1599 kbar and Bt'„=4.52 (Anderson and
Andreatch, 1966). PNaci indicates the pressure values obtained
on the basis of the P-V relation for NaCl according to Model V.

The precision for the determination of V/Vo is ±0.3 percent.

Uncertainty in pressure represents that resulting from the

uncertainty in VIVo.

Run No.
MgO NaCl

PMgO
~ '^NaCI

VIVc ^MgO VIVo

kbar kbar

9 UP 23 0.983 28± 5 0.911 28±1 0±5
TUP 28 .940 115± 6 .764 122 ±2 -7±6
9 UP 20 .928 142 ± 7 .735 154 ±3 -12±8
9 UP 22 .907 196 ± 7 .700 199±3 -3±8
9 UP 18 .902 211± 8 .692 211±3 0±9
12 UP 3 .895 232 ± 8 .679 232 ±3 0±9
9 UP 19 .888 251 ± 8 .671 246±4 5±9
9 UP 21 .887 254 ± 8 .676 238±4 16±9
12 UPS .884 265 ± 9 .662 262 ±4 3±10
12 UP 4 .883 266 ± 9 .664 259±4 7±10

Root Mean Square ±7.4

In the present investigation, the part of the diffrac-

tion pattern produced by the portion of the sample
at maximum pressure was used. In practice, the
outermost part of each broadened line, i.e., the part
of the line with the highest 26 hence the smallest
c?-value, was measured and then corrected for the
line breadth due to causes other than pressure
gradient. This correction consists of subtracting the
1-bar line breadth from the outer-edge to outer-edge
distance. Lattice parameters calculated from meas-
urements made in this way show less scatter than
those based on measurements made from center
to center distances of the broadened lines. It is

believed that shearing of the sample within a high
pressure gradient environment produces preferred
orientation within the sample leading to a scatter

of data.

A standard Norelco Comparator was used to

measure the distance between the diffraction lines.

An analysis of the measurements shows that the
comparator yields results with a precision of 25 /Ltm.

Therefore, a precision of ±0.1 percent has been
assigned to the lattice parameter determinations
based on the precision of the comparator technique
and on the agreement between the values derived
from the (200) and (220) diffraction lines. The re-

sulting precision in V/Vo is thus ±0.3 percent. The
results of the present determinations are tabulated
in table 4.

6.2. Results of the Simultaneous Measure-
ments of the Volumes of NaCl and MgO

patterns consist of the lines produced by NaCl and
MgO both compressed together in the diamond-
anvil cell. In addition, the film is marked by the

diffraction pattern of a piece of polycrystaUine NaCl
mounted on the outside surface for the diamond
facing the film. This provides a means of deter-

mining sample-to-film distance and of correcting

for changes in film and instrument dimensions.
These corrections are small compared with the

scatter of data points.

The diamond-anvil press operates on the Bridg-

man anvil principle. As a result, pressure in the

sample ranges from 1 bar at the edge to a maximum
near the center of the anvil faces. The material at

the center of the anvU area constitutes the most
desirable sample for lattice parameter determina-

tions by x-ray diffraction for three reasons. First,

the pressure is highest there. Second, the pressure

gradient is smallest, allowing a minimum of pres-

sure range in the x-ray beam. Third, the shearing

is least where the pressure gradient is smallest. One
way to take advantage of these features of the

Bridgman anvil geometry is to direct a narrow x-ray

beam through the sample center normal to the

anvil faces. In practice, some degree of hne broaden-

ing due to pressure gradient within the x-ray beam
is inevitable.

A direct comparison between the effect of pres-

sure on the volume of NaCl and of MgO by means
of the x-ray diffraction method using an intimate

mixture of the powdered sample of NaCl and MgO
should provide a test for (1) the reliability of the

calculated P—V relation for NaCl, and (2) the

adequacy of the NaCl internal standard method
for pressure determinations.

The P—V relation for MgO calculated from the

Murnaghan equation, eq (2), using the two param-

eters Bto= 1599 kbar and Bt^= 4.52 determined by

Anderson and Andreatch (1966) for single-crystal

MgO at 23 °C was adopted for the present study.

The single-crystal values were chosen over the

values for polycrystaUine samples in view of the

fact that the elastic properties of polycrystaUine

MgO may be sensitive to the chemical additives

used for sample preparation as pointed out by
Schreiber and Anderson (1968). in comparison with

the P-V relation calculated with the Murnaghan
equation, the Rose equation, eq (3), with

BtoBtQ=— Bt'o

yields pressure values about 2 percent smaUer, and
the Birch equation, eq (4), yields pressure values

between the Murnaghan and Rose equations. Since
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Figure 4. Comparison of pressures calculated from Model V
for NaCl with those from the Murnaghan equation for MgO
using the values ofVIWo obtained by simultaneous determina-
tions of the volumes ofNad and MgO.

Open circles are experimental points obtained in this study, and the solid circles
are the data obtained by McWhan (1966). Uncertainty in Model V is shown by + 8 and
— S. The 22 °C isotherm calculated for NaCl from shock-wave data by Fritz et al. (this

volume)— curves "Q" and "i"— has been added for completeness but is not discussed
in the text.

the uncertainty in the determination of V/Vo leads
to uncertainties ranging from ±5 kbar at V/Vo— l to

±9 kbar at VIVo = 0.87 (-310 kbar), there is no
compelling reason to choose one of these equations
over another.

The values for Pmbo Usted in table 4 were ob-

tained from the experimental values for V/Vo using
the P—V relation for MgO. Thus, Pmso is the pres-

sure to which the MgO grains in the NaCl-MgO
mixture are subjected. Similarly, the values for

^Naci were obtained from the V/Vq values using the
P-V relation for NaCl according to Model V.
Figure 4 compares the values for these two pres-

sures. The results obtained by McWhan (1967) are
also shown in figure 4. The mean difference be-

tween /*Naci and Pivigo has been calculated to be
—0.3 kbar from the data ofMcWhan and the present
study, and the root mean square difference is ±6.4
kbar. In view of the uncertainty in the pressure
values resulting from that in the V/Vo measurements,
it is concluded that /^Naci is consistent with Pmso-

Reliability of the internal standard method for

the determination of pressure in a high-pressure
x-ray diffraction device has been questioned, since

heterogeneous pressure distribution must exist in

a mechanical mixture of two or more materials

having different bulk moduli and other properties.

If such a heterogeneous pressure distribution exists

in the sample, the pressure indicated by the NaCl
volume should not be the same' as the pressure ex-

erted on a material mixed with NaCl. Since MgO has
about seven times as large zero pressure bulk modu-
lus as NaCl and has a far greater shear strength

than NaCl, a comparison of the pressure values
obtained from the NaCl volume (PNaci) with those

P-Pi(kbar)

Pi(kbar)

Figure 5. Comparison of pressures calculatedfor Model V with
those from the volumetric determinations by Bridgman (1945),

and with those for three fixed points on the absolute pressure
scale.

The pressures corresponding to the phase transformations in Bi and Ba are Usted
in table 5. The values of Pi (pressure calculated from VIVo on the basis of Model V for

NaCl) were calculated from the NaCl volumes at the pressure of each phase trans-

formation measured by Jeffery et al. (1967). The cross-hatched portion of the error
flags indicates the uncertainty in the determination of the fixed points, while the clear
portion indicates the uncertainty due to the uncertainty in the measurement of VlVo
for NaCl. Curve "Q" has been added to show the 22 °C isotherm for NaCl calculated
from Hugoniot data (Fritz et al., this volume) which has become available since the
writing of the text.

from the MgO volume {Pu&o) should provide a test

for the internal standard method for pressure deter-

mination. As shown in table 4, the root mean square
value for (PMgo~^Naci) is ±7.4 kbar, and is well

within the experimental uncertainty in the pressure

values obtained from the MgO volume. Therefore,

the internal standard method appears to be valid.

7. Comparison Between the NaCl
Pressure Scale and the Fixed Points

Jeffery et al. (1966) have determined the molar
volume of NaCl at pressures corresponding to

several of the phase transformations which have
been used as fixed points in the 0 to 100 kbar pres-

sure range. These data permit a direct comparison
between Model V NaCl scale and the fixed points.

Table 5 shows the mean value of VjVo obtained from
the experiments with increasing and decreasing

pressure, the corresponding pressure from Model
V, the literature value of the pressure at the phase
transformation, and differences in the two pressures.

The differences are also graphically shown in

figure 5. It can be seen that the difference is small

compared to experimental uncertainties in the

case of Bi I-II and Ba I-II transformations, and is

comparable with the experimental uncertainty in

the case of Bi III-V. Figure 5 also shows the volu-

metric data obtained by Bridgman (1945) which
are in agreement with Model V within experi-

mental uncertainty.
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In the case of Bi lU V, the discrepancy between
the pressure value obtained by Haygarth et al. (1968)

by means of the direct single-stage piston-cylinder

method and that calculated from the V/Vq data of

Jeffery et al. (1966) using the Model V F-F relation

for NaCl may be attributed to the following causes:

(1) The Model \ P-V relation for NaCl may be in

error. However, this is not likely because Model V
is in good agreement with the experimental data of

Bridgman (1945) up to 100 kbar, and is consistent

with the Bto value obtained by the high-precision

ultrasonic method; (2) The V/Vq for NaCl at the

phase transformation pressures determined by
Jeffery et al. (1966) may be in error because of a

heterogeneous pressure distribution in a mixture of

NaCl and sample. Because of such an inhomogeniety

in pressure distribution, the errors in the measure-
ments may be non-Gaussian, and hence the arith-

metic mean of the determinations for V/Vo of NaCl
made during increasing and decreasing pressure

might not represent a true value at the transforma-

tion; (3) The pressure value determined by Hay-
garth et al. (1968) may be in error. This may be
tested if the compression of NaCl was determined
up to 80 kbar at 25 °C by means of the same experi-

mental apparatus as used for their study of Bi III-V.

If the compression values for NaCl thus obtained

agree with those of Bridgman (1945), which is in

turn in agreement with Model V of this study, the

discrepancy between the pressure values obtained

by Haygarth et al. and by the present study for Bi

III-V could be due to the cause (2). On the other

hand, if the compression values for NaCl are dif-

ferent from Bridgman's in such a way that the value

of Haygarth et al. becomes in agreement with Jeffery

et al., then the P-V relation determined by Bridg-

man and that calculated in this study would be in

error. Future studies would hopefully dissolve the

discrepancy between the existing results.

8. Summary and Conclusions

On the basis of the discussion presented above,

the following conclusions may be made:

(1) The thermal and vibrational formulations

of the Hildebrand and Mie-Griineisen approxima-

tions yield the pressure values to within ± 1 percent

for a given VIVo value for NaCl up to SOO kbar at

25 °C. Hence in the harmonic approximation, the

P-V relations are insensitive to the specific form
chosen for the temperature dependent part of the

vibrational energy.

(2) Effect on the pressure values of the anhar-

monic part of the internal energy is probably small,

since the specific form chosen for the potential

energy yields the correct value for yo. Yet, complete

internal consistency is not found as shown by the

failure of the theory to yield correct values for A and

Table 5. Comparison between the pressure values

calculated from the P—V relation for NaCl
using the V/Vo values obtained by Jeffery et al.

(1966) for the phase transformations m Bi and^a

Phase
transfor-

mation

1 IVqPI VIVav_.i r i y a

^NaCl
ivioaei V

P
Direct

methods

p P
' 'NaCl

kbar kbar kbar

Bi i-n 0.917 ±0.002 25.4 ±0.8 2 25.5 + 0.1 0.1

Ba i-ii 0.855 + 0.002 54.4+1.1 2 55.0±0.5 0.6

Bi ni-v 0.821 ±0.002 75.5±1.4 "77.5 ±1.0 2.0

= 78.2 9 7

' Jeffery et al. (1966).
2 Heydemann (1967).

' Haygarth et al. (1967).
"* Haygarth et al. (1968), extrapolated from high temperature.
^ Haygarth et al. (1968), 22 "C direct measurement.

BtQ. However, the effect of these terms on the

calculated pressure is small.

(3) The close agreement of the P-V relations

obtained in this study with Decker's (1968) revisea

calculation suggests that the effect of the second
nearest neighbor repulsion is small.

(4) The calculated pressures are insensitive

to the values of the various parameters used with

an exception of Bto. Thus a pressure scale based
on the relations presented in this study wiU not

require significant revision as more precise values

for the parameters become available.

(5) The estimated precision of ±2.5 percent

in the calculated pressure is of the same order as

the uncertainty in pressure resulting from the

uncertainty in the measured value of VIVo for NaCl.

(6) The P-V relation based on Models III-VI
is in agreement with the fixed points on the absolute

pressure scale; with Bridgman's volumetric studies

on NaCl to 100 kbar; with the results derived from
shock-wave measurements to 260 kbar; and with

the P—V relation for MgO which are based on the

Murnaghan, Rose, or Birch equations with the

parameters determined by means of ultrasonic

methods.

(7) The internal standard method for deter-

mining pressure using NaCl appears to be vaUd as

shown by the consistency of the pressure values

obtained from the compression VIVo values for

NaCl and MgO.

(8) A NaCl pressure scale based on Model V
has been adopted for the experimental studies at

the University of Rochester. Model V (the vibra-

tional Hildebrand equation) was selected because

the vibrational formulation may be expected to be

superior to the thermal formulation, and because,

in practice, the Hildebrand equation is easier for

calculation. The relation can be conveniently
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expressed as:

P= 8Ax'>' - 106.2a;-'»'3 - 15.95x-^ - 2Mx-''i^

+ x--'l- • exp (14.050 -9.292x'/3) kbar at 25 °C.

On this pressure scale, the B1-B2 phase trans-

formation in NaCl reported by Bassett et al. (1968)

occurs at a pressure of

301 ±4 kbar (F/Fo= 0.643 ± 0.002)

with an additional uncertainty of ±8 kbar due to the

uncertainty in the pressure scale.

(9) Significant improvement in the precision of

the calculated P-V relation will require improve-

ment in the values of Bto and A. Although the P-V
relation is insensitive to the latter, the large un-

certainty in this parameter yields a large uncertainty

in the pressure. However, a reduction of this un-

certainty may be difficult since A depends on the

difference between ds and Bs'

.
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The Hugoniot Ecfuation of State of Sodium Chloride in the Sodium Chloride
Structure *

J. N. Fritz, S. P. Marsh, W. J. Carter, and R. G. McQueen

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

The Hugoniot equation of state of NaCl has been obtained by measuring the shock velocity through

NaCl on copper and 2024 aluminum base plates. Shock velocities through the base plates and standard

impedance-matching were used to obtain the Hugoniot curves for both single-crystal (in various orienta-

tions) and pressed-powder samples. The smooth behavior of the resulting shock locus up to 230 kbar
indicates that NaCl exists in the sodium chloride structure up to this pressure. In the shock-particle

velocity plane the best linear fit to the data reported here is Us (km/s)= (3.528±.012) + (1.343±.009)up.

A quadratic fit, which gives a large weight to the measured bulk sound speed in NaCl, is Us=3.403
+ 1.5422 Up — 0.07345 Isotherms at 293 K, using different forms for the Griineisen parameter and

a simple Debye model for the specific heat, are calculated from the Hugoniots and are presented here.

They should prove useful when NaCl is used as an internal standard in high-pressure x-ray devices.

1. Introduction

Since Jamieson [1] ^ first used NaCl as an internal

pressure standard in his high-pressure x-ray appa-

ratus, it has been a serious candidate for a pressure

standard in high-pressure x-ray work. Decker [2]

has advocated the use of NaCl as a standard. His
proposal was based on a Born-Mayer equation of

state. Parameters were fixed by the initial density

and sound speed of NaCl at zero pressure and he
achieved a prediction of the curvature of the P-V
isotherm, which can be converted in terms of vari-

ables familiar to workers in the dynamic-pressure
field to a prediction of the slope of the shock velocity

versus particle velocity Hugoniot. His results were
supported by the then existing shock-wave data. An
increase of 1.3 percent in the value of the sound
speed he used in his work would bring his isotherm
into agreement with the result of the present report.

Objections have been raised [3, 4, 5] to using NaCl
as a standard because of the possibility of the transi-

tion to the CsCl structure at a pressure as low as

20 kbar. Such a low-pressure transition would un-

acceptably complicate the use of NaCl as a continu-

ous pressure standard. Others [6, 7, 8, 9] have found
no evidence for a transition as low in pressure' as

this. From the work of Jamieson [9, 10] on the solu-

tion salts, NaxKi-xCl, one can conclude that the

Bl to B2 transition must be considerably above 130
kbar in the pure end member, NaCl. Finally, Bassett

et al. [11] have found and reversed the Bl to B2
transition in NaCl at approximately 300 kbar at

room temperature. It would seem that whatever the

remaining phenomena are at 20 kbar, it does not

involve the Bl to B2 transition, and that NaCl will

remain in the Bl structure to high and useful

pressures.

*Work done under the auspices of the U.S. Atomic Energy Commission.
' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization
of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

Perez-Albuerne and Drickamer [8] have compared
NaCl by x-ray techniques with Agand Mo. If the com-
pression curves of Ag and Mo are known, this would
determine a NaCl isotherm. Using older shock
wave data [12], results were obtained which, because
of the individual scatter in a data point, were used
only to verify the calculation of an isotherm from
a particular form of a Born-Mayer treatment.

Their calculated isotherm is in agreement with

the isotherm we report as well as that of Bridgman
[6].

Direct shock-particle velocity data on NaCl
could not be obtained because of the impracticaUty

of fabricating the assembhes required for our shock-

wave techniques. Hence we have employed the

shock-wave impedance match technique using

2024 aluminum base plates as the standard. In

this way, NaCl becomes a secondary standard,

dependent on the Hugoniot and extended equation

of state of 2024 aluminum. If the 2024 aluminum
Hugoniot is accepted as known, a shock-locus for

NaCl is obtained that is felt to be accurate to

1 percent in pressure. Subsequent modifications,

if any, of the primary standard may be easily trans-

lated to a new Hugoniot locus for NaCl. As always,

the largest uncertainty in an isothermal curve
derived from shock-wave data is related to the

choice of the Griineisen gamma used to reduce the

Hugoniot to an isotherm. Several functions ofvolume
have been used for y{V) and the resultant isotherms
reported.

2. Experimental Methods and Results

The impedance matching technique used for

obtaining the shock locus for NaCl has already been
adequately described [12]. Single crystals in the

(100), (110), and (111) orientations as well as some
pressed powder samples were shock-loaded on base
plates of 2024 aluminum, copper, and 921-T alumi-

num. The data taken on 921-T aluminum base
plates have been discarded for reasons described
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Table 1. NaCl Hugoniot data in the Bl phase

Us Us Std. Up p P

kmjs kmjs km/s kbar glcm^

100 orientation

4.03 5.67 0.33 29 2.358

4.10 5.75 0.40 35 2.397

4.12 5.79 0.44 39 2.423

4.31 5.94 0.58 54 2.502

4.36 5.96 0.60 57 2.510

4.59 6.17 0.79 78 2.613

4.59 6.19 0.81 80 2.625

4.95 6.45 1.03 111 2.735
A on
4.89 6.45 1.04 110 2.748

4.99 4.96* 1.07 116 2.755

A f\f\
4.99 6.50 1.09 117 2.766
A nn
4.99 6.54 1.12 121 2.789

5.01 6.55 1.13 122 2.793

5.51 6.92 1.44 172 2.932

5.43 6.91 1.44 170 2.949

5.47 6.92 1.45 171 2.942

5.47 6.92 1.45 171 2.941

5.69 5.41* 1.53 184 2.977

5.67 7.07 1.57 193 2.992

5.84 5.58* 1.70 215 3.052

7.36 1.82 234 3.121

5.96 7.37 1.84 237 3.129

6.12 7.47 1.92 254 3.151

6.12 7.47 1.92 254 3.152

O.lc) 7.51 1.95 259 3.166
6.15 7.51 1.95 259 3.167

6.13 7.52 1.96 260 3.185

6.20 7.54 1.97 264 3.170

111 Orientation

4.08 5.75 0.40 35 2.399

4.32 5.96 0.60 56 2.515

4.31 6.00 0.63 59 2.538

4.59 6.19 0.81 80 2.626

4.59 6.20 0.82 81 2.632

4.96 6.44 1.03 110 2.729

4.98 4.96* 1.07 115 2.757

5.01 6.50 1.08 117 2.760

4.99 6.50 1.08 117 2.765

4.99 6.53 1.11 119 2.780

5.03 6.55 1.13 123 2.787

5.02 6.56 1.13 123 2.795

5.45 6.92 1.45 171 2.947

5.47 6.92 1.45 171 2.944

5.57 5.41* 1.53 184 2.981

*Copper base plates. The rest are 2024 aluminum.
**This sample had a (110) orientation.

Up (Km/sec)

Figure !. The shock velocity-particle velocity Hugoniot o/NaCl.
The elastic wave velocities were obtained from data in reference (14). The larger

symbols indicate multiple data points.

elsewhere [13J. In this report only those data whose
final shocked state is believed to remain in the Bl
structure are reported. The majority of the data
were taken on 2024 aluminum with a few points
taken on copper base plates as a consistency check.
The data necessary for impedance calculations for
the primary standards are:

2024 Aluminum: po= 2.785 g/cm^,

«s= 5.328

+ I.338ttp km/s
{dEldP)v =0.19 cm3/g

Copper: po= 8.93 g/cm^,

«s= 3.940

+ 1.489upkm/s I
0£/aP), =0.057 cm3/g I

A constant {dEldP)v was used to generate the re-

lease isentropes necessary for the impedance match
calculations. The data are reported in table 1 and
illustrated in figure 1. In addition to the tabulated

data, data points showing the onset of the Bl to B2
(presumably) phase transition are included in the

'

figure for both (100) and (111) orientations.
'

IS

Both linear and quadratic terms in Up were used •

to fit these data. In the absence of other information,
j

there would be no point in going to an order higher

than linear to fit the data; however, consideration

must be given to the measured sound speeds in

NaCl. In fact, the Co coefficient in our quadratic

fit was forced to agree with the sound speed ob-
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tained from Haussuhl's [14] measurement of the

elastic constants of single-crystal NaCl. The least

squares analysis of the data gives r.m.s. deviation

of Af/,s = ± 0.056 km/s or less over the range of the

data. Within the range of the data, the quadratic

and linear fits agree to within this Aus except for

the lowest four data points. The low shock pressures

for these four points ( < 40 kbar) were produced by
relatively complicated driver arrangements that

depend on impedance mismatches. It is not im-

possible that overtaking waves could influence these

measurements. The shock velocities at these pres-

sures are notably below some of the single crystal

longitudinal velocities. Premature closure of flash

gaps could give rise to the sort of discrepancy we
see here, but since a low-pressure cannon shot

has indicated that the Hugoniot elastic limit of

NaCl is only about 2/3 of a kilobar, there is not

sufficient motion imparted to a shim to close any
flash gaps used here. Gap closure corrections are

more critical in this pressure regime and conceivably

could cause errors in shock wave velocity, even of

the size to explain these low pressure shots. In

any event, forcing the Hugoniot through the sound
speed prevents these points from appreciably

influencing the fit to the data. The large bulk of the

data at higher pressure with its linearity fixes the

next two terms of the series. Some evidence that

these lower points influence the slope in the right

direction is afforded by Bartels and Schuele's

[15] measurement of (afis/SP) r= 5.27.

From the thermodynamic identities

So=[l+{dBsldP)s]l^
and

{dBs/dP}s= {dBsldP)T+y{TIBs){dBsldT)p

and Haussuhl's [14] value for {dBsldT)p of

-0.000117 Mbar/°K, we obtain 5o= 1.513. This is in

satisfactory agreement with our fitted slope of 1.542.

Although a linear fit represents the shock-wave
data adequately, emphasis should be placed on the

ultrasonic measurements in the low pressure region.

The quadratic fit

«s= 3.403+ 1.5422a,, -0.07345u| (km/s) (1)

represents the ultrasonic data in the low pressure
rfegion and the shock-wave data in the high-pressure
region. The number of significant figures quoted in

the above equation gives the exact form of the
Hugoniot used in a subsequent reduction to an
isotherm. The r.m.s. spread in Ug about the fitted

values is ±0.05 km/s. Our data for NaCl in the Bl
phase are in agreement with the data of Larson, et aL

[3], to within the quoted error. Unpublished data of
Hauver and Melani [16] are in agreement with ours
in the vicinity of Up=\ km/s and are 0.07 km/s
higher than ours near Up= 2 km/s. However, their

data were based on the old 2024 aluminum standard.

Table 2. Thermodynamic parameters for NaCl

Quantity Value Reference

M
N
ao

^ v\aT)p
Bs

58.443 g/mole

6.02252X1023

5.6393 A at 22 °C

1.195X10 •»/K at 20 °C

0.2505 Mbar at 22 °C

12.05 cal/mole-Kat 20 °C

[17]

[19]

[19]

[14]

[20, 21]

Derived Values at 293 K

p= 2.1645 g/cms

= 0.2507 Mbar

Cp = 0.8627xl0' ergs/g-K

Co= 3.403 X10« cm/s

-y = ^c2/C^= 1.6044

y;8r= 0.0562

Ci;= 0.8168X10' ergs/g-K

Br =0.2374 Mbar
^7-= 4.213 Mbar-'

OP/ar), =0.0284 kbar/K

,.= 0.2880 cm''

ink= 0.8535 X 10' ergs/g -K
C,/3raA:= 0.9570

6»D/r= 0.9420

6lo= 276 K

Revision of the necessary impedance match calcu-

lations will bring the results into better agreement.

3. Reduction of the Hugoniot to a
293 K Isotherm

Details of this calculation have been discussed

earlier [13]. The auxiliary information needed for

this reduction is given in table 2. Original references

should be consulted for the accuracy of these num-
bers. The table gives the exact input used in our

calculations. The particular numerical code used
integrates the equation

ydV (V,-
dl H— — 1 H—f} 1

V)dPH + PHdV
2Cv (2)

for the temperature along the Hugoniot. A Debye
expression,

ET=inkTD,{e{V)IT) (3)

Jo e^ —

1

y^-d\n didhi V

(4)

(5)
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Table 3. The (dEldP)v constant, 293 °K NaCl isotherm and its antecedent Hugoniot

p Hugoniot

Ph
Th Isotherm

P

a/ao r Hugoniot

Ph

TI H Isotherm

p

alao

kbar K
125 2.793 618 2.828 .7654 .9147

glcm^
130 2.810 637 2.847

au zyo Z. 104*0 1 noon .7603 .9127

5 2.206 302 2.208 .9803 .9934
135 2.827 657 2.865 .7555 .9108

10 2.245 311 2.248 .9629 .9875
140 2.843 678 2.883

15 2.281 319 2.286 .9469 .9820
145 2.859 699 2.901 .7461 .9070

20 2.314 328 2.321 .9326 .9770
150 2.875 721 2.918 .7418 .9052

zo OOO Z.OOO ,y I AO
155 2.891 743 2.935 .7375 .9035

30 2.377 345 2.386 .9072 .9680
160 2.906 765 2.952 .7332 .9017

35 2.406 355 2.417 .8955 .9639 165 9 091 788 790n. t Z7W

40 2.434 365 2.446 .youi
170 2.936 811 2.986 .7249 .8983

45 2.461 375 2.473 .yooo
175 2.951 835 3.002 .7210 .8967

t^nou OOO 9 '^nnz.ouu 180 2.965 859 3.019 .7170 .8950

55 2.511 398 2.526 .8569 .9498 185 2.980 884 3.035 .7132 .8934

60 2.535 410 2.552 .8482 .9466 190 2.994 909 8010

65 2.558 423 195 3.008 934 3.067 .7057 .8903

70 2.581 436 Z.oUO .ooZo .y4U/

200 3.022 960 3.082 .7023 .8889

z.oUZ 4oU 205 3.035 986 3.098 .6987 .8873

80 2.624 464 2.645 .8183 .9354 210 3.049 1013 3.113 .6953 .8859

85 2.644 479 Z.OOY O 1 1 ^.olio 215 3.062 1040 ^ 190 6018

yu Z.0D4 AQA 220 3.075 1067 3.144 .6885 .8830

Z.0o4 OlU 9 71 n 7QQ7 Q97ft.VZ / O

225 3.089 1094 3.159 .6852 881 fi

lUU z. /Uo oz /
9 7Q1Z. /ol . 1 yZD 09 ^d. 230 3.102 1123 3.174 .6819 .8802

105 2.722 544 2.751 .7868 .9232 235 3.114 1151 3.189 .6787 .8788

110 2.740 562 2.771 .7811 .9210 240 3.127 1180 3.204 .6756 .8774

115 2.758 580 2.790 .7758 .9189 245 3.140 1209 3.218 .6726 .8762

120 2.776 599 2.809 .7706 .9168 250 3.152 1238 3.233 .6695 .8748

is used for the thermal part of the energy.

With a y that depends only on volume, the appro-

priate fractional thermal energy and corresponding
thermal pressure may be subtracted from the

Hugoniot to yield the desired isotherm. The choice

of Debye theta at zero pressure and 293 K was
dictated by the value of Cv at these conditions, since

this is the important quantity in the integration of

(2). Since the numerical value for E{P=0, 7=273
K)-E(0, 0) predicted by this model (+1.76xl0«
ergs/g) agrees with the value obtained by fitting

C/.(r)(A£= 1.77X109, JANAF Tables [21]) we
have some evidence that we have an overall fit for

Cv{T) at the lower T region as well.

Probably the largest uncertainty in transforming

a Hugoniot to an isotherm comes from ignorance

about the way the Gruneisen gamma behaves at

high pressures and temperatures. In the few cases

where its high-pressure behavior has been meas-

ured, the assumption that {dEldP)v is constant has

been adequate to represent the data within the

experimental precision, but other forms for y{V)

are not excluded. We have used this assumption to

calculate our "base room temperature isotherm."

The results, finely spaced for more convenient

usage, are given in table 3.

It is of interest to see what effect varying the pa-

rameters that went into the calculation will have on
the calculated isotherm. The equation

f-2 1 d In {d[PK{V)V''']ldV} (6)

3 2 d\nV

is a generalization of the Slater, Dugdale-

MacDonald, and Free Volume relations between
y{V) and Pk{V) which has been used by Grover

et al. [22] in their comparison of static and dynamic
high-pressure data on the alkali metals. Values of

f of 0, 1, and 2 correspond to the above theories, but

the value of t can be chosen to give the proper

thermodynamic value of y at the Hugoniot center-

ing point. Further, if the expression for y{V) ob-

tained from differences between the Hugoniot curve

and the zero Kelvin curve is equated with the above
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expression for y, the Hugoniot centering point is

taken to be at zero pressure and temperature, and
a linear Ug-Up Hugoniot is used, an integro-

dififerential equation for Pk{V) is obtained. When
solved this gives not only Pk{V), but also a 7(17),
where 17= 1 — poV, that parametrically depends only

on t and the slope, 5, of the Ug-Up Hugoniot. At zerc

compression, this reduces to the relation

7o= 2s-(f+ 2)/3 (7)

between yo, t, and s. A linear Ug-Up Hugoniot for

NaCl that passes through most of the shock-wave
data and the measured sound speed has s= 1.429.

With the correct yo, (7) yields 1.761. The y(i7)

obtained in this fashion will not significantly differ

from one where the precise experimental Hugoniot
is used as input and where the difference between
the temperature of the Hugoniot centering point and
zero temperature is taken into account. The result-

ing y(i7), as well as others, are shown in figure 2.

This y(T7) may be accurately represented by a

polynominal in 7) for 0 < tj < 0.5.

y= 1.6044-0.9955 rj+ 1.4961 rj^- 1.9284 rj^ (8)

This representation, along with the more precise
Hugoniot fit, was then used in the numerical code
that calculates the isotherm. The resultant curve,
labelled (1), is shown in figure 3. An ionic solid may
not be the best place to use such a theory for y(T7),

but it does offer an alternate 7(17) behavior to com-
pare with the base isotherm.

Another y(i7) behavior is offered by Decker [2].

A term linear in the change in lattice parameter was

added to yo to give the best fit to high-temperature

(i.e., a slight increase in volume) thermal expansion

data. This should give the right initial slope of y(T7)

but as Decker says, it is uncertain whether this

volume dependence remains accurate to the large

volume changes obtained in the shock wave data.

This y(T7) is given by

y=1.6044 + 2.55 ((l-r,)'/3-i). (9)

Decker actually used the value yo=1.59. A poly-

1.8

1.6

1.4

1.2

1.0

0.8

1 1

V GRUNEISEN

1 1

GAMMAS
\. FOR NqCI

1
1

(4)\ \.

1 1

^
0.0 0.1 0.2 0.3 0.4 0.5

V

Figure 2. The variousfunctions usedfor the Gruneisen parameter.

-0.04

VARIOUS NaCI

ISOTHERMS

100 200 300

P(Kb)

Figure 3. Pressure variations in the base isotherm due to various changes in the

input data.
In this figure we show the fractional change in pressure from the base isotherm,

SPIP = P(new parameters)/P (base)- I

,

at a given density. The actual ab^issa is the pressure of the base isotherm at this density.
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Figure 4. NaCl isotherms.

The solid line shows the isotherm calculated from the quadratic fit to the Hugoniot in the Ug—Us plane. The
isotherm from the linear fit is parallel to Decker's isotherm and roughly maintains a constant pressure offset from
Decker's isotherm from 200 to 320 kbar.

nominal fit to (9) was used to calculate isotherm (2)

in figure 3.

Isotherms (3) and (4) show the effect of varying

7o by plus and minus 10%. For these isotherms

(dEldP)v was kept constant. Isotherms (5) and (6)

show the effect of scaling Cy by plus and minus
10%. This was done by changing the value of 3nk in

the calculations. Isotherms (7) and (8) were ob-

tained by adding and subtracting, respectively, 0.05

km/s to Co in the input Hugoniot.

4. Comparison With Other Isothermal
Data and Discussion

The "base isotherm" is shown in figure 4 along

with Decker's, that calculated by Perez-Albuerne

and Drickamer, and Bridgman's data. The agree-

ment between our isotherm and that of Perez-

Albuerne and Drickamer's is well within the

experimental error of both methods. The latter iso-

therm is slightly lower (1 to 2 kbar) than ours in the

pressure range from 40 to 100 kbar. Bridgman's
isotherm is stiU lower by again this pressure dif-

ference in this region. The lower portion of our iso-

therm is chiefly determined by using Haussiihl's

sound speed. The initial slope of the Ug— Up Hugo-
niot could be changed from 1.542 to 1.512 to agree

with Bartels and Schuele, but this would decrease
the computed isotherm by only V4 kbar at 40 kbar.

At 60 kbar, the shock-wave measurements are

slightly above the fit used. Above this, where the

shock-wave measurements should be relatively free

of elastic-plastic flow effects because of the low
Hugoniot elastic limit of NaCl, the fit and the data

are consistent. Decker's isotherm falls below ours,

with the spread in pressure being about 5 kbar at

100 kbar, 12 kbar at 200 kbar, and remaining
approximately the same thereafter. As he noted,

Decker's isotherm is most sensitive to the value of

the bulk modulus used. A choice of bulk modulus
equivalent to the sound speed we have used would
bring the two isotherms into essential agreement.

It is perhaps worthwhile to emphasize at this point

that at and above 80 kbar, and to a lesser extent at

60 kbar, our isotherm does not particularly depend
on the precise value of the bulk modulus used, be-

cause the shock-wave data then determines the

Hugoniot used to calculate the isotherms.

Jeffrey et al. [23] have given the pressures of

various phase transitions by determining a/ao

of NaCl used as an internal standard. Using their

values of a/ao and Decker's pressure scale they

obtain 24.8 ±0.8 kbar for the Bi l-ll transition,

53.3 ±1.2 kbar for the Ba l-ll transition, and
73.8 ±1.3 kbar for the Bi III-V transition. Using
our isotherm and their a/ao values, these numbers
become 25.8 ±8, 56.3 ±1.2, and 78.2 ±1.3. Bridg-

man's volume scale as reported by Jeffrey et al.,

has 25.4, 58.8, and 88 kbar for these transitions.

McWhan [24] also measured the Bi III-V transition

with NaCl as an internal standard. He took his

values on the increasing pressure cycle, whereas
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Jeffrey et al. averaged increasing and decreasing

pressure readings. McWhan's F/Fo 0.816 ± .006

corresponds to 81.7 ±4.5 kbar on our isotherm.

The Birch-Murnaghan equation and the input

parameters as used by McWhan for his pressure

value is consistent with our isotherm up to a pres-

sure of 100 kbar. Beyond that, the Birch-Murnaghan
value for the pressure increases more rapidly than

our isotherm by 6 kbar at 150 kbar and 13 kbar at

200 kbar.

The highest measured pressure on our Hugoniot
for the Bl phase is 264 kbar. The offset down to the

isotherm is about 16 kbar at this volume. Our iso-

therm above 250 kbar is then a consequence of an
extrapolation of the Hugoniot data. The downward
curvature of the quadratic Ug — Up fit is a relic of

trying to fit the ultrasonic data and shock data

smoothly together in the lower pressure region and
probably should not be there. Both the data alone

and calculations of a Ug — iLp curve from a Born-

Mayer form for the interaction potential indicate

a linear behavior in this region. Accordingly we
have Listed in table 4 the isotherm above 200 kbar
that obtains from the best linear fit to our data.

In this calculation we have again used constant

{dEldP)v. From 200 to 230 kbar this is essentially

identical to the isotherm resulting from the quadratic

fit. Above 230 kbar it becomes stififer.

A clear indication of a phase transition is ex-

hibited by the higher pressure data points plotted

in figure 1. Although (111) and (100) oriented

crystals have indistinguishable Hugoniots at lower
pressures, they clearly separate in the region where
the phase transition occurs. Since a uniaxial com-
pression of 50 percent in the (111) direction produces
the B2 structure from the Bl structure, one can
expect that a shock wave in this direction will see a

lower energy barrier in the way of this transition.

Indeed, the (111) data are lower. If a shock wave is

not complicated by relaxation effects and deviatoric

stresses, a phase transition with a sufficient AV
and an appropriate slope in the P-T plane appears
as a horizontal plateau in the Ug-Up plane. This is

because the flash gaps measure the shock velocity

of the first wave in a two-wave structure, which
remains constant as we increase the driving

pressure, and the particle velocity, measured
indirectly by measuring the shock velocity of the
standard, is increasing with the driving pressure.
Time-dependent effects clearly influence the NaCl
data in this region, but the onset of a phase transition

is beyond question. At these pressures, even though
a considerable time may be required for a phase
transition to go to completion, any part of the AV
of the reaction manifests itself immediately as a

shock velocity less than would be expected from a

smooth continuation of the initial phase. A plateau
has been drawn somewhat arbitrarily through the

(111) data. Although the data scatter upwards from
this Une, the clustering toward the bottom is

sufficiently sharp to give some credence to the

plateau as drawn.

Table 4. The NaCl isotherm above 200 kbar using
the linear Ug-Up fit

p Hugoniot

Ph

Th Isotherm

P

kbar 1 3 glcni'

200 3.023 950 3.081 0.7025 0.8890

205 3.036 977 3.096 .6991 .8875

210 3.050 1004 3.111 .6958 .8861

215 3.063 1031 3.126 .6924 .8847

220 3.075 1059 3.140 .6893 8834

225 3.088 1087 3.154 .6863 .8821

230 3.100 1116 3.168 .6832 .8808

^ 1R9

94.0 1 1 74, 0. 1 yyj 677^ R789

245 1904 910 f>74^.y> t 'i'O 8760

250 3.148 1234 3.223 .6716 .8757

255 3.160 1264 3.236 .6689 .8745

^ 1 71 ^ 94.0 .uuuz

265 0. 1 (JO ^ 969 66'?.\J\JOO 8799

270 3.194 1357 3 97=1 6600 871

1

275 3.205 1389 3.288 .6583 .8699

280 3.216 1421 3.300 .6559 .8689

285 3.227 1454 3.313 .6533 .8677

290 3.238 1487 3.325 .6510 .8667

295 3.248 1520 3.337 .6486 .8656

300 3.259 1553 3.349 .6463 .8646

305 3.269 1587 3.361 .6440 .8636

310 3.279 1621 3.373 .6417 .8625

315 3.289 1656 3.384 .6396 .8616

320 3.299 1690 3.396 .6374 .8606

The behavior of the (100) data is different; it

tends to drift slowly upward in a manner which one
might expect from a reaction whose relaxation time

is comparable to the time it takes a shock wave to

traverse the sample. The (111) plateau intersects

both the hnear and quadratic fits to the Bl phase

at Us = 5.94 and Up= 1.80 km/s. The pressure on

the Hugoniot is 231 kbar, the density is 3.105 g/cm^

and the temperature is between 1120 and 1130 K.

This number should provide an upper bound to the

actual transition pressure.

Bassett, et al. [11], have observed the Bl—B2
transition at a VIVq = 0.643 ± 0.002. Using our iso-

therm from the extrapolated linear Hugoniot, we
find the pressure of this transition as 307 ± 5 kbar.

The extrapolation of the quadratic fit would have

yielded 295 ± 5 kbar. This should set the upper
limit of pressure for the use of NaCl in the Bl
phase as an internal pressure standard at room
temperature.
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DISCUSSION

D. J. Pastine (U.S. Naval Ordnance Laboratory,

White Oak, Maryland): In combining the effects of

the possible deviation of the several parameters,

illustrated in figure 3, should all the effects be added
if all the deviations in the initial conditions were
made at the same time?

D. Decker (Brigham Young University, Provo,

Utah): In our work, I varied aU the parameters by
the majcimum amount, but found that the total error

was less than the sum of the possible individual

errors. The value of B'^ in the new calculations that

we have made is 4.93, which differs a little from
yours. Also, there are at least five ultrasonic

measurements giving values for B'^ ranging between
6.05 and 3.31 so that presently it appears that

ultrasonic data cannot be used to refine the equation
of state.

D. B. McWhan {Bell Telephone Laboratories,
Murray Hill, New Jersey): I would say that the
results and outlook concerning calculation of the
NaCl isotherm is encouraging. A couple of years
ago in some work on quartz, I looked at the volume
of sodium chloride at the bismuth transition. At
that time the Decker equation gave values below
those of the present shock data, and the Birch
equation gave values above. Since then the starting

parameters for both theories seem to have come into

question, and when one modifies fio, as Decker has
done, then the values fall right on the shock data.

If one does the same thing with B'q with the Birch
equation, it wiU also agree with the shock data.

Thus there are three independent results that are in

agreement at least up to about 150 kilobars.

I would like to note that, as I mentioned, we deter-

mine the volume of sodium chloride at the bismuth
transition only on the upstroke, and obtained a value

of about 0.816. The Hall group got a value of 0.818.

I think this is remarkably good agreement for two
completely different pieces of equipment, in

independent experiments.

J. S. Weaver {Department of Geological Sciences,

University of Rochester, Rochester, New York): In

our work, the deviations are given in our table 3,

of our paper given earlier in this Session, listing

the sensitivity of the calculated pressure values to

these deviations. If one parameter is increased the

pressure may increase or decrease. Our 2V2 percent

is obtained by squaring the individual deviations,

summing them, and then taking the square root.

This assumes that the parameter variations are

independent and gaussian.

I think that the explanation of your better agree-

ment with other values of Bq is related to taking

account of the second-nearest-neighbor effect.

AUTHORS' CLOSURE

In reply to Dr. Pastine: The effects of possible

deviation of the parameters involved in the calcula-

tion may be added but the total effect is small. We
should point out that, in contrast to Decker's
calculation, the only assumed parameter that we
are varying which has any significant effect on the

resulting isotherm is the Griineisen parameter.

Whether or not one decides to include the un-

certainty in the specific heat, the only other bit of

information one needs to convert a Hugoniot to an
isotherm, makes no practical change in the final

result.
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Consistency in the High-Temperature Equation of State of SoUds

Leon Thomsen and Orson L. Anderson

Lamont Geological Observatory ofColumbia University, Palisades, New York 10964

Four equations of state for solids are examined theoretically for mutual consistency in the high-

temperature regime. It is found that neither the Birch-Murnaghan nor the Murnaghan equation can be
shown to be consistent with either the Mie-Griineisen or the Hildebrand equation. An expression is

derived for the volume dependence of the Griineisen parameter y(p). A recent theoretical treatment of

NaCl, proposed for use as a pressure standard, is neither internally consistent, nor is it sufficiently

precise for such a purpose.

1. Introduction

In current use there appear several different

equations of state for solids which differ in their

derivations, in the quantities which they exhibit ex-

plicitly, and in the quantities which they leave as

experimental parameters. It is the purpose of this

paper to discuss together some of these equations,

and to show to what extent their separate deriva-

tions are mutually consistent. Such consistency be-

comes important when two of these equations are

used together in interpreting experimental data. For
example, one method [cf. Takeuchi and Kanamori,
1966] of reducing shock-wave data employs the Mie-
Griineisen equation to account for thermal effects

in transforming the Hugoniot into an isotherm,

which is then compared with the Birch-Murnaghan
equation. Clearly, if this calculation is to have mean-
ing, assumptions made in any one part of it must not

be violated in another part. As another example,
when a high-pressure experiment is calibrated using
the equation of state of NaCl provided by Decker
[1965], the resulting data are constrained by the

assumptions of the Mie-Griineisen equation of state,

as used by Decker. If these data are then compared
and extrapolated with the Birch-Murnaghan equa-
tion of state, the problem of consistency again must
be faced.

Many equations of state can be classified into one
of two broad classes: 'isothermal' equations which
are concerned primarily with effects of compression
at constant temperature, and 'thermal' equations
which treat strictly thermal effects more precisely.

In this paper, we first give brief accounts of the

derivations of some of these equations of state.

Second, we develop a simple framework in which
they can all be considered together. Next, we show
how the same reasoning which was used in the
isothermal case leads to an expression for y{p).

Then we consider the restrictions imposed upon
the isothermal equations by the thermal equations.

Turning finally to recent work on NaCl, we find that

internal consistency in the Mie-Griineisen equation

'Lamont Geological Observatory Contribution No. 1563.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

generates in this special case a yip) from the
microscopic lattice potential energy.

2. Isothermal Equations of State

Prominent among this class is the Birch-

Murnaghan equation

Pip, T)=iKoiT) (y^/3-r/3) [1 -^(D (//^- 1)]

where (1)

y(p, D-— (la)
poU )

Here P is pressure, p density, T temperature, the

isothermal bulk modulus pidPldp)T, and the sub-

script 0 refers to zero pressure. ^ is related to experi-

mental quantities by

HT)^-nK'oiT)-^] (2)

where K'o is {dKldP)T as P->0. The B-M equation

is derived [Murnaghan, 1937; Birch, 1938, 1947,

1952] from the theory of finite strain, in which it is

proved that the strain is given by

e^^iy'l^-l) = eip,T) (3)

and it is assumed that a Taylor expansion, in the

strain, of the Helmholtz free energy may be
terminated at the cubic terms. It should be noted

that the uniqueness of this definition of strain has
been questioned by Knopoff [1963].

Leaving such questions aside, in the present case
of homogeneous isotropic compression, the free

energy is assumed to be

The B-M equation then follows from

where V— lip is the specific volume. We wiU return
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to the discussion of this equation shortly.

Another important member of this class is the

equation of Murnaghan [1944]

Pip, T)
KoiT)

K'oiT)
(6)

where fir = Ko{T) . This follows from the assumption

K{P, T) = KoiT) + K!,iT)P

and is, experimentally, nearly indistinguishable

from (1) over a considerable range of compression.
This fact may be understood on the basis of the

uniqueness of the Taylor expansion. Any two
functions /i(y) and /2(y) that are constructed so as

to satisfy the same boundary conditions

J/o
dy"

for n = 0, 1 ... A/ will have the same Taylor
expansion about yo, through terms in y'^', and will

differ only in the higher-order terms. The B-M and
the Murnaghan equations represent two such
functions, with yo=l, and T not entering the

problem. They are both four-parameter equations

for the free energy F, with one of these parameters
explicitly set to zero, leaving only po, Ko, and
apparent. Since the M + 1 = 4 term of the expan-

sion in which they first begin to differ is

81
Ko

Po L

KoK'o + K'o — IK'o +
143

it is clear that the B-M assumption on K" is

The Murnaghan equation, of course, assumes

K'o=0.

(8)

(9)

For a typical oxide, /(^o
= 4, Ko= 1,000 kbar, and the

RHS of (8) is 3.9x10-3 kbar-i. This number is

sufficiently close to zero to insure that the two
forms agree closely over a wide range of y.

It is of interest to note that the RHS of (8) is not

zero for any real Kd, and reaches its extremum at

K() = 3.5. It seems to be a remarkable coincidence

that solids should have values of Ko so close to this

extremum value. An examination of the derivation of

eq (8) shows that this number, 7/2, has its ultimate

source in the fact that the number of dimensions in

physical space is 3. We find it very interesting that

typical values of K'^ are close to 3.5 and not some
other number, like 10. In any case, this situation

helps explain why it is that the series (4) is so quickly

convergent.

3. Thermal Equations of State

This class is most often motivated by considera-

tions of the theory of lattice dynamics. In this theory,

the lattice potential energy is expanded in a Taylor

series about the equilibrium lattice configuration.

Most, if not all, observed phenomena are explain-

able in principle if the series is terminated at the

fourth-order terms:

(J) = $0 + <J)j + $2 + $3 + (10)

where

k terms

V is the hxh order coupling parameter,
1 ,1, ITl

and <PjU, .

and q^i i?, the ith component of the displacement

from equilibrium of the atom in the /ath position of

the unit cell which is located by the lattice vector

m. The temperature is introduced with the assump-
tion of thermal equilibrium, and the free energy can
then be written down. It is

F(p, r) = cDo(p) + ;^
[i^a)(k, \)

k. A

+ A:rin (l-e-«-(ka)/Ar)]

+ F;{T)+F,iT) (11)

Here, <I>o is the energy of assembling the (static)

lattice to its equilibrium configuration; aj(k, X) is a

vibrational eigenfrequency, a function of the wave
vector k and the polarization; F3 and F4 are compli-

cated functions of temperature only, which are

given explicitly by Leibfried and Ludwig [1961]. At
high temperature, the energy enters the classical

regime, and the equations simplify. We will content

ourselves here with this restriction to temperatures
greater then 0d, the Debye temperature.

F=$o + Ar^ In
h(o{Vi, \)

kf

(Dkk'k'
XX X

{o,0)'oi"Y
k k k ^

'

X

16A^5

2(1) — 0)" CO

OJ + fa) — (U OJ + faJ + OJ

%k

8yV5^^(coa.') (12)

210



This equation is the high-temperature form of equa-

tions 10.2 and 10.4 of Leibfried and Ludwig [1961].

is the number of elementary cells; s is the number
kk'k" ^ kk'

of atoms in a cell, ^^^/y/ ^"d describe,

respectively, the third- and fourth-order derivatives

of the lattice potential energy, and are defined

precisely by Leibfried and Ludwig. The frequencies

0) depend on the lattice configuration through k;

insofar as this configuration can be described by

the single parameter p, we can say that to = (o{p).

However, the frequencies appearing in F3 and F4

of eqs (11) and (12) must be evaluated at a fixed

density because of the presence of
kk k"

kk'X"
4 1^1^'

and cD^^, .

This situation can be briefly summarized by the

statement that the anharmonic high T approximation

is

F(p, T) = A{T) + B{p) + C{p)T + D{p)r^ (13)

In the harmonic approximation, O3 and <1>4 are zero,

implying that B{p) is quadratic in the strain, C{p)
is constant, and D{p) is zero. In the fourth-order

anharmonic approximation (which we shall call

the anharmonic approximation) and $4 are non-

zero, but the next terms (<I>5 and are zero,

implying that B{p} is quartic, C(p) is quadratic,

and D{p) = Z) is constant.

The anharmonic equation of state is, from (5),

Pip, T) =

+
1

(14)

(14a)

where

and

7i =
d In o),

d\n p

€i = ho)i
11

2 gftmilk-T— I

The alternative assumption that Fyih is a function

of T only yields the Hildebrand equation [Hilde-

brand, 1931]

P(p,T)=-^'+aKT (14c)

where a = —\jp{d pldT)i> is the thermal expansivity.

These two equations were discussed by Fumi and
Tosi [1962]. At high temperatures they converge

together, as the first assumption becomes irrelevant,

the second is automatically fulfilled, and the pres-

sure becomes

P(p. T) =-^+^^3NskT
dV V

= B'{p)+C'ip)T (14d)

where 7(p) = (l/3A^s)S7i and C'{p)=aK. This

equation is equivalent to

daK\
dT J,

(15)

and this is a simple statement of the anharmonic
high T approximation.

4. A Coherent Framework

In the present context, it is clear that the dif-

ference between the isothermal B —M equation (1)

and the thermal equations (13) is merely one of

viewpoint. We may expand F(p, 7") about a point

po, 6 corresponding to zero pressure and some finite

temperature 6 in many equivalent ways. Ut = T—6

Fip,T) = [Foo+ Foot+Foo^+ . . .]+g{t)

+ [F^o*+n*t+n*2 + -1
2"

^2 ^3
I r r *** 1 17 **** _i_ F*** - I- 1+ 1*^00 +^00 t + '^oo 2 "6

+ . . . (16a)

are the Griineisen parameter and the energy, re-

spectively, of the ith normal mode of vibration.

The further assumption that all the y, are equal

leads to the Mie-Griineisen equation [Griineisen,

1926].

Pip, T)
d<^0 Fyib

dV^ V

where Fvib^^^,.

(14b)

= [Foo+FoV+nr|-+^o*o**|-+ • • .]

+ [Foo+FoV+^orY+n*o**f+ • •]«

+ [Foo+ Fo*oe +Fory+ n*o**f

+ . . .]|+ . . .+git) (16b)
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where the symbol ' means (dldt)^, the superscript *

means {dld€)(, and the subscript oo indicates evalua-

tion at P— e — O, t = 0. The function g{t) contains

the nonpolynomial terms in t that are necessary to

obtain the correct specific heat. The viewpoint in

(16a) is clearly that of the B —M equation; the co-

efficient of e will vanish when the boundary condi-

tions at ^= 0 are invoked, and the part independent
of e is one to which our attention need not be ex-

plicitly directed in the derivation of an isothermal

equation of state.

But the viewpoint in (16b) is not that of the an-

harmonic theory. This is because the strains, as

defined, are functions of T as well as p, and thus the

coefficients of the various powers of t are not of the

proper form. What is needed is a recognition of the

fact that the free energy depends on the total strain

from a fixed initial state. This strain, containing both
isobaric and isothermal compression is clearly

(x-'/3-l) (17)

where x = pipoo and poo is the density at /*= 0, f = 0.

Then we can expand F in terms of e and t in an

equally valid and more instructive manner:

F{p,T) = [Foo+ Foot + Fooj+ . . .]+g{t)

+ [Ft+Fttt +
00 00

+ [Ftt +Ftn +
00 00

+ [Fttt +
00

+ [Ftttt+
00 24 (18a)

= [Foo+ Fte+Ftt^+Fttt^
00

00 24

00 2 " oo' 5

] + [Foo+ Fte

g(t) =-3Nsk^{t+ e) \n(l+^'j-i (19a)

The expansions in (18) were truncated in accordance
with the approximations of the fourth-order an-

harmonic theory, as noted above.

It is clearly possible to derive (18) from (16) by
expanding e in terms of e and t. But the degree of

the expansion will be necessarily different for each
term. In other words, each y(p, T) appearing in

(1) must be handled differently. We may conclude
that the B—M equation, in the form of (1) and (4),

is not consistent with the anharmonic theory, or

with its results, equations 14. However, in the

modified form implied by equation 17, it clearly is

consistent, except for the term in e"*. This term wiU
contribute to K at high pressure and to {dKldT)p at

zero pressure.

The coefficients in (18) are defined experimentally

by

F00 = 0

Foo = 0

Ft = 0
00

Ftt — 9
00 Poo

Fttt=-27^ (^:;o-4)
00

Ftttt
00

Poo

= -27 ^00 {

Poo \
Koo + K,00^00 00

ll9b)

Ft:
00 Poo

aooKoo
>00'Ftt=-9

00 Poo

Foo [3 Nsk— Cyoo]
u

"^oo+3j

00

+ Ftt^+
00 2

.]f+[Foo+ 1-
2

Some of the quantities needed in the next (sixth-

order) approximation are

+ , + git)

(18b)

Fm = -27 [Coo- (8oo-3)(/<:^o-4)]
Poo

where the symbol • means (bldt)p, the superscript t

means {dlde)t, and the subscript oo indicates evalua-

tion at t = 0, e= 0. The anharmonic theory is in-

voked to give the nonpolynomial term in t; from
(12) it is clearly

Ft=-
00

daK

Poo \ dT Jp

._2_oo—00
[/^^^—28oo+/3oo]

Poo

(19c)
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f-ff =— 18 Q'no^""

00 Poo
(KL ~ ^) (Soo + ^ poo

~fj

This inequality is not demonstrable, in general,

except for very small values of e.

1+ o ( Son ^oo) - ^00
-

00*^00 \dT' / I'

49

18

where the derivatives are evaluated, of course, at

the 00 point. 8 is the anharmonic parameter

° aK\dT)p
and

/3

1 /da

a- \dT/p

^ l d'K{P,T)

a dPdT

are introduced here to simplify the notation.

These coefficients are complicated for two
reasons: the pressure is a volume derivative of the

free energy rather than a strain derivative; and the

values of K and a are such that in the laboratory we
always measure {dldT)p instead of {dldT)p. It is of

interest to note that because of the sums in the last

three equations of (19c), knowledge of {d-K)ldT-)p
is of limited usefulness without similar knowledge of

K{daldT)p. Both these terms are needed if the

anharmonic theory is applied as in this context.

The fourth-order anharmonic high T approxima-
tion is that terms in Fttt, /'t,Ftt, etc., are small

00 00 00

compared to all other terms. For example.

00 2
< < FUe

00
(20)

or

(/^oo~28oo+ /3oo)
aoot < < 1

is actually an approximate statement of eq (15),

evaluated at the oo point. Of course, this will be true

for small enough values of t, and despite the large un-

certainties in {dajdT)p, it seems that this inequahty
will hold perhaps to i ~ 1 ,000°.

However, (20) is not sufficient to insure the ade-

quacy of the anharmonic high T approximation. It

must be shown that each term neglected is much
smaller than each term retained, requiring, for

example,

or
00 2

< <
00 2

(21a)

(/^oo~Soo+ jSoo)a;oor |
< < 3 00

i5

5^

ooo— 2 |e

(21b)

5. Thermal Equations From the Iso-

thermal Viewpoint

The expansion in (18) gives new insight into the

quantities appearing in the thermal equations (14).

The equation of state which follows from (18) via

(5) is, in the anharmonic high T approximation,

P(p, r) =1X00 (;C^/3
_ ^5/3) [1 (^2/3 _ 1)

1

SVoo 00
, 3!

(22)

l + 3e Soo-K' +^

Comparison with (14d) gives an expression for the
Griineisen parameter, as a function of density:

y(e)=roo(l-2e) l + 3e SOO Kqq+—
(23)

where 700= {VaK)(tolSsR. This expression for 7
contains no assumptions beyond those already im-

plicit in the Mie-Grlineisen equation (14d), except
that the strain as defined in (17) is the appropriate

measure of the displacements in (10). In particular,

all questions concerning the number and weighting

of mode gammas have been avoided; the answers
are contained within the measured values of aoo,

etc. Whenever some other expression for 7(p), for

example, that of Dugdale and MacDonald [1953], is

used, it must converge to (23) in the high-tem-

perature regime. To the extent that it does not so

converge, one may conclude that the additional

assumptions it contains are not verified.

Different materials exhibit a large variety of be-

havior of 7(p). Some of the possibilities are illus-

trated in figure 1 for several minerals of possible

importance in the earth. It is seen that for some ma-
terials 7 decreases rapidly, and goes through zero at

compressions found in the lower mantle. This is

remarkable behavior, and raises well-known prob-

lems with the thermal expansivity and the sign of the

temperature changes accompanying adiabatic com-
pression. The present work adds to our belief that

such problems are real and must be seriously faced.

6. Thermal Restrictions on Isothermal
Equations

While the demonstration of (20) and (21) is suffi-

cient to establish the adequacy of the anharmonic
high T approximation, it is for some purposes more
convenient to consider the exact statement of the
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approximation

0. (15)

In this section, we consider (15) as a property of

thermal equations in the anharmonic high T ap-

proximation that must be possessed by isothermal

equations used in the same context. We discuss the

Table 1. Mineral parameters

Parameter Polycrystal

AI2O3

Single crystal

MgO
Polycrystal

Mg2SiO^

Soo *5.06 *3.54 t4.88

t3.99 $4.52 W.9

6oo ~ ^00 + 1 2.07 0.02 0.98

/3oo *2.24 *2.85 t3.49

7oo 1.27 1.46 0.77

e 1042 K 946 K 650 K

*Soga and Anderson [1966].

tSoga and Anderson [1967].

tAnderson and Liebermann [1967].

1.5

2_
0.0

- 1.0

•2.0

1 1

^ MgO

^Mg^SiO^

AI203

1 1 1

0.0 -.2 -.3

Figure 1. Grilneisen parameter as a function of strain, from
eq (27), using the mineral parameters of table 1.

conditions necessary for the inclusion of (15) in two
generalized isothermal forms of the equations of

state. Consider the form

M
P{p.T) = ^ci{T)y"i (24)

of which (1) is an example. The a here are experi-

mental quantities fixed by the boundary conditions

at y= 1. The n, are independent of T, and the only

restriction on M is that it be finite. If such an equa-
tion is to meet the anharmonic high T condition

(15), it must be that

2 [ci+ {2(XoCi+ aoCi)ni + Cialnf]y"i= 0. (25)
i

Since the y"' are linearly independent, each
bracket must equal zero independently, giving M
algebraic equations which can be solved explicitly

for the n, in terms of a, ao, and their derivatives. It

is obvious that any rational m (e.g., ni — 5/3) can only
meet this condition approximately, at least in

macroscopic physics. This approximation is separate
from, and additional to, the approximation in (21).

But it is not possible, under present limitations, to

state whether or not it is serious.

However, it is of interest to know whether the

condition (15) can be met exactly by any equation of

state. Consider the form

P{p,T)=K,{T)f{y) (26)

of which the Murnaghan equation (6) is an example
(provided K'^ is independent of T). The second-
order B-M eauation (with ^= 0) is another example.
Some of the properties of this form are discussed by
Birch [1968]. The only equation of the form (26)

which meets the anharmonic high T condition is

where
ni — /?2

(y'U— yn2)
(27)

K'
n,-^[l+ Vl-/?o(r)]

with

Ro{T) -

The Murnaghan equation (6) is a special case of

(27) corresponding to RoiT) =0. Therefore, one may
use the M-G equation in conjunction with the

Murnaghan equation only after demonstrating that

The demonstration is not generally possible.

Soga and Anderson [1967] measured Ks at zero pres-
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sure and high temperature for the polycrystalHne

oxides MgO, AlzOy, and Mg2Si04. This can be con-

verted from the adiabatic modulus to the isothermal

modulus using

K= Ksl{l + Tay).

It is then found that the curvature d'^KoldT^ is so

small as to be unmeasurable, being equal to zero

within a fourth of a standard deviation for all ma-
terials. However, if the standard deviation of

d^KoldT'^ from its mean is taken as an upper bound
for d^KoldT^, then the quantity Ro may, because of

the factor l/Koao, be quite large, and one therefore

cannot conclude that Much more precise

measurements of the temperature dependence of

Ko will be needed before it can be shown that

7. Internal Consistency in the Q-H
Approximation

In applying the Mie-Griineisen equation of state,

various assumptions are necessary, and it is im-

portant that these be made in a self-consistent

way. In particular, we wish to discuss here the rela-

tions between y and $0.

When the atomic interaction is unknown, then

both y and $0 may be chosen independently.

But where the interaction is known, both 7 and <I>o

are thereby determined. For example. Decker

[1965] in determining a numerical equation of state

for NaCl assumes an interaction with Coulombic,
dipole-dipole, dipole-quadripole, and exponential

repulsion terms. Since all these are central forces,

he obtains an expression for $0 (which he denotes

by <I>) which involves only the lattice parameter
r. He then assumes

7= yo + A.

r— ro

ro

for the volume dependence of y, where

aK
70=

pCi
1.59±.16

where S' indicates summation over aU lattice points

except h = 0, v= ix. is the mass of atom /u,.

Where the interaction depends only on the dis-

tance RfJiv between atoms, the potential is

and (28) becomes

(29)

where V- is the Laplacian operator. Griineisen's

parameter is

1 1 „h 3
(30)

Where the interaction (^^^ is specified, it is easy to

compute these functions. For the potential used by
Decker [1965]

0)-

+

6r» 6r'o

b /M++M-
p- \ M+M-

1-2 -
I e -rip

p-+M+ \ r

2b. 1-2^
] e-'-^l^~ (31)

and

y=^=
36w2

^ r^o ^ p' M

+

8C*
,
lOD*

,
6b M++M

plM,

b-12

+M^ V r p)

2 + 2^-^'|e-'-v^/p+

pi.M-
2 + 2

rV2

p- rV2

rVl P
g-r^~>lp-

(32)

and ro= R{P=0). A. is empirically chosen to be
2.55.

However, 7 is the logarithmic derivative of

0)^, and (o- is determined by the atomic interac-

tion. From Leibfried and Ludwig [1961]

1

3sN
k,x

^00

3^ h
^ hO
<t>vix (28)

Here

C*= 30

Z)*=56

L \M- M+

d
,

d++

M_ M M- M

and the c's, the c?'s, and the S's are defined by Mayer
[1933]. Using the values for the constants found in

Decker [1965] and in his reference, Mayer [1933], 7
can be calculated numerically, and is shown in
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1.5

1.0

1,59 t 2.55Ar/ro (DECKER, 1965)

EQUATION (32)

J_
-.10 -.20

Ar/ To

Figure 2. Griineisen parameter for the NaCl model of Decker

[1965].

figure 2. Also shown is the linear relation of Decker,
and an arrow marking the maximum compression
considered by him.

It is seen that, in the low-compression range, y is

nearly linear with Ar/ro, with an initial value of

1.46, and an average slope of 1.70. It is nearly equiv-

alent to a power law ylyo={VIVo)'J with exponent

q ~ 0.4. Decker remarks that, for such behavior

of y, "the fit to the experimental thermal expansion
became quite poor."

Decker's idea was that the equation of state of

NaCl was sufficiently well understood theoretically

that salt might be used as a pressure gauge in ex-

periments on other materials. On the basis of the

present remarks, it appears that the fourth-order

anharmonic approximation, as used by Decker,
is not sufficient to accurately describe the behavior

of NaCl. The application of the sixth-order anhar-

monic treatment, straightforward in this case, might

be expected to yield better agreement.
However, a feature of the central force assump-

tion implies that even this will not be sufficient,

unless an atomic interaction which includes non-

central forces is used. Leibfried and Ludwig
show that, for central forces in cubic crystals, the

inequalities

and
Ci2 C44

dCvy\ ( dC44

dT
<

dT

(33a)

(33b)

are implied for the adiabatic elastic constants

Cij. If these are not satisfied by the data, then non-

central forces must be involved. Such is the case
for NaCl [Barsch and Chang, 1964]. It thus appears
that a theoretical basis for accurately describing

the properties of NaCl must include non-central

forces.

8. Summary

The conclusions reached here are of three sorts;

those relating to mutual consistency, those relating

to internal consistency, and those relating to ade-

quacy of approximation. Of the first sort:

1. Because, in eq (1), each yiT) must be treated

differently, we conclude that the Birch-Murnaghan
equation, in the form (1) and (4), is not consistent

with lattice dynamics in the anharmonic high T
approximation, nor with its results, the Mie-

Griineisen and Hildebrand equations.

2. However, with the modification implied by
eq (17), the B-M equation becomes identical to the

anharmonic high T equations, provided only that

the term of (18) in e'* can be shown to be negligible.

The demonstration of this negligibility is beyond
present experimental techniques.

3. The Murnaghan equation is consistent with

the anharmonic high T equations, provided only

that Ro(T), eq (25), can be shown to be negligible

compared to unity. The demonstration of this

negligibility is beyond present experimental

techniques.

4. Where two equations cannot be definitely

proven consistent, they should not be used in the

same calculation.
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Of the second sort:

5. The Griineisen parameter yie) is defined in

terms of boundary conditions by the expression in

(23). Any other assumption on y(p), such as that of

Slater [1939J or of Dugdale and MacDonald [1953],

must converge to this at high temperature.

6. Once an assumption has been made con-

cerning the interaction between atoms in a crystal,

then the lattice dynamics is completely determined,
and only the degree of approximation remains to be
chosen. In particular, in the fourth-order approxi-

mation, when the interaction is assumed, (f>o, (o'f

,

and y are all determined.

Of the third sort:

7. The data of NaCl are such as to require

non central forces for an adequate theoretical

explanation.
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1. Introduction

It is well known that the increase in temperature

due to shock loading is great enough to melt many
solids with the shock strengths presently attainable

in the laboratory. Using Hugoniot data and zero-

pressure data it is possible to calculate with some
confidence the shock strength required to melt

a material on the pressure release wave. In a pre-

vious paper, [1],^ these calculations ignored details

of the true location of the melting phase line, since

no information was available for this at high pres-

sure, and in effect actually forced the phase line

to be located at a fixed volume in the P-V plane.

However, these calculations did conserve energy
around the path determined by the Hugoniot, the

pressure release isentrope and the zero pressure

isobar. Subsequent measurements of the residual

temperature of shock loaded Cu by J. Taylor [2]

gave substantial agreement with these calculations.

However gratifying these experiments were, the

question of where the melting phase line at high

pressure was located remained unanswered.
Aside from the basic interest in melting phe-

nomena, the location of the phase line and the

effect that melting might have on materials such as

Cu when used as a shock-wave standard indicated

that additional work should be done on this problem.

2. Experimental Program

Direct measurements to determine the location

of the melting phase line at high temperatures and
pressures appear to be either impossible or at best
quite difficult. If the thermodynamics of the transi-

tion were of the correct type, a small break might be
observed in the Hugoniot where melting f^rst begins.
However, as for most normally melting materials,
the discontinuities that exist in the temperature-
volume isobars appear only as a change in slope in

the energy-volume isobars. Since it is the latter

*Work done under the auspices of the U.S. Atomic Energy Commission.
' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization
of the High-Pressure Environment, held at the National Bureau
of Standards, Gdithersburg, Md., October 14-18, 1968.

variables that are observed in shock-wave studies,

it is not surprising that Hugoniot data, even in the

sensitive Ug — Up plots, go smoothly through regions

where melting is beheved to occur. An alternative

approach is to calculate the phase line from known
zero-pressure data and the equation of state loci of

the solid and liquid phases. Good equations of state

exist for many solids and for some liquids but not

for both phases of the same material. We have made
an effort to obtain the Hugoniot equation of state

for materials in the liquid phase that are normally
solid. This was done by either preheating samples in

electric furnaces or by preshocking the material
under investigation by a shock strong enough to

cause melting. Both techniques not only entertain

additional experimental difficulties but also suffer

from unfavorable precision requirements. An al-

ternative approach is to measure the Hugoniot of

a material at low initial density.

It is well known that shock-loading porous ma-
terials cause the internal energy at a given shock
pressure to be substantially greater than that ob-

P

Figure 1. Pressure versus volume schematic to illustrate how
the use of porous materials increases the internal energy on
shock loading.

The area designated by the vertical Hnes represents the increase in internal energy
due to shock loading at a low initial density.
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Figure 2. Shock velocity-particle velocity data on Cu with
various initial densities.

The curve through the density 8.93 g/cm" data has been drawn on the basis of the
melted phase calculations. The onset and completion of meUing in the crystal density
Hugoniot are indicated. All other curves were obtained from the p(i= 7.323 g/cm'
liquid Hugoniot and a 70 = 2.6.

tained on nonporous materials. The greater the
porosity the greater will be the shock heating. This
effect is demonstrated schematically in figure 1.

In the past, experiments using porous specimens
were used to obtain the high-pressure Griineisen
parameter or to check values of the Griineisen func-

tion being used in equation-of-state calculations. If

the porosity is large enough and the extra energy
is sufficient to cause the high-pressure state to be
in the liquid phase, one can use these data in an
attempt to establish the Hugoniot of the material

centered in the liquid state at a relatively high tem-

8.2 -

7.6

(_)

\ 7.0
o
E

S 6.4
Q.

5.8

5.2

I I

COPPER

^ 4 ^vov-cp-o—OD-o—OD-o—ca—o-OD—o—(D~o—on—

c

T^356»K
Ji_ I

T, =2850''K

0 400 800 1200 1600

T(°K)

2000 2400 2800

Figure 3. Specific heat as a function of temperature for Cu.

These data are from the compilation of ref. [4] and were obtained from the following original data sources:

Metals Handbook (American Society for Metals, Novelty, Ohio, 1961), 8th rev. ed.

Stull, D. R., and Sinke, G. C, Thermodynamic Properties of the Elements (American Chemical Society, Washington, 1956).

Stull, D. R., and Sinke, G. C, The Thermodynamic Properties of the Elements in Their Standard States (Dow Chemical Co., Mid-

land, Mich., 1955).

Smithsonian Physical Tables, ed. W. E. Forsythe (Smithsonian Institution, Washington, 1956), 9th rev. ed.

Metals Reference Book, ed. C. J. Smithells (interscience. New York, 1955). Vol. II, 2d ed.

Rare Metals Handbook, ed. C. A. Hampel (Reinhold, New York, 1961), 2d ed.

Hultgren, R., Specific Heat of Metals and Alloys, AFOSR Tech. Note 4 (June, 1960).

Handbook of Chemistry, ed. N. A. Lange (McGraw-Hill, New York, 1961), 10th ed.

Handbook of Chemistry and Physics (Chemical Rubber Publ. Co., Cleveland, 1949), 31st ed.

Materials in Design Engineering, 50(5)141, Mid-October Issues, 1959. Kubaschewski, O., and Evans, E. L., Metallurgical Thermo-
chemistry (Pergamon, Oxford, 1958), 3d ed.

Mechanical Properties of Metals and Alloys, National Bureau of Standards Circular C447 (Washington, 1943).

Engineering Materials Handbook, ed. C. L. Mantell (McGraw-Hill, New York, 1958).

Lucks, C. F., and Deem, H. W., Thermal Properties of Thirteen Metals, ASTM Special Tech. Publ. 227 (1958).

Butts, Allison, Copper; The Metal and Its Alloys (Reinhold, New York, 1954).

Fieldhouse, I. B., Hedge, J. C, Lang, J. I., and Waterman, T. E., Measurements of Thermal Properties 1, WADC Tech. Rept.

55-495 (1956).

Fieldhouse, I. B., Hedge, J. C, Lang, J. I., and Waterman, T. E., Measurements of Thermal Properties II, WADC Tech. Rept.
55-495 (1956).

Seibel, R. D., and Mason, G. L., Thermal Properties of High Temperature Materials, W ADC Tech. Rept. 57-468 (1958).

Lucks, C. F., and Deem, H. W., Thermal Conductivities, Heat Capacities, and Linear Thermal Expansion of Five Materials, WADC
Tech. Rept. 55-496 (1955).

Makin, S. M., Standring, J., and Hunter, P. M., Determination of the Coefficients of Linear Thermal Expansion at T^C, R and
DB(C)TT-45 (1953).

Bell, I. P., Fast Reactor-Physical Properties of Materials of Construction, Culcheth Laboratory FRDC/P-112 (Lancashire, Eng-
land, 1955).

Johnson, V. J., A Compilation of Thermophysical Properties of Cryogenic Materials, WADC Progress Rept. 6 (1958).

Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., Thermophysical Properties of Solid Materials, Vol 1, WADC Tech. Rept.

58-376 (August, 1960).
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Figure 4. Linear thermal expansion coefficients as a function of temperature.

See ref. [4] for identification of the symbols.

perature. For the present application we have ex-

amined the shock-wave data on Cu measured in

this laboratory. These data were obtained using the
flash-gap impedance match technique with deoxi-

dized Cu as a standard [3] and are summarized in

figure 2. In addition to the shock-wave data it is

necessary to know the thermodynamic equation
of state along the P—Q isotherm. For this a com-
pilation of specific heat data, figure 3, and thermal
expansion data, figure 4, were used to determine the
internal energy, E, and temperature, T, versus
volume, V, given in figure 5 (see ref. [4]).

Hugoniot data were obtained for Cu at average
initial densities of 8.93, 7.858, 7.323, 6.340, and
5.717 g/cm^. It is seen from figure 5 that the density
7.323 g/cm^ corresponds to a liquid density at
7"= 2370 K, which is more or less in the center of
the liquid phase region. It was this set of Hugoniot
data that was used to determine the liquid Hugoniot
equation of state centered at T= 2370 K.

These data were fitted with a smooth curve in

the Ug— Up plane. Selected points on this curve
were then recentered at this density and an initial

internal energy corresponding to that volume as

given in figure 5. The transformation is effected

through the Hugoniot energy equation centered at

Po-0,

3000

2 600

2200

I 800 -

»,
I 400

I 000 -

600

200

E = Eo + P{Vo-V)l2

and the usual assumption that

py=-dPldE)r

(1)

(2)

is a function of volume only. At a given volume, V,

or density, p, the pressure increase, AP, due to

.110

Figure 5. Energy and temperature asfunctions ofvolumefor Cu.

These curves are required to establish initial conditions for the calculations were
derived from the data presented in figures 3 and 4.

the assumed increase in initial thermal energy,

Af'o, is given by

AP= pyAEol{l-py{Vo-V)l2). (3)
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In the present study py was assumed to be con-

stant. This gives the P — V Hugoniot centered at

the high-temperature point which can be trans-

formed to the Ug — Up Hugoniot through the usual

Hugoniot equations

and
us=Vo[{P-Po)iVo-v)yi-' (4)

(5)

The Us — Up Hugoniots so determined were found

to be quite linear in the region covered by the

data. Two Hugoniots obtained by this technique

using two values for py are given in figure 6. The
Hugoniot fits obtained from these curves are listed

in table 1, where

Us= Co + SUp. (6)

Although both sets fit the data adequately, it is

apparent that the zero pressure sound velocities

and slopes are very dependent upon the value of

yo used.

The value yo= 2.44 comes from the room-tem-

perature thermodynamic 7= 2.0 and th° assumption
that (py)29o K= (P7)237o K- This relationship has

been shown to be reasonably compatible with the

crystal density Hugoniot and the one centered at
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Figure 7. Sound velocity versus temperature for liquid Cu.

The dots, O, are the data for Cu as reported by Gitis and Mikhailov [5]. The two +'s

at T= 2370 "K are the Hugoniot intercepts Usted in table 1. The two +"s at T= 1356 °K
were calculated from the equation of state hsted in table 1.

Table I.

Po To Co s

(glcm^) (kmis)

7.323 2.6 3.25 1.49

7.323 2.44 3.00 1.54

pn= 7.32. However, close examination shows that

when this approximation is used the calculated

Hugoniot for po = 7.32 does not give as precise

agreement with the porous shock data as might be
desired. This is most noticeable in the lower and
upper pressure regions. Of course, there is no reason

to believe that such a simple relationship (py^ con-

stant ) should hold across a melting phase boundary.

This value of y does give a zero pressure intercept

in the Ug — u,, plane that is in good agreement with

the sound velocity at r=2370 K extrapolated from
the data presented by Gitas and Mikhailov [5], but

the calculated sound velocity using this y and the

Hugoniot fit is too low in the vicinity of the melting

point (see fig. 7).

The sound velocity, c, at any pressure F, and
volume, V, are computed from the Hugoniot and
Griineisen function through the relationship

1/2 fi
dv

• py ( V, -V)I2] + V^pyiP-Pn ) 12.

(7)
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Equation (7) can be obtained by considering a small

isentropic expansion at the point {P, V) and equating

the ratio of the pressure and energy differences

with the Griineisen parameter. If eq (6) is used to

define the Hugoniot then

Ph-

anc

\y,-s{v,-v)Y

dP, „ [^0+ 5(^0-^)]=— Co

(8)

dv ^" [Vo-s{Vo-v)y

which when substituted in eq (7) gives

ipcy'-\cWo+{s-yo}(Vo-V)]l[Vo-s(Vo-V)f+(py)P.

(10)

Using the equation of state for y=2.6 in table 1

and evaluating eq (10) at the melting volume yields

a value of c— 3.47 km/s, which is in substantial

agreement with the Russian data in the temperature
region. If one believes that the temperatures at

7.32 g/cm3 and 8.01 g/cm^ are 2370 K and 1356 K
respectively as read from the graph in figure 5,

then sound velocity/temperature gradients of 0.22

m/s K and 0.29 m/s K are obtained in this tempera-
ture range. These slopes are about a factor of two
less than the value quoted by Gitis and Mikhailov.

There is no y compatible with their slope of 0.46

m/s K. Some error is undoubtedly associated with

the data in figure 5 but the thermal expansion data

is certainly not so poor as to explain the discrepancy.

The sound velocity measurements probably enter-

tain larger errors than are quoted in the paper.

3. Calculated Phase Line

The P, V, E equation of state given by the

Hugoniot and the Griineisen function can be ex-

tended to a complete thermal equation of state

through use of the thermodynamic identity

dS =CvY+ Cv{pyydV (11)

where Cv is heat capacity at constant volume.
Thus the Gibbs free energy

G=E+PV-TS (12)

can be computed for both the solid and liquid

phases. The solid and liquid phases are coupled at

the phase line through the requirement that

'solid

"

'liquid- (13)

Since the difference in internal energies, AEi.-s, and
the densities of the two phases at the melting point

have been measused, it is necessary that the two
equations of state also satisfy these conditions.

This was done by slight adjustments of the values

of Cv used for each phase so that a correct value

for the average value of the thermal expansion was
obtained. The correct initial internal energies are

thus determined which are also required to be
compatible with the data given in figure 5. Once
this has been done, the phase line at higher pres-

sures is located by satisfying eq. (13).

The results of one calculation are given in figure

8. Because of the thought that ordinary melting is

determined by simple order-disorder arrangements
which are reflected by a change in entropy, it was
decided to see how these phase boundaries com-
pared with lines of constant entropy. Hence we have
plotted the two isentropes originating at the phase
boundaries at P= 0. It can be seen that the two sets

of curves are very similar, especially for the liquid

boundary. This tells us immediately that the equa-
tion of state currently being used in impedance
match solutions gives satisfactory solutions even in

the high-pressure melted regime. P- u, plots

demonstrating this are given in figure 9, where
release isentropes currently being used are com-
pared with those calculated with the postulated
liquid equation of state. For assumed po"s lines

drawn on the graph there is less than one tenth
percent disagreement in the region of interest, weU
within present experimental accuracy.

The standard room temperature Hugoniot inter-

sects the phase line at a pressure of 1.33 Mbar. On
the basis of equilibrium thermodynamics, we have
computed the Hugoniot locus through the mixed
phase region and into the liquid state. These results

are also given in figure 8 and in the Us — Up plane

in figure 2. The points where the Hugoniot crosses
the mixed-phase region are indicated in the graph.

It is only by sighting down the curve that these can
be detected. This indicates that it will probably be
very difficult to establish the melting point on the

Hugoniot by detecting kinks in the experimental
data.

These results are comforting in that it suggests

that hydrodynamic calculations used to study the

effects of underground nuclear explosions can give

meaningful results without a detailed description

of the liquid equation of state. Moreover, since the

very low initial-density porous Hugoniot data can
be calculated relatively well, it appears that a

detailed description of the vapor phase is also not

required.

4. Comparison of the Phase Line
With the Kraut-Kennedy Relation

Two papers have appeared recently in the litera-

ture [6, 7] in which it is reported that, for a wide
range of materials, the melting temperature, Tm,
varies linearly with the room-temperature isothermal
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Figure 8. Pressure-volume plots of the two calculated phase line boundaries, the isentropes originating

at the melting boundary at P= 0, and the crystal density Hugoniot.

It can be seen that the phase-line boundaries predict a smaller volume change at high pressure for the transition than is indicated by

volume separation of the two isentropes. In some calculations the volume change for the phase change approached zero, a situation that

could be construed as the approach to a critical point. In all these calculations the results are suspect in the one Mbar region and above,

since the liquid Hugoniot used for the calculations has been extrapolated far beyond the original data.

Crystal Hugoniot

3 LO -

Figure 9. Pressure-particle velocity curves from 1.75 Mbar and 2.0 Mbar.
The solid curves were calculated from the crystal density Hugoniot and are currently being used in impedance-match solutions. The

dots are selected points on the release isentrope and were calculated from the liquid equation of state. It is apparent that the current solu-

tions are adequate.

volume compression {AVjVo)RT— iVo—V)l^o, as

T,„^Tl[l + a{AVIVo)HT]. (14)

Although the physical significance of the phenomena
is obscure, their results are impressive and worth

further investigation, especially with respect to

possible uniqueness of the room temperature

isotherm in predicting phase lines. We have already

noted the simultaneity of the phase line with the

boundary isentropes, and while the agreement is

close, it is not exact. In general the volume change
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for the transition decreases more rapidly than the

volume separation of the two isentropes. In the

temperature-volume plane this disagreement is

considerably magnified. This can be seen in figure 10
where the temperature and compression, AK/Kp/.,

along the phase line is compared with the tempera-
ture vs. compression along the two isentropes.

The Kraut-Kennedy relationship is also com-
pared in this plot. To obtain this plot we calcu-

lated the room temperature isotherm in the usual

manner from the crystal density Hugoniot. The
temperature-compression points were then tab-

ulated from the isotherm and phase line at fixed

pressure points. It can be noted that although these

points are fairly linear they do bend downward at

large compressions while the plotted isentropes

are concave upward. The Kraut-Kennedy curve
is more linear but suffers from the fact that the

a coefficient is not a priori predictable. Similar
P-T plots are given in figure 11.

5. Comparison of Shapes of the
Mehing Phase Lines with Compres-
sibility Data

In an earher paper [1] we compared the pres-

sure-temperature data along the melting phase line

with calculated pressure-temperature curves along
isentropes. For the few selected cases the slopes

of the isentropes, dPldT\s, were comparable but
smaller than those of the phase lines. In light of

the recent developments we have attempted to

make a more extensive study of existing data.

By considering the total differentials of the phase
line and the isentropes at the P—0 melting point
the relationship

dp dP
dV PI. dV s dp dP 1

dp dP dV PI. dV s. pyCv
dT PI. dT s

(15)

between the slopes along the phase line (designated
by PL) and isentropes (designated by S) can be
obtained. Examination of eq (15) shows that if the
P—V slopes are the same then the initial P— T
slopes will also be identical. If the pressure-volume
derivatives are not the same, considerably larger

discrepancies will be found for the pressure-tem-
perature derivatives. For this study it was decided
to compare both pressure-temperature and pres-

sure-volume derivatives.

With dS = 0, eq (11) gives

av
Vo

Figure 10. Temperature versus AV/V,).
The dots rfprcsfiit points calculated from the room .temperature isotherm and phase

line after Kraut and Kennedy. The solid line is simply a linear fit of the low pressure
region. The other two solid lines represent the actual compression along the phase
boundaries as given by the calculations. The dashed hnes are similar quantities ob-
tained from the isentropes plotted in figure 8. The initial agreement between the phase
line and isentrope along the liquid boundary is quite good but becomes rather poor at

higher temperatures, a manifestation of the more rapid decrease in the size of the
volume change on the actual phase line.
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dP
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dP
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Tmipy). (16)

Equation (15) can then be written as

Figure 11. Pressure versus temperature.
The solid line represents the calculated phase Une and the dashed lines the pres-

sure-temperature loci along the two Isentropes. As before the agreement between the
phase line and the calculated liquid isentrope is good initially. The phase line crosses
the solid isentrope at about one Mbar. indicating that although the isentropes do not
give the exact location of the phase line they indicate, in this case, that melting does
occur at nearly constant entropy.
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dp
dV PL

dP
dT

dP
dJ\

+ TCvipyy

PL dPldT\pL-{py)Cx
(17)

to find the P — V slopes of the phase line in terms

of other thermodynamic quantities. The quantity

dPjdV\s was computed from eq (10) and the re-

lationship

§\=-(»^y'- (18)

All quantities are computed at P= 0 at the melting

point. The product p7= constant, was determined
from room temperature quantities. Results of these

calculations are listed in table 2.

From these data it can be seen that the initial

P—V slopes of the isentropes at the phase boundary
are in general smaller than the P-V slopes of the

phase lines by several percent. This results in the

dsentropic slope, dPldT\s, being larger than the

slope of the phase line. The agreement is better

when phase lines are compared with the room-
temperature isentropic compressions. The room
temperature isothermal compressions will be

slightly larger and the zero-Kelvin compressions
slightly smaller than the latter. It would be fortunate

if the agreement were better so that these results

could be extrapolated to other materials with

greater confidence. However, one must keep in

mind that many of the quantities listed in these

tables are of a very dubious quality, and perhaps
the agreement, both good and bad, is fortuitous.

As was noted in the Kraut-Kennedy paper, their

law is an approximation of the equation

Tm= TI, exp [aAF/Fo]. (19)

This of course is the equation for the temperature
along an isentrope. Equation (11) when integrated

along the isentrope gives

r=ro exp [- {py)^v] (20)

where the compression is taken along the isentrope.

From the table it can be seen that eq (20) will give

very nearly the correct initial slope of the phase line,

better in general than that obtained when using the

isothermal compression at the phase line.

Table 2.

Material
"o '^O

s ^0
'a)

^P '^M
dP/dT|

^ •^PL*
c /c
PL' MP ^pl'^o

g/cm km/sec ergs/g°K °K g/cm km/sec kb/°K kb/°K km/sec

Li 0.53 4.65 1. 13 0.81 32. 80 X 10* 453 0.512 4.51 .28 .
300*' 4.32 0. 96 .93

Na 0. 968 2.63 1.22 1. 17 12.40 371 0.951 2.59 . 14 .120** 2.62 1.01 1.00

K 0.86 1.97 1. 18 1.23 7.53 337 0.851 1.96 .078 .078*' 1.96 1.00 1.00

Rb 1.53 1. 13 1.27 1.06 3. 35 312 1.51 1. 12 .057 .069'' 1. 11 0. 99 .98

Cs 1. 826 0. 70 1.57 0.54 2. 18 303 1.844 0.713 .058 .04o' .719 1.01 1.03

Cu 8.93 3.94 1.49 2.00 3.70 1356 8.368 3. 71 .40 .280*^ 3.87 1.04 .98

Ag 10.49 3.23 1.50 2.50 2.34 1234 9.658 3.00 .26 .210*^ 3. 12 1.04 .97

Au 19. 32 2.99 1.56 2. 97 1.30 1336 18.28 2.89 . 37 .
160*^ 3.53 1.22 1. 18

Mg 1.74 4.49 1.26 1.43 10. 00 923 1.640 4.28 .21 .148^ 4.42 1.03 .98

Zn 7. 14 3.01 1.58 2.45 3.69 693 6.98 2.95 .35 .225^ 3. 15 1.07 1.05

Cd 8.64 2.43 1.68 2. 32 2.30 594 8.419 2.36 .33 . 16o' 2.60 1. 10 1.07

Hg 13.54 1.49 2.05 1.96 1.39 234 14. 148 1.64 .09 .183'' 1.80 1. 10 1.21

Al 2.706 5. 17 1.47 2.0 8.63 933 2.540 4.88 .30 .17
^

5.28 1.08 1.02

In 7.279 2.42 1.54 1.97 2.43 430 7. 190 2.39 .48
e

.240 2.49 1.04 1.03

Tl 11. 85 1.86 1.52 2.25 1.30 576 11.66 1.84 . 30 . 160^ 1.95 1.06 1.05

Sn 7.287 2.61 1.49 2. 11 2.27 505 7. 176 2.57 .44 .30o' 2.63 1.02 1.01

Pb 11.34 2.05 1.46 2.77 1.30 601 10.984 2.02 .26 . 12o' 2.28 1. 13 1. 11

Nb 8.59 4.44 1.21 1.47 2.65 2693 8.047 4.25 .34 .200' 4.43 1.04 1.00

Ta 16.65 3.41 1.20 1.60 1.37 3270 15.39 3.26 .29 .200' 3.37 1.03 .99

Pd 11.99 3. 95 1.59 2.26 2.33 1823 11.244 3. 70 .35 .25^ 3.88 1.05 .98

Ft 21.42 3.60 1.54
1

2.40 1.27 2043 20. 174 3.42 .45 .240* 3.70 1.08 1.03

*CpL=V(-dP/dV

a. Rare Metals Handbook , 2nd Ed. , C. A. Hampel, ed. , Relnhold I>ubllshing Corp. , London (1961).

b. H. D. Luedemann and G. C. Kennedy, J. Geophys. Res. 73, 2795 (1968).

c. L. H. Cohen, W. Klement, Jr., and G. C. Kennedy, Phys. Rev. H5, 519 (1966).

d. A. v. Grosse, J. Inorg. Nuc. Chem. 27, 773 (1965).

e. A. Jayaraman, W. Klement, Jr. , R. C. Newton and G. C. Kennedy. J. PhyB. Chem. Solids 24, 7 (1963).

f. Metals Reference Book, Vol. 2, 2nd Ed. , C. J. Smithells, ed. , Intersclence Publishers Inc. , New York (1955).
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DISCUSSION

M. van Thiel (Lawrence Radiation Laboratory,
University of California, Livermore, California):

The graph of figure 10 indicates that the mixed
phase region increases with increasing temperature.
Would you comment on the significance of this?

Also, in figure 10, would you explain the meaning
of AF?

J. O. Erkman (U.S. Naval Ordnance Laboratory,

White Oak, Maryland): In experiments with porous

material, to what degree do you have a steady shock?
How much error is introduced from this source?

R. Grover {Lawrence Radiation Laboratory,

University of California, Livermore, California):

Is the value of A5 and at transition, and the

agreement between the isentrope and the melting
line, particularly sensitive to the assumption of

a constant value for pyl I have tried to estimate
the changes in gamma on melting, and find values

between, say, 10 percent and 20 percent.

F. R. Boyd, Jr. [Geophysical Laboratory, Carnegie
Institution of Washington, Washington, D.C.):

You mentioned the fact that there was no substance
for which there is a Hugoniot for both the solid

and the liquid. Since there is a Hugoniot for liquid

mercury, would it not be a practical and significant

experiment to freeze mercury and shock it?

AUTHORS' CLOSURE

In reply to van Thiel: It is difficult to judge the

size of the mixed phase region from figure 10.

From figure 8, however, it can be seen that the mixed
phase region decreases with increasing pressure,

or equivalently with increasing temperature. Of
course, if the phase line is indeed an isentrope,

then from the Clapeyron equation it must be this

that is causing the curvature of the phase hne
seen in figures 10 and 11.

In reply to Erkman: We assume that we have a
steady shock front. This is a bothersome problem,
particularly at very low pressures, and we do not
know to what extent we fail to realize this condition,

nor how much error is introduced. However, at

sufficiently high pressures, far above that required
for void collapse, steady state flow should be

attained. Much more work remains to be done on
the shock properties of porous materials.

Replying to Grover: Isentropes are not extremely
sensitive to the functional form of y(,v) , or even to

the value of y. However, the position of the phase
line is somewhat more sensitive to y{v), since y
is an important thermodynamic parameter dis-

tinguishing the two phases and is needed to calcu-

late the locus AC= 0. Here, the functional form of

y is much more important, and the assumption of

constant py may not be valid. Ten percent is about
the increase in gamma from the solid to the liquid

which we predict by this model, in good agreement
with Grover's estimate.

Dr. Boyd's suggestion for shocking frozen mercury
could, I think, be quite easily done, and would be
a most interesting experiment.
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Shear Strength Effects on Phase Transition "Pressures" Determined From
Shock-Compression Experiments*

O. E. Jones and R. A. Graham

Sandia Laboratories, Albuquerque, New Mexico 87115

Plane-wave shock compression experiments provide an independent, and often unique, method
for estabhshing pressures at which phase transitions occur in solids. The transition stress which is

measured in a shock experiment consists of two components: a mean isotropic pressure, and a devia-

toric shear stress which is related to the yield strength, i.e., the Hugoniot elastic limit (HEL), of the solid

when subjected to shock compression. The effects of the nonzero shear strength of a solid on the meas-
ured shock transition stress are discussed, and methods outlined for calculating the isotropic pressure

component needed for comparison with hydrostatic results. Comparison requires that the compression
to initiate the transition be independent of shear distortion. The shock propagation characteristics of

a solid which are necessary for establishing a reUable equilibrium transition pressure are considered.

Existing HEL data are collected in an Appendix and permit the importance of shear strength to be

assessed for various materials. Shock compression data for phase transitions in Bi, Fe, Ge, CdS, and
InSb are analyzed and shear strength corrections applied to obtain transition pressures.

1. Introduction

Discovery in shock compression experiments of

the "130 kbar" polymorphic transition in iron by
Bancroft et al. [1] > in 1956, the observation of a

shock-induced transition in bismuth [2], and the

subsequent identification of the iron transition in

static high-pressure experiments [3-8] have re-

sulted in interest in shock compression as a method
for establishing transition pressures. However,
because solids have nonzero shear strengths, shock
compression is not isotropic; if this shear strength

is a substantial fraction of the transition stress,

corrections to the shock measurements are required

to obtain values comparable to hydrostatic values.

Although it was recognized early [1, 9] that the

finite shear strength of a solid gives rise to an elastic

wavefront, whose amplitude is termed the Hugoniot
elastic limit (HEL), shock transition stresses have
frequently been directly compared to hydrostatic

values and have not been corrected for shear

strength effects. More recent development of tech-

niques capable of examining the elastic wavefront
in detail have yielded considerable HEL data which
can now be used to calculate isotropic pressures

from measured shock transition stresses, provided

that equihbrium conditions are achieved.

After accounting for the contribution of the

shear strength of the soUd to the shock transition

stress, the resulting value must be further corrected

to isothermal conditions for comparison with hydro-

static results. In most cases, the temperature cor-

rection is smaller than that for the shear strength.

In this paper, primary attention will be focused on
shear strength effects.

*This work was supported by the U.S. Atomic Energy Commission.

' Figures in braclcets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

The object of this paper is to survey effects of

the finite shear strength of a solid on the stress

component measured in a shock-compression ex-

periment [10] and to discuss how, in an idealized

situation, this value may be corrected for com-
parison with hydrostatic values [11]. Deviations

from this idealized behavior are examined, and an

extensive collection of Hugoniot elastic limit refer-

ences is reported and summarized in an Appendix.

Then, several representative phase transitions, for

which relatively complete data are available, are

discussed and finite shear strength corrections are

made. The compressions at which the shock and
hydrostatic transitions occur are evaluated to assess

the effects of shear on the transition pressures.

2. Stress Configuration Under Shock-
Wave Compression

2.1. Uniaxial Strain [10]

Although all static very-high-pressure experi-

ments involve some shear stress components, the

idealized experiment involves only isotropic pres-

sure, regardless of the pressure magnitude. On the

other hand, plane-wave shock compression produces
a precisely defined state of uniaxial strain in which
shear stresses can be appreciable. Uniaxial strain

is produced by simultaneously applying a uniform

normal stress over the entire face of a homogeneous
specimen in the form of a flat plate whose thick-

ness is much less than its lateral dimensions. For
a short period of time, before the arrival of unload-

ing waves from the lateral edges, symmetry requires

that each macroscopic volume element deform in

the same manner as the adjacent volume element;

thus, there is no net lateral deformation and com-
pression occurs only in the direction of shock
propagation.

This condition is illustrated in figure 1, where
the principal strains ey= ez in the plane of the plate
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UNIFORMLY LOADED

PLATE COMPRESSED

UNCOMPRESSED

Figure 1. Uniaxial strain compression ofa volume element

of an isotropic plate.

are maintained equal to zero by the principal lateral

stresses <Ty and cr^. (For an isotropic material the

lateral stresses are equal.) That uniaxial strain

compression intrinsically involves shear strain is

immediately evident from figure 1. The angular,

change 6 in the original right angle between the face

diagonals of the cube is equal to tan~' y, where y
is the engineering shear strain. Because a soUd has
nonzero shear strength and can resist shear de-

formation the lateral stresses Cy and cr^ will not be

equal to the stress ctj, and the stress state is aniso-

tropic. In shock experiments, the stress component
(Tj- acting normal to the shock front is determined;
except by inference, the lateral stress components
are unknown.

Thus, because of this stress anisotropy, shear
stresses are generated on planes inclined to the

shock front. Their magnitude is limited by the shear
strength of the solid. When the magnitude of the

maximum shear stress exceeds some characteristic

limiting value, the solid loses its resistance to shear
deformation and yields in a manner which may be
either plastic or brittle in character. In general,

shear stresses are present in the yielded state above
the yield point; however, in contrast to the elastic

state, they undergo only small changes with in-

creasing compression.
A representative stress-volume Hugoniot curve

is shown in figure 2 for a solid which exhibits both

a simple yield point and phase transition point.

The yield point stress, obtained under shock con-

ditions of uniaxial strain, is commonly termed the

Hugoniot elastic limit (HEL). By "simple" we mean
that rate effects are negligible and stress equilib-

rium is achieved. In this case shock wave propaga-

tion is steady, and the HEL and the transition

stress have time-independent values. (Deviations

from simple behavior will be discussed later.)

In this case, the Hugoniot jump relations [10],

expressing conservation of mass, momentum, and
energy, describe points of the Hugoniot curve:

1
Vi ~U-Ui'

T, TRANSITION

H, HEL

1.0 V/V„

of

-TRANSITION
WAVE

EUSTIC.
WAVE

(a) STRESS - VOLUME HUGONIOT (b) STRESS - POSITION PROFILE

Figure 2. (a) Hugoniot stress-volume curve for a solid exhibiting

simple yield and transition points, (b) Corresponding multiple-

wave stress-position profile for driving stress cri.

— (Txi = PiiU— Ui) (u — Ui), (2)

(3)

where tj is the compression, F( = l/p) is specific

volume, p is density, (Tj- is the stress component
acting normal to the shock front, U is laboratory

shock velocity, u is particle velocity, and the sub-

script i denotes the state of the material ahead of

the particular shock front under consideration.

2.2. Elastic-Plastic Behavior [1214]

For an isotropic, plastically yielding solid, further

insight into shock compression results from ex-

pressing the stress o"x in terms of its spherical,

of hydrostatic, component P and its deviatoric,

or shear, component r. By definition,

P = ^{(Tx + (Ty+(T;:)=(Tx—l{(rx — Cry), (4)

where, for an isotropic, homogeneous soUd, (Ty=(rz

by symmetry. The maximum resolved shear stress

occurs at 45° to the plane of the shock front and is

given by.

1
(ax— a-y). (5)

Combining eqs (4) and (5),

(Tx^P+-^ T,

cry= P-^r.

(6)

(7)

(1)
Equations (6) and (7) are true regardless of the

stress-strain relation for the solid.
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For stresses below the HEL in figure 2, Hooke's

law applies, and, for uniaxial strain (ey=ei=0),
becomes,

for cTx ^ (r§. (8)

^-3 /A] T7' for o-x ^ (T§, (9)

where is the bulk modulus, /a is the shear modulus,

and a" is HEL value of the stress ctx- Equations (8)

and (9) relate ctx and (Tyi

a-y — CTz
1

(Tx for CTx ^ Ox, (10)

where v is Poisson's ratio. For most isotropic solids

V = 1/3; thus, for an isotropic material stressed

below the HEL, the lateral stresses (of. fig. 1) are

about one-half the applied stress. The maximum
resolved shear stress is obtained from eqs (5) and

(10),

-fM7),{0Ta-x^CT^, (11)
2il-v)

while the mean pressure P is, from eqs (6) and (11),

5 jl + v) „P^^. T CTx, for (Tx
3(1-1')

= Krf

(12a)

(12b)

which for v= 1/3 is equal to about two-thirds of the

applied stress <Tx- If the bulk modulus K is under-

stood to be dependent on compression 17, eq (12b)

is also applicable for 0"x > cr".

Equation (11) shows that as ctx and tj increase,

the maximum resolved shear stress r increases.

Because the shear strength of a solid is finite, the

material will fail in shear at some critical value of

stress (Tx corresponding to the HEL. This loss of

shear resistance results in a sudden increase in the

compressibility of the material and is responsible

for the cusp at point H in figure 3. The stresses (Tx,

P, and T are shown schematically in figure 3. Trans-

formation of the material to the new phase at point

T in figure 3 again results in an abrupt increase in

the compressibility and a cusp in the Hugoniot

curve at point T. The cusps at points H and T create

concave downward regions in the Hugoniot curve,

and result in the propagation of the multiple wave
structure [10] shown schematically in figure 2.

For elastic-perfectly plastic behavior the shear

stress above the HEL is idealized as having a con-

stant value, independent of the stress amplitude, as

shown in figure 3. This limiting shear stress t* is,

from eq (11),

2 (l-i^)
(13)

P,

OR
T

V T, TRANSITION POINT

O-^ , EXPERIMENTALLY DETERMINED
HUGONIOT CURVE

I-

H. HUGONIOT ELASTIC

i\ LIMIT

1.0

Figure 3. Schematic diagram of the stress-volume behavior

of a simple, elastic-perfectly plastic solid subjected to shock

compression.

It is likely that t* will increase somewhat with

increasing compression as a result of work-harden-
ing; however, for our purposes, we will ignore work-
hardening as a higher order effect because its

influence on (Tx (cf. eq (6) and fig. 3) will be smajl

due to the dominance of the mean pressure P.

It has also been^ suggested that t* may increase

with increasing P. In the case of r* constant, the

Hugoniot curve, as shown in figure 3, is parallel

to the isotropic compression curve and offset above
it by an amount (4/3)t* If the HEL is measured,
then the mean pressure P can be calculated from
the measured values of ctx-

Early measurements by Fowles [14] and Lunder-
gan et al. [15] demonstrated that an elastic-perfectly

plastic model adequately described the shock com-
pression of aluminum. More recent measurements
[16—22] with improved time resolution show detect-

able rate effects in aluminum and other metals;

but, it is observed that these effects do not cause
significant departures from the final stress-volume

states predicted by the elastic-perfectly plastic

model.
Summarizing, in a simple (rate-independent) iso-

tropic material exhibiting elastic-perfectly plastic

behavior, a shock-induced phase transition occurs
in the presence of shear stresses which cause a

difference between the measured shock transition

stress and the transition pressure determined hydro-
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Figure 4. Alternative procedure for determining the transition

pressure for a simple solid which does not have a sharply

defined HEL.

Statically. Because of these shear stresses, a transi-

tion pressure calculated from the shock transition

stress is comparable to the hydrostatic transition

pressure only if it can be assumed that the shear

stress does not aid in initiating the transition. One
way of testing this assumption is to experimentally

determine whether a characteristic compression

7]T will initiate the transition, independent of shear

stress amplitude. If the assumption is justified, and
if temperature effects are negligible, then the

transition pressure which should be compared with

hydrostatic results is Pt, and not the shock transi-

tion stress crS. From eqs (6) and (13), and figure 3,

Pr= o-?-| ^Z'^';^ o-g-o-?-|^Vg, (14a)
3 (1 — f ) 3 Cr

= K'nH+{o-%-a-^), (14b)

where Cg and Ci are the ambient pressure shear

wave and dilatational wave velocities, respectively,

and 17// is the value of the compression correspond-

ing to cr". For 1^=1/3, the correction amounts to

about one-third the value of the HEL. Only if the

stress crj at which the shock-induced phase transi-

tion occurs is several order of magnitude greater

than the HEL is it reasonable to neglect the correc-

tion in eq (14) and assume that crj is essentially an

isotropic pressure. In any event the HEL must be

measured in addition to the transition stress before

the effects of shear strength can be accurately

assessed.

For anisotropic solids, such as many single crys-

tals, (Ty 7^ (Tz and the above development leading

to eq (14a) is not applicable. However, if the material
continues after yielding to withstand a limiting shear
stress T*, then the offset between ctj- and P is con-

stant, and the transition pressure Pt may be cal-

culated from eq (14b) and from statically measured
values of the bulk modulus K.

2.3. Deviations

It is reasonable to expect that all solids will ex-

hibit significant nonequihbrium and strain-rate

phenomena during some time interval (or, over some
propagation distance) immediately following shock
loading with the result that the transition stress

and/or the HEL will not exhibit simple behavior.

In these cases shock wave propagation is nonsteady
and the Hugoniot equations (1)—(3) are not properly
applicable. However, in the absence of any alter-

native theory, they are commonly used to reduce
nonsteady shock data and obtain some kind of

averaged value.

Experimentally there are two common ways of

testing for nonsteady behavior of both transition

waves and elastic waves. One method is to vary

the shock propagation distance by changing the

specimen thickness. In general, if the transition

and HEL values depend on propagation distance,

the values decrease with increasing distance and
appear to asymptotically approach an equilibrium

value. A second method is to vary the driving shock
stress appUed to the specimen and see if the jump
properties of the shock front are affected. In general,

smaller overstresses result in smaller deviations

from simple behavior. In establishing a transition

pressure from shock compression experiments,
nonsteady behavior must be minimized; thus, the

input driving stress should be only slightly above
the transition stress and shock measurements
should be performed only at propagation distances

large enough to permit equilibrium conditions to

be approached [23].

In some cases, even though the elastic wave-

front is steady, the HEL may not be sharply defined,

as shown in figure 4. In this event the transition

pressure may be determined by an alternative

procedure which is still based on the elastic-plastic

concept of a constant offset between ax and P. As
shown in figure 4, a point A is chosen in the plastic

state so that the slope of the Hugoniot curve passing

through it defines the bulk modulus K. The transi-

tion pressure is then given by

PT= KA'nA+{<rl-(Ti), (15)

where the subscript A denotes the point A on the

Hugoniot curve.

A complication for brittle solids is that there are

some indications that they cannot support shear

stress following yielding (t* = 0), so that the final
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shock state lies on a Hugoniot curve corresponding

to compression by an isotropic pressure and no
HEL correction is required. As suggested in

figure 5, the HEL for a brittle solid is, in general,

dramatically large and can exceed a hundred kilo-

bars. In addition the HEL is observed to increase

substantially with increasing driving stress. Such
behavior has been observed for quartz [24]. Whether
or not the high-pressure states lie on an isotropic

pressure curve can be deduced by comparing the

Hugoniot curve with the statically determined
hydrostat.

2.4. Shock Determinations of Transition
Pressures

Although deviations from simple behavior, such
as those discussed above, are of physical interest,

their effects are highly undesirable if a fixed point

transition pressure is to be obtained from shock-

compression experiments. This is necessarily true

of rate effects because of the inadequacy of present

shock-wave theory for describing such phenomena.
Thus, the most reliable transition pressures will

be obtained for solids whose shock response most
nearly approximates the simple, elastic-perfectly

plastic behavior outlined earlier for both the HEL
and the transition stress.

In general, a series of experimental measurements
must be performed to establish whether the material

will exhibit simple behavior, i.e., the HEL and the

transition stress have time-independent values, for

experimentally feasible specimen thickness (con-

sistent with the uniaxial strain requirement) and
driving stresses. Provided this is possible, the Hugo-
niot curve in figure 3 can be established and the

transition pressure Pt calculated from eq (14) for

the compression rjr. However, it remains to be
demonstrated in each instance that the shock tran-

sition occurs at the same specific volume as the

hydrostatic transition.

A temperature correction to the shock transition

pressure Pt can be estimated [2] by assuming that

the temperature at which the transition begins to

occur can be approximated by the isentropic

expression

0=6>o exp (Lorj), (16)

where Oo is the initial temperature and To is the

Griineisen parameter at zero pressure. The change
in the transition pressure due to this temperature
rise is

APr= {dPldd)Ad, (17)

where did = 6 — 6o is the temperature rise, and dPjdO
is the slope of the pressure-temperature phase line.

If necessary, dPjdO can be estimated from shock
compression data taken in the mixed-phase re^on
above the transition point £2, 25]. Because APr is

usually much smaller than Pt, a more sophisticated

analysis is normally unwarranted.

Figure 5. Schematic diagram of the stress-volume behavior ofa
brittle solid subjected to shock compression.

3. Survey of Hugoniot Elastic Limit
Measurements

The considerations of the preceding sections

show that a measured shock transition stress should
not be directly compared with the corresponding
hydrostatic pressure without first evaluating shear
strength and temperature corrections. Conse-
quently, shock compression studies should include
simultaneous measurement of the HEL, as well as

the transition stress.

Hugoniot elastic limit measurements often require
different techniques than those employed for higher-

stress shock measurements. This results from both
the requirement to detect smaller amplitude dis-

turbances as well as the requirement for better

time-resolving capability to remove apparent ambi-
guities in observed behavior. These improved tech-

niques are of recent development and far fewer
HEL measurements have been reported than have
strong shock measurements [26].

Table A of the Appendix is a survey of existing

HEL measurements. Except for geological materials

it is reasonably comprehensive, containing about
120 entries describing about 50 materials, and per-

mits the importance of shear strength effects to

be assessed for a variety of materials. The measure-
ments are grouped according to the following

material classes: (i) metals, (ii) brittle single crys-

tals, and (iii) polycrystalline ceramics. Where
appropriate, each entry describes the metal-
lurgical condition of the material, a reported
value for the HEL, remarks which include the prop-
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agation distance (specimen thickness) and com-
ments describing significant departures from steady

behavior, the shock loading method employed, the

measurement technique used, and the information

source. Assignment of a unique HEL value to an
elastic wavefront is often not obvious (cf. fig. 4);

howrever, a representative value can generally be
chosen, and this is given in the table. Although the

table provides a reasonably complete summary of

experimental results, individual references should

be consulted for specific details. Private com-
munications and abstracts have been used only for

recent measurements of particular interest.

From table A it is immediately apparent that many
materials exhibit time-dependent strain-rate effects

in as much as their Hugoniot elastic limits decrease
with increasing propagation distances. Stress re-

laxation immediately behind the elastic wavefront

is further evidence of time-dependent behavior.

Only at the larger propagation distances can a

steady value for the HEL be expected. For example.

for iron the HEL decreases by less than 10 percent
for propagation distances exceeding about 25 mm
[27].

For metals, it can be seen that the HEL seldom
exceeds a few tens of kilobars; in contrast, for

brittle single crystals and polycrystaUine ceramics
it commonly exceeds fifty kilobars and may be as

high as several hundred. Most of the observed HEL
values are large enough to warrant corrections to

the transition stress measurements. Also, it is evi-

dent from table A that HEL values are strongly

influenced by the structure-sensitive properties

of the materials and, hence, are best measured
directly for the material under consideration.

4. Comparison of Shock and Static
Transition Pressures

In this section, several representative static and
shock transitions, which have been relatively well

characterized, will be compared. Bismuth is of

Table 1. Comparison of several shock and static transitions

Material

condition

Bismuth 11

Fe poly-

crystalline

Ce'' [111]

crystal

CdS " InSb"

Cast Pressed
Crystal

a-axis c-axis a-axis c-axis [100] [111]

a'x, kbar 25.6 25.4 24.6 25.6 /129 136-142 28 32 20 17

Pt. kbar "25.7 "25.5 '24.3 <-25.5 "125 114-122 " 18 " 18 ^3 '9

P static, kbar " 25.48-25.50 " 118 ' 120-125 23 '23

' 133

177- shock, percent 6.1 6.0 5.8 6.1 /6.4 12-13 3.3 3.3 3.0 2.1

r)T static, percent ^6.4 j 6. 1-6.6 12.5 1' 4.8 ' 4.6-5.3

" Shock data from D. B. Larson, ref. [11].

" Calculated from eq (14a).

' Calculated from eq (14b) and the bulk modulus value given by A. A. (iiardini et al., ref. [30].

« P. L. M. Heydemann, ref. [29].

'A. A. Giardini et al, ref. [30].

^T. R. Loree et al.. ref. [23].

" Calculated from eq (14b) and the HEL data of J. W. Taylor et al., ref. [27] Pt has not been corrected for the effect of temperature,

estimated to about plus 1 kbar.

" W. Stark et al., ref. [43].

' A. S. Balchan et al., ref. [3].

J Values computed from the lattice parameter measurements of H. K. Mao et al., ref. [8], at the transition pressures given in refs.

[3] and [43].

* Shock data from R. A. Graham et al., ref. [34]. Pr has not been corrected for the effect of temperature, estimated to be about

plus 1 kbar.

' S. Minomura et al., ref. [35].

'"J. C. Jamieson, ref. [36].

" Shock data from J. D. Kennedy et al., ref. [37].

" Calculated from the observed -qr shock and the bulk modulus value given by G. A. Samara et al.. ref. [38]. Temperature corrections

are negligible.

G. A. Samara et al., ref. [38].

"Shock data taken from refs. [40] and [41].

' Calculated from the observed rjr shock and the bulk modulus value given by R. E. Hanneman et al., ref. [42]. Temperature correc-

tions are negligible.

' R. E. Hanneman et al., ref. [42].
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Figure 6. Effect of shear stress on the shock compression tit at

which the iron transitions occurs.

interest because it is used in static calibrations and
differences between static and shock transition

pressures have been reported [2]. Iron will be con-

sidered and a shear strength correction applied to

the transition stress after analyzing experiments

which examine the effect of shear on the transition.

Germanium provides an interesting example of a

phase transition in a solid with a large elastic limit.

Finally, cadmium sulfide and indium antimonide

will be considered since they apprently exhibit

phase transitions in the range of elastic compres-

sion. Values associated with these transitions are

summarized in table 1.

Temperature corrections calculated from eqs

(16) and (17) show about a 1 kbar correction for

all the shock transitions listed in table 1. Thus, only

in the case of the Bi transition is the temperature
correction comparable to the shear correction.

4.1. Bismuth

Duff and Minshall's shock measurements of the

Bi l-II transition [2] were reported shortly after

the discovery of the iron transition. This transition

is now well established statically [28-30] and
affords an excellent opportunity for a direct com-
parison of shock and static measurements. Duff and
MinshaU's measurements showed that the shock
transition stress was higher than the hydrostatic

value. They speculated that one source of the differ-

ence might be a shear strength effect which their

detection method could not observe.

Recently, Larson [11] published an extensive

investigation of the Bi I-II transition under shock-

wave loading which appears to resolve the differ-

ences between static and shock values. The
instrumentation which he employed had much
better time resolution and better low pressure

sensitivity than that employed in the earlier studies.

Some of his results are compared to the correspond-

ing hydrostatic values in table 1. The shock com-
pression required to initiate the transition stress

agrees with the static value [30] to within experi-

mental error. A shear strength correction of —0.8
kbar was calculated [11] from the observed HEL
values for polycrystalline material. The high com-
pressibility of Bi and the large slope of its phase
line combine to yield a substantial temperature
correction of + 0.9 kbar.

When these corrections are made, the calcu-

lated shock transition pressure Pt is in agreement
with the static value to within experimental error.

Further, the shear stresses present during shock
compression do not significantly influence the tran-

sition. This latter observation is in agreement with

the conclusion reached by Heydemann [29] in

comparing his hydrostatic data to the static data

of Kennedy et al. [28]

.

4.2. Iron

The "130 kbar" transition in iron has been widely

used for pressure calibration. The measured HEL
values (cf. table A) are large enough to warrant a

shear strength correction to the transition stress.

However, before making this correction, we will

consider the evidence which indicates that the

shock transition is not affected by shear stress.

MinshaU [31] and Loree et al. [23], have reported

experiments which permit the effect of shear on the

transition to be quantitatively evaluated. The HEL
of iron can be changed with heat treatment and/or

small additions of carbon. In this manner, MinshaU,
and Loree et al. varied the HEL from 7 to 19 kbar and
measured the characteristics of the shock transition.

These data are shown in figure 6 where the com-
pression to initiate the transition, r}T, is plotted

for various HEL values. It is apparent that 177- is
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unchanged even though the shear stress varies by a

factor of three [32]. These data indicate that the
shock transition is not influenced by shear stress

and the shear strength correction to the observed
transition stress can be applied according to

eq (14a). This conclusion does not preclude the

possibility that shear stresses might affect the

kinetics of the transition.

For annealed Armco iron, Loree et al. [23] re-

ported the iron transition stress to be 129 kbar at a

volume compression 177- of 6.4 percent for a propaga-
tion distance (sample thickness) of 25.4 mm and
minimum applied driving pressure. They did not

simultaneously measure the HEL; howrever, the
HEL of iron has been sufficiently characterized to

permit a shear strength correction to be calculated.

Basing the shear strength correction on the HEL
value of 8.3 kbar measured by Taylor et al. [27]

for 25.4-mm-thick annealed Armco iron specimens,
the transition pressure Pj is calculated to be 125
kbar. Stress relaxation and other deviations from
steady behavior should not introduce more uncer-
tainty than ±0.5 kbar.

The shock transition pressure and compression
values are in general agreement with static results,

although the range of static values given in the liter-

ature is substantial. It vyrould be highly desirable

to have values for the hydrostatic compression at

the transition. This would be of interest because of

the anomalously low values of the bulk modulus
reported for shock compression of iron below the

transition [27].

4.3. Germanium

Germanium has not been extensively investigated

under shock compression but we consider its

transition because it is an example of a transition

in a material with a relatively large HEL. For shock
propagation in the [111] direction, the transition

stress o-j has a value of about 139 kbar, and has
been shown to correspond to a solid-solid transition

from the diamond to the white tin crystal struc-

ture [34]. The HEL is about 44 kbar. The static

transition occurs at about 120 kbar [35]; clearly

shear strength effects cannot be ignored if the two
values are to be compared. As can be seen from
table 1, the transition occurs at very nearly the same
compression for both shock and hydrostatic load-

ing, which indicates it is insensitive to shear stress,

in agreement with static observations [36]. The
shock transition pressure Pt calculated from
eq (14b) is between 114 and 122 kbar, which
compares well with the static value of from 120
to 125 kbar. The effects of shock heating are esti-

mated to affect the shock transition pressure by
less than 1 kbar, an amount smaller than the experi-

mental uncertainty.

4.4. Gadmium Sulfide and Indium
Antimonide

The transitions in CdS and InSb occur at rela-

tively low pressures and are especially interesting

since they apparently occur below the HEL. Be-
cause of this, there is the possibility of an incorrect

identification of the transition wave as an elastic

wave or vice versa. Kennedy et al. [37] have con-

sidered this question and base their identification

of the transition in CdS on the very large (~ 18
percent) volume change indicated between first and
second wave. We have computed the shock transi-

tion pressure from the observed shock compression,
T7r, and hydrostatic high-pressure bulk modulus
values [38]. The shock transition pressure is sig-

nificantly lower than the hydrostaticaUy observed
transition pressure [38]. Conversely, the hydro-
static compression -rjr is larger than the shock com-
pression [38]. Thus, the wurtzite-to-rocksalt transi-

tion in CdS, which is martensitic in character [39],

is influenced by shear.

Similarly, InSb appears to exhibit an even greater

sensitivity to shear. The shock values shown in

table 1 were obtained by Kennedy [40, 41] in experi-

ments identical to those used to study CdS, and are

as yet unpublished. His identification of the transi-

tion wave is again based on the very large volume
change (10 to 14 percent) between the first and sec-

ond wave values. The shock transition pressure cal-

culated from the observed compression and the

static bulk modulus [42] is only about 60 percent of

that observed statically. In addition, the compres-
sion observed under shock is roughly one-half that

observed statically [42]. If the identification of the

transition is correct, these values indicate an enor-

mous influence of shear on this transition.

5 . Summary

The transition stress measured in shock com-
pression experiments consists of both pressure and
shear components. If the shear strength of a solid is

very small, it is reasonable to assume, as has been
widely done, that the measured stress is essentially

a transition pressure. However, for solids which
have a large HEL and a phase transition occurring

at relative low stress, such an assumption is not

justified and a shear strength correction is required

to determine the mean transition pressure. Precise

characterization of phase transitions observed in

shock experiments should include such correc-

tions and, to do this studies of the HEL need to be

undertaken at the same time the phase transition is

being studied. The corrections are valid only if it

can be demonstrated that the transition is not

influenced by shear. Sensitivity of the transition to

shear should be carefully evaluated before an ob-

served shock transition is used as a static calibra-

tion point.
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8. Appendix— Table A. Summary of Hugoniot Elastic
Limit Measurements

Material Condition " (Theu kbar * Remarks Technique Reference

METALS

Iron Alloys

Armco iron annealed 7 25 mm E-1 Bancroft et aL (1956)

Armco iron AR, annealed 15-7 25-133 mm E-1, 14 Mmshall (1961)

Armco iron normalized 8-7 20-51 mm + * E-5 ¥ -1/1 C\ \

Jones et aL (1962)

Armco iron annealed 11-7 6-51 mm + * T? £L-6 Taylor et al. (1963)

Armco iron . . 10 25-60 mm + * T^ "7E-7 T .1/1 O \

Ivanov et al. (1963)

Armco iron annealed 12-6 6-40' mm+* E-12 McQueen (1964)

Armco iron .. 11-8 4-18 mm + E-12 Tl . 1 / T A^ ^ \

reyre et aL (1965)

r errovac t, iron varied 12-6 12 mm* T? rL-5 Holland (1967)

r errovac L iron annealed 10 13 mm*, temp T? rL-5 D 1 J /I A^O \nohde (1968a)

76-573 K
SAE 1018

1 - Inormalized 13-10 20-51 mm + * E-5 Jones et aL (1962)

SAE 1018 annealed-cold 16-9 19 mm T^ rL-5 T i 1 / 1 C\C A \

Jones et aL (1964)

roUed

SAE 1018 varied 12 19 mm* E-5 T . 1 /T A*r A\
Jones et aL (1968)

SAE 1020 ,
10-12 127 mm E-1 Minshall (1955)

SAE 1020 AR, annealed 15-11 50-127 mm E-1 Minshall (1961)

SAE 1020 AR 10 51-76 mm E-1 Costello (1957)

SAE 1040 11 127 mm E-1 Minshall (1955)

SAE 1040 AR, annealed 6-14 127 mm E-1 Minshall (1961)

SAE 1055 AR, annealed 13-15 125-127 mm E-1, 14 Minshall (1961)

SAL 1055 varied 8-15 25 mm E-14 Loree et al. (1966)

1% carbon-iron varied 12-17 25 mm E-14 Loree et al. (1966)

1.5% carbon-iron vaned 16-19 25 mm E-14 1 • 1 /T A^ ^ \

Loree et al. (1966)

2% carbon-iron vaned 15-21 25 mm E-14 T . 1 /T A^ ^ \

Loree et al. (1966)

SAE 4340 annealed 19-14 6-50 mm+* G-5 Butcher et aL (1968a)
CAT? O >1ASAL 4340 annealed 23-21 3-6 mm G-8 Graham et aL (1967b)
CAT? A Af\SAL 4340 RL-15 17 25 mm E-14 H/f* 1 11/1 (\£. 1 \Minshall (1961)

SAL 4340 T3 T rRL-15 1 /— 19 12 mm G-2 X\ .1 .1/1 AZT A \

Butcher et aL (1964)

SAE 4340 RC-30 16 23 mm E-5 Jones et al (1962)

SAE 4340 RL-32 16-20 12 mm G-2 .1 .1/1 A/" A \

Butcher et aL (1964)

SAE 4340 RC-35 25 25 mm E-14 "KIS' 1 11/1 A/T 1 \

Minshall (1961)
£? 1 A f> A i\SAE 4340 RC-40 20-18 20-51 mm E-5 Jones et al. (1962)
OAT? A O A f\SAL 4340 RC-50 22 23 mm E-5 Jones et aL (1962)

SAE 4340 RC-54 14-31 12 mm G-2 Butcher et aL (1964)

Hampden tool steel RC-20 14 l9 mm E-5 Jones et aL (1962)

Hampden tool steel RC-62 ~ 22 19 mm0 E-5 Jones et aL (1962)

Hampden tool steel RC-66 > 24 19 mm0 E-5 Jones et aL (1962)

SAL 347 stainless steel AR 6 127 mm E-1,14 Minshall (1961)

3% silicon-iron crystal ~ 7 13 mm* G-6 Taylor (1968)

3.34% sUicon-iron annealed 10-9 6-25 mm+* E-5 Mote (1968)

Invar, 36% nickel-64% iron AR 13 wedge E-10 Curran (1961)

Invar, 36% nickel-64% iron annealed 5 13 mm G-5 Graham et aL (1967a)

30% nickel-70% iron annealed 5-3 10-13 mm G-5 Graham et aL (1967a)

30% nickel-70% iron martensitic ~ 20(ramp) 13 mm0 G-5 Graham et aL (1967a)

Russian steel 3 AR 13-6 20-120 mm+* E-7 Ivanov et aL (1963)

Russian steel 30khGSA annealed 17 60 mm+*
"

E-7 Ivanov et al. (1963)

Russian steel SOkhGSA hardened 18 60 mm+* E-7 Ivanov et aL (1963)

Austenitic manganese steel RB93 8 6 mm E, G-5 Champion (1968)

304 stainless steel RB77 6 6 mm G-5 Butcher (1968b)

Vibrac RC36 21 51-76 mm E-1 Costello (1957)
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8. Appendix— Table A. Summary of Hugoniot Elastic
Limit Measurements— Continued

Material Condition "
o-HEL, kbar * Remarks Technique Reference

Aluminum Alloys

2024 T-4 5 wedge E-10 Fowles (1961)

2024 annealed 1 wedge E-10 Fowles (1961)

2024 4 25 mm E-5 Jones et al. (1962)

2024 .. 6 E-6 McQueen (1964)

2024 T-4 13 mm G-6 Taylor (1968)

6061 T-6 6 13-25 G-1 Lundergan et al. (1963)

6061 T-6 5 6 mm G-5 Halpin et al. (1963)

6061 5-7 25 mm G-2 Barker et al (1964b)

6061 T-6 5 13 mm G-4 Barker (1967)

6061 T-6 6 13-64 mm G-2 Butcher et al. (1966)

1060 annealed 0.3-0.5 25 mm* G-4, 5 Barker et al. (1966)

1060 annealed 0.6-0.2 6-24 mm+* G-4 Karnes (1967)

Russian alloy D-1 annealed 4U-1ZU mm L-7 INovikov et al. (l\)oo)

Russian alloy D-16 annealed 3-2 30-80 mm+ E-7 Novikov et aL (1966)

temp 283-473 K
Russian alloy U-16 hardened 5 30 mm L-7 INovikov et al. (1966)

French alloy AU4G 8 E-12 Peyre et al. (1965)

Other Metals

Copper, crystal [001] 2 5mm* E-5 Mote (1968)

[Oil] 1 5mm* E-5 Mote (1968)

[111] 1 5 mm* (relax- E-5 Mote (1968)

ation sup-

pressed by
prestrain)

Copper, polycrystal .. —0.5 (ramp) 5 mm© E-5 Mote (1968)

Copper annealed 0.6-0.4 20-30 mm E-7 Novikov et al. (1966)

temp. 283-473 K
Copper annealed ~ 0.4 (ramp) 13 mm0 G-6 Taylor (1968)

Copper annealed ~ 0.5 (ramp) 0 E-2,3 Munson et al. (1966)

Copper cold worked 0 G-6 Taylor (1968)

Lead annealed <0.2 E-2 Munson et al. (1966)

Brass annealed 3-2 30-80 mm+ E-7 Novikov et aL (1966)

Brass ~8 6 mm0 E-5 Benedick (1965)

Beryllium, crystal c-axis 40 * G-6 Taylor (1968)

Beryllium, crystal a-axis 4 * G-6 Taylor (1968)

Beryllium, sintered .. ~ 2 (ramp) 0 G-6 Taylor (1968)

Tantalum annealed G-6 Taylor (1968)

Niobium annealed G-6 Taylor (1968)

Thorium G-6 McQueen (1964)

Uranium 0 G-6 Taylor (1968)

DisIIlULIlf K^l y OtcU 3 1-3 mm Hj, VT o I Qi-crtn /I Qf\7\i_<arson \iy\jt)

Bismuth, polycrystal cast ~ 2 (ramp) 2-13 mm0 E, G-5 Larson (1967)

DibiiiuLii, puiycrysiai cast ~ 4 (ramp) 2 mm0 Present work

Tungsten annealed 38 10 mm G-5 Rohde (1968b)

Antimony cast 17-2 5-49 mm+ E-1 Warnes (1967)

BRITTLE SINGLE CRYSTALS

Quartz (SiOi) JC-CUt 94-48 5-25 mm+* E-9 Wackerle (1962)

Quartz (SiO.) x-cut 66-55 6 mm* E-11 Fowles (1967)

Quartz (SiOi) y-cut 110-82 10 mm* E-9 Wackerle (1962)

Quartz (SiO^) y-cut 86-65 3^ mm* E-11 Fowles (1%7)

Quartz (Si02) z-cut 145-120 10 mm* E-9 Wackerle (1962)
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8. Appendix— Table A. Summary of Hugoniot Elastic
Limit Measurements— Continued

iviatenai Condition "
o-HEL. kbar ° nemarks 1 ecnnique Keierence

Quartz (SiO.) z-cut 148-100 3-6 mm* E-11 Fowles (1967)

Quartz (SiOi) z-cut 145-60 ... E-12 Peyre et al. (1965)

Quartz (SiOa) fused 98 (ramp) 10-13 mm 0 E-9 Wackerle (1962)

Sapphire (Al^On) 60° cut
1 OA 1 '7A120-170 10-13 mm ti-y Brooks et aL (lyoo)

Sapphire (AliO:)) z-cut
1 OA OAA120-200 10-13 mm Brooks et al. (iy66)

Sapphire (Al^Orj) JC-CUt 135-180 ll)-13 mm Brooks et ai. (iyb6)

Germanium [111] 44 8 mm G-? Graham et al. (iy6o)

Oermanmm [111] 41-35 6-12 mm* E-12 McQueen (1964)

Germanmm [100] 53-46 6-12 mm* E-12 McQueen (1964)

(jrermanium [100] 45 7 mm* E-5 Kennedy (1968)

(-rermanium [100] 47 6 mm* r* oG—

o

trraham (iyo7b)

Germanium [114] 6-12 mm* E-12 JVlcyueen (1964)

Sihcon crystal free surface velocities McQueen (iyo4)

50% higher than Ge values.

Cadmium sulhde (Las) c-axis >32 (*) Kennedy et al. (1966)

Cadmium sulnde (Cdb) a-axis >28 (*)
17 CE-5 T/^ J A 1 /T A^£\Kennedy et al. (1966)

indium antimonide (Inisb) [100] >20 ... E-5 Kennedy et aL (1965)

Indium antimonide (Insb) [111] >17 T7 C Kennedy et al. (1965)

Indium antimonide (InSb) [110] >20 E-5 Kennedy et al. (1965)

Titania (TiO,) [100] 70 6 mm E-13 Linde et al. (1968)

Titania (TiO.) [001] 100 6 mm E-13 Linde et al. (1968)

Sodium Chloride (NaCl) [100] -0.3 5-14 mm* E-5 Benedick (1968)

POLYCRYSTALLINE CERAMICS

Lucalox (Al.O:,, po = 3.98) 99-123

Alumina (AI2O3, Po = 3.92) 140

Alumina (AlAi, Po= 3.81) 67-100

Alumina (AI2O:!, po = 3.76) 58-72

Alumina (AI2O3, po= 3.72) 8.0

Magnesium

Oxidei(MgO,po = 3.58) 89-35

Boron Caibide (BX, p., = 2.50) 150

Barium titanate (BaTiOn) 25

Barium titanate (BaTiO;)) —30
Lead zirconate titanate — 40

(PZT 95/5)

Lead zirconate titanate 19

(PZT 52/48)

Manganese-zinc ferrite 23

Yttrium iron garnet (po = 5.07) > 60

Polycrystal quartz rocks 47-130

Titania (TiO.. po = 4.24) 75

3-13 mm E-11 Ahrens et al. (1968)

E-11 Gust et aL (1968)

6 mm E-11 Ahrens et aL (1968)

13 mm0 G-5,9 Present work

E-11 Gust et al. (1968)

4-10 mm E-11 Ahrens (1966)

E-11 Gust et aL (1968)

13 mm E-9 Reynolds et aL (1962)

3-13 mm+ E-10 Doran (1968)

4-13 mm+ E-10, 11 Doran (1968)

13 mm E-9 Reynolds et al. (1962)

14 mm0 E-5 Present work

8 mm G-5 Present work

3-13 mm+ E-11 Ahrens et al (1966)

6 mm E-13 Linde et aL (1968)

" AR denotes as-received.

'' When a range of sample thicknesses is given and + is noted in remarks, the larger HEL value corresponds to the smaller sample

thickness, and vice-versa.

"Numbers refer to sample thickness. Symbols: + sample thickness effect observed; * stress relaxation observed; 0 poorly defined

elastic wavefront.

Letters denote method of loading: E explosive loading, and G gun impact. Numbers denote measurement techniques:

1. Pins, Minshall (1955).

2. Slanted resistance wire. Barker et al.

(1964a).

3. Interferometer, Barker et al. (1965).

4. Velocity interferometer. Barker (1967).

5. Quartz gauge, Graham et al. (1965).

6. Capacitor, Rice (1961).

7. Capacitor, Ivanov et al. (1963).

8. Solid dielectric capacitor, Graham

et al. (1967).

9. Optical knife-edge, Davis et al. (1961).

10. Optical lever-oblique shock, Fowle,

(1961).
1

11. Inclined mirror, Doran (1963).
|

12. Optical lever, McQueen (1964).

13. Manganin wire, Keough et al. (1964).

14. Capacitor, Hughes et al. (1961).
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DISCUSSION

M. Contre (Commissariat a I'Energie Atomique,
Paris, France): For the static transition pressure

in iron you have given Drickamer's value of 133

kbar when, in fact, this value derives from
Bancroft's shock measurements. In this regard, I

have recently obtained a value, in a belt-type

apparatus, of 150 kbar or more. The transition

occurred slowly— in four or five hours.

G. E. Duvall (Washington State University, Pull-

man, Washington): You have made a point of

comparing the strains that were obtained. It does
appear to me that there may be one circumstance
in which the measured strain is not representative

of the curve in transition: If an elastic precursor

takes the material to some Hugoniot elastic limit,

and before the arrival of the transition shock a re-

laxation occurs, the state into which the transition

shock advances is not necessarily the state that

existed immediately behind the elastic precursor.

The results you give for cadmium sulfide and indium
antimonide are particularly interesting in this

regard.

D. I. Decker (Brigham Young University, Provo,
Utah): You say you saw no shear effects on the iron

transition, but even for the materials with lower
Hugoniot elastic limits the amount of shear might
still be considerable compared to that observed
in hydrostatic-type systems. For instance, you may
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always have had a large amount of shear compared
to what Contre had.

F. R. Boyd, Jr. (Geophysical Laboratory, Carnegie
Institution of Washington, Washington, D.C.):

With regard to the results that you have quoted on
the cadmium sulfide and the indium antimonide,
isn't this the first time that an equilibrium boundary
has been shown to be displaced by shearing stress?

There has been an argument about this in geological

circles for 50 years. In general the minerals which
used to be thought of as "stress minerals,"
geologically, have turned out simply to be high-

pressure phases.

I would be interested in knowing in what kind of

high-pressure apparatus the static results on those
phases were obtained. It would be very interesting

to look at results obtained in two types of high-

pressure apparatus in which there are wide differ-

ences in the degree of shear that is present.

G. A. Samara (Sandia Laboratories, Albuquerque,
New Mexico): The static measurements referred to

on cadmium sulfide and indium antimonide were
obtained in the cubic apparatus at Fort Monmouth
three or four years ago. At Sandia one of our staff

members has been studying the transition of
cadmium sulfide under hydrostatic conditions. I

believe his results show a transition at 23 ±0.1 kbar
for samples which have initial resistivities over a
range of seven or eight decades. A range of values
up to about 30 kbar has been given in the literature,

and so I think this value is one of the lower ones
obtained.

C. W. Beckett {National Bureau of Standards,
Washington, D.C.): You mentioned a transition in

antimony at around 90 kbar. Is that transition well-

behaved?

AUTHORS' CLOSURE

With regard to Dr. Contre's comments, it is

likely that Drickamer's value was strongly influ-

enced by the early shock measurements. However
as noted in the paper our current estimate of the

shock transition pressure for iron is 125 kbar. I'm
unable to critically assess the significance of the

150 kbar value observed by Contre. If the implica-

tion is that previous quasi-hydrostatic values have
been low because of shear effects nucleating the

transition at lower pressures, then I am surprised

that the shock transition value for iron is unaffected

by shear changes (different Hugoniot elastic limits).

I agree with Dr. Duvall's point. In the paper we
have discussed how such complications resulting

from time-dependent phenomena can be identified.

Our point is that a material exhibiting such effects

would be a poor candidate for a pressure calibration

standard. With regard to cadmium sulfide and
indium antimonide, our characterization of these

materials is incomplete at present; however, their

behavior does appear to be complex.
Dr. Decker's point may well be true that shock

experiments may always involve much more shear
than exists in quasi-hydrostatic experiments.
However, my impression is that it is difficult to

assess the shear stresses existing in many quasi-

hydrostatic experiments. In the case of shock com-
pression, shear stresses can be accurately evaluated.

In reply to Dr. Boyd, I don't know whether this

is the first report of shear stress displacement of an
equilibrium phase boundary. My guess is that it

isn't because transformations that are martensitic

in nature might be expected to show such effects.

For example. Dr. J. Corll of Sandia Laboratories

has suggested from ultrasonic pressure measure-
ments that the cadmium sulfide transition is of a

martensite-type. I believe Dr. Samara can better

answer the apparatus question than I.

The transition in antimony, asked about by Dr.

Beckett, shows a range of transition pressures of

about 25 kbar out of 100 kbar depending upon the

propagation distance and the driving stress. It is

one in which the kinetics are definitely important,

and so would appear to be a poor choice as a refer-

ence transition.
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Study of Phase Transitions in Insulators by the Dielectric Constant

Technique*

G. A. Samara and W. L. Chrisman

Sandia Laboratories, Albuquerque, New Mexico 87115

This paper proposes the measurement of the dielectric constant and dielectric loss as a probe for

detecting and studying the properties of pressure-induced phase transformations in insulators. The
measurement is very sensitive, relatively simple, and can be adapted for use in many types of high
pressure apparatus. To illustrate the general usefulness of the technique, results on a variety of sub-

stances (solids and liquids) obtained from measurements in three different pressure apparatus will be
presented and discussed. The substances investigated include a number of alkah and thallous halides,

strontium titanate. and water.

1. Introduction

The study of pressure-induced phase transitions

is of interest from the standpoint of lattice stability

and kinetics of phase transformations as well as for

determining the influence of crystal structure on
physical properties. In addition, the transition pres-

sures in many substances have been used, or are

potentially useful, as "fixed points" for. pressure
cahbration purposes.

The detection and study of pressure-induced
phase transitions in insulators have been hmited to

techniques — usually the direct measurement of

volume change — which are not well suited for many
of the high pressure apparatus now in use. In this

paper we suggest the measurement of the dielec-

tric constant as a probe for studying such transi-

tions. The measurement is very sensitive and rela-

tively simple. Results on a variety of substances
(sohds and liquids) obtained from measurements
in both hydrostatic and quasi-hydrostatic (cubic

multianvil and Bridgman anvil) pressure apparatus
will be presented and discussed. Whalley and co-

workers [1] ' have been using the same technique
for studying the pressure-temperature phase dia-

gram of ice and have also suggested its use for the

study of other phase transitions.

Aside from the above considerations, the study

of the pressure (volume) dependence of the dielec-

tric constant and dielectric loss is of interest be-

cause these quantities enter into the theoretical

treatment of various physical properties, e.g., the

theories of electron-phonon interactions and infra-

red dispersion and dielectric relaxation. Combined
with temperature measurements, the pressure

results make it possible to separate the temperature
dependence of the dielectric constant into its

volume-dependent and volume-independent con-

5
tributions. The latter contributions are determined
entirely by anharmonic lattice effects [2].

' Figures in brackets indicate the literature references at tiie end of this paper.

*This wori< was supported by the U.S. Atomic Energy Commission.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14—18, 1968.

2. Theoretical Considerations

The purpose of this section is to give a brief

discussion of dielectric properties. This should
serve to define the quantities and relationships to

be used later.

When a dielectric (insulator) slab is placed in a

static applied electric field, it acquires a surface
charge. The polarization so induced arises from the
displacement of positive and negative charges in

the dielectric. For an isotropic, linear dielectric,

the polarization P is proportional and parallel to

the applied field E. The electric flux density or
electric displacement D is defined by (cgs units)

D = E + 47rP = eE (1)

where e is the static dielectric constant. The dielec-

tric susceptibility x is defined by P = xE, and from
eq (1) it is seen that

e = 1 -f 47rx. (2)

For isotropic dielectrics e and x are scalar quantities.

They are dependent on the molecular properties

of the dielectric and, at low fields (i.e., in the linear

range), are independent of the magnitude of the

macroscopic field E.
The polarizability a of an atom (or molecule) is

defined by

fi = aF (3)

where fi is the electric dipole moment, and F is the
local, or effective, field seen by the atom. The
polarization P is defined as the net dipole moment
per unit volume and is given by

P = ^Nitii=^NiaiFi, (4)

1 i

where iV, is the number of dipoles per unit volume.
The local field F at a given lattice site i is gen-

erally written as
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Fi — E + Ejnt.

= E + ^7T^<f)ijPj, (5)

where E is the appHed field, and Ejnt. is the internal

field acting on the ion i due to the other ions j and
is expressed in terms of the polarization. is the

internal field coefficient, which is a dimensionless
quantity that depends on the arrangement of the

ions in the lattice. For diagonal cubic crystals, i.e.,

crystals in which all ions have cubic environments,
the Lorentz internal field is applicable and <j)ij

= 1/3.

In this case the above eqs yield

P=
1

477.
E =^E.

32*
From eq (6) it is easily shown that

47T
(6)

e — 1 _ 477

e + 2~ 3
(7)

which is the familiar Clausius-Mossotti equation.

The individual ionic polarizabilities are difficult

to determine, and it has become customary to use

eq (7) in its macroscopic form which can be written

as

(8)

e = e —le.

The loss angle is defined by

tan 8 = e7e'.

(13)

(14)

tan 8 is simply related to the quality or Q factor of

the dielectric by Q—lltan8. It is obtained rather

directly from experiment.

3. Measurement Technique

A real dielectric can be represented by an ideal

capacitance (loss-free) plus a parallel resistance

which expresses the sum total of all the dissipative

processes occurring in the dielectric when subjected
to an applied field. The static dielectric constant e is

usually determined from capacitance measurements
at audio frequencies, which also yield values of the

dielectric loss in terms of tan S, Q, or the parallel

resistance R, depending on the method of measure-
ment. The dielectric constant of the sample is

measured relative to that of free space. For a

parallel-plane capacitor of large area to thickness

ratio (i.e., negligible fringe field), e is related to

the measured capacitance C by

e^CdjeoA. (15)

Here a is the total polarizability of a macroscopic
element of the material of volume V. Equation (8) is

applicable for cubic or isotropic substances [3].

For anisotropic, linear dielectrics, e, Xi ^nd a are

tensors and eq (1) must be written as

D = e-E, (9)

with components

D,= Je,.,£,-(^=1,2,3). (10)

Other quantities foUow similarly.

Up to now we have considered only the static

case. When a dielectric is subjected to an alternat-

ing field, both D and P will vary periodically with

time. In general, however, D and P cannot follow

the electric field instantaneously. There will al-

ways be relaxation effects and losses in the dielec-

tric, and these cause a lag in phase between E and
the response of the material. Thus for example if

E = E() cos (ot, (11)

we have
D = Do cos {(ot-8), (12)

where 8 is the loss angle which is independent of

Eo, but generally depends on frequency [4]. Under
these conditions the dielectric function is written

as a complex quantity

Here d is the separation between planes, A is the

area of the capacitor and €0 = 8.85 X 10'^ farads/

meter is the dielectric constant (permittivity) of

free space. For capacitors of small area to thickness

ratio, corrections for fringe fields can be made, or a

guard-ring arrangement requiring three-terminal

measurements can be employed. However, when the

primary interest in the measurement is the detection

of a phase transformation, then the absolute ac-

curacy is not important, and two-terminal measure-
ments without regard to fringe field effects are

adequate. At frequencies up to several hundred
kHz the measurements can be made using a variety

of commercially available capacitance and im-

pedance bridges.

Electrode attachment to the surfaces of solid

samples is very important since even small air gaps

can introduce serious errors. Vapor coated metal

electrodes are best, but carefully prepared conduct-

ing paint brushed or sprayed-on, or fired-on silver

electrodes are often satisfactory. For measurements
in certain apparatus such as Bridgman anvils, the

faces of the anvils themselves can serve as

electrodes.

In the present study a transformer ratio-arm type

capacitance bridge (General Radio Type 1615-A)

with three-terminal connections was used.

The use of shielded electrical leads and sample

holders eliminated ground capacitance effects.
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Figure 1. The dielectric constants of single crystal samples o/NaCl, KCl, and RbCl
as functions of hydrostatic pressure.

KCl and RbCl transform from the NaCI-type structure to the CsCl type structure in the pressure range covered.

Sample capacitance and dielectric loss tan 8 were
measured at frequencies between 1 and 100 kHz.
Measurements were made as functions of pressure
and/or temperature in three different pressure
apparatus: a hydrostatic piston-cylinder using a
50-50 mixture of n-pentane and iso-pentane as

pressure fluid, a cubic multianvil, and a Bridgman
anvil apparatus. The anvils were shielded from each
other to eliminate stray capacitances.

4. Results and Discussion

In the following we present and discuss results on
a variety of substances to illustrate the usefulness of

the technique. It is readily seen from eqs (8) and (15)

that a discontinuity in e, and hence the measured
sample capacitance, can be expected at a first-order

phase transition.

4.1. Alkali Halides

The alkali halides, with the exception of cesium
chloride, bromide, and iodide which crystallize in

the CsCl-type structure, crystallize in the NaCl-type
structure at standard conditions. However, it is well

known [5] that several of them, particularly the

chlorides, bromides, and iodides of potassium and

rubidium, undergo transitions from the NaCl to the

CsCl structure at high pressure. We have studied

the pressure dependence of the dielectric proper-

ties of many of these compounds to 25 kbar with

emphasis on the behavior near phase transitions.

The measurements were made in the hydrostatic

apparatus.

Figure 1 shows the effect of pressure on the dielec-

tric constant of single crystal samples of NaCl,
KCl and RbCl. The latter two crystals undergo the

NaCl—* CsCl transition in the pressure range

covered. For all three crystals the dielectric constant

e in the NaCl phase decreases monotonically with

increasing pressure. For RbCl and KCl a sudden dis-

continuous increase in e is observed at the start of

the transition. The onset of the transition is also

accompanied by a loud burst-like sound. It is quite

remarkable that the sound of the transformation in

the relatively small crystals used (about 1 cm-
X 0.07cm thick) could be heard outside the massive
steel apparatus. On further increasing the pressure,

e rises at a rate which increases with increasing

pressure and finally goes through a maximum which
corresponds to the end of the transition. In the

CsCl phase e again decreases monotonically with

increasing pressure. The reverse transformation

exhibits a large hysteresis, and the calculated value
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of e at 1 bar often does not return to its exact origi-

nal value, probably because of small changes in

sample geometry caused by the transition.

Our measurements on RbBr, Rbl, KBr, and KI
show features very similar to those for RbCl and KCl
shown in figure 1.

The macroscopic Clausius-Mossotti relationship,

eq (8), is apphcable for the alkali halides in both
the NaCl and CsCl phases. Its application at the

transition shows that, although e for each of the

above K and Rb salts increases by 35 to 40 percent

at the NaCl CsCl transition, the total polariz-

ability per molecule is not strongly dependent on
crystal structure. Thus, for example, the data on
RbCl and KCl in figure 1 combined with volume
changes of 13.7 and 11.4 percent at their respective

transitions, [5] yield for the ratio (ctNaci/oJcsci) values

of 1.00 for RbCl and 0.96 for KCl. Comparable
values are obtained for the bromides and iodides.

These results indicate that changes in e at these

transitions are mostly due to changes in volume.
The question of whether or not NaCl undergoes

a pressure-induced transition around 20 kbar has

received considerable attention in the recent

literature [6]. The results in figure 1 along with

elastic constant measurements [6] show no evidence
of a transition under hydrostatic conditions up to

26 kbar at 23 °C. Recent measurements using a

diamond anvil x-ray cell [7] indicate that the

NaCl CsCl transition in NaCl does not occur
until — 300 kbar at room temperature.

We have also investigated KCl in a 1.25cm (flat)

Bridgman anvil apparatus. The samples were
- (0.020-0.040) cm thick X 0.64 cm diam., fused
powder discs enclosed in a pyrophyllite ring. Typi-

cal results, reported as capacitance versus hydraulic

ram pressure, are shown in figure 2. The onset of

the transformation is fairly well defined, but the

transition is spread over a wide range. This difficulty
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arises , of course, because of the large pressure
gradients across the flats of the anvils.

4.2. Thallous Halides

We have studied the pressure and temperature
dependence of the dielectric properties of TlCl,

TlBr, and Til in some detail [2]. TlCl and TlBr have
the CsCl structure and do not exhibit any trans-

formations. Tll, on the other hand, crystallizes under
normal conditions in a double-layered orthorhombic
structure {Dll — Cjncm) with four molecules per
unit cell. It transforms to the cubic CsCl structure

on increasing temperature (170 °C at 1 bar) and/or

pressure (4.7 kbar at 25 °C) [8].

The dielectric constant of Tll increases by 35
percent at the transition, [2] and this is reflected by
a large discontinuous increase in the measured
capacitance of the sample. Figure 3 shows typical

results. The two isotherms are for two diflfercent

samples, and the differences in the values of the

capacitance are due to diff"erences in sample
geometries. The transformation is characterized

by a large hysteresis which decreases with increas-

ing temperature. The transition temperature de-

creases very rapidly with pressure with an initial

slope dTJdp =- 53 ± 3 °C/kbar [8].

In a number of isothermal pressure experiments
we followed the progress of the Tll transformation

as a function of time at constant pressure (the

pressure being that at which the first indication of

the start of the transformation was noted) by moni-

toring the change in sample capacitance. Figure 4

shows the results of one such experiment. The

g
<

400 800

RAM LOAD, psi

1200 1600

30

28

27

26

25

24

23

22

20

19

1 1 1 1 1 1 1

o» 24»C

A A 75°C

1

ii 1,

t

c

1 1 1 1 1 1 1

14

o
z
<

12 <

2 3 4 5

PRESSURE- kbar

Figure 2. Capacitance versus applied load for KCl samples
run in a Bridgman anvil apparatus.

The transformation is spread over a wide pressure range due to pressure gradients

across the anvil faces.

Figure 3. Capacitance versus hydrostatic pressure isotherms

for two different Tll samples.

The 24 °C isotherm data are read against the left ordinate, and the 75 °C isotherm

data are read against the right ordinate.
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Figure 4. Progress of the orthorhombic —* cubic transformation
in Til as a function of time at constant pressure and temperature.

transformation proceeds as a reaction rate process
approaching completion asymptotically. The per-

cent completion can be taken as the fractional

change in capacitance between the limiting values

of the two phases. Thus it is seen that the technique
can be used for studying the kinetics of phase
transitions.

At high temperatures, the dielectric constant and
the dielectric loss, tan 8, of the thallous halides as
well as those of many, other ionic crystals, [9] in-

crease exponentially with increasing temperature
and decrease with increasing frequency. In this

temperature region polarization effects associated
with dipoles produced by impurities and lattice

defects predominate, and the dielectric loss is dom-
inated by the conductivity of the sample [2]. The
relationship is

tan 8= e7e' = 47ro-/e'aj, (16)

where

o-=o-o exp {-WlkT). (17)

Here o) is the angular frequency, cr is the d-c con-
ductivity, (To is a constant, and ^ is the activation

Table 1. Values of the activation energy (for the

formation and motion of defects) of the thallous

halides at 1 bar obtained from dielectric loss,

tan 8, measurements at high temperatures
Present results are compared with literature values obtained from ionic-conductivity

measurements.

TlCl ^(eV) TlBr Til (ortho.) Tll (cubic)

Samara " 0.84 ± 0.05 0.85 ± 0.04 0.62 ± 0.04 " - 0.50

Lehfeldt
<

.79 + 0.03 .80 ± 0.05

Others " .75 to 0.87 .75 to 0.84

° Ref. [2],

* Evaluated at 3 kbar.

W. Lehfeldt, Z. Physik 85, 717 (1933).

''Values quoted by Lehfeldt.

2 3 4

ao"^/T)-°K'^

Figure 5. The temperature dependence of the dielectric loss

o/TlBr.

In the high-temperature region tan S is proportional to the conductivity.

energy for the formation and motion of defects. It is

seen from eqs (16) and (17) that activation energy
can be determined from tan 8 versus temperature
measurements at constant frequency.

Figure 5 shows log tan 8 versus IjT plots for TlBr
at three frequencies. At high temperatures the re-

sults exhibit the expected linear dependence with

the slopes very nearly independent of (o. Similar

results were obtained for TlCl and Tll. Table 1 sum-
marizes for the three compounds the activation

energies calculated from the slopes of the linear por-

tions of the curves at high temperature. For com-
parison we also list in table 1 values of ^ for TlCl
and TlBr obtained from ionic conductivity measure-
ments. It is seen that the agreement is quite good.

We did not extend the high temperature measure-
ments of tan 8 to high pressures, but it is a simple

matter to do so, and thus study the effect of pres-

sure on the activation energy.

4.3. Strontium Titanate

At standard conditions, SrTiO.i crystallizes in the

ideal cubic perovskite structure and exhibits normal
dielectric behavior (i.e., it is not ferroelectric or anti-

ferroelectric). Although it does not exhibit any phase
transitions in the pressure and temperature ranges

of the present measurements, the data on it ex-

tended to 50 kbar [10] and serve to illustrate the
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Figure 6. The pressure dependence of the dielectric constant e and l/e for single

crystal SrTiO.i.

general usefulness of the dielectric constant tech-

nique. In addition, the results have interesting impli-

cations for pressure calibration purposes.

The measurements were made on single crystals

and were performed in a cubic multianvil pressure

apparatus [11]. The samples were suspended in a

nylon-teflon container filled with a low viscosity

silicone pressure fluid— a technique similar to that

described by Jayaraman [12]. The fluid undoubtedly
solidifies at the high pressure end, but this had no
apparent influence on the results. The pressure

dependence of e is shown in figure 6. A reversible

monotonic decrease of e with increasing pressure

is observed over the whole range.

It is known [13] that the temperature dependence
of e of SrTiO.) at constant pressure obeys a Curie-

Weiss law, e = CI{T-Ti)). The results in figure 6

show that the pressure dependence of e at constant

temperature obeys a similar relationship expressed
in terms of pressure, i.e.,

€=C*l{P-Po). (18)

At 25 °C, C*= 12,600 kbar and P., = -40 kbar.

The linear dependence of l/e on pressure over a

wide pressure range suggests that SrTiOs can be

used as an accurate pressure gauge. In fact, this

feature of the results was used in determining the

pressure calibration in the range 0 to 15 kbar in the

present experiment. It is recalled here that the usual

calibration curves (i.e., sample pressure versus load

curves based on "fixed" pressure points) for multi-

anvil, belt, and similar apparatus exhibit anomalous
behavior in this low pressure range. For example.

such curves do not extrapolate to zero pressure for

zero applied load [11]. In the present experiment,

the l/e versus pressure data above 15 kbar fell on a

straight line which extrapolated back to the zero

pressure l/e value. Pressures in the 0 to 15 kbar
range were then determined from the linear l/e

versus pressure response.

4.4. Water

The measurements of the dielectric constant and
dielectric loss are well-suited for studying liquid-

solid transformations under pressure. We have

chosen water to illustrate this point. Water exhibits

a truly remarkable pressure-temperature phase dia-

gram. In addition to the liquid-ice transformation, at

least eight different phases of ice have been identi-

fied [1, 14].

The present experimental setup was quite simple.

An empty parallel-plate capacitor was immersed in

triply distilled water contained in a glass tube open
at the top. The assembly was then placed in a sam-

ple holder inside the pressure chamber of the hydro-

static pressure apparatus. A 50-50 mixture of n-

pentane and t50-pentane was used as pressure

fluid. Water is heavier than the pentane mixture,

and the two fluids have a very low miscibility so

that, for the present purposes, it was not neces-

sary to keep them isolated from each other.

Sample capacitance and tan 8 were measured at

100 kHz as functions of pressure at room tempera-

ture. The results are shown in figure 7. Although the

water used was triply distilled, the dielectric loss

was very high, probably due to dissolved CO2. Both
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the capacitance and tan S increased initially with in-

creasing pressure. The leveled-off region (especially

in tan 8) between = 8 and 10 kbar represents the

upper limit for the sensitivity of the measuring
apparatus. Large discontinuous decreases in capaci-

tance and tan 8 were observed at the water-ice VI
transition. This is mostly due to the large decrease in

orientational polarizability on freezing. Sharp de-

creases in capacitance and tan 8 were also observed
at the ice Vl-ice VII transition. A hysteresis of
~ 0.5 kbar was observed at this transition. The
hysteresis at the water-ice VI boundary was not

measured because the glass tube broke on lowering
the pressure at this transition. This difficulty could

be avoided by using a plastic or metallic liquid

container.

Whalley and co-workers [T\ have been studying
the water-ice phase diagram in some detail using

the dielectric constant technique. Some of their

measurements were made in a Bridgman anvil ap-

paratus at pressure to over 100 kbar. The water
was contained inside a thin mica ring between the

anvils. In addition to the determination of phase
boundaries, their results yielded information about
the nature of the relaxation processes in the vari-

ous phases of ice.

T 23° C

O (

A tan 6

LIQUID ICE VI

12 16

PRESSURE, kbar

5. Summary

In this paper we have presented a brief account
of the experimental and theoretical considerations

concerning the use of measurement of the dielectric

constant and dielectric loss as a probe for studying
pressure- and temperature-induced phase trans-

formations in insulators. The general usefulness of
the technique was demonstrated by results obtained
from measurements in three different pressure ap-

paratus: a 30-kbar hydrostatic unit, a cubic multi-

anvil, and a Bridgman anvil apparatus. Measure-
ments on a number of alkali and thallous halides,

strontium titanate and water were presented and
discussed. The technique is one of the most sensi-

tive means for studying phase transformation in

insulators and can be easily applied.
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DISCUSSION

Y. A. Atanov {All-Union Research Institutefor Phys-
ical and Radiotechnical Measurements, Moscow):
What is your estimation of the reproducibility of the
pressure coefficient of the dielectric constant of

SrTiOs? It is my understanding that the dielectric

loss of water increases very rapidly with pressure,
v/hen you raise the pressure. Could you explain the
mechanism for this dielectric loss and why it

increases?

G. S. Kell [National Research Council of Canada,
Ottawa, Ontario, Canada): I would like to point

out that as far as the behavior of water is concerned,

the permanent dipole moment makes a major

contribution.

I would also like to mention that there are at

least eleven or twelve solid phases established for

water. The paper by Whalley (your ref. 1) lists nine.

Two of these are metastable. In addition to that there
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is, I think, a phase in which the X-ray structure was
determined by McFarlan some place in the region of

two or three kilobars. There is cubic ice in the low-

pressure region. Thus there are eleven phases which
can be prepared in bulk, and in addition there is the

amorphous phase which can be prepared by evapor-

ation in small quantities.

Question from the floor: In the transformation of

the alkali halides, I was interested in the noise you
heard. Was this a result of the fracturing of the

crystal or what? Are the crystals intact afterwards?

AUTHORS' CLOSURE

Reply to Atanov: We have not made a systematic
study of the reproducibility of the pressure coeffi-

cient of the dielectric constant of SrTiO.-?. Results
from four or five independent measurements by us

and others yield values of [^(l/e)/^/*]? that fall in

the range 7.7 -8.0 X lO-^kbar. On individual

samples I think the reproducibility should be better

than ±1 percent. It should, of course, be remem-
bered that e is a strong function of temperature, and
good temperature control is required.

The dielectric loss of the water used was quite

high even though the sample was triply distilled.

We did not look into the cause of this because we
selected water simply to demonstrate the sensitivity

of the technique. Water is a highly polar substance
and dipolar relaxation effects are important. The
presence of some carbon dioxide dissolved in the

water may contribute to the high loss. The increase
of the loss with pressure is of course associated with
the increase of sample conductivity, but we do not

know at present whether this increase is an intrinsic

property of the sample or is due to impurities.

Reply to Kell: The total macroscopic polariza-

bility a in eq (8) can of course be written as the sum
of three contributions, i.e.,

a = OLo,) + air + arf.

These contributions exhibit different frequency

response and can, therefore, be separated. The
optical, or high-frequency contribution, ccop, arises

from displacements of the electronic charge rela-

tive to the nucleus of each atom. The infrared contri-

bution (often referred to as ionic contribution), «,>,

arises from the combined effects of the displace-

ments of the atoms and the resulting distortion of the

electronic charge. The dipolar contribution, is

present in substances possessing permanent dipole

moments (e.g., water), and it is operative in the dc to

millimeter frequency range. Even though it is pos-

sible to effect a separation of a into the above contri-

butions on the basis of frequency response, each
contribution remains a macroscopic quantity which
generally does not tell us much about the polar-

izabilities of the individual atoms or ions.

Reply to question from the floor: The sound one
hears during the transformation of the alkali halides

is characteristic of martensitic transformations and
is quite familiar to people working on steels and
other alloys exhibiting such diffusionless transforma-

tions. It is associated with the rapid slip that occurs

during the transformation.

These transitions involve large volume changes

(14% in the case of RbCl) and after a crystal has

gone through the transition twice (on the up-and-

down cycle), one recovers a polycrystalline mass,
but tile sample holds its integrity.

250



Experimental Determination of Curie Points of Ferromagnets up to 90
Kilobars— Possible Use For Calibration of High Pressure

J. M. Leger, C. Susse, and B. Vodar

C.N.R.S. — Laboratoire des Hautes Pressions — Bellevue, France

Second-order phase transformations which occur without volume discontinuity and theoretically

without any hysteresis are suggested as secondary pressure gauges and for interpolation under high

pressure in different temperature ranges. Results are presented concerning the shifts of Curie temper-

atures of some ferromagnets up to 90 kbar. The pressure effect is generally small but may be accurately

determined.

Direct measurement of pressures above 20 kbars

is only possible in devices of the piston cylinder

type for which, in principle, the relation p= applied

force/piston area, applies. However even in these

devices, when a solid pressure transmitting medium
surrounds the sample, the measure of the pressure

is made inaccurate because it is impossible to

determine the influence of the frictional forces by
increasing and decreasing pressure experiments.

This arises from the fact that the friction which
comes from the transmitting medium is unsymmet-
rical [1].' It is then necessary, in these devices as

in apparatuses of the compressible gasket type, to

make a pressure calibration. This is usually achieved

either in a continuous manner in situ by measuring
the crystalline parameter of a standard by x-ray

diffraction, or more simply and more frequently by
monitoring some polymorphic 1st order transitions

such as those occuring in bismuth, thallium, cesium,
barium, iron, tin, lead .... These transitions are

generally observed at room temperature by the

resistance discontinuity method, which is the easiest

to handle. The direct measurements of the pressure

transitions of these elements are made by volumet-

ric measurements in a piston cylinder device without

any pressure transmitting medium. This has only

been made for the first four elements mentioned
above.

The use of first-order transitions as fixed points,

however, offers the following inconveniencies:
(a) The sudden contraction of volume of the stand-

ard at the instant of the transition cannot be
compensated for instantaneously by flow of the

surrounding material since it has a non zero re-

sistance to shear; this ''cavitation" effect, well

known to the users, results in a spread of the

transitions and makes their location, imprecise.
This effect can lead to an apparent shift of the
transitions when the standard cell contains several

standards or when a standard suffers successive
transitions (bismuth, barium).

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

(b) There is another major disadvantage in using

first order transformations; these transitions always

exhibit some hysteresis range related to the nuclea-

tion processes of the different phases, the amplitude
of which depends on various parameters (shape,

purity of the sample . . .). This hysteresis is not

negligible as is clearly shown by the following values

[2], in kbars, obtained at room temperature by x-ray

diffraction using an internal standard.

Bi I -II 2.8 to 5.3 BaI-II2.6
Tin -III 1.6 BiIII-V3.8

This hysteresis must necessarily be taken into ac-

count in calibrations made at increasing pressure

(belts . . .) making use of data obtained by a mean
process in reversible working devices (piston-

cylinder).

1. Second-Order Transformations in
Solids as a Means of Characterizing
the High Pressure Environment

The inconveniences quoted above of using first

order transformations are eliminated if instead,

second order ones are employed as fixed points for

calibration. By definition the latter proceed without
any volume discontinuity, and theoretically without

hysteresis.

Little work at high pressures has been done so far

on these transformations, probably because the

two most popular methods, the volume and the elec-

trical resistivity discontinuity methods are not wei.

suited for their observation. However exploration of

their respective capabilities as secondary pressure
gauges would be most valuable. At first sight these

capabilities are quite different according to the

considered type of transformation:
— order-disorder transformations in binary alloys

(a typical example is AuCua) offer the disadvantage
of being very slow.

— transitions to a superconducting state, without

magnetic field applied, which occur at very low
temperatures would be of limited use.

— Curie points of ferromagnets or some ferro-

electrics.
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Figure 1. Measurement cell.

Neel points of antiferromagnets appear to be the
most promising.

In the next section, we present our first resuhs
concerning the effect of pressure on Curie tempera-
tures of several ferromagnets. Their possible use as

pressure gauges is discussed below.

2. Curie Points ofSome Ferromagnets
as a Function of Pressure

2.1. Present Theoretical State

For every second-order phase change, the be-

haviour of the transition temperature as a function

of pressure can be described by the general rela-

tions established by Ehrenferst and which corre-

spond to the Clapeyron equation for first order
transformations

:

''index 1 old phase

index 2 new phase
ct' isobaric thermal ex-

pansion coefficient

X isothermal

compressibility

,Cp isobaric specific heat

dp aL—oi[ Cpi — Cpi

These relations do not allow calculation of the

pressure effect, because the necessary data (Cp,

a'. . .) have not been determined under pressure.

It is also impossible to compute this effect from the

Landau's theory in which the thermodynamic
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Figure 2. Shift ofthe Curie temperature ofnickel under pressure.

potential is expanded in powers of an order param-
eter, because this expansion involves coefficients

only known at ordinary pressure (magnetostriction

constant . . .). On the other hand, work based on
microscopic models is very scarce. The Heisenberg
model does not allow understanding of the pressure

effect in detail for the transition metals of the first

period. A model with itinerant electrons has been
proposed in the case of nickel [4], but the result,

though giving the right sign for the variations, is

still approximative.

Thus so far it has been impossible to predict the

pressure effect on Curie temperatures from a the-

oretical point of view, so that they cannot be used
as primary pressure gauges. However for the reasons

mentioned earlier they are well suited to be em-
ployed as secondary standards.

2.2. Experimental Method

To determine the shifts of the Curie temperatures
under the effect of pressure we have employed the

transformer method, formerly used by several

authors [5, 6, 7]: without magnetic field applied, one
notes the variations of the permeability fjL of the

sample as a function of temperature; in our experi-

ments this sample has the shape of a torroid on
which the primary and secondary windings are made
from a coaxial cable. The primary is supplied with

an ac current of constant intensity; the secondary
voltage and the temperature are fed onto an XY
recorder and we directly obtain the iJi=f{T) curves

at different constant pressures. The inflexion points

of these curves determine the Curie points.

This transformer method is easy to handle under
pressure and allows us the determination of small

shifts of Curie points, even at rather high tempera-

tures; it must be noticed that it does not always give

the exact value of the Curie temperature; generally

we get a value a Uttle too low, because the method
using a low magnetic field is not very conventional.

We performed all our experiments in profiled

piston devices [8] of the belt type, calibrated at
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Figure 3. Curie point and a-y transformation of iron under pressure.

room temperature according to the usual technique

by monitoring the variations of the electrical re-

sistivity of bismuth and barium. The corresponding
transition pressures have been chosen equal to

25.4 kbar for Bi I -II, 58.6 kbar for Ba I -II, 82

kbar for Bi III-V.

The design of the measurement cell is shown in

figure 1; the sample is completely surrounded by
talc for moderate temperatures or boron nitride for

high temperatures. The temperature is measured
with a chromel-alumel thermocouple made of a

"thermocoax" cable. The use of such couples seems
to be desirable in high pressure experiments

because the outer jacket, made of stainless steel,

protects the wires and prevents ruptures. In no
case was a correction made to take account of the

pressure effect on the emf of thermocouples. The
pressure and temperature ranges so covered are

15 to 90 kbar and 200 to 1,500 K.

2.3. Experimental Results

Most of the results we obtained [9, 10, 11] con-

cerning the shifts of Curie points as a function of

pressure are shown in figures 2 to 9. The corre-

sponding Curie temperatures measured at atmos-

pheric pressure are given in table 1.

Table 1. Curie temperatures measured at ordinary

pressure {in K) by the transformer method

Fe 1044 30Ni -70Fe 334 30Ni -70Co 1209

36Ni -64Fe 486 45Ni -55Co 1132

53Ni -47Fe 788 60Ni-40Co 1022

Ni 627 64Ni -36Fe 863 75Ni-25Co 900

Co 1388 75Ni -25Fe 852 93Ni- 7Co 726

93Ni - 7Fe 708

Aecc)

60 Ml - 40 C 01^—
P( Kb )

Figure 4. Shift of the Curie temperature of an alloy 60 Ni-40
Co under pressure.
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The experimental method and the features of the

transformations themselves allow accurate deter-

mination of the transitions for the following reasons:

(1) It is possible to heat or cool the high pressure

cell at any given speed; particularly one can proceed
very slowly so that the phenomena associated with

the kinetics of the transformations are eliminated.

In our case, as Curie points correspond to rapid

transitions, a low rate of heating simply permits a

better measurement of the temperature of the

sample. Therefore the situation is more favorable

than when differential thermal analysis is used in a

high pressure apparatus where thermal losses are

large and so require high rates of heating.

(2) The shape of the sample is such that the

temperature gradient present is negligible; no evi-

dence of it was found at 1400 K during the study of

cobalt.

(3) The geometry of the sample is also such that

its internal pressure gradient is very small; further,

since it has been shown [12] that an uniaxial stress

has the same effect on Curie points as an isotropic
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stress of the same intensity, divided by three, the

error introduced due to pressure gradient is very

small. The pressure gradient shows its effect on the

/A=/(r) curves by the appearance of a "tail" — for

instance, in the case of nickel, the transition width
is about 1.5 °C at p= 0 and about 3°C above

p = 25 kbar. It is possible to take account of this

phenomenon to define the Curie point, (fig. 10).

(4) The Curie temperature is not very sensitive

to nonmagnetic impurities, in contrast to the

magnetic permeability or electrical resistivity.

(5) The results for iron, nickel, and cobalt

confirm the absence of hysteresis effect at all

pressures as predicted by Landau's theory. This

is displayed in the curves (fig. 10) obtained on cooling

and heating.

(6) In all cases the results were found to be
perfectly reproducible.

Figure 5. Shift ofthe Curie temperature ofinvar under pressure.

Figure 6. Shifts of the Curie temperature of iron nickel alloys

under pressure (the weight composition in nickel is indicated

near each curve).
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Figure 7. Shifts of the Curie temperatures of nickel-cobalt alloys under pressure.
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Figure 8. Phase transformations under pressure for an iron

rhodium alloy.
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Figure 9. Phase transformations under pressurefor a ternary

alloy 50 Fe-46 Rh-4 Ir.

( D.T.A.; permeability method).

The following remarks regarding the results
ought to be mentioned:
— In most cases the shifts of the Curie tempera-

ture are small. Their use as pressure gauges would
therefore require a very careful control of the tem-
perature. Per contra by a suitable choice of the metal
or alloy (table 1), it should be possible to pressure
calibrate a device at any given quasi-constant
temperature; this would be an advantage in certain
cases.

— The sharpest transitions are observed for pure
metals. Unfortunately for iron and cobalt the shifts

of the Curie points are practically zero. In any case
the a — y transition in iron would preclude its use
above 15 kbar. On the other hand, nickel would be
useable. For this metal dTddp is constant up to

60 kbar and equal to +0,357kbar.

Figure 10. Changes in permeability for nickel under various
pressures in the vicinity of Curie point.
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Figure 11. Calibration curve of a belt type apparatus deter-

mined from shifts of Curie temperatures.

— Alloys seem to be less favourable because they
generally present a small range of hysteresis; this

is particularly noticeable for Ni-Fe alloys and
precludes their use. Co-Ni alloys offer greater
capabilities, the hysteresis being smaller and the
shifts of the Curie points larger.

— The preceding results can be related to those of
McWhan [6] on rare earths metals and alloys. The
order points behaviour of these materials under pres-
sure is rather complex due to the presence of first-

order transitions and sometimes of metastable
states. Therefore one cannot think of using them as
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pressure gauges no more than the iron-rhodium
based alloys we studied and which equally show a

first-order transition, (fig. 8-9).

In the course of our work we had the opportunity

of using the Curie point of nickel as a pressure gauge
to determine the calibration curve of one of our ap-

paratuses in the range 0—25 kbar where there is no
convenient standard. The obtained curve (fig. 11)

effectively shows a shape characteristic of devices

with compressible gaskets.

3. Conclusion

Compared to first order phase transformations

the second order ones exhibit two major advantages
as possible pressure gauges: they occur without any
volume discontinuity and theoretically without

hysteresis.

In the particular case of Curie points of ferro-

magnets the shifts so far measured under pressure

are unfortunately small. However it is possible to

determine them accurately because they are gen-

erally rapid and reproducible. Moreover it is pos-

sible, in principle, to fix the Curie temperature of

the standard at a given value by proper choice of the

alloy composition, which allows calibration in the

neighbourhood of a given temperature.

It would be necessary to follow up this research on
other ferromagnets for which pressure would pos-

sibly bring larger changes in the Curie points. More
generally the study of other types of second order
transformations, particularly in certain ferroelectrics

and antiferromagnets, should be developed under
very high pressure and would perhaps lead to the

discovery of new pressure gauges.
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DISCUSSION

G. A. Samara (Sandia Laboratory, Albuquerque,
New Mexico): In figure 10, 1 believe that the "tailing"

off of the curves at temperatures above the Curie
point is most likely due to the fact that although

the long-range order is lost there are still short-

range order effects. We have found this "tailing"

effect even under hydrostatic pressure.

O. E. Jones (Sandia Laboratory, Albuquerque,

New Mexico): We have made some shock compres-
sion studies on a ferromagnetic 70% iron-30% nickel

alloy. The shift of Curie temperature was com-
parable to that obtained in hydrostatic experiments,

showing that here the effect of shear is not partic-

ularly important.

D. B. IVIcWhan (Bell Telephone Laboratories,

Murray Hill, New Jersey): On a curve of initial

susceptibility versus temperature, the Curie point

is sometimes taken as the inflection point, and
sometimes as the intercept of the extrapolation to

the background susceptibility. Defined either way,
it is not clear that your values of the pressure de-

pendence are free of an uncertainty due to possible

changes in the shape of the curves with pressure.

I would also like to note that if the Curie temper-

ature shift is plotted as a function of volume, much
of the curvature in the curves for nickel would be

eliminated.

AUTHORS'

On the results of our work on nickel, at the

beginning we felt that the curves for the shift of

the Curie temperature would be found to be linear;

but this was not so at the highest pressure range,

whatever may be the pressure scale and even if

this shift is plotted as a function of the volume.

We think that a maximum most probably occurs at

a higher pressure; this could be deduced from the

CLOSURE

curves obtained for alloys, particularly iron-nickel

ones where we did observe that maximum for one of

the alloys we studied. More work on this matter is

needed. Although comparison with data obtained

by shock techniques are useful, the experiments

should preferably be performed in conditions of

pressure not too far from hydrostatic ones.
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Fixed Points on the High-Pressure Scale Identified by Phase
Transitions in Ammonium Fluoride

R. Kaneda, S. Yamamoto, and K. Nishibata

National Research Laboratory of Metrology, Japan

The I-II and II-III transitions in NHjF, as fixed points on the high-pressure scale, have been in-

vestigated under purely hydrostatic conditions at the temperatures of 0, 25 and 50 °C. By means of

manganin resistance gages, the transition pressures at 25 °C have been determined to be 3605 ±10
bar for the I-II and 11531 ±23 bar for the II-III. Their respective dependences on temperature are

+ 2.5 bar/°C and +20.7 bar/°C. The realization of both transition points is easy at and above room
temperature, but at low temperatures the ll-lIl transition is very sluggish.

1. Introduction 2. Experimental Method

In almost all high-pressure works, usually man-
ganin resistance and other secondary gages are used
for measuring fluid pressures, and for gage-calibra-

tions up to 20 kbar, fixed points identified by liquid-

solid phase transitions in Hg and H2O have com-
monly been used. However, the accurate realization

of these fixed points would not be easy, because the

pressures depend strongly on temperature. The
realization of triple points in H2O is also complex
and much use of them may be doubtful. This re-

quires a new fixed point.

In view of insensitivity to temperature and easi-

ness in detection of transitions, it may be argued
that solid-solid phase transitions in NH4F, which
occur twice at pertinent pressure intervals with
associated large volume changes, offer convenient
fixed points.

Of the phase transitions in NH4F, the first study
was done by Stevenson [1] ' who discovered a high-

pressure modification NH4F ll at about 3.8 kbar.

Later, Swenson andTedeschi [2] reported the second
high-pressure phase NH4F ill formed at 11.5 kbar
at room temperature. Recently, Kuriakose and
WhaUey [3] investigated the phase diagram to 340 °C
and 20 kbar, and found a new phase NH4F IV at

temperatures over 160 °C. All these investigations

were made with simple piston-cylinder equipments,
in which NH4F samples were assumed to act as

pressure-transmitting media and subjected to stress

fields with non-hydrostatic components. Only one
previous work carried out under purely hydrostatic
conditions was of Morosin and Schirber [4]. Except
some suggestion on the crystal structure, their x-ray

investigation of NH4F II gave no information on
behavior of the transition.

The purpose of our study is to evaluate the

feasibility of the NH4F I-II and II-III transitions for

the fixed points, as well as to give more light upon
their behaviors in purely hydrostatic conditions.

The experiments are based on the volume change
method, which is the usual method to locate poly-

morphic transitions under pressure. Briefly, the ex-

periment consists in pressurizing an NH4F sample
hydrostatically to observe the phase transition, as

detected by the discontinuity in pressure corre-

sponding to the change in volume of the sample,
and in measuring the equilibrium pressure by means
of a manganin resistance gage calibrated against a

free-piston gage.

2.1. Apparatus

The arrangement of the apparatus excluding its

auxilliary parts is shown in figure 1. The pressure-

transmitting fluid used was pure white gasoline. The
pressure in the system is generated by two in-

tensifiers; one is the priming for compressing gaso-

line to about 3 kbar, and the other for producing
steady pressures up to 20 kbar. For monitoring the

Figure 1. Arrangement of apparatus.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau of
Standards, Gaithersburg, Md., October 14-18, 1968.

A: Pressure vessel

B: Bath
C: Thermocouple
I,: 20kb Intensifier

I2: 5kb Intensifier

Gi, G-i. G3: Manganin
resistance gages

S: Sample

V,, v.: Valves
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Figure 2. Details of pressure vessel.

advance of the piston, the 20 kbar intensifier is

provided with an electrical displacement transducer
connected to a multi-pen recorder. As the lengths of

connection lines composed by tubings of 2 mm i.d.

are reduced to a minimum, no time effect in pres-

sure transmission is present.

As shown in figure 2, the pressure vessel having a

cavity 15 mm diam by 140 mm long is of 18 percent

Ni maraging steel, with a pressure port at the lower
end, and the upper end a mashroom-type closure,

The NH4F sample of about 5 g was hermetically
enclosed, together with white gasoline of nearly a

half amount of the sample, in a pliant bag made of

a polyethylene sheet of 0.05 mm thick. Care was
taken to flush out all air bubbles. The sample was
then set in a thin-walled stainless-steel container,

which was in turn placed in the pressure vessel. The
container, with a threaded cap holed so as to

provide free access of the fluid, acts as a sample
holder preventing loss of the NH4F in the event of

breakage of the bag. In the experimental runs, the

bag was sometimes broken; nevertheless it kept the

sample free from the constraints exerted by the

walls of the container. Thus, such arrangement as

above secured the sample all right, being subjected
to purely hydrostatic pressures.

The pressure vessel containing the sample was
thermostatically regulated by immersing it com-
pletely in a PID-controlled Hquid (methyl-alcohol)
bath. The bath, having a capacity of 128 liters, pro-

vided with heaters, refrigerators, and a motor-driven
stirrer, is able to keep the temperature of the pres-

sure vessel constant to ± 0.01 °C at any desired tem-
perature in the range from —30 to 60 °C. Two copper-
constantan thermocouples calibrated against a
standard platinum resistance thermometer were
used; one was for monitoring the bath temperature,
and the other for measuring the temperature of the
sample. The latter thermocouple was inserted in the
pressure vessel so as to attach to the upper side of

the mashroom-type closure about 100 mm from the
sample. From the subsidiary experiments carried

out at atmospheric pressure, the relation between
the temperature of the sample and that of the upper
side of the closure was obtained. By applying this

relation to the actual runs, the temperatures of the

sample were determined within the accuracy of

±0.05 °C.

All significant pressure measurements were made
with the manganin resistance gages calibrated

against the Laboratory's standard 15 kbar free-

piston gage. The apparatus is provided with three

manganin resistance gages as shown in figure 1,

two of which are connected to the pressure vessel

for measuring the pressure on the NH4F sample at

any time, and the remaining one, acting as a

reference standard, connected to the high-pressure
side of the intensifier.

The gage Gi, for monitoring the pressure, was
connected to the preceding recorder, with which the

transition was located. For more precise deter-

minations, the gages G2 and G3 were used and
connected to a Leeds and Northrup G-3 Mueller

bridge. There might be undesirable temperature

effects in the gage G2, as it was situated close to the

bath. On the other hand, the gage G3 was, some 2

m apart from the bath, always kept at room tempera-

ture, at which all gage-calibrations were carried out,

but it could not be used directly for the purpose of

determinations, since the complete equilibrium

state in the NH4F was attained with a valve Vi

closed. Therefore, during the experimental run,

occasional intercomparisons of these two gages were
made, and the equilibrium pressure was determined

by the gage G2. Before every experimental run, the

gage G3, as the reference standard, was usually

calibrated with the free-piston gage.

Several manganin coils for the present work were
prepared and examined. However, in some coils, the

pressure-resistance relationship was not so consist-

ent as had been expected. The inconsistency of p-r

relationship was almost entirely due to the lack of

reproducibility of resistance in the lower pressure

range up to about 3 kbar. In the higher pressure

range, the fractional resistance change with the

pressure variation was sufficiently consistent. With
a few exceptions the reproducibility or uncertainty
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of the manganin resistance gages, which scarcely
depended on pressure, was found to be ±4 bar.

The free-piston gage is of the controUed-clearance
type and has the estimated accuracy of ±0.05 per-

cent of the pressure to be measured. The total errors
in the pressure measurements near 4 kbar and 12

kbar may therefore be assumed to be ± 6 bar and
± 10 bar, respectively.

2.2. Observational Procedure

Prior to a final experimental run, with building up
pressure, the NH4F sample was exposed to a few
runs through the MI and II-III transitions. Through
these subsidiary runs, the sample resulted in a fine

grain size and subsequent transformations became
more smooth.

Firstly, the bath was set up at a constant tempera-
ture, and the pressure in the system was raised to

the extent a little lower than needed to initiate a

transition. With keeping this state for awhile (until

temperature disturbances due to the compression
heat disappeared), the gage G2 was checked by
comparing it with the reference standard G3. Then
the pressure was increased step by step until the
transition began as indicated by the drop in pressure
due to the loss in volume of the NH4F; and with the
valve Vi closed, the pressure vessel was isolated

from the rest of the system. The sample in the pres-

sure vessel was thus allowed to reach automatically
the exact equilibrium state and the equilibrium
pressure was determined by the gage G2. After
that, the valve was opened and the pressure, if

necessary, was increased further in order to make all

amount of the NH4F transform completely, and
the intercomparison of G2 and G3 was made again.

The pressure was now decreased for observing
the reverse transition. With releasing pressure below
the equilibrium pressure and the valve closed, the

system was allowed to make its pressure rise auto-

matically to the equilibrium line from below, and the

equilibrium pressure reestablished was determined.

In an experimental run, repeated observations of

both the I-II and II-III equilibrium pressures attained

in this way were usually made several times. For
the purpose of locating the I-II and II-III transi-

tions, pressure steps about 100 bar and 200 bar,

respectively, were adopted. The magnitudes of

these steps were, of course, much smaller as com-
pared with those of the "carry back" pressure
ranges of the transitions, which depended on total

volume changes of the sample, compressibility of

the fluid, etc. The respective "carry back" pressure
ranges were roughly 800 bar and 600 bar.

2.3. Sample

The sample used was the special-grade-reagent
NH4F supplied from Wako Pure Chemical In-

dustries, Ltd., Tokyo. To the sample, no special
refining treatment was made.

3. Experimental Results

The experiments were performed at 0, 25 and
50 °C. Further, a few experiments were attempted at
— 25 °C and the I-II transition was surely observed at

about 3.47 kbar, but the II-III transition could not
be detected in spite of raising pressure on the
sample up to 14 kbar.

The experimental data are summarized in table

1, which shows the equilibrium pressures attained

from both lower and higher directions. The equi-

librium pressure is taken as that pressure at which
the rate of change in pressure is reduced to less

than 0.1 bar/min. For each experimental run, the
pressure value is the mean of 3 to 5 observations,

except the II-III at 0 °C, and the dispersion of the

observations is represented by the maximum de-

viation from the mean. The temperature value is the

mean of all readings during the run. The dispersion

of these readings, not shown in table 1, did not

exceed ±0.02 °C.

Table 1. Experimental results

Run Temp.
Equilibrium pressure (bar)

No. (°C)
n II I II III III II

1 -0.05 3541 ± 1 3537 +

1

2 0.03 3540 ± 1 3538 It 1 11382 10596 ±112

3 -0.01 3536 ± 1 3535 ± 1 11173±75 10756

4 25.11 3607 ± 1 3603 ± 1 11540 11526

5 25.10 3607 ± 1 3605 ± 1 11540± 2 11528± 3

6 25.00 3604 ± 1 3602 ± 1 11533± 3 11525+ 2

7 50.25 3662 ± 1 3661 ±1 12014 ± 2 12007 ± 3

8 49.92 3668 ± 1 3666 ± 1 12015 ± 2 12011+ 3

In the experimental run, the dispersion of ob-

served values for the I-Il did not exceed ± 1 bar,

and that for the II-III, except at 0°C, was in the

limits of ±3 bar. There was no recognizable de-

pendence of the equilibrium pressure on the frac-

tion of the NH4F sample transformed. However, a

slight difference in the pressure value was present

between the different runs. The magnitude of the

difference, i.e., several bars, corresponded nearly to

the uncertainty of the manganin resistance gages.

Therefore, it might be supposed that the difference

was mainly due to the characteristics of the gages
and not due to the nature of the transition. The
reproducibility of the I-II transition on all occasions

and that of the II-III at room temperature or higher

were fairly good. On the other hand, the II-III

transition at 0 °C was so sluggish that only one or

two observations were made in the run. The disper-

sion and the difference in the pressure value

amounted to 112 bar and 284 bar, respectively. This

proved the whimsical character of the II-III transi-

tion at low temperatures.
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Table 2. Equilibrium and transition pressures

Temp.
CQ

Equilibrium pressure

(bar)

Transition pressure

(bar)

l-^ II II I MI

0

25

50

3539 ± 9

3606 ± 9

3665 + 11

3537 ± 9

3604 ± 8

3663 ± 9

3538 ± 10

3605 ± 10

3664 ± 12

11^ III III -> II II-III

0

25

50

11278 ±190
11536± 17

12013 ± 16

10676 ±203
11525+ 17

12008 ± 19

10977 ± 504

11531 ± 23

12011 ± 22

From the data shown in table 1, the optimum
transition pressures at just 0, 25 and 50 °C were
deduced. The results are given in table 2. The
transition pressure is the mean of the equilibrium
pressures. The uncertainty of the transition pressure
is evaluated by adding a half width of the "region
of indifference" to the maximum hmit of estimated
_uncertainty of the equilibrium pressure. The values

of 3605 ±10 bar and 11531 ±23 bar are ascribed
to the NH4F I-II and II-III transition pressures at

25 °C, respectively. The widths of the region of

indifference or the hystereses of the transitions at

25 °C are the order of 0.1 percent of the respective

transition pressures, while the II-III transition

at 0 °C has the region as great as some 600 bar,

or about 5.5 percent. It is recognized that the

region of indifference becomes narrower at higher
temperature.

The dependence of transition pressure on tem-
perature, dp/dT, calculated from table 2 is shown
in table 3. The dp/dT at 25 °C or the average values

of dpjdT in the range from 0 to 50 °C are +2.5
bar/°C for the I-II and +20.7 bar/°C for the II-III.

Table 3 shows that both the dependences become
smaller at higher temperature.

The other characteristics of the transitions

observed are as follows.

At room temperature or higher, both the I-II and
II-III transitions run rapidly. Particularly, the transi-

tion velocity of the I-II was much greater than had
been anticipated; that is, once the transition was
initiated, the volume change followed so rapidly the

advance of the piston of the intensifier that the gage

Gi connected to the recorder did not show any
change in pressure. At the low temperature (0 °C),

the II-III transition was intolerably sluggish. Table 4

lists the observed equilibrium times which depend
on not only temperature but also the direction of

the transition.

Figure 3 presents the typical transition curves

obtained from an experimental run at 25 °C. As these

unsymmetrical "pressure-time" curves indicate,

there is considerable difference in behavior be-

tween the directions of the transition. As to the I-II

Table 3. Dependences of transition pressures on
temperature

Temp, range
dpIdT (bar/°C)

(°C)
I-II II-III

0-25 + 2.7 + 22.2

25-50 + 2.4 + 19.2

Average + 2.5 + 20.7

Table 4. Equilibrium times

Temp.
Equilibrium time (min)

(°C)
I II 11^ I II III III II

0 25 15 60- 200-

25 15 10 25 90

50 10 5 15 50

Table 5. Volume and entropy changes at transitions

Transition AF/F„(%) AS(calK-' -mol-')

I-II -24.0 -0.53

II-III -9.5 -1.78

transition, the I—^11 reaction was inferior to the

reverse II —> I in such characteristics as the velocity

of reaction, the width of the super (sub)-pressing

region or the overshoot pressure range, and perhaps
the reproducibility of the equilibrium pressure.

Oppositely, in the II-III transition, the II
—* III reac-

tion was far superior to the reverse III II in such
characteristics as mentioned above. The approxi-

mate magnitudes of the overshoot pressure ranges at

25 °C were 100 bar for the I^ II, 50 bar for the

11^ I, 200 bar for the II ill and 350 bar for the

III^ II, respectively.

Although the present work was not designed for

precise determinations of volume changes AV, the

total piston displacements observed on the recorder

allowed rough determinations of A F at the transi-

tions. The results are shown in table 5. In conjunc-

tion with dpIdT, AV allow to calculate entropy

changes A.S{= AV-dp/dT) , which are also shown in

table 5. The initial volume of the NH4F sample
was measured by a Beckman air comparison pyc-

nometer.

4. Discussion and Conclusions

The determinations of the transition pressures of

NH4F have been carried out under purely hydro-
static conditions, and the values of 3605 ±10 bar

for the I-II and 11531 ±23 bar for the II-III have
been obtained at 25 °C. Our values are not incon-
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Figure 3. Pressure-time carves at transitions.

sistent with previous workers', though seldom agree-

ing in detail. For the I-II transition, Stevenson's

value is 3.8 ±0.3 kbar and that of Swenson and
Tedeschi is 3.8 ±0.2 kbar, both at room tem-
perature. Kuriakose and Whalley have reported the

value of 3648 bar at 22.5 °C. Their value, ex-

trapolated to 25 °C, is 3653 bar. Morosin and
Schirber's value of 3.63 ±0.02 kbar, which was ob-

tained at 23 ± 1 °C under purely hydrostatic condi-

tions, is fairly close to our value. For the II-III

transition, the value at 21.5 °C is 11.61 ±0.09 kbar
according to Kuriakose and Whalley. Their value,

extrapolated to 25 °C, is 11.67 ±0.09 kbar. Swenson
and Tedeschi's value of 11.5 kbar at room tempera-
ture is almost identical to our value, though the

uncertainty involved in their value is unknown.
The other data for the transitions, i.e., dp/dT,

and AS, given in this paper are fairly close to

those of Kuriakose and Whalley [3], except the sign

of dldT{dpldT). The sign of dldT{dpldT) for the

II-III transition is positive according to them, while

that of ours is negative. This conflict may be caused
by the great uncertainty involved in our value of

the II-III transition pressure at 0 °C.

A principal virtue of the present experiments
lies in observing the true behaviors of the NH4F
transitions, which was secured by the satisfactory

arrangement of the sample having been subjected to

purely hydrostatic pressure, complete freedom from
pressure leak and precise monitoring of pressure
and temperature. Through the experiments, it has
been confirmed that both the I-ll and II-III transitions

have the following characteristic natures which
mostly satisfy the necessary conditions for the fixed

points.

(a) The transition pressures have fairly good
reproducibilities, i.e., about ±0.1 percent, and the

widths of the region of indifference are narrow, i.e.,

about 0.1 percent of the respective transition

pressures.

(b) The dependences of the transition pressures

on temperature are very small, i.e., the respective

dpIdT are the orders of 1/80 and 1/10 of that of the

freezing point of Hg.
(c) The transitions run rapidly. The approximate

equilibrium times are 10 min and 30 min, respec-

tively.

(d) The transitions are easily detected by the

volume change method. The relative AF are roughly

24 percent and 9.5 percent, respectively.

However, the II-III transition is very sluggish and
whimsical at low temperatures, so that the transi-

tion points should be realized at and above room
temperature. To improve the accuracy of realization

of the transition points, it is desirable to select the

direction of transitions; the 11^ I and 11^ III reac-

tions are more satisfactory.

Thus, it may be concluded that the solid-solid

phase transitions in NH4F offer most convenient

fixed points. Moreover, they may be conductive to

realize an idea for a "self-calibrated" pressure gage
or a working device accompanied with fixed points.

As additional remarks, it was recognized that the

lack of reproducibility of manganin resistance
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gages, which put some restrictions on the accuracy
of the present work, was mainly due to insufficient

consistency of pressure-resistance relationship in

the low pressure range. This means that the man-
ganin resistance gage, even if it is used only in the

higher pressure region, should be checked once with
a fixed point in the lower pressure region like the

NH4F I-II transition point.

It is expected that further determinations by the

direct use of the free-piston gage will be carried out.
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DISCUSSION

F. R. Boyd, Jr. {Geophysical Laboratory, Carnegie

Institution of Washington, Washington, D.C.): I am
impressed by the large volume changes of these two
transitions, the total change in going from phase I to

phase III being something like 35 percent. I know of

no other substance that shows that high a change.

It might be a useful substance in the supporting

stage of a two-stage device, in which alkali halides

have frequently been used to give a big volume

change in order to get a long stroke.

D. B. McWhan (Bell Telephone Laboratories,

Murray Hill,New Jersey): I think that Pauling showed
some time ago that ammonium fluoride can form a

solid solution with ice. It is one of few such ma-
terials, and for this reason there could be a problem
due to the water content.

AUTHORS' CLOSURE

The authors quite agree with Dr. Boyd's point of

view, but as yet they have made no attempt at using
ammonium fluoride as a supporting material for a

two-stage device.

In reply to Dr. McWhan's comments, there is

probably some difference in water content among
samples, as this substance is extremely hygroscopic.

The authors wish to point out that subsequent to

the preseritation of the paper, additional experi-

ments were carried out for a different sample of

ammonium fluoride (Ist-grade-reagent from Kanto

Chemical Co., Inc.) which had been stored without

a dessicaior for a few years. Of this sample, the

transition pressures obtained at 25 °C were 3606 bar

and 11533 bar for the l-II and ll-III, respectively.

These values compare with those of the sample

given in the paper and the close agreement might

be an indication that the water does not greatly

affect the transition pressures. However, further

work under more examined conditions would be
necessary in order to solve the problem due to the

water content.
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A Review of Resistance-Jump Phase Changes Useful for High-Pressure
CaUbration

F. P. Bundy

General Electric Research and Development Center

Schenectady, New York 12301

1. Introduction

Because of the limited strength of the best con-

struction materials, apparatus capable of developing

more than about 30 or 40 kbar has to be more com-
plicated than a simple piston sliding into a simple

cylinder. The necessary gasketing and side-support

arrangements always absorb a sizable fraction of

the force applied to the pistonlike part, or parts, of

an ultra-high-pressure apparatus, making it impos-

sible to determine exactly how much of the applied

force is directed against the material enclosed in the

high-pressure chamber. Thus a direct force/area

determination of the pressure in the chamber is not

available. In such apparatus it is much more con-

venient to establish the chamber pressure in respect

to the apphed force by inserting in the material

enclosed in the chamber small wires or ribbons of

substances which have, at known pressures, abrupt

phase changes manifested by electrical resistance

jumps. By observing three or four such resistance-

jump phenomena spread over the force range of

the apparatus, the chamber pressure can be cali-

brated. It is therefore important to have available a

number of substances which exhibit such sharp
and reversible phase changes at reasonable intervals

up the pressure scale. It is also very desirable that

the true absolute value of the pressures of these

transitions be known in order that the experimental

data can be used for absolute thermodynamic
calculations, and so that workers using this type of

calibration in different laboratories in the world can
meaningfully compare their results.

The purpose of this article is to list the most
commonly used calibrating materials and to sum-

marize the pertinent information about them. A dis-

cussion will be given of the absolute accuracy to

which the various transition pressures are known,
and the precautions that must be used in applying

this method of pressure calibration to different kinds

of cell geometries in various apparatuses.

2. Phase Transformations Useful for
Calibration

Some of the phase transformations which have
been used most widely are listed in table 1. In the

table, A/?//?i is the ratio of the change of the resis-

tance to the resistance at the low pressure.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14—18, 1968.

The room-temperature resistance behavior versus
pressure of most of these substances is shown
graphically in figure 1. Of all the transitions, the Bi

ones are probably the most sharp and reversible.

The Bi (I-II) transition is remarkably large and
abrupt. Of the group, the {a, e) transitions in Fe
and the Fe-Co alloys are probably the most sluggish.

In apparatuses which are capable of only barely

reaching the Fe transition pressure, the transition is

difficult to observe.

The transitions in the Fe-Co alloys were first

observed as volume discontinuities in shock com-

Table 1. (refs. 16, 1, 20)

Substance Transition Pressure

kbar

Bi "low" (i-n) 25.4 -0.8

Tl (IMII) 37 -0.3

Cs (nin-iv) 42 Sharp cusp

formed by

rapid increase

followed by

abrupt drop

Ba "low" (I II) 58 + 0.2

Bi "high" (Hi-v) 83 -0.5

Sn (i-n) 100 + 0.05

Fe (a-e) 130 + 1.0

Ba "high" (Il-Liq?) ~ 140 + 0.3

Pb (MI) ~ 160 + 0.15

Rb (n-Liq?) ~ 190 + 1.5

FelSCo (a-e) -240 > + 0.1

Fe20Co (a-e) ~ 290 > + 0.1
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Figure 1. R/Ro versus P, at 25 °C, for a number of calibrating

substances.
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FiGURl 2. P,T phase diagram for Bi.

pression experiments by Loree et al. [42].' They
appeared to be the (a-e) transition, as in pure Fe,

and the pressure of transition increased smoothly
upward as the Co content of the alloys increased.

Bundy [20] then tested the behavior of these alloys

in static pressure apparatus to determine whether
the transitions were accompanied by changes in

resistance. Resistance jumps were found, as in

Fe, at pressures which also increased smoothly
with Co content. In the tests pure Fe showed the

usual A/? transition, starting at 130 kbar. However,
with the alloys, the pressures at which the A/?

transitions occurred increased with the Co content

much more rapidly than for the AF transitions as

reported in the shock-compression tests. For ex-

ample, at 20 percent Co content the AF shock-

pressure transition was reported at 185 kbar, while

in the A/? tests in the static pressure apparatus the

transition came at 290 kbar. It is improbable that

the and AR events are different. It is also

improbable that a shock-pressure-induced transition

would initiate at a lower pressure than under
static pressure conditions. This discrepancy could

be examined effectively by x-ray diffraction experi-

ments similar to those of Mao et al. [43].

The pressures at which some of the listed transi-

tions occur are quite temperature-dependent. For
this reason it seems appropriate in this article to

present what is known about theP,r phase diagrams
of these substances.

Figures in brackets indicate the literature references at the end of this paper.

P(kb)

Figures. P ,T phase diagram for T\.

The P,T phase diagram of Bi is presented in

figure 2. The data used in constructing this diagram
were collected and evaluated from references [12,

14, 25, 26, 28, 33, 40. 44, 48, 50]. The points of

greatest interest for calibration work are the I-II,

IMII, and III-V transitions at 25 °C, room tempera-
ure. It is important to note that the pressures of

all these transitions decrease as the temperature
increases. The III-V transition is especially sensi-

tive, — 0.2 kbar/°C. Furthermore, although this is

a sharp, reversible transition, there is still lack of

agreement on its pressure among those who have
tried to establish its absolute value by using approxi-

mations to free-piston gages [48], or by monitoring

its electrical resistance simultaneously with x-ray

diffraction of surrounding well-behaved crystalline

materials, like NaCl [33]. The observed "absolute"

values range from 89 kbar down to 74 kbar; 82-83

kbar is a good probable value to use until more
definitive absolute pressure methods become
available.

The P,T phase diagram for Tl, taken primarily

from [32], is shown in figure 3. The II-III transition,

which is manifested by a sharp drop in resistance,

is seen to be relatively insensitive to pressure. The
triple point for I-II-III occurs at the relatively low

temperature of 120 °C. In the triple-point region,

phase II has the highest resistivity and phase III

the lowest.

Cesium has a very interesting P, T phase diagram,

as shown in figure 4 [27, 32(a), 37, 49]. According to

[37], the melting point of Cs I reaches a maximum
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Figure 4. P,T phase diagram for Cs.

of 199 °C at 18 kbar, then decreases to 187 °C at

the triple point with Cs II at 23.5 kbar. Again the

mehing point of the Cs II increases with pressure

to a maximum at about 27 kbar, 195 °C, then de-

creases to another triple point at 42.5 kbar, 98 °C.

As reported first by Hall et al. [27], and later by
Jayaraman et al. [32(a)], a third phase exists over a

pressure band only about 0.5 to 1.0 kbar wide.

At pressures above this a fourth, solid phase be-

comes the stable one. The melting temperature of

this fourth phase increases with pressure in the

more normal way. Phase I is known to be bcc,

while phases il and III are fee [27]. The crystal

structure of phase IV has not been established yet

from the complicated x-ray diffraction pattern. In

[27] it is shown that at the 42.2 kbar, 25 °C transition

the resistance versus pressure curve is more than

a cusp (as it is shown in fig. 1, herein). Instead, at

42.2 kbar the resistance jumps up to a relatively

high level, remains constant until 42.7 kbar is

reached, whereupon it drops abruptly and then
continues to decrease with pressure while in the

fourth phase. In an ordinary pressure apparatus,

with only moderate pressure resolution, this double
phase transition is usually blurred into a single

resistance cusp centered at about 42.5 kbar. The
data given in [32(a)] indicate that the pressures of

the II-III-IV transition complex are nearly independ-
ent of the temperature, as is also the case for the

I-II transition.

A P,T phase diagram for Ba is given in figure 5,

based on data from references [1, 12, 23(a), 50, 30
and 47]. Ba I exhibits the unusual phenomenon of

having a maximum in its melting line (at about 15

kbar, 770 °C) [30]. The two room-temperature tran-

sitions at about 58 and 140 kbar are quite well

known. On the basis of the R versus P behavior of

Ba at low temperatures and very high pressures.

Stager and Drickamer [47] suggested that the 140

kbar transition is a melting phenomenon. Later,

on the basis of x-ray diffraction, Drickamer [23(a)]

200 300
P(kbar)

Figure 5. P,T phase diagram /or Ba.
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Figure 6. P,T phase diagram for Sn.

reported that the high-pressure phase at room tem-
perature is definitely crystalline, probably fee, so

it certainly cannot be liquid. There is a real op-

portunity here to explore experimentally the P,T
diagram above 80 kbar at temperatures well above
room value.

The true pressure values for the commonly used
Ba (l-ll) transition range from 53 kbar ([33], based
upon Decker's equation of state for NaCl), to 58.5

kbar ([50], free-piston gage). The true value of

the "high" Ba transition at around 140 kbar is still

not firmly established. In Drickamer-type apparatus,

or high compression belt apparatus, it is definitely

higher than the Fe (a-e) transition, and distinctly

lower than the Pb transition at about 160 kbar.

The P,T diagram for Sn is relatively simple,

(fig. 6). The pressure values shown for the (l-Il)

transition at 25 °C range from about 114 kbar [46],
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to about 92 kbar ([4], referred to Decker's equation

of state for NaCl). A good probable value is about

100 kbar, in order to be in fair agreement with Bi

83 and Fe 130. At low (and negative) pressure and
low temperature is the region of stability of "gray

tin," which has diamond cubic structure. The tran-

sition from "white" to "gray" tin occurs only at

quite low temperatures and is quite sluggish.

Data on the P,T phase diagram for Fe (fig. 7)

have been obtained by a number of workers. Refer-

200

Figure 9. P,T phase diagram for Rb.

ences [2, 21, 34, 38, 35, 19, 43] cover the reports

which relate most directly to this diagram. At room
temperature there is only the a to e transition, which
is accompanied by doubling of the resistance. In-

crease in temperature decreases the pressure at

which this transition runs. The a, e, y triple point

has been established with fair accuracy at 110 kbar,

500 °C [34, 38, 35, 19]. The a, y transition involves

about a 30 percent increase of resistance as well as

a marked change in thermoelectric power. H. M.
Strong has used this a, y transition to calibrate

cells for pressure in the 50 kbar range at tempera-
tures around 600 °C by monitoring the Fe/Pt thermo-
couple emf against that of Pt/PtRh. This type of

pressure calibration at higher temperatures will be
discussed by Strong in another paper in this

Symposium.
The, phase diagram for Pb is quite simple as far

as it is known (fig. 8). The melting temperature has
been explored to at least 30 kbars. Over this range
the melting temperature rises smoothly about 200
°C. At room temperature there is a sharp transition

at about 160 kbar [1], which gives a sharp rise of

over 15 percent in resistance. While it has not been
proved by direct x-ray diffraction, it is highly prob-

able that the high-pressure phase of Pb is hep [41].

The boundary line between the fee and hep phases
would be expected to have a large dTjdP slope [41]

and consequently the pressure of this calibration

transition is probably not very temperature-sensitive.

Rubidium has a P,T phase diagram (fig. 9) that

is somewhat similar to those of Cs and Ba in that it

has a maximum in the melting point and the possi-

bility of a number of phases at very high pressures.
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room temperature. The 80 and 190 kbar transitions

at 25 °C are well-established phenomena [15, 1],

although the true values of the pressures may be

subject to revision, as is the case for the "high" Bi

and "high" Ba transitions.

3. Determination of Absolute Pres-
sures of the Transitions

In 1942 [9], and later in 1948 [11], Bridgman re-

ported his measurements on the volume compressi-

bilities of a large number of substances in a

two-stage piston-and-cylinder apparatus, up to

pressures approaching 100 kbar. The apparatus

was made and used in such a manner that its action

approximated that of a free piston gage. During his

investigations he discovered a number of volume
discontinuities which corresponded to abrupt phase

changes in the test materials. The ones which relate

to the subject of the present paper were Bi at 24.9

kbar, Tl at 39 kbar, Cs at 44 kbar, Ba at 59 kbar, and
Bi at 89 kbar. In 1952 [12] Bridgman reported on

the resistance behavior of a large number of

materials, as measured in an opposed anvil appara-

tus, which has an internal pressure distribution

which is far from that of a perfect free-piston gage.

According to his estimates of the pressures in this

apparatus, there was a large abrupt resistance

drop in Bi at 24.9 kbar (the same pressure at which
the volume discontinuity occurred), but for Tl the

resistance discontinuity came at an estimated 44
kbar, Cs at 54 kbar, and Ba at 74 kbar. Bridgman
had expected any resistance discontinuities to

coincide with volume discontinuities in a given

material, but in the cases of Tl, Cs, and Ba he con-

cluded that the differences in "observed" pressures

of the and A/? events were too great to allow

them to be the same event. At the time, however,
he knew that the pressures in his piston-and-

cylinder apparatus were known to much greater

absolute accuracy than in the opposed anvil appara-

tus. Later, Boyd and England [6], Kennedy and La-

Mori [36], Hall et al. [27], and others demonstrated
that Bridgman's pressure estimates in the opposed
anvil apparatus, above about 25 kbar, were progres-

sively too high, and that the and A.R events in

Tl, Cs, and Ba do indeed occur at the same pres-

sures and are the same physical events. The ques-

tion now has become one of establishing the actual

absolute pressures of the transitions, and of

determining the effects of such disturbing factors as

local pressure gradients in the specimen and the

surrounding solid material, the over-pressures or

under-pressures required to start the transforma-

tions in the forward and backward directions, and
pressure gradients generated by local heating within

cells.

There have been a number of significant efforts

in this direction. Vereshchagin et al. [50] devised

a rotatable free-piston arrangement in the center

of a larger piston of a multipiston apparatus. This

apparatus was reported to work as a free-piston

up to pressures approaching 100 kbar but no details

of the techniques were given. With this method they

established the following absolute pressures of

transition at 25 °C: Bi(l-Il), 25.4 kbar; Bi(lI-IIl)

26.9 kbar; Tl(ll-lll), 36.9 kbar; Ba(l-Il), 58.5 kbar;

and Bi(lII-V), 89.3 kbar. Quite recently Haygarth,

Getting, and Kennedy [26], using an improved pis-

ton-and-cylinder apparatus, have done extensive

measurements on the Ba(I-Il) transformation. They
have found the value 55.0 ±0.5 kbar at 22 °C, and
a transition pressure coefficient of 0.015 kbar/°C

near room temperature. Samples from three dif-

ferent sources, all of purity better than 99.5 percent,

gave essentially the same results.

Another approach taken by Decker [23], and

developed by Jeffrey et al. [33], has been to work
out a semi-empirical theoretical equation of state

for the simple, weU-behaved, ionic material NaCl,

and through this relate pressure and temperature

to lattice parameter. Then in a pressure apparatus

capable of providing simultaneous x-ray diffrac-

tion patterns of the resistance specimen and the

adjacent NaCl, determine the pressure at which
the transition of the resistance specimen goes.

Using an x-ray tetrahedral apparatus Jeffery et al.

[33] investigated the Bi, Tl, and Ba transitions.

They found some hysteresis between loading and
unloading which depended upon the specimen
material and its geometrical shape. Relative to

the "NaCl pressure scale" of Decker they found

Bi(l-ll) at 24.8 ±0.8, Bi(li-iil) at 28.0 ±0.8, Tl(ll-lll)

at 34.6 ±2.1, Ba(l-ll) at 53.3 ±1.2, and Bi(lll-v) at

73.8 ±1.3 kbar. The Decker equation of state for

NaCl agrees closely with the compressibility of

NaCl at room temperature as found by Bridgman

[7, 10] to 100 kbar. However, Bridgman's measure-

ments of the compressibility of Ba [9], made in

the same apparatus under essentially the same
conditions as NaCl, yielded the transition pressure

at 59 kbar. Thus the 1966 results of Jeffery et al.

show either that there was a discrepancy between
Bridgman's values for NaCl versus Ba, or that

there are some very localized pressure differences

in the specimen region of the x-ray-resistance cell.

The fact remains that among all the most sophis-

ticated methods of establishing absolute pressures

of the transitions the scatter of values obtained is

about 5 percent at 50 kbar and around 10 percent

at 100 kbar. As pointed out in 1967 by Bassett et al.

[5], when the most recent value of the initial com-

pressibility of NaCl (by Slagle and McKinstry [45]

is inserted in Decker's equation it yields slightly

higher pressure; not enough, however, to match
the free-piston values of Vereshchagin et al. or of

Haygarth et al. Figure 10 is a P,T phase diagram

of NaCl based upon the most recent data.

At pressures higher than those that are attainable

by any kind of free-piston apparatus, absolute pres-

sure calibration becomes dependent upon compari-
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Figure 10. P,T phase diagram for NaCl.

son with shock compression data. In shock
compression the shock wave velocity and the

particle velocity are measured. By application of

conservation of momentum and of mass through the

shock front, one calculates the pressure and density

attained. One also can calculate to some degree of

accuracy the temperature reached during the

abiabatic compression of the material. From these

P, V, T conditions one can correct back to the P, V
values for room temperature. The lattice spacings

obtained from x-ray diffraction patterns of speci-

mens observed under pressure in a static apparatus
can then be compared to the shock-compression
data to calibrate the pressure. There are varied

opinions about the accuracy attainable in each step

of this measurement sequence. The situation is

complicated even more in those compressions in

which a phase change occurs, because of the com-
plexity of the wave velocities and additional tem-
perature rise due to volume coUapse.

4. Some Causes of Discrepancies and
Anomalies

After one has had a number of years of experi-

ence with ultra-high-pressure equipment of different

types, he becomes aware of various kinds of dis-

crepancies and anomalies that can occur in pressure

calibration. It may be helpful to discuss a few
examples.

If the cell which goes into the high-pressure vessel

200 r

APPLIED FORCE

Figure 11. Cell pressure anomally in Drickamer apparatus
due to phase collapse o/BN disks.

incorporates a material which may undergo a

volume-reducing phase change, the cell-pressure

versus applied-force curve for the apparatus may
take disappointing turns toward cell-pressures less

than anticipated. A good example of this, in the

author's experience, was with a Drickamer-type
apparatus which had the usual pyrophyllite flared

gasket, but which contained BN disks in the center
of the cell. The BN was being used for its refractory

characteristics (see fig. 11a). When the BN disks

were used, the cell-pressure calibration showed a

linear pressure increase with applied force up
through the high Bi transition; but the (a-e) Fe
transition could be initiated only by loading the
apparatus to near its breaking point (see fig. lib).

By contrast, when pyrophyllite disks were used, the

Fe transition occurred at a loading corresponding to

a linear cell-pressure increase with applied force.

With pyrophyllite disks the high Ba and the Pb
transitions came "on schedule" on the same straight

line, while with BN disks these transitions could
not be produced at all. It was found that this anom-
alous behavior was caused by the transformation,

at room temperature, of the graphitic type BN to

the much more dense wurtzite and zincblende
forms [17].

A similar effect is obtained in a high-compression

belt apparatus, or a Drickamer-type apparatus,

when thin, hard, steel shims are used on the piston

faces to increase the compression ratio of the sample
zone relative to the gasket zone. In this case, the

rate of rise of cell pressure with applied force de-

creases in the 130 kbar region as the steel in the

shims transforms to the e phase.
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Frequently, high-pressure cells incorporate

materials which are refractory and chemically inert

in order to satisfactorily contain specimens under
high-temperature conditions. Materials like MgO,
AI2O3, ThOu', etc., are frequently used. These
materials also have very high compressional strength

and may shield the contained specimen from the

pressure generated in the more plastic parts of

the surrounding cell. In such cases resistance-

jump transitions may be long and drawn out with

respect to the applied force, indicating large and
variable pressure gradients. Later, when the core

of a cell of this type is heated relative to the re-

fractory walls, the local pressure in the specimen
may rise higher than that ambient in the outer parts

of the cell. In such cells a pressure calibration car-

ried out at room temperature should not be assumed
to apply to the hot-core operating condition. In

a paper which comes later in this Symposium,
H. M. Strong will discuss the use of Fe for determin-
ing some of the higher P,T points, utilizing the

a, y and a, e transitions at higher temperatures.

At our laboratory we also have found the melting

point of Ge to be useful in establishing pressure

rises produced by heating the core of a cell at

constant applied force to the apparatus [18]. Melt-

ing of diamond-cubic Ge causes an abrupt large

drop in its resistance. Because the liquid phase is

more dense than the solid, the melting point de-

creases with pressure. The dT/dP slope of the melt-

ing line can be calculated with considerable accuracy

by inserting in the Clausius-Clapeyron relationship,

dTldP = AVI^S, the experimental values of

and AS [29]. Assuming this calculated melting line

for Ge (which cross-compares quite well with

measurements made utilizing the calculated a — y
transition in Fe), P,T points in a given apparatus
can be established by observing the melting of

Ge in the cell and apparatus of interest. The pres-

sure rise with temperature varies considerably

with the geometry and materials of the pressure

cell, and hence no general formula for the magnitude
of the effect can be given a priori. In the author's

work with a "high-compression belt" apparatus

it was found that the pressure rise caused by heating

the specimen at the core of the cell was roughly

proportional to the product of the initial (cold)

pressure and the temperature rise. For example,
a Ar of 500 °C from an initial pressure of 100 kbar
would cause a AP of about 16 kbar.

The question of the initiation and the reversi-

bility of phase transformations has been raised by
many workers in the field of high pressure, and
experimentally studied by some. It is important in

the pressure calibration problem because over-

pressures or under-pressures required to start

forward or reverse phase transitions add to the

overall "hysteresis" effect. It is well recognized

that in most pressure apparatuses there is con-

siderable frictional and mechanical hysteresis in-

herent in the moving parts of the mechanical system.

Also, the fact that most of the resistance-jump

calibration situations consist of a solid sensor sur-

rounded by solid cell materials of finite shear and
compressional strength, means that pressure shield-

ing of the sensor material is always a factor. Ex-
perimentally, it is very difficult to separate these
factors of apparatus hysteresis, pressure gradient

in the cell material surrounding the sensor, and
inherent phase-change hysteresis. In his detailed

study of the Bi (l-Il) transition as a primary pres-

sure calibration point, and manganin as a secondary
gage, Bridgman [8] found that the "band of indif-

ference" of the Bi (l-II-l) transition as determined
in a fluid environment, monitored with a manganin
gage, was about 0.06 to 0.10 kbar at 30 °C. In Bridg-

man's measurements, both phases were present

simultaneously, so this is essentially a measurement
of pressure-shielding effect (or shear strength)

within the Bi specimen itself. In 1964, Davidson
and Lee [22] reported results on Bi tested in a fluid

environment monitored with a manganin pressure

gage in which they observed the hysteresis of the

Bi (l-Il) transformation from completely one phase
to completely the other, thus involving the nuclea-

tion of the new phase. They found hysteresis of

0.55 to 0.90 kbar. Once started, the transition pro-

ceeded isobarically to completion. In this case the

observed hysteresis must be the overpressure
required for nucleation of the new phase. Jeflfery

et al. [33], in connection with their x-ray diffraction

experiments of Bi specimens in NaCl enclosures,

discuss this nucleation hysteresis phenomenon quite

fully, as well as the effect of pressure gradients in

the material surrounding the transition specimen.
The hysteresis found by Jeffery et al. in their ob-

servations of the Bi (l-Il) transition ranged from
2.8 to 5.3 kbar, depending upon the geometry of

the Bi-NaCl arrangement. The excess hysteresis,

over that found by Davidson and Lee, is probably
a result of the pressure gradients in the NaCl
environment. This illustrates the effect of the

geometry and kind of material which surrounds the

specimen of interest.
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DISCUSSION

C. Susse (Laboratoire des Hautes Pressions, Centre
National de la Recherche Scientifique, Bellevue,

France): I think we have a partial answer to the
problem of the melting curve for barium at 144
kbar. Recent work performed by differential thermal
analysis seems to show that the melting curve
doesn't go down regularly with pressure. After the

first known maximum at about 15 kbar, there is a

triple point Ba I — Ba II — hquid at 500 °C — 67 kbar
followed by a maximum at 525 °C — 75 kbar and by
a cusp at 380 °C — 85 kbar, which is most probably
related to a phase transition in the solid. Above this

pressure the MP increases with pressure at least

up to 95 kbar.* We intend to do some additional

work in this area.

G. A. Samara {Sandia Laboratory, Albuquerque,

New Mexico): Although there seem to be some
problems in the use of the lead transition, I think it

is one of the sharpest and most reproducible transi-

tions above 100 kbar, and I would urge that lead not

yet be given up as a possible reference material.

•Bastide, J. P., Susse, C, Epain, R., C. R. Acad. Sci. Paris 267,857 (1968).

A. Taylor (Westinghouse Research Laboratories,

Pittsburgh, Pennsylvania): Do you find any appreci-

able difference in the transformation pressure of

zone-refined iron as against iron of thermocouple
purity?

D. Decker (Brigham Young University, Provo,

Utah): We have made one measurement only on
the iron triple point, which appears to be consider-

ably lower than 110 kbar.

It appears that an extrapolation of the data that

Madame Susse gave earlier on barium would show
a transition well below 110 kbar, perhaps at 80 kbar,

around 550 °C.

J. Haygarth {Institute of Geophysics and Planetary
Physics, University of California, Los Angeles): I

would like to comment on the phase diagram of

barium below 100 kbar. Our findings differ some-
what from the results given earlier by Madame
Susse.

We have been fairly careful to obtain barium of

very low hydrogen content. It is apparent that it

is rather difficult to get the hydrogen out. We
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had two samples, one which contained one atomic

percent hydrogen; and the other which contained

four percent hydrogen. On the one containing four

percent hydrogen, we obtained a second maximum
in the mehing curve around 47 or 48 kbar. When
we ran the experiment with the sample which orig-

inally contained one percent hydrogen, we did not

find this maximum.
Now there is a question about the purity of the

sample which initially contained one percent hydro-

gen because, unfortunately, the capsule in which
it had been stored was found to have become open
to the air, so the hydrogen content was in question.

But from this work I think that it is important to

make sure that the barium, especially for melting

point purposes, is very pure.

I would also like to state that the slope of the

barium melting curve after the second maximum
seemed to be the same as the slope just before it,

agreeing with the diagram Dr. Bundy showed.

AUTHOR'S CLOSURE

Replying to Samara: I have always found the

lead transition to be sharp and clean when there

is good electrical contact with the sample.

Replying to Dr. Taylor: We haven't made a

systematic investigation of it, but we can say that

we have had to use the purest iron we could make
ourselves, usually "carbonyl iron" that has been
remelted in vacuum. This proves to be superior to

thermocouple grade iron.
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The Coesite-Stishovite Transition*

Syun-iti Akimoto and Yasuhiko Syono

Institute for Solid State Physics

University of Tokyo, Roppongi, Tokyo, Japan

The coesite-stishovite transition curve has been determined over the temperature range 550 to

1^00 °C in the pressure range 82.0 to 98.0 kbar by means of a tetrahedral-anvil type of high-pressure

apparatus. Amorphous anhydrous silica, a-quartz, coesite, and stishovite were used as starting ma-
terials. The transition curve was fitted by the linear equation P(kbar) = 69 + 0.024 TCC) using pressure

scale proposed by Jeffery et al. This determination was found to be in a reasonable agreement with
the previous data, if the common pressure scale is used. Experimental information for the coesite-

stishovite transition was also compared with the stability relation derived from enthalpies and entropies

of coesite and shishovite. It was suggested that the pressure scale proposed by Jeffery et al. was under-

estimated considerably around 100 kbar.

1. Introduction

The rutile-type polymorph of Si02 now known as

stishovite was first synthesized by Stishov and
Popova [1961] ' at high pressures in excess of 100

kbar. Since stishovite is accepted to be a probable

major constituent of the earth's lower mantle, there

has been much interest in determining the prop-

erties and stability of stishovite. Wentorf [1962],

Sclar et al. [1962], Ringwood and Seabrook [1962],

Bendelyany and Verestshagin [1964] and Minomura
et al. [1964] have described the synthesis of sti-

shovite using different types of high-pressure appa-

ratus, but they provide no detailed data on its

stability range. The first attempt to determine the

coesite-stishovite transition curve was made by
Stishov [1963]. He derived the standard entropy of

stishovite from the linear relationship between
entropy and density empirically found in the rutile-

type oxides, and calculated the transition curve
passing through the equilibrium point 130 ±5 kbar,

1600 °C ± 100 °C experimentally determined.
Further data on the direct experimental determina-
tion of the transition curve in the temperature range
410 to 830 °C were provided by Ostrovsky [1965,

1967]. Ryabinin [1964] also reported a stability

diagram of SiOz including the coesite-stishovite

transition curve, which differs markedly from the

estimation by Stishov and Ostrovsky. It is one pur-

pose of the present work to extend the determina-
tion of the coesite-stishovite curve to the wider

'Reprinted by permission from J. Geophys. Research 74, No. 6 (March 15, 1969).

Copyright 1969 by the American Geophysical Union.
' Figures in bracicets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

range of temperatures and to provide an improved
estimate of its position and slope, using several

kinds of starting materials including coesite and
stishovite.

Another aim of the present work is to examine the

possibility that the coesite-stishovite transition

could be used as a pressure calibration point at

high temperatures. Most calibrations of high-

pressure apparatus utilizing solid pressure-media
are carried out on the basis of the phase transitions

in Bi, Tl, Ba, Sn, etc., which are known rather pre-

cisely at room temperature. This method is not

satisfactory for high-temperature work on account
of the change in the shear strength of the pressure
media with temperature. Boyd et al. [1967] recom-
mended the quartz-coesite transition as a promising
calibration point in the pressure range 30 to 40 kbar
at high temperatures. Recent development of the

capabilities of the high-pressure apparatus requires

a higher calibration point at high temperatures. The
present information on the coesite-stishovite transi-

tion might contribute to pressure calibration around
100 kbar at high temperatures.

Very recently, thermodynamic properties of

coesite and stishovite were reported by Holm et al.

[1967]. Experimental information for the coesite-

stishovite transformation obtained in this work will

be compared with the stability relation derived

thermodynamicaUy from their data. Some contribu-

tions to the establishment of an accurate pressure

scale may also be expected through such a

comparison.

2. Experimental Procedure

All the high-pressure and high-temperature ex-

periments were made using the tetrahedral-anvil

type of high-pressure apparatus described previously
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[Akimoto et al., 1965]. Two different sizes of

cemented tungsten carbide anvils containing

5 percent of cobalt were used. For most runs from
83 to % kbar the 9-mm-edge anvils were used with

a 15-mm-edge tetrahedron of pyrophyllite sample
container. A combination of 7-mm-edge anvils and
a 13-mm-edge pyrophyllite tetrahedron was also

adopted for several auxiliary runs. The pyrophyllite

tetrahedron which served as the pressure-media
was fired at 700 °C for 30 min before use, and its

surface was painted with thick suspension of

Q:Fe203 in ethanol to enhance the surface friction.

Pressure values in the tetrahedral press were cali-

brated at room temperature by measuring sharp
resistance change in the flat strip samples of Bi,

Ba, and Sn on the pressure-increase cycle. The
values of transition pressure, 26 kbar for Bi I-II,

55 kbar for Ba I-II, 76 kbar for Bi lll-v, and 92 kbar
for Sn I-II were adopted as fixed calibration points

following the proposal of Jeffery et al. [I960].

The transition pressure was confirmed to be re-

producible within an accuracy of±3 percent.

A graphite tubing, 4.0 mm long, 2.5 mm in outside

diameter, and 1.7 mm in inside diameter, was used
for heating the samples in the runs with the 15-mm-
edge pyrophyllite tetrahedron. Smaller tubing,

3.0 mm long, 2.2 mm in outside diameter, and
1.4 mm in inside diameter, was used for the runs
with the 13-mm-edge tetrahedron. The tubular

graphite furnace so prepared was placed diagonally

with the axis of the cylinder between opposite

edges of the tetrahedron. SiOa powder samples
were embedded in the center of the graphite furnace.

A pair of boron nitride disks was placed on both

ends of the sample to reduce the uncertainties

resulting from the temperature gradient within the

furnace.

Temperatures were measured with Pt/Pt-13%Rh
thermocouple, 0.2 mm in diameter, without any
correction for the effect of pressure on the emf of

the thermocouple. The hot junction was placed in

the center of the samples. Thermocouple leads

were brought out to the faces of the pair of anvils

not used for the graphite furnace contacts. The
run temperatures were corrected for the increase
of surface temperature of the tungsten carbide
anvils.

Determination of the coesite-stishovite transition

curve was made by the usual quenching method.
Pressure was apphed to the sample first, then the
temperature was brought to the desired value and
held for the desired interval of time. Then the
sample was quenched isobarically by turning off

the heating power. After quenching, only the cen-
tral part of the samples, less than 1 mm thick,

adjacent to the head of thermocouple, was used
for the phase-equilibrium experiments. Identi-

fication of phases present was made chiefly by the
x-ray diffraction method. In order to estabhsh the

transition curve accurately and to examine the

reversibility of the reactions, runs with different

kinds of starting materials were practised. Amor-

phous anhydrous silica, a-quartz, coesite, and
stishovite were used as the starting materials.

Mineralizers, such as H2O, were not used in the

present work.

3. Results

Results of experimental runs on which the loca-

tion of the transition curve is based are given in

table 1 and figure 1. The percentages of the phases
present in the run products, shown in the last

column of table 1, are roughly estimated from the

peak intensity ratio of the x-ray diffraction chart.

When a-quartz was used as the starting material,

phases other than coesite and stishovite were not

observed in the run products at temperatures above
800 °C. However, metastable a-quartz was observed
in addition to coesite and stishovite in the run
product at 88.5 kbar and at 650 °C. Maximum con-

version to stishovite in the present pressure-

temperature-time condition was about 80 percent.

On the other hand, when amorphous anhydrous
silica was used as the starting material, complete
conversion to stishovite or coesite was achieved
even at temperatures as low as 550 °C. Synthesis of

stishovite was also confirmed in the run in which
the starting material was coesite. Successful reverse

reactions from stishovite to coesite were demon-
strated at two different temperatures, and using

single-phase stishovite obtained in the present work
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Figure 1. Pressure-temperature stability fields for the coesite-

stishovite equilibrium.

The dashed line designated by 0^ represents the transition curve determined by

Ostrovsky [1965, 1967]. The chain line designated by St represents the transition curve

estimated by Stishov [1963].
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Table 1. Results of runs on the coesite-stishovite

transition

Run Temperature Pres- Time Phases present

No. sure "

Starting Material, Amorphous Anhydrous Silica

"C kbar min

S29 550± 5* 83.0 100 Stishovite

S25 600 ±10 82.0 65 Coesite

522 600 ± 5 91.0 60 Stishovite

S31 630 ± 5 83.0 40 70% Coesite + 30%
Stishovite

S27 700 ± 5 86.0 60 95% Stishovite + 5% Coesite

S26 700 ± 5 90.0 60 Stishovite

S28 750 ± 5 85.0 45 Coesite

S30 830 ± 5 90.0 20 Stishovite

Starting Material, a-Quartz

SI 650 ±10 88.5 60 50% a-Quartz + 30% Coesite

+ 20% Stishovite

S12 800 ± 5 87.0 60 95% Coesite + 5%
Stishovite

S4 800 ± 5 93.5 60 70% Stishovite + 30%
Coesite

S6 900 ± 5 90.0 45 90% Coesite + 10%
Stishovite

S14 900 ±10 94.5 45 60% Stishovite + 40% Coesite

Sll 900 ± 5 96.0 45 80% Stishovite + 20% Coesite

S13 1,000 ± 5 91.0 30 90% Coesite + 10% Stishovite

S2 1,000 ±10 96.0 30 70% Stishovite + 30% Coesite

SIO 1,100±5 92.0 30 Coesite

S8 1,100 ±10 97.0 32 60% Stishovite + 4{)% Coesite

S35 1,180 ±20 98.0 15 80% Stishovite + 20% Coesite

S5 1,200 ±10 93.5 20 Coesite

S7 1,200 ±10 97.0 20 Coesite

Starting Material, Coesite

S23 1,015 ±10 93.5 60 60% Stishovite + 40% Coesite

Starting Material, Stishovite

S20 850± 5 90.0 70 Stishovite

S21 950 ± 5 92.0 60 Stishovite

S18 1,050 ±10 93.0 40 50% Coesite + 50% Stishovite

S24 1,200 ±10 95.0 30 60% Coesite + 40% Stishovite

" Precision of pressure control is ±0.5 kbar.

* Precision of temperature control.

as the starting material. Summarizing all the experi-

mental data, the boundary curve for coesite-sti-

shovite transition was fitted by the linear relation

P(kbar) = 69 + 0.024 T{°C).

The unit cell dimensions of the stishovite obtained
at 97.0 kbar and at 1100 °C (S8 run in table 1) were
determined to be a = 4. 178 ±0.001 A and c= 2.665
±0.001 A. This determination is in quite a good
agreement with those values, a = 4. 1790 ±0.0004^4,

and c = 2.6649 ±0.0004 A, published by other in-

vestigators [Stishov and Popova, 1961; Chao et al.,

1962].

4. Discussion

In figure 1 the transition curve obtained in this

work is compared with those reported by Stishov

[1963] and Ostrovsky [1965]. Since pressure values
used by these investigators are based on Bridgman's
"volume-scale," in which Bi lll-V transition was
fixed as 89 kbar, their curves in figure 1 are repre-

sented after some corrections to the pressure scale

by Jeffery et al. [1966] were made. The transition

curve determined in this work is found to be located

between Stishov's and Ostrovsky's curve and to

have the slope dPjdT which is nearly consistent

with Ostrovsky's determination but is slightly

larger than Stishov's calculation.

Taking the accuracy of the pressure measure-
ment (±3 — 5 kbar) in these investigations into

consideration, we cannot find any significant dif-

ference between the curves determined with differ-

ent types of high-pressure apparatus, i.e., opposed
anvil type and multiple anvil type, if the common
pressure scale is used. The slope of the coesite-

stishovite transition curve established in this work,
about 40 ~ 50°/kbar, indicates that the transition

is very sensitive to pressure. Any minor errors

in temperature measurement will have a small

effect on the results. These situations suggest that

the coesite-stishovite transition is usable as a

pressure-calibration point at high temperatures.

Since the pressure value in this work was calibrated

at room temperature by the conventional resistance

method, absolute value of pressure used at high

temperatures remains still uncertain. In case of

the quartz-coesite transition, the transition curve
determined by Takahashi [1963] by means of the

tetrahedral press with the pressure calibration

method similar to this work was found to accord
well with the value of transition determined care-

fully by Boyd et al. [1967] with the piston-cylinder

type apparatus. Accordingly, if the uncertainty of

± 3 kbar was taken for granted, the coesite-stishovite

transition curve determined in this work using the

tetrahedral press may serve as a pressure-calibra-

tion point at high temperatures.

when information is available on the thermo-
dynamic properties of coesite and stishovite, we
can estimate quite independently the pressure-

temperature stability fields for the coesite-stishovite

equilibrium by means of thermodynamical methods
developed by Ahrens and Syono [1967]. Very re-

cently, direct determination of the thermodynamic
functions of coesite and stishovite over a wide range
of temperature was reported by Holm et al. [1967].

Enthalpy changes of transformation at 298 K of

quartz to coesite and to stishovite are determined
to be 1.21 kcal/mole and 11.79 kcal/mole, respec-
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Figure 2. Pressure-volume curves for quartz, coesite, and
stishovite used in free energy calculation.

Ouartz: B-W, alter linear compression data by Bridgman [1949] and shock-wave
compression data by Waciterle [1962].

Coesite: Numerals attached to the curves means that the compressibility of coesite

was assumed to be 100 percent, 80 percent, 70 percent of that of quartz.

Stishovite: I, after Ida et al. [1967]; M, after the estimation by McQueen et al. [1953]

using shock wave compression data of SiO - at higher pressures than 150
kbar by Wackerle [1962].

lively. Entropy changes at 298 K are also deter-

mined to be —0.23 and —3.24 eal/mole K for the

transformations of quartz to coesite and to stishovite.

The increase of free energy AGjgs zero pressure
and 298 K of a transformation is generally given by

AG«98-AH^'98-298AS«98 (1)

where AZ/^gg and AS^g are the change in enthalpy
and entropy of the transformation at zero pressure
and 298 K. The equilibrium pressure P between
low-pressure and high-pressure polymorph of a

material is determined at 298 K by putting free

energy change AG^gg given by the following equation
zero

AG!;,, =j\vdp + AGI,, (2)

where AF is the volume change associated with the

transformation. Combining (1) and (2) we can
obtain

- j' AVdp = A//^'gg - 298AS^'9g. (3)

On the basis of the thermodynamic data just men-
tioned, the values of right-hand side of eq (3) are

now known for the transformations from coesite

to stishovite as 11.48 kcal/mole. In order to obtain

the equihbrium pressure at 298 K, the value of the

left-hand side of eq (3) was numerically integrated.

In this calculation we adopted the shock wave
compression data of quartz by Wackerle [1962],

which was smoothly connected with the static com-
pressibility data by Bridgman [1949]. Recent linear

compression data of a-quartz reported by McWhan
[1967] are in a reasonable agreement with the

present compression curve, at least for low-pressure
region. The pressure-volume relation for stishovite

Figure 3. The values of — I AVdp versus pressure for the
Jo

coesite-stishovite transition.

determined by Ida et al. [1967] by means of high-

pressure x-ray analysis based on the compression
data of NaCl [Perez-Albuerne and Drickamer,
1965] was also used. Since no compressibility data
for coesite are available, we estimated the bulk
modulus of coesite to be 70 percent of that of quartz,

based on the logarithmic Hnear relationship between
bulk modulus and volume per ion pair reported by
Anderson and Nafe [1965]. We also tentatively cal-

culated for comparison the compression curves of
coesite, assuming the compressibility of coesite

to be 80 percent and 100 percent of that of quartz.

In figure 2, volume versus pressure data of three
Si02 polymorphs used for the free-energy calcula-

tion were graphically shown. ^

CP
In figure 3 the values of— I AVdp for transforma-

Jo

tion of coesite to stishovite were plotted versus

pressure. The equilibrium pressures between
coesite and stishovite are 85, 88, 95 kbar, corre-

sponding to the assumption of 70 percent, 80 per-

cent, 100 percent compressibility of quartz as that

of coesite. Since errors in the enthalpy measure-
ments are reported as 0.15 and 0.3 kcal/mole for

the quartz-coesite and quartz-stishovite transforma-

tion, the uncertainties of the calculated equilibrium

pressure between coesite and stishovite were
estimated to be ±4 kbar.

The calculated equihbrium pressure at 298 K
between coesite and stishovite, 85 ± 4 kbar (assump-

tion of 70 percent), is remarkably higher than the

experimentally determined value of 70 kbar based
on the NaCl pressure scale by Jeffery et al. [1966].

The value is almost comparable to the equilibrium

pressure at 298 K around 82 kbar obtained by adopt-

ing Bridgman's volume-scale for the pressure values

of the present phase equilibrium experiments, but

is considerably smaller than the predicted value,

97.5 kbar, by Stishov [1963].

^Similar calculations were rarried out by Holm et al. (1967]. in which the compressi-
bility of coesite was assumed to be 80 percent of that of quartz. Furthermore, the

pressure-volume relation of quartz given by them shows quite a large offset at higher

pressures than 90 kbar from Wackerle's compression data. For these reasons we
have done more detailed calculation.
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On the other hand, the value of dP/dT can be
calculated by means of Clausius-Clapeyron equation

dP|dT^^S|^V, and is estimated to be 0.019 kbar/K
at 298 K using the observed entropy change by

Holm et al. [1967]. The slope determined experi-

mentally at higher temperatures is 0.024 kbar/K
on the basis of the pressure scale by Jeffery et al.

[1966], and 0.036 kbar/K on the basis of Bridgman's
volume-scale. When the effects of pressure and
temperature on the slope are ignored, the former
value is almost comparable to that of the calculated

one, but the latter is too much higher than the

calculated one.

Although there exist some ambiguities on the

pressure-volume data of coesite and on temperature
measurement at high pressures, it may be safely

concluded from the above results that the pressure

scale proposed by Jeffery et al. [1966] is too low,

while Bridgman's volume-scale is too high to give

consistent explanation on the stability field of

coesite-stishovite equilibrium derived from thermo-

dynamic data. In the present argument the effect of

the correction for the thermocouple emf at high

pressures on the phase boundary curve was com-
pletely ignored. Since the correction has generally

been accepted to be positive, the value of dPjdT
will be decreased, while the equilibrium pressure

at 298 K will be increased after these corrections

are made. Such procedure will reduce the incon-

sistency between independent conclusions which
were derived from comparing two thermodynamic
properties, enthalpy and entropy change during

phase transformation, with the experimentally

determined equilibrium pressure and value of

dPjdT, respectively.
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DISCUSSION

W. A. Bassett [University of Rochester, Rochester,

New York): I have made some measurements on the

compression, both of coesite and stishovite on the

tetrahedral x-ray press at Brigham Young University,

and my coesite data when plotted on the diagram
(fig. 2) would be roughly 60 percent of that shown
for quartz. This would tend to bring the phase transi-

tion pressure even lower, and closer to Dr. Akimoto's
experimental pressure.

I also measured stishovite and found it to be
somewhat more compressible than indicated by
the curve of figure 2. The value that I got for the

bulk modulus would be approximately three mega-
bars. In this work, I did not see the peculiar expan-
sion along the C-axis which Dr. Akimoto reported

in an earlier paper. The C-axis seems to contract

very slightly up to a hundred kilobars, but along a

straight line.
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F. R. Boyd, Jr. {Geophysical Laboratory, Carnegie
Institution of Washington, Washington, D.C.): Can
you tell us how fast the reaction goes, that is, how
long it will run?

J. D. Barnett (Brigham Young University, Provo,

Utah): I understand that you determined pressures

from a room-temperature calibration, with no cor-

rection made due to increased temperature in the

cell.

I suggest that at a cell temperature of 500 °C to

600 °C the pressure will increase at least five or six

kilobars, perhaps even 10 kilobars at the higher

pressures. This has been our experience in x-ray

studies.

As a second point, the value you used for the tin

transition as reported in our paper by Jeffery et al.

was not intended as a transition calibration point

at all. There is strong indication that this is some-
where around 100 kbar rather than 92 kbar.

Thirdly, you used calibration points based on
Decker's NaCl theory before a recent correction of

the initial compressibility of NaCl in the theory.

This will increase the pressure by approximately
2 percent.

I think when you take these" three things into

consideration the agreement with other measure-
ments is really not bad at all.

AUTHORS' CLOSURE

In reply to Dr. Bassett: I don't know why there is

some discrepancy in the compression curves of

stishovite determined by Drickamer-type high pres-

sure x-ray apparatus and tetrahedral-anvil type high-

pressure apparatus. But if we use the revised data

by Dr. Bassett for stishovite and coesite, the dis-

crepancy between the experimentally determined
transition curve of coesite-stishovite and the ther-

modynamically determined curve wiU be reduced.
The reaction time is about 20 to 30 minutes at

high temperatures above 1000 °C.
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The Use of Solid-Solid Transitions at High Temperatures for High-Pressure
Calibration

Phillip N. La Mori

Battelle Memorial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Transition pressures have been determined for bismuth l—*2 and bismuth 2 —» 3 to the mehing
point (183 °C). The transitions parameters of thallium 2—» 1, 1 —» 3 and 2-^3 have been measured to

40 kbar and 220 °C. The thallium 1—»2^3 triple point has been determined as 114±1°C and 37.4

±0.4 kbar. The use of the determined transition parameters as high-pressure, high-temperature

fixed points is discussed.

1. Introduction

The purpose of this paper is to make some initial

attempts to provide pressure calibration points

above room temperature. This higher temperature
calibration is of extreme interest because most
high-pressure experiments also are made with

concomitant high temperature. At the present time
(almost) all high-pressure calibrations in solid media
devices are made at room temperature. Possible

changes in the pressure calibration with tempera-
ture are generally ignored. In the few cases where
it has been considered, the conclusions have not

been testable against experimental data.

The status of high-pressure calibrations has

been dealt with extensively in another paper,

Decker et al. [1],* and will not be reviewed here.

Additionally, the reader should remember that the

comments in this paper are directed toward solid

media devices, even though they are not necessarily

restricted to them.
Fixed points for pressure calibration are accurate

enough below 40 kbar to allow accurate determina-
tion of thermodynamic quantities. The calibration

in the 40 to 60 kbar range is less certain but prob-

ably accurate enough, when combined with the

lower pressure points, to again provide reasonable
determination of thermodynamic quantities. How-
ever, a critical assumption in using these pressure

calibrations is that they remain constant at higher

temperatures, i.e., the temperature-pressure regime
of interest in most experiments.

Decker's [1] review paper on high-pressure cali-

bration discusses in detail criteria for selection

of materials for and methods of measurement of

fixed pressure points. It is assumed that the reader

is familiar with Decker's review, and only a few
additional comments will be necessary in this paper.

After applying all of Decker's "criteria," in order

for a fixed point to be of value, it must be measurable

' Figures in brackets indicate the literature references at the <•") "f •'^

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
ofStandards, Gaithersburg, Md., October 14-18, 1968.

in the many different apparatus and experimental

setups that are in use. Solid (because solids are

easier to handle than liquids) transitions which can
be measured by volume, resistance, and DTA tech-

niques appear to be most easily adaptable to ap-

paratus and experimental conditions. Thus, metals

which exhibit solid transitions appear to be the most
useful materials for study.

Thalhum and bismuth were chosen for this initial

study of high-pressure fixed points at high tem-
perature. Both materials are used for fixed points

at room temperature, and the solid transitions in

these materials have been studied by volume, re-

sistance, and DTA techniques. La Mori [2] has
shown that the volume and resistance transitions

do, in fact, occur at the same pressure.

2. Experimental

In order to attempt the measurements outlined

above, it is necessary to have an apparatus capable

of accurate pressure measurement at higher tem-
peratures. Until recently, such an apparatus has
not been available. The development of the exter-

nally heated piston-cylinder apparatus. La Mori [3],

has permitted the determination of pressure to an
accuracy of about one part per 1000 to 400 °C and
pressures of 30 kbar.

The technique used to measure the transition

pressure is the same as described by Kennedy and
La Mori [4]. The piston is inserted into the cylinder

and rotated by means of a lever arm attached to

the tool stack. This has the effect of relieving fric-

tion somewhat in the manner of a free piston gage.

Pressure is calculated by force/area of the main
hydraulic ram relative to that of the area of the

high-pressure piston. Appropriate corrections are

made for the weight of the ram and tool stack, and
dilation of the pressure vessel with pressure.

Figure 1 is a schematic of the X-Y plot of an actual

experiment. The sample is first cycled completely
through the transition. On the second upstroke, the

cycle is stopped just after the transition is entered

(point 1). The piston is rotated until the pressure

drops to a constant value (point 2). Pressure is

increased and then released (point 3). The piston
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Table 1. Data for bismuth transitions

Tempera-
ture, °C

Pressure, kbar
Tempera-
ture, °C

Pressure, kbar

Compres-
sion

Release Compres-
sion

Release

Bismuth i —» Bismu th II Bismuth 11 Bismuth III

23.3 25.39 22.9 27.02

Zo.o 25.25 22.6 OA -7/1
ZD. (4

OA O ZO.W 24.8

OA 1 25.28 24.7 0£. £iO26.68

OO.Z Z'i.y 33.5 O/C -70
ZD. 10

34.7 24.72 32.2 26.46

oo. / 24.70 48.0 0£. A26.46
All OA O 48.0 26.14

4/.0 24.14 73.2 25.76
AO C\48.0 24.28 73.0 25.58

AO ^4o.z 24.16 98.8 24.97

73.1 23.13 98.8 24.85

73.U 23.05 127.5 24.08

110.6 21.45 127.2 24.00

110.7 21.35 151.5 23.32

127.0 20.61 151.3 23.21

127.5 20.57 163.9 22.95

127.2 20.51 163.9 22.91

151.5 19.45 172.2 22.5

151.6 19.35

163.5 18.84

163.7 18.78

173.0 18.21

173.0 18.15

is rotated until the pressuire rises to a constant

value (point 4). The actual pressure of the transition

must lie somewhere between points 2 and 4. These
are the points that are reported in the Results sec-

tion. For purposes of drawing a phase diagram, the

transition line is drawn through the mean of com-
pression and release values.

The high temperature is obtained by placing an

external heater around the outside of the 11-in.

diameter by 2-in.-thick pressure plate. The 6-in.-

thick heater also heats 2-in. -thick aluminum plates

on both sides of the pressure plate. These aluminum
heat sinks are efficient enough so that there is no
measurable temperature gradient over the sample
at 500 °C. Heating of the pressure plate assembly
causes the binding rings to expand away from the

carbide pressure vessel. This and the decreased
strength of the carbide at higher temperatures
reduce the operating pressures of the device from
40 kbar at room temperature to 28 kbar at 500 °C.

Additionally, corrections for the increase in diam-

Pressure

Figure 1. Schematic of piston rotation experiment.
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Figure 2. Phase diagram of bismuth.

eter of the pressure vessel due to temperature and
expansion of the binding rings, as well as the de-

crease in elastic constants, must be included in the

determination of the diameter of the pressure vessel.

This is discussed by La Mori [3].

3. Results

The results of this investigation on bismuth and
thallium are given in tables 1 and 2, and figures 2

and 3. Corrections have been applied to the raw
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Table 2. Data for thallium transitions

Temperature,
-c

Pressure , kbar

Compression Release

Thallium II —> Thallium III

25.5 37.54 35.37

70.0 37.74 36.25

98.5 37.36 36.74

114.5 37.70 36.98

Thallium II—* Thallium I

137.8 32.05 30.89

161.0 26.14 25.74

184.2 19.80 19.37

208.0 12.36 11.67

120.0 36.40 35.51

Thalhum I—* Thallium III

120.0 38.63 37.90

148.5 40.49 40.25

172.0 42.61

data as described previously. These pressure cor-

rections amount to about 400 bars at 40 kbar. The
accuracy of the pressure measurements is about 1

part in 100, while the precision is about 100 bars.

The latter arises from uncertainty in the measured

quantities; the former from uncertainties in the

pressure measurements of the hydraulic ram. Tem-
perature measurements are accurate to 0.1 °C (see

ref. [3]).

3.1. Bismuth

The bismuth l—> bismuth 2 transition has been
used as a high-pressure standard since Bridgman
[5] first accurately measured it. He reported a value

of 25.155 kbar at 25 °C; examination of his data
shows an uncertainty of about 5 percent. Later
Kennedy and La Mori [4] reported a value of 25.410

kbar ±95 bars and using the same data they re-

ported a "best value" of 25.380 kbar ±20 bars.

This best value was computed from the lowest

pressure found on the series of compression values

and the highest pressure found on the series of

release values. The value of 25.41 ±.10 kbar is

considered by the authors to be most representative

of their work. Heydemann [6] reported a value of

25.499 kbar ±60 bars (corrected from 25.306 kbar,

Heydemann [7]).
The present work finds a value of 25.37 ±0.2

kbar with an uncertainty large enough to agree with

the previous determinations. The reason for the

larger uncertainty reported here than that found
by Kennedy and La Mori is that the pressure gage
was not calibrated as accurately in the present

experiments. Because of the presumed greater

accuracy of the true free piston gage, the data on
figure 1 are forced through Heydemann's value of

25.50 kbar at 25 °C.

The bismuth 2 bismuth 3 transition was pre-

viously determined by Kennedy and La Mori [4]
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Table 3. Triple points in bismuth

Reference [111 1 hlQ WrtTK
1. 1 lis VV KJl Jv

Bismuth 19.4 kbar 16.7 kbar 17.6 kbar

1-2-Liquid 184 °C 191 °C 183 °C

Bismuth 27.5 kbar 23.6 kbar 21.9 kbar*

2-4- Liquid 175 °C 191 °C 183 °C

*This does not take into account the bismuth 2-4 phase bound-

ary, which will decrease the transition pressure slightly.

at 25 °C as 26.96 ±0.20 kbar. This value is thought
to be better than Bridgman's [5] value of 26.54 kbar
which has 5 percent uncertainty. The value found
here is 26.82 ±0.20 kbar.

The bismuth experiments always ended in catas-

trophic failure of the pressure vessel at 183 °C.

Since the bismuth filled the entire bore of the pres-

sure vessel, this phenomenon is what one would
expect on melting. If one accepts this inference as

evidence for melting, then the 183 °C is in good
agreement with Ponyatovskii [8] and not in agree-

ment with Klement, Jayaraman, and Kennedy's
[91 value of 191 °C.

Bridgman [10] and Ponyatovskii [8] have previ-

ously examined the bismuth 1-2 and 2-3 transi-

tions. They are in close agreement. Our data for

bismuth 1^2 are at a slightly higher pressure than

the others and in close agreement for bismuth 2-^3.
Kennedy and Newton [11] and Klement, Jayaraman,
and Kennedy [9] have inferred the transition

boundaries by drawing straight lines between in-

flections in their melting curve determinations

(DTA) and the values of Kennedy and La Mori [4].

The differences between these data, as well as

their differences with the present data, are believed

to be caused by the unfavorable pressure deter-

mination that is probable in their experiment, as

compared to the present method. See figure 2.

These experimental differences result in signifi-

cant differences in the triple point determination.

The triple points inferred from this work are com-
pared with other values in table 3. Even if our deter-

mination of the melting temperature of bismuth 2 is

low, significant pressure differences will exist in

the triple point determinations.

3.2. Thallium

Of the four previously reported studies of the
solid transitions in thallium, the work of Jayaraman
et al. [12] and Adler and Margolin [13] is considered
to be vahd. The data of Bridgman [10] and Ponya-
tovskii [14] have several errors. The data are shown
on figure 3. Thallium 2 —» 3 transforms very slowly
at 25 °C. The data at 25 °C were not taken over as
long a time as that of Kennedy and La Mori [4]. This

caused a wider region of uncertainty. The thallium
phase diagram therefore uses the previous value of
36.69 ±0.10 kbar at 25 °C as the best value.

The 1-2-3 triple point as determined by the
present experiments is 114±1°C and 37.4 ±0.4
kbar. This is in agreement with Adler and Margolin;
the value found by Jayaraman (115 °C, 39.5 kbar) is

outside our experimental error. The major differ-

ence in our data and Alder and Margolin is in the
1-2 and 1-3 transitions at pressures near the
triple point. These differences are outside our limit

of error.

4. Discussion

Solid transition pressures and temperatures have
been accurately determined for bismuth and thal-

lium. These solid transitions should provide fixed

points for high-pressure experiments at pressures
up to 50 kbar and temperatures approaching 250
°C. A gap exists in the calibration at about 10 kbar.
This is in the range attainable by hydrostatic
methods where pressure measurement is easy and
can be done with great accuracy. Therefore, use of
the hydrostatic apparatus should be encouraged for

accurate data in this pressure range.

Further work of this type can be done to 500 °C
and 30 kbar. This is the present limit on externally
heated piston-type apparatus. Specially designed
cells with AgCl or other salt pressure media and
internally heated systems may permit determination
of less accurate pressure points to 1000 °C.
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The Use of Iron and Gold for Calibration of Higher Pressure and
Temperature Points

H. M. Strong and F. P. Bundy

General Electric Research and Development Center
Schenectady, New York 12301

1. Introduction

The calibration of pressure cells at room tem-
perature by reference to the phase transitions in

Bi, Tl, and Ba is now a fairly settled procedure. But
temperature excursions away from room tempera-
ture, especially to high temperatures, quickly ob-

scure the familiar landmarks and both pressure and
temperature become uncertain. Because there are

no sure reference points established in this region,

navigation on the P-T plane is something hke
groping in a fog. High temperature affects the pres-

sure in a number of ways: (1) it tends to increase
the pressure due to restraint of thermal expansion
of the heated parts of the cell by the surrounding
cooler parts of the cell and pressure vessel; (2) it

tends to decrease pressure when it causes phase
transformations to more dense structures to occur
in the sample holder or its contents; (3) it may de-

crease pressure by accelerating gasket leakage; and
(4) it may decrease pressure by accelerating the

relaxation of tension in the high-pressure chamber.
It is usually impossible to estimate the net effect

of these pressure-modifying factors, nor is there a

simple direct monitoring method for the pressure.

Temperature can be monitored by a thermocouple,
but unfortunately, high pressure changes the cali-

bration of thermocouples in an incompletely known
manner. It is the purpose of this paper to describe
a few techniques for improving the accuracy of

pressure and temperature estimates in a static

high-pressure cell.

One of the methods for obtaining more useful
high-pressure, high-temperature data is to associate
the high-pressure phenomenon under study with
some other familiar and easily observable phe-
nomenon, recording both simultaneously. In this

way the experimenter can standardize his own
experiments, and he can offer data which make it

easier for another experimenter to duplicate or

compare results of similar type. The reference
phenomenon is Ukely to be one for which there is a

good deal of accurate data which help very much
in more closely describing the pressure and tem-
perature conditions used in his own experiments. In
this paper, the use of iron, gold, and germanium as

a pressure and temperature reference material is

described.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau
of Standards, Gaithersburg, Md., October 14-18, 1968.

2. Iron as a Pressure-Sensing Element

Iron is a rather remarkable element for meas-
urements of high pressure because it has several

features which vary with pressure in a known man-
ner in different regions of the P—T plane. Also, it

is easy for the experimenter to use iron in high-

pressure cells. Some of its most useful features are

shown in the Fe phase diagram for the region below
910 °C in figure 1. When any one of the solid-solid

phase boundaries shown in figure 1 is crossed, the

Fe responds by conveniently changing its resistance

sharply, its thermoelectric properties, or its heat

content, anyone of which is rather easily detected.

Because the slopes (dTjdP) of the three phase lines

are quite different, not all of these boundary lines

are equally useful for pressure measurement. The
e, y transformation above 110 kbar, 500 °C has
such a small slope * (+1.87kbar) that it is not a

particularly sensitive pressure probe for that region.

Because its temperature of transformation is nearly

the same for a wide range of pressures above 110
kbar, it might better be used as a temperature ref-

erence point for approximately relating temperature
in the cell to power input. The a, e transformation

boundary is so steep (~25°/kbar) that it is primarily

sensitive to pressure in the narrow range between
about 130 and 110 kbar. The a, e transformation is

in fact one of the most valuable pressure reference

points now known for the higher pressure region

in static apparatuses. Certain alloys of Fe with Co
or with V have a, e type transitions at pressures in

the range 160 to 300 kbar. Details about these higher

transitions are given by Bundy [1] ^ and by Loree
et al. [2].

The a, 7 transformation is in a more popular

region of the high-pressure spectrum. It has a

satisfactory pressure sensitivity of about — 4°/kbar

in the pressure range 20 to 60 kbar. Furthermore it

is quite versatile in signahng the occurrence of the

transformation by electrical resistance change

(Ai?//?a ^ 0.5), latent heat (A// = 217 cal/mol) or

thermoelectric change (an easily identified sharp

maximum in emf output of an Fe/PtlORh junction

versus temperature). In addition, Fe has one other

feature not shown in figure 1. It has a relatively

large thermoelectric pressure error effect which is

' This value is less than the +2.8°/kbar given in ref. (4). This new lower value is

based on the latest, most accurate, values of the AFs published by Mao, Bassett, and

Takahashi. J. Appl. Phys. 38, 272 (1967), and the experimental slope of-2.3°/kbar

for the y, a line near the triple point.

^ Figures in brackets indicate the literature references at the end of this paper.
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Figure 1. Fe phase diagram.

Solid lines: experimental data; broken line: calculated a, y boundary, Kaufman el al.

useful for pressure probing in a limited range of

temperature from about 1000 to about 1500 °C in

the pressure region from 0 to at least 60 kbar,

possibly much higher. (The authors have explored

the effect in the region 30 to 60 kbar). This latter

effect will be described in more detail in a later

section.

The establishment of the Fe phase diagram illus-

trated in figure 1 is the result of the efforts of many
people over a period of about 10 years. It involved

a variety of experimental techniques including high-

pressure x-ray probing, metallography, dynamic
shock techniques, and theoretical approaches. It

is not useful to describe details of all this work here

but the reader can find summaries and detailed

references to former work in articles by Kaufman
et al. [3] and Bundy [4]. The a, y transition, being

in a more accessible pressure region, has received

the most attention with established techniques and
is the most accurately known boundary. In figure 1,

the solid line was determined by experiment using

a chromel-alumel thermocouple for temperature
measurement. This thermocouple is known to have
quite a small pressure calibration error. The dashed
line is the calculated curve of Kaufman et al. The
difference between the two curves over the span 20
to 60 kbar is probably due to thermocouple pressure

effect. The portion in the upper pressure region

(>80 kbar) is in a far more difficult region experi-

mentally and naturally is less accurately known than

the region below about 80 kbar.

The high-temperature phase boundaries of Fe,

(y, 8), (8, liquid) and (y, liquid) will not be
covered in this article because they are in an ex-

perimentally difficult region and lack reliable tech-

niques for accurate observations.

For pressure (or temperature) measurement in

the regions defined by the Fe diagram shown in

figure 1, it is a simple matter to install a small piece

of iron in the pressure cell adjacent to the sample
under investigation. A wire, disk, or thermoelectric

junction may be used, depending on the mode of

detection to be apphed. The electrical resistance

changes associated with the three phase boundaries

0 200 400 600 800

T CO, UNCORRECTED

0 200 400 600 800

T (°C), UNCORRECTED

0 500 1000 1500 2000

RAM OIL PRESSURE PSI

Figure 2. Resistance changes at Fe(a, y), (o, e), (e, y) boundaries.

are illustrated in figure 2. (The Fe probe should have
a very small volume relative to the cell so that its

transformation with — will not change the cell

pressure significantly.) For experiments conducted
under conditions very close to a phase boundary line,

for example, close to the a, y transformation, the
probe will give absolute pressure readings. If the

temperature of the experiment is considerably
different from the phase line, especially the a, y
boundary, then absolute pressure readings cannot
be obtained because temperature has a significant

effect on cell pressure due to thermal expansion
and other effects mentioned previously. Even under
this circumstance, the iron probe is useful for

establishing relative pressures between experiments.

In this laboratory, the a, y transition at

~ 650 °C was used extensively for pressure cahbra-

tion and cross-comparison of experiments on

diamond growth at ~ 1400 °C. The iron reading was
taken during the preheats for the diamond growth

runs to measure the pressure differences at the
~ 650 °C stage of different experiment runs. The
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iron probe (thermocouple-grade Fe wire) was in the
form of a thermoelectric junction with Pt and
PtlORh. The three wires were connected at a
common point, forming a "thermotriplet," and the
milhvolt output of Fe/PtlORh was plotted against
the output of the Pt/PtlORh junction on an X— Y
recorder. The a. y transition, which occurred at

temperatures between 670 and 630 °C for these
experiments, was marked by a rather sharp maxi-
mum in the output of the Fe/PtlORh couple. (See
figure 3. In practice, the a, y transition is displayed
on a larger scale for better resolution.) The tempera-
ture at the center of this maximum was obtained
from the Pt/PtlORh junction. To correlate this

temperature with the a, y solid curve of figure 1,

it was necessary to add a relative correction,
AT(C/A-Pt/PtlORh) of 18 to 20 deg to allow for the
relative pressure error between Pt/PtlORh and
chromel-alumel (C/A) under these conditions [5, 6].

The temperature so obtained was referred to the
a, y transition solid curve of figure 1 for a pressure
reading. This pressure corresponded to the cell

pressure at approximately 650 °C (40 to 50 kbar)
and was invariably several kilobars below the pres-
sures needed for diamond growth, which were (50
to 60 kbar), at the temperatures required, 1300 to

1500 °C. Nevertheless, the iron probe measurement
was very useful for detecting the inevitable pressure
variations between experiments, which were not
due to varying the applied load, but which were
caused by differences in gasket behavior, cell

packing, relative humidity, etc.

While using this thermotriplet junction as an Fe
a, y pressure probe, it was discovered that it had
the properties needed to measure relative pressures
at ~ 1000 to 1500 °C by the thermocouple pressure
error method. This two-thermocouple pressure-probe
method is described in detail in the next section.
It is also described in an article of this same
Symposium by Hanneman et al.

In the work described here, the Fe probe was
always used for pressure calibration when the transi-

tions were running in the forward direction a—* y,
a—^ e, and y. There was hysteresis in recycling

the transitions. Part of this hysteresis was due to

pressure-press load behavior, part to reafction

kinetics in the Fe. On the second pass in the for-

ward direction, the transitions sometimes occurred
at slightly lower press load. This difference can be
caused by an effect called "pressure ratcheting" —

a

pressure increase obtained by cycling the cell

temperature up and down. The difference could
also be caused by reaction kinetic differences in the

Fe probe. On the second cycle, some seeds of the
high-pressure modification may be on hand, for

example. These are inherent weaknesses in the
method. Nevertheless, using the probes in the for-

ward transformations, quite consistent pressure
measuring results were obtained. For more detailed

discussions of hysteresis effects see Bundy [4].

Figure 3. Plot of Fe/PtlORh versus Pt/PtlORh millivolts at

two pressures.

Fe is in bcc cubic form below about 650 °C, in fee cubic form above 650 °C.

3. The Two-Thermocouple Method
for Pressure Measurement

It is well known that thermocouples change cali-

bration under pressure, but that no two thermo-
couples change calibration in the same way [5, 6, 7,

8]. It is possible therefore to use the difference in

temperature readings between two thermocouples
under pressure as a measure of pressure. For relia-

bility of measurements and convenience, it is desira-

ble to have the differences in thermocouple readings

to be as large as possible. But the requirement of

having thermoelectric materials which are chem-
ically stable under high temperature in a high-

pressure environment limits the choice of materials

that can be used. For example, chromel-alumel
junctions were found to be unreliable above about
800 °C. The higher the temperature, the faster was
its decay from normal calibration. Pt and Ptl0%Rh
alloy has been found satisfactorily stable up to about
1700 °C or more for brief periods and stable at

1400 °C for hours. Pt-PtlORh is satisfactory for one
of a pair of the junctions for pressure measurement.
Other metals found to be stable enough for use at

1000 °C to at least 1300 °C were Au, Ir, and Fe.

Various combinations of Pt, PtlORh, Pt40Rh, Au,
Ir, did show calibration differences due to pressure,

but the differences were too small to be of practical

use. The combination Fe/PtlORh with Pt/PtlORh
proved to be stable for short periods up to about
1400 °C and for quite long periods at 1200 to 1300
°C. (The cleaner and drier the environment of the

thermocouples, the longer they were stable.) Also,

the pressure effect was large enough to be useful. A
large number of pressure observations have been
made using the thermotriplet Pt-PtlORh-Fe in

diamond growth experiments.

In using this triplet combination, an Z-F recorder
was connected to Fe/PtlORh and to Pt/PtlORh
terminals. The millivolt output of the one junction

plotted in terms of the millivolt output of the other

junction produced a family of curves in which each
curve was characteristic of the pressure. In a high-
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Fe/Pt 10 Rh MV

Figure 4. yFe/PtlORh versus Pt/PtlORh millivolts at 11 to 14

mv Pt/PtlORh for three pressures.

The cell pressure near the a, y transition (~ 650 °C) is lower than at ~ 14<K) °C by

about 6 to 7 kbar.

pressure isxperiment, it was then possible to read

from the X-Y plot both the relative pressure and the

temperature from this three-wire junction. The
types of X-Y plots obtained are illustrated in figure

3. The upper portions of the curves represent the

thermoelectric behaviors of yFe/PtlORh; the lower

portions show the characteristics of aFe/PtlORh.
From these plots it will be seen that this thermo-

junction has a limited range for pressure measure-
ment which hes between ~ 1000 and 1500 °C at

~40 to 60 kbar. Below ~ 1000 °C the curves were
complicated by the pecuUar thermoelectric behavior

associated with the a, y transition. At this transi-

tion, the Fe/PtlORh passes through a peak output.

The position of this peak is also a measure of pres-

sure because as described above, the a, y transition

shifts to lower temperatures with increase in

pressure.

While it is clear from figure 3 that the a, y
transition is related to the path of the curve above

1000 °C, it does not follow that they both indicate

the same pressure. The additional heating beyond

the a, y transition causes cell expansion and

possibly increase of pressure unless the compres-

sion pistons are pushed out correspondingly. Since

the piston or anvil friction is usually very high, the

piston motion, if any, does not normally fuUy

compensate for expansion. On the other hand there

may be phase transitions to denser forms within

the cell which cause loss of internal pressure also

not compensated by piston motion. The curves in

figure 3 were made under circumstances in which

there was a simple pressure increase due to re-

strained expansion. Curves showing a sharp shift

to the right due to sudden pressure loss in a phase

transformation have been observed. For these

reasons the a, y transition does not furnish an

absolute calibration for the curves above 1000 °C.

The curves in figures 3 and 4 were assigned ap-

proximate pressures by comparison with the

diamond-graphite equihbrium (di/g) and by other

studies, to be described below, on the effects of

heating on cell pressures. Figures 3 and 4 have

tables which show the characteristic pressures for

each curve, the pressures obtained by the a, y
transitions for the low-temperature portions of the

curves shown only in figure 3, and the pressures
for the high-temperature portions after allowing for

cell expansion. The circled point on curve (2),

figure 4, marks an experimental point lying on the

di/g equilibrium. In finding the pressure corre-

sponding to this point it was necessary to apply a

thermocouple pressure correction, and the one used
was obtained from those published by Hanneman
and Strong [5, 6].

Ideally, the curves of figure 4 could be assigned
absolute pressures so that they could be universally

applicable. Unfortunately different apparatuses can
have different pressure and temperature gradients

along the thermocouple wires as they leave the

pressure cell. This affects the apparent temperature
error so that the curves of figures 3 and 4 will be
more or less characteristic of a particular apparatus.

But the phenomenon illustrated here is very useful

for the experimenter to compare pressures at high
temperature in a series of individual experiments.
The method also has a distinct advantage in that it

provides a means by which pressure changes can
be followed in a continuous manner at high

temperature.

4. The Effect of Heating on Cell
Pressure

The effect of heating and thermal expansion on
the pressure in a rigidly confined material can be
quite remarkable. A simple example is that of

sodium chloride, sometimes used as a pressure

medium [5, 6, 9, 10]. Referring to the work of

Decker [11] on the equation of state of sodium
chloride, its cubical expansion coefficient at 50
kbar is about 105 X 10"®. Raising its temperature

by 1000° will therefore result in a volume expansion,

+ AF/Fo, of 0.105 at constant pressure. The com-
pressibility at 1000 °C and 50 kbar is about
3.5 X 10~^ kb"'. Therefore to confine the sodium
chloride rigidly while heating at 1000 °C would
require a pressure increase of about 30 kbar.

In a practical pressure cell, confinement is not

strictly rigid because gaskets do leak, pistons move
some, and the pressure chamber does yield some.
Furthermore, there may be internal phase changes
in the sample or sample holder material to more
dense forms. AU of these effects influence the pres-

sure in a direction opposite to that of thermal

expansion. It is therefore necessary to measure
directly the effects of heating on cell pressure in

particular situations.

In this work, several methods were used for ob-

serving the influence of cell temperature and inter-

nal phase transformations on cell pressures. One
of the most effective of these was to observe the

variation of the melting point of a tiny, independ-

ently heated germanium element while the internal
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cell temperature was varied. The schematic experi-

mental arrangement is illustrated in figure 5 along
with the Ge fusion curve [12]. The portion of the
fusion curve used in this work was that part between
about 30 and 60 kbar. The Ge element was heated
independently by a tiny strip of carbon in contact
with the Ge bar (dimensions: 1X1X5 mm). When
melting occurred, the resistance of the heating ele-

ment decreased sharply and the thermocouple re-

corded a latent heat arrest. (Liquid Ge is a metallic

conductor; solid cubic Ge is semiconducting.) When
the cell pressure increased, the Ge melting point

decreased.

A test on cell pressure variation with heating was
started with no heat applied to the central carbon
tube heater and the first observation on the melting
point of the Ge bar was made. Then with heat
increased in the core of the cell, frequent Ge melt-

ing-point checks were made. After maximum
temperature was reached, the variation of the melting
temperature with time was observed. In this way a
number of observations were made on both sodium
chloride and pyrophyllite sample holders and in the
presence of internal phase changes. Also, in a few
experiments a second Ge element was placed inside
the carbon tube furnace. In other experiments, Bi
or Tl elements were located diametrically opposite
the Ge element for observing the 25 and 37 kbar
transitions in these elements. By these techniques, it

was possible to gain an impression about the effects

of heating on cell pressure and about internal pres-

sure gradients.

The results obtained in this study are not applica-

ble to all apparatuses and experimental arrange-

ments, but they do represent the kinds of things that

can happen in particular circumstances. The results

did reveal sharp internal pressure gradients within

the cell at relatively low temperatures. As the cell

temperature increased so did the internal pressure

until the core temperature reached about 1,000 to

1200 °C. This behavior was observed in both
pyrophyllite and sodium chloride pressure media.
At stiU higher core temperatures, the Ge melting

point started to increase, indicating that the cell

pressure was decreasing, possibly due to internal

relaxations, gasket leakage, or phase transforma-

tions. For pyrophyllite the decrease in pressure
with time was quite rapid and large, falling even-
tually below the calibrated pressure in the room-
temperature cell. For sodium chloride cells the

pressure always remained weU above the room-
temperature calibrated value and quickly reached
an equilibrium value, except when the cell con-

tained a sample which changed phase to a more
dense form. In the latter case the pressure de-

creased until the transformation was ended. The
difference in behavior of sodium chloride and py-

rophyllite pressure media at high temperature is

due to the fact that salt has a stable lattice while
pyrophyllite does not. Pyrophyllite transforms to

coesite, kyannite, and other denser structures.

Figure 5. High-pressure cell for "belt" apparatus and
germanium phase diagram.

Pressure cell contains an element for internal pressure measurement by variation

of Ge melting point.

BOTH AT CELL T OF ~ lAOOX

500 1000 1500 2000 2500
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Figure 6. Pressure calibration at different temperatures for a
Hall belt-type apparatus.

An illustration of the effect of temperature on
internal cell pressure is shown in figure 6. The
curves show cell pressure in terms of the applied

load. In this case the pressure medium was largely

sodium chloride. The room-temperature pressure

calibration corresponds to the bottom curve in the

figure. Pressures found from the a, y transition at

approximately 650 °C are shown by the middle
curve. On the other hand, the internal pressure at

temperatures near 1400 °C were substantially

higher. The actual pressures existing were deter-

mined by the melting temperature of Ge and by the

di/g equilibrium.

These results serve to emphasize the very great

difficulty in knowing at all times and at aU tempera-
tures what the internal cell pressure and temper-

ature really are. Not only do the pressure and
temperature influence the normal calibrations for

each other, but cell characteristics also influence

the apparent values as compared to the true absolute

values. If a fixed pressure-temperature reference

point could be found that is located well into the

region where both P and T are large, this reference

point would help very much to check both pressure
and temperature calibrations of various sorts of P
and T probes. In the next section an attempt to

locate a possible reference point using the inter-

section of the di/g equilibrium with the Au fusion

curve is described.
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5. A Possible High-Pressure High-
Temperature Reference Point

Simultaneous, accurate, absolute measurement
of high pressure and high temperature is not

presently possible and no reliable fixed points at

these conditions have been established which could

be used as standard references. An approach to

the problem of finding a convenient reference has
recently been made, using the intersection of two
phase-boundary lines which have radically different

slopes. The phase lines chosen for this experiment
were the melting line of gold and the diamond-
graphite equilibrium Une. These were chosen be-

cause they intersect at a point where both gold

melting and diamond growth could be observed
simultaneously. The gold fusion curve has already

been experimentally observed [13, 14, 15] and some
thermodynamic data were available [16, 17, 18] for

approximately correcting the experimental data to

the "true" curve. The di-g equilibrium has been
thoroughly explored [19, 20, 21] and its location in

the P-T plane is well established. The experiment
consisted in finding the apparent P and T where the

two curves crossed and then comparing this P and
T with the "true" calculated P and T for the inter-

section of the two phase boundaries. The differences

AP and AT between the observed and calculated

intersections were then taken to be the errors in

experimental calibration of pressure and tempera-

ture. Thus it was possible to compare the assump-
tions made about corrections of thermocouple error

and pressure measurement error with another

reference point determined by quite independent
data and assumptions.

An experimental arrangement for melting gold

and observing the di-g equilibrium is illustrated

in figure 7. Experiments were run at several pres-

sures and temperatures near 53 kbar, 1,400 °C

(corrected values) so that the di-g equilibrium point

could be established in relation to the gold fusion

curve. The thermocouple used was Pt/PtlORh and
melting was observed by latent heat arrests.

The fusion curve of Au was observed by three

experimenters using Pt/PtlORh thermocouples

[13, 15] and chromel-alumel thermocouples [14].

Each experimenter had a different apparatus and
method of pressure determination, taking into

account thermal expansion effects. It is remarkable

how well the three sets of data agree when un-

CARBON TUBE
HEATER —

Pt

Ni- ALLOY DISK

~GRAPHITE AND SEED DIAMOND

corrected melting temperatures were plotted in

terms of corrected pressures, figure 8.

The "true" calculated melting curves in figure 8
were plotted in two ways to give upper and lower
bounds to the possible location of the correct curve.

The upper curve was a linear extrapolation of the
initial slope obtained from Clapeyron's equation.

The AS"^'- for gold at melting according to data
given by Hultgren et al. [16] is 2.21 cal/deg g-atom.

The AF"^' is 0.60 cm-Vg-atom [17, 18]. The slope

was calculated from this data to be 6.5 deg/kbar,
and extrapolated to 55 kbar, the melting point was
1,420 °C.

The lower calculated curve was plotted with the

help of the Kraut and Kennedy melting law [22]:

where r„,„ is the melting point at 0 kbar (1336 K)
and Tm is the melting point at pressure P. AF/Fo is

the room-temperature isothermal compression, and
C is a constant to be determined from melting data

at relatively low pressure, in this case 10 kbar. At
10 kbar there is very little pressure or temperature
calibration error so that the experimental and
calculated melting temperatures (using Clapeyron
equation) agree very closely at 1,401 K. The value

of C obtained from the 10 kbar melting data and
Bridgman's compression data [23] was 8.94. The
extrapolation of the fusion curve beyond 10 kbar
then depended on the Bridgman isothermal com-
pression data which were taken only as far as 30
kbar. There was very little curvature in the com-
pression data and for purposes of obtaining the melt-

ing line to 55 kbar, the compression data were
extrapolated to this pressure. The melting point

at 55 kbar was thus found to be 1673 K.

1400
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1000,

di/g EQUIL.

EXP. FUSION CURVE:
PRESSURE CORRECTED
TEMPERATURE AS
READ.

+ COHEN, KLEMENT 8 KENNEDY (1966)

» DECKER a VAN FLEET (1965)
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Figure 7. Arrangement for simultaneously observing melting

point of gold and diamond-graphite equilibrium.

Figure 8. Diamond-graphite equilibrium line and gold fusion

curve.

Upper curve: extrapolation of initial slope of gold fusion curve, 6.57kbar. Lower

calculated curve: from Kraut and Kennedy fusion curve formula. Bottom curve:

experimental data, Pt/PtlORh thermocouple temperatures not corrected for pressure

error; cell pressure was corrected for pressure increase by internal thermal expansion.
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The true di-g, equilibrium and Au fusion curves

thus appear to intersect at 52.5 to 53 kbar at

1388 to 1410 °C (fitis. 8 and 9).

The experimental intersection of the two curves
appears to occur at 42.5 to 43 kbar at 1344 to

1352 °C (fig. 9). In the experimental determina-

tion, no allowance was made for pressure error

in the Pt/PtlORh thermocouple. Also, the pressures

used for the data points were those obtained from
room temperature pressure calibration by Bi, Tl,

Ba-transition points.

The experimental temperature and pressure for

the intersection of the two boundary lines lie below
their anticipated values. The pressure requires a

correction of —h 10 kbar. The temperature read-

ings were 36 to 66 degrees too low. The pressure

error was consistent with the studies on effects of

thermal expansion described above and the temper-
ature error was consistent with the earlier work of

Bundy, Hanneman and Strong and the recent work
of Wentorf [24] on thermocouple pressure error. A
more accurate fix on the intersection point could

be obtained if the reliability of the Au fusion curve
were to be improved.

6. Summary
Simultaneous accurate measurement of both

high pressure and high temperature is not presently

possible. However, a useful experimental procedure

is to use one type of phase change as a reference

against which other phase relations may be studied.

Iron was particularly useful for this purpose because
it exhibits several easily observed pressure-sensitive

solid-solid type phase transformations. It also

displays a large thermoelectric pressure-error

behavior, which when used with Pt and PtlORh
thermoelectric materials, provides both pressure
and temperature references.

, CALC.
^INTERSECTION

//I OBSERVED,
UNCORRECTED
di/g EQUILIBRIUM

V-UNCORRECTED GOLD
FUSION CURVE

It was shown that cell heating can substantially

change the internal pressure in a high-pressure

sample and that pressure at high temperature can
decay with time at a rate dependent on cell materials

used. The internal cell pressure changes were
detected by changes in melting point of a tiny Ge
element.

A high-pressure, high-temperature fixed reference

point could be the intersection of two well-estab-

lished phase boundary lines. The effectiveness of

this approach to the problem of high-pressure, high-

temperature measurement was illustrated using

the diamond-graphite equilibrium and the gold

fusion curve.

1000,
20 30 40 50

PRESSURE -kb
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Figure 9. Apparent gold fusion curve and dijg equilibrium in

relation to theoretical gold fusion curve and dijg equilibrium.

No corrections for pressure or temperature errors applied to experimental data.

[1

[3

[4;

[5

[6

[7

[8

[9

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

7. References

Bundy, F. P., Fe-Co and Fe-V Alloys for pressure calibra-

tion in the 130 to 300 kbar region, J. Appl. Phys. 38,
2446-2449 (1967).

Loree, T. R., Fowler, C. M., Zukas, E. G., and Minshall,

F. S., Dynamic polymorphism of some binary iron alloys,

J. Appl. Phys. 37, 1918-1927 (1966).

Kaufman, L., Clougherty, E. V., and Weiss, R. J., The
lattice stability of metals — III. Iron, Acta Met. 11,
323-335 (1963).

Bundy, F. P., Pressure-temperature phase diagram of iron

to 200 kbar, 900 °C, J. Appl. Phys. 36, 616-620 (1965).

Hanneman, R. E., and Strong, H. M., Pressure dependence
of the emf of thermocouples to 1300 °C and 50 kb, J. Appl.

Phys. 36, 523-528 (1965).

Hanneman, R. E., and Strong, H. M., Pressure dependence
of the emf of thermocouples, J. Appl. Phys. 37, 612-614

(1966).

Bridgman, P. W., Effect of pressure on thermoelectric

properties, Chap. X, p. 295, in The Physics of High Pres-

sure (G. Bell and Sons, Ltd., London, 1952). Also Proc.

Am. Acad. Arts Sci. 53, 269 (1918).

Bundy, F. P., Effect of pressure on emf of thermocouples,

J. App. Phys. 32, 483-488 (1961).

Strong, H. M., Pressure distribution in reaction vessels

(sodium chloride sample holder), U.S. Patent 3,030,662

(1962) .

Jeffery, R. N., Barnett, J. D., Vanfleet, H. B., and HaU, H. T.,

Pressure caUbration to 100 kb based on compression of

NaCl (cell contained a sodium chloride insert), J. Appl.

Phys. 37, 3172-3180 (1966).

Decker, D. L., Equation of state of NaCl and its use as a

pressure gauge in high-pressure research, J. Appl. Phys.

36, 157-161 (1964).

Bundy, F. P., Phase diagrams of silicon and germanium
to 200 kbar, 1,000 °C, J. Chem. Phys. 41, 3809-3814

(1964).

Cohen, L. H., Klement, W., Jr., and Kennedy, G. C, Melt-

ing of copper, silver and gold at high pressures, Phys.

Rev. 145, 519-25 (1966).

Decker, D. L., and Vanfleet, H. B., Melting and high tem-

perature electrical resistance of gold under pressure,

Phys. Rev. 138, A129-133 (1965).

Strong, H. M., and Hanneman, R. E., unpublished work on

fusion curve of gold.

Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K.,

Selected Values of Thermodynamic Properties of Metals

and Alloys, John Wiley & Sons, Inc., New York, N.Y.

(1963) .

Esser, H., Eilender, W., and Bungardt, K., Arch. Eisen-

huttenwesen 12, 157 (1938).

Krause, W., and Sauerwald, F., Z. Anorg. Allg. Chem.

181,347 (1929).

Berman, R., and Simon, Sir Francis, On the graphite-

diamond equilibrium, Z. Elektrochem. 59 , 333-338

(1955).

289



[20] Berman, R., Thermal properties of diamond, Chapt. 14,

Page 371, Physical Properties of Diamond, Ed. R.

Berman (Clarendon Press, Oxford, 1965).

[21] Bundy, F. P., Bovenkerk, H. P., Strong, H. M., and Wentorf,
R. H., Jr., Diamond-graphite equilibrium line from
growth and graphitization of diamond, J. Chem. Phys.

35, 383-391 (1961).

[22] Kraut, E. A., and Kennedy, G. C, New melting law at high
pressures, Phys. Rev. Letters 16,608 (1966).

[23] Bridgman, P. W., Linear compressions to 30,000 kg/cm-
including relatively incompressible substances, Proc.

Am. Acad. Arts Sci. 77, 189-234 (1949).

[24] Wentorf, R. H., Jr., Temperature measurement by thermal
noise at high pressures, paper presented at this meeting.

DISCUSSION

P. M. Bell (Geophysical Laboratory, Carnegie In-

stitution of Washington, Washington, D.C.): In the

test cell, does iron diffuse into the platinum-

platinum 10 rhodium thermocouple and affect the

temperature measurement?
In determining the diamond-graphite curve, is

there catalyst present and, if so, does it affect the

equilibrium point?

C. W. Beckett (National Bureau of Standards,
Washington, D.C.): I was very much interested in

your remarks about gold. As you know, the gold

point is one of the fixed points on the international

temperature scale and at one atmosphere is repro-

ducible to about a hundredth of a degree. One
approach to this problem of thermodynamic tem-

peratures, pressures, and so forth, would be to have
a comprehensive program on the phase diagram, so

to speak, which would include not only the meas-
urements such as those you have mentioned but

also measurements of the heat of fusion and the

volume change at high pressures. This is much
easier said than done, of course.

Before undertaking this, one has to have a care-

fully selected group of substances. The advantage
of gold in this case is that it does not react with the

carbon significantly, at least at one atmosphere, be-

cause for many years the gold-point temperature
has been reproduced in graphite containers.

Another metal which behaves fairly well in these

cells is copper. Now, of course, the melting point of

copper is only about 20 degrees above the gold melt-

ing point at one atmosphere, but the slope of the

curve with pressure is different.

Have you considered using the same techniqiie

with other metals such as copper? Platinum in

graphite would not be suitable because platinum

does react to graphite. However, the platinum sec-

ondary temperature point is measured in thorium
dioxide containers, and it is reproducible to better

than a degree at one atmosphere. Thorium is hard to

use in a pressure vessel, but one could use other

oxides. Beryllium might be better.

AUTHORS' CLOSURE

Response to Dr. Bell: Our platinum 10 rhodium
thermocouples did not show any tendency to change
calibration with time due to their being in contact

with an iron wire. The temperature-heating power
relations were stable for long periods. At the end of

a test, the freezing and melting temperature arrests

at the metal-carbon eutectic furnished a fixed check
point. We did not observe an apparent shift in this

check point as a result of the platinum-platinum
rhodium couple sharing a contact with iron, even
after several hours. The junctions were in a nearly

isothermal region, so that a considerable amount of

diffusion would have to occur before the effect

could be felt.

On the matter of the catalyst, we have published
data (H. M. Strong and R. E. Hanneman, J. Chem.
Phys. 46, 3668 (1967)) showing the displacement of

the diamond graphite equilibrium due to the pres-

ence of the catalyst. The catalyst must be present
in order for the reaction to run freely in either

direction. The displacement of the diamond graph-
ite equilibrium is quite small; it amounts to about
12°, which is equivalent to about one third kilobar.

Allowance was made for this displacement.

Response to Dr. Beckett: Other metals have been
considered for use in locating phase boundary inter-

sections. Copper would be suitable to use for

finding an intersection between its fusion curve and
the diamond-graphite equilibrium. This intersection

should occur about 70° below the intersection for

gold. If both intersections were located, there

would be three quantities to check for consistency:

the two intersections and the slope of the diamond-
graphite equilibrium between the intersection

points. This slope should agree with the calculated

slope of R. Berman and Sir Francis Simon (Z.

Elektrochem. 59, 333 (1955)).

Another possibiHty is to find the intersections of

the well-known iron y equilibrium with the

fusion curves of Al and Pb. These intersection

points should occur at temperatures between 600
and 800 °C, pressures between 20 and 50 kbar,
where thermocouple calibrations have smaller pres-

sure errors. Finding these points would provide
fairly accurate check points from which to reach
further into the high pressure and temperature
region.
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Transition Pressures of Bi 3-5, Sn, and Fe

M. Centre

Commissariat d I'Energie Atomique, Centre d'Etudes de Bruyeres-le-Chdtel, Croupe Hautes Pressions,

29-33, Rue de la Federation — Paris

Making use of "X type anvil," the change in resistance of two reference metals in each run was
simultaneously recorded in order to compare their transition pressures. A linear extrapolation through
the well-known points below 60 kbar showed inconsistencies in the most commonly used high pressure

scales. The recording of the pistons displacements lead to an exponential extrapolation which gave
transition pressures of 78±2 kbar for Bi 3-5, of 102±4 kbar for Sn and of 140±15 kbar for Fe.

1. Introduction

The exact measurement, or even the simple
evaluation, of the pressure which is built up inside

a high-pressure solid-medium apparatus has from
the beginning always been a problem. It was only in

piston-cylinder apparatus that a direct measurement
of the pressure was possible. Thus it became
feasible, making use of the phase transitions of a

number of metals, to evaluate the pressure which
was built up in more intricate apparatus like "belt"

below 60 kbar.

Above 60 kbar there is much confusion taking

into account the various data that have been
published to date (table 1). Lately, during the same
year 1966, two teams, one from U.S.A. working
with Professor Hall [11],' the other from Soviet

Union working with Professor Vereschagin [13]
published in earnest that the high Bismuth transition

occurred at 76.5 ± 2 kbar for the first one, at 89.3

kbar± 1 percent for the second one.

Research workers in the high-pressure field

cannot remain unconcerned by that state of the art,

if they wish to make more precise measurements.
The present work is an attempt to show the incon-

sistencies of the main pressure scales in the particu-

lar case of an apparatus called "X-type anvil", and
to suggest possible values for the transition pres-

sures of bismuth 3-5, of tin and iron. The four

most widely used pressure scales, called A, B, C, D
(table 2), have been chosen so as to be compared.
Making the assumption that the transition pres-

sures below 60 kbar are accurate, a linear extrapola-

tion reveals a few inconsistencies. From the piston

displacement recording, an analytical expression
of the calibration curve is then derived. It is thus
possible to evaluate the higher transition pressures.

2. Experimental Procedure

The apparatus called "X-type anvil" has already
been described [31, 32, 35] and first presented at the

Eindhoven meeting of the European High Pressure

' Figures in brackets indicate the literature references at tlie end of tiiis paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau

of Standards, Gaithersburg, Md., October 14-18, 1968.

Research Group (1966). It consists of a die and of

pistons with a special shape as shown on figure 1.

It allows higher pressures to build without damage,
inside a volume which is identical to that of a "belt."

The cell body is made of pyrophyllite and the

gaskets are of a mixed type, that is to say they

consist of a pyrophyllite ring and of a Teflon ring

(fig. 1).

The experiments have been carried out by record-

ing simultaneously the resistance of two reference

metal samples at room temperature. This procedure

eliminates the lack of reproducibility of the calibra-

tion curve. The specimens were located side by
side, at 1 mm from each other, inside a Teflon

cylinder ((^) = 4 mm, h = S mm) which was in the

center of the cell (fig. 2). The metal samples were
wires 0.5 mm in diameter and 4 mm long. The
electrical connections were established between
the pistons and the chamber. The chemical analysis

of the samples is given in table 3.

Figure 1. Cross section of the cell inside the X-type anvil

0 4 mm

samples

h = Jmrn
,

teflon cylinder

glectric tab and connection
to the pistons

FuiURE 2. Samples assembling, schematic.
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Table 1. Pressure transition data

Apparatus Year Authors Ref.

Pressure Transition in Kilobars

Bi

l-II

Bi

ii-iii

Tl

II-III

Ba
II-III

Yb Bi

III-V

Sn
MI

Fe
a — e

Ba

Piston-cylinder

Bridgman's anvil

Shock

Belt

Shock

Drickamer's anvil

Piston-cylinder

Drickamer's anvil

Piston-cyclinder

Tetrahedral press

Bridgman's anvil

Bridgman's anvil

Piston-cylinder

Tetrahedral press

Cubic press

Tetrahedral press

Piston gage

Dead-weight piston

gage

Piston-cylinder

fl941

11942

1952

1956

1958

1960

1961

1962

1962

1963

1963

1964

1964

1965

1965

1965

1966

1966

1967

1967

Bridgman — in volume

change (vol)

Bridgman — by resist-

ance (res)

Bancroft et al. (res)

Bundy (res)

Boy and England (res)

Balchan and Dric-

kamer (res)

Kennedy-La Mori (vol)

Balchan and Dric-

kamer (res)

Klement-Jayaraman-

Kennedy

Hall and Merrill (res)

Stark and Jura

Stromberg et al

Roux

Jeffery (vol)

(res)

Giardina and Samara

(ind. vol)

Jeffery (res)

Barnett f— sheet

Van Fleet [—wire

Hall

Vereshchagin, Zubova,

et al.

Heydemann (vol)

Kennedy et al.

25

25.65

25.65

25.2

25.38

±0.02

25.5

±0.15

25.0

±0.5

26.2

±0.8

26.5

±1.3

25.4

1%
[25.48

125.50

27.08

27.08

26.96

±0.18

27.6

±0.15

28.0

±0.6

29.1

±0.8

29.7

±1.4

26.9

1%

±0.06

39.2/

40

45

45

37.1

36.7

±0.1

36.8

±0.6

35.6

±1.3

58.8/

60

78.4/

80

78.4/

80

59

±1
59.6

±1

54.5

±1.5

35.4 54.6

±2.1 ±0.9

36.9 58.5

1% 1%

58.8

58.8

39.5

38.1

±1.3

38.2

±1.5

88.2/

90

122.5

90

±2

-78

81

±4

76.5

±2
81-

82

75.7

±1.3

89.3

1%

no data below

100 kbar

131

114

133

±1.5%

113/

115

99

±4
107

92

±3.5

92

±3

according to grain size and purity

55.0

±0.5

144

118±6

Table 2. Pressure scales

Ref. Year Authors
Pressure Transition in Kilobars

Bi

III

Bi

II-III

Tl

II-III

Ba
II-III

Bi

VI-VIII

Sn
1-2

Fe

Bridgman 25.4 26.8 36.7 58.5 89 113/ 133

A 1962 Kennedy-La-Mori 115

Balchan-Drickamer ±0.1 ±0.1 ±0.1 ±0.6 ±1

[
1965 Stark 25.4 26.8 36.7 59 81 107 133

B Jura— Stromberg

1 1966 ±0.1 ±0.1 ±0.1 ± 1 ±4 ±4
Jeffrey 25.0 35.6 54.5 76.5 92

C 1965 Barnett

Hall

D 1967 Vereshchagin & al 25.4 36.9 58.5 89.3

±1 % ±1 % ±1 % ±1 %

292



Table 3. Chemical analysis of the samples

Samples Bi Tl Ba Sn Fe

\^Purity

TotalX 98.5% 99.99% 99.2% 99.9% 99.8%

Impuritie^

ppm ppm ppm ppm ppm
Li < 10

Na 100 < 10 < 25

Mg 10-50 < 10 400 25 < 50

Al < 50 < 10 300 < 50 < 25

Si Traces < 50 80 200 80

K < 10 < 10 < 10

Ca < 100 0.1% < 50 < 50

Ti < 100 < 100

Cr < 50 < 50

Mn < 25 250 230

Fe < 50 < 10 < 50 < 50

Co < 10

Ni < 100 < 100 350

Cu < 10 < 50 < 50

Zn < 200 < 100

As Traces

Sr 0.5%

Zr Traces

Mo < 250 < 250 800

Ag < 10 < 10

Cd < 10

Sn 1,000-2,000 < 50 < 50

Pb 1-1.5% < 10 < 50 < 50

C 450 ± 50

At the same time that the resistance changes
were recorded, the displacements of the pistons

toward each other were measured, makinji use of

four dial gages located at 90° angle around the high-

pressure apparatus (fig. 3). All the measurements
have been carried out during the first increase in

pressure run and the loads have been measured
with a strain-gage dynamometer.

3. Experimental Results

Fifty runs have been carried out under those condi-

tions, among which the Fe transition was obtained 3

times, the Sn transition 10 times, and the Bi 3-5
transition 20 times. A typical resistance recording

is shown on figure 4. The displacement of the pis-

tons, as measured during each run, has the shape
which is shown on figure 5. The lower part corre-

sponds to the extrusion of the gaskets without much
increase in the pressure, whereas the upper part

corresponds to the real compression of the cell. Cali-

bration curves, based on the B scale (table 2), are

shown on figure 6 for two different die diameters. It

is to be noted that the lower part is approximately a

straight line which goes through the origin of

coordinates.

From those experimental results, two types of

extrapolations have been made to get the transition

pressures of Bi 3-5, Sn, and Fe.

The first one is a simple linear extrapolation. The
second one makes use of an analytical function. The
piston displacement recordings give a clue as to the

Figure 3. Photograph of the "X-type anvil" showing the four

dial gages used to record the piston displacements.

15

Arbitrary unit &• R

Figure 4. Typical behavior of the resistance of the metals used

to calibrate the pressure generated inside the cell.
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50 100 150 200 250 300

Figure 5. Piston displacement curve.

Fl(;URE 6. Pressure calibration curves for two different die

diameters.

kind of function which is to be chosen. When plotted

on a semilogarithmic scale those recordings are

quite linear in their upper portion (fig. 7). With a

slope k thus the piston displacement e can be
expressed as:

-Flk

where eo is a constant and F is the load.

When this exponential stage is reached, the ex-

trusion is considered as achieved and the assump-

150

LOAD

(ton)

DISPLACEHENT (mm)

4 5 6 7 8 9 10
—I 1 1—r-

2 3

Fl(;URE 7. Piston displacement curve.

tion is made that the change in volume of the cell is

proportional to the piston displacement. On the

other hand, the pressures which are generated in-

side the cell are related to the overall compressibil-

ity of its components through a law, which can be
shown empirically to be close to an exponential with
a good approximation within the range of experimen-
tation [28]. From these considerations an expression
of the calibration curve follows:

P =-A log (B+exp -Flk).

A, B, and C are constants which can be evaluated
knowing accurately at least three experimental
values. They will be chosen among the best known
transition points (Bi 1-2, Tl, Ba). It is obvious that

when the load F is increased indefinitely the pres-

sure P must go to a limiting value, which is the case
with the above expression provided that B is posi-

tive. It also gives curves whose concavity is toward
increasing load as expected.

4. Discussion

4.1. Linear Extrapolation

As the true caHbration curve must go to an

asymptotic value when F goes to infinity, the linear

extrapolation gives excess pressures. The lowest

among those are gathered in table 4 together with

the corresponding values of the four chosen scales

A, B, C, and D.

294



Table 4. Linear Extrapolation {pressures in kbar)

S(3ales A B C D Alined

values

Bi3^5

Nominal

values

89 81 76.5 89.3

« 78 ± 2

Extrap-

olated

values

77.7 77.7 75.3 78

Snl^2

Nominal

values

115 107 92 (115)

« 104 ± 5

Extrap-

olated

values

118 108 118 118

Fe a-^e

Nominal

values

133 133 118 (133)

« 170 ± 17

Extrap-

olated

values

182 170 144 182

Table 5. Exponential extrapolation (pressures in

kbar)

The following remarks can be made:
(a) For the Bi 3-5 transition all these excess

values are below the corresponding values of the

scales. It is a striking case of inconsistency, at least

for the scales A, B, and D. This results from the

fact that the calibration curve of the present
apparatus is nearly linear up to about 100 kbar.

The scale C is the more coherent.

(b) For the Sn transition the linear extrapolation

does not reveal any inconsistency even if this extrap-

olation uses the scale value of the pressure tran-

sition of Bi 3-5.

(c) For the Fe transition the linear extrap-

olation gives a result which is very far off, even if

the scale value of the pressure transition of Sn is

used.

If a linear extrapolation is made through all the

range the pressure transitions are found to be
78 ± 2 kbar for Bi 3-5, 104 ± 5 kbar for Sn, and
170 ± 17 kbar for Fe, which is certainly very far

for the true value.

4.2. Exponential Extrapolation

The exponential extrapolation hopefully should
give a better estimate of the transition pressures.
Table 5 gives the calculated values.

The accuracy given next to each value takes into

account the uncertainty of the pressure transition of

Bi 1-2 (25.4±0.1 kbar) ofTl 2-3 (36.7±0.1 kbar)

and of Ba using the latest value given by Kennedy
[29] (55 ±0.5 kbar), which fit better than others.

For the present apparatus, it turns out that by
using the following transition pressures the calibra-

Scales a-d B C

Sn Nominal values 115 107 92

1^2 Extrapolated values 110 101.8 97.7

Fe Nominal values 133 133 118

a—>e Extrapolated values 150 106

tion curve is nearly linear.

Bi Bi
1-2 Tl Ba 3-5 Sn

25.4 36.7 55 78 102
±0.1 ±0.1 ±0.5 ±2 ±4

The case of Fe is a little different because the

nucleation of the transition seems to depend greatly

upon the pressure gradients inside the cell, as shown
by several people [26]. The present apparatus gives

stresses which are of a less uniaxial character as a
Drickamer or a Bridgman anvil, which might explain

the high value found: 140 ± 15 kbar.^ It thus appears
that Fe does not constitute a good reference metal.

In order to fill up the gap in the high-pressure

scale, it would be desirable to find another reference

element such as germanium [30, 34].

5. Conclusions

With a "Z-type anvil", inconsistencies in the high-

pressure scales which are currently used have been
revealed. A new pressure scale which fits better

this apparatus has been estabhshed, which would
locate the transition pressures of Bi 3 —5 at 78 ±2
kbar and of Sn at 102 ±4 kbar, and of Fe at 140 ±15
kbar. However, many authors have discussed the

influence of the apparatus shape, of sample shape
(wire or ribbon), of the pressure-transmitting

medium, of the pressure gradients on the nucleation

of the aUotropic transformations under high pres-

sure. Thus the above conclusions may be valid only

for the apparatus which was used. Rather than cah-

brating it would be better to evaluate the pressure

at all times by the continuous change in the property

of a material such as the lattice parameter with x-ray

diffraction. Provided the equation of state of the

material is theoretically known, an apparatus such
as a hexahedral press built in our laboratory [31]

should bring in the future interesting results.

^ Recent experiments performed on iron and barium samples lying side by side in the

high-pressure cell cast no doubt on the fact that the high barium transition definitely

occurs at a much lower load than the iron transition, in our apparatus.
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DISCUSSION

F. Bundy (General Electric Research and Develop-
ment Center, Schenectady, New York): I would like

to respond to Dr. Contre's suggestion for using
germanium as a calibration material near 120 kbar.

Germanium does undergo a drop in resistance of
10^ to 10^, but my experience with it has been that

the resistance change extends over an appreciable
pressure range. For example, it may start falling at

110 kbar or even 105, and continue on up to a

nominal 120 or 125 kbar. Thus, in my experience,
it's too fuzzy for use as a calibration point. I have
run germanium in the high-compression belt and in

the Drickamer-type apparatus, and in both cases
obtained a six orders of magnitude drop in resist-

ance, but the change is spread out too much for a
cahbration point, in my opinion. Silicon is worse yet.

Iron, apparently, is not much better.

I beheve that you used the x-type anvil for the
barium transition. I would Uke to ask how that result

came out. I am interested because I have found the

high barium transition to be a very sharp and
satisfactory calibration point. The ones you showed
looked quite sharp, and perhaps would fall on the

curve quite well.

R. Roy (Pennsylvania State University, University

Park, Pennsylvania): May I recommend strongly

against the use of the germanium transition. We
have shown (Bates, Dachille, and Roy, Science
147, 860 (1965) that Ge-I goes at stable equilibrium

to Ge-lll at' less that 15 kbar at room temperature.
Hence Ge-I is highly metastable in the 100 kbar
regime, when it goes to Ge-II. While the transition

may appear to be sharp, different samples will

likely show different transition pressures in a

manner similar to CdS which undergoes an anal-

ogous metastable transition. (IMiller, Dachille, and
Roy, J. Appl. Phys. 37, 4913 (1966).
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The successful solution of the problem of high-

pressure measurement up to several hundreds of

kilobars is based on the further extension of the

range and the improvement of accuracy of hydro-

static pressure measurements. The maximum
hydrostatic pressure achieved at present is limited

to 50 kbar, while the maximum pressures that can

be reliably measured by means of free piston gages

do not exceed 25 kbars.

The long-term experience of VNIIFTRI in the

research of the melting process under pressure

shows that the above-mentioned problem can now
be solved most successfully on the basis of the

mercury melting curve equation as it was suggested

by Zhokhovsky as far back as 1957 [1].' One of the

merits of this method lies in the fact that under
certain conditions the process of mercury melting

is an equilibrium one, and can be reproduced to a

high degree of accuracy. Besides the relation be-

tween pressure and temperature (measured quan-

tity) may be represented by the universal Simon
interpolation equation [2]

p = a (1)

where a and c are empirical constants and To the

temperature of the triple point. This equation was
derived and studied in a number of investigations

[3-7].

Some substances such as Rb, Cs, KNO3, and
KNO2 however have a maximum in the melting

curve and the Simon equation fits experimental data

on these substances only up to pressures about

0.5 A (where A is pressure of the maximum). There-

fore, the Simon equation with parameters chosen to

fit experimental data in limited pressure range

cannot be extrapolated to any high-pressure value.

For the development of the precision method for

measuring high hydrostatic pressures up to 50 kbar
based on the mercury melting curve (MMC), it is

necessary to solve the following two problems:

1. The proper choice of the reliable equation for

the MMC in the pressure range where free piston

gages may be used.

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characterization

of the High-Pressure Environment, held at the National Bureau

ofStandards, Gaithersburg, Md., October 14-18, 1968.

2. Substantiation of extrapolation of chosen
equation to higher pressures.

To solve both problems one needs more detailed

information on the melting under pressure, and in

particular the data on the volume change along the

melting curve. The investigation of the volume
change during melting permits one to prove experi-

mentally the equilibrium character and reproduci-

bility of the melting process under pressure, and
reveal possible peculiarities on the melting curve.

1. The MMC Equation

The apparatus, procedure, and results of the first

experiments on estabUshing the MMC equation are

described in [8]. The experiments were carried out

up to 10 kbar, pressure being measured by means of

manganin gage calibrated against a free piston gage.

The later and more accurate experiments were
performed on the apparatus described in [9]. In

this case the measurement of P-T data was carried

out together with the measurements of the volume
change, the pressure up to 15 kbar being measured
by a free piston gage. In addition there were used
several piston-cylinder systems with different clear-

ance developed in VNIIFTRI and Mendeleyev
Metrology Institute (VNIIM). All experiments were
carried out in accordance with the results of the

studies of free piston deformation errors [10].

All results are divided into five sets which char-

acteristics are given in table 1.

The analysis of the measurement errors was made
by the method suggested by Dr. Dolinsky (VNIIM)
and the results obtained for 281 points were proc-

essed by a computer. As a result the parameters of

the Simon equation were obtained:

39016
234.29

1.1772

1 (2)

Standard deviations of a and c are

o- (a) =20 (kg/cm2), o-(c) = 5 • lO'^.

The dispersion analysis makes it possible to esti-

mate the validity of the relation chosen for its extrap-

olation to higher pressures. Table 2 summarizes
standard deviations of pressure measurements
cr(p), calculated from possible errors of tempera-

ture measurements dT in different temperature

intervals.
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Table 1

Set Year
Pressure
range

Relative error of

pressure

measurements

Temperature measurement
error

Number of

measure-
ments

Pressure-measuring instrument

kbar percent °C

1 0 7—1 ^ W.oO — 0.25 in the range

(-35-0°C)

±0.1 in the range (0-35°C)

Manganin gage calibrated against free

piston gage.

2 1964 0.7-15 0.1 in the range

u. i oKDar

0.2 in the range

O lO AUai

the same 116 VNIIFTRI free piston gage with re-entrant

cylinder average clearance /i — 6.6

QO iVOD zn U.UO ^7 The same, with A = 6.3 and /i = 9.6

4 1966 1.5-15 do ±0.05 34 The same, with h = 6.6 and h = llA

5 1967 7-15 do 0.01 in the range 0-20°C

0.05 in the range 20-30°C

50 VNIIM free piston gage with conven-

tional cylinder.

Table 2

T, °C -13.56 11.29 36.80 59.94 83.76 107.31 130.64 153.70

ST°C ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.1 ±0.75 ±1.0

P, kbar 5 10 15 20 25 30 35 40

crip) , bar 7 11 16 22 27 34 97 130

crip), percent 0.15 0.11 0.11 0.11 0.11 0.11 0.28 0.33

crip) does not change appreciably up to 40 kbar. At 40 kbar, crip) is equal to 0.33 percent providing that temperature 154 °C is

measured with an accuracy ± 1 °C. (In practice this error can be reduced to ± 0.2 °C by allowing for pressure dependence of the thermo-
couple e.m.f.)

It should be noted that in parallel with the deter-

mination of the melting P-Tdata, precision measure-
ments of the freezing pressure of mercury at 0 °C
were carried out, temperature measurement errors

being about 0.002 °C. The results of the measure-
ment sets were found to be as follows:

1965- 7719 kg/cm^

1966- 7721 kg/cm2,

1967- 7725 kg/cm^

(eq (2) gives 7725.2 kg/cm^).

The discrepancy in mercury point values turned
out to be unexpectedly large, and apparently cannot
be explained by the experimental errors. The cause
of this discrepancy is not yet established and the

experiments will be repeated soon with the best
possible accuracy and utmost care.

If similar measurements were also carried out in

other national laboratories, the comparison of data
would provide the most reliable value of this very
useful reference point. On the other hand, the

results of such measurements may be considered
as a mutual comparison of the national pres-

sure scales at this point that in itself is of great

importance.

2. Studies of Extrapolation of Eq (2)
to 40 kbar

The estimation of accuracy and reliability of the

extrapolated P-T equation can be made by com-
parison of the data obtained from measurement of

physical phenomena of different nature. The follow-

ing phenomena were chosen: the pressure de-

pendence of electric resistance of pure metals and
alloys and pressure dependence of the NaCl lattice

parameter.

The validity of the equation can be also estimated

from theoretical considerations of this equation and

results of measurements of the volume change

along the melting curve.

2.1. The Volume Change Along the MMC

The analysis of P-T melting data for substances

having a maximum (rmax) in the melting curve shows

that parameters of the Simon equation selected at

the low-pressure section of the curve fit the experi-

mental data up to p(rn,ax)/2 = A/2. Thus, if it is

proved that the maximum in the MMC lies far

beyond 40 kbar this wiU be the confirmation of

correctness of extrapolation, providing no triple

points exist all over pressure range.
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It follows from the Clapeyron-Clausius equation

Tdp|dT=\|^V (3)

that the maximum in the melting curve T=f{p)
may exist only when the volume change becomes
zero (if latent heat of melting A. 7^ 0).

According to Bridgman [11] the pressure de-

pendence of of mercury is convex to the pressure

axis but all other 29 substances exhibit concavity

to the pressure axis. Since the solution of the prob-

lem of extrapolation requires the knowledge of

exact behaviour AF=/(p) and AV=f,{T) , the

measurements of AF were repeated. These measure-
ments were carried out on the same apparatus that

was used in studies of P-T melting parameters. For

this purpose the apparatus was equipped with the

special gadget. Its full description and the measure-
ment procedure to obtain p-AV-T data are given

in [12].

P-AV-T data were also obtained for benzene,

nitrobenzene, and cesium up to 17 kbar [12-14].

The experiments indicated that melting of benzene,

nitrobenzene, and partly cesium takes place within

small finite pressure range (r= const.). This range

increases with pressure. In case of mercury melting

process takes place at a strictly constant pressure

over the entire range studied.

At the same time the experiments indicated that

the volume change AV of mercury may vary con-

siderably (up to 30 percent) for the same p and T
values. The investigations established the direct

relationship between the conditions of freezing and
AF values [13]. Obviously this factor may account

for the anomaly in the mercury AF dependence
which was observed by Bridgman [11].

It was shown that the mercury volume change AV
behaves in the manner similar to all other sub-

stances investigated. The pressure and temperature
dependence of AF can be accurately represented
by the empiric equations

AV= 0.01028 - 7.354 X 10-^ In (37.667 + p) (4)

and

Ar= 0.0253- 7.54 X 10-4 In (7/234.3). (5)

From eq (4) it foUows that the volume change be-

comes zero at about 1,000 kbar. We believe this can
be regarded as a confirmation of the fact that

extrapolation of eq (2) to 40 kbar is justifiable.

Eq (3) may be used for the estimation of accuracy
of extrapolation. From P-AV-T measurements it is

possible to assume that providing there are no triple

points on the fusion curve, the function K/AV—fip)
together with its first and second derivatives is a

smooth continuous function of pressure, and at the

maximum point (p = A) the following conditions are

realized:

dp

^0,
^A

X(A) ^0.

This means the function klAV=f(p) has a pole of

the first order at the point A. So, keeping the general

nature of eq (3), it can be written as

A"

dT A"-P" [a + (iP + y{P)P'r (7)

where n, a, and ft are integer parameters and y{p)
an unknown function having no peculiarities. To
estimate the accuracy of the extrapolation of the

Simon equation for mercury it is sufficient to ap-

proximate yip) to a constant {y{p)—yo)- Eq. (7)

then takes the form

(8)

The approximating capabilities of eq (8) were
studied for cesium in the range from 1 kbar to

p — A [14, 15]. Deviations from the experimental data

did not exceed 1 percent. Therefore, we can con-

sider 70 to be a good approximation of the 'y(p)

function for the whole pressure range studied with

an accuracy not more than 1 percent. The yo for

mercury is found from experimental P-T data up to

15 kbar. Since A is estimated to be about 1,000 kbar,

it is possible to eliminate from eq (8) the parameters

relating to the maximum pressure without introduc-

tion of any essential errors.

Applying the obtained equation to experimental

data up to 15 kbar, we find

70 = = -3.6 X 10-7 cmVkg. (9)

Using the well-known theorem of differential esti-

mates [16] we can evaluate the deviation of the

Simon equation from the exact melting curve up to

40 kbar. The calculations give

(Ap/p) = 1 percent. (10)

2.2. Electric Resistance of Metals and Alloys

The simple empirical way to confirm the correct-

ness of extrapolation is provided by comparison of

the MMC equation with the readings of some resist-

ance gages which characteristics were carefully

studied for many years [20-22], and one gold resist-

ance gage.

The equipment, procedure and measurement re-

sults at 25 kbar are described in [17]. The compar-

ison between the MMC equation and the readings of

five resistance gages were carried out in 60 points

evenly spaced in the range from 7 to 25 kbar. In

most cases the results agree within ±0.35 percent.

Ar(A)-0, (6) *The solution of eq (7)afy(P) =0 andP < < A is the Simon equation.
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Similar experiments were performed with a gold
resistance gage up to 40 kbar [19]. The pressure
dependence of gold resistance was expressed by a
semi-empiric equation taken from [23]. The param-
eters of the equation were determined from the
results of calibration against a free piston gage.
The comparison of the readings was performed at

6 points. The divergence of the data did not exceed
0.5 percent.

2.3. Equation of State for NaCl.

The MMC equation (2) was also compared with

experimental data based on the equation of state

for NaCl [24]. There were no attempts to intercom-

pare directly these methods. The indirect compari-

son of the equation of state for NaCl with the MMC
equation can be carried out by using experimental

data up to 70 kbar obtained by Klement [25].

Klement's data were obtained at the quasihydro-
static apparatus that was apparently calibrated

using the phase transition points in Tl ll-lll ( — 37
kbar) and Ba I-II (~ 60 kbarj that were taken from

[26].

Jeffery and others [24] investigated the same
phase transitions by the X-ray technique on the

basis of the Decker's theoretical equation of state

for NaCl. They reported the values 34.6 kbar and
53.3 kbar. The comparison of extrapolated MMC
equation (2) with the data obtained by Klement [25]

shows the same discrepancies as those between the

pressure values of phase transitions determined by
the two methods mentioned above. This fact may
serve as an argument in favor of the MMC extrap-

olation equation (2). At the same time such large

discrepancies cannot be ignored, so the careful

analysis of the methods used for pressure determina-
tion is needed.

In our opinion the experimental error of the X-ray
diffraction technique cannot be the reason for such
large discrepancies. Since the pressure measure-
ment errors in instruments of the piston-cylinder

type are difficult to analyse, we tried to evaluate the

merits of the equation suggested by Decker [27].

The Decker theoretical equation of state is the

only microscopic equation intended for use in high-

pressure measurements. To evaluate this equation
we suggest another equation of state for NaCl based
on the same assumptions as those of Decker but

differing from the latter in the following principal

features:

(1) It does not take into account Van-der-Valls

interactions for they play a secondary role in com-

parison with both Coulomb interactions of spheri-

cally symmetric rigid ions and non-Coulomb
interactions of the nearest neighbours in the lattice

and can be compensated by a variation of the

non-Coulomb interaction parameters [27]. Following

Ghate [28] the potential energy of A' elementary
cells of crystal is presented in the form

o=yv eff
\-6b e p+2e'

V2-

P (11)

where A is Madelung constant, Qetf—Q ' e, effective

ion charge, g-electron charge, r-distance between
the nearest neighbours, e, b, p unknown parameters
of the theory.

(2) The parameters e, b, and p and parameter A.

which takes into account the pressure dependence
of the Gruneisen constant 7[27] are determined from
the latest experimental data on the effect of hydro-

static pressure on the isothermal modulus of bulk

compressibility Bt. Such a choice of parameters,

that is, the choice in terms of elastic and not thermal

characteristics of the crystal, is more reasonable

than that used in [27], since ion crystal models on

which both equations of state are based, have lim-

ited possibilities to be used for discription of all

thermal and mechanical properties of the crystal.

Here we determined parameters of the theory from
the equation of state (at po=l bar, 7*0 = 298 °K,

To = 2.8205 X 10"** cm [27]) and conditions of coinci-

dence of the calculated values.

with the corresponding experimental values. The
equation so obtained has less unknown theory pa-

rameters and secondary interactions not covered by
the present analysis, are effectively accounted for by
a comparatively small number of theory parameters.

For determination of e, 6, p, and A. we selected the

following initial values:

BBs

dp
r„ = 5.38 and Bto = 2.523 X 10" dyne/cm 2,

[28]

(here Bs is adiabatic modulus of bulk compressi-

bility), which are most reliable as judged from the

latest literature references.

The values (dBrldp) 5M and 5to = 2.396x
10" dyne/cm^ we used in the calculations were de-

rived from [28] using the data from [29]. The value

(dBTldT)„„ = - 0.159 X 10» dyne/cm-' was also taken

from [29]. The values of the Debye temperature and

Jo are the same as in [27].

By solving the system of four equations with four

unknown quantities (e, b, p, X) the following param-
eter values were obtained: e= 1.00288, 6=2.53982 X
10-*' ergs, p = 0.301719 A, \= 6.25.

According to the data obtained ge//=e q is very

close to q, as it is usually assumed for the crystals of

NaCl type.

The value of the parameter A differs greatly from

the Decker value A = 2.55, but is in good agreement
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with \ = 6 derived from the experimental data given
in [30].

The coefficient of thermal expansion a calculated

from the Gruneisen equation [31] was found to be
11.73 X 10"^ deg~' that is close to the experimental
value 12.09 X 10-^ deg-' [29].

The agreement of the calculated values of elastic

constants of the second and third order with experi-

mental data carried out in [33-35] was also satis-

factory. All this testifies to the applicability of our

model to the description of the elastic properties

ofNaCl.

The equation of state obtained for NaCl was com-
pared with the Decker equation up to 150 kbar. The
comparison showed that the data practically coin-

cide up to 60 kbar. At 150 kbar the divergence of

data is about 5 percent. The pressures of the phase
transitions in Tl II-III and Ba I-II calculated on the

basis of our equation have coincided with those
determined from the Decker equation. Hence, the

pressure values of the phase transitions Tl II-Ill

and Ba l-ll obtained experimentally by Jeffery and
others [24] seem to be more reasonable.

If appropriate corrections are introduced into the

Klement's data on the MMC, the agreement of his

corrected data wiU coincide within experimental
errors with those calculated from eq (2). Such an
agreement is an additional confirmation to the cor-

rectness of extrapolated eq (2) even over 40 kbar.

As to the theoretical analysis of the equation of

state for NaCl it shows that X-ray diffraction may
find wide usage in high-pressure measurements.

3. Conclusions

1. On the basis of the experimental data up to 15

kbar the MMC eq (2) is obtained. This equation is

recommended for pressure measurement in the

range from 7 to 40 kbar.

2. The errors of extrapolated eq (2) are estimated
not to exceed 1 percent up to 40 kbar.
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DISCUSSION

J. L. Cross {National Bureau of Standards, Wash-
ington, D.C.): It is necessary, of course, to wait a

sufficient time to dissipate the latent heat. In the

actual initiating of the freezing you usually have to

take the pressure above the freezing point to get a

seed crystal started. But once the seed crystal is

started and the system allowed to come to equilib-

rium, the reproducibility is excellent. In the free,

long duration runs that I made using two different

methods for observing the existence of two phases,
there was a spread of two-thirds of a bar. And for a

period of 21 hours on one run where the two phases

were maintained in equilibrium, the total variation

in observed pressure at zero degrees, was about

three-tenths of a bar.

P. N. LaMori {Battelle Memorial Institute, Co-

lumbus, Ohio): I would like to comment on the value

of 60 kbars for the barium l-II transition, that you
quote from the paper by Kennedy and myself (ref.

26). The barium point data was included in the paper
as a value that we reached on one experiment just

on entering the high pressure region. There was no
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real attempt to determine that 60 kbars was the

maximum value. All the other values in the experi-

ment were determined both on the compression and

the release strokes. So I think that you should not

make a comparison between this value and results

of experiments by Klement (ref. 25).

AUTHORS' CLOSURE

In agreement with comments by Mr. Cross we
want to say that in our experiments the equilibrium

pressure was reproducible within 0.5 bar. Ob-
viously this variation is mainly due to the variations

of temperature and manganin gage readings. In our

opinion this high degree of reproducibility may be
effectively utilized in the establishment of the high

pressure scale. Such scale based on mercury melting

curve would make all the measurements throughout

the high pressure laboratories comparable, consist-

ent and uniform.

In reply to Dr. LaMori, in the paper by Klement
and co-workers [25] there is no direct indication

on the actual values of fixed points used in calibra-

tions of their apparatus. From the references

given in their paper however one can suggest that

Ba I-II point was taken equal to ~ 60 kbars. That is

why we referred to the paper [26].
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High-Pressure Scale as Determined by X-ray Diffraction Techniques up to

Approximately 100 kbar

H. Tracy Hall

Brigham Young University

Prom, Utah 84601

1. Post-Bridgman Pressure-Scale
Muddle

I suppose as much blame can be placed on me as

on anyone for the pressure- scale muddle of the

emerging post-Bridgman era. No doubt the first Ba
transition observed outside of Bridgman's laboratory

was observed in February of 1954 in my Belt ap-

paratus [1].' Due to secrecy, these results could not

be published until six years later. Meanwhile, I had

managed to circumvent the Belt secrecy by the

invention of the Tetrahedral Press [2]. The published

calibration for this apparatus (anvil load versus

pressure) used fixed points of 25, 44, 54, and 79

kbars (Bridgman's resistance points) for Bi, Tl, Cs,

and Ba transitions. (NOTE: Previous work expressed

in kg/cm- and atmospheres has been converted to

kilobars in this paper). This precedent was followed

by others until Prof. George C. Kennedy, at the

June 1960 International High Pressure Conference

held at Bolton Landing, Lake George, New York,

conveyed the unsettling news that Bridgman's

"resistance fixed points" were too high and should

be lowered to Bridgman's "corresponding volume
fixed points."

Kennedy's insight ran ahead of the experimental

evidence. In hindsight one might possibly say

Bridgman recognized that certain of his resistance

points corresponded to lower volume points. How-
ever, a study of the crucial paper "The Resistance

of 72 Elements, AUoys and Compounds to 100,000

kg/cm-" [3] wiU impress the reader that Bridgman
was certain that the pressures given for his electrical

resistance transitions were correct.

2. Identity of Resistance and Volume
Transitions Established

In view of the Nobel Laureate's 50 years of

accomplishment in the field, it would have been
imprudent to challenge Bridgman's results without

some definitive experiments. A definitive experi-

ment would be one in which the volume transition

and the electrical resistance transition were
simultaneously observed in the same sample speci-

men. The shapes of the resistance curves in the

' Figures in brackets indicate the literature references at the end of this paper.

Paper presented at the Symposium on Accurate Characteriza-

tion of the High-Pressure Environment, held at the National

Bureau of Standards, Gaithersburg, Md., October 14-18, 1968.

regions of the fixed points (for example in Tl, Cs,

Ba, etc.) are very characteristic and if these were
found to occur simultaneously with the volume
transition, a one-to-one correspondence between
the transitions, i.e., an identity, would be established.

The first one-to-one correspondence to be estab-

lished at pressures beyond 30 kbar was in the

instance of Ba. This work took place in the Brigham
Young University high-pressure laboratory at Provo.

A tetrahedral x-ray diffraction press was employed
for this purpose [4]. With this equipment, the

electrical resistance of Ba foil was monitored (at

room temperature) simultaneously with the monitor-

ing of its Debye-Scherrer diffraction pattern as

pressure was slowly increased [4, 5]. As this was
done, the characteristic electrical resistance pattern

described by Bridgman [6] with an abrupt increase

in electrical resistance at 70 kbar (Bridgman's

resistance value) was found.

A new x-ray diffraction pattern appeared simul-

taneously with the crossing of this resistance dis-

continuity. Compressions determined 3 kbar above
and 10 kbar below the discontinuity by x-ray

diffraction were each only 4 percent higher than

those determined from Bridgman's data [7]. (Bridg-

man determined his volume transition to occur
at 59 kbar). The x-ray determined change in com-
pression at the transition was the same as found
by Bridgman. In addition, the overall Ba compressi-

bility curve determined by x-ray matched a

corresponding curve plotted from Bridgman's
compression data quite well if a value of 59 kbar
were selected for the Ba transition pressure. This
furnished compelling evidence that the 79 kbar
resistance and 59 kbar volume transitions were
one and the same and that the correct transition

pressure was about 59 kbar.

In addition to establishing the identity of the

resistance and volume transitions, the x-ray work
indicated the 59 kbar transition to be from the

normal body-centered cubic symmetry to a hexag-

onal close packed symmetry with cell parameters
of a = 3.90 A, c=6.15 A, and c/a= 1.58 at about 3

kbar above the transition pressure.

Even though the above research constituted the

first experimental evidence that the electrical

resistance transition pressures should be lowered,

most high-pressure researchers had already as-

sumed the identity of Bridgman's 44. 54, and 79

kbar resistance transitions with his 40, 44, and 59

kbar volume transitions in Tl, Cs, and Ba respec-
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lively. Also, they assumed the volume transitions

to give the approximately correct pressure values.

This decision may have been influenced by P. W.
Bridgman himself. It has been reported that at a

Gordon Conference on High Pressure held shortly

after the Bolton Landing Conference, Bridgman
indicated that the pressures of discontinuities in

the resistance as given in his 1952 paper were not

suitable to use as fixed reference points for pressure
calibration. There are no written reports of Gordon
Conference proceedings and I did not attend that

particular conference; consequently my information

on this point is only hearsay.

Irregardless, subsequent high-pressure x-ray

diffraction work has established resistance-volume
change correspondences for transitions in Tl,

Cs, Yb, Bi, and other metals that have been used as

pressure fixed points. In all instances it has been
necessary to decrease the transition pressure of

Bridgman's electrical resistance transitions.

3 . Establishment of Continuous
Pressure Scale by X-ray

After the one-to-one correspondence between
the resistance and volume transitions had been
established, one could focus attention on the

problem of obtaining better values for the fixed

points. Of particular interest, in this connection,

are the Bi III-V and Ba I II transitions which Bridg-

man had established (by volume change) to occur

at 88 and 59 kbar respectively.

It would be very useful to have some type of pres-

sure calibrant that would give continuous readings.

Fixed points might then be compared to this. Such
a calibrant might be based on the atomic separation

of the atoms of a simple substance, said separation

being determined by x-ray diffraction techniques.

A simple substance for which the compression can

be predicted with some degree of certainty is

NaCl. Jefifery, Barnett, Vanfleet, and Hall— using

the previously mentioned tetrahedral x-ray dif-

fraction press and an equation of state developed

by D. L. Decker— used this approach [8]. In this

work, Bi or Ba metal was imbedded in polycrystal-

line NaCl and the transitions were detected by the

electrical resistance change of the metal while

the lattice parameter of the adjacent NaCl was
simultaneously measured by x-ray diffraction.

The Ba I-II and Bi III-V transformations at room
temperature were assigned values of 53.3 ± 1.2

kbar and 73.8 ±1.3 kbar, respectively, correspond-

ing to NaCl linear compression values of

Aa/a= 0.0510 and 0.0637.

These values were 9.4 and 16.2 percent smaller

than Bridgman's volume values and were, at first,

treated with reserve and skepticism. However,
recent personal communications from other

laboratories give similar values. They are listed

below together with the B.Y.U. values. AU x-ray
values have been corrected to Decker's improved
equation of state of NaCl [9].

Laboratory*

B. Y. U.

Naval Res. Lab.^

Westinghouse
Nagoya U.''

U.C.L.A."

Signal Corps,

Ft. Monmouth ^

Method Used

X-ray tet. press

X-ray tet. press

X-ray tet. press

"Bridgman Anvils"
Piston-cylinder, vol.

Manganin gage

Ba I II,

kbar
Bi III-V,

kbar

54.4: 1.2 75.6:

75.0

1.3

76 ±4
55.0±0.5 77.5±1.0
56.3

The B.Y.U. , Naval Res. Lab., Westinghouse,
and Nagoya U. values all depend on Decker's
equation of state for NaCl. At this juncture, the

agreement among the above parties has been nar-

rowed to about ±3 percent. There is a Russian
determination of the Ba and Bi transition in a free

piston gage, for which no experimental details are
supplied, of 58.5 and 89.3 kbar ± 1 percent [10].

This appears to be the only holdout for Bridgman's
resistance values at the present time.

The work of Kennedy and his colleagues at

U.C.L.A. and of Zeto and colleagues at Fort Mon-
mouth is commendable in that they are using non-
x-ray approaches to pressure-scale problems. Full

confidence in a pressure scale wiU only be achieved
when data from several different approaches are

in agreement. Kennedy is attempting to push the

pressure limit of piston-cylinder apparatus toward
100 kbar and measure volume changes, by piston

displacement. Vanfleet and Zeto are utilizing a

manganin wire gage immersed in a true liquid

within a large pyrophyllite cubic pressure ceU.

The manganin gage is accurately calibrated to the

Hg and Bi I-ll transitions, fit by a quadratic equation,

and extrapolated to higher pressures.

4. Improved X-ray Diffraction
Presses

The tetrahedral x-ray diffraction press in use at

B.Y.U. was designed years ago. Several improve-
ments that could be made, particularly if the ob-

jective is to establish a pressure scale. Incidentally,

duplicates of the B.Y.U. press are installed at Com-
missariat a I'Energie Atomique, Paris, and also at

the Iron and Steel Institute of Tohoku University,

Sendai, Japan. The design of these presses was com-
pleted before the invention of "anvil guide" [11].

Correct anvil position and sample location with
respect to the x-ray beam are, therefore, more
difficult to achieve than in presses equipped with
anvil guide.

I have designed a tetrahedral press with anvil

guide for use with x-ray diffraction. Two devices

*Courtesy of (a) Perry Ahlers, (b) A. Taylor, (c) H. Mii, (d) G. C. Kennedy, (e) H.
Vanfleet.
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of this design have been buiU by McCartney Manu-
facturing. One is located at the Westinghouse
Monroeville, Pennsylvania, Laboratory; the other

at the U.S. Bureau of Mines Laboratory, Albany,

Oregon.
Years of experience at B.Y.U. with tetrahedral

and cubic presses show that tetrahedral presses

can achieve the highest pressures with the least

anvil breakage. Pressures of 120 kbar on Decker's

volume scale have been obtained with V4 in (6.3 mm)
on edge triangular-faced tetrahedral anvils.

Because of its higher pressure capabilities, I

would choose the tetrahedral press over the cubic

press in any new design for x-ray diffraction work.

A new design for pressure-scale work should be
built with increased ruggedness and with the highest

possible precision. The stretching of the tie-bar

frame under load introduces correction factors in

former tetrahedral x-ray presses because the

x-ray tube, goniometer track, etc., are attached to

different parts of the frame. This could be eliminated

in new presses based on the "ram-in-tie-bar" type

equipped with the "sure-guide" mechanism [12].

In such a press, all the x-ray equipment could

be mechanically connected to the "sure-guide"

frame, which remains in fixed position with respect

to the exact center of the press under any load.

Such a press, specifically designed with pressure

scale research in mind, could be built for about

$50,000 (exclusive of x-ray diffraction equipment).

5. Improvement of Solid Pressure
Media

In addition to excellent prospects for the improve-

ment of high-pressure diffraction apparatus to pro-

vide more precise and accurate measurements
relating to the pressure scale, there are good pros-

pects for improving solid pressure-transmitting

media. It is known that the media surrounding a

wire of a fixed-point caUbrant (such as Bi) influences

the pressure required for onset and completion of

a transition and also influences the hysteresis

connected with the reverse transition. For example,
Davidson and Lee [13], using a liquid media, have
measured a hysteresis of from 0.55 to 0.90 kbar for

the Bi I-ll transition. On the other hand, Jeffery,

Barnett, Hall, and Vanfleet [8] measure an average
hysteresis of 5.3 kbar for a cylindrical 0.010-in-diam

wire and of 2.8 kbar for a 0.002-in-thick flat strip

surrounded by NaCl. Keep in mind that the pres-

sures in the latter work were determined from
atomic spacings in the NaCl immediately adjacent

to the Bi wire or strip. Various explanations have
been offered as to why transition sluggishness and

hysteresis are always greater in solid media. Regard-
less of the explanations, the large hysteresis is

undersirable. Ideally, both the NaCl and the Bi

wire should be immersed in a true hydrostatic

fluid in the x-ray work. For the most part, this is

impractical. However, it should be possible to obtain

a closer experimental approximation to the ideal

situation than that of a Bi wire embedded in poly-

crystalline NaCl. For example, NaCl powder could

be mixed with an excess of powdered material

which possessed a lower coefficient of shear friction

than NaCl. This mixture could then serve as the

matrix for embedding the Bi or other wire. The
material admixed with the NaCl must, of course,

be sufficiently transparent to x-rays and meet other

requirements pertinent to the experiment at hand.

At 25 kbar, our shear friction measurements with

rotating Bridgman anvils show NaCl powder to have
a friction coefficient of 0.12. Boron nitride powder
and graphite powder have coefficients of 0.07

and 0.04 respectively. Mica sheet has a coefficient

of 0.07. In powdered form, mica would have an
even smaller coefficient. The coefficient for

powdered polyethylene is not known but should be
lower than that for NaCl. The friction coefficient

for NH4F has not been measured but extrusion

experiments at high pressure indicate it to be very
low. If a search were conducted, no doubt a great

many materials would be found with shear friction

coefficients weU below that of NaCl.
While solid pressure-transmitting substances

offer many practical advantages in all types of

high-pressure experiments, there still seems to

be some unknown if not mysterious factors con-

nected with their use. Additional research in this

area is certainly needed.
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DISCUSSION

A. Taylor {Westinghouse Research Laboratories.,

Pittsburgh, Pennsylvania): I would like to describe

some of our experience with the tetrahedral press

referred to by Dr. Hall.

The stretch in the press frame under load does not

concern us, nor does the fact that the assembly
is "sloppy" at the joints, because a little initial

pressure will take the "slop" out of the system, and
the stretch can be accommodated by moving the

x-ray tube up and getting a stronger beam.
The most serious difficulties with the apparatus

are these: First, the sample moves off-center

under load because of the extrusion of the tetra-

hedron, and that introduces errors in spacing which
are far more serious than those produced by the

stretching of the press. In measurements of pres-

sure coefficients where one takes differences in

lattice parameters, the error that is introduced can
be very serious. Our procedure is to use a calibra-

tion material which is mixed with the sample. We
take the press up to full pressure, take the x-ray

diffraction pattern, and then bring the load down to

a very small value— a couple of kilobars — and take

another diffraction pattern. From the lattice

parameter of the calibrating material— which is

sodium chloride in this case — we are able to deter-

mine how much the sample has moved off center.

A second problem connected with x-ray dif-

fraction measurements is associated with the large

amount of incoherent scatter coming from the tetra-

hedron, apart from the sample. We use a mixture of

80 percent boron and 20 percent polystyrene.

If we attempt to get a stronger diffraction pattern

from the sample by making the diameter of the

collimator a little larger, it is found that an increase

in the background intensity occurs in relation to

the line intensity, and a poorer line-to-background

ratio is obtained. It is thus necessary to make the

diameter of the collimator system quite small.

We find that a diameter of about 8 or 9 thousandths
of an inch is about right. But, unfortunately, when
the collimator is small and the sample is very thin,

there are very few crystals in the beam. Then the

line profile is spotty, and it's very difficult to find

the true maximum.
Until we can overcome these difficulties with the

tetrahedral press, our errors in pressure in, say,

the 70 to 80 kbar range might easily be plus or minus
two or more kilobars.

P. N. LaMori (Battelle Memorial Institute, Colum-
bus, Ohio): In your paper you have attempted to

give a historical account of the "pressure scale

muddle." As a participant I would like to offer

a few additional comments.

You have suggested that Bridgman's results

should not have been challenged without definitive

experiments such as simultaneous measurement of

the volume and resistance transitions. This was
done as early as 1962 when I demonstrated by
simultaneous volume and resistance measurements
the bismuth 1^2, bismuth 2—*^ 3 and thallium
2—* 3 transitions. ["Calibration Experiments in

a Piston-Cylinder Apparatus," High-Pressure
Measurement, edited by A. A. Giardini and E. C.
Lloyd, Butterworth's, 1963, p. 321.] In that paper
the barium transition was also clearly demonstrated
to be 58 ±2 kbar by a resistance measurement.
The additional proof that you say was necessary
of Kennedy's and my earlier conclusions was thus

available shortly after our original papers.

You have suggested that Kennedy's insight ran
ahead of the experimental evidence. As a partici-

pant in the events leading to the discovery of the

error in Bridgman resistance pressure scale, I

can only say that the insight was based on solid

experimental evidence. The experimental evidence
consisted of accurate measurements of the bismuth,
thallium and cesium transitions. It was only after

aU the experimental evidence was available that

Professor Kennedy, myself, and Professor D. T.

Griggs simultaneously and independently reached
the obvious conclusion about the pressure scale.

This work was presented at the Bolton Landing
Conference— G. C. Kennedy and P. N. LaMori,
"Some Fixed Points on the High Pressure Scale",

Progress in Very High Pressure Research, edited

by Bundy, Hibbard, and Strong, John Wiley, New
York, 1960 (314 p.).

An unpublished outcome of this work shows
clearly that there is a linear relationship between the

differences in volume and resistance measurements
above 25 kbar. This strongly suggested that the

resistance measurements were incorrect. See Figure

7, P. LaMori, "The Determination of Some Solid

Transition Pressures to 50,000 Bars", M. S. Thesis,

U.C.L.A., 1963. However, this was known at the

time of and presented at the Bolton Landing Con-
ference (see discussion section of our paper).

Thus, the information Kennedy presented was
based on (1) solid experimental evidence, and (2)

a demonstrable relationship between the volume
and resistance measurement.

Kennedy's insight came at a step earlier than this.

This was in the conception of the piston-rotation

experiment. Also important was his insistance in

doing the experiment in spite of much objection

from myself as well as others. The importance of

this has been clearly demonstrated.
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Panel discussion

Temperature Measurement at High Pressures

Chairman: F. P. Bundy

General Electric Research and Development Center

Schenectady, New York

P. Bell

Carnegie Institution of Washington
Washington, D.C.

P. J. Freud

Battelle Memorial Institute

Columbus, Ohio

I. Getting

University of California
Los Angeles, California

R. E. Hanneman

General Electric Research and Development Center
Schenectady, New York

G. C. Kennedy

University of California
Los Angeles, California

H. M. Strong

General Electric Research and Development Center
Schenectady, New York

R. H. Wentorf

General Electric Research and Development Center
Schenectady, New York

G. C. Kennedy: I think that there is a good deal

of confusion among the audience that doesn't

really exist for most experimenters in this field, in

view of the apparent disagreement between the GE
measurements and Getting's measurements.
Now most of the measurements are relative

measurements. Relative measurements in question

include measurements of the difference between
an alumel-chromel couple and a platinum-platinum/

rhodium couple. That experiment has been done
three times, by LaMori's group, by us, and by the

General Electric Research Laboratory, and all

three results agree. Now, GE also has estimated

the absolute effect, but because our absolute effect

for platinum is positive and for alumel-chromel is

negative the net absolute effect is the difference.

and our absolute effect is thus half the size estimated

by GE. But the three sets of measurements are

all in agreement involving both the difference be-

tween two thermocouples and measurements on
a single wire. So actually I think the situation is

really very much under control. The only measure-
ments which disagree are the noise experiments.

So I think that, compared to other problems in

high pressure, this effect of pressure on temperature
measurement is in very good shape.

R. E. Hanneman: The disagi-eement is not quite

as bad as a factor of two, up to 30 kbar and 1,000 °C.

George Kennedy indicated earlier that he had little

faith in use of phase transformation boundaries as
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a basis for indicating temperature corrections. I

think part of the problem is this question of what
the pressure really is at high temperature. Another
difficulty may lie in the point that we have not used
simply the Clausius Clapeyron equation, but have
integrated the heat capacity as a function of tem-
perature. This does not give, of course, a linear curve,

but we have tried to bring this into the calibration.

Although at GE we may have been lucky and
chosen the "right" six or eight systems, we have
never had the system give results in the wrong
direction. There's been scatter of the order of 30
percent in experiments by using different pairs of

the different kinds of materials.

I. Getting: I think that even if we can come to some
agreement as to what the hydrostatic effect on cali-

bration of thermocouples may be, this may not be
the major problem facing temperature measure-
ment in high-pressure apparatus in general. For
roughly the first year that I worked on this problem, I

was not able even to see the pressure effect. Chemi-
cal effects, particularly in chromel-alumel above 600
or 700 °C, were much larger. When I did the Bridg-

man experiment with a silver chloride pressure

medium, and heated to only 400 °C at 1 kbar nomi-
nal pressure, the voltages I observed for the chromel
lead itself were greater than any I have ever seen
from the pressure effect. So chemical effects can be
very severe.

As an example, take two identical thermocouples
and don't weld the junctions together, but just put

them side by side at the end of a Vs-in- or Ve-in-diam

ceramic tubing, and put them in the location where
you would normally put a thermocouple in any solid

pressure medium, high-temperature, high-pressure

apparatus.

Apply heat and look at the difference in the indi-

cated temperatures. Sometimes, due to effects I

don't know how to explain, we have gotten an honest

1 percent difference. That's 10 degrees at a thou-

sand. After one has solved these problems and can
get two identical thermocouples to read together,

try two different composition ones, and you wiU find

another order of magnitude difference. When these

effects are all resolved, you are ready to talk about

whether you are experiencing a pressure effect or

not.

I think that if we are realistic about temperature
corrections in the region of a thousand degrees and
tens of kilobars, we will not make statements like

"temperatures were measured to plus or minus five

degrees." And at 1,500 degrees the situation is

much worse.

P. Bell: The problem that I would like to draw at-

tention to is the matter of contamination. While
comparisons against chromel-alumel are worth-

while, I think certainly in our apparatus and in

Professor Kennedy's there is boron nitride, and
there is carbon. Chromel-alumel behaves very badly
in a reducing atmosphere. Professor Birch men-

tioned this in his papers— and this is the reason why
he never used it again.

R. E. Hanneman: I think that this is an appropri-
ate place to bring up the fact that we need to search
for thermocouple materials which are indeed more
stable, and we might start off with this new material,
platinel. We have done some work with some gold-

like thermocouples, and these are not bad under
some conditions. So I think that instead of driving

so hard for the absolute corrections, perhaps we
should spend some of our time and effort making
relative measurements and looking for materials
that are good and stable.

Now, one other question that was inferred today is

the matter of pressure variations that occur as the
temperature is changed. If you go up and down in

temperature you get these hysteresis effects which
Bob Wentorf very clearly showed. And these things

are all so large that they are a serious pitfall for a
newcomer in the field.

I. Getting: I think the point about stress distribu-

tions on the wire being unknown is important. After
three years of experimentation, I claim only to have
some idea of the effective pressure on the wires to

within three kbar— that's 30 percent at 10 kbar.

As a further problem, in alumina ceramic tubing

in a standard piston-cylinder apparatus the effec-

tive stress on the wires is so uncertain that I will

no longer say that the results give the corrections for

thermocouples.

I think we really would like a thermocouple, of

course, which is chemically stable and which has a

small pressure coefficient. But if you look at the data

from Bridgman single-wire experiments to try to find

a pair of materials which have the same emf s, the

corrections would be zero. As it turns out, if you
made a thermocouple out of platinum and alumel
you would have virtually no pressure dependence;
but this would be to little avail since the perform-

ance would then be dominated by the chemical sus-

ceptibility of alumel and the mechanical weakness of

platinum.

R. H. Wentorf: We have been talking a lot about

thermocouples, but I'd like to point out that there is

another good way to measure temperature, and that's

optically. If a person could get some well-defined

phase transformations which aren't too sensitive

to pressure, but run at a pretty high temperature

where they do emit, then one could do two-color

pyrometry on these samples and get, pretty well,

the absolute temperature. These materials could

then be run in a different configuration with thermo-

couples next to them without windows, and in

that way one could get another grip on the prob-

lem of thermocouple calibration and the general

temperature problem.

G. C. Kennedy: On the problem of chemical stabil-

ity, there is a way of stabilizing the thermocouple
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that works remarkably well. Platinum-rhodium at

1,500 °C in a proper environment doesn't drift. This

proper environment, we have found, is in molten

glass.

As an example, if an iron wire and a thermocouple

beside it are placed in an ordinary environment, in a

matter of 3 or 4 minutes the thermocouple will

drift so fast that it may be useless. In the presence of

iron or graphite at 1,500 °C it drifts so fast that it

really becomes useless.

If you surround the couple by molten Pyrex or any

molten high-silica glass, then it can sit for hours at

1,500 °C and it will not drift. The evidence that it

does not drift is that one can repeatedly measure
the same value for the melting point of iron. The
pressure of molten glass seems to inhibit any migra-

tion of metallic substances to the platinum-rhodium

and also inhibits any migration of carbon to platinum-

rhodium.

H. M. Strong: I'll make just two short comments.
Following what George Kennedy has just said, we
have also found that platinum and platinum-10

percent rhodium in an environment of pure boron

nitride, or in clean dry salt, is also quite stable for

several hours at around 1,400 °C as indicated by the

fact that for the same power input one continues to

get the same reading. Also the thermocouple output

at melting points of those materials remains the

same.
I might amplify what Rod Hanneman said on pres-

sure variation. We have tried to measure the pres-

sure variation in cells as you change the tempera-

ture, using a tiny germanium element off to one side,

heated independently— and with a carbon tube in

the cell center to heat the cell proper. With this ar-

rangement you can observe changes in pressure by
observing changes in melting point of the germa-
nium. The pressure may not be known absolutely,

but the pressure change can be seen. By this method
we have observed in pyrophyllite quite distinct

changes of pressure upwards with heating amount-
ing, at a 50-kbar level, to 10 to 20 kbars. But after a

while the pyrophyllite tends to transform to a denser
phase, and then the pressure will drop, sometimes
quite far below the original pressure of 50 kbar.

Sodium chloride environments are quite a bit more

stable, but there is a distinct increase in pressure

with temperature.

F. P. Bundy: A comment along this line that I

would like to make on Freud's work, and also

Getting's, is that in their exploration of the pres-

sure distribution in their cell, along the temperature
gradient, measurements were made at room temper-
ature using bismuth in most cases. I would suspect
from what I know of Strong's measurements under
these same conditions that during the heat-up of

the cell one would find that at the high temperatures
the pressure goes higher than was indicated on
the graphs.

P. J. Freud: The way we did the experiment was
to heat up at a low loading and then increase the

load.

I. Getting: One can chase this effective pressure
problem, without results. I tried to do it by following

piston displacement during cycling of piston load

at various pressures, and got a hysteresis loop for

something possibly corresponding to the average
pressure in the cell as determined by the piston

displacement. One can then, in temperature cycles,

relieve the load on the piston as the temperature
increases to try to correspond to that narrowing
frictional hysteresis loop, and so on and on. I think

the saving grace here is that even if you don't know
the stresses in the wires to better than three kilobars

it doesn't matter to more than a degree or so in the

correction.

D. Decker (Brigham Young University, Provo,
Utah): There is also another possible way of looking
at temperature effects— by doing a Mossbauer
experiment and looking at the Doppler shift. This
effect should be independent of pressure. And since

the isomer shift itself is a very slow-varying function

of pressure, it gives you an estimate of the tempera-
ture. We have tried this at 80 kbar and up to 400 °C.

However, we only used chromel-alumel thermo-
couples and found no effect. That is, measurements
on thermocouples directly and by the isomer shift

essentially agree.

385-762 O - 71 - 21
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In our committee discussion of fixed points, we
realized that several factors were of concern: Are
these points equilibrium points thermodynamically?
We realized that kinetics often enters into the estab-

lishment of these points. We also recognized that

the apparatus plays a part in deciding where an
individual person may find a fixed point in relation to

his press loading or other factors.

We decided that the equilibrium value was the

important value, and that we should select the

fixed point data that were closest to equilibrium.

Then it would be up to the individual user to worry
about kinetics and apparatus factors in his own
situation.

In this connection, we advise that all high-

pressure workers describe their apparatus ade-

quately. It is necessary to know what kind of device

is used, and its important dimensions. If it's a piston-

cylinder apparatus, the diameter of the piston and
the length of the sample should be given. Materials

in the cell, such as pyrophyUite, boron nitride, or

silver chloride should be specified and their dimen-
sions given. Give sufficiently detailed information

so that an estimate of the pressures can be made at

a later date when fixed point values become more
accurate.

We decided that there were several ranges into

which the pressure scale could be advantageously
divided. The first range is called the Free Piston

Gage Range. It was the consensus of the group that

the free piston gage could be used up to pressures of

about 30 kbar. The first two fixed points that we
discussed— the mercury freezing pressure at 0 °C
and the bismuth I-ll transition— lie in the Free
Piston Gage Range. There may be other points that

should be included.

Our assignment was concerned with pressures
at room temperature. We decided that this meant
25 degrees Centigrade, and we have shown in the
accompanying list of "Pressure Fixed Points" our
judgment of the best values of the pressure, in kilo-

bars, of the fixed points at 25 degrees Centigrade.

Some measurements have been made above
room temperature, and we wish to include the

mercury point over a range of temperatures as a

fixed point, rather than just giving it as one point.

It recommended that such reference pressures be
based on the Simon equation, adjusted to agree
with the value 7.569 kbar at 0 °C as follows:

P = 38227
_V234.29/ J

where T is the temperature in K on the Inter-

national Practical Temperature Scale (1948), and
P is the pressure in bars.

In the case of the bismuth I-II transition, it was
the consensus of the group that Heydemann's
value determined at the Bureau of Standards is

the best value at this time and should be 25.50 ±0.06
kbar at 25 degrees Centigrade.

We called the next range, beginning at 30 kbar,

the Upper Force-Over-Area Range, with a present
upward limit of about 80 kbar. In the present
state-of-the-art this limit probably cannot be
exceeded in apparatus such as piston-cyhnder
equipment. In this range, we have selected the

thallium ll-lli transition to have a value of 36.7 ±0.3
kbar.

The value chosen for caesium (Cs Il-III = 42.5 ± 1

kbar) was the result of careful consideration. We
determined who had performed experiments where
the system was in a truly liquid environment, and
gave considerable weight to that. We considered
experiments that did not have a liquid environment
but in which an attempt was made to approach a

free piston condition. Here, one may have had
silver chloride for the environment. We included
x-ray diffraction data. We weighed these, one
against the other, and came up with a good con-

sensus as to the best value. We then tried to put

some kind of an estimate on the plus or minus
value. The caesium ll-lll value appears to be
known only on an upstroke, so there could be a
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question as to whether or not the caesiuin values
are equihbrium values.

The barium l-ll transition was placed at 55 ±2
kbar, and bismuth IIl-v at 77 ±3 kbar, at which
point we reached the limit of our upper force-over-

area range.

Then we moved into a more difficult range— the
100 Kiiobar Range — in which tin, iron, barium, and
lead were considered. We understand that there

are no shock data on the transitions in tin, barium,
and lead.

There are problems, apparently, in trying to run
these transitions by shock techniques. The shock
data that have been obtained pertain only to iron,

and according to at least one member of our panel,

the iron transition is very poorly behaved. It was
the consensus of the group that iron probably ought
to be left out of the system, although there were a

few who objected. Iron seems to be somewhat
irregular in behavior, and there is an uncertainty

as to the correct transition value.

It is the consensus of this group that the tin,

barium, and lead points are on much less firm

ground than the points in the Force-Over-Area
Range, which in turn are on less firm ground than
the points of the Free Piston Gage Range. We
feel that pressure is probably established up to

the neighborhood of 80 kbar within plus or minus
3 kbar. In the 100 Kbar Range and above there is

a great deal of uncertainty. How much is difficult to

estimate. Points in this range have been chosen
from older work of Drickamer's and probably
should be revised downward on account of the

downward revision in the barium point, and the
iron point, t

PRESSURE FIXED POINTS

Free piston gage range <

Upper F/A range

Hg 7569 ± 2 bars at 0 °C

Bi III 25.50 ±0.06 kbar at 25 °C

Tl IMII 36.7 ±0.3 kbar

Cs n-ni 42.5 ± 1 (up only)

Cs III IV 43.0 ± 1 (up only)

Ba III 55 ±2

Bi III-V 77 ±3

Sn J.J J 100 ±6

Ba 140 (up only)

Pb 110 to 160 (up only)

100-kbar range

H. T. Hall

t Added in proof by the Editor: In the following table are

Drickamer's revised values based upon a later publication (Rev.

Sci. Instr., Notes Section, Vol. 41, No. 11, 1970):

Approximate Location of Transitions, kilobars

Old New

Bi 88 73-75
Sn 113-115 92-96
Fe 133 110-113

Ba 144 118-122
Eu 150-160 122-130
Pb 160 128-132

Rb 190 142-153
Cs*(max) 170-180 133-142
Ca*(max) 350-375 235-255
Rb*(max) 420-435 290-320
CdS*(max) 460 330-340
ZnS*(max) 550 410-420

*Maxinium in resistance-pressure curve.
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The appointed committee included J. Jamieson,

George E. Duvall, D. John Pastine, G. R. Barsch,

W. A. Bassett, D. L. Decker, D. McWhan, W. J.

Carter, C. Beckett, and O. L. Anderson. The
chairman made all persons attending into a

committee of the whole.

The panel reached a consensus on the topics

to be discussed. They were: definition of equation

of state; basis for selecting a standard reference

material; the reference materials themselves;

properties an ideal standard should have; the theo-

retical problems facing the equation of state of the

standard materials; special new experiments desired

on standard materials.

I. Equation of state defined. The consensus

was that general definitions should be avoided,

and that the focus be made on the P,V,T relation-

ship of the standard material. In particular, gen-

eralized stress and strain relationships seemed
only remotely possible. However, it was recom-

mended that a feasibility study be made on the

prospect of determining shear constants as a func-

tion of pressure.

II. Basis of selecting standard materials. The
primary consideration is that the material be usable

as a standard in experiments. The secondary con-

sideration is that the material be amenable to theo-

retical analysis. The experimental fields concerned

are: (1) x-rays under pressure; (2) shock waves; (3)

pressure vessels closed to x-rays. Experiments
specifically not considered in the selection of the

materials were low-temperature (liquid helium)

high-pressure experiments, and acoustics under
pressure. It was recommended that a feasibility be

made for a material whose equation of state is useful

for low-temperature experiments.

III. The materials selected. It was the consensus
that a material must suit various kinds of experi-

menters. It was recognized that no one material
would satisfy all experimentahsts, but, on the other

hand, that selecting many materials is equivalent to

selecting none. The recommended materials were,

in order of preference:

1. NaCl

2. Cu

3. Al

It was agreed that sodium was a material to be
considered in the future. A minority viewpoint held
that something should be done to choose a particular

liquid as a calibrant.

These three materials were selected as the ones
which were the best compromise to the ideal one
which would have the following properties (in order

of importance): a useful value of bulk modulus,
chemical inertness, isotropic structure, the absence
of phase changes, low values of atomic number, low
yield points, and optical transparency.

IV. Theoretical problems to solve on recom-
mended materials. Not necessarily in order of

priority, they were: (1) Fermi-Dirac approximations;

(2) quantum mechanical approaches, especially cal-

culations in deformed lattices; (3) noncentral forces

in lattice dynamic theories; (4) sixth-order anhar-

monic approximations in lattice dynamic theories;

(5) non-equilibrium thermodynamics, especially on
lattice models; (6) behavior of the Griineisen param-
eter with volume; (7) uniqueness problems in the

strain definition of finite strain theories.

It was further recommended that the Rochester
group, the BYU group, and the Los Alamos group
compromise their differences in their individual

published tables of equations of state of NaCl, and
together issue a common table.

It was further recommended that the equations of

state of the three standard materials be cross corre-

lated with each other, and with the recommended
fixed pressure points.
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y. Some special experimental problems (not
presently well attended) which should be pur-
sued. The panel urged that experiments be pursued
showing the shift of vibrational frequency with vol-

ume at all frequency ranges. These include the pres-

sure dependence of Brillouin scattering, neutron
scattering, and Raman scattering. New experiments
involving secondary standards were encouraged.
These were: pressure shifts arising from NMR, the

Mossbauer effect, and various electronic transitions.

The panel further recommended that, since all

experimental values on these three materials would
be of use to theoreticians working out equations of

state, whenever possible experiments on these

materials be performed. Of special import are those

experiments that are boundary conditions of phe-

nomological equations of state.

O. L. Anderson
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The measurement of pressure at high tempera-
ture includes all of the difficulties of measuring
pressure at 25 degrees with a few more thrown in.

Probably the biggest additional difficulty arises from
the fact that at high temperatures it is difficult to

get a truly hydrostatic condition. Most of the high-

temperature cells that are used in high-pressure

apparatus are composed of materials like lavastone,

talc, and graphite, and these do not permit a very
close approximation to a hydrostatic condition.

There is also the problem that arises because most
of the effects that one would Uke to study are tem-
perature-sensitive as well as pressure-sensitive.

At high temperatures, particularly above a thousand
degrees centigrade, making a good pressure meas-
urement involves the difficulty of making a good
temperature measurement as well.

Now, in the last ten years or so there has been
accumulated quite a large body of data on melting
curves and solid-solid transitions, some of which
have been most imaginatively and carefully deter-

mined. Various other effects have also been
measured as a function of pressure and tempera-
ture. Nevertheless we decided at the outset of our
session that we would not dignify any of these data
by characterizing them as calibration curves or
fixed points or anything of that sort. Thus having
"disposed" of the main problem, we gave our
attention to the question of which future work we
or others should undertake to provide better meas-
urements and calibrations at high temperatures.
We divided the problem into two parts: the use

of phase transitions as possible calibration points;

and "other effects".

We considered the "other effects" first and the
discussion of these is summarized as follows:

One possible calibration scheme uses thermo-
couples including, in particular, the iron platinum-
10-rhodium couple that Dr. Strong has described.
There are problems with this device in that it's

hard to get a really big effect that's very sensitive
to pressure.

We talked about in situ lattice parameter meas-
urements, for example by x-raying a substance at

both high temperature and high pressure. This is a

good method, but it requires very specialized equip-

ment, and the average high-pressure worker would
not be able to readily make such a measurement in

order to calibrate his device.

We talked about the effect of pressure on the

index of glass. This is rather an interesting phe-
nomenon in that many glasses, when placed under
high pressure, have rather large increases in their

index of refraction. With certain glasses, particularly

SiO-i glasses, this effect is large enough so that it

quite possibly would provide a useful means of

pressure calibration. Use of glass is also attractive

in that one could run a small piece of glass with an
unknown, and by measuring the index after the

experiment, determine the pressure of the experi-

ment. There are difficulties. It is a relatively low-

temperature phenomenon, and there also appears
to be a problem sometimes of reaching an
equilibrium state in the index of the glass.

We talked also about vacancies in TiO as a func-

tion of pressure, and this can be established by a

lattice parameter measurement after the event.

In other words, after exposure to high pressure
one can, through measurement of the lattice param-
eter, get an estimate of the pressure.

We discussed magnetic effects, and the largest

of these Curie-point changes at present seems to be
the effect of pressure on the Curie point of nickel,

which Dr. Susse estimated to be about 0.35 °C
per kilobar. This is thus not quite as sensitive as we
would like to have.

•We talked about solution phenomena which are

really phase transformations of a specialized kind.

There are transition loops and solvus curves which
are extremely sensitive to pressure. In some cases
it is possible to measure the composition of, say,

phase A in equilibrium with phase B with an
accuracy which would be equivalent to a change in

pressure of the order of a kilobar, so that there
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Figure 1. Phase transitions which can be studied by the quenching method and which are potentially

useful for calibration at high temperatures and pressures.

Sillimanite-Kyanite: Richardson, Bell, and Cfilbert (1968); Quartz-Coesite: Boyd, et al. (1966); (iraphite-Diamond: Berman and Simon
(1955): Fayalite-Spinel-Liquid: Akimolo. Komada. and Kushiro (1967): B.Oa: Dachille and Roy (1959); Coesite-Stishovite: Akimoto and
Syono (1960); ZnO: Bates, White, and Roy (1962); CozSiO^: Akimoto and Sato (1968).

are possibilities here. And it was suggested that for

very high-temperature situations one might look

at solvii in oxide systems; at more moderate
temperatures, silicate systems; and at low tempera-
tures there are salt systems that could conceivably

be used.

We then discussed univariant phase equilibria.

We gave attention to those which, through the

group's experience, were well-behaved. We felt

that if we could establish some of these in a

sufficiently absolute way they would make useful

calibration points or curves. We divided the phase
transitions into two groups according to reaction

rate. There are those which require run times of

the order of ten minutes to ten hours to some days
in order to achieve equilibrium, and which can be
studied by the quenching method; i.e. bring the

material up to pressure and temperature, hold it,

quench it, and then examine the results by optical,

x-ray or electron probe methods. Some of these,

for example quartz-coesite, can be done with high

precision. We made a P-T diagram of phase transi-

tions that would fall in this category.

We did the same thing for a group of phase transi-

tions which are essentially displacive transforma-

tions, very fast ones, in which one can detect the

transition either through a latent heat effect or,

let's say, by a change in electrical resistance.

The accompanying diagrams illustrate the pres-

sure and temperature ranges in which some of

these transitions, both slow and fast, could be useful.

At the highest pressures there is a quenchable
transition in zinc oxide (fig. 1) which goes to an NaCl
structure, and there are data now on this in the range
above 100 kbar and up to about 500 degrees. At a

little lower pressure there is the coesite-stishovite

reaction. Then further down there are three forms of

Co2Si04 with a triple point at 930 °C and 68 kbar.

Still further down there's a transition in Fe2Si04
which goes from an olivine to a spinel form. This
transition intersects the melting curve at 1520 °C

and 62 kbar.

At lower pressures is the quartz-coesite transition

for which we probably have better agreement and
more determinations than for any other. I would say

that at a temperature, for example, of 1,400 degrees

the three most recent determinations of the quartz-

coesite transition are within two kilobars of each
other at approximately 40 kbar.

In a lower temperature range there is a transition

in BaO.'i and at pressures below quartz-coesite there

is the kyanite-sillimanite transition.

These are all fairly well-behaved transitions, and
it is possible to bracket many of them very closely.

If we could solve some of the measurement diffi-

culties I think almost any of these would provide

useful calibration points or calibration curves.

Now, the more rapid transformations which can

be observed through DTA or an electrical resist-

ance change fall in two groups (fig. 2). Of course, all

of the fixed points that we've been working with at

room temperature can be extended to a greater or
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Figure 2. Rapid phase transitions which can be determined by DTA, resistance-jump, etc.,

and which are potentially useful for calibration.

Diopside: Williams and Kennedy (1%9); NaCl: Akella, Vaidya, and Kennedy (1969); a-fi Quartz: Cohen and Klement (1967):

Iron: Bundy (1965): Bismuth l-ll-lll and Thallium I-II-III: LaMori (1970); Bismuth III V: Haygarth, Ludemann. and Getting (1969).

lesser extent up the temperature scale. For example.
Dr. LaMori earlier showed us his results up to sev-

eral hundred degrees on the bismuth I-II and bis-

muth ll-lll transitions, and on the thallium transi-

tions. Also, we have high-temperature data on the

bismuth III-V transition, discussed earlier in this

meeting. A second group in a higher temperature
range includes the alpha-gamma iron transition

which has been determined up to quite high pres-

sures. There is also the alpha-beta quartz transition

at lower pressures.

Quite a lot of work has been done on melting

curves. For the most part, the melting curves of

metals have slopes that are less than five degree per
kilobar. Thus they are not as sensitive as would be
desirable for pressure calibration at high tempera-

ture. Salts, however, exhibit much steeper melting

curves. Initial slopes on the order of 20 degrees per
kilobar are quite common in salts, and there would
be a number of these that could be considered. One
that is of current interest is sodium chloride, which
also is in a reasonably manageable temperature
range (fig. 2).

At higher temperatures there are silicate melting

curves, which have initial slopes on the order of ten

degrees per kilobar. A number of these curves have
been determined and for the most part they lie in

the range of 1,500 to 2,200 degrees Centigrade.

Among substances of this type for which melting

curves have been determined are diopside, albite,

and fayalite.

There are basically three ways to improve meas-
urements on these various equilibria to the point

where one could really have confidence in them as

Ccdibration points. One is by thermochemical cal-

culation, another by the shock wave approach, and
a third I think by use of the piston-cylinder apparatus.

Much data has now been obtained with the pis-

ton-cylinder apparatus, particularly since the UCLA
group found it possible to extend simple piston-

cylinder measurements out to 80 kbar. But there

still are problems in relating the load pressure to

the actual pressure in a piston-cylinder device.

Even when one can quite accurately determine the

amount of the friction, there is still the possibility

that in a high-temperature cell, composed of con-

centric layers of such materials as talc, boron
nitride, and graphite, the actual load is borne dis-

proportionately by these shells, with resulting

uncertainties in the pressure on the sample.

For this reason, even though the precision of some
of the measurements in this high-temperature, high-

pressure, field is now very high, we are uncertain

as to the absolute accuracy.

F. R. Boyd, Jr.
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Studies have been made on two intimate mechanical mixtures of NaCl and Nb having different

composition at high "pressures" using x-ray diffraction. A plot of K,,/F„ for Nb versus ViilV,, for NaCl
showed a different curve for each of the two mixtures. Our analysis and the consequences of this

apparent violation of the criteria for an internal pressure gage are discussed.

It has been pointed out several times in the past

that the stress configuration in compressed solids is

much more complicated than the homogeneous
hydrostatic case. In particular, stress differences in

materials due to encapsulation have been treated

by Bobrowsky [1] ' and Corll and Warren [2], while

pressure differences developed by flow and geom-
etry have been described by Jamieson and Law-
son [3], Lippincott and Duecker [4], and Jamieson
[5]. The encapsulation enhancement has been ex-

perimentally verified by Corll [6]. The use of an
internal standard to measure pressure in high-

pressure experiments implies immediately that the

system under study will consist of two or more
phases chemically and mechanically different in

their properties. One is the material where proper-

ties are to be studied as a function of pressure; the

other serves as an internal pressure gage. In the case
of the present experiments the "gage" gives an
x-ray diffraction pattern from which its density at

any pressure may be directly calculated, in princi-

ple. Then a comparison made with data obtained by
other means on the "gage's" compression gives the

pressure. While this application seems straight-

forward, we felt that it was not at aU obvious that in

a system of stressed solids, stress would be suffi-

ciently homogeneous for such a gage reading to be
representative of the pressure in the second phase.

This was previously stated quite clearly by Bobrow-
sky [1].- The following experiments were performed
to investigate this possibility.

Two mechanical mixtures of dried NaCl and Nb
were weighed and then agitated in a "Wig-L-Bug."
Each was uniform to the eye under the microscope.
One consisted of 89 percent NaCl by volume, the
other 81 percent. These were formed into pellets

and studied by in situ high pressure x-ray diffraction

as described elsewhere [3, 7]. We chose NaCl since

it is frequently used as an internal standard in such

'(Editor's Note: This paper is an expanded version of the discussion presented by
Professor Jamieson as part of the discussion of the paper "Calculation of the P-V
Relation for Sodium Chloride up to 300 Kilobars at 25 °C," by Weaver, Takahashi,
and Bassetl.l

' Figures in brackets indicate the literature references at the end of this paper.
- We wish to acknowledge receipt of a letter from G. C. Kennedy, shortly after start-

ing the experimental portion of this research, in which independently the same point

was emphasized.

experiments. The other material chosen was Nb
because of its small compressibility relative to

NaCl, its simple bcc x-ray pattern, and its position

next to Mo on the Periodic Table. This latter

property guaranteed comparatively low absorption

and high scattering power in the Mo radiation, which
was used in this experiment. Absorption coefficients

for the two mixtures studied were 45 cm"' for the

19 percent mixture and 34 cm"' for the 11 percent.

For our sample diameter of 0.35 mm no serious

absorption effects were to be expected using the

empirical 2lfx rule [7] for optimum sample size.

Another reason for the choice of Nb was the fact

that its Poisson's ratio of 0.35 differed grossly from
the (average) one for NaCl of 0.21 as determined
from handbook values.

Table 1. Sample indexed pattern

*N(Nh) rfcalc(Nb) *Af(NaCl) t/ealc(NaCl)

A A A
2.558 4 2.576

2.292 2 2.293

1.824 8 1.822

1.618 4 1.622

1.491 12 1.487

1.325 6 1.324

1.283 16 1.288

1.146 8 1.147 20 1.152

1.059 24 1.057

1.023 10 1.026

0.9950 27 0.9915

.9374 12 0.9363

.8692 14 .8669

.8104 16 .8109 40 .8146

.7647 18 .7645

.7251 20 .7253

.6916 22 .6915

.6613 24 .6621

.6358 26 .6361

.5923 30 .5922

.5578 34 .5563
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Figure 1. Relative compression of mechanical mixtures of II

percent NB-89 percent NaCl (dark circles) and 19 percent NB-
81 percent NaCl (light circles).

Pressures quoted are for Kp/Fo of NaCl from reference [10]. Cross is error derived
from pattern given in table 1.

In order to illustrate the pattern quality obtained,

we display in table 1, an indexed pattern. From this

pattern we obtain a = 3.2435 ± 0.0016 A for Nb
and a = 5.1520 ± 0.0048 A for the NaCl unit cell

edge. The error figures quoted are standard devia-

tions for this one pattern. All in all, two runs
consisting of 16 diffraction patterns at different

elevated pressures were taken of the 11 percent Nb
mixture. In one run, tapered face pistons were
used [7]; in the other, flat face pistons. Six different

runs were made of the 19 percent Nb mixture.

Piston geometries were tapered face and flat-face

as weU as one run in which a precompressed and
glued boron annulus was used with one flat piston

bearing on one tapered. A total of 29 exposures
were made of this composition. During each run
up to its termination by sample extrusion or piston

collapse pressures were increased or decreased at

will. For each diffraction pattern the unit cell edges
for the co-existing NaCl and Nb were calculated

and the ratios Fp/Fo calculated in which Va is the

unit cell volume at zero pressure. All high-pressure

films had been calibrated from 1-bar photographs
using 1-bar values of the respective cell edges.
Under these circumstances one would expect that

a plot of VplVo for Nb versus V^jV^, for NaCl would
be a smooth curve except for experimental scatter

if the two co-existing phases were truly at equal
pressures. We have found this not to be true on
two counts. The first (and less well substantiated)

is illustrated in figure 1, a composite plot of all

runs. The lines connecting the points of one 11

percent run indicate successive load changes; a

movement to the right is increased load, to the left

is decreased. It seems apparent that there is no
unique curve along which the relative compressions
lie. The number of points in this run is too smaU
to make firm statements but there does seem to be a

trend that repeated cycling leads to lower VplV^t for

NaCl at a constant VpjVa for Nb. Similiar effects

can be seen in the other runs which are not

individually shown to avoid confusion. The second
example of aberrant behavior is also illustrated

in figure 1 where it can be seen immediately that

the points fall almost uniquely into two groups.

The dark 11 percent Nb form a distinct set from
the open circle 19 percent Nb. This is a strong
violation of an imperative criteria of an internal

standard, namely that the presence of the standard
or its amount should not influence the behavior
of the material whose state it measures. For this

work we wish to present the data in figure 1 as

empirical facts to illustrate phenomena which need
to be taken into account in high-pressure research.

For the nonce, we offer only a few qualitative

comments on the possible underlying physical

explanations.

As we mentioned earlier, "pressure intensifica-

tion" has been predicted both theoretically and
experimentally. The "Brobrowsky-Corll-Warren
effect" uses as a model a sphere of one material

embedded in one or more shells of a different ma-
terial. In the one-sheU model, pressure varies as

c + d/r' in the shell. We now consider our mixture as

a dissemination of Nb spheres of radius a in a

matrix of NaCl and draw spherical surfaces of

radius b around each, such that these spherical

surfaces about each grain are in contact. We as-

sume a uniform pressure pe in the interstitial

regions. Then [1, 2]

PcIPe
l + K

Kil- BJBo) (a/6)3 + 1 + KB.IBo
(1)

in which pc is the pressure at the core's exterior. Bo
its bulk modulus. Bi is the bulk modulus of the

jacket (NaCl) and K a function of its Poisson's ratio

given by

1 + z.
(2)

Using the values given in Clark [8] for the elastic

constants of a quasiisotropic aggregate of NaCl
averaged by the Voigt method, 1^= 0.24 and = 0.83

at 1 bar. From Bridgman's [8] value for the compres-
sion of Nb at 30 kbar, X in figure 1, we estimate

BJBo as 0.18. Numerically eq (1) becomes

PcIPe
2.69

{alby + 1.69

and for widely spread spheres of Nb in NaCl a pres-

sure intensification of 1.6 is predicted. If we as-

sume the particles of Nb are uniformly separated in

space, then their distances apart may be calculated

to be 3.37 a and 2.81 a for the 11 percent mix and 19

percent mix. respectively. Since b as defined pre-

viously is one-half this distance, we obtain

PclPe=lA2 and 1.31
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from substitution in eq (3). This is qualitatively in

agreement with figure 1 where it is seen that a

constant NaCl "pressure", i.e., F;,/Fo= constant,

the compression of Nb is indeed less for the 19

percent mix than the 11 percent. The coefficients

in eq (3) are known only at 1 bar. In addition, flow

may occur (this may explain the cycling effect

shown in figure one) and alter the conditions of its

derivation. Hence, no further application of the

Brobrowsky theory will be made at this time.

There are further difficulties with the use of any
internal standard in which x-ray diffraction is used
to determine lattice spacings in a stressed poly-

crystalline aggregate. In order to obtain a given

diffraction peak, sufficient matter must be present

with its atoms arranged in a sufficiently regular

fashion to give coherent radiation in a given direc-

tion. In solid pressure systems we may expect
great variations in such coherency where small

regions may be sufficiently coherent to diffract

and transition regions with a gradually varying

interplanar spacing may not. Such an effect is well

known among metallurgical studies of stresses

"frozen in" metals (Barrett [9]). By intuition one
would expect the least stressed regions to be most
coherent; hence, any lattice spacing determined
by x-ray diffraction is apt to be a maximum value

corresponding to lower pressure regions.

It is necessary to mention stiU another possible

explanation for the apparently different behavior
of the 11 percent and 19 percent Nb mixes as

shown in figure 1 and that is the possibihty of

random error affecting the caUbration of each in-

dividual run. Figure 1 is a composite of two 11 per-

cent and five 19 percent runs. In each run a 1-bar

diffraction pattern has been used to calibrate the

camera for absorption, film shrinkage, and sample
position [7]. It might be argued that sheerly by
chance all measuring errors accumulated so that

both 11 percent runs gave systematically low values
for Nb compression while all five 19 percent gave
systematically high ones. While we cannot rigor-

ously rule out this possibility, if it did occur then
many more data points and separate loadings must
be made in any compressibility study than had been
thought reasonable before. The points in any one
run are all calibrated from the same 1-bar pattern
and thus are independent of this possible random
error. Yet in figure 1 we find variations within one

run (and others nof illustrated) ascribed to cycling

and sample reworking which are well beyond any
measuring error and are comparable to the 11

percent to 19 percent difference.

In conclusion, we point to the second X at 100
kbar in figure 1 which corresponds to the Los
Alamos shock compression data for Nb from ref-

erence [8]. This is a Hugoniot point rather than
on the isotherm, but for Nb these are almost
identical. The NaCl pressure values in the graph
are taken from Fritz et al. [10]. This point hes
intermediate between the 11 percent and 19 percent
Nb compression in this pressure region. It is obvious
that much work remains to explain the rather

complicated phenomena which are probably oc-

curring not only in the mechanical mixtures studied
here, but also in the two-phase system generated
when a substance undergoes a polymorphic transi-

tion in a high stress environment.

Acknowledgments

This research has been supported by NSF Grant
NSF GA 1270 and ARPA grant SD-89-Research
and by the Petroleum Research Fund of the Ameri-
can Chemical Society. Grateful acknowledgment
is made to the donors of that fund.

References

[1] Bobrowsky, A., in High-Pressure Measurement, ed. A. A.
Giardini and E. C. Lloyd, Butterworth, Washington D.C.
(1963) .

[2] CorU, J. A., and Warren, W. E., J. Appl. Phys. 36, 3655
(1965).

[3] Jamieson, J. C, and Lawson, A. W., J. Appl. Phys. 33, 776
(1962).

[4] Lippincott, E. R., and Duecker, H. C, Science 144, 1119
(1964) .

[5] Jamieson, J. C, Bull. Geol. Soc. Am. 74, 1067 (1963).

[6] CorU, J. A., J. Appl. Phys. 38, 2708 (1967).

[7] Jamieson, J. C, in Metallurgy at High Pressures and High
Temperatures, ed. M. T. Hepworth, N. A. D. Parlee, and
K. Gschneidner, Gordon and Breach, New York (1963).

[8] Clark, S. P., ed.. Handbook of Physical Constants, Geol.
Soc. Am. Memoirs 97 (1966).

[9] Barrett, C. S., Structure of Metals, 2d ed., McGraw-Hill,
New York (1952).

[10] Fritz, J. N., Marsh, S. P., Carter, W. J., and McQueen,
R. G., The Hugoniot equation of state of sodium chloride

in. the sodium chloride structure, presented at this

meeting.

323





Comparison of Four Proposed P-V Relations for NaCl

J. Scott Weaver

Department of Geological Sciences and Space Science Center,

The University of Rochester, Rochester, New York 14627

Some comparisons among four P-V relations for the Bl phase of NaCl discussed at this symposium
are presented. The two scales (Models HI and V) proposed by Weaver et al. (this volume) and a 1968

revision of Decker's P-V relation (Dss) are shown to agree closely. The three models yield zero-pressure

thermal expansion curves in reasonable agreement with experiment, but give values for B',^ smaller

than the measured value. This appears to be due, in part, to the form used for the lattice energy. The
three models yield pressures about 2.5 percent smaller than those calculated from the pressure scale

{Fkh) based on Hugoniot data proposed by Fritz et al. (this volume). Comparison of Models III, v, and
Fkk in the — u,, plane suggests that part of this difference must result from either the form chosen
for the lattice energy in Models III and V or from the Hugoniot data upon which fti« is based. Omission
of part of the data used in Fm improves the agreement of this model with the sonic value of B'l^ and

partially removes the discrepancy between and Models III and V. Suggestions for additional studies

which may be useful in choosing a P-V relation for NaCl for pressure calibration purposes are presented.

It is concluded that, since the differences among these scales are comparable to the experimental un-

certainties involved in applying them, and since there is no compelling reason to choose one over the

others, any of these scales may be used for the present.

1. Introduction

Following the discussions at this symposium, it

seemed desirable to expand the treatment of the

various proposed P-V relations for NaCl presented in

Weaver et al. (this volume). In addition, the new
pressure scale proposed at this symposium by Fritz

et al. (this volume) differs significantly from those
described in Weaver et al. In this supplementary
paper, four proposed P-V relations for NaCl are

compared in an attempt to find criteria favoring one
of them, and some suggestions for additional studies

bearing on the problem are made.
For convenience, the models discussed here are

referred to by abbreviations: III and V refer to

Models III and V presented in Weaver et al. (this

volume); Fes refers to the 295 °K isotherm based on
shock wave data reported by Fritz et al. at this

symposium. The discussion here is based on the

values given in tables 3 and 4 of their paper (Fritz

et al., this volume). In 1968, Daniel L. Decker
kindly provided a copy of computer output contain-

ing a revision of his published calculations (Decker,

1965) of the equation of state for NaCl. This revised

model will be referred to as Dhh. In general, the

notations of this paper foUow those in Weaver et al.

(this volume). Additional notation is defined as

introduced.

2. Thermal Expansion

The thermodynamic Gruneisen parameter for

III, V, and Dh8 (already assumed to be a function of
the volume only in both the Hildebrand and Mie-
Gruneisen approximations) was assumed to be of
the form: y^yox^. In ill andv, the value: /4= 1.2±0.4
was calculated from the relation: ^4= 1+ (l+-yar)Ss
— Bg + y evaluated at P= 0. In Des, the value:

^ = 0.767 was determined to yield the best agree-

ment (in a least square sense) between the observed
zero-pressure thermal expansion curve for NaCl
and that calculated from the model. In order to com-
pare these two different approaches to the deter-

mination of the volume dependence of the Gruneisen
parameter, calculated zero-pressure thermal expan-
sion curves for III, V, and Des were compared with

V/V,
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McKinstry (cited in

Clark, 1966)

J , I
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*Paper and Discussion prepared subsequent to the Symposium at suggestion of

Symposium organizers. Paper received in final form April 1970.

Figure 1. Comparison of the zero-pressure thermal expansion

for NaCl from models III, V, and Dhh with results from experi-

ment.

J'V. is the volume of NaCl at 25 °C and f = 0. The agreement between the calculated

and measured thermal expansion curves suggests that it is not essential to use the

measured thermal expansion as a boundary condition on the models (as was done
forD,»).
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experimental results obtained by McKinstry (cited

in Clark, 1966) as shown in figure 1. The points for

III and V were obtained by numerically solving the

P-V-T relation for V and T such that P= 0. The
points for Des were calculated by three-point inverse

Lagrangian interpolation in Decker's table to esti-

mate the value of r/ro for which P= 0 at various

temperatures. The experimental curve was ob-

tained by five-point Lagrangian interpolation using

McKinstry's values given in Clark (1966). As can be
seen in figure 1 the thermal expansion curves for

V and Das agree closely with the experimental

results, while III yields values for the expansion
about 5 percent larger at high temperatures. The
general agreement among the three models sug-

gests that the thermal expansion is insensitive to

the method used to determine A, and that it is not

essential that the model be forced to fit the thermal
expansion curve. However, the different values of

A chosen for III and V versus lead to different

values of {dPldT)y at high pressures. Hence, cau-

tion must be used in applying these models to pres-

sure or temperature measurement under simul-

taneous conditions of high temperature and high

pressure.

3. Pressure Derivatives of Bt

The values of the pressure derivatives of Bt calcu-

lated for III, V, and Dsn may be compared with ex-

perimental values to yield a test of the models since

only P and Bt are fixed by the boundary conditions

at V= Vt), while the derivatives are then determined
by the form of the model. The values for the pres-

sure derivatives of Bt for Fan are largely determined

by the experimental Hugoniot for NaCl and, to a

lesser extent, by the procedure used to reduce the

Hugoniot to an isotherm. Values for the dimension-

less parameters fi/,, and —BtoB"g for models III and

V were calculated by means of seven-point finite-

difference formulas to yield the results shown in

table 1. Since Dhs and F^^» are presented in tabular

form, numerical derivatives are subject to large

errors due to rounding-off of the tabulated values.

This difficulty may be avoided by using an approxi-

mate P-V relation such as the Murnaghan or Birch

equation to convert the tabulated P-V relation to a

more slowly varying function of V. For example, the

parameter a obtained from the Murnaghan equation:

P= Btoa~^{x~" — \) is an approximately hnear func-

tion of X for all of the models considered here as is

shown in figure 2. A linear least squares fit to the

a—X relation for each model together with the

relations:

B'lg = lim a and Bt„B','
,. da
lim—

(which follow easily from the Murnaghan equation)

was used to compute the values shown in table 1.

6.0

5.5

5.0

4.5 -

4.0

o Model m
• Model V
« 068

> Fee (Q)

t Fee (L)

Battels a Schuele (1965)

A Chang (1965)

> B

1.0 0.9 0.8 0.7

V/Vo

Figure 2. Murnaghan equation parameter a versus volume for
several models for NaCl.

a was calculated from the Murnaghan equation: /"= "
' [ (K/Kti)

"
'
—

I ]; with

«,„=237.4 kbar for III, V, and and B,„= (0.00422)-' kbar for /)««. Q and /. are

the quadratic and linear forms of f,in. The error fla^s ^how the uncertainty in a result-

ing from rounding off of the tabulated values of P and V for Dm and Fun. It can be shown
that u = lll^ at VIV»~ I. Two measured values for for NaCl are shown for compar-
ison.

Table 1. Values for and — BtoBj'o calculated

from models HI, V, Dhk, and Fan and values for

B^ determined by experimentfor NaCl.

Source "BtoBl Method

Experiment 5. 18 ±0.09 Sonic (uniaxial loading);

Chang, 1965.

Experiment 5.35 Sonic (hydrostatic pres-

sure); Bartels and

Schuele, 1965.

III 4.916 5.964 Numerical differentiation.

4.902 6.217 Murnaghan equation.

V 4.894 7.169 Numerical differentiation.

4.8% 6.405 Murnaghan equation.

D„„ 4.858 6.416 Murnaghan equation,

Bto = 237.0 kbar.

Fbh 5.453 10.991 Murnaghan equation.

Bio =237.4 kbar.

The values obtained for III and V using this pro-

cedure differ somewhat from those calculated by
direct differentiation since the a — x relation ex-

hibits a slight curvature. The difference is probably

not significant for the present purposes.

As can be seen from table 1, models III, V, and

Dan all yield values for B^o smaller than those deter-

mined experimentally. The value of the parameter
— BtoB'f'o has not been measured for NaCl, although
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the values: — Bs„B'^„ — 1.15,4, found for CsCl, CsBr,

and Csl (Chang and Barsch, 1967) and the value

-B,oB"„ \ .06B;„ for Csl (Barsch and Chang, this

volume) suggest that the values —BioB'lu—l.ZB',,,

calculated for III, V, and Ajh are not unreasonable.

The reason for the discrepancy between the values

for B',„ calculated from the models and that obtained

from experiment is not clear. The agreement among
the models shows that inclusion of the second

nearest neighbor interaction does not significantly

change the value calculated for B'to, while the effect

of the vibrational energy terms is too small to re-

move the discrepancy without assuming unreason-

ably large values for the parameter^. (For example:

in model V, 5/o = 5.18 would require that /i = 3.42,

while B',0 = 5.35 would require A = 4.85. Either value

of A is incompatible with the observed values of

B'so and 8so.)

The value for B'to calculated from Fes is larger than

that found from experiment, and the value for

— BioB'i'o — 2B!o is larger than that expected by anal-

ogy with the cesium halides. As will be discussed in

the next section, the value for B'lo can be brought

into agreement with that measured by Bartels and
Schuele (1965) if the eight lowest pressure data

points are omitted from the Hugoniot determined by
Fritz et al. (this volume). This procedure would also

reduce the value of — BtoB'/g.

4. Comparison With Shock-Wave Data

In comparing F^n with III, V, and Dun, the effect of

the Hugoniot to isotherm reduction used in Fan

may be eliminated by calculating the Hugoniot

corresponding to the assumptions already used in

III, V, or DtiH- For these models, the pressure, Ph,

along the Hugoniot is given by:

Us (km/sec)

Ph 7(1 —x) — X
y y
TT (4) - (t>o) + X^' --<^0
y 0 yo

where
(f)

is the lattice energy, (I)'
= d^ldV, and the

subscript "0" refers to quantities evaluated at

V= V{). The corresponding shock (u,) and particle

{u,j) velocities are then determined by the Rankine-

Hugoniot relations: Up= po^''-P}l''{l—x)^^'-; and

Us= Up(l — x)"'. The calculated Uj — relations for

III and V are compared with data from experiment in

figure 3. The results for ill and V are in agreement
with the values obtained by Christian (1957) and by
Al'tshuler et al. (1961), but lie below those found by
Hauver and Melani (cited in van Thiel, 1966) and
those found by Fritz et al. (this volume) which form
the basis for Fun. (According to Fritz et al., the data

from Hauver and Melani are based on the old 2024
aluminum standard, and will be brought into better

agreement with the data from Fritz et al. when the

new standard is used.) The difference between the

6.0 -

5.0

4.0 -

34

Al'tshuler et al (1961)

Christian (1957)

Hauver a Melani (1966)

Fritz et al. ( 1968)

— Models in a V

^ Bulk sound speed

1.0

Up (km/sec)
2.0

Fl<;URE 3. Shock versus particle velocity for NaCl calculated

from III and V compared with results from experiment.

The calculated u„ — u,> relations for III and V are indistinfiuishable on the scale

plotted. The bulk sound speed tor NaCl measured by Slagle and McKinstry (1967)

is shown by the filled trianj;le. The value determined by Haussuhl (1960) would be

plotted within the triangle. As noted in the text, the experimental results of Hauver
and Melani will be in belter agreement with those found by Fritz et al. when the 2024
aluminum standard is revised.

Ug — Up relation measured by Fritz et al. and that

calculated for III and V is most pronounced for

Up < 0.7 km/s and is somewhat reduced for larger

values of Up. Since the discrepancy between F^is

and III or V persists when the u.s — Up relations cor-

responding to these models are compared, the

procedure used by Fritz et al. does not appear to be
responsible for the difference.

The effect of the vibrational terms in the internal

energy for III, V, and Ajh on the Hugoniot pressure

was investigated by calculating y from the lattice

energy and the observed Ug — Up relation (Fritz et al.,

this volume) using the relations given above. It was
found that d In yld In V must have a parabolic de-

pendence on In V if the models and the observed

Us— Up relation are to agree. For example, in the

case of model v, the quantity d\nyld\n V is reduced
from 1.2 at VIVo= 1.0 to zero (or even slightly nega-

tive) at VIVo= 0-S8 and then increases rapidly-
reaching the value 3.2 at F/Fo= 0.70. Although such
behavior of y cannot be excluded, it seems more
plausible to seek to resolve the discrepancy between
the calculated models and Fus by another means.
The data obtained by Fritz et al. are compatible

with a linear Us— Up relation which yields a bulk
sound speed about 4 percent larger than that calcu-
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Figure 4. Comparison of pressures from several models for
NaCl with those calculated from V.

The curve 5 is an estimated upper bound on the uncertainty in the pressure cal-

culated from V resulting from the uncertainties in the parameters used in the model.
Curves Q and are the portions of Fkh derived from the quadratic and linear fits to

the measured u^ — u,, relation for NaCl. Q' is derived from Q by omitting the 8 lowest
pressure data points from the — u,, relation.

lated from sonic measurements on NaCl. Hence,
Fritz et al. chose to fit their data with a quadratic

«.s~«p relation constrained to pass through the

measured bulk sound speed. Since the lowest pres-

sure data points appear to deviate from the fitted

Ug — Up relation, it is interesting to examine the

effect of these points on both the Hugoniot and on
Ftis. The omission of at least the four lowest data
points may be justified since Fritz et al. state that

these points were obtained by a different driver ar-

rangement (using impedance mismatch to produce
low shock pressures) and may have been influenced

by overtaking waves. When all 43 data points listed

by Fritz et al. (this volume; table 1) were fitted, the

Ug — Uj, relation was found to be: u.s = 3.403

+ 1.5492ttp—0.07833«^; while, when the eight lowest

pressure data points (those for which u,) < 0.70 km/s)
are omitted, the fitted relation becomes: Ms= 3.403

+ 1.5141u„—0.05738ap—where w., and u,, are in km/s,
and the bulk sound speed measured by Haussuhl
(1960) has been used to fix the a.s — Up relation at

Up— 0. Most of the change results from the omission
of the four lowest points, while omitting more than
eight points was found to have little effect on the

fitted Us — Up relation.

One effect of omitting the lowest points is to

reduce the values for Blf, and —BtoB"„ calculated

from the a, ~ Up relation. In particular, the value of

B'to is reduced from 5.47 to 5.33 when the eight

lowest points are excluded. The latter value is in

excellent agreement with the value of 5.35 meas-
ured by Bartels and Schuele (1965) but stiU larger

than Chang's (1965) value of 5.18. The value of
— BioB'i'o will also be reduced, although the lack of

measured values for the second pressure and tem-
perature derivatives of Bt for NaCl prevents calcu-

lations of the actual values. The omission of the

eight lowest data points was not found to have any
significant effect on the calculated temperature
along the Hugoniot, so that only the change in the
Hugoniot pressure need to considered in estimating
the effect of these points on Fhh. Reducing the pres-

sure calculated from Fhh by an amount equal to the

difference in the Hugoniot pressures for the two
Ug — Up relations, yields a revised model {Q') which
is compared with the others in figure 4. It can be
seen that, although the discrepancy between Fan
and III, V, and is reduced, most of the difference

remains when Fm is revised.

5. Conclusions

The discussions in both Weaver et al. (this volume)
and the present work serve to show the close simi-

larity among models III, V, and D^n. It seems that,

within the quasi-harmonic formulation of the equa-
tion of state for an ionic solid, the room-temperature
isotherm and the zero-pressure thermal expansion
curve for NaCl are insensitive to the form chosen for

the vibrational energy (Hildebrand or Mie-Gruneisen
approximation), the neglect or inclusion of the repul-

sion between second nearest neighbors, or the ex-

ponent {A) chosen for the volume dependence of the
Gruneisen parameter. However, use of these models
at elevated temperatures will require that the

parameter A be determined. Since A for III and v
satisfies thermodynamic constraints at P— Q, and
since these models yield good approximations to the

zero-pressure thermal expansion curve for NaCl,
they should be useful at high temperatures.

Models III, V, and Dhh yield pressures about 2.5

percent smaller than those calculated from Fbk

(see fig. 4). This difference cannot be attributed to

the procedure used to convert the Hugoniot to an
isotherm in Fob- Changing the form for the volume
dependence of the Gruneisen parameter in ill or v
so as to remove the difference leads to implausible

behavior of y and its derivative with volume. Hence,
either the form chosen for the lattice energy in ill,

V, and AiK or the Ug — Up data used in Fkh must be
responsible for much of the discrepancy between
these models. If the lattice energy is in error, V and

FijH can be brought into agreement by inclusion of a

term of gaussian form, suggesting that covalent

bonding may be involved. However, it seems pre-

mature to include such a term without additional

information.

Model FfiH yields the value 5/o = 5.45, while in,

V, and Z)(iH give values near 4.90. If the lowest pres-

sure Hugoniot data (eight points) are omitted, Fs8

yields fi/o = 5.33— in excellent agreement with the

value measured by Bartels and Schuele (1965), but

higher than that found by Chang (1965). Raising the

value of B't,, for III, V, and to either of the meas-

ured values probably will require modification of the

form used for the lattice energy, since unreasonable
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values of A are required to accomplish this with the

vibrational energy terms. An additional measure-

ment of fi/o for NaCl — either by sonic methods or

perhaps, by means of low-pressure shock-wave tech-

niques—would be most useful since a value near
that obtained by Bartels and Schuele would tend to

support FiiH, whereas a value near Chang's would
suggest that the P-V relation for NaCl lies between

Ffi8 and III, V, or Dun.

Additional determinations of the Us — u,, relation

for NaCl at particle velocities less than 1.0 km/s
would be useful to determine whether, as suggested

here and in Fritz et al. (this volume), the low-pres-

sure portion of Fan is influenced by errors in the

Hugoniot data. In addition, studies on porous
samples might help to determine the best choice

for the parameter A. Measurement of the volume
of NaCl by means of piston-cylinder techniques at

pressures in the 50 to 100 kbar pressure range may
be able to distinguish between Fes and III, V, and D«8.

In conclusion, I believe that it is premature to

attempt to choose one of these scales over the

others. Fortunately, the differences between them
are, at worst, comparable to the experimental un-

certainties in the application of the internal standard
method of pressure determination in x-ray diffrac-

tion studies at pressures above 100 kbar. For the

present, it would be desirable to report the volume
for the internal standard together with the pressure

based on any of these pressure scales.
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DISCUSSION

D. L. Decker {Brigham Young University, Provo,

Utah): The three equations, which are labeled III,

V, and Des, aU assumed a volume dependence of

the Gruneisen parameter to be of the form

y= y,{VIV„r. (1)

Weaver compared the various choices of A and the

models for these equations by comparing the volume
expansion versus temperature calculated from the

three equations. This is a very insensitive test for

the correct value of A. A far better approach is to

compare the calculated coefficient of linear thermal
expansion versus temperature against the experi-

mental results. (Enck and Dommel, 1965.) This is

done in figure 1 where one observes that even at

atmospheric pressure the value of ^ plays a definite

role in thermal expansion. A =0.1 gives the best

fit to the experimental thermal expansion. A — IA
gives the best fit of the calculated adiabatic bulk
modulus at atmospheric pressure to the measure-
ments of Slagle and McKinstry (1967). In the

modification referred to by Weaver, I used A = 0.93

which gives a reasonable fit to these two experi-

mental results simultaneously.

The direct value of calculated in Dks is 4.92,

which differs slightly from the interpolated value

I I I I I

0 200 400 600 800
T(°C)

FiCURE 1. Coefficient of linear thermal expansion versus tem-

perature at atmospheric pressure. The solid curves are calcu-

lated using various values for the parameter A. The darkened

area gives the range of the experimentally measured values.
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TABLE 1. Comparison of calculated pressure and
the pressure measured by shock techniques " along
the Hugoniot and the 293 K isotherm, ao is the

lattice parameter at 25 °C and atmospheric pres-

sure. Pressure in kbar.

/'(F^s)

Along the Hugoniot 293 K isotherm

alcia T(K) P(D„«) a/a<i P(D««)

25 0.9732 336 24.7 0.9721 24.6 ±1.1%
50 0.9546 386 49.0 0.9529 48.9 ±1.6%
75 0.9402 450 73.2 0.9387 73.0 ±1.9%
100 0.9284 527 97.6 0.9252 97.6 ±2.4%
150 0.9095 721 147.2 0.9050 146.6 ±2.9%
200 0.8945 960 198.3 0.8887 197.8 ±3.4%
250 0.8821 1,238 250.4 0.8746 252.2 ±3.7%

"Fritz, J. N., S. p. Marsh, W. J. Carter, and R. G. McQueen,

The Hugoniot equation of state of sodium chloride in the sodium

chloride structure, this volume.

* The uncertainty in D38 due to uncertainties in the experimen-

tal parameters used in the calculation. This does not include any

uncertainty due to the approximations in the theory.

given by Weaver, and is in excellent agreement

with III and v. There is also another experimental

measurement of which should be added to

Weaver's table 1 and included in the discussion.

This is the value 4.98 ±0.20 measured by Drabble

and Strathen (1967) which is smaller than the other

measurements but agrees very well with the theo-

retical values in ill, V, and D^h. There is another

recent measurement yielding 5[^=3.2 (Gluyas,

1967) but this is hkely too low. The measurements of

B'^ indicate that the theories are credible but

these measurements are not precise enough to

give any guidance as to how one might improve

the theory.

I agree that, to within the uncertainties involved,

the differences between F^h and III, V, or Dm are

not related to the procedure of converting from the

Hugoniot to the isotherm. This is borne out in

table 1 where the calculated and measured pres-

sures are compared along the Hugoniot as well

as along the room temperature isotherm. The final

column in the table gives the estimated accuracy
of the calculated equation of state as limited by
the uncertainties in the input parameters. These
uncertainties include a variation of A ranging from
0.7 to 1.4. It is concluded that all these theoretical

equations of state lie within the uncertainties

given and give equally reliable approximations to

the true pressure. Fr^, however, is definitely

different from Dgs but possibly not outside the

experimental error.
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J. N. Fritz {University of California, Los Alamos
New Mexico): We concur with the views and con-

clusions presented by Dr. Weaver. There now exists

further experimental justufication for casting out

the lowest pressure data points reported by us. New
experiments have indicated (at least for our four

lowest data points) the existence of a second com-

pression wave in the shims that close the gap over

the NaCl sample. This wave arises from the rare-

faction coming back through the shim and its inter-

action with the NaCl. The additional particle ve-

locity imparted to the shim results in an early gap

closure and a higher apparent shock velocity in the

NaCl sample. This effect becomes progressively less

important at high pressures, and vanishes alto-

gether above a certain critical pressure, and is

absent for the bulk of the data we reported. The net

effect of all this is well represented in Weaver's
Q

' curve in his fig. 4.
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