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Abstract

This volume is based on materials presented at the Third Materials Research

Symposium of the National Bureau of Standards, held November 3-6, 1969. It

provides a review of various experimental and theoretical techniques applied to the

study of the electronic density of states in solids and liquids. The topics covered

in a series of invited and contributed papers include theory of and experiments to

obtain the one-electron density-of-states; many-body effects; optical properties;

spectroscopic methods such as photoemission (x-ray and UV), ion neutralization,

and soft x-ray; obtaining the density-of-states at the Fermi level by specific heat,

magnetic susceptibility, and the Knight shift; the disordered systems of alloys,

liquids, dirty semiconductors, and amorphous systems; and superconducting tun-

neling and the application of density of states to properties such as phase stability.

An edited discussion follows many of the papers.

Key words: Band structure; disordered systems; electronic density of states; ion

neutralization; Knight shift; magnetic susceptibility; many-body effects; optical

properties; photoemission; soft x-ray; specific heat; superconductivity; transport

properties; tunneling.
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Foreword

"Electronic Density of States," the third annual symposium of the Institute for Materials

Research of the National Bureau of Standards, was held November 3-6, 1969, in the NBS labora-

tories at Gaithersburg, Maryland. More than 350 university, government, and industrial scientists

from both the United States and abroad attended in order to take advantage of this excellent

opportunity for dialogue between specialists of varying backgrounds and interests.

Proceedings of previous annual symposia sponsored by the Institute for Materials Research —
the First, "Trace Characterization — Chemical and Physical," (National Bureau of Standards

Monograph 100, price $4.50), and the Second, "Molecular Dynamics and Structure of SoUds,"

(National Bureau of Standards Special Publication 301, price $4.00) — can be purchased from the

Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

The purpose of these symposia is to encourage interdisciplinary cooperation by demonstrating

the correlation of various experimental and theoretical techniques, and to provide a forum for the

presentation and exchange of information, thereby leading to a more complete understanding of

the materials of interest among the participants.

A major goal of the "Electronic Density of States" Symposium was to present a readily avail-

able treatment of a field which up to now was dealt with in widely scattered parts. This book con-

tains the invited and contributed papers presented at the Symposium, together with the ensuing

discussions.

E. Passaglia

General Chairman of the Symposium

J. D. Hoffman, Director

Institute for Materials Research

National Bureau of Standards

iii



Preface

The subject matter of the third materials research symposium of the NBS Institute for Materials

Research, the "Electronic Density of States" forms a central motif for the measurement and under-

standing of a wide variety of properties of materials. The participants at the symposium were

reminded by the banquet speaker, the Honorable Lee A. DuBridge, Science Advisor to the Presi-

dent of the United States, that the search for the form of the electronic density of states in materials

is not a recent innovation. Dr. DuBridge was among those pioneers who performed such experi-

ments over three decades ago. Then the experimental methods were rather simpler than the

sophisticated techniques described in this book, and the theoretical machinery had not progressed

very far, awaiting today's high speed electronic computers. Nonetheless, the basic structure of

the electronic density of states was understood.

The progress in obtaining detailed approximations to the density-of-states has been such that

the time appeared ripe for a conference to review the accomplishments of the past and to assess

the opportunities for the future. For in the progress there has been one unfortunate tendency; the

success of independent methods of obtaining the same results has led to parallel, that is, non-

intersecting schools. The main purpose of this symposium was to demonstrate and re-emphasize

the correlation of the various experimental and theoretical results in obtaining a meaningful and

precise measurement of the electronic density of states in solids and liquids. This volume attests

to the fact that this goal was realized in some measure.

A second, and equally important, purpose of the symposium was to illustrate the possibility

of application of the electronic density of states to the understanding of the properties of materials.

This goal was only incompletely attained. There are several papers showing how the knowledge

of the electronic density of states can be applied. We hope this volume will stimulate many more

applications.

A special debt of gratitude is owed to the program committee for its selection of such out-

standing speakers and writers. Appreciation is also extended to the rapporteurs who provided such

faithful oral summaries, to the session chairmen especially for their ability to maximize the informa-

tion exchange and to encourage useful discussions, and to the NBS Office of Technical Information

and Publications for their splendid management of both the conference and this publication. I

want to add my personal thanks to the large number of NBS staff members and wives who labored

so hard to make the symposium a success including particularly those whose contributions remain

anonymous.

The invited papers were also published in the NBS Journal of Research, Volume 74A, Nos.

2-4 (1970).

L. H. Bennett
Editor
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E. Passaglia





The Band Structure Problem

J. M. Ziman

H. H. Wills Physics Laboratory, Bristol, BS 8, 1TL, England

The numerical solution of the Schriidinger equation lor an electron in a dense assembly of atoms

(i.e. a solid or liquid metal or semiconductor) has made great progress in the past ten years. This is not

merely, a consequence of greater computing power: we now have a much better grasp of the mathemati-

cal theory of such solutions.

By 1960 a number of practical methods had been devised for the computation of the electronic

structure of ordered crystals, but these lacked intuitive interpretation. The first advance was to rewrite

the OPW method in terms of pseudopotentials, thus making sense of the free-electron theory of metals.

This development has proved particularly valuable in semiquantitative and empirical investigations of

Fermi surfaces, transport properties, lattice dynamics, cohesion, etc., but we have had to wait until

recently for a rigorous analysis of the criteria for convergence of the various types of model potential or

pseudopotential that have been postulated.

The next step was to show that the KKR (Green function) method could also be expressed as a

pseudopotential, and then to demonstrate that this was also a form of APW expansion. The relative

computational power of these two methods can thus be analyzed, and questions answered concerning

the fulfillment of the empty lattice test, the apparent lack of uniqueness of the expansions, the ad-

vantages of "folding" matrix elements from distant points of the reciprocal lattice, and the introduction

of contributions from the interstitial potential.

At this stage, the connections between the band structure problem and the t-matrix theory of scat-

tering were uncovered, and d-bands were seen to arise as resonances of the muffin-tin wells. The KKR
matrix could now be rewritten as a mixture of pseudopotential and tight-binding elements, in harmony^

with the empirical model Hamiltonian representations of hybridised s-p and d-bands. This method not

only permits more rapid computations, but shows clearly how the width and position of such bands

should depend on the atomic potential.

Some problems still remain. For example, present techniques do not seem adequate for first-princi-

ples calculations on molecular crystals, where the anisotropy of the interstitial potential (i.e. easy chan-

nels along bonds, but high hills between layers or chains) is probably the dominant feature.

As for disordered systems — we know little for certain and nothing quantitatively. The linear chain

model has been fully studied but is quite irrelevant to the three-dimensional case. The present theoreti-

cal confusion is exemplified by the equiconcentration substitutional alloy in the tight-binding hmit;

some formulae give only one band, others allow two. Again, the very possibility of producing band gaps

by diffraction of free electrons in a topologically disordered system (e.g. amorphous Ge) has not been

demonstrated mathematically with any rigor.

Key words: APW; band structure; density of states; disordered systems; KKR; pseudopotential;

t-matrix; molecular crystals.

1 . Algebra vs. Arithmetic

Any scientific problem or puzzle can seem interest-

ing and significant if one gets sufficiently involved in it:

the difficulty sometimes is to persuade other people of

this importance. How should we defend our interest in

*An invited paper presented at the 3d Materials Research Symposium, Electronic Den-

sity of States, November 3-6, 1959, GaithersburK, Md.

the Electronic Density of States to an unprejudiced

tribunal?

Not, surely, in terms of immediate use, but of long

term understanding. Electrons being the glue of all

"materials", their states within condensed matter are

of fundamental importance. No quantitative estimate

of any property of a metal, semiconductor, insulator,

glass, Hquid, mineral, etc., can begin without informa-

tion about these states. In fact, we want all the wave

417-156 0 - 71 -2



functions of all the electrons outside of the closed

shells — a tall order, which cannot be fulfilled by direct

experiment. The next best thing is the energy spec-

trum, or "density of states," although as we shall learn

in the course of this symposium, that cannot always be

deduced unambiguously from observed phenomena.

Progress in this field therefore depends on sound

theoretical analysis of the hypothetical possibilities, as

well as careful experimental investigation of the facts.

The calculation of electronic band structure is thus the

central mathematical problem of solid state physics.

Every "exciting" topic or mysterious phenomenon— su-

perconductivity, the Kondo effect, ferromagnetism,

Fermi surfaces, the Gunn effect, Josephson tunnelling,

e^c., — eventually depends for its computable parame-

ters on this mundane task.

It is sometimes argued, by the deeply unimaginative

follower of scientifc fashion, that this problem has been

solved long ago, and can safely be left to the brute

strength of more and more powerful computers. This is

quite wrong; these elephants must be goaded and

guided by experienced mahouts, whose skill is to see

in advance the type of answer that is to be obtained,

and then to deploy the minimum of force to lever away

the obstacles. A ream of computer print-out is useless

unless it agrees so perfectly with experiment that we

need never look back and see why and how it went

wrong. Our task is to devise techniques for the theoreti-

cal mastery of ever more complex systems, which

requires at every stage that we know exactly what we

are doing, analyticaUy as well as numerically.

This is well illustrated by the recent history of our

subject. Let me express this in personal terms. A little

more than ten years ago, in gathering material for a

monograph [ 1] of which one chapter covered this topic,

I found that many techniques of band structure compu-

tation had been proposed and tried out, but that there

were very few cases where the results had been con-

firmed experimentally, or where they gave any insight

into the actual electronic structure of the materials. It

was simply not obvious, for example, that almost all the

calculated band structures for metals could have been

derived from the free electron system by perturbation

effects at the zone boundaries, because nobody had

programmed his computer to print out the data in that

form. We knew from the success of the free electron

model that this could not be very far from the truth,

but we had not the imagination to rewrite the algebra so

as to see how this must arise within whatever method

of calculation we might happen to use.

In the past decade, of course, computational

techniques have improved enormously in accuracy and

power, so that a whole body of expertise is now availa-

ble for application in any particular case [2] . Given the

exact one-electron potential of a crystalline soHd, we
can compute the band structure to almost any desired

degree of accuracy. But the trouble is that we do not al-

ways have this potential, complete with all the electron-

electron terms, spin-orbit interaction, core polarization,

exchange and correlation effects and so on, so that our

first-principles computations just miss the answers we
are seeking. Without an appeal to the basic algebraic

principles and governing features of the model, we then

flounder around, trying to adjust the parameters by trial

and error. Somebody else, using a different "method"
may get a different answer: is this due to deep discrep-

ancies in the fundamental assumptions, or to errors of

approximation, or just numerical mistakes?

2. Pseudism

Now recall how our minds have been liberated by the

pseudopotential concept. There is no need to explain

this to the present audience. Let us suppose that we
had tried to express the Bloch function of wave vector

k by a sum of simple plane waves

where g runs through the reciprocal lattice: we should
have to solve the infinite set of linear equations

{|k + g|2-^}a^+2^r(g-g')a^, = 0 (2)

where ?^(g— g') is a Fourier component of the periodic

potential in the lattice and ^ is the energy of the state

we are after. By rewriting the equations in terms of

orthogonalized plane waves we can show that the whole

problem is equivalent to solving a very similar set of

equations

{|k+gi2-r}/3,+ 5:^,r^^,/3^,= o, 0)

in which the pseudopotential components Tyg' are much
smaller than the original set ^(g— g'). Thus, the whole

problem is equivalent to the perturbation of free elec-

tron waves by a weak pseudopotential and can be

solved by elementary computation. For a perfect

Bravais lattice the value of f\g—g') or of Fyg' is a func-

tion only of the potential associated with a single atom

or ion — in the language of x-ray diffraction, it is just the

"atomic form factor" in the formula for diffraction by

an assembly of such objects at the appropriate Bragg

angle. The band structures of most ordinary metals,

and many semiconductors, can be read at a glance. Not

only does this provide us with an admirable



parametrization of Fermi surfaces, optical spectra,

etc., in perfect crystals, but can be extended to include

almost all the properties of thermally excited, impure

or disordered materials — electron-phonon interactions,

electrical conductivity of solid and liquid metals, lattice

dynamics, phase stability of alloys, etc. In moments of

enthusiasm [3,4,5] we may perhaps be forgiven for pre-

tending that all the problems of the theory of metals are

cured by a strong dose of "pseudism". It is a wonderful

model for zeroth order calculations, and the ideal do-it-

yourself kit for the enthusiastic amateur. It had the ef-

fect of turning band structure theory from a rule of

thumb technology into an elegant science.

Nevertheless, the pseudopotential method is not the

ultimate solution to the band structure problem. In the

first place, the program of replacing the true atomic

potential by a localized pseudopotential, independent

of energy and momentum, cannot be fulfilled exactly.

If, like Herman and his colleagues [6] one is trying to

make very accurate first principles calculations,

nothing is gained by rewriting the OPW equations in

this form. Indeed, there is a danger that the apparent

simplicity and rapid convergence of the pseudopoten-

tial equations may seduce us into further approxima-

tions which hide important effects; once having lost

touch with the exact equations, we slide easily into a

sloppy mess where qualitative and quantitative, first

principles and parametrized, features are inextricably

confused.

\ r"=

Av(r)

Figure 1. The true wave function i|/(r) in the true potential 9{r) is

replaced by the pseudo wave function <f>(r) in the pseudopoten-

tial w{r).

This type of confusion is compounded by the non-

uniqueness of pseudopotentials. The original algebraic

proof of this arbitrariness came as something of a sur-

prise, but it is really quite obvious. We are asked, in ef-

fect to construct a weak potential that will reproduce

the effect of a strong potential on an electron wave of

given energy impinging on the atom. The boundary con-

dition on the pseudo wave function— that it should

match the true wave function on the outside — is very

weak, and amounts to little more than fixing the value

of a few integrals over the pseudopotential. We know,

for example, that the s-wave scattering phase shift of

the true potential will be reproduced at low energies if

we choose the spatial average of the pseudopotential

correctly— and so on. Almost any function containing

a few adjustable parameters can be made to fit these

conditions. Of course the problem of finding a fixed

local pseudopotential that will imitate the effects of the

true potential over a wide range of energy is much more

difficult, and has not been solved, but that is not what

we are asked to do.

This arbitrariness was exploited to the full by Heine

and Abarenkov [7] who chose the most elementary

pseudopotential functions so as to simplify the rest of

the algebra. It was natural to reproduce the core poten-

tial of a metallic ion with a square well of depth Ai{^),

which could be continued outwards as a simple

Coulomb potential; or as a screened Coulomb potential,

according as one is thinking of an isolated free atom or

of a "pseudo atom" in a condensed phase (fig. 2). In

fact, the value of A;(^) for a given angular momentum
can then be estimated from the optical term values,

in the tradition of the quantum defect method of Kuhn
and Van Vleck.

Such a "model potential" is obviously good physics,

and can be more or less justified mathematically. It

copes very elegantly with one of the most difficult

aspects of the whole theory— the self-consistency

problem for the valence electrons — about which, for

reasons of brevity, 1 shall say very little here. According

to Shaw [8], the screening corrections can be calcu-

lated accurately, although it pays to eliminate the

discontinuity at the surface of the square well by treat-

o
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Figure 2a. Heine-Abarenkov pseudopotential: before screening.
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Figure 2b. After screening (from [5]).



ing the radius of this internal flat region as another ad-

justable parameter, depending also on energy and mo-

mentum (fig. 3).

Re Ri
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Figure 3. Shaw pseudopotential

.

Notice, however, the dangers of overelaboration. An
arbitrarily defined model potential in real space is valu-

able only in proportion to its algebraic or geometrical

simplicity, and will not bear much "improvement" in

the name of numerical precision or in order to get

better agreement with experiment. In the event the

electronic structure depends on the "form factor" — the

Fourier transform of the pseudopotential — which might

then just as well be derived directly from the true

potential by some more powerful method, or which we
could also represent by some simple empirical function

[9].

From a formal point of view, the arbitrariness of the

pseudopotential is certainly quite worrying. How can

the electronic band structure depend uniquely on the

periodic lattice potential if this arbitrary function can

be interposed in the calculation? Well now, suppose we
had tried to solve the equations (2) for the Bloch func-

tions expanded in simple plane waves. Since these are

an infinite set we should have had to proceed by suc-

cessive approximations, just as if we are trying to sum
a series term by term. But these equations really have

many solutions of much lower energy than the one we
are looking for, corresponding to all the narrow tight-

bound bands and an expansion in powers of 5* (g— g')

simply does not converge for energies in the valence

band. We are trying to sum the Born series for scatter-

ing by one of the atomic potentials, ignoring the fact

that it has numerous deep bound states. The pseu-

dopotential trick removes all the effects of these bound

states, and gives us a convergent series. It is rather like

wanting to evaluate l/(l+x) when x is about 10: a power

series in x will not converge, but we can easily con-

struct a new series in some new variable y = (x— a),

say, which can be made to converge in the region of in-

terest. The actual terms in the series will depend on the

value of a, which may be any arbitrary number larger

than about 5 — but the final answer will be independent

of this choice. Thus the final value of the energy as a

function of wave vector comes out the same, whatever

form of pseudopotential we introduce into the equa-

tions.

This suggests a possible criterion for a "best" pseu-

dopotential: choose the form of F^g- that causes the se-

ries expansion for the Bloch functions to converge most

rapidly. There is a rather elaborate mathematical

theory of the Born series, due to Weinberg, which can

be applied to this problem [10] and which does dis-

criminate in principle between various formulae. These
investigations are not, perhaps, of very great practical

value to the horny-handed programmer of computers,

but they are healthy in establishing the basic mathe-

matical foundations of the whole technique.

3. The Problem of Bound Bands

"The most serious limitation of the pseudopotential

concept is that it applies only to the so-called "simple"

metals— those without d-states in the valence band.

There is, of course, a long tradition of representing

such states by the tight binding method, as a linear

combination of atomic orbitals. The coefficients a/, in

such combinations then have to satisfy a set of linear

equations of the form

(g',, - a,.+ Xz.' VuA^) aw = 0, (4)

where the index L stands for different angular momen-
tum and magnetic quantum numbers; for example, the

five values of the component of angular momentum in

a band of d-states. The original bound state at is

broadened into a band by the various overlap integrals

f^i.L'ih), which can in principle be evaluated, although

in practice this is so complicated and inaccurate that

one treats them as adjustable parameters.

It used to be thought that all the states in metals

could be described in this way, by bringing in enough

different atomic orbitals. The picture of states over-

lapping and broadening to make nice valence and con-

duction bands illustrates one of the nursery rhymes of

our subject (fig. 4). Unfortunately, this is quite mislead-

ing. What happens is that as the atomic potentials

overlap, and the barriers fall between atomic cells,

most of these atomic bound-state orbitals disappear.

The ordinary s and p valence levels of the atoms vanish

into a nearly free-electron band which can only be

described if one includes 'propagating wave functions

from above the spectrum of bound states of the

separate ions or atoms.

4



Figure 4. Conventional picture of energy bands from overlap of

atomic orbitals.

We thus arrive at an impasse: we can describe ordi-

nary s — p bands in pseudopotential language, and

d-bands in tight binding language, but there seems no

-common tongue, even when these bands overlap and

hybridize as in the transition metals.

This difficulty never seems to have worried the ac-

tive calculators of band structures: they used two

techniques that gave good numerical results in all

cases — the augmented plane wave method and the

Green function method. One of the main developments

in band structure theory in the past 5 years has been to

show the mathematical connections between these use-

ful techniques and the concepts of pseudopotential and

tight-binding.

The idea of an augmented plane wave is quite simple.

At some given energy 8\ one solves the Schnidinger

equation inside a spherical potential well, of radius

Rs, say. The solution is a Hnear combination of products

or radial functions and spherical harmonics of different

values of angular momentum. Now determine these

coefficients so that this solution matches on to a plane

wave of wave vector k outside the sphere. This function

is still not an exact solution of the Schriidinger equa-

tion, and has a discontinuity of slope at R.s; but we can

build up our Bloch function by combining a set of

these with wave vectors k, k+ g, etc. just as in (1)

and then using the variational principle for the energy.

The coefficients satisfy a set of equations exactly like

the pseudopotential equations (3) so that we can find

(a)

L4P_
<i—

:

4s /
3d /

Fermi leve

Figure 5. (a) Conventional LCAO description of formation of metallic conduction band; (b) Description in terms of muffin-tin

potentials.



Figure 6. An augmented plane wave.

the energy ^ as a function of k by finding the roots of

the determinant in the usual way.

The actual formula for rgg-''^"' is rather elaborate, so

I will not write it down; it depends upon k, and also

upon ^ through the first derivatives of the radial solu-

tions of the Schrodinger equation at R,. At first sight

one might have thought that this could be interpreted

as an elaborate energyr and momentum-dependent form

factor, derivable from a pseudopotential; but this is not

the case. The difficulty is that V'^''^^' does not vanish in

the elementary case of an empty lattice— whereas we
should certainly expect a pseudopotential to be zero

when we remove the true potential to which it is sup-

posed to be equivalent. The connection with the tight

binding formalism appears even more obscure, even

though one can compute perfectly good d-bands by this

method.

In desperation, we turn to the KKR method of Korrin-

ga and of Kohn and Rostoker. This is called the Green

function method because it was originally derived in

that somewhat abstract language, but it really depends

upon a self-consistency argument; as the Bloch wave

proceeds through the crystal lattice, and encounters

the various atomic spheres, it suffers scattering or dif-

fraction—but this diffraction must be exactly what is

needed to reproduce the wave and keep it on the move
without loss. Again, I will spare you from the algebra,

and merely report that, as in the APW method, one

uses the radial solutions of the Schrodinger equation in

Figure 7. Scattered waves recombining as plane waves in KKR
method.

each atomic sphere and plane waves outside. The

result is yet another set of linear equations — this time

for the coefficients of the mixture of solutions of various

angular momentum in the sphere:

K{cot 7]l{K)-i}bL+I.L'BLL'{k, /<)6l' = 0. (5)

In this formula, the energy ^ is k^, and 17/ (k) is the

phase shift that would have been produced by the

atomic sphere in scattering a plane wave of this energy.

The "structure constants" Blz,'(K,k) depend on the

energy and momentum of the state being studied, but

otherwise can be laboriously computed from the geo-

metrical structure of the lattice.

This does not look very much like either of our previ-

ous formulae. Indeed, from the pseudopotential point

of view it looks quite wrong, for when we apply the

empty lattice test we make 17; tend to zero, which

causes cot r)i to blow up. In fact these equations need

to be turned upside down if we are to understand them

physically [11]. The algebra is again a bit heavy, and

depends essentially on some of the analytic properties

of the structure constants, each of which is in fact a

sum over reciprocal lattice vectors of products of spher-

ical harmonics and Bessel functions etc. The result is

a set of algebraic equations of the form of (3), with the

following expression for the "matrix elements of the

pseudopotential":

pKKR= .

ee'
(2/+1) tan 17

,
;,(|k-g|/?.)y,(|k-g'|/?.)

' \ii{KR.)V
Pi (cos 0gg'

)

where

cot 17/ = cot rj/-

JliKRs)

(6)

(7)
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In this formula, j; and rj/ are spherical Bessel functions,

and P; (cosdyy') is the ordinary Legendre polynomial for

the angle between vectors k— g and k— g'.

This formula is highly instructive, for a number of

reasons.

(i) Consider an empty lattice, for which 17/ = 0.

Then iq'i will also vanish, and with it tan 17'/.

Thus Ff;,,' is a genuine pseudopotential, which

goes to zero with the true potential.

(ii) When t// is small, the difference between, say

tan 7)' I and sin r}i exp {ir\i) is negligible. Ignor-

ing the ratios of spherical Bessel functions, Tyf,'

looks just like a scattering amplitude for the ef-

fect of our given potential on a single plane

wave. This is good physics: the crystal is made

up of an assembly of objects, each of which scat-

ters the Bloch wave into itself.

(iii) A strong potential, with many deep bound

states may, nevertheless, have quite small phase

shifts, so may behave like a weak pseudopoten-

tial. Thus, the principle of subtracting away the

divergences due to the bound states amounts to

simply representing each phase shift as the

smallest possible angle, modulo (tt). This is a

well-known property of phase shifts.

(iv) As shown by Lloyd [12] , this form of matrix

element can be derived from a simple model

potential. We merely put a delta function singu-

larity of potential over the surface of the sphere

of radius Rs, of strength to match the phase shift

rii outside, for each value of /.

(v) The connection with the APW formula was

discovered by Morgan [13]. Suppose we write

YAi'w
(0) for the values of the APW matrix ele-

ments in an empty lattice. Then

(8)

The APW matrix elements have these extra parts to

them, which do not really contribute to the band struc-

ture, and which do not vanish for any value of /, even

for empty space. One can even derive Y^''^ from a

model potential [12], but this is much more com-

plicated in form than the one for F'^'*'' and does not

vanish in empty space.

These properties of this new form of pseudopotential

suggest that it should be much easier than the APW
method to use in practice for simple metals, where we

need only introduce small phase shifts for a few values

of angular momenta. We may also use the computa-

tional device of "folding" the determinant for large

values of g— g', as if we were treating the diffraction

from distant zone boundaries as a small perturbation

[14]. This form is also said to be the best for conver-

gence of the Born series in the Weinberg sense [10],

whatever that may imply. But the whole question of the

relative computational efficiency of these methods and

their minor variants is quite complicated; all I would

say here is that the effort of comparing them is made
much more fruitful when we understand the basic

algebraic connections.

One further mystery needs clarification. Let us recall

that the basic algebraic equations (3) are for the pur-

pose of discovering the coefficients in some expan-

sion of the wave function in the appropriate plane

waves. Thus, if we had been using F""'" in these equa-

tions, we should have been writing

where c/)'^^"' (k+ g) is augmented plane wave having

the form exp {i(k+ g) • r} outside of the atomic sphere.

Now it turns out [13] that the KKR equations also sup-

pose that the wave function has been expanded in aug-

mented plane waves — but since the matrix elements (8)

are different in these equations the coefficients fiy will

be different. In other words, the Bloch function i/za,

which is supposed to be a unique solution to our band

structure problem, has two entirely different represen-

tations in terms of the same set of basic functions.

This is permissible, because in fact we are only com-

bining APW's to satisfy the Schriidinger equation

outside the spheres; the part within each sphere is au-

tomatically determined by its adjustment to the boun-

dary condition [15]. It is well known that a periodic

function defined over only part of the unit cell can be

.i. J

Muffin tin Interstitial

well
1 /

region

Figure 8. Pseudopotential for Vkkx,

Figure 9. Function defined as Bloch wave in interstitial region may
have arbitrary form in muffin-tin well.



represented by many Fourier expansions, depending on

what properties it is allowed to have in the excluded re-

gion. The APW and KKR expanstbns both represent i//a-

correctly— yet they are not made up of exactly the same

combinations of simple plane waves in the interstitial

regions. This point is perhaps worth emphasizing

because in either case we have a very explicit represen-

tation of the wave function of the Bloch state, in a form

that is quite convenient for calculations of electron-

electron interactions, self-consistency of potentials,

and optical, x-ray, photoemission, and positron-

annihilation matrix elements, etc.

It has sometimes been held against the APW & KKR
methods that they cari only be used for a "muffin-tin

potential"— i.e. for a periodic lattice of spherically

symmetric wells with "empty space" in between. But

this is not an absolute restriction. Suppose there really

is a significant nonconstant potential f^i in the intersti-

tial region. Then we can take this into account by ad-

ding to Fgg' the corresponding Fourier component

^i(g— g') of this potential— made explicit by being

given a constant value across the mouths of the muffin-

tin wells [16]. Thus, the level which I call the "muffin-

tin zero" [17] cuts across the equipotential surfaces,

producing muffin-tin wells with bound states, which are

eliminated by a pseudopotential device, and ranges of

weak potential hills through which the valence elec-

trons easily tunnel, and which can be represented

adequately by their Fourier transforms. If we go

further, and suppose that this interstitial potential had

been produced by the superposition of screened Cou-

lomb potentials, or charge clouds, carried by the in-

dividual atoms, then we can imagine 7-^ i
analysed into

these spherically symmetrical constituents arranged in

a lattice, and reassign these to the corresponding muf-

fin-tin wells, whose deep potentials have by now been

replaced by a model potential or pseudopotential. In

other words, we arrive back precisely at the sort of

analysis implied by figure 2 or figure 3: the effect of the

atoms on the electrons is equivalent to diffraction by an

Figure 10. Lattice potential (a) dissected into an interstitial

potential and muffin-tin wells.

(a)

(b)

(c)

(d)
1 1 1

1

Figure 11. Overlapping potentials (a), summed to make lattice

potential (b), dissected into an interstitial potential and muffin-

tin wells (c), redefined as pseudopotentials and overlapping ex-

ternal parts (d), and recombined as pseudo-atom potentials (e).

assembly of screened model potentials, whose outer

fields may, within reason, be superposed without hin-

drance. Thus we could use V'^'^ + ? as the form factor

in any calculation where model potentials are em-

ployed, e.g. resistivity of liquid metals, lattice dy-

namics, etc.

This final demonstration of the equivalence of all

three methods of band structure — OPW, APW and

KKR— in the case of simple metals and semiconductors

is very satisfactory, but I am now worried about one

general point. Suppose we have a very anisotropic lat-

tice—for example, the chain structure of Te, or the

layer structure of graphite. The separation of the poten-

tial into muffin-tin wells and an interstitial potential

must be done at a level below the lowest barriers

between the atoms — for example, at the level of the

potential half way between neighbors along a chain. But

this may leave very high hills in the interstitial potential

between the chains or layers — and the unwillingness of

the electron to tunnel through such hills may not be

well expressed by an expansion in plane waves in this

region. Perhaps this is not a serious point after all; but

I mention it to show that we are now gaining confidence

to attack the electronic structure of more complex

molecular crystals, a field which has up to now been

dominated by an army of theoretical chemists wielding

innumerable linear combinations of atomic orbitals —

a
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Figure 12. Potentials in a crystal of long chain molecules: electrons

occupy the valleys containing muffin-tin wells, separated by

high potential hills.

weapon whose fundamental efficacy I now take leave

to doubt.

4. Resonance Bands

What about d-bands, which can be computed numer-

ically by the APW and KKR method, but whose empiri-

cal description has usually been handled by the tight

binding formula? The answer to this question is per-

haps one of the most elegant results of the recent

theory. Let us proceed from, say (5), the original KKR
equations, which are not unlike the tight-binding equa-

tions (4), in that the index L, labelling the unknown

coefficients, refers to various spherical harmonics, or

components of angular momentum. We might ask, for

example, what would happen to the phase shift rj; (k) if

the energy happened to coincide exactly with a bound
state of the atomic potential. To answer this ques-

tion in general, we should need to study the theory of

scattering in the unphysical regions where ^ lies below

the muffin-tin zero, making k pure imaginary; but it

turns out that a factor like — ^ then appears in

cot TjiiK) just as we might expect. Now look at our

formula (6) for the KKR pseudopotential in the recip-

rocal lattice representation: if cot rj'i were to vanish,

at any energy, then tan r}'i would become infinite, and

everything would go wrong. Thus, if rj'/ should ever go

through 77/2 the band structure would be seriously

affected.

Now this is a familiar situation in the general theory

of scattering by atoms, molecules or nuclei: the phase

shift rji goes through 7r/2 in the positive energy region

whenever there is a "resonance" of angular momen-
tum. Thus, if the atomic or ionic potential has such a

resonance, this will give rise to significant band effects

in this neighborhood. There is a standard theory of such

phenomena, which tells us that we may write

tan 7]i

W
(9)

for the phase shift of a resonance of width W centered

on the energy Wi. It is easy to show, using (6), that this

has the effect of introducing a band of states of about

this width, at about this energy, in the nearly-free-

electron spectrum [11].

This argument can be carried further. Starting from

the KKR formulae and making systematic transforma-

tions and approximations, Heine [18] showed how one

could separate out a particular resonance term, and

keep this in the angular momentum representation,

with indices m,m' for the different components of /,

while reproducing a typical pseudopotential expression

in the reciprocal lattice representation g,g'. The matrix

of these equations can thus be written in the form

r-k2

Fgo

Foe . . .

g'-(k+g)'^_

-v*

W Vmm' • • •

(10)

9



k

Figure 13. Resonance band crossing nearlyfree band.

Without the submatrices y,,m etc., this would factorize

into a nearly-free-electron, pseudopotential matrix,

such as we might expect to find in a simple metal with

an s-p band, together with an ordinary tight binding

matrix, corresponding to the overlapping and mixing of

the 5 degenerate d-levels of the free atom. The coeffi-

cients jym etc. then describe the hybridization of these

two systems of states, which must necessarily occur

when these bands cross one another.

As it happens (but not accidentally!) an empirical

"model Hamiltonian" of just this form had already been

proposed for transition and noble metals [19] before it

was deduced directly from the KKR equations. We can

now, therefore, justify this type of expression in princi-

ple, and even calculate the various coefficients directly

from the atomic potential. In fact there are now several

different versions of these equations, of varying compu-

tability, convergence and analytical simplicity [20] but

all essentially equivalent of Heine's formula [5,18]

.

This reinterpretation of the tight-binding formalism,

and its unification with the other band structure

methods is very pleasing, but to my mind there is a

greater gain. Let us ask how resonances actually arise?

For an ordinary one-electron potential, we need to think

of the effects of the centrifugal barrier term l{l+l)lr^ in

the radial Schriidinger equation, which becomes impor-

tant for 1=2. A bound d-state is really constrained to

avoid the nucleus by this "potential". Now lower the or-

dinary potential at the outer edges of the atom: the ef-

fect may be to leave a potential dip within the core,

where a "virtual", long-lived level could still exist, even

though, eventually, it would have to decay as the elec-

tron tunnelled out into free space. Thus, the original

bound d-state has become a d-resonance; if the poten-

tial barrier is sufficiently thick, the resonance will be

sharp; it is not surprising that the language of over-

lapping bound states applies to the bands produced in

such cases.

From this picture we can learn a lot about the gross

features of the density of states of the metal. We see.

Figure 14. How a bound state of the atom becomes a resonance

level of the muffin-tin well (See [1 7]).

for example, that although the little peaks and dips of

the d-band can be derived from general tight-binding

theory, especially when aided by group theory, the

width of this complex of bands will depend chiefly on

the width of the resonance, which is governed in turn

by the potential barrier produced by the centrifugcd

force in the outer part of each muffin-tin well. Again,

the actual position of this band will be determined

mainly by the energy of the original d-state from which

it derives — and this is fixed on a scale relative to, say,

some deep state of the core. On this scale, however, the

position of the ordinary conduction band does not de-

pend on any atomic orbitals, but is determined mainly

by the muffin-tin zero, which can only be calculated

correctly by taking very careful account of screening,

correlation energy, overlaps of potential, etc. We thus

discover the reason for a well-known difficulty in band

structure calculations — that the width of the d-band,

and its position relative to the Fermi level is very sensi-

tive to the model, and cannot apparently be calculated

with the precision we would like.

Figure 15. How the position of the d-band within the conduction

band depends on the muffin-tin zero (See [1 7]).
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5. Some Thoughts in Disorder

Now that we understand the electronic structure of

crystalline solids so very well, we are tempted to attack

disordered materials — liquids, alloys, amorphous and

glassy substances. This campaign has been actively

waged now for about a decade, but I am not sure that it

has yielded many great prizes. The major difficulty, of

course, is that we must abandon Bloch's theorem,

which reduces the complexity of the problem in the per-

fect lattice by a divisor of the order of 10^^. Without

crystal momentum as a good quantum number, we

flounder about in a mixture of approximate algebra and

incomplete intuition, hoping to find some clearcut con-

cepts that will guide the interpretation of complicated

experiments on messy materials.

It is true that the spectrum of the disordered linear

array is now well understood [21] — and turns out to be

much more spiky than one would have guessed from

simple statistical considerations. Some of these fea-

tures may persist in three-dimensional systems, but un-

fortunately the mathematical methods used in the one-

dimensional case seem ill-adapted to generalization. In

particular, real solid systems have two properties that

cannot be simulated at all by a linear chain. In three

dimensions, a localized defect or impurity can be

avoided by a detour, so that it does not present an ab-

solute barrier to an incident particle or excitation. In

three dimensions, also we may have "structural dis-

order", which is no longer topologically equivalent to

any regular lattice, whereas in a linear chain the mere

succession of atoms prescribes an ordering, however

wildly we vary the properties of the individual potential

weUs.

Let me give two examples of simple cases where our

present theory is inadequate. It is obvious enough that

a disordered transition metal— e.g. liquid iron — should

have a d-band arising from the d-resonance, just as in

any crystalline phase of about the same atomic volume

[22]. The mathematical theory of such a band is still

rather uncertain [23] , but there is no doubt about the

physics. Suppose, however, that we make an alloy-

ed, of Ag and Au — whose constituent atoms have their

resonance at different energies; how far apart would

these energies need to be to give us two distinct d-

bands, and how would this depend on the relative con-

centrations and relative ordering of the constituents?

The model can be made extremely elementary— equal

numbers of A and B type atoms, with a single bound s-

state on each, substituted at random on a regular lattice

with a constant overlap integral V between nearest

neighbors. Some highly respected statistical theories

which rely upon defining an average propagator in

such a medium, seem to insist that the bands will be

drawn out into a continuous broad spectrum as the two

levels move apart; others would allow a split to occur

when the spacing is rather larger than the width of

either band [24]. I feel sure, myself, that the latter pre-

diction is correct, but we have still a great deal to do be-

fore we can calculate the width of each band the shape

of the tails into the gap, and the nature of any levels in

these regions. How far, for example, do these bands de-

pend upon the possibilities of "percolation", from one

atom to another of the same type, through large

distances — a property that depends peculiarly on the

dimensionality of the lattice and the relative concentra-

tions of the components?

Another contradiction between mathematical theo-

ries and physical intuition occurs in the case of
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Figure 16. Does a mixed crystal have one bound band or two?
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amorphous semiconductors. Let it be granted, for the

sake of argument, that amorphous Ge and Si are

"tetrahedral glasses"; each atom has four neighbors,

arranged more or less in the regular tetrahedral orienta-

tion, just as in the regular diamond lattice, but the con-

nectivity of the structure has been altered in a random

way, so that there is no long-range order. From the

point of view of a chemist, this system is a single

covalently bonded molecule: the saturation of all the

bonds implies that some energy of excitation is

required to create a carrier, so we should expect the

material to be a semiconductor. The substantial gap in

the optical spectrum of amorphous Ge supports this

reasonable interpretation. But suppose we were to treat

this by the conventional pseudopotential procedure, as-

signing a model potential to each atom and then calcu-

lating the diffraction effect on a free electron gas. In the

absence of long-range order, there would be no strong

Bragg reflections from well-defined lattice planes, and

thus no proper band gaps at the zone boundaries, etc.;

from the point of view of solid-state theory, this materi-

al ought to be a metal. This antinomy needs to be

resolved if we are to understand the theory of disor-

dered systems — or even the theory of the chemical

bond. There is some evidence — as yet merely qualita-

tive [27] — that the diffraction approach can be made
to give a band gap if one takes into account the higher-

order particle correlations. Thus, a glass differs from a

liquid in that three neighboring atoms may have a

strong tendency to be oriented so as to make a good

bond angle; this is a form of short-range order, implying

a strong constraint on the three-and four-body statisti-

cal distributions of atoms. At the same time, the rela-

tionship between the localized molecular orbitals of the

chemical bonds and the delocalized "Bloch states" of

the crystal or amorphous solid needs to be clarified

[28]. But these are only two of the numerous unsolved

problems in this field.

The above account of the band structure problem is

obviously very sketchy and incomplete — especially in

the total neglect of all electron-electron effects. We
shall obviously learn much more about it as this con-

ference proceeds. But I think it is good to look back and

see what progress has been achieved — and even better

to look forward to whole Alps of ignorance still to be

surmounted.
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Discussion on "The Band Structure Problem" by J. M, Ziman (University of Bristol)

F. Herman (IBM Res. Center, San Jose): I very much
enjoyed Prof. Ziman's remarks. I think that Prof.

Ziman's approach to the problem is in the spirit of

someone who tries to give a unified picture. I think,

though, it is unfair to neglect appropriate mention of all

the work that has been done numerically which in fact

had led and has been a stimulus for the very elegant

mathematical models that you describe. As long as the

subject of band structure remained in the hands of text

book writers the subject did not progress very far. But

as soon as computers became available, people rolled

up their sleeves and began to do actual calculations.

Enough empirical progress was made so that the

theoretically inchned could make their contributions

also. I think it is important to see both sides of the pic-

ture.

J. W. Gadzuk (NBS): Due to the role of inelastic elec-

tron processes at energies far (
~ 20-100 eV) above the

Fermi energy, (for instance as emphasized in current

LEED theories) what do you feel is the situation with re-

gards to a marriage of band structure and inelastic

many-body effects for the excited states of a solid.

J. M. Ziman (Univ. of Bristol): I don't know the

answer to this question.

P. M. Marcus (IBM Res. Center, New York): In reply

to the question as to the validity of band structure con-

cepts at energies above the Fermi energy, I can com-

ment that observation of LEED spectra indicates that

some remnant of a band structure persists to high ener-

gies. Reflection maxima in LEED spectra correspond

to energy ranges with lowered densities of propagating

states, as occur in band gaps, and such maxima are ob-

served hundreds of volts above the Fermi energy. The
effect of inelastic scattering of electrons is to wipe out

any sharp band edges so that the density of the cor-

responding propagating states does not drop sharply to

zero as it would at the Fermi energy (in fact, all states

now attenuate, but do so more strongly in the ranges of

the energy gaps) and the diffraction peaks become
lower, smoother and, eventually, more spread out in

energy.

A. J. Freeman (Northwestern Univ.): The complemen-
tary question, "How good are band calculations well

above the Fermi energy?" is one we can answer only

after we get more experiments such as those now being

performed in photoemission at high energies and we
have more optical experiments of that type.

A. R. Williams (IBM, New York): One of the great vir-

tues of the pseudopotential method is the ease with

which it permits one to go beyond Hartree-Fock theory

by means of the RPA dielectric function. Is there any

way of implementing the same or a similar screening

approximation in KKR and APW calculations?

J. M. Ziman (Univ. of Bristol): We can in fact carry

through a complete self consistent calculation. We
have the wave function explicitly and we can go

through the hard work and really slog it all out. I think

you have to do this anyway. The RPA dielectric func-

tion is only an approximation and there is no theorem

saying under what circumstances you may legitimately

divide the pseudopotential by the dielectric function

and say that is the screened core potential.

P. M. Marcus (IBM Res. Center, New York): How im-

portant is the interstitial potential between the spheres

in these methods?

J. M. Ziman (Univ. of Bristol): KKR and APW are

equivalent in being able to treat an interstitial potential.

All you need to do in either case is to add in the Fourier

components of the interstitial potential to the matrix

elements in the determinants. In metals the difference

between a muffin tin potential with a flat interstitial re-

gion and a real potential is probably very small because

they are relatively close packed. But in the case of the

semi-conductors you get very large interstitial poten-

tials indeed, with valleys along which electrons are es-

sentially free and hills in other directions in which the

electrons are bound. I am even prepared to conjecture

that these are characteristic features of semiconduc-

tors. The concept of chemical bonding implies a system

with certain directions in which the electrons can travel

freely without barriers, and other directions where they

have to go over or tunnel through the hills. I think we
must face this seriously and one of the problems that I

hinted at in my talk was how to deal with that case.

A. J. Freeman (Northwestern Univ.): D. D. Kelling, F.

M. Mueller and I have included the "warped muffin



tin" into our Symmeterized Relativistic APW Calcula-

tions (cf. Phys. Rev., Feb. 15, 1970). The formalism is

identical to the muffin tin case and is readily included

into the programs. From actual calculations on Pd, Pt

and bcc U we find that the effect of the warping is in-

deed small. We are carrying out calculations for inter-

metallic compounds where the warped muffin tin is

necessary in view of the inadequacies of using a muffin

tin potential.

J. M. Ziman (Univ. of Bristol): I have a student work-

ing on long chain hydrocarbon structures which you

can pack formally into a crystal. There this is the domi-

nant feature. The question is not whether you can do

the calculations by this method, which is exactly the

same as yours, but whether it is a reasonably conver-

gent method which does not seem to have been proved.

But we have to test it out and see.
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Electronic Density of States of Transition, Noble,

and Actinide Metals'^

F. M. Mueller

Argonne National Laboratory, Argonne, Illinois 60439

Key words: Electronic density of states: histoj;ram representations; QUAD scheme.

In this paper we consider recent calculations of the

electronic density of states of nickel [1], palladium

[2], platinum [3], scandium [4], iron [5], gold [6],

and plutonium [7], as produced by the QUAD [8]

scheme from histogram representations of width 0.001

Ry filled by sampling the appropriate Brillouin zone at

more than 1,000,000 random points. Comparisons with

the experimental data will be made where appropriate.
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Discussion on "Electronic Density of States of Transition, Noble, and Actinide Metals" by F. M.
Mueller (Argonne National Laboratory)

D. J. Fabian (Univ. of Strathclyde): Dr. Mueller, I

noticed that in your calculation for platinum you calcu-

lated for 5-states only; I believe you subtracted all the

a?-states leaving just a plane wave. You found a very

sharp peak at the bottom of the band. Do you really at-

tribute that totally to the 5-states?

F. M. Mueller (Argonne National Lab.): The term 5-

states is a misnomer. That was why I was trying to be

very careful in the beginning of the talk. This is the

lowest part of the plane wave structure. If you want an

s-like structure you have to include an additional pro-

jection operator to project out the jo part of the plane

wave. Here we have included all of the lowest part of

the plane wave and this, in terms of the interpolation

scheme we have used here, represents an orthogonal-

ized plane wave. So we have included a lot of structure

in there. That is the lowest basis function. I call it ans-

state because that is what it is called in the literature.

People understand that to be a plane-wave-like struc-

ture.

F. J. Blatt (Michigan State Univ.): In your calculation

of alpha iron, do you use the magnetization as a

parameter?

F. M. Mueller (Argonne National Lab.): The mag-

netization has been put in as a parameter. We have in-

cluded a sufficient amount of exchange to split the

bands up and down so that the resulting number dif-

ference in the up and down structure conforms to the

observed moment for iron.
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Electronic Densities of States and Optical Properties

of CsCI Type Intermetallic Compounds

J. W. D. Connolly and K. H. Johnson*

Advanced Materials Research and Development Laboratory, Pratt and Whitney Aircraft Corp.

Middletown, Connecticut 06457

The electronic band structures and densities of states have been calculated from first principles for

two intermetallic compounds havinji: the CsCl structure. The nonrelativistic augmented plane wave

method has been used in conjunction with an LCAO interpolation technique to determine the band

structure and density of states of /3'NiAl to a high degree of accuracy. These theoretical results are in

excellent agreement with the measured optical properties if k-conserving (direct) interband transitions

are assumed to be dominant. A similar study has been carried out for /?' AuZn, using as a basis the ener-

gy bands determined by the relativistic Korringa-Kohn-Rostoker method. The band profiles and density

of states of j8' AuZn are qualitatively similar to those of /3'NiAl. except for the appearance of relativistic

effects in the former alloy and differences in the relative positions and widths of the respective Au and

Ni (/-bands. The AuZn results have also been compared with the measured optical properties and are

again consistent with these measurements if direct interband transitions are assumed.

Key words: AuZn; CsCl-type intermetallic compounds; direct interband transitions; electronic den-

sity of states; NiAl; optical properties.

1 . Introduction

Theoretical energy-band calculations are not

restricted, in principle, to pure monatomic crystals. In

practice, however, comparatively few applications have

been made to compounds, except for ionic and

semiconducting cases. Aside from their intrinsic in-

terest, an understanding of the band structures and

Fermi surfaces of intermetallic compounds is of con-

siderable importance to the theories of alloy phase sta-

bility. Traditional research on alloy formation has been

primarily of two types: (1) studies which attempt to cor-

relate a large amount of data on interatomic spacings,

magnetic moments, etc., and (2) the determination of

crystal structures and the correlation of certain recur-

ring structures with electron concentration, i.e., the

Hume-Rothery [1] rules for electron compounds. The

theory of alloy phase stability formulated by Jones [2]

and Konobejewski [3] is based on a nearly-free elec-

tron approximation and on the thermodynamic princi-

ple of minimum free energy. Implicit in the theory is

the rigid-band approximation in which the density of

states remains fixed as the solute concentration is in-

creased. The newer theories, [4] while challenging the

rigid band model, are themselves still only semi-quan-

titative in nature. While conventional energy-band

techniques rigorously permit us to determine the elec-

tronic structure of ordered alloys only at exact

stoichiometric proportions, it is nevertheless true that

this information is quite important as a starting point

for understanding the properties of neighboring con-

centrations of disordered solid solution alloys.

As an illustration of these ideas, we may cite earlier

work on the IB-IIB ordered beta-phase compounds.

The results of detailed DHVA [5] and HFMR [6] mea-

surements together with fundamental KKR [7] and

APW [8] band calculations on this system have in-

dicated that the Fermi surface contacts the second Bril-

louin zone boundary. This is in accord with Jones' [2]

interpretation in which the beta phase occurs at an

electron-to-atom ratio of 1.5, when the Fermi sphere

touches the second zone boundary. Furthermore, the

use of the band profiles in conjunction with the com-

position dependence of the optical properties [9] has

given some support for rigid-band behavior within the

narrow composition limits of the ordered beta phase.

*Permanent Address; Center for Materials Science and Engineerings, Massachusetts In-

stitute of Technology.
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The problem of ultimately predicting the particular

structure an assembly of atoms will assume as a func-

tion of composition, pressure, volume, and temperature

is a very complex one. It has not been solved satisfac-

torily even for the simplest pure metals, although

recently there has been some quantitative research

directed to that end [10,11]. We feel that the accurate

determination of the Fermi surfaces and band struc-

tures of a number of specific intermetallic compounds

is an important step toward the goal of being able to

predict or explain features of the many alloy phase dia-

grams which have been established.

2. Results for AuZn

Like the other IB-IIB beta-phase alloys mentioned

above, the ordered beta phase of AuZn is stable over a

relatively narrow range of atomic composition bracket-

ing stoichiometric ^'AusoZn.-.o, which has the ideal

CsCl-type crystal structure. At room temperature, the

atomic composition limits are j8'Aa48Zn52 and

/3' Au52.oZn47..'s. the phase boundaries widening in the

usual fashion with increasing temperature [12]. Unlike

the alloys, /3'CuZn, /3'AgZn, and jS'AgCd, the present

system does not disorder appreciably below the melting

temperature.

For our band studies of ^' Au.->oZn5o, we have

generated a crystal potential in the familiar "muffin-

tin" representation from a superposition of neutral

atomic Au and Zn charge densities determined

originally by Liberman et al. [13]. The key physical

parameters, e.g., atomic configurations, lattice con-

stant, etc., adopted for this work are given in table 1.

Table 1. Constants used in the first principles calculations

AuZn
Atomic configuration (Au) : (5d)"'(6s)'

Atomic configuration (Zn) : (3d)"'{'ls)-

Lattice constant, a = 6.028 a.u."

Muffin-tin radius, R(Au) = 2.586 a.u.

Muffin-tin radius, R(Zn) = 2.586 a.u.

Zero of potential, V(i =— 0.866 Ry.

Maximum angular momentum used in KKR wave function

expansions, /max= 3

NiAl

Atomic configuration (Ni) : (3(i)^(45)'

Atomic configuration (Al) : (35)^(3p)'

Lattice constant, a = 5.442 a.u."

Muffin-tin radius, R(Ni)= 2.262 a.u.

Muffin-tin radius, R(A1) = 2.451 a.u.

Zero of potential, Vo =— L6000 Ry.

Maximum angular momentum used in APW wave function ex-

pansion, /max = 6

Maximum reciprocal vector magnitude used in APW wave func-

tion expansion, |k + k|n,ax = T~"
2a

»K. W. G. Wyckoff, Crystal Stmclures. (Interscience Publishers, New York, 1948).

There are two principal errors in a model crystal

potential of this type (relative to the exact Hartree-Fock

solution), namely the lack of self-consistency and the

over-estimation of the exchange effects through the use

of the Slater approximation [14,15]. Recent self-con-

sistent band calculations on transition [16] and noble

[17] metals have shown that these two errors tend to

cancel each other. In any case, for these metals and

their alloys, the errors have the primary effect of mere-

ly shifting in opposite energy directions the positions

and widths of the c?-bands with respect to the conduc-

tion bands. Thus we can be reasonably confident in

adopting the usual Slater-type exchange approxiination

in non-self-consistent band calculations on intermetal-

lics, provided that we allow ourselves the option of

using the c?-band position and width as empirically ad-

justable parameters.

We have used the symmetrized, relativistic KKR
method to determine the bands of yS'AuZn along five

principal symmetry directions of the simple cubic Bril-

louin zone. Five k-points were determined between the

end points of each of the symmetry directions, for a

total of 29 nonequivalent points in 1/48 of the zone. This

corresponds to 227 points in the full zone, weighting

each nonequivalent point properly. The results are il-

lustrated in figure 1. Double group notation has been

used to label the bands.

The broad conduction bands are intersected by a

relatively flat and narrow set of c?-bands arising prin-

cipally from the 5c? electrons of Au, but with considera-

ble conduction s- and p-state admixture. The Au d-

bands are approximately twice as wide as the Cu d-

bands are in ;S'CuZn [7,8] . Immediately below the bot-

tom of the conduction bands is an extremely narrow set

of (i-bands originating from the Zn Bd electrons. These

bands are so flat and narrow on the chosen energy scale

that we have merely indicated their boundaries by the

shaded profile in figure 1.

This same relativistic KKR program has been used

to determine the energy band structure of Au. The

width of the c?-bands and position below the Fermi level

are the same as for jS'AuZn. Also, the width is approxi-
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Figure 1. The electronic energy bands for j8' AuZn along the major symmetry directions, calculated by the relativist ic KKR method. Double
group notation has been used to label the bands.

mately twice that of the c?-bands in pure Cu. A previous

calculation for Au by Amar and Sominers [18] had the

f/-bands approximately 1 eV wider and 2 eV higher with

respect to the Fermi level. This appears to be due to the

use of a smaller exchange [2/3 of the Slater value] in a

non-self-consistent calculation, which would tend to put

the c?-bands too high (for the reasons mentioned above).

The dominant feature of the measured optical pro-

perties of /3'AuZn is a rapid rise in optical absorption in

the spectral range of 2 eV to 3 eV [9,19]. This absorp-

tion is responsible for the color of the alloy at room tem-

perature. The calculated Au c?-bands He between 2.5 eV
and 5.5 eV below the Fermi level. However, we must re-

gard the c?-band position and width as uncertain by as

much as ±0.5 eV, because of the aforementioned un-

certainties in the crystal potential. The present band
structure is therefore only semiquantitatively con-

sistent with the optical data, in that we would expect

electronic transitions between the top of the Au d-

bands and the Fermi level to contribute to the initial

rise in absorption. Another possible source of interband

transitions in this spectral range are the occupied con-

duction states at and immediately below the Fermi

level in the vicinity of the symmetry point M. Possible

k-conserving transitions from these states to unoccu-

pied levels just above the Fermi energy, along with the

computed energy gaps are Mj- (Ef) ^ M6+ = 2.0± 0.1

eV, and T-iEr) T^ — 1.6±0.1 eV. Similar interband

transitions seem to be responsible for the colors of the

other beta-brass-type alloys, jS'CuZn, ^'AgZn, and

jS'AgCd [7,9,19]. Additional optical absorption

between 4 and 5 eV and between 7.3 and 7.8 eV is very

likely due to transitions from the lower parts of the Au
<^-bands to the Fermi energy and to unoccupied conduc-

tion states, respectively. Finally, the calculated position

of the center of the Zn cZ-band is approximately 9.0 eV

below the Fermi energy. This agrees closely with a

measured peak in optical absorption at 8.6 eV.

3. Results for NiAl

Ordered beta-phase NiAl, like ^'AuZn, is a Hume-
Rothery [1] electron compound of the "3/2" type. In

comparison to )S' AuZn, however, the composition range

of phase stability is much wider for jS'NiAl. At room

temperature the composition limits are /3'Ni45Al55 and

/3'Ni«oAl4o [12].

We have used the symmetrized, nonrelativistic APW
method to determine the bands of stoichiometric

/B'NisoAlso- The crystal potential has been generated in

an identical fashion to that described above for

)8'AuZn, except for the use, in this case, of non-

relativistic Hartree-Fock-Slater atomic charge densities

calculated by Herman and Skillman [20]. The various

physical parameters adopted for this calculation are

given in table 1.
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The bands have been determined at 35 points lying

on a cubic grid of spacing 7r/4a in 1/48 of the Brillouin

zone. This grid is equivalent to 512 points in the full

zone. The band profiles are shown along six symmetry

directions in figures 2 and 3. Single-group notation is

used. The nonrelativistic KKR method has also been
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Figure 2. The electronic energy bands for /3'NiAl along the 1, T and M directions, calculated by the nonrelativistic APW method.

applied to ^'NiAl. The disagreement is never more
than a few^ thousandths of a Rydberg, supporting previ-

ous evidence that the KKR and APW techniques give

essentially identical results when applied to the same
material for identical crystal potentials.

The bands of /3'NiAl are qualitatively similar to those

described for ^' AuZn (in the nonrelativistic limit). They
are also qualitatively similar to the bands obtained

earlier for ^'CuZn [7,8] . The primary difference is the

closer proximity of the Ni (i-bands to the Fermi energy

(indicated in figs. 2 and 3 by the solid line), relative to

the locations of the c?-bands in /3'AuZn and ^'CuZn,
respectively. There is no narrow J-band below the con-

duction bands of /3' NiAl which is analogous to the Zn d-

band in )S' AuZn and /3'CuZn.

A density-of-states profile has also been generated

for ^'NiAl and is illustrated in figure 4. To obtain a suf-

ficiently reliable density of states, it has been necessary

to interpolate the energy bands to a much finer wave-

vector mesh in the Brillouin zone than the 512-point

mesh calculated directly with the APW method. This

has been accomplished by setting up an 18 X 18 LCAO
type Hamiltonian matrix, the elements of which have

been obtained by a least squares fitting to the APW
energies at symmetry points in the zone [21]. The in-

teraction integrals between atomic orbitals which occur

in this fitting scheme have been used as parameters in

the manner suggested originally by Slater and Koster

[22] . With this procedure, it has been possible to deter-

mine the bands of /3'NiAl on a mesh of 32,768 points in

the full zone (969 nonequivalent points). The resulting

histogram for the density of states has been smoothed

to eliminate statistical scatter.

The sharp peaks in the energy range between 0.5 and

0.7 Ry are due to the flat J-bands in this region. The

shoulder between .90 and .95 Ry is not due to <i-band
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Figure 3. The electronic energy bands for /S'NiAl along the Z , A, and A directions, calculated by the nonrelativistic APW method.
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Figure 4. The electronic densitv of states for jS'NiAl.

Ef indicates the Fermi level. and EJ are the Fermi levels for CoAl and FeAl respectively.
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structure, but is part of the unoccupied conduction

band associated with the critical points Mi and M-s (see

fig. 2).

In addition to the ordinary density of states, in order

to compare with optical experiments [23-26] two joint

density of states curves have been generated, assuming

direct and nondirect transitions. The results are shown

in figure 5. Under the assumptions of (1) a long relaxa-

tion time and (2) a constant matrix element, the imagi-

nary part of the dielectric function €2 is proportional to

z

13

12

11

10

9 -

8

7 -

6

Ni Al

Nj (E)/E^

NONDIRECT
DIRECT

fi' Ni Al

RKB

_L01234567 8

ENERGY (ev.)

Fli;iiRE 5. (a) The joint density of states for /3'NiAl divided by the

energy E squared, as calculated assuming indirect and direct

transitions, (b) The imaginary part of the dielectric function for
/3'NiAl.

JS indicates the data of Jacobi and Stalil [24] and RKB indicates the data of Reciitien,

Kaiinewurf. and Brittain [231.

the joint density divided by the square of the energy.

The e-i curves have been taken from the optical data of

Rechtien et al. [23] and Jacobi and Stahl [24] , and are

also shown in figure 5.

Because of the flatness of the f/-bands, the direct and

nondirect joint density of states curves are qualitatively

similar. However, the former has slightly more struc-

ture than the latter, since the nondirect transitions ef-

fectively average out any sharp peaks. There are three

main peaks in the direct curve, i.e., at 2.1, 4.0 and 5.9

eV, which compares well with the experimental struc-

ture in the dielectric function [23] at 2.5, 4.0 and 5.3

eV. The nondirect curve has structure at 1.9 and 4.2

eV, with no pronounced peak at a higher energy,

although there is a weak shoulder near 5.4 eV. In both

curves there is a shoulder near 3.0 eV. If we denote the

structure in the conduction bands between .90 and .95

Ry by C, the major peak in the c?-bands at .63 Ry by Di

and the two subsidiary peaks at .72 and .50-.54 Ry by

D2. andD.j, then the following assignments can be made:

(1) the structure in the joint density of states at 2.1 eV
is due to transitions from the Fermi level toC (E/-^ C),

(2) at 3.0 eV is D. C, (3) at 4.0 eV is £>, C, and (4) at

5.9 eV is D3 C. Thus, the structure in the e-z curve is

mostly a reflection of the structure in the<i-band densi-

ty of states.

It is also informative to study the variation of the

structure in the optical data as a function of composi-

tion, as shown in figure 6. According to the x-ray analy-

sis [27], on the Al rich side of stoichiometry, jS'NiAl

4.0

3.2 -

2.4 -

AT. % ALUMINUM

Figure 6. The variation of the structure in the €2 functionfor /i'NiA]

as a function of composition.

E] . E-s. and E:f are defined in figure 5. This fifiure is taiien from ref. [24|.

forms a defect structure in which there are vacancies

at the Ni sites, whereas on the other side of

stoichiometry, the Ni atoms occur substitutionally.

Using this information, it is a simple matter for the

24



energy band structure to explain the variation seen in

figure 6. A charge analysis of the LCAO eigenvectors

shows that the density of states at the Fermi level is al-

most entirely due to Al 5- and p-functions so that the

number of Al atoms determines the position of the

Fermi level. Therefore, on the Ni rich side of

stoichiometry, the number of Al atoms decreases and

the Fermi level is lowered, thereby increasing the ener-

gy of structure (1) while leaving that of (2), (3) and (4)

relatively constant. On the other side of stoichiometry,

however, the number of Al atoms stays constant and,

therefore, the optical structure stays constant. Both of

these conclusions are confirmed by the experimental

data [23,24].

Another confirmation of the band structure

presented here is given by a comparison of the optical

structure in CoAl with that of NiAl [25], Referring to

figure 4, since CoAl has one less electron, the Fermi

level for CoAl decreases from Ef to E/ which is below

Do so that structure (1) is eliminated. The experimental

data shows that this is indeed the case, i.e., the 2.5 eV
structure is missing in CoAl, whereas the 4.0 eV peak

is still present [25]

.
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Discussion on "Electronic Densities of States and Optical Properties of CsCI Type Intermetallic

Compounds" by J. W. D. Connolly (Pratt and Whitney Aircraft) and K. H. Johnson (MIT)

W. E. Spicer (Stanford Univ.): The rise in the density

of states above the Fermi level in the nickel-aluminum

alloys is quite striking. There is nothing like it in either

nickel or aluminum. I wonder if you can say anything

about the physics producing this? Is it mixing?

J. W. D. Connolly (Pratt and Whitney Aircraft): The
conduction electrons in that region are definitely com-

binations of 5 and p type electrons from aluminum.

W. E. Spicer (Stanford Univ.): But there is no way of

telling why it comes in the alloy and not the aluminum?

K. H. Johnson (MIT): The energy bands in that re-

gion are fairly densely clustered and to some degree

parallel. When that happens, the density of states can

become relatively large. You don't have this sort of

behavior in aluminum or nickel separately. As to why

they cluster, it seems to be true generally for the cesi-

um-chloride system of alloys we have studied. It

probably results more from the crystal symmetry than

from the component atoms.

J. W. D. Connolly (Pratt and Whitney Aircraft): You
might think of it in terms of the hybridization effect

tending to push the bands up.

S. J. Cho (National Res. Council): I did a similar cal-

culation for the ordered palladium-indium system

recently. I have found very similar structures near the

Fermi surface with one peak right above the Fermi

level from the hybridization as you said.
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The Calculation of Densities of States by LCAO
Interpolation of Energy Bands

with Application to Iron and Chromium

J. W. D. Connolly

Advanced Materials Research and Development Laboratory, Pratt and Whitney Aircraft Corp.

Middletown, Connecticut 06457

The LCAO (linear combination of atomic orbitals) interpolation method is described as a means of

calculating the density of states curves of a crystalline solid. This method is shown to be more

straightforward and convenient to use than the composite (LCAO-OPW) techniques that have recently

been proposed for transition metals. A computer program is described which determines the LCAO in-

teraction integrals from an ab initio energy band calculation by a nonlinear least squares procedure,

and then uses these parameters to sample the Brillouin zone at a large number of points in order to cal-

culate the density of states curve to a high degree of accuracy. As examples of the application of this

program, the results of calculations on chromium (in both the nonmagnetic and antiferromagnetic

states) and iron (nonmagnetic and ferromagnetic) are presented and compared with the recent

photoemission data.

Key words: Chromium; electronic density of states; interpolation method; iron; photoemission.

1 . Introduction

One of the primary computational difficulties in the

theoretical determination of the physical properties of

a crystalline solid is the evaluation of a three-dimen-

sional integral over a complicated (usually noiianalytic)

region of momentum space. A simple example of this

type of integral is found in the expression for the elec-

tronic density of states, as a function of the energy e,

where 7'„(e) is that region of k space where £',((k) < e.

£'n(k) is the energy of an electron in the n"' energy band.

The problem of calculating these integrals arises from

the nature of Eni^)- This is usually available only nu-

merically at a limited number of k points, as the results

of an ab initio energy band calculation, such as by the

APW or KKR methods. Since it is a costly procedure

for an ab initio calculation to provide enough EnCk)

values for an accurate numerical evaluation of the in-

tegral, a straightforward solution is to apply some inter-

polation scheme to obtain values of fnlk) between

those provided. A modified LCAO technique to do this

was suggested fifteen years ago by Slater and Koster

[1]. This method is sometimes called the "tight-bind-

ing approximation," although this is really a misnomer,

since the method is quite general and applicable to

many types of crystals having wide bands which would

not normally be considered to be tightly bound. For ex-

ample, it has been recently shown by Dresselhaus and

Dresselhaus [2] that this method is capable of satisfac-

tory results for germanium and silicon.

It was this belief that this method was applicable

only to narrow band electrons which led to the proposal

of using composite schemes [3,4] , in which the narrow

band electrons are treated by the LCAO approximation

and the wide band electrons by an OPW (orthogonal-

ized plane wave) or pseudopotential approximation.

These approaches were designed to handle the energy

bands of transition and noble elements and are able to

reproduce their energy band structure (as determined

by APW calculations) quite well. It is a purpose of this

paper to show that such composite schemes are un-

necessary for the description of the electronic structure

of transition and noble elements, and that the electrons

which are described by OPW wave functions in the

composite schemes can equally well be described by

combinations of s- and p-type atomic orbitals. The

LCAO method has the advantages of being more
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straightforward and convenient, without sacrificing

either speed or accuracy. The method has been applied

to the calculation of the density of states curves for

many materials. The resultant curves for two of them,

ferromagnetic iron and antiferromagnetic chromium,

are presented in section 4 of this paper.

2. The LCAO Method

In a periodic potential, the one-electron wave func-

tion can be expressed as a linear combination of Bloch

sums 4>„ of atomic orbitals;

1

amj;ni. The relationships between them can easily be

generated by applying operations of the symmetry

group to the integrand in definition (5). Therefore, the

higher the symmetry of the crystal, the less are the

number of integrals to be determined. For example,

there are only four independent (d-d) integrals between

nearest neighbors in the bcc structure. Tables of these

integrals can be found in reference 1.

The integrals are now treated as adjustable parame-

ters to be determined from an ab initio calculation by

a nonlinear least squares procedure described in the

next section.

^"(^^^'^)-^^^^'>i^-'Ri) a^-'R') (2) 3. Determination of the Interaction Integrals

where the sum is over the lattice vectors R in the

crystal, k is the reciprocal vector and r the position

vector. The functions i//„(r-R,) are atomic orbitals cen-

tered on an atom at lattice vector R,. In actual practice,

it is more convenient to use Lciwdin functions [5] as

basis functions. These are combinations of atomic or-

bitals which are orthogonal to each other.

(r- R ) 1
m.Rj

:r-Rj)iA-'l-)mj: ni (3)

where Amj,ni is the overlap matrix between the atomic

orbitals. This eliminates the need to consider the over-

lap integrals between basis functions, leaving to be

determined only the interaction integrals between the

Lowdin orbitals, i.e..

a. j cf)r;{r-Ri)Tct),n{v-Rj) (4)

where is the one-electron Hamiltonian operator. It

can then be shown [1] that the electron energies are

simply the eigenvalues €« of the matrix.

mj; ni (5)

where R, is the position of the atom in the unit cell on

which the orbital (/>„ is located. The size of the //-matrix

defined in (5) is determined by the number of atoms per

unit cell and the number of atomic orbitals taken on

each atomic site. For example, for a transition element

with one atom per unit cell, the electronic structure can

be adequately described by a 9 X 9 //-matrix, cor-

responding to one s function, three p functions and five

d functions. For a crystal with two atoms per unit cell

like antiferromagnetic chromium or hexagonal cobalt,

the size of the matrix is doubled to 18 X 18.

Symmetry further simplifies the problem by reducing

the number of independent interaction integrals.

In the least squares procedure, we are required to

minimize the following expression;

^ jdk[ejk: a)-E„ik)y (6)

where the Enik) are the calculated (ab initio) energy

band eigenvalues at wave vector k, as from an APW or

KKR calculation, and e„(k;a) are the eigenvalues of the

Hamiltonian matrix of eq (5) which is dependent on a

number M of parametric integrals a/, which we denote

by a vector a. The eigenvalues and the correspond-

ing eigenvectors c/"' satisfy the following equation:

2 //„(k, a)cy"(k) = e„(k, a) c<">(k) (7)
J

The minimization of expression (6) involves the solu-

tion of the set of equations;

2 [ f/li |e„(k, a)-^.(k)j^e„(K, a) = 0,

j = 2 . . . M (8)

These are a set of nonlinear equations which cannot

be solved directly, and must be solved by iteration. We
first assume an initial approximate set of parameters Oo

and that e„ is approximately linear in a. This leads to a

set of equations;

J^Aij {aj-a^>} = bi i=l,2 . . . M (9)

where

and

-1

f/lv

dai

de,,

da: =00

dk (EM
da. a=ao

Equation (9) is to be solved by matrix inversion for aj

until convergence is achieved.
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The key quantities in the definition of they4-matrix

and the 6-vector are the derivatives of the eigenvalues

e„ with respect to the parameters. These are con-

veniently found by an application of the Hellman-Feyn-

man theorem (see, for example, ref. 6), which in terms

of our variables takes the form;

da
I, III

dH.I III

da
roi)

(10)

In the LCAO method the quantities dHimldai are par-

ticularly simple, as can be seen from eq (5) and the

eigenvectors Cm*"' can be easily determined at the same

time as the Cn, so that there is no difficulty in evaluating

the required derivatives.

The Hellman-Feynman theorem is also a useful tool

for calculating derivatives with respect to other varia-

bles, such as the k-vector. The first derivative with

respect to k is the velocity function, and its zeros are

critical points which contribute discontinuities to the

energy derivative of the density of states curve. There

is also a formula for the second derivative [6] which

although not as simple as the first derivative is still easi-

ly evaluated in terms of derivatives of the Hamiltonian

matrix elements, i.e.,

^= y C\"^Di,„C\'l^

„ _ d-Hi,i, ^Ulin——— >
da~ ^ -— m'

da " da
(11)

where

M,r=Hlr-E8,r

and m"^ is the "partitioned inverse" ofM , in which the

n"' eigenvalue is partitioned off.

The second derivatives with respect to the k-vector

are of course important in the evaluation of the elec-

tronic effective masses.

A summary of the calculational procedure is as fol-

lows:

(1) The parametric interaction integrals are deter-

mined by the nonlinear least squares

procedure described by eqs (9), using the

derivatives defined by eq (10). The number of

ab initio eigenvalues ^^(((k) used in this

procedure is smaU, on the order of 10^.

(2) These integrals so determined are used in eq (5)

to define the //-matrix, which is diagonalized to

give the electronic energies e,i(k) at a large

number of k-points, typically on the order of

104-105.

(3) The density of states curve is calculated from

the energy function e„(k). This is done by

means of an ordinary histogram method.

Others have suggested the use of secondary in-

terpolation, either linear [7] or quadratic [8],

in order to save computational time. However,

the linear scheme does not give the correct

behavior around critical points and the

quadratic scheme is in error near band

crossings. The errors introduced may be small,

but they are as yet unknown, and until a more
satisfactory interpolation scheme is developed,

we feel that the histogram method is adequate

for our purposes, and not likely to introduce

any errors other than statistical.

4. Application of the Method to the Density of

States Curves for Chromium and Iron

As a first example, the method was applied to the Fe
energy bands calculated by Wood [9] , who used the

APW method. The calculation of the Fe density of

states based on these bands has been done before in

two different ways, (1) by Mattheiss [10] who used a

linear interpolation method and (2) by Cornwell et al.,

[11] who used the LCAO technique. The resultant

curve, shown on figure 1, is qualitatively similar to

these two previous calculations. The discrepancy

between the three calculations is never more than 10%
over the whole energy range, which gives us a reasona-

ble degree of confidence in the accuracy of the method.

The LCAO integrals calculated by the procedure

described in section 3 are close to those of reference 11.

The d integrals do not differ by more than .01 Ry. The

discrepancy in the s and p integrals is larger, between

.01 and .1 Ry, but these do not contribute strongly to

density of states, so that this discrepancy is not

reflected in a large discrepancy in the curve.

Taking a total of 84 eigenvalues from reference 9

(representing 6 energy bands on a cubic A:-point mesh
of spacing 7r/2a). a fit was obtained whose rms devia-

tion was approximately .003 Ry. For all the calculations

done on transition metals, the rms deviations were al-

ways of this order or better. (See table 1 for the details

of the other calculations.) The LCAO matrix for the bcc

structure is of order 9, since there are 5 c?-type basis

functions, 3 p-type and one s-type. All the interaction

integrals are included up to the second nearest

neighbors for a total of 27 different parameters. The

density of states curve is a smoothed histogram over

1,785 nonequivalent points in 1/48 of the Brillouin zone

(representing a cubic mesh of spacing 7r/8a, and
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Figure 1. The density of states for iron in its nonmagnetic state

derivedfrom the bands of ref. [9].

E:\, Ea, and E:, are the enerjjies where the integral of the density of states equals 3. 4. and 5

respectively. Ea is, therefore, the nonmagnetic Fermi level. £:i and Es would be the minority

and majority spin Fermi levels assuming a rigid band exchange splitting.

equivalent to 65,536 points in the entire zone).

A calculation was also done on ferromagnetic iron, in

which the same method with the same number of

parameters was appHed to the energy bands calculated

by the KKR method by Wakoh and Yamashita [12].

This calculation has also been done using the self-con-

sistent APW method [13] and found to give virtually

Table 1. Parameters of the LCAO Calculations

Fe Cr

Non-
magnetic

Ferromagnetic

Non-
magnetic

Antiferro-

magnetica

Number of

parameters 27 27 27 27 48
Number of energy

eigenvalues

used in least

squares fit 84 84 84 154 83
RMS deviation

(Ry.) 0.0034 0.0039 0.0014 0.0012 0.0009
Ab Initio bands

taken from Ref.

No 9 12 12 15 15

Density of states

at the

Fermi level:

Theoretical... 47 18 12 9
Experimental

(states/

atom— Ry.) "13.4 "9.2

"Quoted in Ref. 12.

» Quoted in Ref. 15.

identical results. The resultant density of states curve

is shown in figure 2. This was derived by doing two

separate calculations on the two spin bands of

reference 12, and superimposing the results. The densi-

ty of states curve shown here is quite different from

that shown in reference 12, due to the greater accuracy

used in this calculation.

The photoemission data for Fe [14], which should

provide a measure of the density of states curve, shows

three peaks at energies .5, 1.1 and 2.1 eV below the

Fermi level. These agree approximately with structure

in the theoretical curve at .5, 1.0, and 2.4 eV. However,

the other structure in the theoretical curve is not seen.

The discrepancies with the experimental data are most

likely due to a transition probability which is variable

over the Brillouin zone, which is neglected in the analy-

sis. This should be the subject of further investigation.

Also, the structure is much sharper in the theoretical

curve than in the experimental data, which may be a

reflection of the effect of lifetime broadening.

The second example of the application of the LCAO
method is a calculation on paramagnetic and antifer-

romagnetic chromium using the bands of Asano and

Yamashita [15]. The calculation has been repeated

using the self-consistent APW method [13] and found

to give virtually identical results. The paramagnetic

bands were fit using the 9x9 LCAO bcc matrix with

the 27 first and second nearest neighbor integrals. In
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Figure 2. The density of states for iron in its ferromagnetic state

derived by superimposing the two spin bands of ref. [12].

60

CHROMIUM
DENSITY OF STATES

(ELECTRONS/ ATOM-RY

Figure 3. The density ofstates for chromium in its nonmagnetic and
antiferromagnetic states, derivedfrom the bands of ref. [15].

Note ihe drop in the density of states at the Fermi level due to the formation of the

antiferromagnetic gap.

the antiferromagnetic state, the LCAO matrix doubles

in size to accommodate two atoms per unit cell, one of

each spin, the space group changes from body centered

to simple cubic, identical to that for CsCl, and the

number of integrals increases to 48. The two density of

states curves are shown in figure 3. The main feature to

be noted is that the two curves are virtually identical for

the occupied electronic states, with the exception of the

region immediately around the Fermi level. Because of

the formation of an antiferromagnetic energy gap in the
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bands on either side of the Fermi energy, the density of

states is decreased. In this case, the decrease amounts

to 25%. which compares favorably to the 30% decrease

seen in the experimental electronic specific heat coeffi-

cients (cf. table 1).

The optical density of states derived from the

photoemission data [14] shows structure at .4, 1.2 and

2.3 eV below the Fermi energy. The 0.4 eV structure is

not seen in the theoretical curve, but the two agree with

the theoretical peaks at 1.2 and 2.2 eV below the Fermi

energy. Again, the discrepancies between the experi-

mental and theoretical curves may be due to a variable

transition matrix and lifetime broadening effects.

5. Discussion and Comparison with Other
Interpolation Schemes

We have tried to show in the previous sections that

the LCAO interpolation scheme is a straightforward,

convenient and accurate way of representing an energy

band structure, even when the electrons are not tightly

bound.

Alternate methods, proposed by Hodges et al. [3]

and Mueller [4] , have assumed that the loosely bound

conduction electrons must be described by orthogonal-

ized plane wave (OPW's). This unnecessary dichotomy

leads to difficulties in the hybridization terms in the

Hamiltonian matrix. These terms involve interaction in-

tegrals between Bessel functions and atomic wave

functions, which are not easily parametrized in terms

of simple functions over k-space.

In reference 3, this difficulty was circumvented by

the use of drastic approximation, i.e., by assuming the

atomic o?-orbitals were extremely localized (effectively

6-functions) and that the one-electron potential was

constant over the unit cell. These two assumptions

have the effect of eliminating the integral, but both of

them are completely unjustifiable.

Another difficulty with the composite LCAO-OPW
schemes is the large number of OPW's required to

reproduce the conduction energy levels. Going just to

nearest neighbors in bcc reciprocal space involves tak-

ing 13 OPW's, i.e., corresponding to k= (0,0,0) and 12

vectors of the type (1,1,0). Hodges et al., [3] found that

for the fee structure (which is the only structure to

which the composite methods have as yet been applied)

it was necessary to go to second nearest neighbors in

reciprocal space, which would make a total of 15

OPW's. This difficulty, which would have required the

solution of an unreasonably large secular equation, was

avoided in reference 3 by using those 4 OPW's which

have the lowest free-electron energies. However, by

omitting the other 11, the symmetry of the eigenvectors

is destroyed, thereby lifting the degeneracy of some of

the eigenvalues. The introduction of arbitrary func-

tions, referred to as "symmetrizing factors," which

restores the proper degeneracies, still does not correct

the errors in the eigenvectors. This is not too serious for

the description of the energy band structure, but might

lead to errors in the calculation of properties which de-

pend on the wave functions. An accurate description of

the OPW wave functions would also require a

knowledge of the atomic core functions, since they

determine the orthogonalization terms in the OPW.
Besides being free of the above difficulties, the

LCAO method has other advantages: (1) It is easily ex-

tendable to more complicated structures with more

than one atom per unit cell. Examples are the applica-

tions of the method to the intermetallic alloy /3'NiAl

[ 16] and the transition metal oxide ReOs [ 17] ; (2) Spin-

orbit effects can be inserted in a simple way [18], by

the introduction of only one extra parameter for each

nonzero /-value used in the basis functions; (3) The
wave functions are easily calculable, since all that is

necessary are the atomic valence orbitals without any

need for the core functions, so that it may be possible

to determine properties like the charge density and

transition matrix elements from the results of an LCAO
calculation.
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Optical Properties of Aluminum
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The Ashcroft energy band model which provides a good representation of the measured Fermi sur-

face of aluminum is used here to calculate the optical properties. New reflectivity measurements in alu-

minum have also been carried out between 2/Lt and 3000 A using a sensitive continuous frequency

scanning technique. A Kramers-Kronig analysis of the reflectivity data yields a frequency dependent

dielectric constant which is essentially in agreement with the results of the calculation. This comparison

suggests that the optical properties of aluminum can be described in terms of a one-electron energy

band model.

Key words: Aluminum (Al); dielectric constant; electronic density of states; interband transition;

optical properties; pseudopotential.

The electronic properties of aluminum are in many
ways among the simplest and best understood of all the

common metals. In particular, the optical properties of

aluminum can be accounted for over a wide energy

range; below 0.1 eV the Drude theory works well [1]

while at higher energies interband transitions become
important. The dominant optical structure is a peak in

€2 at —1.5 eV [2] for which the various experiments

give values of 40 and higher [3] . Although the different

measurements disagree on the magnitude of this main

peak in e-i, they agree on the energy at which is a

maximum. The existence of optical structure at 1.5

eV is also consistent with the various band models for

aluminum [4,5]. In the intervening photon energy

range 0.1 < ho) < 1.5 eV, the Drude model has not been

found to fit the data unless a frequency dependent

relaxation time t is introduced [1]. There is, however,

no theoretical justification for this procedure.

This investigation was undertaken to determine

whether these optical properties could be correlated

with the extensive Fermi surface data that exist for alu-

minum [6,7] . The aim has been to achieve a quantita-

tive fit to the measured optical constants, and to better

understand the difficulties of the Drude model in the

*This work was sponsored by the Department of the Air Force.

**Also at Department of Electrical Engineering. MIT.

'"Present address: Victoria University of Wellington. Wellington. New Zealand.

0.1 to 1.5 eV range. Since there exist discrepancies in

the literature concerning the magnitude of the peak in

e-z at 1.5 eV and since the difficulty with the Drude

model could arise from low energy interband transi-

tions, careful reflectivity experiments were carried out,

from which a Kramers-Kronig analysis gave the dielec-

tric constant.

The correlation of these reflectivity measurements

with Fermi surface data was aided by the pseudopoten-

tial energy band model of Ashcroft [8] which provides

a good representation of the Fermi surface as deter-

mined by the de Haas-van Alphen measurements [7].

From the Ashcroft Hamiltonian, the frequency depend-

ent dielectric constant for aluminum was calculated

using /c-dependent momentum matrix elements and a

finite, though constant interband relaxation time. It has

been found that for other materials such as germanium

[9] and copper [10], phenomenological band models,

which provide good agreement with experimental data

at or near the Fermi energy, can be made to fit the

measured e(w) for photon energies within a few electron

volts of the Fermi level. Such studies have shown that

the dielectric constant is not only sensitive to the joint

density of states but also to the k dependence of the mo-

mentum matrix elements.

For aluminum, there are two factors which make
such a phenomenological approach attractive. First of

all, the major optical structure occurs for low photon
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energies, so that the bands near the Fermi surface are

emphasized. Secondly, the electronic properties of alu-

minum seem to be well described by a nearly free elec-

tron band model; thus, a pseudopotential calculation

requires a very small number of Fourier coefficients of

the potential, while the Fourier expansion method

requires only interacting 5 and p bands. For these

reasons, aluminum appears to be a good candidate for

studying the appHcability of a one-electron theory to the

optical properties of a metal.

In the present experimental study, greater sensitivity

was achieved by a continuous reflectivity scanning

technique [11], which provided reflectivity data

between 2ix and 3000 A. These data are very similar to

those analyzed by Ehrenreich, Philipp and Segall [2],

except for the presence of a reproducible shoulder at

1.2 eV and a small kink at 1.45 eV. A Kramers-Kronig

analysis of the reflectivity data was carried out to yield

the frequency dependent ei and €2 curves. To extend

the frequency range of the reflectivity data to be used

in the Kramers-Kronig analysis, the present measure-

ments were matched to Bennett's infrared data [1] and

to Madden's ultraviolet data [12]. Finally, the high

energy reflectivity slope beyond 20.0 eV was adjusted

to agree with ellipsometry measurements in the

neighborhood of 2.0 eV [13]. The results of the

Kramers-Kronig analysis of the reflectivity data are

shown for and o"i = €2^/477 as the uppermost solid

curves in figures 1 and 2 respectively. In order to dis-

play more clearly the low energy structure it is also con-

Energy (eV)

Figure 1. Imaginary part of the dielectric constant e> versus

photon energy.

The total curve is obtained from a Kramers-Kronig analysis of tiie experimental re-

flectivity. The Drude contribution using the parameters 1.5 and T„,.i = 0.5 x 10"'^ s

is shown as a dashed curve. The resultinj: subtraction gives an experimental interband
shown as a dark solid curve. The open circles represent a calculation of the interband

dielectric constant based on the Ashcroft model usinj: an interband t = 0.484 x lO"'-* s.

Energy (eV)

Fl(;URE 2. Real part of the conductivity at versus photon energy.

The decomposition of the total experimental (Ti curve into the Drude and interband con-
tributions is shown. The open circles represent the calculated interband conductivity and
all parameters are the same as for figure 1.

venient to plot the conductivity cti. To analyze these ex-

perimental results in terms of an energy band model, it

is necessary to separate the total e-i or cti into intraband

and interband contributions. The results of one such

separation are also shown in figures 1 and 2; it is this in-

terband contribution to €2 and cti that is directly com-

pared with a dielectric constant calculation. With the

intraband-interband separation shown here, the experi-

mental interband peak in e-z at 1.5 eV has a magnitude

of €2 =52.0.

An explicit dielectric constant calculation was car-

ried out using the RPA expression for e(w) [14]. Such

a calculation involves an integration over the Brillouin

zone of an expression depending on energy bands n and

n' separated at wave vector k by hwnn' and coupled

through a momentum matrix element Pnn'(k). Because

of the difficulty in evaluating this integral, the computa-

tion must be carried out on a high speed electronic

computer and a special effort must be made to calcu-

late the energy levels and momentum matrix ele-

ments Pnn'(k) as rapidly and accurately as possible.

This is efficiently accomplished through use of a model

Hamiltonian. The momentum matrix elements Pnn'(k)

at every point k are calculated by differentiation of the

model Hamiltonian with respect to k [9, 10]. Thus, the

matrix elements are consistent with the energy band

curvatures as expressed by the effective mass sum
rule.

In this work, two model Hamiltonians were em-

ployed: the Ashcroft pseudopotential model [8] and

the Fourier expansion band model [15]. The Ashcroft

model for aluminum is based on 4 plane waves, result-
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ing in a (4 X 4) model Hamiltonian involving 3 parame-

ters which are evaluated to yield an accurate represen-

tation of the Fermi surface data. The model Hamiltoni-

an for the Fourier expansion method also leads to a (4

X 4) matrix representing interacting 5 and p bands, and

the Fourier expansion coefficients here are evaluated

from Fermi surface data; these data are most con-

veniently expressed by the Ashcroft band model at the

Fermi level. Because of the free electron character of

the energy bands in aluminum, the Fourier expansion

is not as rapidly convergent as it is for germanium [9]

and copper [10] and third neighbor terms in the Fouri-

er expansion were retained in order to achieve a good

fit to the Fermi surface data. In the case of aluminum,

the major advantage of the Fourier expansion

technique in correlating very diverse experimental data

over a wide range of energy and wave vector is not sig-

nificantly exploited, since very scanty information is

available away from the Fermi surface. Thus, the Fouri-

er expansion technique mainly serves to re-express the

Ashcroft band model so as to treat the symmetry pro-

perties of the Hamiltonian more correctly without in-

creasing the size of the matrix. However, the proper use

of symmetry is important in calculating matrix ele-

ments at a high symmetry point such as W. Therefore,

it is of interest that the results of the dielectric constant

calculation based on the Fourier expanded model

Hamiltonian are in many ways similar to those based on

the Ashcroft model Hamiltonian. In fact, this calcula-

tion demonstrates that the Fourier expansion technique

can be made to work not only for energy bands amena-

ble to a tight binding treatment, but also to nearly free

electron energy bands.

Because of the greater simpHcity of the Ashcroft

Hamiltonian, a detailed comparison with the experi-

mental data is given in this paper only for e(co) based on

the Ashcroft model. In the case of the Ashcroft band

model, the momentum matrix elements were also cal-

culated by differentiating the model Hamiltonian. This

method is fully equivalent to taking matrix elements of

the momentum operator between the plane wave basis

states of the Ashcroft model. Because of the large con-

tributions to the calculated €2(0;) in the range 0.1 < hu>

< 0.6 eV (see the open circles in fig. 1), it was found

more convenient to deal with crio)) rather than with e(a»).

The results calculated for a\ are shown as open circles

in figure 2. A value o{Ti„terband =0.5 X 10"" sec for the

interband relaxation time yielded good agreement with

the observed magnitude of the peak in e-z (or cti) at 1.5

j

eV. This peak in €2 arises from interband transitions in

the vicinity of the KorU points in the Brillouin zone. In

addition, the calculation exhibits a low energy peak in

i

62 below 0.8 eV, arising from interband transitions oc-

curring near the W point. Because of the large uncer-

tainty in the experimental determination of the low

energy interband contribution to cti, it is difficult to

compare theory and experiment in this region. At

slightly higher energies, a small shoulder is found in the

experimental data at 1.2 eV and a small kink at 1.45 eV.

In this work, the Monte Carlo dielectric constant calcu-

lation was carried out to sufficient accuracy to show

that the Ashcroft band model yields no such structures

at 1.2 and 1.45 eV.

The intraband contributions to the conductivity were

treated in terms of the Drude model. A satisfactory

overall fit to both cri(a)) and cr2(a») could be accom-

plished using a constant relaxation time Topt in the

Drude model, with Topt in the range. Topi = (0.5 ± 0.2) X
10~" sec; the range of values found for the optical mass

was mop,= 1.5 ±0.15. An example of the kind of fit

that was obtained for the interband contribution to cti

and o"2 is shown in figures 2 and 3 respectively where

the curves are derived from the experimental data and

the open circles from the energy band model. Because

of the very large amplitude of the intraband contribu-

tion to (T2, it is not convenient to display both the in-

traband and interband contributions to cr2 in the same

figure. The quoted errors in Drude parameters reflect

the range over which the parameters could be varied

without significantly changing the quality of the fit to

the experimental data. The availability of more accu-

rate experimental data in the difficult energy range 0.1

< h(i) < 0.6 eV in aluminum would serve to narrow the

uncertainty in the Drude parameter determination. The

strong interband absorption that appears below 1 eV in

both figures 2 and 3 provides the reason for the failure

Energy (eV)

Figure 3. Imaginary part of the conductivity, a> versus photon
energy.

The curve represents the experimental interband contribution whereas the open circles

are corresponding calculated values. All parameters are the same as for figure 1.



of a model based only on intraband contributions to the

conductivity in this energy range.

The approximate equality of Topi and Tinterband is also

of interest. Since the dominant contributions to the in-

terband conductivity arise from states near the Fermi

surface, it is largely the same states which participate

in both the intraband and interband transitions. Thus,

a temperature dependence of both Topt and Tinterband

could be anticipated. It is also of interest to note that

Tinterband for aluminum is significantly smaller than the

corresponding room temperature value Tinterband = 2 X
10~'^ sec found for silicon and germanium through a

similar dielectric constant calculation [9]

.

One outstanding puzzle which remains in this analy-

sis is the value of rn*p( — 1.5. Because of the nearly free

electron character of the aluminum energy bands, a

value close to unity would be expected for nigpf. One
estimate for m*p, based on a one-electron energy band

model has been made by Ehrenreich et al. [2] yielding

m*pt= 1.2 as an upper limit. Even with this maximum
value of m*pt, it is not possible to satisfactorily repro-

duce the reflectivity data.

In summary, the 4 plane wave Ashcroft energy band

model for aluminum [8] has been used to calculate the

optical properties in the energy range below 5 eV. Our
recent experimental measurements are generally in

good agreement with the calculated dielectric constant

above 1.4 eV. In the range 0.8 < hco < 1.4 eV, structure

is found experimentally, but is not well correlated with

any structure in the theoretical curves. In the region

below 0.8 eV, the band model suggests additional struc-

ture; however, the experimental data are not suffi-

ciently accurate either to corroborate or to conflict with

predictions of the band model. The free electron or in-

traband contribution to e(a)) is satisfactorily fit by the

Drude expression with constant Topt over the entire

energy range of the dielectric constant calculation;

however, the optical mass parameter m*p, though con-

sistent with other experimental determinations [2] , is

too large to be understood simply on the basis of a

nearly free electron model.

On the basis of this dielectric constant calculation,

it is concluded that the optical properties of aluminum

can well be described by a one-electron energy band

model for this material.
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Discussion on "Optical Properties of Aluminum" by G. Dresselhaus, M. S. Dresselhaus (MIT), and
D. Beaglehole (University of Maryland)

K. H. Johnson (MIT): Is it possible that the anoma-

lous skin effect could account for some of the deviation

from the Drude theory in the low energy region?

M. Dresselhaus (MIT): If that were an important ef-

fect, one would also expect significant departures from

the Drude approach below 0.1 eV; but it works very

well there. It is only in the energy region about 0.5 eV,

where we think there is a low energy interband transi-

tion, that there is a breakdown in the Drude picture.

C. Powell (NBS): What is the reason for the difference

in the magnitude of the interband calculated here

and that calculated by Ehrenreich, Phillipp and Segall

in 1963?

M. Dresselhaus (MIT): For one thing, they used a dif-

ferent energy band model. But more important is the

second factor. In the early days, when people did this

type of calculation, they did not realize the importance

of included k dependence in the momentum matrix ele-

ments. In the meantime, we have learned how impor-

tant this k dependence is and it is very important for

aluminum. I should hke to add that when this calcula-

tion was first made by Ehrenreich et al. it represented

an important contribution to the understanding of the

optical properties of metals.

G. W. Pratt (MIT): I gather you choose the relaxation

time to give you a best fit to the data?

M. Dresselhaus (MIT): I assume that you are talking

about the interband relaxation time. The choice of that

quantity regulates the height of the peaks in the dielec-

tric constants. You have the liberty of adjusting one

relaxation time and with this value of the interband

relaxation time you have to fit all the peaks in both ei

and e-y. You don't have as much freedom as you might

think. The relaxation time is the only adjustable

parameter in the whole interband dielectric constant

calculation. All parameters of the Ashcroft band model

are determined by the Fermi surface data.

G. W. Pratt (MIT): How sensitive is it to the choice of

the relaxation time?

M. Dresselhaus (MIT): If you change the relaxation

time by an order of magnitude, you will perhaps change

the height of the peaks by about a factor of 2.

F. M. Mueller (Argonne National Lab.): You used the

local pseudopotential model of Ashcroft. How impor-

tant are non-local corrections far away from the Fermi

surface?

M. Dresselhaus (MIT): The dielectric constant of alu-

minum in this energy range is not very sensitive to ener-

gy bands far from the Fermi surface. Aluminum is one

material for which you would not expect large non-local

corrections to the pseudopotential near the Fermi sur-

face. I should also like to say that if you use a model

with the proper symmetry (which the Ashcroft model

does not display), the electron bands far from the Fermi

level change somewhat. However, with his values of the

parameters, the details of the energy bands at very high

energies do not seem to be very important for the deter-

mination of the optical constants in the energy range

below 5 eV. For aluminum, we find that if you have a

good fit to the Fermi surface you also get a good fit for

the optical data. I don't say that this will hold for all

other materials. Aluminum has this nice property and

for this reason is an attractive material for testing the

validity of a one-electron energy band model.

F. Herman (IBM): We did a self-consistent OPW cal-

culation for aluminum. We found remarkable agree-

ment with the Ashcroft model for the entire region

below the Fermi surface extending up to 5 volts above.

For energies greater than 5 volts above the Fermi sur-

face significant deviations arose.

M. Dresselhaus (MIT): At high energies, where E(k)

is free-electron Hke in the Ashcroft model, something

is clearly wrong. However, the optical constants below

5 eV are not sensitive to the energy bands far from the

Fermi energy.

J. R. Anderson (Univ. of Maryland): We have

completed dHvA experiments in aluminum primarily

on the 2nd band hole surface and determined slightly

different parameters for the Ashcroft modeL It appears

as if we can exhibit 1.2 eV and 1.4 eV structure from

our energy bands.

M. Dresselhaus (MIT): Our calculations showed little

or no theoretical evidence for such structure.





On the Optical Properties and the Density of

States in Arsenic"^
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The infrared reflectivity of arsenic is calculated and correlated with Fermi surface, magnetoreflec-

tion and optical reflectivity measurements. These infrared properties are strongly affected by interband

transitions across a small spin-orbit induced bandgap. The unusually large intensity of this interband

transition for light incident along the trigonal direction is due to the simultaneous occurrence of a strong

interband momentum matrix element and a large density of states. By considering this interband transi-

tion explicitly, good agreement is obtained with the experimental data of Riccius.

Key words: Arsenic (As); electronic density of states; Fermi surface; interband transition; Landau

levels; magneto-reflection.

The optical properties of arsenic have been studied

over most of the photon energy range 0.02< hoj < 21 eV

[ 1 ,2] . Because of the difficulty in preparing suitable op-

tical faces, these studies have been mainly confined to

measurements on the trigonal face, which is a cleavage

plane in arsenic. The experimental reflectivity results

for this face are plotted in figure 1 as a function of log

ifioi) in order to clearly illustrate the dominant structure

at infrared frequencies. The data in this figure below

0.32 eV were taken by Riccius [2] and above 1 eV by

Cardona and Greenaway [1]; data have not been re-

ported in the region 0.32 < ho} < 1 eV. These measure-

ments are also incomplete with respect to crystal orien-

tation because the rhombohedral symmetry of arsenic

results in anisotropic optical constants.

Although the optical measurements are still in-

complete, very extensive Fermi surface studies have

been carried out [3-10] . Based on these Fermi surface

measurements, Lin and Falicov have constructed an

energy band model [11] which characterizes the Fermi

surface very well. Their Fermi surface for the holes

around the T point in the Brillouin zone is shown in

figure 2. The large turnip-shaped pockets of this figure

*Work supported in part by the Advanced Research Projects Agency under Contract No.

SD-90.

**NSF graduate fellow.

***AIso at MIT Lincoln Laboratory, which is supported by the U.S. Air Force, and a visit-

ing scientist, Francis Bitter National Magnet Laboratory, Massachusetts Institute of
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Research.

are designated as the a carriers while the 6 necks con-

necting the turnips contain the y carriers. To achieve

the charge compensation characteristic of semimetals,

an equal number of fi carriers is required, and the Lin-

Falicov model places these in 3 nearly ellipsoidal

pockets about the L points of the Brillouin zone.

Additional information on the energy bands near the

Fermi surface has been obtained from a series of mag-

netoreflection experiments [12,13]. These experiments

1001
1

0.02 0.1 0.2 1 2 10

ENERGY (eV)

Figure 1. Reflectivity data of arsenic for the trigonal face versus

photon energy.

The data between 0.02 < ftm < 0.32 eV is from Riccius (ref [2|) and between \ < Hio < \0
eV from Cardona and Greenaway (ref. [1]).
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indicate that spin-orbit interaction might be important

in understanding certain features of the infrared pro-

perties of arsenic [13]. In the magnetoreflection ex-

periment, interband Landau level transitions are ob-

served across a small bandgap of 0.172 eV attributed to

the spin-orbit spHtting of two bands which could other-

wise cross. The symmetry properties of these transi-

tions together with the values of the observed bandgap

and cyclotron effective mass (H
| |

trigonal direction)

all contribute to the identification of this series of

interband Landau level transitions with the y carriers

of the hole Fermi surface. The energy extrema for both

the conduction and valence bands are along the Q or

binary axis, but close to the T point [11]. Because of

the low symmetry on the Q axis, the energy extrema for

these strongly coupled bands need not occur at the

same Q point as is indicated on figure 3. The magneto-

reflection data associated with this small bandgap are

well explained by the Lax two-band model [13].

Since the dominant structure in the optical reflectivi-

ty of figure 1 occurs at —0.18 eV, it is of interest to seek

a connection between this edge and the interband

transition across the 0.172 eV bandgap. The present

work explores this connection. For many small gap

materials (e.g. InSb, Ge), the frequency dependent

dielectric constant is only slightly affected by interband

transitions across bandgaps in the infrared. The reason

for this is closely related to the small density of states

usually associated with these small bandgaps. In

semiconductors like InSb and Ge, the strong interband

coupling and small bandgaps result in small effective

masses (large band curvatures) and a small density of

BISECTRIX
TU AXIS

Figure 2. Hole Fermi surface of arsenic as determined by Lin and
Faticov (ref [11\).

States. Thus, only a small volume of the Brillouin zone

is involved in these low photon energy transitions and

only a small effect on the optical properties results. At

larger photon energies, large volumes of the Brillouin

zone participate in interband transitions and these in-

terband transitions have a much larger influence on the

optical properties.

The situation in arsenic is somewhat different from

that in most small bandgap materials. Magnetoreflec-

tion measurements show that strong band coupling oc-

curs for momentum matrix elements in the binary-

bisectrix plane; however, these two bands are expected

to be only weakly coupled through momentum matrix

elements in the trigonal direction [14]. The strong

coupling in the binary-bisectrix plane produces a large

oscillator strength for interband transitions when light

is incident along the trigonal direction. On the other

hand, the weak coupling in the trigonal direction results

in large effective mass components ruzz for both the

valence and conduction bands. In fact, instead of

repelling one another, the energy bands in this

direction are nearly parallel for a small range of k

values around the critical point. It is this feature of the

energy bands that gives rise to a large increase in the

joint density of states and makes arsenic different from

other small gap materials. The unusual occurrence of

both a large oscillator strength and a large density of

states serves to emphasize this low frequency inter-

band transition in the optical properties of arsenic.

The joint density of states is thus of great importance

in determining the magnitude of interband contribu-

tions to the dielectric constant. Fermi surface measure-

ments provide some information on the density of

states for the occupied bands. The electrons which

have a total concentration of 2.1 X 10 ^•'/cm^ are con-

tained in 3 nearly ellipsoidal surfaces around the L
points in the Brillouin zone. Using the cyclotron effec-

NO SPIN SPLITTING

>-

UJ

HOLES

SPIN SPLITTING

>-

tr.

0.2 —

W

(Q) (b)

Figure 3. Energy bands along the binary or Q-axis near the y
carriers.

(a) The energy bands calculated by Lin and Falicov. not including the spin-orbit inter-

action, (b) An enlarged view of the region near the accidental degeneracy with spin-orbit

coupling taken into account.
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Figure 4. Density of states for the various carrier pockets versus

energy measured from the Fermi level.

Curve a is for the electrons at the L points, curve b is for the a hole pocltets and curve c

is for the hyperboloidal y necks.

tive mass parameters obtained from de Haas-van

Alphen data [8], and assuming an ellipsoidal Fermi

surface, the density of states curve shown in figure 4 is

obtained. A qualitative density of states curve for the

holes can be constructed by approximating the turnip-

shaped hole constant energy surfaces by ellipsoids. The

best ellipsoidal fit is determined from the de Haas-van

Alphen data by taking the best extrapolated values of

the extremal periods as the principal ellipsoids, even

though the former are not 90° apart [8]. Finally, the

density of states for the minority holes, the y carriers,

can be found by approximating the constant energy sur-

faces by hyperboloids as shown in figure 2. The boun-

dary between the a and y carriers provides a cutoff for

the y-carrier hyperboloids. An explicit value of kz for

this cutoff is found from the pseudopotential calcula-

tion of Lin-Falicov [11]. The density of states curves

for the hole carriers are shown in figure 4. Although the

number of carriers in the y necks is only ~ 2% of the

total hole carrier concentration of 2.1 X 10 -"/cm'^ their

relatively large density of states near the Fermi surface

results in a greater importance than their relatively

small numbers would seem to indicate.

In the present work an attempt is made to correlate

the infrared measurements with the Fermi surface

data, the magnetoreflection data and the optical data

beyond 1 eV. The frequency-dependent dielectric con-

stant is calculated using the expression of Ehrenreich

and Cohen [15]

:

Ca/j ^core ~^ ^intraband ^interband

where

^interband

e \-

TT

X
H, II'

Tiiii'

OJ+W,„i'-\
Tiiii'

(1)

In this expression /n(k) is the Fermi distribution func-

tion, T„n' is an interband relaxation time, and the oscilla-

tor strength fapn'n is related to the momentum matrix

elements Pnn'' coupling bands n and n' by

fafin'n

2

mohcDii'i,

Pa pii
* II ' IJ * nil'

where hutnn' is the energy separation between bands n

and n' . The integration is over all k states in the Bril-

louin zone; because of the presence of the Fermi func-

tion, the summation over band indices n,n' involve only

transitions from occupied to unoccupied states. The in-

traband contribution emtrabnnd is treated by a Drude

model for the a, /3 and y carriers. An explicit evaluation

of the intraband term then depends on the various car-

rier densities, optical effective masses, relaxation times

and core dielectric constant. Most of these quantities

are known from other measurements on arsenic.

As a first approximation to the arsenic infrared

reflectivity calculation, all interband transitions were
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treated as frequency independent through a core

dielectric constant. This would be a good approxima-

tion if all the important interband transitions occurred

at photon energies much greater than 0.32 eV, the

upper limit of the available infrared data. With this very

simple treatment, the core dielectric constant is esti-

mated from the optical reflectivity at high energies.

From the reflectivity data of figure 1, we would esti-

mate Ccore to be in the range 60 < Ccore < 80. The effec-

tive mass tensors and carrier densities for the various

carriers are known from Fermi surface data [8] . Thus,

only the relaxation times in the Drude theory remained

to be determined. These intraband relaxation times

were found by fitting to the reflectivity data below 0.08

eV. Using these parameters in the Drude model, the

reflectivity curve (b) of figure 5 is calculated which is in

rough agreement with the infrared measurements of

Riccius [2]

.

A somewhat better fit to the experimental data is ob-

tained by carrying out a least squares fit to the parame-

ters of the Drude model and the results are shown as

curve (c) in figure 5. The relaxation times used for the

a, /3 and y carriers in constructing this figure are Ta =
1 X 10-14 and Tp=2x IQ-^-* sec with Ty= Ta. The fit

is not significantly altered by also constraining Ta to

equal Tp. These relaxation times are consistent with

room temperature values for t found in other materials.

Because of the high reactivity of the arsenic surfaces,

the possibility of the formation of an oxide layer was

considered. A slightly better fit to the reflectivity data,

particularly in the low photon energy range, was found

for an oxide layer reducing the reflectivity by 2.5%, and

100
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Figure 5. Reflectivity of arsenic for a trigonal face versus photon
energy.

Curve (a) is the line drawn through the data of Riccius (ref. [2]). Curves (b), (c), and
(d) show the calculated reflectivity including only the Drude and core contributions to the

dielectric constant for several values of €^n.

the three calculated curves in figure 5 include this

2.5% reduction.

The most sensitive parameter in the least squares

fitting procedure used to construct figure 5 is the core

dielectric constant. It determines the photon energy of

the reflectivity minimum and the magnitude of the

reflectivity above —0.25 eV. The best least squares fit

was found for a core dielectric constant of 100, which

is the value used in curve (c) of figure 5. On the other

hand, to yield a reflectivity minimum at ho) = 0.19 eV a

value of ecore— 110 is required and the resulting reflec-

tivity curve is shown in figure 5 as curve (d). These

values of ecore are considerably larger than that sug-

gested by the high frequency reflectivity data and in-

dicate that other interband transitions have been

neglected that are, in fact, important at infrared

frequencies. Furthermore, the three calculated curves

of figure 5 show that by a judicious choice of ecore it is

possible to fit some particular feature of the reflectivity

but that no values of the Drude parameters can be

found to fit the shape of the reflectivity curve near the

reflectivity minimum. It is clear from this figure that

the interband transition across the spin-orbit induced

bandgap at the Q point must be included explicitly in

order to yield the sharp structure observed experimen-

tally.

In order to calculate emerband associated with the in-

terband transitions across the small bandgap at Q,

several additional parameters must be evaluated; they

are the energy bandgap Eg, the interband momentum
matrix element coupling these bands Pnn', the unoccu-

pied conduction band effective mass tensor, the Fermi

energy and the interband relaxation time Tmerband-

Many of these parameters are either known from other

measurements or can at least be estimated. For exam-

ple, the magnetoreflection experiments not only pro-

vide a value for Eg = 0.172 eV, but also show that the

two strongly coupled bands at the Q point can be

described by a Lax model [13]. Therefore, the inter-

band momentum matrix elements of eq (1) and the ef-

fective mass tensor for the unoccupied conduction

band can be found from Fermi surface effective mass

data. This type of approach is expected to yield reliable

values for the large momentum matrix elements and for

the light mass components of the unoccupied band.

However, only estimates can be obtained for the small

momentum matrix elements and the heavy mass com-

ponents [16].

The effective mass tensor for the valence band is

known from Fermi surface measurements [8]. This

tensor, or more conveniently the valence band inverse

effective mass tensor a[ , can be related to the momen-
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turn matrix elements with Q point symmetry through

the two-band model, yielding

XX = l-2|Pf-, ,„
I Cl , VI (2 a)

cxF..
yy ^ ^

1 cl , r2 1
'IrtlnEn (2b)

— 1 _ 9 1^ ^
1
' cl , v2

(2c)

a"yz -2 Re (P,^,,,, (2d)

a'' = «x. = 0 (2e)

in which the momentum matrix elements employ a su-

perscript to denote the direction of the momentum
operator, subscripts v and c to denote valence and con-

duction bands, respectively, along with indices 1 and 2

to denote the two spin states. In these equations, all

quantities are evaluated at the band extrema and thex,

y and z directions correspond to the binary, bisectrix

and trigonal axes, respectively. Since both and

depend upon the same matrix element P^,^
ci

'^^^d

similarly for a^y and a^^ which depend on P^i,„2)i an

experimental determination of the effective mass ten-

sor of the occupied valence band tests the validity of

the two-band model in both the strong and weak

coupling directions. Fermi surface data for the y necks

[8] indicate that the Lax two-band model is applicable

in both strong and weak coupling directions.

From eqs (2), the momentum matrix elements about

the Q point are evaluated. However, completely

analogous equations can be written for the conduction

band inverse effective mass parameters under the

transformation c <^ v, and the — sign in eqs (2a), (2b)

and (2c) into a+ sign. In this way, all momentum matrix

elements as well as the conduction band effective mass

tensor can be estimated. Explicit values used for these

momentum matrix elements are |P^i _(,i
= 10 77Zo£'g,

lPJ'i,.2 1- = 30 mo£y, and | P/1,,2 i"
= 0.8 mjy.

The evaluation of the dielectric constant involves an

integration over k space. This integration was carried

out in the volume of k space for which the two-band

model is valid. Contributions from other regions of the

Brillouin zone are treated through a core dielectric con-

stant €core- In the z direction, the limit of integration is

taken as the boundary of the 7 neck with the a pocket,

which is at ~5.2 X IQ-^ a.u. [11]. In the:<;-y plane, the

limit of integration is taken as the midpoint between ad-

jacent y necks, leading to a cutoff energy of —0.3 eV.

!; Over the volume of the k space integration, the non-

|i parabolic enhancement of the momentum matrix ele-

ments as given by the two-band model is never greater

than 15%. Therefore, the k dependence of these mo-

mentum matrix elements can be neglected. Further-

more, the small displacement in k space of the two-

band extrema was neglected in accordance with the

Lax model approximation [13].

An estimate for the remaining parameter Tinterband is

available from the width of the magnetoreflection

resonances, yielding Tinterband —10^''^ sec at low tem-

peratures [13]. The shape of the calculated reflectivity

curve is rather insensitive to the precise value of

Tinterband provided that the condition (UTinterband ^ 1 is

satisfied [17]. This condition does seem to be satisfied

according to the results of this reflectivity calculation.

Because of the scanty data available near the reflectivi-

ty minimum only an estimate for Tinterband can be made
from the reflectivity data.

To carry out the integration over k space explicitly,

nonparabolic effects in the energy were also neglected.

This is a valid approximation because of the small size

of the volume of integration and the small range of band

energies that are involved. Thus, the valence band

energy Ev in the vicinity of the band extremum at Q can

be expressed in terms of the principal axis coordinate

system of the hyperboloidal constant energy surfaces

as

Ev=~^^ {a,-kl + ay.kl,-a',,k%) (3)

in which the k vector is measured relative to the critical

Q point and the inverse effective mass tensor is writ-

ten in the principal axis coordinate system. For sim-

plicity, a similar expression was assumed for the con-

stant energy surfaces in the conduction band, charac-

terized by the same inverse effective mass components

ax' and ay- in the light mass directions, but a different

ctj'' parameter in the heavy mass direction. However,

the constant energy surfaces for the conduction band

are ellipsoids not hyperboloids. With these simplifica-

tions, the integration of eq (1) can be carried out ex-

plicitly yielding an analytic, though complicated, ex-

pression in closed form. The real and imaginary parts

of the dielectric constant tinterband obtained in this way
are shown in figure 6.

With this determination of tinterband-, the infrared

reflectivity of arsenic was calculated, yielding good

agreement with the experimental data [2]. In this case,

a reasonable value of Ccore = 80 produced a reflectivity

minimum at 0.19 eV and a much better fit to the reflec-

tivity lineshape was achieved. It is in fact tinterband that

provides the difference between this value of tcore and

the larger values of tcore that were required to fit par-

ticular features of the experimental data in figure 5.

Once again, the measurements could be brought into

better agreement with the Drude model at very low
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Figure 6. Real and imaginary parts of euueThnnit versus photon
energy.

In this fiiiure Timerband" 5 x 10"' ' s and values for the other pertinent parameters are

yaven in the text.

photon energies through correction for an oxide layer

reducing the reflectivity by ~ 3%. A least squares fit-

ting procedure was also tried, but it was found that the

values for these parameters determined or estimated

from other experiments provided the best fit, with the

exception of a^,. For this parameter the least squares

fitting procedure yielded a^, = 5 in rough agreement

with the two-band model estimate. However, the deter-

mination of a^, depends strongly on the shape of the

reflectivity curve close to the reflectivity minimum.

Since the available data in this region are rather scanty,

the quoted value of a^, = 5 is only an estimate.

The results of the reflectivity calculation including

the interband transitions exphcitly are shown in figure

7 as the solid curve; a comparison is also made in this

figure with the measured reflectivity points [2]. It is

thus found that the infrared properties of a trigonal ar-

senic face are strongly correlated with Fermi surface

[8], magnetoreflection [13] and optical [1] measure-

ments. The two-band model is also found to work sur-

prisingly well for the spin-orbit split bands at Q.
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Figure 7. Reflectivity of arsenic for a trigonal face versus photon
energy.

The data points are from Riccius (ref. [2]). Tiie curve is the calculated reflectivity including

the interband transition associated with the y necks as well as the intraband and core
contributions to the dielectric constant.
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Discussion on "On the Optical Properties and the Density of States in Arsenic" by R. W. Brodersen
and M. S. Dresselhaus (MIT)

N. W. Ashcroft (Cornell Univ.): How sensitive are

your results to the value of m* used? In principle an ef-

fective mass derived from dHvA or other low tempera-

ture galvanometric data should not be used in the trans-

port problem. Corrections due to electron-phonon in-

teraction enhancements are quite substantial.

R. W. Brodersen (MIT): The values of m* for the a

and )S carriers used in our calculation affect only the

Drude contribution and not the interband transition;

thus the reflectivity is not strongly dependent on the

exact values of these masses. The effective masses of

the y carriers are important and these have been calcu-

lated from both dHvA and magnetoreflection data. The

m* values obtained for the y carriers from these two

measurements agree to within experimental error,

showing that the mass corrections for this carrier due

to the electron-phonon interaction are quite small.
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Density of States and Ferromagnetism in Iron"^

K. J. Duff

Scientific Laboratory, Ford Motor Company, Dearborn, Michigan 48121

T. P Das

Department of Physics, University of Utah, Salt Lake City, Utah 841 1

2

The band structure of ferromagnetic iron has been calculated by a variational method using a basis

of tight-binding functions and orthogonahzed plane waves. Exchange matrix elements are evaluated

without approximation by a local potential. Correlation effects are explicitly included. Histograms for

the density of states are constructed and compared with photoemission and optical reflection and x-ray

emission data. The calculation leads self-consistently to the observed magnetic moment. The relative

importance of intra-atomic exchange and itinerancy to the origin of iron's ferromagnetism is discussed.

Key words: Electronic density of states; ferromagnetism; iron; optical reflection; photoemission;

x-ray emission.

1 . Methodology of Band Structure Calculation

The aim of the present work is to explore the mag-

netic properties of iron via a new band structure calcu-

lation in which particular care is given to the exchange

interaction, which in turn requires that the wave func-

tions of the electronic states be as realistic as possible.

For this purpose a variational method was chosen, and

the trial wave function [1] was taken in the form

(1)

m = 1

The 7m and fMi are the expansion coefficients deter-

mined from the variational procedure. The functions

Ud"'(r) are tight-binding (TB) wave functions formed

from atomic 3c? wave functions calculated for the 3<i'4s

configuration [2]. The uopiv' are orthogonahzed plane

wave (OPW) functions, and the sum over i extends to

second nearest neighbors in reciprocal lattice space.

The presence of the OPW functions in (1) serves

three purposes: (1) the diffuse 4s/4p . . . states are well

approximated by OPW states; (2) the OPW functions

can contribute some d component to the d wave func-

tions thus making the radial part of the d wave function

fully state dependent; (3) hybridization is built into the

wave function. If ym are large and /Xi are small, a pure

*Supported by a National Science Foundation Grant at University of California, Riverside,

California 92503.

3d state results; if the /a, are large and ym are small we
have a 4s/4p . . . state; if ym and (x, are comparable, the

wave function is a hybrid.

The secular equation to be solved is

\H-ES\ = 0 (2)

where H and 5 are nondiagonal Hermitian matrices of

the Hamiltonian and of unity respectively and each is

of the form

_TB_i hybrid \

hybrid
I

OPW /
(3)

For the submatrix labelled TB, matrix elements are of

the standard TB form; two center integrals only were

retained. Similarly the OPW submatrix consists of

standard OPW matrix elements. For a local operator

V(r) the hybrid matrix elements take the form

X I "OPV V{r)uAr-R„] (4)

and these were calculated by expanding the function

Ud{r— Rn) about the origin and carrying out summa-

tions as far as necessary.

Because of the radically different spatial behavior of

the 3d and 4s wave functions, different methods of in-

corporating correlation effects were used for each. For

the 4s states the "screened exchange plus coulomb

hole" approach of Hedin [3] was used. Here, in the cal-
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culation of matrix elements, a screened coulomb in-

teraction e""'i^/ri2 is used, and in our case a was a

static, wave number independent screening constant.

For an electron gas of uniform density the coulomb hole

potential is a constant and has the value

1

Le(9, 0)
1 (5)

where v(q) is the Fourier component of the coulomb

potential. For our choice of dielectric function the cou-

lomb hole energy reduces to —al2.

Correlation among d electrons has been shown by

Kanamori [4] and by Hubbard [5] to introduce lo-

calization properties into otherwise itinerant electrons.

and to considerably weaken the exchange from the

value calculated from Bloch wave functions. We adapt

an expression given by Hubbard for the effective self

exchange interaction

V,
\n^Vc

(6)

where Vc is the usual self coulomb energy, A is the band

width of the d electrons and n is the average occupation

per atom of a single band, that is, n is taken as 1/10 (n \

+ n 1 ). This expression was used for the one center self

exchange energy, and the total one center coulomb plus

exchange energy weighted according to population was

(nt +"4 -\)V,.-{n] - l)F„/4+ (1 -,7 t/5)n„ (7)

where Vo is a spherically averaged exchange interaction

due to the other d electrons. Two complete band struc-

tures were calculated corresponding to assumed values

of A of .4 Ry and .55 Ry.

2. Results of the Band Structure Calculation

Energies were calculated at 110 points in 1/48 of the

Brillouin zone (BZ). The energy bands for A = .55 Ry
are depicted in figures 1 and 2. The most striking fea-

ture is the greater width found here and the appearance

of a definite spin dependent component of the width.

For example, at F we can separate out a non-spin com-

ponent of the doublet-triplet splitting of .12 Ry (cf. 0.10

Ry for APW or KKR methods [6]), whereas the spin

contributions are 0.11 Ry and 0.06 Ry for majority and

minority spin respectively. Both the greater width and

the spin dependent width found here are due to the in-

clusion of two-center exchange matrix elements for d-

states. Clearly, assumptions made about the efficacy of

screening of interatomic exchange have important con-

sequences for the band width.

The density of states histograms for majority spin,

minority spin and total electrons are given in figures 3,

4, and 5 respectively. Peaks in the total density of

states occur at about 0.19 Ry, 0.39 Ry and 0.54 Ry
below the Fermi level, and the occupied width of the d

levels is about 0.8 Ry. The optical density of states as

r N H

Figure 1. Calculated bands for ferromagnetic iron.
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Figure 2. Calculated bands for ferromagnetic iron.

measured by Blodgett and Spicer [7] indicates three

peaks, one of which is now attributed to surface con-

tamination [8] . A second peak of small amplitude ap-

pears just under the Fermi surface and has no counter-

part in the theoretical density of states presented here.

The remaining experimental peak coincides with the

total density of states maxima between —0.4 and —0.6

Ry. Eastman [8] likewise shows a peak of about this

width in his experimental optical density of states, but

his peak lies closer to the Fermi surface than the
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Figure 4. Density of states histogram for minority spin electrons.

present theory depicts. However, some latitude exists

for adjustment of the theoretical position of the Fermi

energy, as discussed below.

Unfortunately, the optical experiments are not defini-

tive in the overall width of the occupied portion of the

d bands, although they do give some support to the idea

of wider bands than had previously been obtained

theoretically. Support for this point of view also comes

from x-ray emission spectra. Figure 6 represents sche-

matically the results of Tomboulian and Bedo [9] (their

fig. 5,M3 emission band). They assumed the band width

to be given by the interval ED of figure 6, i.e., about 8
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Figure 6. Schematic representation of the Ms x-ray emission spectra
reported by Tomboulian and Bedo [8J.

Figure 7. The solid line graphs the magnetic moment as a function

of rigid band displacement of majority spin states with respect to

the minority spin states.

The dolled line gives the rigid band shift calculated from eq 6 as a function of the band
width parameter A.

eV. If we accept at least part of the previously ignored

spectra, the band width could be as large as 11 eV (AD

on fig. 6). Moreover, if the kink at B is interpreted as a

point of superposition of two curves, one for spin up

and the other for spin down, the energy interval iromA
to B would give the magnetic splitting at the bottom of

the band of about 5 eV in good agreement with our

theoretical value of 4.5 eV at the point H, which also

happens to be the point where the magnetic splitting is

largest. Further experimental clarification of this is

desirable.

3. The Magnetic Moment and the Origin of

Ferromagnetism

As remarked above, two band structures were calcu-

lated, with the band width A of eq (6) equal to 0.4 Ry
and 0.55 Ry. The second value of A seems more ap-

propriate to the wider d bands found here. In each case

the magnetic moment was obtained from the density of

states histograms. The moments were 2.06 ^ag/atom and

2.19 /Ltfi/atom respectively. Thus, within the limitations

of assuming Hubbard's formula, a first principles



derivation of the magnetic moment has been achieved.

To explore the role of correlation further, the band

width A was regarded as an adjustable parameter and

the corresponding values of the effective exchange cal-

culated. Using this to produce a rigid band shift of the

spin states relative to one another, an approximate esti-

mate of the dependence of the magnetic moment on A

is found. The solid curve of figure 7 is the magnetic mo-

ment which results from given rigid band displace-

ments, and the dotted curve graphs the rigid band shift

as a function of A. The magnetic moment is charac-

terized by a steep rise to about 2.18 ^ts/atom and then

a broad plateau to 2.25 /xg/atom followed by another

steep rise. The plateau is produced when both spin

states have minima of their density of states at the

Fermi surface, and conversely the steep sections are

characterized by a maximum of the density of states of

either spin (or maxima for both spins) at the Fermi sur-

face. Over the plateau region very large changes in A
produce only minor changes in the magnetic moment,

so in this range the choice of A or the accuracy of Hub-

bard's formula is not critical. However, its dominant

role in producing the ferromagnetic moment is revealed

by the rapid decrease in moment for A less than about

.5 Ry. For A = 0, the magnetic moment would be 1.3

/Lifi/atom, implying that the remaining 0.9 /Afi/atom

comes from itinerancy of the d electrons.

We therefore suggest the following mechanism for

the origin of ferromagnetism in iron. Hund's rule at a

given site is responsible for initially polarizing the elec-

trons at that site. This is amplified by some itinerant

ferromagnetism of the d states, and the itinerancy cou-

ples the moments on different sites.

Finally we note from figure 7 that there is latitude for

some arbitrary displacement of the two density of

states curves without altering the magnetic moment ap-

preciably. Thus the total density of states at the Fermi

surface can be adjusted over a wide range from a small

value (
~ 5 electrons/atom Ry) on the plateau to a large

value (
= 20 electrons/atom Ry) on the upper parts of

the steep section. Thus no reliable prediction of the

electronic specific heat or susceptibility can be made,

particularly in view of the uncertainty in the orbital con-

tribution to the magnetic moment.
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Calculation of Density of States in W, Ta, and Mo
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Density of states curves were calculated for tungsten, tantalum and molybdenum from correspond-

ing energy band structures obtained by a nonrelativistic APW calculation. The Fermi energy and the

density of states at the Fermi energy were obtained for each material. The calculations were part of a

study intended to calculate theoretical photoemission yield curves which could be compared with ex-

perimental results.

Key words: Electronic density of states; Fermi energy; molybdenum: photoemission; tantalum;

tungsten.

1 . The Band Structure

The APW method [1,2] consists in solving Schroed-

inger's equation

Hijj^Eilj (1)

by expanding the wave function ip in terms of aug-

mented plane waves in the presence of a crystal poten-

forr < Rs.

The eigenvalues E at various points in the Brillouin

zone are obtained by setting up the system of equations

for obtaining the expansion coefficients, and then

evaluating the secular determinant of this system as a

function ofE. The eigenvalues are those values of£' for

which the determinant goes to zero.

All the three materials have a bcc crystal structure.

The energy eigenvalues were determined at 55 points

in 1/48 of the Brillouin zone as shown in figure 1. The
points are distributed uniformly on a cubic mesh
throughout the zone. Each point is located at the corner

of a cubic subzone having edge dimensions 7T/4a with

the edges being oriented parallel to the coordinate axes

kjc, ky and k^. There are 1024 points in the entire zone.

2. The Density of States

Density of states curves based on the 1024 points at

which the energy eigenvalues are actually calculated

show poor resolution. The contribution to the density of

tial V(r)APw which is spherically symmetric around each

atom site up to a radius Rg. while constant for r > Rg.

This pattern is repeated in each Wigner-Seitz cell. The
augmented plane waves are functions i//; such that:

^; = e'Ai r for /- > R, and (2)

(3)

Figure 1. Brillouin zonefor body-centered cubic structure.

i}j^=J^ 2 (2/+1)/
1 = 0 m--

U,(Rs)

Rs) , ,
(/ m
(/+

PI"'l(cos d)P\"'\ COS 0ki) exp im ((/)-(/>/,
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states function from points of high symmetry where the

energy eigenvalues converge from several directions is

not apparent unless the band structure is known at in-

tervals that are smaller than those used in solving for

the eigenvalues. Additional points in the band structure

were obtained by reducing the mesh by a factor of 4 by

means of interpolation. The resulting number of points

in the Brillouin zone at which energy eigenvalues are

available increases from 1024 to 65,536.

The interpolation scheme is carried out in the wedge

representing 1/48 of the Brillouin zone, which contains

the original 55 points for which the band structure was

calculated. Values at the midpoints of the edges of the

cubic subzones are obtained by linear interpolation.

Values at the center of the cube faces are obtained by

interpolating between previously obtained midpoints.

Only one pair of opposite edges is required for the inter-

polation since a two-way interpolation using midpoints

at all four edges of the cube face would give the same

result. Values at the cube centers are obtained by inter-

polating between previously obtained cube face cen-

ters. Again, only one pair of faces is needed. At the

wedge boundaries where the symmetry planes cut the

cubic subzones along face or body diagonals, as in the

case of the NPf, NPH, or PHP planes, reflection pro-

perties in the appropriate symmetry plane are used to

complete the cubes in order to apply the interpolation

scheme described. In order to reduce the Brillouin zone

mesh by a factor of four, the interpolation procedure

must be applied twice. This results in 1785 points in

1/48 of the Brillouin zone. Reflection properties are

again applied to extend the results throughout the en-

tire zone.

The density of states is plotted in units of electrons

per atom per rydberg. Each energy eigenvalue can ac-

commodate two electrons, and the number of eigen-

values in a band is equal to the number of cubic sub-

zones into which the Brillouin zone has been subdi-

vided. In A:-space, there are two electrons per atom per

band. The following relation is thus established:

2N
x =

no. of subzones
electrons per atom per A£' (4)

where A'^ is the number of eigenvalues in some energy

interval A£', and x is the corresponding number of elec-

trons per atom in the same interval AJ?. To obtain x in

units of electrons per atom per rydberg the right side of

eq (4) should be divided by A£'.-

2N
AE X no. of subzones

electrons per atom per rydberg (5)

I.I 1.3

ENERGY (RYDBERGS)

Figure 2. Density ofstates curvefor tungsten.

The dotted line is the integrated density of states, with corresponding units to the right.

The zero of energy corresponds to the constant potential for r > K^.

To find the Fermi level, the density of states curve is

integrated. This curve shows the number of electrons

per atom as a function of energy. The Fermi level is that

energy at which all the valence electrons for the given

material are accounted for. In tungsten and molyb-

denum this energy wiU correspond to six elec-

trons/atom, and in tantalum to five electrons/atom.

The density of states histograms are presented in

figures 2, 3 and 4. In each case the integral of the densi-

ty of states is graphed in the same figure. The energy

range considered includes the bands occupied by the

valence electrons, and the unoccupied states above the
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Figure 3. Density ofstates curvefor tantalum.
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Figure 4. Density ofstates curvefor molybdenum.

Fermi level; a total span of approximately 1.8 Ry. The

resulting Fermi energy and density of states at the

Fermi energy for each material are shown in table 1.

3. Discussion

The density of states curve for tungsten is in good

agreement with the corresponding results obtained by

Mattheiss [3] for this metal. The calculation by

Mattheiss extends to 1.3 rydbergs on the energy scale.

The curve for tungsten has lower peaks and higher

minima than the curves for tantalum and molybdenum,

where high peaks alternate with deep minima. In other

words, in tungsten, the electronic states do not group

themselves into "bands" as much as in the other two

metals.

Table 1. Results obtained from the density of states

calculation. The Fermi energy is given in rydbergs as

measuredfrom the bottom ofthe lowest band.

Material

Tungsten.

Tantalum.

Molybdenum

Fermi
energy

Rydbergs

0.4988

0.4077

0.4978

Density of

states at

Fermi energy

7.41

17.9

5.0

electrons

atom Ry

electrons

atom Ry

electrons

atom Ry
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The group VI elements tungsten and molybdenum

exhibit three peaks below the Fermi level. Tungsten

shows a broad peak above the Fermi level and in molyb-

denum the peak splits into two peaks. For the higher

energy states, two peaks are present in the vicinity of

1.8 and 2.1 Ry. These peaks are much more apparent

in molybdenum than in tungsten.

There are three peaks in tantalum at positions cor-

responding to the first three peaks in tungsten and

molybdenum, but in this case the second peak is broad

and flat and almost merges with the third peak which

is narrow and sharp. The Fermi energy falls within the

range of the third peak slightly below the r25' level as

predicted by Mattheiss [3] on the basis of a rigid-band

model. There is an asymmetric broad peak above the

Fermi level beginning with a maximum at about 0.9 Ry
and tapering off over a range of 0.4 Ry. The two peaks

at higher energies are also present and are very similar

to the corresponding peaks in molybdenum.

In all three cases, there is a low density region

beginning beyond the top of the c?-band and extending

over a span of approximately 0.4 Ry.

It should be noted that in the case of the group VI

metals, the Fermi energy coincides with a slowly vary-

ing part of the density of states curve, such that a small

variation in the band structure should not affect the

magnitude of the density of states at the Fermi energy

to a great extent. In tantalum, the group V metal, the

Fermi energy coincides with a peak in the density of

states curve, and a small variation in the band structure

could have a drastic effect on the density of states at

the Fermi level in view of the steepness of the curve in

that region.

Relativistic as well as nonrelativistic APW calcula-

tions of the energy band structure of tungsten are found

in the literature in connection with Fermi surface stu-

dies [3,4]. It appears that the relativistic and non-

relativistic calculations tend to lie on either side of the

experimental results [4]. A basic problem in this

respect is that in addition to relativistic effects there is

an uncertainty in the APW potential which is due to the

exchange term. The contribution of the exchange in-

teraction to the crystal potential is evaluated by means

of an approximation. This is necessary in order to con-

vert the potential into a one-electron potential. A 30%
reduction in the magnitude of the exchange contribu-

tion to the potential was shown by Mattheiss [3] to

produce significant changes in the band structure of

tungsten, comparable in magnitude with relativistic

corrections. In molybdenum, relativistic effects are ex-

pected to be less pronounced because it is a lighter

metal, and a comparison of the theoretical photoemis-

sion with experimental results should provide a more

direct indication of the role of exchange effects.

The modified tungsten band structure obtained by

Mattheiss [3] by reducing the exchange contribution to

the potential by 30% results in density of states curve

which is very similar in character to the curve obtained

from the unmodified calculation except for a general

displacement toward higher energies. The height of the

peaks relative to each other remains the same, as well

as their relative widths. When the band structures for

tantalum and molybdenum are calculated without

reducing the corresponding exchange potentials, the

differences in the resulting band structures are not of

such a nature as to produce relative shifts along the

energy axis in the density of states curves. When the

results for tungsten, tantalum and molybdenum are

compared to each other, no displacement along the

energy axis is found, but the relative magnitudes and

widths of the peaks vary considerably from one materi-

al to the next.
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Adjustment of Calculated Band Structures for Calcium
by Use of Low-Temperature Specific Ueai Data"^
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The electronic band structure of calcium has been studied theoretically by employing the Korringa-

Kohn-Rostoker method. The crystal potentials used in our calculation were obtained by means of a stan-

dard superposition of free-atom charge densities. Ek vs k curves and the density of states at the Fermi

energy were calculated for various potentials, with the measured low-temperature electronic specific

heat coefficient, y, being used as an empirical aid to adjust the exchange portion of the crystal potential.

The important feature of the potentials used is that they all give band structures which have definite d-

band character in the vicinity of the Fermi surface. These d bands or their corresponding d scattering

resonances vary rapidly in energy for small changes in the exchange, resulting in values of y which are

extremely sensitive to exchange.

Key words: Calcium; de Haas-van Alphen;

heat; pseudopotential; transit!

1. Introduction

The first band theoretical calculation on metallic cal-

cium was made by Manning and Krutter in 1937 [1].

They carried out a Wigner-Seitz cellular calculation in

an attempt to explain a number of electronic properties

of metallic calcium, including the conductivity. This

early band calculation demonstrated that calcium's

metallic behavior is probably due to the overlap of an 5-

band with a c?-band. Their calculations further implied

that the density of states, as a function of energy,

should be rather 5-like up to the vicinity of the Fermi

energy where the (f-bands would then contribute a nar-

row, sharp bump. It is interesting to note from these

conclusions that metallic calcium would have some d-

like electronic character which does not appear in the

free atom, thereby implying certain transition-metal-

type behavior for metallic calcium.

Also, there have been several, more recent band

structure calculations pertaining to metallic calcium.

Some of these attempts have employed different calcu-

lational techniques such as the OPW method and the

pseudopotential method [2-5]. However, there are

basic disagreements between all of these calculations,

either when compared to experiment or to one another.

For example, there is no agreement among the

*Research sponsored by the U.S. Atomic Energy Commission under contract with Union

Carbide Corporation.

;ctronic density of states; low-temperature specific

i-metal behavior.

presently available calculations concerning detailed

features of calcium's Fermi surface, with which experi-

mental, de Haas-van Alphen results, the most direct

verification of metalhc band structure calculations,

could eventually be compared. At present such dif-

ferences between the calculations have not been

resolved by comparison with experiment, since the only

available de Haas-van Alphen data [6-8] is sketchy.

Furthermore, the only data available was apparently

obtained from microcrystalline-aggregate-type sam-

ples, and can be misinterpreted. At the same time, no

reliable calculations have appeared for the low-tem-

perature specific heat coefficient, y, which is a mea-

sure of the density of states at the Fermi energy. This

is surprising, since such calculations would allow some

comparison with experiment. This point is especially

valid for calcium, since possible effects, which could

enhance the band structural density of states, are ex-

pected to be small. Thus, a comparison between calcu-

lated and experimental y should provide a more direct

test of a calculated band structure for calcium than

would be possible for other metals where enhancement

effects are expected to be larger and cause a greater

degree of quantitative uncertainty.

In an attempt to clarify some of the present circum-

stances mentioned above, we have decided to carry out

a rather complete calculational study on metallic calci-

um with the aim of obtaining an experimentally verifia-



ble band structure. To this end, due to possible uncer-

tainties connected with the available de Haas-van

Alphen data, we have decided to use the low-tempera-

ture specific heat coefficient as a means of experimen-

tally testing our band structure calculations. Then, pro-

vided our calculations would lead to a reasonable agree-

ment between calculated and measured y, it was hoped

that they would provide a quantitative prediction of cal-

cium's Fermi surface, which could be eventually

verified by an exhaustive de Haas-van Alphen study.

While our projected study is not yet complete in all

phases of desired detail, we have found many interest-

ing features caused by the presence of a af-band in the

vicinity of the Fermi energy. Also, we feel these fea-

tures are of general enough interest that they should be

presented at this stage of development of our study.

2. Discussion of Calculational Details

All of the band structure calculations reported here

were performed by use of computer codes based upon

the nonrelativistic form of the Korringa-Kohn-Rostoker

(KKR) method of band theory [9-11]. Throughout, ex-

clusive use has been made of muffin-tin potentials. The
resulting accuracy then obtainable with the KKR
method is governed by the highest / value, denoted by

/max, present in the spherical harmonic expansion of

the wave functions inside the muffin-tin spheres. Since

previous work has shown for the transition metal region

of the periodic table that use of /max= 2 introduces cal-

culational errors of at most a few thousandths of a ryd-

berg in energy eigenvalues [11-13], we have used this

value of /max in the present work. All results were then

obtained by direct numerical solution of the one-parti-

cle, band-theoretic eigenvalue problem, with the

restrictions mentioned above, without recourse to any

interpolative scheme.

The necessary one-electron potentials were obtained

by use of the heuristic prescription outlined by

Mattheiss [14]. In this prescription a potential is ap-

proximated as V(r) = Ve.s.(r) + Vex.(r). Both the electro-

static coulomb contribution, Ve.s.(r), and the exchange

contribution, Vex.(r), are calculated using free-atom

charge densities. At a given lattice site, Ve.s.(r) is

equated to the sum of, (1) the Coulomb potential cen-

tered at the site due to the free-atom charge density,

and, (2) the contributions from the tails of the same

Coulomb potential when centered on neighboring sites.

The exchange contribution is obtained using a Slater-

type approximation: Fex. (r) =— 6/3[3p(r)/87r) ] p(r)

is the spherically symmetric lattice superposition of the

atomic charge densities and obtained analogously to

the calculation of Ve.s.(r). )8 is a parameter which, in

present terminology, equals one for full Slater

exchange [15]. This prescription, as stated, still con-

tains two unspecified quantities. First, what charge

densities are to be used? Also, what atomic configura-

tions are to be used? Second, given the charge densi-

ties, what value of ^ is to be used? Determining the an-

swers to these questions is presently an active research

field; however, such is not the main topic of the present

undertaking. Rather, in a practical attempt to avoid

these questions, we have adopted the approach of ar-

bitrarily using the analytical Hartree-Fock wave func-

tions of Synek et al. [16] for the atomic configuration

3/?''45-, and then allowing /3 to vary as a parameter in at-

tempting to determine the most experimentally plausi-

ble calculated band structure.

To obtain the Fermi energy for a given potential,

KKR constant-energy-search techniques [13] were

used to obtain points on constant-energy surfaces

within the Brillouin zone of the fee lattice. Such points

allow numerical evaluation of the volume contained by

a constant-energy surface, and hence the integrated

density of states for an energy is directly obtained. The

Fermi energy is obtained by adjusting the energy until

the proper integrated density of states is found. For all

constant-energy surfaces calculated in this investiga-

tion, of the order of 25,000 points were calculated on

each surface. This number of points enables the in-

tegrated density of states, for a given energy, to be ob-

tained to an accuracy of about four significant figures.

Such accuracy is not redundant but required in order

to obtain an accurate value, for a given potential, of the

density of states at the Fermi energy, niEp), which we
obtain by direct numerical differentiation of the in-

tegrated density of states information. This point is

especially valid in the present study where n(EF) falls

in an energy region where the density of states is

rapidly changing. Of course, the calculated low-tem-

perature electronic specific heat coefficient, for a given

potential, directly follows from niEp)-

3. Results and Discussion

Our first calculation was made with /3 = 1.00 and the

£'k vs k curves for various symmetry directions are

given in figure 1. The notable feature of figure 1 is the

nearly filled s-p band intersecting with a d-like band in

the vicinity of the Fermi energy. This is qualitatively

the same as has been proposed previously by Manning

et al. [1]. Our resulting density of states is 13.2 mil-

lijoules/mole-K^. This value of y is very much higher

than the reported experimental value of 3.08 miUi-
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Figure 1. Energy bands for calcium calculated using the potential

with exchange parameter p= 1.00.

The energies are expressed in rydbergs measured relative to the constant value of the

potential between the muffin-tin spheres.

Figure 2. Energy bands for calcium calculated using the potential

with exchange parameter (3 = 0.88.

The energies are expressed in rydberiis measured relative to the constant value of the

potential between the muffin-tin spheres.

joules/mole-K^ [17]. Since the electron-phonon

enhancement of y is expected to be small and since the

7 obtained from a band structure calculation should be

less than or equal to the y obtained from a specific heat

measurement, it is apparent that some adjustment of

the crystal potential is required. Consequently, we car-

ried out a series of calculations of 7 for several different

potentials. These potentials were generated by chang-

ing the exchange contribution, and the resulting values

of y as a function of )8 are given in table 1. As is noticed

by this table, y is extremely sensitive to the assumed
potential.

We give the vs k curves for = 0.88 in figure 2.

This particular value of (3 at least gives a reasonable

value of y. This figure should be compared to the E^. vs

k curves for /3 = 1.00 given in figure 1. The essential

features are the same, namely, a narrow c?-like band in-

tersecting an s-p band in the vicinity of the Fermi ener-

gy. However, it is seen from a comparison of the two

figures that there has been a very rapid rise in the d
bands from)S= 1.00 to ^= 0.88. Furthermore, there has

been a broadening of these same bands. The Fermi

energy of both sets of energy bands lies slightly in the

bump of the d band density of states. Since the bump
moves in energy and changes in width as {3 is varied,

this results in a rapid change of the density of states at

the Fermi energy with jS. To illustrate further this effect

we have treated the d band as a cZ scattering resonance

and computed its movement in energy as a function of

exchange. The results are given in table 2. Note how

Table 1. Results of the calculations for the low-

temperature specific heat coefficient, y, as a function

of exchange parameter, (3

Calculated y
(mjouies/mole-K-)

1.00 13.20

0.90 6.14

.89 3.62

.88 2.02

Table 2. The numerical results showing the change

in energy of the d resonance as a function of (3. AEs^

equals the difference in energy in rydbergs between

the bottom of the s — p conduction band, Fi, and the

d resonance, Ed

1.00 0.90 0.88

0.174 .280 .300
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Figure 3. The effective potentials, as a function of radial distance,

for p= 1.00 and 0.88.

The effective potential is the sum of the crystal potential and the centrifugal potential.

Rs is the radius of the muffin-tin sphere.

rapidly the d resonance is moving in energy away from

the bottom of the s-p band as a function of exchange.

We can also consider the graph of the effective

potential, shown in figure 3. The /—2 portion of the ef-

fective potential for /3= 1.00 shows a "well" and, thus,

a tendency to "bind" the d electron. However, for (B =
0.88 it is seen that there is a tendency to push the bot-

tom of the "well" up, or "unbind" the d electron.

Physically speaking, for these potentials metallic cal-

cium attempts to "bind" a d electron but is only par-

tially successful. If one considers scandium, which has

one more conduction electron, he sees that it has a free

atom configuration 4<s''3d\ This configuration should

not be far different from that of metallic scandium.

Scandium apparently manages to "collect" this d

electron.

4. Summary

It has been shown that consideration of the low-tem-

perature electronic specific heat coefficient, y, can pro-

vide insight into the problems that exist in doing a first-

principle band calculation for metallic calcium. While

the calculations are as yet incomplete, it is felt that the

d electron, or the extreme sensitivity of the location of

the d resonance to small changes in the effective

crystal potential, may have a rather important role in

the electronic properties of calcium. For example, one

might expect very interesting effects from calcium con-

ditions of pressure or alloying, depending on how the d

band is "filled" or the d resonance is moved about.
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Discussion on "Adjustment of Calculated Band Structures for Calcium by Use of Low-Temperature
Specific Heat Data" by R. W. Williams and H. L. Davis (Oak Ridge National Laboratory)

W. Kohn (Univ. of California): The Rapporteur (R. E.

Watson) mentioned some work in which the magnitude

of the exchange was estimated from the atomic data. I

don't know the details of this but I can understand in

principle the rationale of such a procedure. But the

Rapporteur also mentioned other work in which this

parameter was adjusted. That I have never understood.

May I elaborate on my lack of understanding here: If

you are interested in electrons near the Fermi surface

and if you are courageous enough to say that in some

way they should be like free electrons then there is a

definite value of the exchange there. Of course, they

are not very much like free electrons but the fact they

are not very much like free electrons affects everything

about them, not just the exchange constant. So I would

very much like to have some explanation of what is the

rationale of saying, if we don't get a good fit with our

simplified theory we are going to adjust that one

parameter rather than, for example, trying to do some

serious work on correlation effects and try to fit the

data that way.

H. Davis (Oak Ridge National Lab.): From my point of

view, we consider the resultant potential as a model

potential and nothing more. You look at the phase

shifts. Let's say you are trying to compare an electron

calculation of Fermi surface parameters with single

particle data such as the de Haas-van Alphen effect.

You adjust to get proper phase shifts at that energy and

these are the basic parameters of the theory. The result

is just a model potential.

R. E. Watson (Brookhaven National Lab.): I believe

that the screening is responsible for about half the up-

ward (f-shift in gold.

F. Herman (IBM): I would like to comment on Profes-

sor Kohn's question. My own feehng really is that the

adjustment of the Slater exchange is a passing phase in-

fluenced by pseudism. You try to adjust things to make
theory and experiments agree. My own present feeling

is the important criterion in a first principle calculation

is not really the comparison between the energy eigen-

value spectrum and experiment because if you think

very carefully about the question you will be very hard

put to provide a theoretical basis for demonstrating that

there is any direct connection between an energy eigen-

value spectrum and the optical excitation spectrum

using the approximate Hamiltonian. My own feeling at

the present time is that if one really wants to do a first

principles calculation one should use that exchange ap-

proximation which would give the lowest total energy

for the crystal in the Hartree-Fock spirit. Now people

are just beginning to try to calculate total energy in

band calculations. I have a paper which will appear

shortly in the International Journal of Quantum
Chemistry which discusses this question and tries to

reconcile the problem by indicating that what one

should do is use the Gaspar-Kohn-Sham exchange ap-

proximation, perhaps also including inhomogeneous

corrections, and after getting an energy eigenvalue

spectrum this way, introduce corrections which hope-

fully give better estimates of levels whose differences

correspond to optical excitations.
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Fermi Surface Properties of the Noble Metals at

Normal Volume and as a Function of Pressure"^

W. J. O'Sullivan,** A. C. Switendick, and J. E. Schirber

Sandia Laboratories, Albuquerque, New Mexico 871 07

We present the results of nonrelativistic KKR calculations of the Fermi surface properties of Cu,

Ag, and Au at normal volume and as a function of pressure. In particular we compare electronic specific

heats, effective masses and the associated pressure shifts with the corresponding experimental results

for the noble metals. In contrast to the results of previous calculations we find that the Herman-Skill-

man-Mattheiss crystal potential is an excellent effective potential for both Cu and Ag.

Key words: Crystal potential; effective masses; electronic density of states; electronic specific

heat; noble metals; pressure effects.

1. Introduction

Several attempts [1-4] have been made to estimate

the contributions of low energy electron-phonon and

electron-electron interactions to the Fermi surface pro-

perties of the noble metals by comparing calculated

band effective masses mg* with experimental values.

This approach can be understood within the context of

the Landau Fermi liquid theory, in which the effective

mass enhancement from combined electron-phonon

and electron-electron interactions is given approxi-

mately by [5,6]

Experimental = '«fi(l + «'' + «P")- (D

The coefficients ag and aph correspond to specific Lan-

dau coefficients for the electron-electron and electron-

phonon interactions and niB* is the result of a one-elec-

tron calculation of the effective mass in which effects

of the static periodic lattice potential are included. The
experimental and band values of the electronic specific

heat are related by the same combination of enhance-

ment factors. Although the theory assumes an isotropic

Fermi surface, it is possible to gain an estimate of the

effects of anisotropy by comparing the values of the

lumped enhancement factor

a = ae^-apu (2)

determined by applying eq (1) to the cyclotron effective

masses associated with the selected orbits about dif-

ferent sections of the Fermi surface.

*This work was supported by the U.S. Atomic Energy Commission.
**Presenl address: University of Colorado, Boulder, Colorado.

Using this approach, Mueller and Zornberg [1]

determined a value of a in Cu of about 0.25, while

Faulkner, Davis, and Joy [2] (FDJ) and Dresselhaus

[4] inferred a significantly smaller value. Christensen

[3] has estimated an a for Ag of about 0.05, by compar-

ing band effective masses calculated using the APW
method with experiment.

In this paper we present the results of nonrelativistic

KKR calculations of several band effective masses and

the linear electronic specific heat coefficients for the

noble metals at normal volume and as a function of

pressure. Estimates of the total enhancement factors

for the noble metals are derived from comparison

between the calculated results and experiment.

2. The Band Calculations

The band effective masses and the electronic

specific heat coefficients for the noble metals were cal-

culated with the KKR method using a maximum angu-

lar momentum contribution, /max = 3.

The potentials used in these calculations were

derived from Hartree-Fock-Slater atomic charge densi-

ties obtained from a slightly modified version of Her-

man and Skillman's [7] program. The superposition

procedure described by Mattheiss [8] was used to ob-

tain the spherically symmetric Coulomb and exchange

potentials within the "muffin-tin" spheres. For both the

atomic and crystal exchange potentials the unmodified

Slater free-electron exchange approximation was used.

The effect of lattice dimension change on the crystal

potential is incorporated in the variation of the con-



tributions from neighboring atoms as the lattice varies

in size, and in the scaling of the muffin-tin sphere

radius with the lattice. Since we choose the muffin-tin

radius so that the muffin-tin spheres make contact, the

latter effect is determined unambiguously.

The results of the energy band calculations and the

calculated Fermi surface dimensions for the noble

metals at normal volume and as a function of pressure

will be published [9,10] elsewhere.

Germane to this paper, however, is the fact that the

calculated energy band structure for Cu is in essential

quantitative agreement with that calculated by Burdick

[11] with the Chodorow potential, and the experimen-

tal and calculated Fermi surface cross-sectional areas

agree to about 1%. A comparison of our calculated

bands for Ag with the bands calculated by Christensen

[3] using Dirac-Slater wave functions, suggests that

our c?-bands are about 0.03 Ry too high. However, the

calculated and experimental Fermi surface cross-sec-

tions agree to ~ 1% except in the case of the "neck"

cross-section for H\\ [111] where the calculated area

underestimates the experimental value by about 10%.

(3)

The effective masses reported here were calculated

from

and the electronic specific heat coefficients, 7, were

derived from

y^i7TH-'p(E,), (4)

where p(Ef) is the calculated density of states at the

Fermi energy. In these calculations, piEp) was deter-

mined by a straight line fit of the derivative with

respect to energy of the number of occupied states. The
calculations were carried out over an energy range of

Ey ± 0.002 Ry, with a fixed energy increment of 0.0002

Ry. A mesh density corresponding to 561 k vectors in

l/48th of the Brillouin zone was used. This represents

the same mesh used by Faulkner, Davis and Joy [2]

,

and with it one can determine the Fermi energy for a

noble metal to about 0.0002 Ry.

3. Comparison of Experimental and
Calculated Results

The Fermi surface topology of the noble metals is

simple enough that measurements of the effective

masses corresponding to a small number of orbits con-

stitute a reasonable sampling of the entire surface. The

Fermi surfaces of the noble metals consist of essen-

tially spherical electron surfaces centered at F with in-

terconnecting necks in the [111] directions. With the

magnetic field in the [111] direction a "belly" (fi(lll))

and "neck" (A^(lll)) orbit are observed. With the field

along [110] a hole orbit made up of a combination of

necks and spheres resembling a "dogbone" (Z)(110)) is

observed. A similar fourfold symmetric hole orbit

known as the "rosette" is observed for fields in a [100]

direction in addition to another belly orbit about the

spherical body of the surface (5(100)).

The calculated results for the band effective masses

associated with all but the rosette orbit are compared

with experiment in table 1. In table 2 we list the calcu-

lated electronic specific heat coefficients for the noble

metals along with the corresponding experimental

values.

The enhancement factor for Cu is about 0.10±0.02

if we accept the lower value for the dogbone effective

mass measured by Koch, Stradling and Kip [12]. In

any case, a for Cu is about 0.1, in agreement with the

observations of FDJ [2] and Dresselhaus [4]. The con-

sistency of the values for a in Ag is. of course, for-

tuitous. We estimate a in Ag to be 0.03± 0.02, in essen-

tial agreement with the results of Christensen [3]. The

combination of electron-electron and electron-phonon

Table 1. A comparison between the calculated and
experimental values ofthe effective massesfor specific

noble metal orbits

Cu

N(lll) 0.412

B(lll) 1.28

B(IOO) 1,24

D(IOO) 1.11

Ag

N(lll) 0.38

B(lll) .902

B(IOO) .896

D(llO) 1.00

Au

N(lll) 0.321

B(lll) .844

B(IOO) .842

D(IOO) .830

m ''Im 0

(calculated)

m*jma
(experimental)

0.46 ±0.02"

(1.410± 0.005, 1.385± 0.005)"

1.370± 0.005"

1.290±0.005")1.225±0.005)"...

0.39 ±0.02*

.93±0.01 '

.93 ±0.01

1.03 ±0.01

0.29 "(0.44)''

1.14±0.03/

1.08 ±0.03/

1.00 ±0.03/

0.12

.10

.10

.15(0.10)

0.03

.03

.03

.03

< 0(0.37)

0.28

.28

.20

" Reference 12.

* Reference 14.

' Reference 15.

Reference 16,

' Reference 17.

Reference 18.
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Table 2. Calculated and experimental linear elec-

tronic specific heat coefficients for the noble metals.

The estimated relative error in the calculated

7(mJ/mole-deg-) values is about 1 percent.

Calculated Experiment " a

Cu 0.641 0.698 0.09

Ag .624 .644 .03

Au .564 .727 .29

" Reference 19.

effects in Ag is much reduced over that in Cu. It is dif-

ficult to assess the effects of our neglect of relativistic

contributions in the case of Au. The enhancement fac-

tor we find for Au is about 0.28.

Although effective pressures of up to 100 kbar were

"applied" in these calculations, no significant varia-

tions in the calculated band effective masses were ob-

served, with one possible exception. The calculated ef-

fective mass for the A^(lll) orbit in Ag decreases with

increasing pressure. Calculated values for {d In yjd In

V)t were obtained, although the large uncertainty in the

calculated derivatives makes them of doubtful value for

comparison with experiment. These results are listed

in table 3. The experimental values for Cu were deter-

mined by inserting measured values for the electronic

part of the linear thermal expansion coefficient in the

relation

idlnyldlnV)r= 3f3,VBI(yT) (5)

where ySe is the electronic linear thermal expansion

coefficient, V is the molar volume and B is the bulk

modulus. The uncertainty in the calculated volume

derivatives of the specific heat could be reduced if we
were to increase the k space mesh density used in the

volume calculations.

While our calculated values for d In yjd In F seem
to agree with the free electron value of 2/3 and the mea-

sured values of Carr et al. [13] , our treatment neglects

any volume dependence of the enhancement factor.

In conclusion we find that the Herman-Skillman

atomic calculation with full Slater exchange provides

an excellent starting point for detailed energy band and

Fermi surface properties both at normal volume and as

a function of pressure.

Table 3. Calculated and experimental values for

(d In yid /n V)t

iVlC Ldl Calculated Experimental

Cu 0 65 f-*- 0 251

^43

.83 (±0.30)

.38 (±0.25)

^ 0 6'^ (-!- 0 06 >

<- 1.21 (±0.13)

1.12 (±0.05)

Ag
Au

" Reference 20. ' Reference 21.

'• Reference 13. '' Reference 22.
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Discussion on "Fermi Surface Properties of the Noble Metals at Normal Volume and as a Function
of Pressure" by W. J. O'Sullivan, A. C. Switendick, and J. E. Schirber (Sandia Labs.)

K. H. Johnson (MIT): The deviation you find in the

Fermi surface of gold at the hexagonal face of the zone

is, I believe, due to relativistic effects which you have

not considered. We have carried out fully relativistic

band calculations on gold, and we find the relativistic

contributions very important.

W. J. O'Sullivan (Sandia Labs.): We are of course

aware of this. In the paper we make no bones about our

calculations on gold being more than qualitative. We
just constructed a potential, carried out the calculation,

and accepted the results. We made no attempt to adjust

the potential in order to provide better agreement with

Fermi surface data. Christensen [1] has included

relativistic effects to some extent in silver by construct-

ing a potential from the relativistic atomic Hartree-

Fock-Slater wave functions. He also gets very good

agreement with the Fermi surface data.

R. E. Watson (Brookhaven National Lab.): [In the

course of reviewing the papers, the Rapporteur (R. E.

Watson) had noted that there appears to be a subtle fea-

ture in the shape of the noble metal Fermi surface

necks which has not been reproduced by either numeri-

cal or analytic band descriptions to date. The following

comment refers to this.]

F. M. Mueller (Argonne National Lab.): Details of the

noble metal Fermi surfaces will be affected by whether

the potential outside the muffin tin sphere is kept con-

stant or not. A non-constant potential wiU affect things

because the belly orbit is largely of 5-like symmetry and

one would anticipate that it will sample the outside dif-

ferently than the p-like levels. That is, the outside

potential is different for states of odd symmetry than

for states of even symmetry, and you go continuously

from 5-like to p-like states as you go around toward L^.

I think this might be the source of the Fermi surface

deviation. It is something left out of the calculations up

until now.

J. Waber (Northwestern Univ.): The relativistic effects

to which Dr. Keith Johnson alluded, are perhaps more

important than may generally be realized. There is an

interaction between two forces. The direct relativistic

effect causes the s and p electrons to be attracted in

toward the nucleus and concomitantly, there is a move-

ment of the d bands outward radially because the

nuclear charge is screened more effectively by the s

and p electrons. I think that to a large extent this is one

reason why one sees the c?-bands in copper near the

Fermi surface, but one finds them well below the Fermi

level in silver. Finally, because of two relativistic ef-

fects, the tf-bands are near the Fermi level in gold; they

are driven up in energy by this indirect relativistic ef-

fect. In addition, they are separated and broadened by

spin-orbit couphng. These comments will illustrate the

importance of including relativistic effects in studying

metals with large atomic number, like gold.

[1] Christensen, N. E., Phys. Stat. Sol. 31, 635 (1969).
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Calculated Effects of Compression Upon the Band
Structure and Density of States of Several Metals'^

E. A. Kmetko

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

Energy bands were obtained self-consistently by the augmented plane wave method for the follow-

ing metals: Li, Cs, Ca, Sr, Ba, La, Ce, U, Pu, W and Fe. The density of states and the electronic charge

were resolved intos-, p-, d-, and/-like components. Under compression the charges associated with the

higher values of / increase, mainly at the expense of the 5-like component, and a more compact overall

distribution is thereby achieved. The present results indicate that such "electronic transitions" are of

general occurrence and probably play a significant role in determining the compressibility of metals.

Key words: Alkali and alkaline earth metals; augmented plane wave method (APW); cerium; com-

pressibility; electronic density of states; lanthanides.

1 . Introduction

This work is concerned with the band structure

changes caused by compression and with the con-

sequent effects upon the components of the density of

states (and associated band charge) as characterized by

the quantum number The present report is preHmi-

nary inasmuch as only twelve metals, all of them cubic,

have so far been investigated. They are: Li (bcc), Cs

(bcc), Ca (fee), Sr (fee), Ba (bcc). La (fee), Ce (fee), U
(bcc), Pu (fee), Pb (fee), W (bcc) and Fe (bcc). Because

of the large number of graphs that would be required if

complete results were to be presented for all twelve of

these metals, only the results for the five underlined

above will be given in detail. However, comparisons

will be drawn between each of the others and the most

appropriate one of the five selected for detailed presen-

tation, and the analyzed charge distributions for all will

be given in tables. Slater's augmented plane wave

(APW) method [1] was used in a self-consistent

manner to obtain the bands. The present investigation

is not greatly concerned with details of the band struc-

ture in the vicinity of the Fermi surface, but rather with

the overall or gross features that are pertinent to the in-

teratomic interactions, elastic properties, and the elec-

tronic transitions which occur under compression.

Thus, the nonrelativistic nature of the calculations is

likely to be of only minor consequence except, perhaps,

for U and Pu where the spin-orbit spUtting of the 5/

•Work performed under tlie auspices of the U.S. Atomic Energy Commission.

levels is of the order of 0.1 Ry and the velocity and Dar-

win corrections are far from negligible. Comparison of

the present results for Pb with those of Louck's

relativistic APW calculation [2] gives credence to this

notion.

There have been several investigations into the ef-

fects of compression upon the electronic structure.

Ham [3] , using the quantum defect method, calculated

bands at different interatomic distances for the alkali

metals. Sternheimer [4] , using Wigner-Seitz boundary

conditions, numerically solved the Hartree-Foek equa-

tion for Cs in an investigation of a possible s io d
electronic transition thought to cause the isomorphic

collapse observed at high pressure. Recently Berggren

[5] , using the statistical atom model, found increases

in c?-character resulting from compression of the metals

K through V. Royce [6] made what is probably the

most extensive investigation of the effects of compres-

sion upon electronic structure; he compared the depen-

dence of various calculated atomic orbital radii upon

the atomic number, Z, with the Z dependence of cor-

responding empirical radii at different stages of com-

pression. The observed compressibilities were thereby

correlated with the degree of stability of the electronic

structure under pressure. In particular, the low com-

pressibilities of the transition metals seemed to result

from the stability of the c?-orbitals.

In the present work no attempt to obtain a quantita-

tive correlation between the stability of the electronic

bands and compressibility was made. Nevertheless, as
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Table 1. Lattice constants, exchange scale factors and charge distributions as analyzed into s, p, d and f

components.

Metal
and

strueture

Linear
compres-

sion

%

Unit

cell

dimen-
sion

A

Charge inside APW sphere PIane wave charge outside APW sphere To tal charge per atom Ex-
change
potential

scale

factor
P d Total 5 P 1 s P /

Li bee 0.00 3.502 0 350 0 294 0 015 0 001 0 340 0 170 0 1.55 0 014 0.001 0 .520 0 449 0 029 0 003 0.820

Li bee... .5.0 3..326 0 336 0 302 0 015 0 001 0 346 0 170 0 160 0 014 0.001 0 506 0 4.69 0 09Q Au 009V7V7Z

Cs bee. 0.0 6.13 0 406 0 122 0 107 0 001 0 364
;

0 213 0 092 0 053 0.001 0 619 0 213 0 160 0 002 0.690

Cs bee... .5.0 5.82 0 384 0 1 15 0 125 0 001 0 375 0 219 Q 093 0 062 0.001 Q 602 208 (J 1 87 0 00'^uuo

Ca fee... 0.0 5.565 0 635 0 419 0 397 0 007 0 545 0 214 0 212 0 113 0.006 0 849 0 631 0 509 0 013 0.717

Ca fee... 5.0 5.287 0 596 0 371 0 467 0 007 0 559 0 223 0 199 0 132 0.006 0 818 0 569 0 598 0 01 3u 1

0

Sr fee 0.0 6.0726 0 650 0 322 0 459 0 008 0 560 0 230 0 178 0 1452 0.007 0 879 0 500 0 604 0 015 0.703

Sr fee ... 5.0 5.7690 0u 6?a. 0 •J LjL n 008 0 •JU ^ n 0u 1681 uo Au 1 68i uo 0.007 Au OiJU Au Au DOU Au 01

Ba bee. 0.0 5.010 0 490 0 081 0 691 0 014 0 763 0 371 0 044 0 287 0.014 0 807 0 325 0 978 0 028 0.690

Ba bee... 15.0 4.008 n loo nu UOZ 1
J. UO.J AU U.jV A Au 1U._)

Au UZ.J Au 4-01 0.043 A
\)

9'^8Z.DO Au Uoo 1 00.J
Au

R I a fee 0.0 5.285 0 286 0 113 1 341 0 547 0 669 0 161 0 066 0 389 0.053 0 447 0 179 1 730 0 600 0.693

p La fee. 5.0 5.021 Au U 1
J

i\u oo4- Au O.J i u UVo A uov A 0.032 Au ozo u ioD z 1 90iZU u

Y VjC • 0.0 5.1612 0 281 0 103 1 294 1 6.53 0 662 0 155 0 057 0 375 0.075 0 436 0 159 1 669 1 730 0.696

a'Ce fee. 10.0 4.660 Au 1 ^0 Au L UV 11 010 1
1

Au 77R Au Au u 04- / 0.120 u 9/inZ4-U Au Z 91 nz 1 u 1
1

y U bee.. 0.0 3.524 0 057 0 079 1 159 3 757 0 895 0 040 0 009 0 539 0.318 0 097 0 088 1 695 4 092 0.690

y U bee.. 5.0 3.418 0 omU04. 1 08 1
i 060 0 89Q nu ^04- nu UO.J AU OZ 7 0.340 Au 088uoo u 1

1

1 A
4- ^M107

8 Pu fee. 0.0 4.637 0 057 0 068 0 847 6 309 0 624 0 031 0 009 0 325 0.257 0 088 0 078 1 172 6 567 0.690

8 Pu fee. 5.0 4.405 0 059 0 053 0 811 6 407 0 575 0 037 0 013 0 304 0.221 0 095 0 066 1 115 6 627

Pb fee... 0.0 4.9057 1 428 1 550 0 224 0 063 0 705 0 164 0 395 0 103 0.043 1 592 1 945 0 350 0 106 0.699

Pb fee... 5.0 4.6603 1 351 1 513 0 2.56 0 076 0 795 0 183 0 421 0 140 0.051 1 530 1 934 0 396 0 127

W bee... 0.0 3.15 0 350 0 352 3 914 0 069 1 3643 0 232 0 247 0 816 0.069 0 582 0 600 4 730 0 138 0.706

W bee... 5.0 2.84 0 306 0 322 3 783 0 106 1 460 0 211 0 188 0 956 0.104 0 517 0 510 4 730 0 210

Fe bee... 0.0 2.8606 0 397 0 375 6 286 0 031 0 902 0 200 0 243 0 434 0.033 0 597 0 618 6 719 0 063 0.733

Fe bee... 5.0 2.7178 0 378 0 379 6 230 0 036 0 967 0 203 0 254 0 471 0.039 0 580 0 632 6 701 0 075

will be seen, considerable insight concerning the

mechanisms underlying compressibility, beyond what

has been provided by the work of Royce and particu-

larly with respect to metals of the rare-earth type,

seems to have been gained.

2. Method

The calculations for either 256 or 128 k-vectors in the

reduced Brillouin zone, depending upon whether the

structure was fee or bcc, were made through use of a

modified version of an APW program developed by

Wood [7] and adapted to the self-consistent field

method by DeCicco [8] . The self-consistency criterion

was 0.002 Ry. For most of the metals the core charge

was held fixed through the calculations, but in metals

where the band charge contains about a tenth, or more
of an/ electron, it was found imperative to use a "soft"

core. The charge distribution in such a core is atomic,

and the configuration used in generating it is derived

from the analyzed charge distribution appearing in the

previous iteration (see below). This treatment is neces-

sitated by the sensitivity of the core states as well as of

the band states to even slight charges in /-character.

The sensitivity is also illustrated in another way. In

generating a potential for the (A'^ + l)-st iteration, only

about 10% of the potential from the A-th iteration can

be used without causing instability where /-electrons
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r A H r A H

Figure 1. Energy bands along [002] direction for bcc Cs in the

normal state and under 5% linear compression.
Energies are not absolute.

FA X r A X

Figure 2. Energy bands along [002] direction for fee y-Ce and
a'-Ce, for which lattice constants are 5.16 A and 4.66 A,
respectively.

Energies are not absolute.

are involved. In most metals a feedback of 50% causes

no difficulty. The number of iterations necessary to

achieve self-consistency is variable, from three to as

many as ten, and depends upon several factors which
wiU not be mentioned here.

Starting potentials were obtained from a superposi-

tion of free atomic charge distributions by using the

Lowdin technique [9]; the distributions were calculated

from Hartree-Fock-Slater solutions obtained by using

a variant of the program written by Herman and Skill-

man [10]. The local exchange potential was a scaled

version of the Slater approximation [11], in which the

scale factor, a, was used as a variational parameter in

minimizing the total energy of the free atom. For all

atoms through Lw, a lies between 1.0 and about 0.68

[12]. The values of a used for the metals in this study

are given in table 1.

Even in free atoms the approximation of the local

exchange by a single-parameter expression is ques-

r A X r A X

Figure 3. Energy bands along [002] direction for fee Pb in the

normal state and under 5% linear compression.
Energies are not absolute.

r A H r AH
Figure 4. Energy bands along [002] directionfor 6-Pu in the normal

state and under .5% linear compression.
Energies are not absolute.

tionable. In a crystal the use of such an exchange,

which is optimized for the free atom, is subject to even

greater criticism because of the moderate sensitivity of

a to changes in potential near the "edge" of the atom

when the latter self-energy correction [13] is switched

on or off [12]. Nevertheless, its use seems justifiable if

only because of its improved character; the virial

theorem is satisfied in the case of the free atom [14] for

a value of a only slightly smaller than that which

minimized the Hartree-Fock total energy. The use of

the original Slater exchange (a = 1.0) causes the 4/"

band in both La and Ce to lie several tenths of a Ry
below the bottom of the 65 band whereas the optimized

exchange places this band at a physically realistic posi-

tion, i.e., above the 65 band.

Since the APW's used have associated values of/ as

high as 12, it is possible to resolve the band charge, and

the density of states as well, into components cor-

responding to different values of /. The plane wave
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Figure 5. Energy bands aloag {002\ direction for bcc Fe in the

normal state and under 5% linear compression.

Energies are not absolute.

0.4 -0.4

RYDBERGS

Figure 8. Density of states in toto and as resolved into s, p, d, and
f components for charge inside the APW sphere, shown for normal
and compressed Pb.

0.2 -0.2 0 0.2

RYDBERGS

Figure 6. Density of states in toto and as resolved into s, p, and d

components for charge inside the APW sphere, shown for the normal
and compressed bcc Cs crystal.

0.2 0.4 0
RYDBERGS

Figure 7. Density of states in toto and as resolved into s, p, d, and
f components for charge inside the APW sphere, shown for normal

(y) and compressed {a.') fee Ce.

0 -04
RYDBERGS

Figure 9. Density of states in toto and as resolved into s, p, and d

components for bcc Fe in normal and compressed crystals.

charge can also be analyzed as to its 5, p, d and /-

character, as will be discussed later.

Smoothing of the density of states curves was

achieved by averaging over five histograms, the origin

of each having been shifted slightly relative to those of

the others.

3. Results

The energy bands for both the normal lattice con-

stants and for those decreased as indicated are shown

along the [002] direction in figures 1 through 5, for Cs,

Ba, Pb, Fe and Pu, respectively. The corresponding

densities of states in toto as well as resolved into 5, p, d,

f and plane wave components are given in figures 6

through 9. Table 1 contains the resolved band charges

for all the metals listed. In addition, table 1 includes the

s, p, d and / content for the plane wave charges. The
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analysis was achieved by assuming that the /
components in the plane waves are mixed in the propor-

tions as are the charge distributions on the APW
sphere surface, where the external plane waves are

joined onto the interior wave functions.

The effects of compression upon the band charges,

as shown in table 1, may be summarized as follows: (1)

The components for which / > 0 generally grow at the

expense of the 5-like charge, the d component gaining

the most except in Li, U and Pu; (2) In La and Ce /
character is weakened while in U and Pu it is

strengthened; (3) Where the/ character is rather trivial,

i.e., amounts of less than about 0.1 electron per atom,

it remains so; (4) The total d character in W and Fe is

very stable as indicated by the small absolute changes.

The density of states in figures 6 through 9 show how
the total as well as the resolved charges are distributed

in energy for both normal and compressed states. The
densities shown for the s, p, d and/ components pertain

only to the wave functions inside the sphere inasmuch

as it was not possible to analyze the plane wave func-

tions.

For Cs we see in figure 6 that the d character falls off

rapidly below the Fermi energy. This reflects the in-

teraction between the 65 and 5d bands which is partly

due to the symmetry requirement that the bands ac-

tually touch at point //(002) as well as at other points on

the zone boundary. The increase in d character under

compression is caused by the slight band broadening

apparent in figure L
Referring to Li in table 1, it is clear that, because the

interaction is between the 25 and 2p bands, the very

small d character is unchanged by the compression;

here it is the p-like charge which gains. The changes

calculated for the alkahne earths Ca and Sr are

somewhat similar to that occurring in Cs. In both of

these metals there is a comparatively large d

component which is enhanced by pressure, the

amounts of the other types of charge being roughly

similar to the corresponding ones in the alkalis. In Ba
the /-character becomes significant at a much higher

compression, due to the broadening of the 4/band.

In La the 4f band lies between the 65 and 5c? bands

(not shown), the symmetry requirement at (002) causing

strong interactions to occur between all three bands.

Consequently there is over a half of an/ electron in the

band charge. Compression causes the /-like charge to

diminish. A similar effect occurs in Ce (fig. 2). Here the

4/" and 65 bands are closer together than in La and there

is no double degeneracy at (002) to tie them together.

As shown, when Ce is compressed the 5c? band
broadens so as to strongly perturb the lowest member

of the 4/ band and by distorting this branch, impart d-

character at the expense of /-character. The situation

with respect to band interaction in La is similar [15].

It is possible that this mechanism will remain valid

even in the presence of magnetic interactions which are

not included here. On the other hand, in both U and Pu
the /-character which is very strong increases under

compression. The bands for Pu are shown in figure 5.

Fe has a very stable band structure, as is quite obvi-

ous in figures 4 and 8 and in table 1. A similar result is

found for W. In both of these metals, most of the charge

is d-like and very stable. The relative changes in the

other charge components with pressure follows the

general pattern.

Pb under compression gains some d and/-character

at the expense of the very large s and p-character. The
s and p components in the normal metal (including that

in the plane waves) are only sHghtly smaller than in the

free atom. Consequently, self-consistency was reached

very rapidly for this metal. The instability which does

occur seems to be attributable to the proximity of the

6d and 5/ bands. At a hnear compression of 15% (not

shown), the density of states is drastically altered and

looks much like a serrated parabola, as might be found

in a metal having free electrons [ 16]

.

4. Discussion and Conclusions

As a metal is squeezed, the charge distribution in

each atomic cell necessarily becomes more compact.

This occurs in two ways: (1) by simple distortion of the

radial wave functions, and (2) by redistribution of

charge among the various component distributions cor-

responding to different values of the quantum numbers

n and /. The results presented herein clearly demon-

strate the general features of charge redistribution

under compression. How each individual component is

affected is determined by details of the band structure.

In general, those bands which contain the valence elec-

trons and those which lie close enough in energy to per-

turb them differ by no more than 1 in their values of re

+ /. Thus the degree of compactness of the cor-

responding atomic-like charge distributions increases

with /. In Ce, for example, the values of n + / for the

4/ 5d, and 65 bands are 7, 7, and 6, respectively.

In metals beginning at about K, the presence of d-

bands begins to be felt. Such bands are either occupied

to some extent or act perturbatively to produce d-

character in other bands. Probably the rf-bands are

responsible for the much greater compressibilities ob-

served for K, Rb and Cs than for Li and Na [ 17] . In Pb,

one of the most compressible metals, the high distorta-
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Table 2. Calculated exchange splittings and relativistic correctionsfor atoms ofCe and U.

Ce(6sa) (6iv3) (4/|3)- U(7sa) (75/3) (6(/^) (.5//3)-'

4/ 6i- bd 7s

Spin-orbit splitting (Ry)" 0.0295 0.0914 0.0.549

Velocity correction (Ry)^ + .0300 -0.0839 -.1127 - .0662 -0.2432

Darwin correction (Ry)" -.0011 - .0465 -.0022 -.0007 + .1328

Exchange splitting (Ry)'' -.1.540 -.0104 -.2019 -.1297 -.05332

Perturbation calculations by Herman and Skillman [10]. Calculated by the author in Hartree-Fock-Slater approximation with optimized statistical

exchange potential [12].

bility of the very plentiful s-like charge plus the availa-

bihty of d and /-like states probably act together to

produce the large compressibility.

Only two of the transition metals, Fe and W, have so

far been considered. However, the stability of their

band structures is probably characteristic of transition

metals, apparently stemming from the large d-

component in the charge distribution, and is illustrated

in their rather small compressibilities. This stability

probably results from the difficulty of significantly al-

tering charge distributions that are already quite com-

pact due to their large fl?-character.

The alteration of/-character by compression requires

special consideration. In metals lying below La the /-

character is very small, of the order of 0.01 electron per

atom or less, and is usually increased rather trivially by

compression. Inasmuch as there are no /-bands in-

volved in these metals, this behavior merely reflects the

use of APWs having associated values of / as high as

12.

The behavior of the two lanthanides. La and Ce, is

diametrically opposed to that of the actinides, U and

Pu, regarding the way /-character is altered by com-

pression. Considering first the case of 4/ electrons, it

seems paradoxical that, under compression, charge

flows out of a very compact /-like distribution into a

more extended c?-like one. This is deceptive, however.

The effective radius of the atom is quite sensitive to the

amount of 4/ charge. As the charge is expelled, the

atom shrinks. The empirical radii of rare-earth atoms

are roughly 20% greater in the divalent than in the

trivalent form, because of the difference in screening

by 4/ electrons. The effect of the change in/character

upon the atomic radius, as calculated for Ce metal, is

large enough to account for a major part of the observed

compressibility. This was shown by calculating for a

free atom, the effect of a change in configuration from
(4/)i '3 (5(f)' «' (65)"« (6p)"i« to (4/)'-'" (5df-'' (65)"-24

(6p)" '^ which correspond to the calculated charge dis-

tributions in table 1. The radius of the outermost 5d

maximum is reduced at the rate of 14.8% per/-electron

removed. Thus, the band structural changes and the

high compressibilities of La and Ce are apparently

caused by the softness of the atom, which in turn stems

from instability of the 4/ orbitals under compression. To

extend this mechanism to the other lanthanides is quite

tempting, but is inadvisable inasmuch as little is known
concerning band structures in those metals.

The results presented here for La and Ce are only

tentative, inasmuch as exchange splitting and

relativistic effects are not included. As table 2 shows,

the exchange splitting of the 4/ state in the Ce atom is

of far more consequence than the relativistic cor-

rections. Assuming that all of the corrections shown

will be of similar magnitude in the metal, there should

be a separation between the 4/q: and 4/)S bands of about

1 eV. The perturbing, or hybridizing, effect of the 5c?

band should be similar to that indicated by the present

results for Ce in spite of the large exchange splitting ef-

fect, though the band change distributions wiU be

somewhat different.

U and Pu gain /-character under compression, as is

indicated by these calculations. The relative change is

small and the c?-character loses correspondingly. In ac-

tinides, at least through Am, the 5/ orbital is not so well

buried as the 4/" orbital in a lanthanide. This is illus-

trated as follows: If we denote by RS the APW sphere

radius (approximately equal to the effective atomic

radius in a metal) and by r/ the radius of the calculated

principal maximum of the /-orbital, RS/r/ is 4.87 for Ce,

2.90 for U, and 3.2 for Pu. In U and Pu the 6d and 7s

principal maxima lie outside the APW sphere, whereas
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in Ce the 5d orbital has its maximum just inside the

sphere. Consequently, (1) the 5/ screening in actinides

is not nearly so effective as that of the 4/" charge in the

lanthanides, and (2) the Coulomb interaction energy in-

volved in squeezing the 6d and 75 charge into an atomic

cell is so large that the corresponding bands lie well

above the 5/ bands in both metals. These calculations

indicate that the 6d and 75 interactions with the 5/band

diminish under compression because both the 6d and

the 75 rise relative to the 5/. The compressibility of 8-Pu

is about three times as large as that of y-U [18] , so that

this property does not seem to reflect band structural

changes here as well as in many other metals.

The effects of exchange and relativity in the lower ac-

tinides U and Pu will be somewhat different than in Ce,

inasmuch as the 5/ band is several times broader than

the 4/ band in Ce and the spin-orbit splitting is also

much greater (table 2). The actinides beyond Am are

chemically similar to the lanthanides, presumably

because the 5/ shell is more deeply buried in them than

in the lower actinides. Thus, one might anticipate that

the calculated compressive effects among the higher

actinides would resemble those obtained for La and Ce.

These results and conclusions compare with those of

Royce [6] as follows: (1) In both cases the transition

metals show a high degree of stability under compres-

sion; (2) The present work suggests that the f ^ d

rather than the d—*/ transitions are probably responsi-

ble for the high compressibilities of lanthanide metals;

(3) Rather than an absence of 5/ electrons in U and Pu,

as suggested by Royce, the present results show large

5/band charges, which, because of their larger spatial

extension relative to that of the 4/ charge in the lantha-

nides, are actually augmented under compression at

the expense of d charge.

The present work also indicates that charge redis-

tribution under compression is of general occurrence

and must be considered in conjunction with orbital sta-

bility in discussing compressibility.
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Discussion on "Calculated Effect of Compression Upon the Band Structure and Density of States

of Several Metals" by E. A. Kmetko (Los Alamos Scientific Laboratory)

D. J. Fabian (Univ. of Strathclyde): Willens and co-

workers have studied the effect of pressure on soft x-

ray emission from copper. They conclude that the

variation of deformation potential throughout the band

will give a particular effect at certain critical points,

such as the Fermi surface and Van Hove singularities.

Would Dr. Kmetko like to comment on this?

E. A. Kmetko (Los Alamos Scientific Lab.): I believe

the effect could be quite serious at the Fermi level.

However, I was specifically directing my attention to

the overall change in hybridization which occurs under

pressure. The main effect there on copper would be

similar to iron. Very little overall change would occur

in dehybridization.
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Optical Properties and Electronic Density of States

M. Cardona^

Brown University, Providence, Rhode Island and DESY, Hamburg, Germany

The fundamental absorption spectrum of a solid yields information about critical points in the opti-

cal density of states. This information can be used to adjust parameters of the band structure. Once the

adjusted band structure is known, the optical properties and the density of states can be generated by

numerical integration. We review in this paper the parametrization techniques used for obtaining band

structures suitable for density of states calculations. The calculated optical constants are compared

with experimental results. The energy derivative of these optical constants is discussed in connection

with results of modulated reflectance measurements. It is also shown that information about density of

empty states can be obtained from optical experiments involving excitation from deep core levels to the

conduction band.

A detailed comparison of the calculated one-electron optical line shapes with experiment reveals

deviations which can be interpreted as exciton effects. The accumulating experimental evidence point-

ing in this direction is reviewed together with the existing theory of these effects.

A number of simple models for the complicated interband density of states of an insulator have

been proposed. We review in particular the Penn model, which can be used to account for response

functions at zero frequency, and the parabolic model, which can be used to account for the dispersion of

response functions in the immediate vicinity ot the tundamental absorption edge.

Key words: Critical points; density of states; dielectric constant; modulated reflectance; optical

absorption.

1 . Optical Properties and One-Electron Density
of States

The optical behavior of semiconductors and insula-

tors in the near infrared, visible, and ultraviolet is

determined by electronic interband transitions. An ad-

ditional intraband or free electron contribution to the

optical properties has to be considered for metals. We
shall discuss here the relationship between the inter-

band contribution and the density of states. The inter-

band contribution to the imaginary part of the dielectric

constant can be written as (in atomic units, ^ = 1, m =
l,e=l):

e/(w)=T^() dSk- (1)
4770) J J = , IV ^We/

I

where (Oef^oif—oyf is the difference in energy between
the empty bands (e) and the filled bands (f). The spin

multipUcity must be included expUcitly in eq (1). The

•An invited paper presented at the 3d Materials Research Symposium. Elcclronic Density
of Slates. November 3-6, 1969. Gaithersburg. Md.

'Supported by the National Science Foundation and the Army Research Office. Durham.
^ John Simon Guggenheim Foundation Fellow.

oscillator strength tensor F^^ is related to the matrix ele-

ments of p through F^^=2< f|p|e>< e|p|f>aje/"'.

The Bloch functions are normalized over unit volume.

Degenerate statistics have been assumed in eq (1)

and spatial dispersion effects have been neglected.

It is customary to take the slowly varying oscillator

strength out of the integral sign in eq (1) and thus write:

eM=^FN,{<^) (2)

where F is an average oscillator strength and Nrf the

combined optical density of states.

Structure in €;(&>) (eq (1)) appears in the neighborhood

of critical points, where V|^a)e/=0. Such critical points

can be localized in a small region of k space or can ex-

tend over large portions of the Brillouin zone over

which filled and empty bands are parallel (sometimes

only nearly parallel). Once the critical points which cor-

respond to observed optical structure are identified in

terms of the band structure through various devious

and sometimes dubious arguments, their energies can



be used to adjust parameters of semiempirical band

structure calculations.

Four different parametric techniques of calculating

band structures have been used for this purpose: the

empirical pseudopotential method (EPM) [1], the k • p
method [2] , the Fourier expansion technique (FE) [3]

,

and the adjustable orthogonalized plane waves method

(A0PW)[4].

Once reasonably reliable band structures are known

it is important to calculate from them the imaginary

part of the dielectric constant e,(aj) and to compare it

with experimental results so as to confirm or disprove

the initial tentative assignment of critical points and

thus the accuracy of the band structures. Rich struc-

ture is obtained in both experimental and calculated

spectra and hence a rather stringent test of the accura-

cy of the available theoretical band structure is in prin-

ciple possible.

In order to calculate numerically the integral of eq (1)

it is necessary to sample eigenvalues and eigenfunc-

tions at a large number of points in the Brillouin zone.

The amount of computer time required for solving the

band structure problem with first-principles methods

(OPW, APW, KKR) at a general point of the Brillouin

zone makes such methods impractical for evaluating eq

(1). The parametric methods (EPM, k • p, FE, but not

AOPW) require only the diagonalization of a small

matrix (typically 30 X 30) and hence it is possible to

sample the band structure at about 1000 points with

only a few hours of computer time. Cubic materials, in

particular those with Ta, O, and Oh point groups, are

simple in this respect: symmetry reduces the sampling

required for the evaluation of eq (1) to only 1/48 of the

BriUouin zone. Hexagonal and tetragonal materials

have relatively larger irreducible zones and hence a

larger number of sampling points is necessary if the

resolution of the calculation is not to suffer. Once the

band structure problem has been solved for aU points

of a reasonably tight regular mesh, the bands and

matrix elements at arbitrary points can be obtained by

means of linear or quadratic interpolation.

The method of Gilat and coworkers [5] has become

rather popular for the numerical evaluation of eq (1)

[4,6]. In the case of a cubic material the Brillouin zone

is divided into a cubic mesh and the band structure

problem solved at the center of these cubes (sometimes

a finer mesh is generated by quadratic interpolation

from the coarser mesh [6]). Within each cube of the

mesh the bands are linearily interpolated and approxi-

mated by their tangent planes. The areas of constant

energy plane within each cube corresponding to a given

(lief are added after multiplying them by the correspond-

ing oscillator strength and thus the integral of eq (1) is

obtained.

The real part of the dielectric constant €r can be ob-

tained from €i by using the Kramers-Kronig relations.

It is also possible to obtain €r and €, simultaneously by
calculating the integral:

with 7/ small and positive. For tj
—> + o the imaginary

part of eq (3) coincides with eq (1). Equation (3) can be

evaluated with a Monte Carlo technique. Points are

generated at random in k space within the Brillouin

zone and the average value of the integrand for these

points calculated. The process can be interrupted when
reasonable convergence as a function of the number of

random points is achieved [7,8]

.

We show in figure 1 the results of a calculation of €;

from the k • p band structure of InAs with the method

of Gilat and Raubenheimer [6]. The band structure

problem, including spin-orbit effects, was solved at

about 200 points of the reduced zone (1/48 of the BZ).

We have indicated in this figure the symmetry of the

critical points (or of the approximate regions of space)

where the structure in €, originates. The experimental

€; spectrum, as obtained from the Kramers-Kronig anal-

ysis of the normal incidence reflectivity [9], is also

shown. The agreement between calculated and experi-

mental spectra is good, with regards to both position

and strength of the observed structure, with the excep-

0 2.0 4.0 6.0 8.0

ENERGY (eV)

Figure 1. Imaginary part of the dielectric constant of InAs as

calculated from the k • p method (
) [6] and as determined

experimentally (—-) [9]. The group theoretical symmetry assign-

ments were made with the help of the calculated isoenergy plots.
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tion of the position of the E2 peak. This is to be at-

tributed to an improper assignment of the E2 peak when
the 6 adjustable band structure parameters were deter-

mined. The E2 peak had been attributed, following the

tradition, to an X critical point while it is actually due

to an extended region of k space centered around the

U points [8]. It should be a simple matter to readjust

the band structure parameters to lower the energy of

the calculated E2 peak by about 0.5 eV; in view of the

large amount of computer time required to recalculate

the energy bands this has not been done. The structure

calculated around 6 eV, due mostly to spin-orbit

splitting of the L3 levels, has not yet been observed

experimentally.

The conventional experimental determination of e,

from normal incidence reflection data [9] suffers from

considerable inaccuracy: to the experimental error

produced by possible improper surface treatment and

contamination one has to add the uncertainty in the

high-energy extrapolation of the experimental data

required for the Kramers-Kronig analysis. Some of

these difficulties are avoided by comparing the

calculated reflectivity spectra (obtained from e with

Fresnel's equation) with the experimental results. This

is done in figure 2 for GaSb: the experimental data [ 10]

have not been Kramers-Kronig analyzed because of the

small range of the energy scale. Two calculated spectra

have been plotted in this figure: one obtained from the

k • p band structure [6] and the other obtained from a

0 9

0 8

0.7

0 6 -

0.5 -

04 -

0 3-

non-local pseudopotential calculation with 14 adjusta-

ble parameters [11]. The discrepancy between experi-

mental and calculated curves at high energy, a common
feature of many zincblende-type materials [12], has

two origins: the measured reflectivity should be low

because of increased diffuse reflectance at small

wavelengths while the calculated one should be high

because of the finite number of bands included in the

calculation. In this region where er— 1 is small, the con-

tribution to Cr of transitions not included should lower

the calculated reflectivity.

During the past few years a lot of activity has been

devoted to the measurement and analysis of differential

reflection spectra obtained with modulation techniques

[13-15]. The wavelength (or photon energy) derivative

spectra [14] should permit an accurate analysis of the

line shapes of the spectra of figures 1 and 2. We show

in figure 3 the temperature modulated reflection spec-

trum (thermoreflectance) of GaSb [15]: it has been

shown that for the III — V materials [15] this spectrum

is very similar to the photon energy derivative spec-

trum, difficult to obtain experimentally. The cor-

responding photon energy derivative spectrum ob-

tained from the calculation of figure 2 is also shown in

figure 3. The calculated and experimental shapes of the

El, El + Ai peaks show discrepancies of the type at-

tributed in section 2 to exciton interaction. Derivative

spectra for other germanium- and zincblende-type

materials have been calculated by Walter and Cohen

[ 12] and by Higginbotham [ 16]

.

The methods to calculate band structures from first

principles, without or with only a few adjustable

parameters (one [17] or three [4]) have recently

achieved considerable success. However the calcula-

1.0

0.5

< 0

-05

THERMOREF. 80°K
CALCULATED GaSb

Figure 2. Reflectivity of GaSb calculated from the k - p [6] and

from a pseudopotential band structure [II]. Also, experimental

reflectivity [10].

Figure 3. Measured thermoreflectance spectrum of GaSb [15]

compared with the energy derivative of the spectrum offigure 2 [16].
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tion of energy bands at one general point of the BZ
requires a lot of time so as to make density of states cal-

culations prohibitive. Moreover, the evaluation of the

matrix elements required for eq (1) is difficult with first

principles techniques. It is nevertheless possible to use

first principles calculations at a few high-symmetry

points of the Brillouin zone to adjust the parameters of

semiempirical band structures from which the large

number of sampling points required for the evaluation

of eq (1) can be obtained with relative ease. The k • p
technique has proved particularly useful in this respect

[2,18,19] . Matrix elements of p can be easily evaluated

from the eigenvectors in the k • p representation. Spin-

orbit interaction can also be easily included. This k • p
procedure has been applied to the relativistic OPW
band structure calculated by Herman and Van Dyke for

gray tin [ 19] . Figure 4 shows the reflectivity of gray tin

calculated by this procedure with the method of Gilat

and Raubenheimer together with experimental results

[20]. Comparison with other experimental results for

the germanium family suggests that the high-energy

end of the measured spectrum is too low, probably due

to surface imperfections in the delicate crystals, grown

from mercury solution, which were used for this experi-

ment.

The k • p fitting procedure has also been applied to a

first principles relativistic APW calculation of the band

structure of PbTe by Buss and Parada [7]. Figure 5

shows the reflectivity of PbTe obtained by this method

I
I t tl t t I t t It t tl

1.0 2 0 3 0 4.0 5.0

ENERGY (eV)

Figure 4. Reflectivity of gray tin calculatedfrom a first principles

OPW band structure fitted with the k • p method [19]. Also

experimental results [20].

with a Monte Carlo sampling technique and figure 6 the

absorption coefficient, both compared with experimen-

tal data [7,21,22]. In both cases the semiquantitative

agreement between experimental and calculated data

is remarkably good in view of the absence of the ad-

justable parameters. The calculated reflectivity is, at

high energies, considerably higher than the experimen-

tal one, as discussed earlier for other materials. The E]

peak of the experimental reflectivity spectrum appears

split in the calculated spectrum, possibly because of in-

accuracies in the first-principles band structure. The
calculated Ei structure appears due mostly to transi-

tions along the 2 direction. The experimental Ei

structure has been assigned [23] to the lowest gap

along S. The calculated E-; peak corresponds to an ex-

tended region of the BZ without definite symmetry, as

inferred from electroreflectance measurements [23].
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Figure 5. Reflectivity of PbTe calculatedfrom the APfF-k p band

structure [7], compared with experimental results [21 ].

12 3 4 5

eV

Figure 6. Absorption coefficient PbTe calculated from the APW-
k p band structure, compared with experimental results [21 . 22].
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We have so far discussed optical constants for cubic

materials. While calculations for materials with lower

symmetry require more computer time, one has the

extra reward of being able to predict the experimentally

observed anisotropy. Figure 7 shows the two principal

components of e, for trigonal Se as calculated by San-

drock [24] from the pseudopotential band structure.

The similarity between calculated and experimental

results [25], also shown in figure 7, is especially re-

markable in view of the method used to determine the

pseudopotential parameters: they were determined

from the pseudopotential parameters required to fit the

optical structure of ZnSe. Only a small adjustment was

performed so as to bring the calculated fundamental

gap (1.4 eV) into agreement with the experimental one

(2.0 eV). The dielectric constant of antimony (trigonal)

for the ordinary and the extraordinary ray has also been

calculated by a similar procedure [26]

.

The reasonable agreement obtained between experi-

mental and calculated optical constants suggests the

use of the corresponding band structure to determine

the individual density of states D(ct)): the main work,

that of diagonalizing the Hamiltonian at a large number

of points, has already been done. The programs

required to calculate individual density of states are

very similar to those used for the evaluation of eq (1):

ojef must be replaced by the single band energies and

Figure 7. Imaginary part of the dielectric constant of trigonal

selenium for both principal directions ofpolarization of the electric

field vector E as calculated from the pseudopotential band struc-

ture (histograms) [24] and as determined experimentally [25].

F^^must be removed. As an example we show in figure

8 the individual density of states of the 3 highest

valence bands (six including spin) and the 3 lowest con-

duction bands of gray tin [19]. Direct information

about the individual density of states can be obtained

by a number of methods discussed in this conference.

We mention, in particular, optical techniques involving

transitions from deep core levels to the conduction

band or from the valence band to temporarily empty

core levels (soft x-ray emission) [27]. If the sometimes

questionable assumption of constant matrix elements

is made, the corresponding spectra represent the con-

duction (for absorption spectra) and the valence (for

emission spectra) density of states because of the small

width of the core bands. We show in figure 9 the densi-

-VALENCE BANDS CONDUCTION BANDS—

-4.0 -2,0 0 2 0

ENERGY (eV)

4.0 60

Figure 8. Individual density of states for gray tin, obtained from
the OPW-k. p band structure [19]. The top of the valence band is

at 0 eV. The lowest valence band is not included.

0 calculated |Ge)

D calculated |Ga Sb|

e, measured

Figure 9. Conduction density of states calculate for Ge [4] andfor

GaSb [6] together with thefunction eid)'^ obtainedfrom experimental

data in the vacuum uv [28] {the horizontal scale for the e,a)^ curve

has been shifted by 29.5 eV).
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ty of states of the conduction band of Ge calculated by

Herman, et al. [4] and the corresponding density of

states for GaSb as obtained by the k • p method [6].

The densities of states for both materials are very simi-

lar because of the similarity of their band structures.

We also show in figure 9 the quantity e,a)^ obtained by

Feuerbacher et al. [28] for Ge in the region of the M4,5

edge. The origin of energies has been shifted so as to

make a comparison with the conduction density of

states possible: e,a>^ should be proportional to D(co)

under the assumption of constant matrix elements of p.

While the rich structure of the calculated density of

states is not seen in the e,aj^ curve, this curve is

reproduced quite well if the density of states is

broadened so as to remove the fine structure. The
required lifetime broadening of about 1 eV is not un-

reasonable for the M4,5 transitions. Using eq (2) with Nd
replaced by the conduction density of states we obtain

an average oscillator strength at the maximum of e,a>^F

= 0.15. This oscillator strength corresponds to the 20

4d electrons per unit cell and hence it should be divided

by 20 to obtain the average oscillator strength per d-

band. If one reasons that the transitions from 10 of the

20' d bands to a given conduction band are forbidden

because of the spin flip involved while transitions from

5 of these 10 bands are forbidden or nearly forbidden by

parity, one finds for the average oscillator strength of

each one of the 5 allowed bands F = 0.03, which cor-

responds to a matrix element of p = 0.13 (in atomic

units): this value is quite reasonable in view of the fact

that the typical valence-conduction matrix element is

0.6. The small value of this matrix element explains

why the d core electrons are negligible in the k • p
analysis of the valence and conduction masses.

2. Exciton Effects

We have devoted section 1 to a comparison of experi-

mental optical spectra with calculations based on the

one-electron band structure. Exciton effects, i.e. the

final state Coulomb interaction between the excited

electron and the hole left behind, are known to modify

substantially the fundamental edge of semiconductors

and insulators [29]. Exciton-modified interband spec-

tra seem also to occur in metals at interband edges

which have the final state on the Fermi surface [30].

Experimental evidence for these effects is reported at

this conference in the paper by Kunz et al.

We shall now discuss the question of exciton effects

above the fundamental edge of insulators and semicon-

ductors with special emphasis on the zincblende fami-

ly. As mentioned in section 1 the gross features of these

spectra are explained by the one-electron theory. The
exciton interaction is responsible, at most, for small

details concerning the observed Une shapes. It is

generally accepted [31,32] that the exciton interaction

suppresses structure in the neighborhood of M3 critical

points: the Coulomb attraction with negative reduced

masses is equivalent to a repulsion with positive

masses. Such a repulsion smooths out critical point

structure: no M3 critical point has been conclusively

identified in the experimental spectra. The Ei and Ei +
Al critical points of figures 1—3 are of the Mi variety.

Hence the line shape of the corresponding e, spectrum

should be characterized by a steep low-energy side and

a broader high-energy side. Figure 10 shows the shape

of the El peak observed at low temperature by Marple

and Ehrenreich [33] and by Cardona [34]. In order to

avoid effects due to the overlap of the Ei and the Ei +
Al peaks it has been assumed that they have exactly the

same shape but shifted by 0.55 eV. The contribution of

3.3 3.4 3.5 3.6

eV

Figure 10. Contribution of the Ei gap to et in CdTe as measured

at low temperatures by Marple and Ehrenreich [33 ] and by Cardona

[34]. Also calculation by Kane [32] using the adiabatic approxima-

tion.

only El has been extracted from the measured e;

spectrum and displayed in figure 10. It is clear from

this figure that the Ei peak is steeper at high energies

than at low energies, against the expectations for an Mi
peak. Also in figure 10 we show the results of a calcula-

tion by Kane [32] of the effect of Coulomb interaction

on the El line shape for CdTe, using the effective mass

approximation. The solution of the effective mass

Hamiltonian with non-positive-definite mass is made
easier by the fact that the negative mass (along the A
direction) has a magnitude much larger (about ten

times) than the two equal positive masses. It is possible

to use the adiabatic approximation [31], i.e., to solve

the two-dimensional hydrogen atom problem with the
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third coordinate as a parameter and then solve the

adiabatic equation for the third coordinate. The agree-

ment between the calculated and the experimental line

shapes of figure 10 is excellent.

Attempts have been made to calculate the dielectric

constant including exciton interactions at an arbitrary

point of k space, independently of the stringent restric-

tions of the effective mass approximation [35,36]. Such

calculation is possible if one truncates the Coulomb in-

teraction between electron and hole Wannier packets

to extend to a finite number of neighboring cells. The

extreme and simplest case of a 8-function (Koster-

Slater) interaction can be solved by hand [31,35] and

gives around an Mi critical point the shapes of Cr and e,

shown in figure 11: for an M, critical point the Koster-

Slater interaction mixes the Mj one-electron line shape

with the Mi+i. The high energy side of the e, peak

becomes steeper, in agreement with figure 10. The line

shape observed for the Ei — Ei + Ai peaks in the reflec-

tivity spectrum is composed almost additively of the €;

and €r line shape: at the energies of these peaks dR/de;

and dR/dcr are almost equal. We also show in figure 11

the line shapes expected for the reflectivity spectra of

the El — El + Ai peaks and for the corresponding dif-

ferential spectra (dR/dw). We show in figure 12 the

photon energy derivative spectrum of these peaks in

HgTe [37] : the observed line shapes disagree with

those expected from the one-electron theory (equal

positive and negative peaks) but agree with those pre-

dicted in the presence of a Koster-Slater interaction

(fig. 11). Similar results have been found for other

zincblende-type materials [37].

3. Simplified Models for the Density of States

As seen in section 1 the optical density of states, and

thus the dielectric constant, is a complicated function

of frequency and its calculation requires lengthy nu-

merical computation. For some purposes, however, it

can be approximated by simple functions. In the vicini-

ty of a critical point of the M, variety, for instance, the

singular behavior of the dielectric constant can be ap-

proximated by:

ecx j-r+i (a, — Qjy) 1/2 + constant (4)

if exciton effects are neglected. Exciton interaction can

be included, within the Koster-Slater model, by mul-

tiplying eq (4) by a phase factor e'*'' with
(f)

small and

positive.

As shown in figure 1, e, for the zincblende-type

materials has a strong peak (E2) in the neighborhood of

ONE ELECTRON KOSTER-SLATER
EXCITON

Figure 11. Modification in Cr and e, introduced by the Koster-

Slater exciton interaction in the neighborhood of an Mi critical

point. Also, effect on the reflectivity under the assumption of an

equal contribution of Aer and Ae,- to the reflectivity line shape.
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Figure 12. Photon energy derivative spectrum of the reflectivity of

HgTe in the neighborhood ofthe Ei and E, + Ai structure [37].

which most of the optical density of states is concen-

trated. The corresponding transitions occur over a large

region of the BZ, close to its boundaries. In order to

represent this fact, Penn [38] suggested the model of

a non-physical spherical BZ with an isotropic gap at its

boundaries. The complex energy bands of the material

are then replaced by those of a free electron with an

isotropic gas (Og at the boundary of a spherical BZ. This

gap should occur in the vicinity of the E2 optical struc-

ture. While this model represents rather poorly the rich
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structure of e, (fig. 1), it is expected that it should give

a good picture of €r at zero frequency. The reshuffling

of density of states involved in the case of the isotropic

model should not affect €r(w = o) very much because of

the large energy denominators which appear in eq (3)

for oj = o: the lowest gap (Oo, usually much smaller than

(Oy, accounts only for a very small fraction of the optical

density of states. Penn obtained with this model the

static dielectric constant for a finite wavevector q. The
result can be approximated by the analytic expression

[38]:

e(a)= 0, g) = 1 +

with J^ —

1

OJ,

OJ,

1

(5)

4wa 3 \ oiy

In eq (5) w,, is the plasma frequency obtained for the

density of valence electrons and (mv and the cor-

responding free electron Fermi energy and wave

number. The dimensionless quantity is usually close

to one.

Figure 13 shows eq (5) for Si compared with the exact

results of the Penn model [39]. These results are obvi-

ously independent of the direction of q. A small depen-

dence on this direction is found from a complete pseu-

dopotential calculation by Nara [40] (see also fig. 13).

The function e(o,q) is of interest for the treatment of

dielectric screening.

Equation (5) yields for q = o the electronic contribu-

tion to the static dielectric constant:

t±

(6)

The experimental values of Co agree reasonably well

with the results of eq (6) using for Wy the energy of the

E2 peak [34]. Equation 6 has gained recent interest as

the basis of Phillips and Van Vechten's theory of

covalent bonding [41,42,43]. These authors use eq (6)

and the experimental values of e„ to define the average

gap o)y. With this gap and the corresponding gap of the

isoelectronic group IV material they can interpret a

wide range of properties such as crystal structure [42]

,

binding energy [43], energies of interband critical

points [41] , non-linear susceptibilities [44] , etc. As an

example we discuss the hydrostatic pressure (i.e.

volume) dependence of Co for germanium and silicon.

According to Van Vechten [41] , coy for C, Ge, Si, and

a— Sn is proportional to (ao)~~-^ where slq is the lattice

constant. If one makes the assumption that this law

gives also the change in a»,, with lattice constant for a

given material when hydrostatic stress is appUed one

can calculate the volume dependence of Co [41].

Neglecting the one in eq (6), a valid approximation for

Ge and Si, one finds:

——=2
€0 dV

d \n (Op d In o),

dV dV

O.'l 0'.5 0:7 0:9 '

1:1

q/Kp

Figure 13. Static dielectric constant eio. q) obtained by Srinivasan

[39] for Si with the Penn model compared with the interpolation

formula of eq (5) and with the results of a pseudopotential calcu-

lation by Nara [40] for q along {111).

= 2 [0.83 -0.50] =0.66 (7)

Equation (7) explains the sign and the small magnitude

observed for (l/eo)(deo/dV). The experimental values of

this quantity are 1.0 for Ge and 0.6 for Si [41,45]

.

According to eq (6) the average gap ojg determines

the electronic dielectric constant for co = o. As the

lowest gap (Oo is approached (wo < ojy usually), Cr

exhibits strong dispersion. This dispersion is due, in the

spirit of eq (3), to the density of states in the vicinity of

(Oo. For the purpose of calculating the dispersion of €r

immediately below ojo, the density of states can be ap-

proximated by that of parabolic bands with a reduced

mass equal to the reduced mass fx at (Oo- These bands

are assumed to extend to infinity in k space: the

unphysical contribution to er for |k|^°° should be

small for (o ^ (Oo, because of the large energy denomina-

tors of eq (3). We thus obtain for a cubic material the

following contribution of the (Og gap to the scalar dielec-

tric constant below (Oo (under the assumption of a con-

stant matrix element of p equal to P) [46]:
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Ae, = 2 (2|Lt) ^/2a;,y-i/2
1 p

\

y^colwo )
= C;;/(6j/w„

)

with (8)

/(x)=2-(l+x)"^-

Equation (8) represents quite well the behavior of e,-

immediately below aj„ for the lead chalcogenides [47]

and a number of other semiconductors [48]. As an ex-

ample we show in figure 14 the observed dispersion of

€, below ojo at room temperature [49] together with a fit

based on eq (8) [48]. For the sake of completeness we

have included in the fitting equations not only the effect

of 0)0 (Eo) but also that of its spin-orbit-split mate Eo + A,,

(also represented by an expression similar to eq (8)), the

dispersion due to the Ei and Ei + Ai gaps, and that due

to the main ojy gap assuming cu,, = E2. Thus the fitting

equation with three adjustable parameters C",, C", C2

is [48]:

€,.(0))= 1 + c;;
j
/(x„) +1 (-^y''7(-^o.)

(9)

+ C['\h{x,) +

where:

aj„.v = a»o + A„,

aj:s = oji + Ai

,

(0\

Wis
\+c:{i + 24)

(1) (II

Xfj Xi =
CD,,/ Wi

CO

(X},i

The fitting values of Co (6.602) and C'[ (2.791) are in

qualitative agreement with those calculated from the

band parameters [48].

The parabolic model density of states can also be

used to interpret the strong dispersion in the piezo-

birefringence observed near the lowest direct gap of

Figure 14. Experimental results for 6, in GaAs below the funda-

mental edge at room temperature [49] (circles) and fitted curve

based on a model density of states.

Figure 15. Piezobirefringence in GaAs for an extensive stress along

{100) (room temperature). The circles are experimental points. The

solid line is a fit based on the model ofeq (5) [48].

Ge, GaAs [48], and other III — V semiconductors

[50,51]: uniaxial stress splits the top valence band

state (Fs) and a birefringence in the contribution of Eo

to e, results because of the selection rules for transi-

tions from the split bands. The main contribution to

this piezobirefringence is expected to be proportional

to f'(x), which diverges like (a;— wo)"""- for w^ioo.
Such behavior can be seen in the experimental results

(circles) of figure 15 obtained for GaAs at room tem-

perature. Included in this figure is the corresponding

fit based on the model of eq (9) [48].

The long-wavelength, non-dispersive contribution to

the piezobirefringence of figure 15 can be interpreted,

at least qualitatively, in terms of the Penn model of eqs

(6) and (7). Equation (7) yields two contributions to the

change in e,- one due to the change in plasma frequency

(i.e. carrier density) with stress and the other due to

the change in the isotropic gap. The first contribution

should not exist for a pure shear stress. For a hydro-

static stress the second contribution can be written in

tensor form as:

— Aeo= 5e (10)

where e is the strain tensor. We postulate that eq (8)

remains valid for pure sheer stress. This crude

generahzation has a clear physical meaning in terms of

the Penn model. The spherical BZ becomes ellipsoidal

under a sheer stress and the energy gap at an arbitrary

point of the BZ boundary k/.' becomes anisotropic. The

gap at k/. is assumed to become larger as k/- becomes

larger (k/.- is the distance between atomic planes per-
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pendicular to kr). Equation (8) gives the right sign for

the long wavelength contribution to the piezobirefrin-

gence of figure 15 but a magnitude about five times

larger. The agreement becomes better if the contribu-

tion of the Eq edge to the long wavelength piezobirefrin-

gence, of opposite sign to that predicted by eq (10), is

subtracted from the experimental results.

4. Third Order Susceptibility and Model
Density of States

It has been recently suggested [52] that the third

order susceptibility of Ge, Si, and GaAs at long

wavelengths is related to the Franz-Keldysh effect (i.e.

the intraband coupling by the field) of interband critical

points [53].iWe discuss now the Franz-Keldysh con-

tribution of the ojg, Eo, and Ei gaps to Xnn-

4. 1 . Average Gap oj,,

In the spirit of Penn's model [38] we represent the

long-wavelength dielectric constant by eq (6) with

The corresponding imaginary part of the dielec-

tric constant is, for oj > cog [47]:

1/2

with
4

3
A=- (Jit(j)

(11)

The Franz-Keldysh effect for the one-dimensional ab-

sorption edge of eq (11) can be expressed in terms of

the Airy functions Ai and Bi [54] . One must mention,

however, that the isotropic gap problem in the presence

of an electric field would only be completely equivalent

to the one-dimensional problem if the field experienced

by every electron were along the direction of the cor-

responding k. The fact that the field IT is the same for

all electrons, regardless of k, can be taken into account

by using an average field:

(cos- p) b
(12)

where /3 is the angle between k and gf. The long-

wavelength expression for x',^*, thus is [54]:

(3) — 3A
nil

207ra)'

- lim g'-e-''^

(13)

where the one-dimensional electro-optic function d (17)

is given by [54]:

G,{-n)=27TAi{ri)Bi{'n)-H{in)rf-'l-'

g.M/:, (14)

In eq (14) H (rj) is the unit step function and fi the re-

duced mass of the Penn model, given by /x= a)(;(2k/.
)"''.

The Fermi momentum of the valence electrons

is related to the plasma frequency a)p through

k,.3 = (3/4)77Cu/.

The limit for ^-»0 in eq (14) is easily found using

the asymptotic expansions of Ai (rj) and Bi (17) for

17^+ 00 [55]. By subsequently performing the hmit

for o)—*0 one finds:

V<3) :Ann
287 /3

25677 \4
-tt) (6o-1)^

0)

0)

4/3

(15)

a

Or, for ease of evaluation, with Xnn ^" e.s.u., and the

energies in eV:

X<,^Ai
= l-45-10-"(eo-l) (16)

We list in table I the values of (Og^cjp and €0 — 1 for

Ge, Si and GaAs. The values of Xu\i calculated with eq

(16) are then listed in table II. This table shows agree-

ment in sign and magnitude between the values of xj]',,

predicted from ojg and the experimental ones. An in-

crease in the polarizability with field (Xnii > 0) is to be

expected for the Franz-Keldysh effect since the in-

traband coupling by the electric field produces a

decrease in the energy gap.

We shall consider now the contribution to Xn\i of the

interband coupling by the electric field across the

isotropic gap cog. This coupling produces an increase in

energy gap, and thus its contribution to xS^n is nega-

tive. This contribution to Xn\i is readily found from eq

(6):

Ax'.^'n
577

(€o-l)
1 di

(Ogd{^^)

3{e.-l) f3nYi^<.r
^^^^

S-rr

In eq (17) we have made use of the second-order pertur-

bation expression:

d(Og-=2-
< v\r\c > 2kl

(Ou (18)
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Equation (18) is in agreement with the results of ref.

[44]. Comparison of this equation with eq (15) shows

that the magnitude of the interband contribution to Xn\i
is smaller than the intraband contribution. Its con-

sideration does not change the sign of xi'ili as found

with eq (16) but introduces a numerical factor of the

order of unity. In view of the uncertainties of this type

of calculation we shall henceforth neglect this factor.

4.2. Lowest Gap Eo

We use for the contribution of an isotropic Mo critical

point to the real part of the dielectric constant the

result of eq (8). A calculation similar to that performed

above yields for an Mo critical point the following Franz-

Keldysh contribution to Xu\i t^^]:

Ax«l, =0.06^(l + 1.85(^)V...)

or, transforming Ax'ifu to e.s.u. and coo to eV (P^ and fjio

are left in atomic units for ease of computation):

AxV]i,(c.)-6-10-'«^^

We have included in eqs (19) and (20) the first term in

the dispersion of ^Xu\i since it may be possible to ob-

serve it experimentally in small band gap materials.

This dispersion is given exactly by the function:

Equation (21) is not immediately valid for the Eo edge

because of the degeneracy of the valence band. How-
ever, one can apply it to the Eo edge if one neglects the

field couphng between degenerate valence bands and
uses appropriate average values of and /Xg. Each one
of the three valence bands can be assumed to have a

mass equal to three times the conduction band mass
and a corresponding matrix element equal to ip- [48].

Hence eq (20) must be used with the matrix element P^

and /Ao = |me if the three valence bands are to be in-

cluded. The spin-orbit splitting X of the valence band
is taken into account, if A„ <^ Eo, by replacing cuo by its

average value Eo + -^. Since P^ is almost the same for

all materials of the germanium family, we can replace

it by a typical value = 0.4 (in atomic units). The values

of (Xo and Wo = Eo + for Ge, Si and GaAs are listed in

table I. Using these numbers, eq (20) yields the values

of Xnii (w = 0) listed in table 2. While this contribution

Table 1. Values of the parameters required for the evaluation

of the Franz-Keldysh contributions to V,^,',,. Frequencies in

eV, in Bohr radii, Mo in units of the free electron mass,

has been taken equal to 0.4for all materials.

Ge Si GaAs

(Og 4.3 4.8 5.2

(Up 15.5 17.35 15.5

60-1 11 15 10

Mo 0.03 0.04 0.05

Wo 0.9 4 1.5

ao 10.7 10.3 10.7

0)1 2.2 3.3 3.0

Table 2. Contribution of the various Franz-Keldysh effects

discussed here to xWu XeVee'^'^ units o/lO"'" e.s.u. Also,

experimental values of the bound carrier contributions to

X'r;i, and x^h-

contribu-

E.
contribu-

F,

contribu-
Experi-

ment^'
tion tion tion

v(3)Anil 0.26 0.67 0.20 I.O

Ge
0.26 0.67 0.26 1.5

v(:i>An 1

1

0.22 0.00 0.027 0.06

Si

Affff 0.22 0.00 0.036 0.08

Ann 0.12 0.087 0.045 0.12

GaAs
vl3)
A«ff 0.12 0.087 0.060 0.10

is zero for Si and is not excessive in GaAs (it may, there-

fore, be assumed as included in the average gap calcu-

lation given above), it is dominant in Ge. In first approx-

imation it may be added to the average gap calculation:

excellent agreement with the experimental results is

then found.

For InAs, with ajo= 0.5 eV and /a= 0.02, we find from

eq (20) Axl^i*, (w = 0)=7 • 10" ^o, which is of the order of

the free-carrier contribution for the samples with the

lowest electron concentrations measured (N = 2 • 10*^

cm^) [57]. This is contrary to the statement found in

the literature that for these carrier concentrations in

InAs Xi^ii is dominated by the free-carrier contribution

[56,57,58].

87



The interband contribution of £,> to Xiu\ f""" w = 0 is

easily obtained from the expression (see eq (8)):

(X.
Ci) >

X\'\\i) observed for Ge and Si, but not for GaAs

Ae,.(a> = 0)
(2/Ao)3/2p2

0)
-.•!/2

(22)

If one assumes that the repulsion produced by the field

affects /x„ in the manner predicted by the k • p expres-

sion with constant matrix elements of p(/u,o oc oj^)^ the

corresponding interband contribution to Xu\i vanishes.

If, on the other hand, one assumes /Xo to be field inde-

pendent one also finds a negative contribution to Xn\i

but smaller than the Franz-Keldysh contribution, and

hence we shall neglect it.

4.3. E, Critical Points

The E] optical structure is usually attributed to Mi

critical points along the {111} directions. While Mi

critical points are known to yield no contribution to

Xiui [52], there are Mo critical points of the same sym-

metry slightly below the Mi critical points. This com-

bination of Mo and Ml critical points with a very large

longitudinal mass, can actually be approximated by

two-dimensional minima [48]. The contribution of one

of these two-dimensional minima to the long-

wavelength dielectric constant is (we assume four, and

not eight equivalent {111} directions):

Ae,.
4 V3)U. i P2

(23)

where a„ is the lattice constant and the appropriate

square matrix element. We have tried to calculate the

Franz-Keldysh contribution to Xn\i of these two-dimen-

sional critical points in a way similar to that used above,

but we have run into difficulties when evaluating the

limits of the two-dimensional electro-optic functions for

17—* + °©. In view of this we have instead evaluated the

effect of the three-dimensional M„ critical points, with

the longitudinal effective mass replaced by the value

required to give at long wavelengths a contribution to

Cr equal to that in eq (23).

Under these conditions, and because of the large lon-

gitudinal mass, only fields transverse to the critical

point axis contribute to Xun- When summing the con-

tributions of the four equivalent valleys, it is found that

the effect becomes anisotropic: the ratio of the third

order susceptibility for IT along {111} (Xffff)i to that for

along {100} is 4/3. This argument is independent of

the specific model chosen for the {111} transitions, pro-

vided fx\\> jx . It gives the type of anisotropy

[57]. The Franz-Keldysh contribution of Ei to v[V,, as

found by the procedure sketched above, is:

AxVi'i,=0.52 (24)

or, with a»i in eV and Xu\i e.s.u.:

Ax,7;, = 2.7-10- 11_
(25)

(ao in Bohr radii and P^in atomic units.)

The matrix element P should have approximately the

same value as for the Eo gap. In order to take care of the

spin-orbit splitting Ai of Ei we substitute Wi by Ei +
Ai/2. The approximate values of a,,, and wi for Ge, Si

and GaAs are Hsted in table I. The values calculated for

the Franz-Keldysh contribution to Ei to xSJ^and X^'H^

are listed in table 2. While the calculated anisotropy

has, for Ge and Si, the sign observed experimentally, its

magnitude is far too small to explain the experimental

anisotropy, especially after the Eo and the E,,

contributions are added. There is a possibility that the

El contribution of eq (25) may have been underesti-

mated. Exciton quenching effects [59,60] , not included

in our calculation, may increase this contribution.

We cannot offer even a qualitative explanation of the

sign of the x'^' anisotropy observed for GaAs. It would

be interesting to determine, through measurements of

other III — V or II — VI compounds, whether it is con-

nected with the lack of inversion symmetry in these

materials.

The interband contribution of the Ei edges can be

evaluated in a manner analogous to that used for the Eo

and the (o,, gaps. We also find that this contribution

is negative and smaller than the Franz-Keldysh

contribution.
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Discussion on "Optical Properties and Electronic Density of States" by M. Cardona (Brown
University)

M. S. Dresselhaus (MIT): Introduction of a finite

relaxation time does not always help to achieve good

agreement between the experimental and calculated

dielectric constant curves. For example, in the first

slide you showed on indium-arsenide, you have the ex-

perimental e> curve which is higher than the calculated

curve. For a situation like that, introduction of a finite

relaxation time can only make matters worse.

M. Cardona (Brown Univ.): I wanted to mention this

point and the fact that you had done calculations of

dielectric constants with a finite phenomenological

scattering time. Such procedure may sometimes im-

prove the agreement between theory and experiment.

M. S. Dresselhaus (MIT): It will not improve this par-

ticular fit in InAs. In general, I think that for most of

the curves that you have shown, the agreement

between theory and experiment would be improved

with a finite relaxation time. The second point I would

like to make is the following: I am not exactly con-

vinced that in calculating the differential reflectivity, it

is correct just to simply differentiate the reflectivity

with respect to frequency because the various dif-

ferential techniques emphasize different features of the

energy band structure. For example, if you do a thermal

reflectance measurement on a metal, it is those bands

that are very close to the Fermi level that are

emphasized; for example, different bands are

emphasized in a piezo-reflectance measurement.

M. Cardona (Brown Univ.): This is correct and a very

good point. Of course, one type of modulation experi-

ment one does is simply wavelength or photon energy

modulation. Your comment does not apply to this type

of measurement which, however, is very difficult from

the experimental point of view. It is much simpler to

modulate the sample temperature (thermo-reflectance)

or the electric field appHed to it (electro-reflectance).

An electro-reflectance spectrum, of course, should not

be compared with the calculated derivative of the

reflectivity. The thermo-reflectance spectra of zinc-

blende semiconductors, however, should be very

similar to the frequency modulation spectra since

broadening is much smaller than frequency shift and
the temperature coefficients of all gaps are practically

the same. For metals, of course, transitions involving

portions of the Fermi surface are greatly enhanced in

temperature modulation spectra.

J. Tauc (Bell Telephone Labs.): It is a very poor ap-

proximation to compare the x-ray spectra with the band

state densities. Even if one neglects the many electron

effects it is necessary to compare the x-ray spectra with

the densities of approximately projected states accord-

ing to the symmetry of their ground states. Such calcu-

lations by J. Klima (private communication) on Ge gave

a very good agreement with experiment.

M. Cardona (Brown Univ.): The question was whether

one could improve agreement between theory and ex-

periment for the 2>d —> conduction transitions in ger-

manium by including the appropriate matrix elements.

This can be done, at least in part, by projecting the p
component of the conduction band wave functions. The

answer is yes. Actually, I notice that the paper by G.

Welch and E. Ziipf contains some rather nice work

along these lines.

B. H. Sacks (Univ. of Calif.): Is there any indication

that the appUcation of pressure (either uniaxial or

hydrostatic) to GeOa could preferentially shift the band

edges so as to give a direct gap material for use in ul-

traviolet laser?

G. W. Pratt (MIT): There is a great possibility of this.

M. Cardona (Brown Univ.): In connection with Dr.

Pratt's statement that 200 points is a very small number

of points for an calculation, I would like to point out

that with such a coarse mesh, one can get tremendous

resolution if one derives from it a much finer mesh by

quadratic interpolation. Such interpolation can cut

down very considerably on the computer time required

for good resolution.

J. Janak (IBM, New York): I would hke to refute what

Dr. Cardona just said. We have done some calculations

for palladium and we find that to get the error down
using quadratic interpolation, we have to go to about

3000 points in the reduced zone. That is to get an error

of 5 milhrydbergs. That is a particular case, it is true,

but it is not always true that a few hundred will do.
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Theoretical Electron Density of States Study of

Tetrahedrally Bonded Semiconductors
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The electron density of states has been calculated usiny; a self-consistent orthogonalized plane

wave (SCOPW) model for compounds in the isoelectronic sequences Si-AlP and Ge-GaAs-ZnSe. The

valence and conduction band density of states are presented. The location of the core states is also

given. The effect upon the density ot states of usinji the exchange approximations of Slater, Kohn-Sham,

and Liberman is displayed.

Key words: Aluminum phosphide (AIP); electronic density of states; exchange potential; gallium

arsenide (GaAs); germanium; self-consistent orthogonalized plane wave model

(SCOPW): semiconductors, tetrahedrally bonded; silicon; zincblende; ZnSe.

1. Introduction

The purpose of this paper is (1) to present the elec-

tron density of states calculated using our self-con-

sistent orthogonalized plane wave (SCOPW) model for

compounds in the isoelectronic sequences, Si-AlP and

Ge-GaAs-ZnSe and (2) to show the effect on the density

of states of using different exchange approximations.

The exchange approximations considered are those of

Slater [1] , Kohn-Sham [2] , Caspar [3] , and Liberman

[4].

In the past few years, a great deal of success has

been attained in calculating the energy band structures

of Croups III-V, II-VI and IV compounds using the first

principles self-consistent unadjusted OPW model

developed here at ARL. The SCOPW programs used

to calculate the electronic band structure have given

very good one-electron band energies for compounds
such as CdS [5] , ZnS and ZnSe [6] , CaAs [7] , Si [8]

.

AlAs [9], and AIP [10]. These unadjusted band ener-

where = ko + Kfj^, kn locates the electron within the

first Brillouin zone,Ki^ is a reciprocal lattice vector, /?«

is an atom location, ipc is a core wave function and do is

the volume of the crystalline unit cell. The coefficients

are determined by requiring i//A:„(r) be orthogonal

to all core state wave functions. The variation of Bu. to

gies fit the known experimental facts very well when
Slater's exchange is used [11].

Our SCOPW programs are described in section 2.

The treatment of exchange is also discussed as is the

method of calculating the density of states. The results

are presented in section 3.

2. Methods of Calculations

2. 1 . Self-Consistent OPW Calculations

The orthogonalized plane wave (OPW) method of

Herring [12] is used to calculate the electron energies.

In the OPW model [5,6], the electronic states are di-

vided into tightly bound core states and loosely bound

valence states. The core states must have negligible

overlap from atom to atom. They are calculated from a

spherically symmetrized crystalline potential.

The valence states must be well described by a

modified Fourier series

minimize the energy then results in the valence one-

electron energies and wave functions.

The dual requirements of no appreciable core over-

lap and the convergence of the valence wave function

expansion with a reasonable number of OPW's deter-

mines the division of the electron states into core and

Vfl|) Q C
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valence states. For Al, Si and P the 35 and 3/> states (for

Zn. Se. Ga, As and Ge the 45 and 4/' states) are taken as

the valence states. Very tiood convergence is obtained

for ZnSe, (iaAs, Ge, Si and AlP when 229 OPW's are

used in the series expansion.

The calculation is self-consistent in the sense that

the core and valence wave functions are calculated al-

ternately until neither changes appreciably. The Cou-

lomb potential due to the valence electrons and the

valence charge density are both spherically sym-

metrized about each inequivalent atom site. With these

valence quantities frozen, new core wave functions are

calculated and iterated until the core wave functions

are mutually self-consistent. The total electronic

charge density is calculated at 650 crystalline mesh

points covering 1/24 of the unit cell, and the Fourier

transform of pfrj'''^ is calculated. The new crystal

potential is calculated from the old valence charge dis-

tribution and the new core charge distribution. Then
new core-valence orthogonality coefficients, A'c^j, , are

calculated. The iteration cycle is completed by the cal-

culation of new valence energies and wave functions.

The iteration process is continued until the valence

one-electron energies change less than 0.01 eV from

iteration to iteration.

The appropriate charge density to use for the self-

consistent potential calculation is the average charge

density of all the electrons in the Brillouin zone. In the

present self-consistent calculations, this average is ap-

proximated by a weighted mean over electrons at the F,

X, L and W high symmetry points of the zincblende

Brillouin zone shown in figure 1. The weights are taken

to be proportional to the volumes within the first Bril-

louin zone closest to each high symmetry point. The
adequacy of this approximation has been tested and the

error in the energy eigenvalues has been shown to be

less than 0.1 eV [8].

2.2. Treatment of Exchange

The nonlocal Hartree-Fock (HF) exchange term is so

complicated that approximations are necessary in

crystalline calculations. The best known approxima-

tions to the HF exchange terms are due to Slater, Kohn-

Sham-Gaspar, and Liberman. Slater's and Kohn-Sham-

Gaspar's approximations (energy independent) result

in different constant coefficients multiplying the densi-

ty to the one-third power whereas Liberman's approxi-

mation yields a coefficient which is a function of r and

the energy of the state being considered.

a. Energy Independent Exchange Approximation

The first simplified one-electron operator which

replaces the exchange operator in the HF equation was

suggested by Slater [1,13]. If one multiplies and di-

vides the exchange term in the HF equations by

<^i*(x\)4>i(xx) one has [14]

-1/
dT24)f{xl)(t)*{x^)(}>j{x^)^i{xl) 2

</)*(x,)(/)/(x,) r,,
4>i{xi)

In this expression Slater then made the free electron

gas approximation that the (/),'s are plane waves and ob-

tained

VAr) FEC 8
8

F(t,)=^ + ^—^In
2 77]

^p(r)|' Fiklkp)

1 +rj

1-r,

p(r) is the electron density of the system. Here it has

been assumed that all states are filled for |k| < |kf|,

the Fermi momentum, and all states are empty for |k|

> |kf |. The wave vector, k and the Fermi wave vector

kf were taken to be

k,{r) = [E,-V{r)VI-^ (1)

where V(r), the total electronic potential, includes both

Coulomb (nuclear and electron) and exchange contribu-

tions,

A>(r) = [37rV(r)] i/.'J

(2)

Figure 1. The zincblende Brillouin zone.

and E^J. is the energy of the state being calculated. This

definition of k^ is derivable from phase space con-

siderations. Slater then averaged F(r}) over the occu-
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pied states of the free electron jias and obtained the

value 3/4. Hence

8tt
P(r)

1/3

(3)

If one makes Slater's approximation in the exchange

term of the HF expression for the total energy and then

varies the total energy, one obtains the Kohn-Sham-

Gasper exchange approximation

b. Energy Dependent Exchange Coefficient

(4)

Libernian investigated Vx(r)\pEa with k and given

by eqs (1) and (2). Hence

{^Pir)\ Fir,,) ,5)

Slater, Wilson and Wood [15] modified Liberman's ap-

proximation by using

k,. {r)=\ £'F-^^coulomb('") +4
877

Pir)

1/3 1 1/2

(6)

instead of eq (2) so that tj = 1 at the top of the Fermi dis-

tribution. We found it advantageous to calculate kf

both ways and always use the larger value. This ap-

proach gives results slightly closer to the HF results for

atomic calculations. The Fermi energy, Ef, that was

used in the SCOPW crystalline calculation was taken

at the middle of the fundamental gap, defined by the

top of the valence band and the bottom of the conduc-

tion band.

2.3. Density of States Calculations

To calculate the density of states, one must know the

energy levels at an arbitrary point in the Brillouin zone.

Since the SCOPW energy levels are only calculated at

the r, X, L and W high symmetry points, one must

somehow interpolate these energies throughout the

Brillouin zone. We have determined the band structure

in the remainder of the zone by fitting a pseudopoten-

tial-type interpolation model to the SCOPW energy

levels calculated at the high symmetry points. Using

this interpolation scheme, the band energies and band-

energy gradients at each of 155 course mesh points in

the irreducible sector (l/48th) of the reduced zone are

evaluated. A fine mesh consisting of 512 points is then

centered at each coarse mesh point. The band energies

at each of the fine mesh points are calculated from a

knowledge of the band energies and band-energy

gradients at the coarse mesh points. The density of

states is then calculated by summing over all bands

120

100

80

60
<

40

20 -

Philipp and Ehrenreich (Exp.)

1 1

1.5 3.0 4.5 6.0

Energy (eV)

7.5 9.0

Figure 2. The theoretical SCOPW (solid line) and the experi-

mental (ref. [18\ dashed curve) e > curves /or GaAs.

(valence or conduction) at each of the 512 X 155 fine

mesh points.

We use the same technique to calculate the SCOPW
€•> curves [16]. The joint valence — conduction density

of states is combined with pseudopotential transition

matrix elements to produce the resulting €2 curve.

A typical comparison of experimental and SCOPW
€2 curves is shown in figure 2. We have found that the

SCOPW €2 peaks usually match experiment to within

0.2 eV. However, the shape of the e-z peaks has not

matched experiment at all closely. The lack of agree-

ment as to shape may be due to the use of pseudopoten-

tial matrix elements and to exciton assisted transitions

which we have not taken into account.

3 Discussion of Results

3. 1 . Energy Independent Exchange Approximation

a. Valence Bands

The general structure of the SCOPW results is very

similar in appearance to the adjusted non-self-con-

sistent OPW results of Herman, Kortum, Kuglin and

Shay [17] . A typical SCOPW band structure (ZnSe) is

shown in figure 3. Density of states results for the

valence bands are presented in figure 4. One has three

regions for all the compounds studied. This is true for

both Slater's and Kohn-Sham's exchange terms. The
first region consists of the "5-like" bands which start

around 12 eV and has a width which varies in these

materials between 1 to 4 eV. This region has two main

features; one is associated with the L-^v or Liv
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ZnSe

-14 -

w L r X K r
REDUCED WAVE VECTOR

Fi(;URE 3. ZnSe calculated energy bands using the SCOPW model
plus the position of the Zn 3d core energy.

The SCOPW high symmetry point values are indicated by heavy dots. A pseudopotential

interpolation scheme was used to generate the lines.

symmetry point and the other is the high energy struc-

ture associated with the K point region of the Brillouin

zone.

The second region is relatively narrow ranging from

1 to 2 eV in width over the five compounds, and is

located from — 8 eV to —3.5 eV. Its structure consists

of a large peak which has in some compounds a

shoulder or small peak on the low energy side. This

large peak arises from the K point region. The source

of these energy states is the "light-hole p-Hke" bands

{Wiv— Liv — \\^v—X:i\- in fig. 3). This band is nearly flat

throughout the Brillouin zone except near the F point.

There, it rises in energy very fast and becomes

degenerate with the top valence band. However, there

are so few states outside region two that no appreciable

structure is found in region three from this band.

The third region is the one which contributes most to

the calculations and to investigations involving the

band gap and the imaginary part of the dielectric con-

stant 62. The width of this region is well defined as can

be seen in figure 4. The width varies in these com-

pounds from 4.9 eV to 2.7 eV. This region has three

distinct features. The low energy structure in this re-

gion comes again from the K point. The middle peak is

located at the energy of the or X^v, and the high

energy shoulder or peak is associated with the L^i-. The
electron states which form this region are derived from

the "heavy-hole p-like" bands (top valence bands in fig.

3). This region contains twice as many electrons as re-

gion one or region two.

The most striking differences in going from the

Group IV compounds to the III-V and then to the II-VI

is that the width of the regions becomes smaller and

there is a gap between the "5-like" and "p-like" bands

in III-V's and II-VI's. For example, in Ge, region one

has a width of 3.8 eV; in GaAs, this region's width is 2.4

eV; and in ZnSe, this region has a width of only 1.2 eV

(see table 1). Thus, as one goes from a covalent bonding

Table 1. The band widths of the valence bands plus the energy regions where the "s-ZiAe" band {region I), the

"light-hole p-like" bands {region 2), and the "heavy-hole p-/iAe" bands {region 3) contribute to the density

of states using Slater^s and Kohn-Sham^s approximations in the SCOPW model. The energy oj the top of the

valence band is set equal to zero.

Compound Exchange

approximations

Total

band

width

(eVi

Region 1

(eV)

Region 2

(eV)

Region 3

(eV)

Si Slater 11.7.5

12.05

11.91

12.12

11.4(1

11.66

11.81

11.94

11.82

11.83

-11.75 to -7.68

-12.05 to -7.78

-11.91 to-8.17

-12.12 to -8.26
- 11.46 to -9.04

-11.66 to -8.95

-11.81 to -9.42

-11.94 to -9.14

-11.82 to-10..59

-11.83 to -10.30

-7.68 to -6.24

— 7.78 to —6.56

-8.17 to -6.21

-8.26 to -6.14

-5.42 to ^4.48

-6.09 to -4.67

-6.22 to -5.45
-6. .58 to -5.88

-4.47 to -3.76

-4.86 to -4.08

-4.16 to 0.00

-4.86 to 0.00

-3.69 to 0.00

-4.44 to 0.00

-3.44 to 0.00

-4.07 to 0.00

-3.27 to 0.00

-4.06 to 0.00

-2.71 to 0.00

-3.06 to 0.00

Ge

Kohn-Sham

Slater

AlP

Kohn-Sham

Slater

GaAs

Kohn-Sham

Slater

Kohn-Sham

Slater

Kohn-Sham
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crystal to a more ionic bondinji crystal the widths of the

valence "s-like" and "/i-like" bands decrease. How-
ever, the overall bandwidth from the bottom of the "5-

Hke" band to the top of the "/i-like" bands changes less

than 1 eV.

In comparing the SCOPW results obtained using

Slater's exchange approximation to those obtained

using Kohn-Sham's approximation and to experiment,

one notes that the fundamental band gaps of all of the

compounds calculated except Ge match experiment

when Slater's approximation is used (see table 2). This

is also true when comparing the peak positions of the

calculated €> curves with experiments. In this case, Ge

using Slater's approximation also matches closely the

experimental results. In no case are the results ob-

tained using the Kohn-Sham exchange approximation

closer to experiment than those obtained using Slater's.

Another observation is that the fundamental band gaps

obtained using superposition of overlapping free atomic

potential (non-self-consistent) results with Kohn-

Sham's exchange is close to the SCOPW results using

Slater's exchange in some crystals. Thus, if one does
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not carry his calculations to self-consistency, he could

be lead to the incorrect conclusion that Kohn-Sham's

approximation matches experiment better than Slater's

approximation for these materials.

The most noticeable difference between the results

using Slater's approximation and those obtained using

Kohn-Sham's approximation is that region three has

become wider for Kohn-Sharii's approximation. In

going from Slater's approximation results to those of

Kohn-Sham's, the width of region three increases from

0.35 eV to 0.79 eV while the overall energy difference

between the bottom of the "s-like" band to the top of

the "p-like" band changes by an amount varying

between 0.1 and 0.3 eV for all the crystals studied. Also

region one's width shows a smaller increase in going

from Slater's results to Kohn-Sham's.

b. Conduction Bands

The general structure of the SCOPW results are

again similar to the non-self-consistent results of Her-

man, et al. [17]. One does not have the separation into
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Table 2. The fundamental band gaps calculatedfrom

the SCOPW model using different exchange approxi-

mations.

Energy (eV) Energy (eV) Energy (eV)

Compound Slater Kohn-Sham experiment

exchange exchange

Si (A,<.-r25i,) 1.10 0.10 " 1.12

Ge (Lic — T-tao) 1.27 1.01 b 0.66

(r.^e-r^s.) 1.18 1.73 " 0.80

AiP (;^,c-r,5„) 2.14 0.97

GaAs (Tic — r,5„) 1.61 1.97 <^ 1.54

{Xic ~ Tiso) 2.57 1.46

ZnSe (Tie — ri5i,) 2.94 2.68 "2.83

" A. Frova and P. Handler. Phys. Rev. Letters 14, 178 (1965).

* G. G. MacFarlane, T. P. McLean. J. E. Quarrington and V. Roberts, Proc. Phys. Soc.

(London) 71, 863 (1').58).

M. Cardona, K. L. Shaklee and F. H. Pollak. Phys. Rev. 154 , 696 (1967).

" M. Aven, D. Marple, and B. Segall, J. Appl. Phys. Suppl. 32 , 226 (1961).

well-defined regions as in the valence band. For exam-

ple, the first four electron conduction states at the T

point are lower in energy than any of the first four con-

duction states at the W point. However, calculations for

the five crystals give like results. In the first 6 or 7 eV

of the conduction band, there are three main peaks; the

lowest peak comes from the K point region; the middle

peak from the L point region, and the third peak again

from the K region (see fig. 5).

The onset of the conduction band changes from

crystal to crystal in these examples. The reason for this

is that the density of states associated with the Y-i'c or

Tie is very small compared with the Lie or Aic

minimums of the conduction band. Thus, one sees that

the density of states at the band edge for ZnSe or GaAs
using Slater's exchange approximation does not appear

in figure 5 using this scale.

The main difference between the SCOPW results

using Slater's and Kohn-Sham's approximation is that

the^^ point andL point eigenvalues move to lower ener-

gy relative to the T point energies. This, of course, is

similar to the behavior found in region three of the

valence bands. This can cause quite a change in the

description of the calculated crystal. For example, the

GaAs results using Slater's approximation gives a

direct fundamental gap of 1.61 eV at the F point. When
Kohn-Sham's approximation is used, both the X]c and

Lie energy states are lower than the Fic. This gives an

indirect fundamental gap of 1.46 eV between Fis^ and

c. d-States

At this time a wealth of information is being obtained

experimentally about the energy location and interac-

tion with other states of the so-called "core" electrons

in these materials. It is therefore interesting to examine

the top c?-state (which is the highest energy "core" state

in Ge, GaAs. and ZnSe) that these calculations predict.

In GaAs and ZnSe the non-self-consistent results (the

potential is formed from a supposition of free atomic

potentials) result in the c?-states above the "5-like"

valence band close to the "p-iike" valence band. For

example, in ZnSe, the Zn "id state is 5.3 eV below the

top of the valence band. However, the SCOPW results

(using Slater's exchange) show this state to be below

the "5-like" band at an energy of 12.6 eV below the top

of the valence band. In the case of GaAs. the SCOPW
results give the location of the Ga 3rf state some 16 eV
below the top of the valence band, and in the case of

Ge, the SCOPW results give the location of the Ge 3c?

state 33 eV below the top of the valence band. In fact,

the relative location of the Ge d>d state is close to the As

d>d state which is 34 eV below the top of the valence

band. A point of speculation as to the effective number

of electrons per atom, r]eff, versus energy is added.

Philipp and Ehrenreich [18] found a break in the rjeff

curve of III-V compounds which was not found in the

smooth curve of Ge. Their interpretation of the cause

of this effect was that they had reached the onset of the

d band. In looking at the results of our model, we could

hypothesize that this break was caused by the fact that

the "5-like" and "p-like" valence bands are separated.

Thus, the break in the Tjejy curve could be caused by the

onset of the "5-Hke" valence band.

3.2. Energy Dependent Exchange Approximation

In all of this work, the effort has been made to simu-

late a Hartree-Fock crystal. That is, we have made ap-

proximations to the exchange term. And as pointed out

in the previous section, the Slater approximation of the

exchange term gives SCOPW results which are very

close to experimental results except for Ge. However,

this does not insure that the results are the same as a

true Hartree-Fock calculation. In fact, if one looks at a

simple metaUic model [19] , the Hartree results match

experiment for metals. When one adds the exchange

term, the bands become too wide. Thus, one does not

expect a Hartree-Fock crystal to match experiment for

these compounds.

In the atomic case, the authors [11] have been able

to match Hartree-Fock eigenvalues by using

Liberman's approximation for the exchange term. Ex-
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Table 3. The band gap and valence band widths of

Si, Ge, AlP, GaAs and ZnSe calculated using Liber-

man s approximation in the SCOPW model. The

energy of the top of the valence band is set equal to

zero.

Total Band

Com- band s-band width p-band width sap

pound width (eV) (eV) (eV)

(eV)

Si 18.5 -18.5 to -12.3 -12.3 to 0.0 0.9

Ge 17.1 -17.1 to -12.5 -12.5 to 0.0 1.5

AlP 17.5 -17.5 to 14.6 -9.3 to 0.0 2.8

GaAs 16.8 -16.8 to 14.0 -9.9 to 0.0 2.8

ZnSe 15.5 -15.5 to 14.1 -9.2 to 0.0 5.0

tending these calculations to the crystal case, one finds

the results of the SCOPW model given in table 3. In

comparing the band gaps with the experimental results

given in table 2, it is easily seen that Liberman's ap-

proximation results are not as good as the results using

Slater's approximation. However, comparing valence

band widths, one finds that Liberman's results give

bands which are too broad compared to experiment,

and this is what is expected from a Hartree-Fock

description of these crystals.

4. Conclusion

It is concluded from this study that the SCOPW
results using Slater's approximation for the exchange

give a good description of the electron density of states.

This good description was a result of the SCOPW
model. That is, there was no empirical adjustment (or

any other kind) made after the fact. The inputs to the

model consist of lattice constants and the number of

electrons.

It is also noted from this study that although the

SCOPW results using Liberman's exchange approxi-

mation are further away from matching experiment, the

results appear to be closer to the Hartree-Fock descrip-

tion for these materials. Thus, if one wishes to improve

upon the Hartree-Fock method, such as adding Cou-

lomb hole and screened exchange terms as investigated

by Pratt [20] , Hedin and Lundqvist [21,22] , it is better

to start from Liberman's exchange approximation

rather than Slater's exchange approximation.
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Discussion on "Theoretical Electron Density of States Study of Tetrahedrally Bonded
Semiconductors" by D. J. Stukel, T. C. Collins, and R. N. Euwema (Aerospace Research

Laboratories, Wright Patterson Air Force Base)

F. Herman {IBM Res. Center, San Jose): I would like

to comment on the first paper by Stukel, Collins and

Euwema. I really think that the reason they find the

results they do is that they have not asked the right

question. There is no theoretical basis for there to be a

connection between an energy eigenvalue spectrum

based on an approximate Hamiltonian and an optical

excitation spectrum. If one does calculations using dif-

ferent exchange approximations and simply compared

the eigenvalues with experiment there is simply no

reason to expect agreement. This point prompts one to

either use an empirically adjusted first principles

method or else to change the question which is "How
does one take an energy eigenvalue spectrum and from

that with suitable modification find a spectrum that

does correspond to an optical spectrum?"

T. C. Collins (Aerospace Res. Lab.): What I would hke

to point out is that there is theoretical basis for using

eigenvalues. First of all, the eigenvalues using Slater's

[1] exchange term match experiment within 0.2 eV.

We do have one failure, germanium, which is off by half

a volt in the indirect gap. All the rest fit to within that

limit. There is no empirical adjustment needed or used

in these calculations.

In these calculations one wants binding or excitation

energies of an electron. One generally sets up the equa-

tion for the total energy. At this point you can substitute

pi/3
fQj. exchange term and vary. In this case you

come out with 2/3 the value for the coefficient [2] in

front of the exchange term in the effective Hamiltonian.

Or, you can vary the total energy, then substitute p''^

for the exchange term. In this case you get Slater's

value. Now where do you go to find binding energies?

The way to find binding energies is to calculate the total

energy of the N electron system and the N-1 electron

system, then take the difference between the two. In

the calculations, where does one substitute the

exchange approximation? Making the approximation

before the difference is taken one finds the eigenvalues

obtained with the 2/3 approximation match the value

for the binding energy. Likewise, if the substitution is

made after the difference is taken, the eigenvalues ob-

tained with Slater's value of the exchange approxima-

tion match the binding energy. So essentially your

eigenvalues, in either case, represent binding energies.

We have also tried a "better" approximation, that of

Liberman [3], for the exchange term. We derived the

wave functions using all three values for the exchange

term and calculated binding energies with Liberman's

approximation — we still got bad results. The only thing

that matches experiment are the eigenvalues obtained

using Slater's p^l^ value substituted for the exchange

term.

The same thing happens in the atom. For example,

we looked at Kr. Eigenvalues obtained using Slater's

value for the exchange matched experiment where Har-

tree-Fock eigenvalues did not. But, when we took the N
and N-1 total energy difference the Hartree-Fock an-

swers were in very close agreement with experiment.

This was true all the way down the hne from the Is

value to the 4p value.

So it is just "magic" that p^'^ values of Slater's works.

We are trying to find out why. One of our purposes in

this study is to develop a method to get the proper term.

E. T, Arakawa (Oak Ridge National Lab.): We have

measured [4] the €2 absorption of Na and K. Although

we have some scattering of points, it does appear that

there definitely is a plasmon contribution in the absorp-

tion starting right around 6 eV for sodium.

[1] Slater, J. C, Phys. Rev. 81 , 385 (1951).

[2] Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).

[3] Liberman, D. H., Phys. Rev. 171,1 (1968).

[4] Sutherland, J. C, Hamm, R. N., and Arakawa, E. T., J. Opt. Soc.

Am. 59, 1581 (1969).
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Electronic Density of States in Eu-Chalcogenides

S.J. Cho

Division of Physics, National Research Council of Canada, Ottawa, Canada

The spin-polarized energy bands and the electronic density of states in the Eu-chalcogenides have

been obtained by the augmented-plane-wave (APW) method. The results show that the/bands are ex-

tremely sensitive to the exchange potential used, and the j\ f ) bands become the highest valence

bands with a band width of the order of 0.5 eV. Our results have been compared with the recent

photoemission spectroscopy data. The UPS data show too large,/ band width and too small relative peak

intensities of the / bands, which disagree with our results. The 4/ bands in the Eu and Gd could be

located within 3.0 eV below their Fermi energies.

Key words: Augmented plane wave method (APW): electronic density of states; europium-chal-

cogenides; exchange potential;/bands; photoemission.

In the last few years a number of authors have stud-

ied the density of states N(E), mainly for the transition

and noble metals, by various experimental methods:

UV photoemission spectroscopy (UPS), ion neutraliza-

tion spectroscopy (INS), soft x-ray spectroscopy (SXS).

and x-ray photoemission spectroscopy (XPS). Such

measurements can provide useful information for un-

derstanding the electronic band structures in solids,

and can be used as a tool to justify the theoretical ener-

gy band calculations. As far as transition and noble

metals (Ni, Fe, Cu, and Co) are concerned there ap-

pears to be qualitative agreement between theory and

experimental results obtained by various methods [1-4]

(except for early UPS reports [5]). A probable

exchange splitting Mlex of the energy bands in Ni at or

near the Fermi level Ej has been reported to be about

0.35 eV [6].

There are few theoretical and experimental studies

on the density of states for the rare earth metals and

their alloys. Miiller [7] has studied room temperature

reflectivity and transmission for Eu and Ba metals (up

to 4 eV), which have isoelectronic structures. He has

found almost identical optical behavior for Eu and Ba
metals, and has concluded that the 4/ electrons do not

influence the optical spectrum, and that the 4/" levels

might be located far below £/. Schiiler [8] has studied

temperature dependent transmission of Gd and Lu thin

films, from which he has found that the transmission

maximum of Lu is located at 0.75 eV which is independ-

ent of temperature. The transmission maximum of Gd

is located at 0.6 eV at room temperature and is split into

two peaks below the Curie temperature Tc, at 0.8 eV

and 0.45 eV respectively. The extra peak is due to the

spin-polarized exchange spUtting of the bands, which

is estimated to be about 0.4 eV for Gd. However he has

not obtained any information on the possible / band

positions. Blodgett et al. [9] have made UPS studies for

Gd, and reported that a possible /( \ ) band location is

about 6 eV below £} with a work function of 3.1 eV, and

that a possible A£'ex is less than 0.1 eV from their tem-

perature dependent photoemission measurements. On
the other hand several authors [10,11] have studied

theoretically the energy bands in the rare earth ele-

ments. However, they have found it difficult to locate

the / band positions properly because of its sensitive

dependence on the exchange potential used.

Recently both Busch et al. [12] and Eastman et al.

[13] have studied UPS for the Eu-chalcogenides. Their

results are reproduced in figure 1. In this work we have

studied the spin-polarized energy bands in the Eu-chal-

cogenides in terms of the augmented-plane-wave

(APW) method. We have found that the / band posi-

tions are extremely sensitive to the exchange potential

used. In our work the p^'^ exchange potential [14] for

the magnetic Eu-+ ions has been reduced by a factor of

3/4, which has produced proper energy gaps and rela-

tive/band positions for the Eu-chalcogenides. Accord-

ing to our calculations the /( ] ) bands are located in

between the anion p band and the 5c? conduction band

Xz- The calculated /( | ) band width is about 0.5 eV and
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Figure 1. Experimental density of states curves for EuO, EuS
EuSe, and GdS {ref[13]).

the up- and down-spin / band separation is about 6.0

eV. We have obtained the electronic density of states

for the Eu-chalcogenides for 256 points in the Brillouin

zone, and the results for EuO are shown in figure 2.

Normally a knowledge of energy structures at more

than 256 points is required in order to obtain reliable

N(E) curves in solids. In our case the valence bands are

well isolated from each other and present work should

give us fairly rehable information. On the other hand

the conduction bands are quite complex and our results

might not represent detailed structures which could ex-

ist. According to our results for the conduction bands

there are two peaks which are mainly derived from the

Figure 2. Theoretical density of states curve for EuO (N(E)//?y./

unit cell).

t-zg and Cg d bands for the up-spin electrons, and three

peaks for the down-spin electrons which are due to the

t2g and e,, d bands and the /( i ) bands. Both calculated

and experimental data are tabulated in table 1.

We can immediately notice from figures 1 and 2 that

the experimentally observed density of states of /
electrons N{E,f) is considerably smaller than the den-

sity of states of the p electrons N{E, p), that experi-

mental/ band widths are larger than expected for thef
(Eu-^) band width, and that the experimental p band

width of EuO is relatively larger than the corresponding

p band widths for EuS and EuSe. These experimental

results are in contrast to the theoretical results of a

ratio o{N{E,f):N{E, p) = 7.6, of about 0.5 eV for the/

band width, and of an almost constant p band width of

about 2 eV for all Eu-chalcogenides.

It is not clearly known why the measured A'^C^',/) is

so small. It might be related to the difficulty of releasing

more than one/ electron because it takes much larger

ionization energies for subsequent/ electrons from the
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Table 1. Theoretical and experimental data (eV) of

the valence band structures

EuO EuS EuSe GdS

/band width (^) 0.57 0.54 0.70

C) 1.6 1.1

(') 2.0 1.3 1.5 1.0

p band width C) 2.12 2.19 2.33

C) 2.0 1.3

3.0 2.3 2.4 2.9

V 7 1.41 0.44 -0.15

C) 1.7 -0.4

2.5 0.5 -0.8 < 0

Averagef-p separation 2.00 1.20 0.50

(») 2.5 0.8

3.5 2.0 1.8 1.9

p to conduction band 3.61 3.04 2.37

3.8 2.4

4.3 3.1 3.1 3,0

Present work.

Ref. 12.

' Ref. 13.

same Eu atom. Another possibility would be a small

transition probability for the transitions from the /( f )

bands to the vacuum level due to the small density of

states at or near the vacuum level, or that transitions

are nondirect [15].

In principle the dominant transitions from the flat

/( I ) bands should be direct transitions. However, the

/ electrons have one of the heaviest effective masses

and their velocity should be very small. Accordingly the

/ electrons involve multiple scattering with phonons

and electrons before reaching the surface, or some of

them are captured by existing Eu^^ ions which are

either impurity centers or created from the Eu-+ ions.

In this case the observed N{E,f) should become con-

siderably broader and different from the initieA N{E , f)

which we are attempting to measure.

Another possible origin of the large/ band width ob-

served could be related to the Fjif') multiplets of Eu^+

ions (atomic Fj multiplets have a band width of 0.6 eV

[16]). Both Busch et al. [12] and Eastman et al. [13]

have interpreted such possible Fj multiplets as arising

from the Eu^+ ions created from Eu^+ ions. We expect

that there are about 0.1% concentrations of EuaOs

impurities in the samples. Therefore ifFj multiplets are

involved, they would be more likely from Eu^+

impurities rather than from Eu^+ ians created from

Eu-+ ions. However, we cannot rule out the possibility

of Fj multiplets of Eu^+ being created from Eu'^+ ions.

This problem could be resolved from the similar studies

with excess Eu-*+ impurities in the sample. In any case

experiments by both Busch et al. [12] and Eastman et

al. [13] do not give us proper information on the N{E,f)

.

Busch et al. have reported a linear variation of the /
band position with incident photon energies, and East-

man et al. have shown/band positions independent of

photon energies. According to the above UPS experi-

ments the possible Fj multiplets of Eu^+ ions are

located just below the /^(**S7/2) bands.

The considerably larger/ band width of EuO compar-

ing with the corresponding values observed for EuS and

EuSe seem to indicate that the possible Fj multiplet

width decreases with increasing lattice constant, or

that there is a larger amount of scattering for EuO than

for EuS and EuSe due to the smaller lattice constant of

EuO. As we can see from table 1, not only the experi-

mental data of EuO disagree with theory, but two ex-

perimental results also disagree with each other. It ap-

pears that the experimental data of EuO by Busch et al.

show better agreement with theoretical results than the

results by Eastman et al. On the other hand the 4p band

width of EuSe by Busch et al. is too small. In the case

of EuS and EuSe there is reasonable agreement

between theory and experiments, except for the/ band

width. It is interesting to note that the relative positions

of the top of the/ and p bands among EuO, EuS, and

EuSe show good agreement between theory and the ex-

periments (see table 2).

Eastman et al. [13] have also studied UPS for GdS,

(see fig. 1), in which they have found that the overall

situation is not much different from EuS. except for a

partially filled valence 5d band, and that the possible

N(E,f) is further weakened and has no sign of 4/^^4/^
5o? transitions. These experimental results are interest-

ing because they tell us that any reflectivity or absorp-

Table 2. Energy differences of the highest f and p
bands among Ku-Chalcogenides (eV)

p bands / bands

EuO-EuSe 3.0 1.3

tb\ 2.9 1.1

3.1 1.0

EuS-EuSe (a\ 0.4 0.06

0.7 0.04

*' Present work.

" Ref. 12.

Ref. 13.
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tion peaks from the 4/ bands in GdS are difficult to ob-

serve. In the reflectivity or transmission experiments

for Eu [7] and Gd [8] we have not observed any possi-

ble interband transitions from 4/ bands, which could be

related to almost negligible transition probabihty from

the/( t ) bands.

According to the photoemission measurements for

Gd metal by Blodgett et al. [9] , there is a large d band

peak at or near £/ and a broad peak at about 6 eV below

Ef. In addition there is a small peak at about 2.8 eV

below Ef. They have not elaborated to discuss a small

peak at 2.8 eV. The same authors [5] have also re-

ported a large peak at about 5 eV below Ef for Co, Fe,

and Ni, which has been found to be spurious. Referring

to experimental data in table 1 for the Eu-chalcogenides

and GdS, it is reasonable to expect that the possible

/( I ) band positions in Eu and Gd metals could be

located at less than 3 eV below E/, and that a small peak

at about 2.8 eV below Ef in Gd observed could be the

possible/( I ) band position.

A£'(.j. for Gd and the Eu-chalcogenides should be

larger than the coresponding values of 0.35 eV for Ni

because the magnetic moments of Gd and the Eu-chal-

cogenides are more than 11 times that of Ni. The AEex

of about 0.4 eV for Gd estimated from transmission

data [8] is a reasonable value. We have also obtained

the AZ^cj- values of about 0.4 ~ 0.5 eV for the Eu-chal-

cogenides [17]

.

Because of the exchange splitting of energy bands

below 7*0, the up-spin electrons have lower energy than

corresponding down-spin electrons by the amount of

A£'ej. Therefore, it takes more energy to Hft up-spin

electrons than down-spin electrons under the same ex-

perimental conditions. Accordingly, in principle, we
should be able to observe such band width broadening

of AEpj- in the temperature dependent studies of N(E).

However, practically constant N(E) with variable tem-

peratures reported for Fe and Co by XPS [1] , for Ni by

UPS [5] and INS [3], and for Gd by UPS [9] are in

contradiction to above physical phenomena. At present

various experimental methods to study N(E) have

shown poor energy resolution. Therefore further experi-

mental work could elucidate this problem.

UPS data for Eu-chalcogenides [12,13], GdS [13],

and Gd [9] mentioned above are based on an assump-

tion of equal transition probability from various occu-

pied bands throughout the Brillouin zone, which is cer-

tainly not a reasonable assumption for the case of /
electrons because of the small number of transitions

from / band density of states observed. It would be

worthwhile to carry out more experimental studies by

using other techniques such as SXS, INS, or XPS to

see whether we can obtain more realistic information

onthe N{E,f).
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Discussion on "Electronic Density of States in Eu-Chalcogenides" by S. J. Cho
(National Research Council of Canada, Ottawa)

D. E. Eastman (IBM, New York): With regard to a

""band'' description of the 4/ electrons in the Eu-chal-

cogenides, there is considerable experimental evidence

that the 4/ electrons are very locaUzed (with important

correlation effects), e.g., a band description appears to

be inadequate.

S. J. Cho (National Res. Council): I have already

discussed this subject elsewhere in this Conference

(see "Ultraviolet and X-Ray Photoemission from Eu-

ropium and Barium" by G. Broden et al.).
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Energy Band Structure and Density of States in

Tetragonal GeO^

F. J. Arlinghaus and W. A. Albers, Jr.

Research Laboratories, General Motors Corporation, Warren, Michigan 48090

The electronic energy bands of tetragonal Ge02 have been calculated and correlated with optical

properties of single crystals of this material. The agreement between theory and experiment is suffi-

ciently good to warrant calculations of densities of states and conduction band effective masses

preparatory to the determination of the dielectric constant as a function of energy. The calculated ener-

gy bands, density of states, and the experimental optical absorption edge data are presented and

discussed.

Key words: Augmented plane wave method (APW); electron density of states; GeO-i; indirect

transition; optical properties; Slater exchange; vacuum ultraviolet reflectance

spectra.

The dioxide of germanium exhibits a polymorphism

which is rather unique in nature. The commonly occur-

ring form is the a-quartz hexagonal structure which is

relatively reactive and is the thermodynamically unsta-

ble phase at ordinary temperatures. The form that does

not occur naturally is the rutile tetragonal structure,

and it has until recently been prepared only by conver-

sion from the hexagonal phase. In the last few years,

methods have been developed for the growth of single

crystals of the tetragonal material, enabhng the deter-

mination of optical and electronic properties. This

tetragonal form has proven to exhibit chemical proper-

ties which are consistent with possible applications as

masks and protective coatings for germanium semicon-

ductor devices. It also exhibits interesting optical pro-

perties in the near ultraviolet region of the electromag-

netic spectrum. For these reasons, tetragonal GeOa
warrants some attention, and we have determined the

energy band structure in order to aid the design and in-

terpretations of optical and electrical experiments

aimed at a better fundamental understanding of the

physical nature of this material. The results of these

preliminary investigations are reported herein.

Tetragonal GeO-z possesses the rutile structure with

space group Z)^^ [1]. The unit cell is tetragonal, with

a c/a ratio of 0.65, and contains six atoms, two germani-

um and four oxygen. The Brillouin zone is also simple

tetragonal.

A self-consistent APW (augmented plane wave) ener-

gy band calculation was performed for Ge02. Sphere

radii were chosen as follows: the oxygen spheres were

made to touch, giving as large an oxygen radius as

possible; then the germanium spheres were made to

touch these. Thus chosen, the spheres fiU 55% of the

space in the crystal.

The starting potential was derived from Ge^'' and 0=

ionic potentials. The Ge+^ ionic potential was calcu-

lated by the Herman-Skillman procedure [2] ; the O"
potential is that of Watson [3]. An Ewald problem is

solved to obtain the average potential for the region out-

side the spheres [4] ; exchange is included by means of

the Slater p"^ approximation [5]

.

At each stage of the calculation, bands are obtained

and a new trial potential obtained from the calculated

charge distribution. Ten iterations were required be-

fore the eigenvalues were stable to within 0.005 Ryd-

berg. It was found necessary to include the higher core

states (the oxygen 2s- and germanium 3c?-bands). The

band structure is shown in figure 1. The main features

are the broad conduction band with a parabolic

minimum at T and the profusion of valence bands, the

higher ones quite flat, arising principally from oxygen

2p levels.

The direct gap is at T; its magnitude is calculated to

be 5.52 eV, for transition Fs^ r,+ , allowed for light

polarized J. to the c-axis. The value of 6.04 eV is cal-
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FlOl'RE 1. Electronic energy band structure of tetragonal GeO>

culated for transition Fi'^^ri'", allowed for polari-

zation. A basic feature of the calculated bands

is the presence of an indirect edge. The direct gap V^^

i i^ is 5.52 eV; however, the valence band state

on the top edge of the zone, is slightly higher than the

state, so that the indirect transition/?! ^ Fi^ is only

5.25 eV. This indirect edge is different from that of ger-

manium, in that the valence band comes up away from

the zone center: in all other cases of an indirect edge

known at present, the conduction band comes down.

The numbers resulting from these calculations are in

good agreement with the somewhat limited experimen-

tal data available to date. The fundamental optical ab-

sorption edge has been studied in some detail in

tetragonal Ge02 single crystals at room temperature.

The resulting data are summarized in figure 2. The

rather large dichroism observed at the absorption edge

is consistent with the r5+^ri+ and the ri^^ri +

transitions discussed above. The experimentally deter-

mined energy gaps, assuming a, the absorption coeffi-

cient, proportional to {hv — E,,y - at high absorption

coefficients (see inset of fig. 2), are 4.99 and 5.10 eV

[6] . These values are somewhat lower than those pre-

dicted by the energy band calculations, but the agree-

ment is considered quite satisfactory in view of the

preliminary nature of the calculations.
Figure 2. Room temperature optical absorption edge of tetragonal

GeOz.
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The data of figure 2 indicates considerable contribu-

tions to the absorption coefficient at energies lying

below the fundamental direct gaps. This is consistent

with the possibility of an indirect transition as pre-

dicted by the band calculations {R\ I i^). However,

also possible are exciton and impurity state transitions

in this same range of energy, and it has not been possi-

ble to sort out the relative contributions in order to

ascertain the existence of the indirect transition unam-

biguously. We are currently studying the absorption

edge at low temperatures in an effort to clarify this

point.

Preliminary vacuum ultraviolet reflectance spectra

on single crystals of tetragonal Ge02 at room tempera-

ture have been obtained by William Scouler at MIT's

Lincoln Laboratory. His results suggest a possible

transition occurring in the region of 7.5 — 8.0 eV. The

calculated band structure predicts a direct transition at

the A'-point (XI XI in fig. 1) at about 8.4 eV. Since the

band calculations predict slightly larger direct gaps at

r than experimentally observed, we feel justified in ten-

tatively assigning the 7.5 — 8.0 eV structure in the

reflectivity to the^-point transition.

On the basis of the above discussion, we conclude

that the band calculations presented here are

reasonably representative of the true electronic energy

structure of tetragonal Ge02. We have therefore deter-

mined the density of states, effective masses, and mo-

mentum matrix elements preparatory to a calculation

of the dielectric constant as a function of energy. The

density of states is shown in figure 3. This was obtained

by summing states in 0.02 Rydberg energy intervals

over a 64-point mesh in the Brillouin zone and

smoothing the resulting data. Although more refined

density of states could be obtained with a finer mesh,

we feel that the basic structure of figure 3 will not be

grossly altered by the inclusion of various other points

of the Brillouin zone.

Effective masses of the anisotropic conduction band

electron have been calculated to be 0.42 m perpendicu-

lar to the c-axis and 0.47 m parallel to the c-axis. These

\

1 1 \ r

DENSITY OF STATES (Arbitrary UnitsI

Fk.URE 3. Calculated density ofstates for tetragonal GeO).

values are consistent with rather crude estimates of the

electron effective mass from the optical data.

We conclude that the energy bands of tetragonal

Ge02 presented herein constitute a good basis for the

prediction and analysis of experiments related to the

optical and electronic properties of this material.
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Calculation of the Density of States and Optical

Properties of PbTe from APW-LCAO Energy Bands*
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Technology, Cambridge, Massachusetts 02 1 39

The overlap inlejirals in the tight-binding secular equation for the relativistic p-bands in PbTe have

hecii udjiisicd l<i ;;ive the best representation ol tlie AI'VV results at hijih symmetry points. The resulting

I,(.A() hiitids have been used to ealc-ulute the density of states in ener?;y and the optical constants of

I'b'IC The calculated density of states is found to have peaks which correspond closely to the four

peaks measured by Spicer and l^apeyre. However, the assi.t;nnient of peaks to bands is found to be dif-

ferent from that proposed previously. The method of Dresselhaus and Dresselhaus lias been used to ob-

tain the oscillator strengths tor optii al transitions, and these are found to agree with previous calcula-

tions. The interband electronic contribution to the optical ronstants has been calculated for photon

energy less than 5 e\ .

Key words: Augmented plane wave method (APW); electronic density of states; k p method;

LCAO; lead telluride (PbTe); optical properties; pseudopotential; random phase

approximation; tight-binding.

1. Introduction

The Augmented Plane Wave (APW) method has

been appHed to PbTe by ConkUn, Johnson, and Pratt

[1] who have obtained the relativistic energy bands at

nine points of high symmetry in the Brillouin Zone (BZ).

In this work we have used these energy bands to calcu-

late the electronic density of states in energy and the in-

terband electronic contribution to the optical constants

of PbTe.

The direct absorption edge, which is most commonly
used to test the validity of an energy band picture, is .3

eV in PbTe at room temperature. This is smaller than

the expected accuracy of even the most optimistic first

principles calculation. However, the density of states

provides a less stringent test of the validity of an energy

band picture, because the density of states depends

upon general features of the bands over a large region

of k-space and not upon the details of the bands at any

one point in the BZ. The optical properties, on the other

hand, do depend critically on the energy difference

between regions of high density of states and for this

• t his work was supported in part by ttie National' Science' Foundation and in part by the

Army Researcti Office (Durttam).

**Presenl address: Physics Research Laboratory, Texas Instruments Incorporated,

Dallas. Texas.
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reason provide a more exacting test of the validity of an

energy band picture.

For both calculations, one must know the energy

bands everywhere in k-space, and, because APW cal-

culations are long and tedious, they can be performed

only at a small number of points of high symmetry.

Therefore, one is forced to use an interpolation scheme

to obtain the bands in between points where the APW
results are known.

Three interpolation methods are in common use

today. The Linear Combination of Atomic Orbitals

(LCAO) or tight binding method was first proposed by

Slater and Koster [2] and has been employed exten-

sively by Dresselhaus and Dresselhaus [3]. The k • p
method has been in use for a long time but was first

used to represent a large number of bands over the en-

tire BZ by Cardona and Pollak [4] . More recently this

method has been applied to PbTe [5]. The pseu-

dopotential method is the most widely used of the

three, and has been used extensively to study the opti-

cal properties of the IV, the III-V, and the II-VI materi-

als [6]. More recently the optical properties of PbTe
and related compounds have been calculated using this

method [7]

.

In this work an LCAO representation of the bands in

PbTe was obtained by adjusting the band parameters
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to give agreement with tiie APW energies as discussed

in section 2 and appendix A. The density of electron

states in energy was calculated from these bands, and

the results are compared with photoemission data [8]

in section 3. Section 4 describes the calculation of opti-

cal properties and compares the calculation with ex-

periment [9] and with previous calculations [5]. Oscil-

lator strengths for optical transitions have been ob-

tained directly from the energy bands using the method

of Dresselhaus and Dresselhaus [3]

.

2. LCAO Energy Bands

Following the method proposed in reference 2, we
have expressed the crystal wavefunctions as linear

combinations of Bloch sums of Liiwdin functions. The

Liiwdin functions resemble free atom wavefunctions,

but they have the property that such functions located

on neighboring atomic sites in a crystal are orthogonal.

For this application Lowdin functions were chosen to

resemble the Pb 6p and the Te 5p free atom wavefunc-

tions. The former are located on the Pb atom sites R
and the latter are located on the Te atom sites R + t

where t= a/2(100). The orbital portion of the Lowdin

functions can be written as a„''''{r — R) and aj^{r — R
— t) where a = x, y, z. The orbital part of the Bloch

sums is

±a^<'(r-R-T)e '"'^ ]e « (1)

where is the number of unit cells in the crystal.

where s and s' designate spin coordinates {s,s' = | , i ),

and X^** and are constants. Thus Hso introduces

two additional parameters into the tight binding Hamil-

tonian, and, to the extent that the approximations made
here are justified, k'"'' and A.'*" should resemble the spin-

orbit parameters which pertain to the free atom.

The 18 band parameters were obtained from the

APW calculation in the following way. Reference 1

gives the intermediate results which were obtained by

first solving the nonrelativistic problem and by sub-

sequently including the Darwin and Mass-velocity cor-

rections. The two spin-orbit parameters were set equal

When the crystal Hamiltonian is separated into a

spin-independent part and a spin-orbit part

H= H,, + H,„ (2)

the six Liiwdin functions of eq (1) form a six-dimen-

sional basis for //.si. In this basis, matrix elements of//.s,

take the form of a Fourier series in k-space [3] in

which the Fourier coefficient for the nth term in the ex-

pansion involves matrix elements of //.s, between

Liiwdin functions which are nth neighbors, and, since

Liiwdin functions are localized, the expansion con-

verges rapidly. In this work the series has been trun-

cated with fourth neighbor terms, giving 16 independ-

ent Fourier coefficients.

When spin is included into the problem, the number

of basis states doubles, but Kramer's theorem assures

us that each level has at least a two-fold degeneracy.

Every term in the Hamiltonian which does not explicitly

involve electron spin is included in Hsi so that

Hso-^,fr-[iVV}Xp]. (3)

This term is quite important in PbTe [1], but sinceV V
is large only near the nucleus, it is reasonable to as-

sume that the only matrix elements of Hso which are im-

portant are those between Liiwdin functions on the

same lattice site, and in this work, all other matrix ele-

ments are taken to be zero. This simplification is

equivalent to the approximation, suggested by atomic

theory, that

(4)

to zero, and the remaining 16 band parameters were ad-

justed to minimize the r.m.s. difference between the

LCAO bands and the intermediate APW results given

in table 1 [10] . The band parameters are defined in ap-

pendix A and their values obtained are given in table 4.

These bands reproduce the 48 data points of table 1 to

within an r.m.s. error of 0.014 Ry, and the size of the

band parameters falls off rapidly with increasing order

as it must for the scheme to have physical meaning.

The 16 nonspin-orbit parameters so determined were

then fixed, and the two spin-orbit parameters were ad-

justed to give the best r.m.s. fit to the final results of

(al^H'—R). s
I
//soK^ir-/?') , s')^H''''{ai:'>{r) ,s |L • o- \a[;Hr) , s')d,!. /r

{ai:^ir-R-T),s\H,Ja'0''{r-R'-T),s')=lk^'{a^^{r),s\L-a\alHr).s')dH,H'

{a^Hr-R),s\H,,\a^<^ir-R'~T),s') =(a^^r-R-T),s\Hso\ai;Hr-R').s') = 0
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Table 1. APW results of Ref. 1 {see Ref. 10). The LCAO band parameters ivere adjusted to these energies

!'((). 0.0) A(l.O.O) X(2.0.0) 2(1/2. 1/2.0)

Intermediate Final Intermediate Final Intermediate Final Intermediate Final

-0.3l)."i IY-.

-.30.5

-.305

-.6H4 r,.,

-.684

-.684

-0.262 1>

-.262

-.390 1^6

-.659 !«-

-.659

-.735 r,T

-0.274 A5

-.274

-.401 A,

-.697 A,

-.742 A.-,

-.742

-0.226 A7

-.311 A,;

-.405 A,i

-.700 A,

-.706 A7

-.788 A,;

-0.136

-.215 X5

-.215

-.780 X5

-.780

-.910 x;

-0.132 X,T

-.143 Xf
-.283 X,T

-.747 X-r

-.816 X,T

-.914 X,T

-0.309 2:,

-.410 24

-.431 2,

-.607 2,

-.661 24

-.723 2:,

H).309 2.,

-..387 2,

-.453 2.,

-.599 2.-,

-.670 2.,

-.723 2.-,

2(1.1.0) K(3/2. 3/2,0) A(l/2.1/2.1/2) L(l. 1. 1

)

Intermediate Final Intermediate Final Intermediate Final Intermediate Final

-t).274 2:,

-.4.52 2^

-.461 2,

-.631 2,

-.672 24

-.811 2:,

-0.274 2.-,

-.426 2.-,

-.486 2.-,

-.624 2r,

-.680 2.-,

-.811 2.-,

-0.200

-.320 IC4

-.335 K,

-.730 K,

-.7.52 K4

-.886 K,

-0.200 K,-,

-.299 K.-,

-.361

-.718

-.775 K-,

-.886

-0.406 A,

-.406

-.436 A,

-.631 A,

-.674 A:,

-.674

-0.372 A4. Ar,

-.397 .\n

-.478 A,i

-.619 A,i

-.651 A4, A.,

-.709 A„

-0.432 l;

-.432

-.472 l;

-.546 L,

-.623 L:,

-.623

-0.394 L4-. L5-

-.426 U
-.519 L,T

-.539 L+

-.602 U . L+

-.652 L,t

table 1. The spin-orbit effects were found to be ex-

tremely well characterized by only two constants and

the values of these constants {X'''> = 0.06447 A.''^ =
0.05396) are reasonably close to the free atom spin-orbit

parameters [11]

.

The final LCAO bands along the three principle axes

are shown together with the APW results in figure 1.

The r.m.s. error between these bands and the final

APW resuhs is 0.020 Ry.

3. Density of States

The density of states in energy was calculated from

the bands of figure 1 in the following manner. The BZ
was divided into cubes .4 tt/g on a side, and 24 of these

cubes were found to lie at least partly within the

reduced BZ, i.e., within the region having l/48th of the

BZ volume which is defined by the relations 0 ^ kz ky

^ kj:^ Ivla and kx + kj/^ kz ^ LStt/o. Within each box

1, Ni points were generated at random, the energies

were obtained at each point, and the average number

of states in each energy range was determined. Finally

the results of each box were weighted by how much of

that box lay within the reduced BZ and summed.

In all, the secular equation was solved at 4900 points.

Convergence of the density of states result was guaran-

teed by the fact that the answer after 2450 points dif-

fered from the final answer by about 4%.

A histogram of the density of states is shown in figure

2. The calculation is not valid above the dashed line

because c?-bands, which have been ignored in this cal-

culation, become important here. The arrows in figure

2 indicate the energies at which photoemission experi-

ments [8] predict peaks in the density of states. These

peaks are labeled c, fi, v-z, V3 and are associated with

corresponding peaks in the calculated density of states

as shown in the figure.

Spicer and Lapeyre [8] have identified the peaks c,

v\ and 172 with the L point band edges of the 2nd conduc-

tion band, the 2nd valence band and the 3rd valence

band respectively (bands are numbered going away

from the gap), and they have presented evidence that

the V3 peak results from states elsewhere in the zone.

In the present calculation, the contribution to the

density of states from each region of the zone was cal-

culated separately. It was found that the region around

L does not make the major contributions to these

peaks. Instead the bands proved to be flat over a rela-

tively large region of k-space which includes the point

of minimum gap on th.e A- and 2-axes. This region can

be thought of as being formed by six surfaces which are

approximately planar and are perpendicular to the six

A-axes. In this calculation the surfaces intersect the A-

axis at 7r/a(.7, .0, .0), the S-axis at 7r/a(.8. .8, .0), and the

A-axis at 7r/a(1.0, 1.0, 1.0) (the L point). In addition, the

calculation reveals that the c, vi, and v-z peaks result

from states in the principal conduction band, the prin-

cipal valence band and the 2nd valence band respec-

tively, and that they occur .08 Ry, .04 Ry, and .02 Ry
away from their respective band edges.

The f3 peak is found to result from the coincidence

of maxima from two bands; the third valence band near

r and the primary valence band near X. The fact that

this peak receives contributions from two quite dif-
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Fi<;lire 1. The relativistic LCAO bands of PbTe on the three principle axes. The crosses give the APW results to which the bands were fit.

T

-.
I

-

NUMBER OF ELECTRONS /UNIT CELL

Fi(;lire 2. A histogram of the density of electron states calculated
from the bands offigure 1.

The arrows indicate tlie positions of the pealis found in ref. [8|. The ealeulation is not
valid above tlie dashed line.

ferent regions of k-space could explain why the peak

does not disappear sharply with increasing photon

energy even if the transitions causing this peak are

direct [8]

.

In reference 8, the v\, v-z-, and vs peaks were observed

directly in the photoemission spectrum, but the c peak

was inferred indirectly using the optical measurements

of reference 9. This was done by associating a joint den-

sity of states maximum with the 2.2 eV peak in the mea-

sured reflectivity and thereby placing the c peak 2.2 eV

above the Vrv-i doublet. Joint density of states maxima

are, however, most closely related to maxima in the

imaginary part of the dielectric constant, e-iio)), and

peaks in e-zico) can be shifted by as much as .4 eV from

peaks in the reflectivity [6]. The e-yico) calculated from

the reflectivity in reference 9 and the e^lw) calculated

in reference 5 show a shoulder at 1.8 eV and no struc-

ture at 2.2 eV. We interpret this shoulder as arising

from transitions between the Vi and c density of states
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maxima, which, in our calculation, are separated by 1.7

eV. This interpretation is confirmed by the observation

that the Vi and c maxima both result from states in the

same region of k-space and that this region of k-space

contributes strongest to e-zio)) at this energy [5].

Furthermore, the v-y and c maxima do not form a joint

density of states maximum because the states con-

tributing to those peaks are in different regions of k-

space, and hence no peak in €>(o}) occurs at 2.5 eV.

The peak at low electron energy which begins to ap-

pear in the high photon energy results of reference 8 is

interesting. If it could be resolved by going to higher

photon energy, and if it could be shown to resuh from

a density of states maximum (and not from scattered

electrons [8] ). then it would give information about the

5-bands in FbTe. A previous calculation has indicated

a sharp peak in the density of states located 7.6 eV

below the valence band edge [12] . This is too low to be

resolved by the maximum photon energy used in

reference 8 (11.5 eV), but perhaps the tail of this peak

is being observed.

4. Optical Constants

In order to calculate the optical properties of a

material, it is necessary to know the oscillator strengths

as well as the resonant frequencies for each transition.

That is to say, at every value of k one must know the

momentum matrix element coupling the occupied

bands with the unoccupied bands as well as the energy

of each band.

This expression has been evaluated for intrinsic PbTe

at temperatures sufficiently low that the Fermi func-

tions fo(E> are one or zero, fi is the unit cell volume,

^wo(k)=£,(k)-£j(k), and r, taken to be 6 X 10"'^

sec (hlr— .005 Ry), gives a linewidth to each transition.

The summation on the k values within the BZ is simpH-

fied to a summation over the reduced BZ (sec. 3). This

is accomplished by replacing Ip'/^lk) |- in eq (7) by

l\Pui^)\'^j^\Pi}W (8)

This substitution is valid because the bands have cubic

symmetry.

The magnitude squared |py(k)|- of the matrix ele-

ment between the principal conduction and valence

Momentum matrix elements can be calculated from

the wavefunctions obtained from any energy band cal-

culations. However, one can often estimate the momen-
tum matrix elements directly from the energy bands. If

two bands are quite close together in energy, it is often

reasonable to assume that the bands interact (in the

sense of a k • p expansion) only with one another and

that the band curvature is determined only by the mo-

mentum matrix element coupling those two bands.

When this is true, the Taylor expansion of //(k) through

terms linear in k can be identified with the k • p
Hamiltonian matrix, and matrix elements of momentum
can be related to the coefficients in the expansion. This

method was first used by Dresselhaus and Dresselhaus

[3]. and the conditions for its validity seem to be well

satisfied in PbTe [13]. Following reference 3 we ex-

press the 1^ component of the momentum matrix ele-

ment coupling bands i and j as

where U(]s.) is the unitary matrix which diagonalizes

H(k).

2 U* .( k )///,„( k ) t/.,
J

( k ) = E; (

k

)8u (6)

The interband contribution to the complex dielectric

constant e(a)) = eUto) + ie-Aaj) is given in the random

phase approximation by [14]

(7)

bands, calculated from the bands of section 2, is plotted

in figure 3 along the three principal axes in k-space

together with the results of reference 5. Analysis of the

approximations involved in eq (5) suggests that this

method should work best on the A-axis and worst at L.

This conclusion is born out by figure 3. On the A-axis,

the k • p and the LCAO results agree to within 20%.

APW calculations at L give .331 (a.u.)^ for this quantity

[15].

The summation on the reduced BZ was carried out

by dividing this region into boxes as in section 3. Within

each box. a Monte Carlo integration was performed

[3] . and the results were weighted and added as in sec-

tion 3. It was found that certain boxes contribute

strongly to eico) and the integration was performed more

accurately in these boxes than in the boxes which con-

477^ |p-(k)M {UEj(h)]-fo[E,(k)]}

~a~E5„,2j^2(k) [Ej{k)-Ei(k}-haj-ihlT]'
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Fk.I RE 3. The n\(iLinit inle squared oj the momentum matrix element
coujilinii the princi/ile conduction band nith the principle valence

band.
Tile preseiU l aU-ukition is cniiipured with tlie k • |> results uf ref. [51.

0 12 3 4

tioj (eV)

Figure 4. The real and imaginary parts ofthe calculated interband
electronic dielectric constant together with the results of ref. [5]

and ref

tribute less strongly. To insure convergence, the

number of random points A^, within the ith box was

chosen to be sufficiently large that the final result for

€•>((!)) differed by a maximum of .1 or less from the inter-

mediate result calculated with /Vi/2 points. 11,850

points were required to obtain convergence using this

criterion.

To facilitate the calculation, the eigenvalue problem

was not solved at every random point. Instead it was

solved on a mesh of points k = tt/So (1. m, n) (1. m, and

n are integers), and the energies and momentum matrix

elements were obtained between the mesh points by

linear interpolation.

The real and imaginary parts of e(ctj) calculated in this

way are shown in figure 4 together with the Kramers-

Kronig results of reference 9 and the k • p results of

reference 5. The overwhelmingly dominant feature of

this calculation of €2(0;) is the peak at 1.9 eV which
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results from transitions between the Vi and c density of

states maxima. Even thou<ili the present calculation is

based on the same APW results as that of reference 5,

the energy differences between the principal conduc-

tion band and the principal valence band are slifihtly

larger causing the present result to be smaller at low

energies and larger at high energies. In addition the mo-

mentum matrix elements are consistently larger.

In spite of the apparent inability of the present calcu-

lation to reproduce the experimental e-zico) [16], ei(a) =
0) — 36.2 is surprisingly close to the measured optical

dielectric constant e^ = 31.8 [17]. This quantity is not

as sensitive to small inaccuracies in the energy bands

as are the optical constants at higher frequencies. In-

stead it reflects an average gap and an average oscilla-

tor strength.

5 Conclusion

The calculation of density of states and optical con-

stants was undertaken primarily to test in a general way

the accuracy of the APW-LCAO energy bands and

secondly to test the vaHdity of eq (5) for approximating

interband oscillator strengths.

The good agreement between the calculated density

of states and the photoemission data indicates that the

bands are sufficiently accurate to justify unambiguous

assignment of observed peaks in the valence band den-

sity of states with features of the band model. We con-

clude that agreement between the calculated peak in

the conduction band density of states and that deduced

from optical properties in reference 8 is largely for-

tuitous, but that a reinterpretation of the measured op-

tical properties is consistent with the calculated posi-

tion of this peak.

Based on the success of the density of states calcula-

tion, the calculation of e{o)) is disappointing indeed. It

is tempting to blame this lack of success on the oscilla-

tor strengths, but this is not necessarily the case. The
differences between the present calculation and that of

reference 5 are due as much to small differences in the

energy bands as to differences in the oscillator

strengths and we have not been able to draw any con-

musions about the validity of eq (5) beyond what is

shown in figure 3.

This calculation illustrates an important difference

between PbTe and the wider gap materials. In the

former, even small changes in the bands represent

large percentage changes and can drastically affect

both the size and shape of the calculated ei(w) whereas

in the latter this is not the case [18]. Considerable

refinements will have to be made in the band picture of

PbTe before agreement as good as that obtained in

better known materials is achieved.
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8. Appendix A

This appendix defines the parameters used in the

ti^ht bindin<j; secular equation which is discussed in

section 2 and gives their value.

The 6X6 secular equation obtained by taking matrix

elements of the spin independent part. Hsi. of the

crystal Hamiltonian between Bloch sums having the

symmetry of eq (1) is expanded in the most general

Fourier series consistent with this symmetry. The
result of the expansion through fourth order terms is

given in table 2. The Fourier coefficients in this table

are regarded simply as adjustable parameters, but they

can be related to overlap integrals of Hsi between
Liiwdin functions as shown in table 3. The 16 Fourier

coefficients were adjusted until the r.m.s. difference

between the eigenvalues of the LCAO secular equation

and the nonspin-orbit energies of table 1 is a minimum.
The values so obtained are given in table 4.

When spin-orbit interaction is added, the basis states

of eq (1) are muhiplied by a spin state.
[ f ) or

| J, ) . The
12 X 12 matrix equation which results from writing //,so

in this basis is Fourier expanded as before, but the ex-

pansion is terminated with zeroth order. Table 5 gives

the form of spin-orbit matrix in terms of the two

parameters k'"'' and A.'^ which were adjusted holding the

other 16 parameters fixed as discussed in section 2.

Table 2. Most general Fourier expansion in U.-space

of the matrix elements of H^i of (2) between the

Bloch sums of eq {!). The abbreviation (q;±|j8±)

means (bj; ^(r) |Hsi|b| |^(r) ). Other matrix elements

may be obtained by pairwise interchange of x, y, z.

<jr+|.r+>. {x-\x-)=X»±XxCs±YAc,i + c,) +X-,(cj.c,i-^CrC,)

+). {x—\y—)=—Z>SrS„^Y^SjrS,iCz

(.( -> , {x -\X +) = Q„ + QACsC,, + Cj-C) + R-.C.Cz + QaCij-

+ HAci,,+ c-,z)

(x+\y-) = (x-\y+) = -S-.sj-s,,

c„=cos (A„(//2) 5„=sin (t,„(il'2) c,„= sin (k,,(i)

Table 3. The Fourier coefficients of table 1 expressed in terms of tight binding overlap integrals

i[(</:;"(r)|H.,.,|«^Nr)>±{ai^'(r-T)|H.,,|(,J^(r-T)>]

(«7(r)|H..,|a:^^'(r-T)>

<«7(r)|H,,|a;''(r-T))

2[(r,^'"(r)|H.,,|«r'(r-R.)>±<"r('--T)|H,i|</]^'(r-R,-T))]

2[(a';"(r)|H»,|<;^"(r-R,))±("^^-(r-T)|H.,,|«];Mr-R,-T))]

_'[<«;;"{r)|H„|a^'"(r-R,)>±(«;^'(r-T)|H,,|</J^'(r-R,-T)>]

K<</';"(r)|H«,|"^^'(r-R,-l))

8(a';"(r)|H.,|«;;(r-R,-T)>

H(<,:,:"(r)|H.,|r,;;"(r-2T))±(a|;-(r-T)|H„|a];"(r + T))]

H(a;;^r)|H.,,-|a;;''(r-2T))±(r,i^-(r-T)|H,,,-|a;,'/'(r + T))]

T-''(I(K)) R,-^'(()ll)
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Table 4. The values of the band parameters which

were used to obtain the bands of Fig. 1.

Zenith Order -0.52918

Qo = -0. 04498

First Order -0.26730

y\ = 0.04363

Second Order . X-.= 0.00798

yi= -0.00673

-0.00661

Qi = -0.06.tI8

K< = -0.03403

.S'j
= -0 ()20.V>

1 liir<l Order .V;,= 0.01203

>.,= — 0.020 12

KoLirtli Order A ,= 0.01 1 10

) ,= 0.00178

Q> = 0.037 12

A',= -0.0027 1

Spill ( )rl)il A''" = 0.06447

0.().")396

TabI-E 5. Matrix elements oj H^,) between Bloch sums. This matrix is oj course Hermitian.

i> - T

X y z X y 2 X y z X y z

X 0 -/A 0 0 0 0 0 K' 0 0 A-

T }
0 1) (A- 0 1) 0 0 -iX* 0 0 -/A-

z 0 0 0 0 -A (A- 0 - A- (A- 0

X 0 -/A- 0 0 0 A- 0 0 A*

b- T y 0 0 0 -;A- 0 0 -/A-

z 0 - A-- (A- 0 /A' 0

X 0 (A- 0 0 ;A- 0

i y A-=i(A Vi ±A''") 0 0 -(A- 0 0

z 0 0 0 0

X 0 /A- 0

b- I y 0 0

z 0
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Plasmon-lnduced Structure in the Optical Interband
Absorption of Free-Electron Like Metals'^

B. I. Lundqvist and C. Lyden

Chalmers University of Technology,** Gbteborg, Sweden

We have extended Butcher s method t(i include the spectrum i)f interacting electrons, which con-

tains satellite structure. The calculated optical conductivity shows a weak additional absorption, start-

ing at about the frequency + co,,. where ai, is the interband threshold frequency and oj,, the plasma

frequency.

Key words: Electronic density of states: free-electron like metals: interband absorption; optical

properties; plasmon; pseudopotential; quasi-particle; satellite structure.

The common description of optical properties of free-

electron like metals in terms of Drude and interband

contributions [1] is in qualitative agreement with ex-

periment. In some cases there is even a quantitative

agreement, as for instance the Drude absorption due to

phonon-aided processes in the infrared [2]. What con-

cerns the magnitude and shape of the interband absorp-

tion as calculated in the one-electron approximation

there seems still to be deviations from the experimental

values [3]. Further, the slow increase of the effective

number of electrons [4] , difficulties to fit data to an ef-

fective oscillator formula [5], and difficulties to fit

high- and low-frequency optical masses [3] , suggest

the possible existence of further structure in the ab-

sorption at photon energies above the ordinary inter-

band transition range.

A recent investigation of the one-electron spectrum

of the electron gas. considering effects to the lowest

order in the coupling to the density fluctuations, and in

particular to the plasmons, indicates an important

satellite structure in the spectrum [6], Due to the in-

teraction the quasi-particle branch gets reduced spec-

tral weight and is accompanied by a pronounced

plasmon-induced satellite structure for both occupied

and unoccupied states (see fig. 3 of the paper by Hedin.

Lundqvist and Lundqvist in this volume). The energy

separation between the two branches is somewhat

larger than the plasma frequency cop. As the source of

this effect is the existence of plasma oscillations, we
consider it reasonable to expect this kind of structure

to be important for free-electron like metals as well.

A satellite structure in the one-electron spectrum

may produce structure in the optical absorption spec-

trum. From a simple-minded point of view there should

not only be the ordinary band-to-band transitions,

which start at the threshold energy Eg- There might

also be additional absorption processes, due to transi-

tions from the occupied satellite branch, starting at

about the photon energy ^co = £"f; -I- ^ojp. The purpose of

this note is to present an estimate of the relative im-

portance of these kinds of absorption contributions in

the ultraviolet region. We have made a numerical cal-

culation of the optical conductivity of sodium.

The optical interband absorption at the photon

frequency a> is in the one-electron approximation given

by the conductivity [ 7.8]

.

o-(w)=T7r-rVy I
(lecPk\Mir(k)\-8{e-Ei(k})8{e + hco-Er(k')). (1)

LZTT-m-cof-f, J ^

where Mun (k) is an interband dipole matrix element element from the nearly-free-electron approximation

and Ei(li) a band energy in the band indicated by L To [7]

,

get our rough estimate we have used the dipole matrix
\ m /i \ l> — I (; I

"

r io\

(e(k-G) -e(k))- + 4 -

2tt
*Work supported by the Swedish Natural Science Research Council. —

| | ^ 1.0}.
•'Mailing Address: Foch, S-402 20 Giiteborg 5, Sweden. (1
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where Vc is the screened pseiidopotential, 6' the smal-

lest reciprocal lattice vector and e(k) the free-electron

energy. Because the integration will include /r-values at

the Brillouin zone boundary, the expression of

This expression has been evaluated numerically using

the values of the spectral function from reference 6 at

the density of sodium (electron gas parameter = 4)

and = 0.323 eV [7].

The resulting absorption power is shown in figure 1

in order to illustrate the relative importance of the

transitions between satellite and quasi-particle states.

The highest value of cr(a») is roughly one half of

Butcher's result [7]. The reason for this is that due to

the dynamic interaction between the electrons the

quasi-particles get reduced weight. This reduction is

typically 30 percent. Estimations of some electron-hole

scattering processes, e.g. virtual exchange of plasmons,

show that there are mechanisms able to give a compen-

sating enhancement of the absorption near the

threshold ^(o= £(; [9-11].

The figure indicates that there is a weak contribution

to the absorption power, starting at about hw = Ec +
ho),, ( ~ 8 eV for Na). which is caused by the plasmon-

induced satellite structure in the one-electron spec-

trum. As this contribution is of roughly the same size as

the one from transitions between quasi-particle states,

we expect it to be measurable.

In the ultraviolet region another kind of structure has

been proposed [12]. In a pseudopotential treatment,

the screening in the effective potential Vc should be

dynamic in nature. The plasmon resonance in the

screening function gives rise to a structure, which

fid) [ eV]

Fk.L RE 1. The calculated optical absorption ofsodium.

reference 7 is modified by the 4|Ff,|--term in the

denominator.

To describe the continuous one-electron spectrum

for interacting electrons [6] . we replace the sharp ex-

citation energies in the first equation by the spectral

function and get [8]

(3)

should be in the measurable range [12,13]. However,

this additional absorption starts at a; = a>,, ( = 6 eV for

Na) with a distinct onset, and it should be possible to

separate it from the structure proposed in this note.

There have been several papers on the optical ab-

sorption of an electron gas, where the process leading

to a final state consisting of an electron-hole pair and a

plasmon is taken into account [14-19]. This intraband

absorption process is different from the interband

process discussed in this note. Besides, as stressed by

Hopfield [12], there is no optical absorption in a

homogeneous electron gas in the long-wavelength limit

due to the lack of momentum sinks. The same conclu-

sion follows, when a proper set of diagrams in the per-

turbation expansion of the optical conductivity is con-

sidered [19,20].

The formula, which we have used for the conductivi-

ty, does not satisfy the sum rule for oscillator strengths.

Certain vertex corrections, describing the final state in-

teractions, ought to be included. Preliminary estimates

indicate that processes, where real plasmons are

exchanged, give a positive contribution to the absorp-

tion power in the photon energy region of interest here.

We are presently performing numerical calculations of

vertex corrections.

The experimental information about the optical con-

stants of sodium in the ultraviolet region available in

the literature concerns only the real part of the dielec-

tric function [21]. As this quantity is so dominated by

the free-electron behavior, the weak absorption

mechanism proposed in this note should have a negligi-

ble effect on it. To conclude, we stress the desirability

of accurate measurements of the optical absorption by

free-electron like metals in the photon frequency range

around and above the plasma frequency.
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Theory of the Photoelectric Effect and its

Relation to the Band Structure of Metals'^

N. W. Ashcroft and W. L. Schaich**

Laboratory of Atomic and Soljd State Physics, Cornell University, Ithaca, New York 1 4850

We develop the theory of the external photoelectric effect in terms of quadratic response to the in-

cident electromagnetic field. Electrons in the solid are in states determined by their interactions with

themselves, the ions and the surface. We denote by //o the Hamiltonian for this part. In the presence of

the electromagnetic field we have a coupling term:

H,=-^ j dvAir, t) J{r)e^', (tj = 0+)

where A(r, t) is the vector potential, and J(r) is the current density operator for the electrons. Let R
be a point exterior to the solid. Then the expectation value of the operator measuring the external

current density at R in the states of {Hu + Hi) is, to second order:

<<y^(x,,r,)y„(R, oy,.(x.,,r^))).

There is no linear response and no other terms to order /i^ giving a measurable result. We show that

(ya(R. ')) may be related to the expectation value of the time ordered product of the three current

operators. This alternative description can be evaluated in the independent particle model (no scatter-

ing) and leads to a compact formulation of photoemission. There need not be a simple dependence

of (7a(R, t)) or of its spectral reduction (ya(R, e)) (corresponding to measured electron distribution

curves) on the joint density of states. Rather (ya(R. E]} depends on the density of bound states but

is not at all simply related to the density of states above the vacuum level. This emerges quite clearly

from an analysis carried out in the well known constant matrix element approximation. A careful

examination of the terms appearing in the photoelectric current shows that it is not always

correct to interpret photoemission in terms of a "volume effect" or a "surface effect." The contri-

butions from these two interfere. The usual explanations of the processes involved (i.e.. the sequential

operations of excitation, transport, and transmission) are also somewhat blurred.

The effect of electron-electron scattering is well known to be important and will be discussed both

in terms of its manifestation in the observed electron distribution curves and its ability to limit the con-

tribution of the conventional volume effect.

Key words: Electronic density of states; electron-electron scattering: electrons in a box; joint densi-

ty of states; Kronig-Penney model; photoelectric effect.

1. Introduction photoemission similar in spirit to the theory of linear

response. A general expression for the photocurrent is

The external photo effect can be viewed, for derived in the next section, and in succeeding sections

moderate ampHtudes of the incident photon field, as is analyzed in various approximations to determine its

the quadratic current response of a system to an ap- dependence on the underlying equiUbrium electronic

plied electromagnetic field. This statement is based on structure. Specifically we are interested in whether the

the experimental fact that the photocurrent is propor- photocurrent or its spectral reduction is proportional to

tional to the intensity of the incident field over at least a density of states and whether (or rather to what
8 orders of magnitude of the latter [1]. We use this ob- degree) inelastically scattered electrons retain useful

servation to develop a quadratic response theory of information' about single particle band structures.

™ , , .u.i w. ic r J J r rc„o Some prehminary thoughts along these lines are given'Work supported by the National Science Foundation under Grant GP-7198. i- j o c c
**NSF Predoctoral : ellow. in SCCtioU 4.
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2. Quadratic Response Theory

We consider a solid (or liquid) located in the half

space X <0. In the presence of the incident light the

Hamiltonian of the system is written

with (1)

Ho = h + Hc

Here h describes the kinetic energy of the electrons

and the interaction between electrons and ions and

electrons and surface, while He describes the interac-

tion between electrons and electrons. For simplicity we

shall invoke an adiabatic approximation in order to con-

sider the ions as static. The interaction of the system

with the electromagnetic field is represented hyHii

both here and below because it contributes only in or-

ders higher than A'^. (Similar considerations apply to

possible terms in Hi proportional to A'^.)

In the photoemission process we are faced with the

problem of determining the time independent elec-

tronic current far away (say 1 cm) from the surface

which is established long after (say 10"** sec) the pertur-

bation //] has been applied to the equilibrium ensem-
ble. Putting this another way, for R • x > 0 and t ~ 0

we seek {JaO^,t)) where figuratively [2]

1
iHI -iHt

Ua{R,t))= -2(^-'''''oin\e^ Ja{R)e |«)o (5)

and
//o|n)o )o, l3=llk^T

(6)

Hi^-- ! drJ^A^(r,t)J^{r)e^', r)^ 0^ (2)

where

J^^"-^ =^ S {pi,S(r-x') + 6(r-x')pU (3)

Here the |n)o are those many-particle eigenstates of the

equilibrium ensemble which existed before the applica-

tion of Hi. To reduce (5) we work in the interaction

representation and obtain to first order in the vector

potential:

The scalar potential is zero by choice of gauge; we are

thinking of a plane wave for the vector potential A(r,f).

By using the Hamiltonian (1) we have assumed that ini-

tially (in the distant past) there were no electromagnetic

fields present. Note that we ignore contributions from

the diamagnetic current.

-iHt

^''^
ih

dsHAs)
(7)

,/;l(r, 0--— f^ mc J

ch ^8{r-^')A^{r,t), (4)

This approximate evaluation is sufficient to determine

the photocurrent to second order in the applied field.

Substituting (7) in eq (5) we find the quadratic response

to be:

2 /i^(x,T,)/i„(x.2T2)(aM(x,T,)ia(R, Oi.fx^T,))) (8)

The double brackets refer to the ensemble average

shown explicitly in eq (5). In deriving eq (8) we have

neglected terms of the same or lower order in A on the

assumption that Ja(R,t) gives a negligible contribution

when it acts on an unperturbed state near (within

several /r^r) the ground state. This approximation fol-

lows from the physical notion that those states

favorably weighted by the thermal factor e"^^'" contain

no electrons outside the metal. Equation (8) forms the

(./„(R,.0)=^ 2 e'-'— [ d'^Xi [ d'^x-, AA^,)AA^.,)

basis for all further discussion; it represents a general

expression for the photocurrent which we shall evalu-

ate for specific systems in order to determine how the

photocurrent depends on the electronic structure.

3. Independent Particle Model

By performing the time integrations indicated in eq

(8) we find:

1

Ei) + fi(o — Ho — i8

1

En + hco' -Ho+i8
8, §'=0+ (9)
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To arrive at (9) we have assumed the electromagnetic

field to have a time dependence given by cos fit. If we
now ignore the Coulomb interaction between electrons

(i.e., neglect He), further simplifications follow im-

mediately. Extracting the term for the observed steady

photocurrent; i.e., omitting those terms that correspond

to stimulated emission or that are time dependent, we
find for the independent particle model

where \n) , \u) . and \v) are single particle states with

energies e„, e„, and ei>, the/s refer to single particle cur-

rent operators, and /"(e)= {1 + e^<*-*''}-i and /+(e)=l

— /~(e) are state occupation factors. The interpretation

of this expression is that it describes those electrons

that escape without any reduction in their energy or any

lifetime effects. Note that the photocurrent is not

simply related to a product of an excitation probability

and a transmission factor.

We have evaluated eq (10) for two specific examples

of the independent particle Hamiltonian h. The first ex-

ample is the model used by Mitchell [3] : free electrons

in a semi-infinite box. The states \n), |«), \v) are easily

evaluated and Mitchell's results follow straightfor-

wardly and need not be reproduced here [4]

.

The second example is the Kronig-Penney model

[5] , which, unlike Mitchell's model, admits the possi-

bility of band structure. We assume that the single par-

ticle potential varies only in the x-direction and that its

form is as shown in figure 1. (We eventually take the

limit of Fo^oo, 6^0 such that (2mW^-) ^ 2P/a.

)

To be specific, the parameters of the model, P, a, and

Wn, have been chosen to represent as nearly as possible

the (111) planes of Na: the model possesses the same

spacing in the ;t-direction and has the same Fermi ener-

gy, first band gap, and photoelectric threshold. To limit

the total current we introduce an effective depth into

T
b

Vo

1 1

I I I II
x=-|-a x=-4a x=-^a x = -o x=0

Fl(,URE 1. Portion of modified Kronig-Penney potential.

The metal is in the half space x<Q and the potential change at the surface is represented
by a simple discontinuity.

the matrix elements: this is purely ao? /loc and is similar

to the cut-off procedure used by Fan [6] . This limita-

tion is based on the physical observation that

photoelectrons never emerge from a depth greater than

a micron. That such a cutoff is automatically present

can in fact be derived from eq (8), as will be shown
below. Some of the results for this model are shown in

figure 2. We have plotted energy distribution curves for

a photon energy of 4 eV (1.71 eV above threshold). The
temperature is assumed to be 300 K and the curves are

parametrized by L which is approximately the number
of planes from which electrons are allowed to emerge.

Both the conventional "surface" and "volume" effects

are present. In fact the equations of the model ex-

plicitly show that these two effects may interfere with

each other; i.e., the distributions are proportional to the

L = 70

X / -,= 60^

«*—

C
o
o
Q.

C

consta

units) m/ / ^/^°
\

jy

at

trory
ill / / 'y^°\
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enerc
(Arbil

//// / / '-/"A
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/ / //l-=5 \
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1 1 1 1 1 1 I—I 1 1 1 1 1 1 1 1^

.2 ,4 .6 .8 1.0 1.2 1.4 1.6 1.8

Energy above threshold >

(electron volts)

Figure 2. Energy distribution curves for modified Kronig-Penney
model {no scattering). {See text for an explanation of the

parameters.)
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square of the sum of the two rather than to the sum of

the squares. As the effective depth increases, the

volume effect becomes dominant as expected.

On the basis of our experience with specific models,

we shall now discuss for the general case (but still

within the hmitations of the independent particle

model) what information concerning the electronic den-

sity of states we may expect to be determined from the

spectral reduction of the photocurrent, which is essen-

tially the expression in eq (10) but without the sum over

the initial states \n). By limiting ourselves to the inde-

pendent particle model, we are naturally assuming that

at least the high energy part (say within 4 eV of the

maximum) of the energy distribution curves is essen-

tially unaffected by electron-electron scattering. This

is consistent with phase space arguments about the

degrading effect of electron-electron scattering and is

the fundamental assumption used in the interpretation

of the experimental energy distribution curves. Since

we seek a density of states dependence we shall re-

peatedly use below the constant matrix element ap-

proximation.

In examining the photocurrent expressions we find

that there need not be a simple dependence of its spec-

tral reduction on the joint density of states. This lack of

dependence arises essentially from the fact that our for-

mulation is based on the explicit consideration of a sur-

face; the evaluation of the formulae requires the deter-

mination of wavefunctions in the presence of the sur-

face, hence k-vectors cannot serve to enumerate eigen-

states, nor need crystal momentum be conserved. The

addition of Hfetime effects (see below) further

strengthens this conclusion. Since the usual derivation

of a dependence of (J) on the joint density of states

requires (at the very least) both these properties, it is

not clear whether such a dependence could ever result

from an evaluation of eq (10). But, for the limiting case

where volume (direct) transitions are dominant such a

dependence on the density of states might be found

(though to extract it from our formalism would appear

to be arduous). For the general case, however, it is im-

possible (because of the presence of the surface) to ex-

tract a simple dependence of (J) on the joint bulk den-

sity of states.

4. Scattering Effects

For convenience we go now to zero temperature to

consider the effects of Coulomb scattering among the

electrons. Equation (8) for the current can be related to

a time ordered product of three current operators. The

result can be evaluated in the Hartree-Fock approxima-

tion which is a generalization of the independent parti-

cle model to include lifetime effects. We find

{JaiR, t})=-—
1 / eh

Hm ( v;ii - Vl^ ) ( V." - V^2 ) («,^ - v^2

)

"2^ "2

ds e-"'^((|/+(x;, s)(//(x2, o))

n + Cl — u — i8
ds e'"-'(.|/(xi, 5)»//+(R', 0))

1

in + D. — V + z6'

ds e-'''*(i|/(R. 0)i//+(x:, s)) + c.c. (11)

where; e.g., ( (xi ' ,5 ) i//(x2,o)) is the expectation value

in the interacting ground state of the product of the

Schrodinger operators i//+(xi,s) and i//(x2,o) in the in-

teraction representation:

./;(x2,o) = 2 (x.,|«)c„ (12)

u

ihs —ills

r{^[,s)=^{^[\u)e''cte ^ (13)

u

Here the c,,+ and c,, are creation and annihilation opera-

tors for the single particle eigenstates, \u) , associated

with the Hamiltonian h. Note the similarity between

eqs (10) and (11). The difference lies in the fact that eq

(11) allows us to include the probability that an electron

can propagate between any two points. Since an elec-

tron in the bulk material has a mean free path we now
obtain a natural limitation of the volume effect, which

in turn weakens the criterion of conservation of crystal

momentum. We note, however, that within this approxi-
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mation we have not obtained a damping of the incident

electromagnetic wave and hence the analysis is only ap-

plicable to those materials whose electronic mean free

paths (at the energy ~Ef + hVL) are less than their

photon absorption lengths. Furthermore, we have lost

a clear representation of the transition matrix elements

which appear straightforwardly in eq (10).

We may reduce eq (11) to an expression similar to the

result of Berglund and Spicer [7] for the current from

those electrons which escape without scattering. To ac-

complish this we are forced to make some approxima-

a„(R, t)) \ dn\ dr
J Jrx<0

tions whose physical interpretation and effect are dif-

ficult to estimate. Specifically we must assume that the

energy integrals over u and v may be carried out as in

the independent particle model with the resulting con-

servation of energy and that the elfect of
J^^ e"""

(i//+(xJ,5)i//(x2,o)) is to require the spatial arguments to

be identical (x2 = xi'). Finally, we must assume that the

two remaining expectation values can both be written

as products of an excitation ampHtude J(x.,n) (nonzero

only for x inside the metal) and a transmission am-

plitude T(jLyR,ii). We then find

A(r) • J(r, /i)Hr(r, R, /z)|2 (14)

which expresses the spectral reduction of the photocur-

rent as an integral over the product of an excitation

probability and a transmission factor. The assumption

of the existence of such a formula is the starting point

of the analysis of Berglund and Spicer [7].

Finally we consider the effects of inelastic electron-

electron scattering. A multitude of terms arise in the

reduction of the time-ordered product whose in-

terpretation is difficult. One of the main contributions,

however, can be interpreted as the "once-scattered''

term of Berglund and Spicer [7] . Exphcitly it is

UaiR, 0)scatt. =^ [ d'x^ j d-'x-> ( X, )^.( X. ) ^ /" ( 6,, ) ( ( X, ) jw;'

)

II

,

«', w'

U, V

/M€„.-)

en + hn-

IV (5 t ) u
/-(e.s.)/Me»)/Me,)

€„ + fifl — (e, — €,.) — 6,, — ;t7

— {u\ja(R)\v)

l> t w

fHer)fHe>)f-{es)

e„ + hfl — {€! — e.v) — e,. + ir]"

(w^|>(x2)|n) (15)
/Me«.)

e„ + hCl — e -\- ir)

where the /-'s are evaluated at zero temperature and e.g..

''I ( I 1
I

|»y
=

j
drt

j
dr2{v\rj){t\r2)

, ^ , (r^l^) (r, |u;) (16)

As before \ti) . \w) . . . are all single particle eigenstates

associated with h. An interesting consequence of this

expression which seems to have escaped previous

notice is that energy need not be conserved in the inter-

mediate state. Only if the matrix elements involving \w)

and \w') are independent of the energy of \iv) and \w')

will energy be conserved. This implies that there is a

potentially much greater oscillator strength for excita-

tions that simultaneously create a pair (or a plasmon)

than for single particle excitations. It also unfortunately

implies that the spectral reduction of the photocurrent

due to inelastically scattered electrons (i.e., scattered

by other electrons) will bear no simple relation to the

underlying electronic band structure.

5. Concluding Remarks

We conclude by mentioning the extensions of this

work that immediately suggest themselves, some of

which we are currently investigating. It is quite clear

that more of the contributions to the inelastic com-

ponent of the photocurrent need to be classified,

analyzed, and numerically estimated. It must be the

case, for example, that a class of terms exist which

represent the damping of the electromagnetic wave into

the material. It is also of considerable interest to have

an accurate description of the behavior of electrons as

they approach the surface and to learn, in particular,

how this can be related, if at all, to the properties of
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bulk electrons. In this connection we make two obser-

vations. First, a soluble independent particle model

somewhat more sophisticated than the Kronig-Penney

model is evidently required. Second, we need an un-

derstanding more complete that we presently have, of

the physics of an interacting electron gas in the

presence of a potential discontinuity, a problem long

familiar in the context of low energy electron diffrac-

tion. Finally, it is apparent that to facilitate direct com-

parison with experiment the analysis in its final form

must be extended to nonzero temperatures.
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Discussion on "Theory of the Photoelectric Effect and Its Relation to the Band Structure of Metals"

by N. W. Ashcroft and W. L Schaich (Cornell University)

W. E. Spicer (Stanford Univ.): The suggestion that a This seems to agree with results in metals but not

free electron final density of states rather than the band semiconductors,

density of states should be used is quite interesting.
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Optical Density of States Ultraviolet

Photoelectric Spectroscopy*

W. E. Spicer

Stanford Electronic Laboratory, Stanford University, Stanford, California 94305

The use of ultraviolet photoemission to determine the density of valence and conduction states is

reviewed. Two approaches are recognized. In one, the photoemission as well as other studies are used

to locate experimentally a limited number of features of the band structure. Once these are fixed, band

structure calculations could be carried out throughout the zone and checked against other features of

the photoemission data. If the agreement is sufficiently good, the density of states is then calculated

from the band structure. The second method depends only on experimental data. Using this approach,

features of the density of states are determined directly by the photoemission experiment without

recourse to band calculations. In cases where bands are wide and k clearly provides an empirically im-

portant optical selection rule, this is possible only for portions of the bands which are relatively flat. Suc-

cessful determinations of this type are cited for PbTe, and GaAs. In metals with narrow d bands such as

Cu, it has been found empirically that one may explain fairly well the experimental energy distribution

curves in terms of transitions between a density of initial and final states (the optical density of states,

ODS) requiring only conservation of energy.

The ODS determined by such ultraviolet photoemission studies have more strong detailed struc-

ture than the density of states determined by any other experimental method. Studies on a large number

of materials indicate that the position in energy of this structure correlates rather well with the position

in energy of structure in the calculated density of states. It is suggested, following the very recent

theoretical work of Doniach, that k conservation becomes less important (and nondirect transitions

more important) as the mass of the hole becomes larger. This is due to the change in k of electrons in

states near the Fermi level as they attempt to screen the hole left in the optical excitation process.

These electrons take up the excess momentum. One would expect the k conservation selection rule to

play an increasingly important role as the mass of the hole decreases. This is in agreement with experi-

ment.

Key words: Copper; copper nickel alloys; density of states; GaAs; Ge: nondirect transitions; optical

density of states; PbTe; ultraviolet photoemission.

1. Introduction

Photoemission can give a great deal of detailed infor-

mation about the optically excited electronic spectra of

solids. Adequate interpretation of photoemission data

can produce detailed information on the electronic

structure and, assuming that Koopmans' theorem

[1] holds, on the ground state density of states.

The utility of photoemission lies in two factors:

(1) The ability to determine the distribution in energy of

* An invited paper presented at tiie 3d Materials Researcli Symposium, Electronic Density

ofStales, November 3-6, 1969, Gaitilersburg, Md.

' Work supported by NASA, NSF, U.S. Army Night Vision Laboratories, U.S. Army

—

Durham, and the Advanced Research Projects Agency through the Center for Materials

Research at Stanford University.

electrons excited by monochromatic light, and (2) the

ability to study the valence bands of solids over their

entire widths. Difficulties arise in correcting for in-

elastic scattering and electron escape probability and

in interpreting the data so corrected. Correction for

scattering and escape probability seems to have been

rather successfully done in a number of cases

[2,3,4,5,6] . There are still detailed questions open in in-

terpreting the data; however, as will be shown in this

paper, it is clear that considerable information on the

density of states can be obtained from photoemission

data independent of these questions.

Let us look in more detail at the essence of optical ex-

citation in solids and the photoemission experiment.
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P(E,hi/) *>

Figure 1. Energy diagram for a metal. P(E, hv) is the probability of

a photon ofenergy \w exciting an electron to final energy E. (/> is the

workfunction, E, is the initial energy of the excited electron, Efis the

Fermi energy.

Consider the probability, P(E,hv), of a photon, of ener-

gy hv, exciting an electron to a final state of energy E
(see fig. 1). The excitation spectrum in the solid is then

given by the values of P(E,hv) for all values of energy.

The external photoemission energy distribution

N(E,hv) would correspond exactly to P(E,hv) if all

excited electrons escaped without inelastic scattering.

Thus,

P(E,hv)-^ N{E,hv). (1)

was present in the co curve near 5.0 eV and none was

present near 10.2 eV, several pieces of structure are

present in the EDCs for each value of hv.

From the energy at which the structure appears, the

initial and final states involved in the optical transition

can be quickly identified. In the present case, the elec-

trons within 2 eV of the high energy cutoff, Emax, are

excited from the almost free-electron-like conduction

states lying within 2 eV of the Fermi level; whereas, the

sharp structure lying more than 2 eV below £",7,0^ is due

to excitation from the d states.

By noting the manner in which EDC structure moves

with hv, the relative importance of initial and final

states can be determined and information can be ob-

tained about selection rules and/or matrix elements.

For example, it was possible to determine that the peak

in figure 2b at about 2.7 eV was due to a direct transi-

tion from states near the Fermi level with a threshold at

about 4.4 eV [3]. Examination of band calculations

showed that the transition must be centered near the L

symmetry point. We will return later to the discussion

of the interpretation of photoemission data. In fact,

such discussion will provide the central theme for this

paper; however, it is first useful to briefly review ex-

perimental techniques and the effects of scattering on

photoemission data.

In contrast, the optical constants (ocr or €2 (from which

attempts are often made to determine the electronic

structure) are related to the integral of P(E,hv) over all

possible final states

€2 / P(E,hv)dE. (2)

€2 is the imaginary part of the frequency dependent

dielectric constant and cr is the optical conductivity, cr

= 62/(0- For the relations in eqs (1) and (2), it can be seen

that photoemission contains much more detailed infor-

mation than do the optical constants. This is illustrated

by figure 2a, b, and c.

In figure 2a the imaginary part of the dielectric con-

stant for Cu is plotted versus photon energy [7]. The

arrows call attention to two values of photon energy, 5.0

and 10.2 eV. A maximum appears in €2 at hv = 5.0 eV.

There has been considerable discussion [3,4,8,9,10]

concerning the optical transition or transitions respon-

sible for this peak. There is no measurable peak in €2 at

10.2 eV; rather, the curve is almost flat. In figure 2b

and 2c, energy distribution curves, EDCs, are

presented for hv equal to 5.0 and 10.2 eV. The striking

thing about these curves is the large amount of struc-

ture which is present in them. Whereas only one peak
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2. Experimental Techniques

As was suggested in the Introduction, a large amount

of information can be obtained from the photoemission

energy distribution curves. A second useful measure-

ment is that of the spectral distribution of quantum

yield. Let us briefly review the experimental methods

for obtaining such data. In so doing, we will not attempt

an exhaustive hst of references, but rather wiU at-

tempt to refer to recent articles representative of the

various techniques. Because of his closeness to the

work at Stanford, the author will draw particularly

heavily on this work.

For many years EDCs were obtained by measuring

an I-V curve and differentiating it by hand. The most

important modern advancement was the replacement

of this tedious and demanding practice by various

schemes which yield EDCs directly from the experi-

ment. Most popular are methods which add a small al-

ternating voltage to the retarding voltage so that the

derivative is taken electronically [11,12]. By slowly

(typically 1 volt/minute) sweeping out the retarding

voltage, a complete derivative curve can be obtained.

Recently [13,14], measurements have been made at

the second harmonic of the alternating voltage to obtain



Figure 2. (a) for Cu. (b) EDC obtained from Cu with Cs on the surface for hi'= .5 eV. Note that this curve has several pieces of structure

in it, whereas the curve had only one peak at 5 eV. (c) EDC for clean Cu. \iv= 10.2 eV. Note that several pieces ofstructure occur in the

EDC, whereas there is no strong structure near 10.2 eV in the EDC.

the second derivative of the I-V curve. In this way weak

structure in the EDCs can be detected and studied. A
second approach is to take a I-V curve and then to

either differentiate it electronically [15,16] or by

means of a computer.

The geometry and other details of the energy

analyzer are also of considerable importance. Because

of ease of construction, wide use has been made of a

cylindrical approximation [11] to the more ideal spheri-

cal geometry of the collector. This has given an energy

resolution of between 0.1 and 0.3 eV, depending on the

kinetic energy of the emitted electrons, the details of

the emitter geometry, the uniformity of the collector

work function, and other factors. Of particular im-

portance for small electron kinetic energies are dif-

ferences in work function between the face of the

emitter and its sides. DiStefano and Pierce [17] have

recently made an overall study of the factors limiting

resolution. They conclude that a spherical collector

with a spherical grid providing a field-free drift region

should provide a significant increase in resolution pro-

vided that effects of the earth's magnetic field are

properly minimized. Preliminary measurements with

this geometry support these conclusions.

In principle, the measurement of the spectral dis-

tribution of quantum yield is much simpler than the

energy distribution measurement. All that is needed is

a standard detector of known response to which the

emission of the sample under study can be compared.

In the visible and near infrared spectral ranges, this is

fairly easy to achieve because of the high light intensi-

ties available and the large number of suitable detec-

tors. It is considerably more difficult in the ultraviolet

where light intensity may be low and there are con-

siderable problems with detectors [18]. Groups at the

National Bureau of Standards, Stanford University, and

other laboratories are cooperating in an attempt to

establish good standards on a national-wide basis.

Another very necessary condition for successful

photoemission experiments is the ability to provide

emitter surfaces which are atomically clean. One must

be able to provide such surfaces and insure that they do

not contaminate in the course of study (pressures better

than 10"* or 10~^ Torr are usually necessary). Depend-

ing on the material, surfaces may be provided by cleav-

ing [19] , evaporation [4,6,20] , heating [21] , sputtering

[22], or a combination of these methods. In covalent

semiconductors such as Ge, it is well known that care

must be taken to preserve crystalline perfection; how-

ever, in metals such considerations seem much less im-

portant. In fact, for Cu and Ni, which have been studied

both as single crystals and evaporated films, the

evaporated samples have given to date as good or better

results than have sputtered and/or heat-cleaned sam-

ples [21,23]. This is despite the fact that some

evaporated samples may have very small crystallite

sizes (for example, about 100 A in the case of Ni [6,20]).

The insensitivity to crystallite size is due to the escape

length for photoexcited electrons often being much less

than 100 A.

It is often useful to reduce the threshold for

photoemission by placing a layer of cesium on the sur-

face of a material. Ideally the cesium will only form a

monatomic layer which reduces the work function

without affecting any other properties of the solid. How-

ever, since Cs may chemically combine, amalgamate,

or interact in other ways with the material under study,

one must take care. The best procedure is to obtain

EDCs from clean material over a photon energy range

of several eV or more before placing the cesium on the
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surface. Then, after the cesium is placed on the sur-

face, EDCs should be obtained from the same photon

energy range. By comparison of the two sets of EDCs,
an estimate can be obtained of any extraneous changes

produced by the cesium.

3. Electron Scattering Phenomena

As mentioned in the Introduction, one must un-

derstand the effects of electron scattering in order to

properly interpret photoemission data. Two principal

scattering mechanisms are electron-electron and elec-

tron-phonon scattering. In the first type of event, the

scattered electron loses a large fraction of its original

energy to a second electron, which is thus excited. The
electron-electron event is characterized by a mean-free

path which decreases rapidly as the primary electron

energy is increased in the range E < 12 eV. The energy

loss in the phonon-scattering event is much smaller

than that in the electron-electron event and, since this

energy loss varies roughly as the Debye temperature,

it will be much smaller for the material containing

heavier atoms than for those with lighter atoms. There

is no evidence that the phonon mean-free path is highly

dependent on electron energy as is the case for

electron-electron scattering. Kane [24] has pointed out

that the electron-phonon scattering will be enhanced

for final states having low group velocity {i.e., states as-

sociated with a high density of states). Eastman [25]

has made the same observation for the electron-elec-

tron event. However, it does not appear that massive

distortion of the energy distributions are produced by

these effects.

There is a threshold for pair production in semicon-

ductors and insulators of about the forbidden band gap

energy (i.e., the electron must be above the conduction

band minimum by this amount before it can produce a

secondary). Thus, only phonon scattering is possible

below this threshold. In a metal there is no such

threshold. However, as mentioned previously, in both

semiconductors above threshold and in metals the elec-

tron-electron scattering length decreases quite fast

with increasing electron energy. In figure 3 we present

values [5,26,27,28] for Au obtained by several different

methods. Note that the mean-free path drops by two or-

ders of magnitude within a few eV. The electron-elec-

tron scattering effects have been taken into account

quantitatively in interpreting photoemission data

[3,4,6]. In fact, photoemission measurements can be

used to determine the electron-electron mean-free

path. The solid curve in figure 3 was deduced from

such measurements by Krolikowski and Spicer [4].
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Figure 3. Electron-electron scattering length for Au as obtained by

several workers [5,26,27 ,28]

.

More recently, Eastman [29] has developed a direct

method for obtaining electron-electron mean-free paths

from photoemission measurements. This is based on a

variation of sample thickness.

For electron energies below the threshold for pair

production in semiconductors, photoemission has been

used extensively by James and Moll [30] to study the

scattering of electrons by phonons in GaAs. This is of

particular interest because of its importance in the

Gunn effect. DiStefano and Spicer [31] have developed

special photoemission techniques to study the scatter-

ing of hot electrons in alkali halides by phonons.

We give the examples listed above to illustrate the

degree to which scattering of excited electrons in the

photoemission experiment has been studied and is un-

derstood. This is not to say the processes are un-

derstood in all detail. This is not the case; however, a

good, first-order understanding does seem to exist.

There are other possible scattering phenomena which

are less well understood. These include scattering

from: (1) Bulk imperfections (such as grain boundaries),

(2) the sample surface, and (3) scattering from oxide or

other "crude" layers on the surface [19]

.

4. Interpretation of Photoemission Data:

Direct and Nondirect Transitions

The present author and his coworkers have sug-

gested [2,19,32] that, for excitation from certain
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quantum states characterized by low mobility holes,

conservation of k may not provide an important selec-

tion rule and that only conservation of energy need be

considered in interpreting the photoemission data.

Such transitions were called nondirect.

The suggestion of nondirect transitions was

prompted by the character of the photoemission data

obtained from states of this character. Based on this

data, it was further suggested that a measure of the

density of states could be obtained directly from analy-

sis of the photoemission data. Of course, such a strong

departure from accepted theory was met with con-

siderable skepticism. Recently, band calculations

[25,33,34,35] , as well as new photoemission data (much

of which will be reported at this meeting), have shown

that there are certain strong similarities between the

experimental EDCs interpreted as nondirect and the

EDCs calculated using band structure results and k
conservation when broadening effects were included in

the calculation. However, other important systematic

differences do remain, which may have considerable

significance. In this paper, I will place particular

emphasis on this discussion since it is central to the ex-

perimental determination of the density of states from

uv photoemission.

Before proceeding further with this discussion, it

should be recognized and emphasized that there were

a number of materials in which direct transitions were

clearly identified and many in which only direct transi-

tions were seen; for example, the column IV and III-V

semiconductors [36]. It should also be recognized that

the criterion of peaks "moving with hv' (or the criteria

of peaks which are stationary independent of hv) has

been considered a necessary, but not sufficient, condi-

tion for identifying a nondirect transition [36,37,38]. In

particular, abrupt appearance or disappearance or

strong modulation of peaks has been taken as sug-

gestive of direct transitions even when peaks ''move

with hv" [38]. PbTe [37], GaAs [36], CdTe, CdSe,
and CdS [38] provide examples of this.

Another method for attempting to distinguish, experi-

mentally, between direct and nondirect transitions is to

examine the effects of reducing or destroying the

periodicity of the lattice. Since k conservation is im-

posed by the periodicity of the lattice, destroying that

periodicity should remove any importance of k
conservation as an optical selection rule. Examples will

be given of cases where periodicity is reduced or

destroyed by alloying, melting, or forming an

amorphous soUd. Brust [39] has recently pointed out

the possibility of explaining these changes by introduc-

ing an uncertainty in k rather than removing it

completely as a selection rule.

Neville Smith has played a key role in the develop-

ment of calculations of photoemission from d bands at

Stanford [33]. A paper describing some of his work is

included in this conference as is work on indium and

aluminum by Koyama and Spicer [40]. The group of

Janak, Eastman, and Williams [41] has also completed

calculations assuming direct transitions for Pd which

they will report at this meeting. I will not attempt to

summarize these papers; but rather I will attempt to

emphasize certain points.

The nondirect transition model was developed empir-

ically since it appeared to give a good first approxima-

tion to the behavior of experimental photoemission data

in a number of cases, including Cu. This model has

been described in detail elsewhere [2,3]. The essence

of it is that the optical transition probability, P(E,hv), is

given by the product of the optical densities of states

(ODS) at energies E and E— hv:

P{EM)^yi{E)y]{E-hv). (3)

Here 'r](E) is the optical density of empty states at an

energy, E; and ri(E — hv) is the filled ODS at an energy

hv below E. The term "optical density of states" is used

since this density of states is obtained from the optical

transitions as seen in photoemission. It is also ap-

propriate since the optical density of states may be

modified from the true density of states by optical

matrix elements.

Let us examine direct and nondirect models for Cu
as well as the experimental data used most recently.

Copper is most appropriate for a number of reasons.

First, its band structure seems to be as firmly

established as any of the noble or transition metals.

Second, it possesses relatively narrow d bands which

might provide nondirect transitions; and third, experi-

mentally Cu has been studied as thoroughly or more

thoroughly than any of the other noble and transition

metals so that the experimental data now seems to be

on a very good footing.

Let us now examine photoemission from clean Cu for

6.0 ^ hv'<^ 11.6 eV. In figure 4 we present EDCs for Cu
from the work of Krolikowski and Spicer [4]. More

recently, Eastman [42] and Smith [43] have

reproduced these curves: thus, the experimental data

seems quite reliable. This data has all of the charac-

teristics which lead to the assumption of nondirect

transitions. For one thing, the peaks superimpose when

they are plotted against E— hv, i.e., against the initial

state energy. Thus, it is apparent that the EDC struc-
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Figure 4. EDCs for clean Cu plotted versus the initial energy- The

solid curve indicates the experimental curve and the thin full curve

gives the energy distribution calculated using the nondirect modelfor

the values ofphoton energy indicated. The arrows indicate the

position in energy ofstructure in the ODS.

ture is due to the same structure in the initial ODS.
Note also that the structure in the EDC varies very

monatonically with photon energy. As we shall show

later, a striking characteristic of the direct transitions

calculations is the relatively larger amount of modula-

tion which they predict in the peak strengths as a func-

tion of photon energy.

As described by Krolikowski and Spicer [4] , the

ODS was obtained from the photoemission and optical

data. The ODS so obtained is presented in figure 5a and

b. From this ODS, the thin full curves in figure 4 were

obtained from this ODS using the nondirect, constant

matrix element model. As can be seen, the agreement

is rather good particularly since it is on an absolute

basis. The notable difference is that the first peak

broadens and the second peak appears to merge into it

at higher photon energies.

In figure 5a and b, the ODS obtained from the

photoemission studies is compared to the density of

states from two band calculations [44,45]. As can be

seen, rather good agreement is obtained between the lo-

cations of the major pieces of structure in the ODS and

the calculated density of states. However, there is no

such agreement between the relative strengths of the

structure. This may be due to the effects of optical

matrix elements, to difficulties in the band calculations

(note the difference between the two calculated density

of states), or to other effects.

In figure 6, the results [33] of calculations based on

the direct-transition model for clean Cu are presented.

These calculated curves have strong similarities to the

experimental data. However, in order to obtain such

agreement it was necessary to include a Lorentzian

broadening of 0.4 eV for the calculated curve. Other

calculations [34,35] use broadenings of between 0.3

and 0.7 eV. If the broadening is not used, much too

much sharp structure appears in the calculated EDCs
and this structure is modulated much too strongly and

fast. The use of the broadening function finds partial

justification in several factors — the instrumental and

lifetime broadening, the finite hfetime of the excited

carriers, and the inaccuracy in the band calculations.

However, it is important that we keep the broadening

in mind since it tends to make the direct and nondirect

calculations more similar and also since it may provide

an empirical method of making correction for many
body effects. In the limit of flat initial bands, the direct

and nondirect models would be identical. As the bands

become less flat, increased broadening will still tend to

keep the agreement between EDCs calculated on the

direct and nondirect models.

Let us now examine the EDCs calculated by the

direct method. In figure 6 we show the results of the

calculations of Smith and Spicer and in figure 7 we

compare the results of these calculations to experimen-

tal data. Again, the comparison is on an absolute basis.

Several things are noteworthy about these results:

(1) The position in energy of peaks in the direct calcula-

tions is constant on the E— hv plot, (2) the position of

structure corresponds rather well with the position ob-

served experimentally (the numbered lines correspond

to the position of structure found experimentally and in

the ODS), and (3) the modulation of peak heights and

widths is much stronger than anything seen experimen-

tally. If, in fact, such strong rnodulation was observed

experimentally, this would have been attributed to the

effects of direct transitions or matrix elements effects

despite the constant position in {E — hv) of the peaks.

Such identification was made, for example, in the II-VI

compounds [38], GaAs [36] and PbTe [37] where

strong modulation was observed experimentally.

The constant position in energy of the direct struc-

ture in figure 6 and its agreement with experiment is
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Figure 5. (a) Comparison of the ODS with the density of states calculated by Snow [44] using an 516 p"^ exchange term. Snow's density of

states have been shifted by 0.2 eV to place the Fermi level to A-band energy in exact agreement with experiment. The absolute scale was placed

on the ODS by placing 11 electrons within .5.5 eV of the Fermi level. Note that the four pieces of numbered structure coincide rather well in

energy. The numbered arrows correspond to those in figure 4. (b) Comparison of the ODS with the density of states calculated by Mueller [45].
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Figure 6. The EDCs calculatedforCu by Smith andSpicer assuming

direct transitions.

not surprising in retrospect in view of the agreement

between the ODS and band calculations shown in

figure 5. It would appear, at least for the limited range

of hv covered by this study, that the Cu bands are suffi-

ciently flat and that the broadening effects are suffi-

ciently large so that the k conservation condition does

not impose overwhelming constraints on the optical ex-

citation process. The fact that the nondirect model

gives better detailed agreement with the experimental

data than the direct model, suggests that many body ef-

fects may still be important in bringing in a range of k
rather than a delta function in the optical absorption

process.

In another paper, presented at this meeting, Neville

Smith [34] will show new experimental data which give

I I \ I I I I I 1 I I 1 I I

-5 -4 -3 -2 -I 0 -6 -5 -4 -3 -2 -I 0
INITIAL ENERGY (eV)

Figure 7. Comparison ofthe EDCs calculatedfor Cu using the direct

transition model with the experimental EDCs. The full line gives

experimental and the dashed line calculated EDCs.
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clear evidence of direct transitions in cesiated Cu. The

transitions orifiinate from states 2.8 to 3.8 eV below the

Fermi level. It is in this region that the d bands have

greatest curvature. Recognizing that this curvature

should provide the most easily detectable evidence for

direct transitions, Berglund and Spicer [3] looked

especially for direct transitions in this region. Ap-

parently poorer sample preparation conditions

prevented them from seeing the transitions. The suc-

cess of Smith is a tribute to him and to the advances in

vacuum and preparation techniques made at Stanford

and elsewhere in recent years.

Smith has also made direct transition calculations of

the EDC for cesiated Cu. These show the effects found

experimentally; however, despite the inclusion of a 0.3

eV broadening factor, the predicted modulation is con-

siderably stronger than that observed experimentally.

There is perhaps a good analogy between the present

situation in this matter and that with regard to x-ray

emission spectroscopy for many years. The simple and

popular view of the latter field was that one could al-

ways explain the x-ray emission spectra just in terms of

single particle transitions so that the valence band den-

sity of states could be obtained directly from the emis-

sion spectra if "atomic-like" matrix elements were

properly taken into account. With the simple metals

fair agreement was obtained between experiment and

theory on this model, although certain nagging incon-

sistencies remained. The situation has changed drasti-

cally in the last few years since theorists have had suc-

cess in treating the many body effects of the hole in the

core state. I will not attempt to review this work since

it will be discussed in some detail at this conference.

However, there may be a parallel with regard to the uv

photoemission work.

At Stanford, Doniach [46] has been expanding his in-

vestigation of many body effects in the x-ray photoemis-

sion effect to include the many body effects associated

with screening of the valence band hole in the uv opti-

cal excitation process [32]. Preliminary results suggest

that such effects exist, producing a spread in possible

k in the optical transitions, and increase in importance

as the effective mass of the hole increases. Thus, the

flatter the valence band is, the larger the effect. If one

looks at the Cu results with this in mind, one notes that

the flatter the bands, the better the nondirect model

works.

In concluding this section, I would like to remark

that the direct transition model is based on a rather

idealistic assumption which applies best where the

bands have good curvature; empirically, this model
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seems to work very well for a wide range of materials of

this type. On the other hand, the nondirect, ODS,
model should work best in materials with quite flat

bands. It may never be completely correct (we must un-

derstand the physics better before it is possible to pass

quantitative judgment); however, its great simphcity

may make it a good first approximation when it can be

successfully applied, i.e., when the EDCs based on the

ODS are in relatively good agreement with experiment.

Certainly the success with Cu, Ni, and similar material,

suggests that it may give us the best first approximation

to the densities of states of these materials which can

be obtained solely from experiment.

There may be an intermediate range of bands and

materials in which neither the direct nor the nondirect

model applies with great accuracy. In this case,

detailed understanding can only be obtained when
theories such as that of Doniach are fully developed. In

the meantime, it is probably well to keep open the pos-

sibility of transitions occurring over a range of k and

not just at a given value. It would be extremely nice if

in the direct calculations, a broadening could be put in

by a distribution in k before searching the zone rather

than over energy after the vertical transitions have

been tabulated.

Experimentally, it is important to obtain data over a

wider range in energy to test the selection rules with

more rigor. Eastman [29] has already begun to do this

with very interesting results.

5. Effect of Reducing or Destroying
Crystal Periodicity: Liquid In,

Alloys, and Amorphous Ge

Another way of testing for the importance of k as an

optical selection rule is to reduce or destroy the long-

range order of a crystal. Clearly as the solid becomes

increasingly disordered, any dependence of k must

become less and less well defined, i.e., a single value of

k can no longer be used to define a quantum state.

Rather, if a description in terms of k is used, it must

contain a distribution of k; a single k will be insuffi-

cient. In the limit of complete disorder, k will lose

meaning as a quantum number.

5.1. Indium

Indium has been studied experimentally by Koyama

[18] in the crystalline, amorphous and hquid forms.

Note that, since it contains no J electrons. In would not

be expected to fall within the class of nondirect materi-

als. In addition, Koyama has made calculations based
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on direct as well as nondireet models. These calcula-

tions will be described in detail in a separate paper of

this conference [40] . Koyama's findings for crystalline

indium are quite interesting: (1) Both the direct and

nondireet transition models fit the experimental data

fairly well (as they do for Al), (2) the EDCs for In are

characterized by two broad peaks separated by a

minimum which correlates [47] well (in either model)

with a large band gap in the band structure of Ashcroft

and Lawrence [48] (see fig. 8), and (3) the principal fea-

tures of the EDC (the two peaks) were seen to persist in

liquid indium despite highly increased electron scatter-

ing. Since there seems, at least at present, to be less

physical justification for the nondireet model in In than

in Cu, it is tempting to assume for this material that

direct transitions dominate in the crystalline material

and that nondireet transitions occur in the liquid. Even

then a question would arise as to why the density of

states structure due to crystalline potentials persists

into the liquid. (Shaw and Smith [49] have found

theoretical evidence of such effects in Li.) Koyama

[18] has suggested that this is due to the dominance of

short-range interactions in determining the electronic

structure and thus the density of states of both liquid

and crystalline In. Clearly studies of In at higher resolu-

tion and for a wider range in hv should prove very

worthwhile.

In any case for both Al and In, the density of states

obtained by the nondireet analysis seems to be in fair

agreement with the results of band calculations. As the

direct transition calculations show, this may be due to

the large range in k space from which direct transitions

can take place and thus not be a true indication that k
vector is unimportant (although, again, some uncertain-

ty in k is probably important in bringing the direct and

nondireet models into agreement). The sensitivity of
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the calculated EDCs to the electronic structure is illus-

trated by the fact that, whereas Ashcroft and

Lawrence's band structure for In agreed with experi-

ment, other proposed band structures [49] did not give

agreement with the ODS.

Mosteller, Huen and Wooten [50] have recently stu-

died the photoemission from Zn as a function of tem-

perature and found that the quantum yield decreased

significantly on cooling the sample from room to Hquid

No temperature. Based on this, they note the possibility

that in Zn the ultraviolet optical transitions may be in-

direct, i.e., phonons conserve k. Such temperature de-

pendence has not been observed for other semiconduc-

tors and metals such as Cu, Gd [51] and Cr [52] which

have been studied as a function of temperature. The Zn
results are mentioned here because of the similarity

between the In and Al band structure and that of Zn
and because In and Al have not been measured below

room temperature.

5.2. Amorphous and Crystalline Ge

In contrast to In, Ge provides a striking case of a

material whose optical properties and uv EDCs change

drastically when the long-range order is destroyed by

forming amorphous Ge. Photoemission studies show

clearly the direct nature of the transitions in crystalline

Ge [36] in agreement with analysis of optical data [53]

.

Thus, differences between crystalline and amorphous

Ge are of considerable importance.

Figure 9 indicates €2 for the amorphous and crystal-

line material [54,55] and figure 10 indicates EDCs for
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Figure 9. e-i for amorphous and crystalline Ge.



o
X

o

f 0

GERMANIUM

(CLEAVED, INTRINSIC SINGLE
CRYSTAL

)

(o)

10

UJ

AMORPHOUS Ge
(b)

2 -

4 5 6 7 8 9 10 II

ENERGY ABOVE VALENCE BAND MAX.(eV)

Figure 10. Photoelectron energy distributions for Ge surfaces. ( a)

Cleaved, intrinsic, single crystal, (b) Amorphous film. The vertical

axis gives the number ofelectrons per absorbed photon per eV . The

horizontal axis gives the electron energy relative to the maximum in

the valence band. The sharp structure in (a) is due to direct transitions

in specific regions of the zone. The single broad peak in (b) is due to a

peak in the valence-band optical density ofstates.

crystalline and amorphous Ge [54,55,56,57]. As can be

seen, the changes in €2 and the EDCs which accompany

the change in form of Ge are first order. The loss of

sharp structure is clearly due to the loss of long-range

order. In their studies of amorphous Ge, Donovan and

Spicer have used a nondirect analysis with considera-

ble success to treat data from the amorphous material.

In figure 11 the ODS obtained from these studies is

compared to the density of states obtained from band

calculations [58]. Brust is approaching the problem of

amorphous Ge from calculated band structures by a

method in which there is a spread in k associated with

the optical transitions and thus is intermediate between

the direct and nondirect models [59]. Because of its

flexibility due to the possibility of assigning various

values to the spread in k, this approach clearly has cer-

tain advantages over the pure nondirect approach.
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5.3. Cu-Ni Alloys

A third example of the effect of disorder is in the al-

loys such as those between the noble and transition

metals. Here the lattice periodicity is not destroyed.

Rather, atoms with two different potentials are ar-

ranged at random, or almost at random (it appears that

clustering effects are negligible [21]) within the

periodic lattice. Since the potentials are quite different

(for example the transition metal typically produces a

virtual-bound state when dissolved in a noble metal),

the effect on the periodicity should be considerable.

Despite this, the effect on the €2 and on the EDCs of the

host metal does not appear to be drastic. The principal

effect is in the production of a virtual-bound state under

the proper circumstances. Such states have been and

are being qualitatively studied through the use of

photoemission [21,23,60,61,62,63]

.

In figure 12, the optical parameter ojcr is presented for

the Cu-Ni alloys studied by Seib and Spicer [21,23].

Except for hv<2 eV in the Cu-rich alloys where the

change is due to the formation of a virtual-bound Ni

state, the changes are much less than those found in

the crystalline to amorphous transformation of Ge.

"As outlined in the Introduction, photoemission can

give a more detailed look at the optical transition than

can the optical data. Examination of EDC data from the

alloys shows that the direct transition from the s-p-

derived bands near the Fermi surface at L is not de-

tectable in the alloys [21]. However, the transitions

from the d states are much less affected. In fact, the

EDCs from Ni and Ni-Cu alloys with up to 19 percent
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Figure 11. Optical density ofstatesfor amorphous Ge as determined

by photoemission compared with the electronic density ofstatesfor

crystalline Ge calculated by Herman and Shay. The vertical axis is in

units ofstates per eV per atom for the crystal density ofstates and in

arbitrary units for the optical density ofstates. The energy zero in both
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Figure 12. The optical constant cuafor pure Ni and Cu and a series

ofNi-Cii alloys.

Cu (atomic present) are almost indistinguishable except

for effects due to the change in work function. This is

shown by the data in figure 13. Even for 39 percent Cu,

the position of the two strong peaks in the EDC were

unchanged [23]

.

Let us next examine the Cu-rich alloys. In figure 14

we present data for pure Cu and Cu containing 13 and

23 percent Ni [21] . As can be seen, the Cu d edge is lit-

tle changed and the position in energy of structure from

the d bands is similar to that in the pure material; how-

ever, the relative strengths of the peaks are changed.

The contrast in optical properties and EDCs between

these alloys and Ge in its crystalline and amorphous

forms is striking. For the alloys, the changes are rela-

tively small whereas, for Ge, they are much larger, k
conservation clearly plays the dominant role in deter-

mining the optical transition probabilities in crystal-

line Ge; thus, destroying the long-range order complete-

ly changes the optical properties. The insensitivity of

Cu and Ni to disruption of the long-range order suggests

that the optical transitions from the d states of pure Cu
and Ni are, on the average, much less strongly affected

by the k conservation condition; however, the L
transition from the 5- and p-derived states is clearly a

direct transition and this disappears in the alloys stu-

died.

6. Methods of Determining the Density of

States from Ultraviolet Photoemission Data

Two extreme approaches can be taken in using

photoemission data to determine the density of states

of solids. One is to use the photoemission results to pro-

vide input into band calculations. This approach is not

necessary if first-principles band calculations give

exact results. If this is not the case, the band calcula-

tions can be adjusted to give agreement with the experi-

mental data. Such correction is often necessary and, in

addition to overcoming uncertainty in the potential

used in the band calculation, the empirical correction

may correct for departures from Koopmans' theorem

as, for example, suggested by Herman [66]. One ap-

proach is to parameterize the calculation and use ex-

perimental data, de Haas-van Alphen data or optical

data could also be used for adjusting the band calcula-

tions. Since the de Haas-van Alphen data give experi-

mental data only at the Fermi surface, it is not very sen-

sitive to energy shifts from the Fermi level. Unam-

biguous interpretation of structure in the optical con-

stants, such as 62, has proven very difficult. Piezoreflec-

tion has proven to be very powerful in Cu [10] but

despite considerable effort, so far has not been success-

fully applied to Ni [67]. A difficulty in piezoreflection

also lies in estimating the absolute or relative strength

of optical transitions whose symmetry is determined by

these measurements.

If first-principles band calculations were thought to

be sufficiently good, the photoemission studies would
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simply serve as a check. For best results, this approach

requires two conditions. First is a fairly accurate and

well-advanced band theory. Without this, it is difficult

to relate the photoemission data to the band structure

in a meaningful way. Second is photoemission data

which shows dramatic band structure effects such as

the onset of the L transition in copper or the F

transition in CdTe [38]. For materials hke GaAs in

which k conservation dominates the optical transition

probability, Eden has developed a systematic method

for comparing photoemission results and the results of

band calculations. This will be reviewed briefly in the

next section.

A second approach is to attempt to obtain density of

states information directly from the photoemission

data. The more apparent the connection between the

photoemission data (i.e., the optical transition proba-

bility) and the density of states, the more efficient is

this approach. As we will see in the next section, it is

very difficult to obtain density of states information

from photoemission data for a material such as GaAs
where k conservation provides a dominant optical

selection rule; however, in a case such as copper where

k conservation does not play such a dominant role, the

nondirect method of analysis gives a good mechanism

for obtaining the principal features of the density of

states from experimental data.

The nondirect transition [3,4] model provides a sim-

ple way to analyse the photoemission data to obtain an

ODS. Once this is done, EDCs can be calculated and

compared with experiment. In this way, the consisten-

cy of the nondirect approach can be judged. Only

where reasonable consistency is obtained can the non-

direct approach be used in a meaningful way. However,
even when clear evidence is obtained that some struc-

ture is due to direct transitions, useful density of states

information can apparently be obtained from the non-

direct approach when EDCs calculated using the ODS
reproduce closely enough the major strengths in the ex-

perimental EDCs. (Cu [3,33,34] and Au [5] appear to

be examples of this.) By major strengths, we mean at-

tention should not be focused on relatively weak struc-

ture which is clearly direct, but on the overall am-

plitudes in the EDCs.

7. A Sampling of Experimental Data

Since this paper is already lengthy, we will not at-

tempt a comprehensive survey of the photoemission

literature: rather, we will attempt to present only a few

representative results which have not been presented

previously in this paper in order to illustrate and ampli-

fy the remarks made earlier.

Photoemission measurements and the nondirect

analysis has been made on a fairly large number of

transition and noble metals other than those mentioned

earlier. Eastman, in particular, has obtained the ODS
for a wide range of transition metals [6,20,29]. In figure

15 we present the ODS obtained by Eastman for ten

metals [68] . For the sake of comparison, the density of

states from band calculations are also given [68,69].

Although the agreement between experiment and cal-

culation is not perfect, it is encouraging, particularly

when one realizes that the band calculations were not

highly refined and in some cases were just obtained

from the calculation for a different material using a

rigid-band approximation. The agreement obtained sug-

gests that there is a meaningful relationship between

the ODS and density of states obtained from band cal-

culations, as does the agreement found for Cu [3,4] , Ag

[3,62,70] , Ni and other transition [6,52] and rare earth

metals [71]

.

In section 4, it was suggested that the narrower the

bands the more valid the nondirect approach and thus

the ODS of the correct density of states. If this is true,

the situation within the transition metals should

become less favorable as the atomic weight of the metal
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Figure 15. Optical density of states obtained by Eastman as compared

is taken from

to the density of states obtained from band calculations. This figu re

ref 68.

increases since relativistic effects will broaden the rather good agreement with the EDCs obtained from

bands. For example, the <f-band width of Au is about soft x-ray photoemission work [72]. The photoemission

twice that of Cu. Krolikowski and Spicer [5] have also results also have been found by Ballinger and Marshall

studied clean Au in good vacuum for 5.4 ^ /jz/ ^ 11.6 [73] to correlate rather well with their band calcula-

eV and in poor vacuum for hv values of 16.8 and 21.2 tions. On the other hand, work by Eastman at photon

eV. From this work the ODS presented in figure 16 was energies of 16.8 and 21.2 eV in good vacuum gives

obtained. As can be seen in figure 16, the ODS is in strong evidence that direct transitions are important in
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Figure 16. Comparison ofthe ODS and the soft x-ray photoemission

results of Siegbahn, et al. [72]. The x-ray results have been shifted

to lower energy by 0.6 eV to obtain the best fit. (It is difficult to set the

absolute zero ofenergy in the x-ray experiment.)

Au. This series of results suggest that quite useful den-

sity of states information can be obtained from the rela-

tively narrow bands of noble and transition metals by

the ODS type of analysis even when direct transitions

are important and that the broadening of the d band in

going to Au does not make the ODS approach useless.

Up to this point we have concentrated to a large ex-

tent on materials for which the nondirect analysis can

be used. In order to give perspective, let us now ex-

amine GaAs in which k conservation has been found to

provide a dominant optical selection rule as it has been

found for Ge, Si, and other III-V compounds [36]. If

structure in the EDCs is due to peaks in the initial or

final density of states, this can be detected by plotting

the EDCs against initial energy (E — hv) or final energy

{E) respectively. This argument holds even if the transi-

tions are direct. The distinction between direct and

nondirect transitions is made on the basis of modula-

tion of the strengths of the peaks with particular atten-

tion being paid to evidence for them appearing or disap-

pearing as photon energy is varied [36,37]

.

With this in mind, let us examine figure 17a and b

where two typical EDCs for GaAs [36,74,75] are

plotted versus final, figure 17a, and initial state energy,

figure 17b. As can be seen, these EDCs are particularly

strong in structure. Despite this, there is little tendency

for the structure to fall at the same energy either on ini-

tial {E— hv) or final, energy plot. This shows clearly that

k conservation provides an important selection rule. As

a result, it is difficult to obtain density of states infor-

mation directly from such plots. Eden [74] and Eden

and Spicer [75] have derived a reasonable way of

analyzing such data. This is done by making a plot of

the final state energy of structure in the EDC, E, of

structure versus the photon energy. Such a plot is

shown in figure 18 for cesiated GaAs. One can obtain

from band calculations theoretical plots of the same

type for the symmetry directions of the crystal. By su-

perimposing the two plots, it is possible to make

identifications of the structure in the EDC. Such

identification is indicated in figure 18. Further details

are available elsewhere [36,74,75]. To obtain informa-

tion on the density of states, it is sufficient to note two

features: (1) A horizontal set of points for E ~ 5 eV
labeled, "Final States Near and (2) the 45° line

between final state energies of about 4.5 and 8 eV

labeled, "Transition II from Band 3 Minimum." Since

(1) is a fixed, final state, it would suggest a peak in the

final density of states at about 5 eV. In figure 19 we

present a band structure for GaAs by Cohen and Berg-

stresser [76] along with the density of states calculated

from it by Shay and Herman [77]. As can be seen,

there is a very sharp peak in the final density of states

at about 5 eV.

The 45° line in figure 18 indicates a transition from

initial states at a fixed energy Et since E = Ej + hv.

FINAL ENERGY (eV) INITIAL ENERGY (E- h>/)

Figure 17. (a) EDCs from GaAs for photon energies of 10.2 and 11.2 eV plotted as a

function offinal state energy, (b) EDCs for GaAs plotted vs Y^—hv to refer the energy

distributions to the initial states. Note that the structure in the EDCs does not coincide

on either a final energy plot (fig. 1 7a) or an initial energy plot as in this figure. This

gives clear evidence that the transitions are direct.
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Figure 18. A structure plot for the photoemission from cesiated GaAs.

In such a plot the final energy ofstructure in the EDCs is plotted vs

the photon energy. Such plots can be compared to predictions from

band theories. They also provide at a glance certain information on

the nature ofthe source of the structure in the EDCs, i.e., a horizontal

line indicates transitionsfrom flat portion of the valence band.

Since the 45° line is located about 3.7 eV behind the E
— hv line, the initial states must be located this distance

below the top of the valence band. As can be seen in the

density of states plot of figure 19, there is a sharp densi-

ty of states peak at just about this energy. Thus the two

density of states peaks which are perhaps strongest and

sharpest can be identified directly from the photoemis-

sion data; however, other strong structure which is not

so narrow was not immediately detected from the

photoemission data. This was because the curvatures

were not sufficiently small so that a clear distinction

could be made between the effects of initial and final

density of states.

As is reported in a paper by Buss and Shirf [78] at

this meeting, work by Spicer and Lapeyre [37] on

PbTe seemed to have been successful in determining

peaks in the density of states which correlate well with

their band calculations. This occurred despite the fact

that direct transitions are clearly important in these

materials.

8. Comparison of Density of States

Determinations Using Various
Experimental Methods

In addition to uv photoemission spectroscopy, three

other experimental techniques exist which can give

direct information on the density of states of sohds. In

this section we will compare the density of states ob-

tained by these methods for Cu with that obtained from

our measurements.

8.1. Comparison with Results of Ion

Neutralization Spectroscopy

In figure 20 the ODS for Cu is compared to the densi-

ty of states obtained by Hagstrum [79] from Cu via the

ion neutralization spectroscopy (INS) technique which

he has developed. The peak between —2 and —4 eV is

associated with the d states. As can be seen, the width

of this peak is considerably greater than the o? width in-

dicated by the ODS or calculated band structure. In ad-

dition, there is no detailed structure in the ion

neutralization results even though the instrumental

resolution is sufficient to resolve structure such as that

seen in the ODS or calculated density of states. Hag-

strum has noted [80] that since his technique depends

on electrons tunneling from the surface of the metal, it

is sensitive to the electronic structure just at the sur-

face and that for d electrons this structure may be dif-

ferent from that in the bulk of the material.

If it is suggested that a change of the electronic struc-

ture can take place at the surface, one must ask

whether this can also affect photoemission studies. In

principle, the photoemission is a bulk effect and thus

would not be changed by variations in the electronic

structure associated with the last atomic layer or so of

the solid. However, the fast electron-energy depen-

dency of the electron-electron scattering length (see fig.

3) and the low scattering length at high energies (as low

as 10 A in some materials) must be taken into account.

Thus, as photon energy is increased up to 12 eV, the

escaping electrons will come from regions closer and

closer to the surface and it is possible that measurable

changes in the EDCs might be due to changes in the

electron structure at the surface. Comparison of the

EDCs from cesiated [34] and uncesiated [4] Cu show

that changes occur on cesiation in the relative strengths

of the two leading d band peaks in Cu. Similar results

are found in the Ni-Cu alloys [21]. These results are

not understood, but are mentioned to indicate that the d

band transitions appear to be sensitive to changes in

the details of the conduction band electrons. If this is

the case, changes of spatial distribution of conduction

electrons at the surface might affect transitions from

the d states. This could for example, contribute to the

broadening of the first d peak from clean Cu which oc-

curs as photon energy is increased (see fig. 4). The pur-

pose of this discussion was to point out effects which

might be important in photoemission but which have
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Figure 19. The band structure of GaAs calculated by Cohen and Bergstresser [76] and the density

of states calculated by Shay and Herman [77].
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Figure 20. Comparison between the ODS [4] and the results

obtained by Hagstrum [79] through ion neutralization studies forCu.

not been established. If they do exist, it would appear

that these effects are much smaller than the perturba-

tion of the electron structure as seen at the surface in

the INS experiments.

8.2. Comparison with Results of

X-Ray Photoemission Spectroscopy

Let us next compare the ultraviolet photoemission

work with the x-ray photoemission data. The ODS for
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Cu is compared in figure 21 with the results obtained by

Fadley and Shirley [81] using the technique of x-ray

photoemission spectroscopy (XPS). The XPS result is

characterized by a single, almost symmetric, peak with

a width at half maximum of about 3 eV. Since the total

instrumental line width was about 1.0 eV, this width

and lack of detailed structure does not appear to be in-

strumental. If we make the reasonable assumption that

the broad peak is due to d electrons, it is also signifi-

/ \

t- T"
\ 1 \ I I I I I

-8 -7 -6 -5 -4 -3 -2 -I 0
4€582 ENERGY BELCW THE FERMI ENERGY (eV) E,

Figure 21. Comparison between ODS [4] and results of the x-ray

photoemission experiment ofFadley and Shirley [81] for Cu.



cant that there is little evidence for the s- and p-derived

states lying within 2 eV of the Fermi surface (see figure

5a and b). This effect can also be seen in the Au XPS
data presented in figure 16. The 5- and p-derived states

can be clearly seen in the photoemission and INS work.

The lack of any detailed structure in the excitation from

the d states would also seem to be significant since

such detailed structure does appear in the ODS as well

as in the calculated band structure. However, it should

be noted that substructure has been obtained in XPS
results from Ft [81] , Ag and Au [72] (see fig. 16) and

that the position in energy of this structure is in

reasonable agreement with structure in the ultraviolet

photoemission work.

The reason for the lack of structure in the XPS for

Cu is not clear at this time; however, it is interesting to

note, as will be shown in the next section, that almost

the same symmetric curve is obtained in soft x-ray

emission spectroscopy as in the XPS results.

I I I \ \ I I I I I

-8 -7 -6 -5 -4-3-2 -I 0
46618 ENERGY BELOW THE FERMI ENERGY (eV) E,

Figure 22. Comparison between the ODS and results obtainedfrom

soft x-ray emission spectroscopy. The curve labeled M3 was obtained

using M.3 radiation [83] and that labeled h3 using L3 radiation [84]

.

Ni; if this is so, the SXS would yield more information

on the interaction between the deep hole and the

valence electrons than on the valence band density of

states.

8.3. Comparison with Results of

Soft X-Ray Emission Spectroscopy

A fourth experimental method used to investigate the

filled states solids is that of soft x-ray emission spec-

troscopy (SXS). The results of such investigations

[82,83] for Cu are compared in figure 22 with the ODS.
As mentioned in the last section, the SXS curve is very

similar to the XPS curve in that it contains a single al-

most symmetric peak and shows no evidence of the s-

and p-derived states lying between the Fermi level and

the top of the d band.

Cuthill, McAHster, WiUiams, and Watson [85] have

reported structure in the SXS from Ni. However, it is

not nearly as pronounced as that seen in the ODS of

Eastman. There are some similarities between the ODS
and the SXS results for Ni; however, the correlations

do not seem to be strong.

Cu-Ni alloys have been studied both by SXS [86]

and ultraviolet photoemission [21,23]. It is interesting

to note that in the photoemission and optical work it has

been possible to clearly identify a Ni virtual-bound

state in the Cu-rich alloy and that these virtual-bound

states are much different than Ni states in pure Ni. For

example, their width at half maximum appears to be

less than half of that of pure Ni for Ni concentrations up

to about 25 atomic percent in Cu.

In contrast, in the x-ray work the spectrum obtained

for Ni in Cu down to 10 percent concentrations was in-

distinguishable from that of pure Ni [86] . These results

suggest that interactions with the deep hole override

valence band structure in determining the SXS from

9. Conclusions

The ultraviolet photoemission work done to date

shows that density of states data can be obtained from

such measurements. Because of the high resolution

available in such measurements (0.05 to 0.3 eV), more

detailed information can presently be obtained than by

any other experimental method used to determine ex-

perimentally the density of states. In materials such as

Cu where the most extensive work has been done, both

experimentally and in theoretical calculations of the

density of states, relatively good agreement is obtained

between the position in energy of structure in the densi-

ty of states. No other experimental method has given

such clear-cut results or impressive agreement: how-

ever, good agreement is not obtained in the relative

strengths of structure in the experimental and theoreti-

cal density of states. There are still fundamental

questions which must be answered both with regard to

the photoemission experiment and its interpretation

and with regard to the band calculations and their rela-

tion to optical excitation spectra.

The photoemission data as well as calculations on Cu
are probably the most complete available for any metal.

The work of Smith [34] on Cu shows clear evidence of

direct transitions from the regions of the d bands hav-

ing large curvature. The calculations of Smith [34] and

Smith and Spicer [33] show strong similarities

between measurements and calculations based on

direct transitions; however, the direct calculations pre-

dict much stronger modulation of the intensities of

peaks than is seen experimentally. It should also be
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noted that a broadening of 0.3 to 0.4 eV is used in the

calculations to bring them into closer agreement with

experiment. It is suggested that the experimental data

is consistent with a model (suggested by Doniach's [46]

theoretical work) which assumes that the delta function

k selection rule be replaced by a selection distribution

of k's, with the width of the distribution increasing as

the curvature of the bands decrease (i.e., as the group

velocity decreases). Thus, one would move in a continu-

ous fashion from a completely direct transition model

for a material with sufficiently wide bands to a non-

direct-type of model for sufficiently narrow bands. The

band widths at which such transitions take place would

depend on the detailed characteristics of individual

materials.

It appears that some density of states information

can be obtained from photoemission data even when

the transitions are completely direct. This can occur

because peaks in the valence band density of states

may produce EDC peaks which move with photon ener-

gy over a limited range of hv. Likewise, density of

states peaks in the final states may produce peaks

which fall at a constant energy over a limited range of

hv. All of this is just a consequence of the fact that a

large volume in k space must lie near a single energy to

give a peak in the density of states. Such behavior has

been pointed out at this meeting in, for example, GaAs
and PbTe where the density of states peaks so

identified have been found to correlate well with densi-

ty of states peaks in the calculated band structure.

However, other peaks in the density of states in GaAs
were not identified. This may have been due to the fact

that the hv range used was not sufficiently large or that

too crude a method is being used to identify density of

states structure.

In a different type of approach, photoemission stu-

dies can also be used in direct collaboration with band

calculations by providing empirical data on the band

structure. This data can then be used to refine the band

structure and the density of states can be calculated

from the refined band structure.
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Discussion on "Optical Density of States Ultraviolet Photoelectric Spectroscopy" by W. E. Spicer

(Stanford University)

J. Dow (Princeton Univ.): You mentioned that Doniach

had done some calculations including the Mahan singu-

larity in the photoemission. Are there measurements

which indicate that this many-body effect is present?

W. E. Spicer (Stanford Univ.): The first place he

looked for this was asymmetry in the x-ray line emis-

sion from a deep level. He has been examining experi-

mental data and he is encouraged at the asymmetry

that is seen although the resolution is still a problem.

H. Ehrenreich (Harvard Univ.): I just want to make

a cautionary remark about the many-electron effects

that have been discussed in connection with the x-ray

emission and absorption problem by Mahan, Nozieres,

and Doniach recently. These effects are probably of im-

portance only when the hole state is locaHzed or when

it occurs in a narrow band. Thus one might expect

these effects to be of importance in transition metals as

recently suggested by Doniach. They do not seem to be

of importance in aluminum. Beeferman and I recently

examined the many-electron contributions to the opti-

cal absorption in aluminum in considerable detail and

found them to be unimportant. Here, of course, the

bands in which the excited electron and hole find them-

selves are not flat. Therefore, our conclusions in no way

contradict the proposal by Doniach.

158



The Density of States and Photoemission
from Indium and Aluminum"^

R. Y. Koyama** and W. E. Spicer

Stanford University, Stanford, California 93405

Experimental photoemission data from indium and aluminum are briefly described and can be un-

derstood in terms of a density of states model. In contrast to this, a direct transition model based on cal-

culated band structures is found to yield photoelectron spectra which are fair reproductions of the den-

sity of states. This suggests that for these two metals, conclusions drawn concerning the density of

states are independent of the model used to explain the photoemission data.

Key words: Aluminum (Al); direct and nondirect transitions; electronic density of states; indium

(J^); nondirect transitions; optical density-of-states; photoemission.

1 . Introduction

Photoemission has become a powerful experimental

tool for determining some features of the electronic

states in a large spectrum of materials. In particular, by

assuming a simple model, it is possible to deduce an

"optical density of states" for some materials [1]. This

model assumes that electronic transition probabilities

are proportional to products of densities of states and

that absorption occurs via "nondirect" transitions. In

other materials [2] , photoemission data has been used

to document absorption processes which are due to

"direct" transitions. In this paper results of recent

work on experimental and model calculations for indi-

um and aluminum are described. For these metals, it is

found that either model gives a fair description of the

photoemission properties. The data for indium is based

on experiments performed by the authors [3]; the ex-

perimental data for aluminum is taken from the work of

Wooten, Huen and Stuart [4]

.

2. Experimental Data

Figure 1 shows a partial set of electron energy dis-

tributions (normalized to the yield) for a sample of

crystalline indium (single and polycrystalline samples

had virtually identical spectra), plotted with the photon

*Work supported by U.S. Army Engineer Research and Development Laboratories, Fort

Belvoir, Virjdnia, Contract No. DA-44-009-AMC 1474 (7); and the Advanced Research Pro-

jects Agency through the Center for Materials Research at Stanford University, Stanford,

California.

**Present address: National Bureau of Standards, Washington, D.C. 20234.
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Figure 1. A partial set ofexperimental electron energy distributions

referred to the initial states {electronsiphoton-eV).
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Figure 2. The optical density of states function {deduced from the

experimental data) and a calculated density ofstatesfor indium.
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energy as a parameter. These photoemission curves are

plotted with respect to the initial energies of the elec-

trons (the Fermi enc^o/ is the reference level). It is

evident that there is high probability of exciting elec-

trons from 1.2 and 4.2 eV below the Fermi energy.

Based on the density of states model with nondirect

transitions, these distributions reproduce structure in

the "optical density of states" (ODS), which is shown

as the dashed curve in figure 2 [3]. These experimental

results would lead to the conclusion that indium can be

characterized by nondirect transitions and an optical

density of states.

Similar photoemission measurements have been

made on evaporated films of aluminum by Wooten et

al. [4] . Their data is reproduced in figure 3. These

authors have concluded that the spectrum of emitted

electrons is a good replica of the density of filled states.

This again leads to the conclusion that aluminum too

can be described by a density of states model deduced

from empirical considerations.

3. Direct Transition Calculations

The previous section indicated that indium and alu-

minum can be characterized by a density of states

model with nondirect transitions. They are typical of

"nondirect" materials in that the photoemission spec-

tra behave in a predictable and smooth fashion as the

-5.0 -4.0 -3.0 -2.0 -1.0 0

INITIAL ENERGY (eV)

Fk.URE 3. Experimental electron energy distributions curves for
aluminum {4\.

y
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/
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Figure 4. The calculated density of states for aluminum.

photon energy is changed. When compared with

materials that display "direct" characteristics, the

photoemission from these metals are rather featureless.

Yet, it is a valid question to ask what the expected form

of the photoemission would be if the transitions were

direct.

If the electron energy structure of a material is

known, various electronic properties can be calculated.

The two primary quantities of interest here are the elec-

tronic density of states and the photoelectron energy

spectra. These have been calculated for indium [3]

using the band structure of Ashcroft and Lawrence [5]

,

and for aluminum [6] using Ashcroft's [7] band struc-

ture. Figures 2 and 4 show the results of the calculation

"or the density of states.

For indium, the experimentally deduced ODS
(dashed curve of figure 2) does not show the sharp fea-

tures of the calculated density of states (dotted curve of

figure 2) (the sharp structure is caused by the interac-

tion of the energy surfaces with the zone boundaries).

However, the gross features such as the peak near the

Fermi energy and the low energy bump are present in

both curves. The symmetry of the indium lattice

(BCT:c/a = 1.53 or pseudo-FCT:c/a = 1.08, as opposed

to the higher fee symmetry of the aluminum lattice)

required some simplification to be made in the calcula-

tion of the eigenvalues [3]. Therefore, this calculated

density of states can only be considered as an approxi-

mation.

The aluminum density of states shown in figure 4 is

very nearly free electron hke. There are only small

deviations at energies near A^, L, and W of the Brillouin

zone. By comparison, it is evident that the bands in in-
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Figure 5. A comparison of the calculated (direct transition) electron

energy distribution to the experimental distribution for indium.

dium are perturbed significantly more than those for

aluminum.

By assuming that the transitions are direct, the

photoelectron energy distributions were calculated for

the two band structures [3,6]. It was assumed that all

transitions were equally probable (subject to the con-

straints on energy and momentum), and a simple

escape function was used. Figures 5 and 6 display the

calculated distributions at a single photon energy. For

indium (fig. 5), there is a gross resemblance between

the calculated and experimental distributions; there

are two major groups of electrons in the distribution. It

is of interest to note here that there is close replication

of the structure in the calculated density of states (fig.

2) in the direct transition distribution of figure 5. For

aluminum (fig. 6), the agreement between experiment

and calculation is better. The calculated distribution

shows stronger structure than the experiment, but all

the structure is present. Also included in figure 6 is a

calculated distribution based on figure 4 and the densi-

ty of states model. Both of these calculated distribu-

tions (direct and nondirect transitions) reproduce struc-

ture in the density of states; the three bumps in the

density of the states are clearly seen in the calculated

distributions.

4. Conclusions

For the energy range where these photoemission ex-

periments are done (4.0 to 11.6 eV), the empirical densi-

ty of states model can be used to deduce information

about the electronic density of states. By the same

tiw= I 1.29 eV
ALUMINUM

DIRECT MODEL

DENSITY OF STATES MODEL-

EXPERIMENT-

4 6 8 10

ELECTRON ENERGY (eV)

14

Figure 6. A comparison of the calculated {direct and nondirect

transition) electron energy distributions to the experimental
distribution for aluminum.

token, calculations of photoemission spectra due to

direct transitions also reflect structure in the density of

states. Therefore, it seems that either model can be

used to describe the photoemission properties of these

two metals in the photon energy range studied here. At

higher photon energies where there is no experimental

data, there are predictable differences which would

distinguish the photoemission due to direct transitions

and those due to nondirect transitions. Further experi-

mental work at higher energy would be useful in deter-

mining which model is more applicable.
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Electronic Densities of States from X-Ray Photoelectron

Spectroscopy

C. S. Fadley and D. A. Shirley

Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

In x-ray photoelectron spectroscopy (XPS), a sample is exposed to low energy x rays (approximately

1 keV), and the resultant photoelectrons are analyzed with high precision for kinetic energy. After cor-

rection for inelastic scattering, the measured photoelectron spectrum should reflect the valence band

density of states, as well as the binding energies of several core electronic levels. All features in this

spectrum will be modulated by appropriate photoelectric cross sections, and there are several types of

final-state effects which could complicate the interpretation further.

In comparison with ultraviolet photoelectron spectroscopy (UPS), XPS has the following ad-

vantages: (1) the effects of inelastic scattering are less pronounced and can be corrected for by using a

core reference level, (2) core levels can also be used to monitor the chemical state of the sample, (3) the

free electron states in the photoemission process do not introduce significant distortion of the photoelec-

tron spectrum, and (4) the surface condition of the sample does not appear to be as critical as in UPS.

XPS seems to be capable of giving a very good description of the general shape of the density-of-states

function. A decided advantage of UPS at the present time, however, is approximately a fourfold higher

resolution.

We have used XPS to study the densities of states of the metals Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os,

Ir, Pt, and Au, and also the compounds ZnS, CdCli, and HgO. The d bands of these solids are observed

to have systematic behavior with changes in atomic number, and to agree qualitatively with the results

of theory and other experiments. A rigid band model is found to work reasonably well for Ir, Pt and Au.

The d bands of Ag, Ir, Pt, Au and HgO are found to have a similar two-component shape.

Key words: CdCU; density of states; HgO; noble metals; rigid band model; transition metals; x-ray

photoemission; ZnS.

1 . Introduction

The energy distribution of electronic states in the

valence bands [1] of a solid is given by the density of

states function, p(E). There are several techniques for

determining p(E) at energies within ~kT of the Fermi

energy, Ef, where relatively small perturbations can

excite electrons to nearby unoccupied states. However,

because of the nature of Fermi statistics, an electron at

energy E, well below Ej (in the sense that Ef — E > kT) ,

can respond only to excitations of energy Ef — E or

greater. Because the valence bands are typically

* An invited paper presented at the 3d Materials Research

Symposium, Electronic Density of States, November 3-6, 1969,

Gaithersburg, Md.
' Work performed under the auspices of the U.S. Atomic Energy

Commission.

several eV wide, a versatile, higher energy probe is

required to study the full p(E). The principal tech-

niques presently being applied to metals are soft x-

ray spectroscopy (SXS) [2,3] ion-neutralization spec-

troscopy (INS) [4] , and photoelectron spectroscopy (by

means of ultraviolet [5] or x-ray [6,7] excitation).

In each of these methods, either the initial or the

final state involves a hole in the bands under study.

Thus the measuring process is inherently disruptive.

The actual initial and final states may not be simply re-

lated to the undisturbed ground state [8] , and only for

this ground state does p(Ej have precise meaning. Even

if the deviations from a ground state description can be

neglected, there are complications for each of the

above techniques in relating measured quantities to

p(E) [2,3,4,5] . Nevertheless, all four have been applied

with some success, and, where possible, experimental
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results have been compared to the theoretical predic-

tions of one-electron band theory.

In this paper, we outUne the most recently developed

of these techniques, x-ray photoelectron spectroscopy

(XPS) [6,7] , and apply it to several metallic and non-

metallic solids. In section 2. the principles of the

technique are disottss^^d from the point of view of relat-

ing measured quantities to a one-electron p(E). In sec-

tion 3, we present results for the twelve 3d, 4d, and 5d

transition metals Fe, Co, Ni, Cu, Ru. Rh. Pd, Ag, Os. Ir.

Ft, and Au, making comparisons with the results of

other experimental techniques and theory where ap-

propriate. In addition, results for nonmetallic solids

containing the elements Zn, Cd and Hg are presented,

to clarify certain trends observed as each d shell is

filled. In section 4, we summarize our findings.

2. The XPS Method

The fundamental measurements in both ultraviolet

photoelectron spectroscopy (UPS) and x-ray photoelec-

tron spectroscopy (XPS) are identical and very simple.

Photons of known energy impinge on a sample, ex-

pelling photoelectrons which are analyzed for kinetic

energy in a spectrometer. In UPS [5] , photon energies

range from threshold to —20 eV, whereas XPS utilizes

primarily the Ka x rays of Mg (1.25 keV) and Al (1.49

keV). For a given absolute energy resolution, an XPS
spectrometer must thus be —100 times higher in resolv-

ing power. We have used a double-focussing air-cored

magnetic spectrometer [9], with an energy resolution

of Ae/e = 0.06 percent. Ae is defined to be the fuU

width at half maximum intensity (FWHM) of the peak

due to a flux of monoenergetic electrons of energy e.

Conservation of energy requires that

hv= E^' - E"+ e + 4>c. (1)

where hv is the photon energy, the total energy of the

initial ground state. E'' the total energy of the final hole

state as seen by the ejected photoelectron, e the electron

kinetic energy, and 4>c the contact potential between

the sample surface and the spectrometer. If

corresponds simply to a hole in some electronic level j,

then the binding energy of an electron in level j is by

definition Eb^ — E'' — E^, where the superscript v

denotes the vacuum level as a reference. The Fermi

level can also be used as a reference and a simple trans-

formation yields

hv= Ef+e + (t)sp^ -E + e + (l>sp, (2)

where E/ = —E is the Fermi-referenced binding ener-

gy, and
(f>.~i,,

is the work function of the spectrometer (a

known constant). This transformation makes use of the

relations = E/+ sample work function and (f)c
= (t>sp

— sample work function. Positive charging of the sam-

ple due to electron emission can shift the kinetic energy

spectrum to lower energies by as much as 1 eV for insu-

lating samples but relative peak positions should

remain the same. This effect is negligible for metals.

Returning to eq (1), we see that the fundamental XPS
(or UPS) experiment measures the kinetic energy spec-

trum from which we attempt to deduce the final-state

spectrum. This spectrum must then be related top(£'),

as discussed below.

In addition to p{E) modulated by an appropriate

transition probability, there will be six major contribu-

tors to Uneshape in an XPS spectrum. Together with

their approximate shapes and widths for the conditions

of our experiments, these are:

1. Linewidth of exciting radiation — Lorentzian,

-0.8 eV FWHM for the unresolved MgKauz
doublet used as "monochromatic" radiation in

this study. The use of a bent-crystal monochro-

matic might permit narrowing this in future

work [ 7]

.

2. Spectrometer resolution — slightly skew, with

higher intensity on the low-kinetic-energy side,

—0.6 eV FWHM for 1 keV electrons analyzed

with 0.06 percent resolution.

3. Hole lifetime in the sample — Lorentzian, —0.1

to 1.0 eV for the cases studied here.

4. Thermal broadening of the ground

state — roughly Gaussian, —0.1 eV.

5. Inelastic scattering of escaping photoelec-

trons— all peaks have an inelastic "tail" on the

low kinetic-energy side, which usually extends

for 10 eV or more.

6. Various effects due to deviations of the final

state from a simple one-electron-transition

model.

Contributions analogous to (3), (4), and (6) will be

common to all techniques used for studying p{E).

A UPS spectrum will exhibit analogous effects from

all six causes. In XPS, there is thus a present lower

limit of - 1.0 eV FWHM. Core levels with this width

are well described by Lorentzian peaks with smoothly

joining constant tails [10] (see fig. 1), verifying that the

major contribution to linewidth is the exciting x ray.

The corresponding lower limit for UPS appears to be

0.2 to 0.3 eV, so that XPS cannot at present be ex-

pected to give the same fine structure details as UPS.

The effects of scattering of escaping photoelectrons

[(5) above] can be corrected for in both UPS [5] and
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Figure 1. Core level photoelectron spectra produced by exposure of

Ru andir to Mg x-rays. The levels are Ru 3d3/2 — 3d5/2 andir

^£5/2— 4f7/2. The peaks due to the MgKa,,2 and MgKa;i, 4 x rays are

noted, as well as the tail observed on each peak due to inelastic

scattering. The analysis of these spectra into pairs ofLorentzian-

based shapes is described in the text and reference 10.

XPS [6]. This correction is particularly simple for

XPS, however, because narrow core levels can be used

to study the scattering mechanisms. As the kinetic

energies of electrons expelled from core levels —100 eV
below the valence bands are very near to those of elec-

trons expelled from the valence bands (i.e, 1150 eV ver-

sus 1250 eV), it is very probable that the scattering

mechanisms for both cases are nearly identical.

Subject to this assumption [11], we can correct an

observed valence band spectrum, /y(e), by using an ap-

propriate core level spectrum, /c(e), as a reference

[6,10]. If we construct a core level spectrum in the

absence of scattering, /c'(e'), from pure Lorentzian

peak shapes, then Ide) and /c'(e') can be connected by

a response function, i?(e,e' ). Since XPS data is accumu-

lated in discrete channels, /c(e) and /f'(e') can be

treated as vectors with typically 100 elements and

/?(e,e') as a 100 X 100 matrix, these quantities being re-

lated by

Ic{e)= R{e,e')I'{e'). (3)

If we now make certain physically reasonable assump-

tions about the form of i?(e,e'), the effective number of

matrix elements to be computed can be reduced to

^100. This permits a direct calculation of /?(e,e'). The
next step is to apply /?"'(e,e' ) to the observed valence

band spectrum, /i,(e), to yield the corrected spectrum,

/u'(e'). The Lorentzian widths in /c'(e') are selected to

be 0.6 to 0.8 times the observed widths so that no ap-

preciable resolution enhancement is accomplished by

this correction. In addition to inelastic scattering, we
can also easily allow for the extra peaks present in any

XPS spectrum due to the sateUite x-rays of the anode,

the most intense of which are Ka3,4. In XPS spectra

produced by bombardment with magnesium x rays,

these satellites produce a doublet approximately 10 eV
above the main (Xai,2) peak and with about 10 percent

of the intensity of the main peak (see fig. 1). The details

of this correction procedure are discussed elsewhere

[10].

The application of this procedure to data on the

valence bands of copper is illustrated in figure 2. The
strong similarity between corrected and observed spec-

tra indicates the subtle nature of this correction: the es-

sential shape and position of the c?-band peak is obvious

in the uncorrected spectrum. By comparison, this rela-

tively high information content in raw data is not found

in UPS [5] or ion-neutralization spectroscopy [4].

An additional advantage of XPS is that the chemical

state of the sample can be monitored via observation of

core level photoelectron peaks from the sample and
possible contaminants [6]. In this way it is possible to

detect chemical reactions occurring in the thin surface
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Figure 2. Valence band photoelectron spectrum produced by

exposure ofCu to Mg x-rays, together with the corrected spectrum

obtained after allowancefor the effects of inelastic scattering and
MgKa3,4 x-rays in the raw data. A peak due to the 3d bands ofCu is

the dominantfeature of these spectra.
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layer (—100 A) responsible for the unscattered

photoelectrons of primary interest. Furthermore, ex-

perimental results for Fe, Co. and Ni indicate that UPS
is more sensitive to surface conditions [6,12].

The relationship of corrected XPS spectra to p(E)

can be considered in two steps: (1) a one-electron-

transition model, in which the appropriate transition

probability is expressed in terms of the photoelectric

cross section, and (2) deviations from the one-electron-

transition model.

The cross section for photoemission from a one-elec-

tron state j at energy E will be proportional to the

square of the dipole matrix element between that state

and the final continuum state,

aj{E) ^\{4,j\r\^{hp+ E))\\ (4)

where (Tj(E) is the cross section and (//f/it- + E) is the

wave function of a continuum electron with energy Hp

+ E. If there are no appreciable deviations of the final

state from a one-electron transition model, the cor-

rected kinetic energy spectrum will be related to p(E)

by

r{hv + E-4>sp) &{E')p{E')p'{hv.
J — 00

+ E')F{E')L{E-E')dE' , (5)

where a-(E') is an average cross section for all states j

at £", p'(hv + E' ) is the density of final continuum

states, F(E' ) is the Fermi function describing thermal

excitation of electrons near the Fermi surface and L(E
— E') is the Hneshape due to contributions (1), (2), (3),

and (4) discussed above (essentially a Lorentzian).

The factor p'{hv + E' ) can be considered constant

over the energy range pertinent to the valence bands,

as the final state electrons are —1250 eV into the con-

tinuum and the lattice potential affects them very little

[6.13]. Therefore, the appropriate final state density

will be proportional simply to e"^. This function is only

negligibly smaller for electrons ejected from the bottom

of the valence bands (e = 1240 eV) than for those

emitted from the top of these bands (e = 1250 eV). This

constancy of p'(hv+ E' ) cannot be assumed in the anal-

ysis of UPS data, however [5]

.

Any changes in crf£'^ from the top to the bottom of the

bands will modulate the XPS spectrum in a way not

simply connected to p(E). From eq (4) it is apparent that

these changes can be introduced by variations in either

t//j or \\)(hv -\- E) across the bands. The differences in

from the top to the bottom of the 'id band in transition

metals have been discussed previously [2.14]. but no

accurate quantitative estimates of this effect on the ap-

propriate dipole matrix elements have been made to

date. It is thus possible that in both XPS and UPS, d-{E)

varies substantially from the bottom to the top of the

valence bands because of variation in the initial-state

wave functions. This question deserves further study.

In XPS, there should be little difference in the final-

state wave function, \\f(hv + E), between the top and

bottom of a band, as a 1240 eV continuum state should

look very much like a 1250 eV continuum state. The ef-

fects of changes in final state wave function on &(E)

need not be negligible in a UPS spectrum, however.

Our discussion up to this point has assumed that the

photoemission process is strictly one-electron; i.e., that

we can describe the process by changing the occupa-

tion of only a single one-electron orbital with all other

orbitals remaining frozen. This assumption permits the

use of Koopmans' Theorem [ 15] , which states that

binding energies can be equated to the energy eigen-

values arising from a solution of Hartree-Fock equa-

tions. Or, with some admitted errors [ 16] , the one-elec-

tron energies obtained from non-Hartree-Fock band

structure calculations in which simplifying approxima-

tions have been made can be compared directly to a

measured binding energy spectrum. We illustrate the

use of Koopmans' Theorem in figure 3a, using a

hypothetical level distribution for a 3c/ transition metal.

There are, however, several types of potentially signifi-

cant deviations from this one-electron model. We shall

discuss these briefly.

The final-state effects leading to these deviations can

be separated into several categories, although we note

that there is considerable overlap. In a more rigorous

treatment some of these separations might not be

meaningful, but we retain them here for heuristic pur-

poses. The effects are:

(1) Electrons in the sample may be polarized

around a localized positive hole, thereby in-

creasing the kinetic energy of the outgoing

electron [8]. In this way, the entire

spectrum would be shifted toward higher

kinetic energy. Polarization might also occur to

a different extent for different core levels, for

different energies within the valence bands,

and for levels at the same energy in the valence

bands, but with different wave vector. The

latter two effects could act to broaden

relative to p(E). These polarization effects are

schematically illustrated in figure 3b. Polariza-

tions will only affect I(ej to the extent that the

kinetic energy of the outgoing electron is al-

tered, however (cf. eq (1)). Since both polariza-

tion and photoemission occur on a time scale
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Figure 3. Schematic illustration ofvarious final-state effects on the

photoelectron spectrum ofa hypothetical 3d transition metal: (a) the

Koopmans^ Theorem spectrum, in which levels are positioned

according to one-electron energies, with relative intensities

determined by appropriate photoelectric cross sections: (b) the effect

on spectrum (a) ofpolarization around a localized-holefinal state; (c)

the effect on spectrum (a) ofstrong coupling between a localized hole

and the valence electrons (note the splitting of the 3 s level); (d) the

effect on spectrum (a) of two-electron excitation during

photoemission; and (ej the effect on spectrum (a) ofphonon excitation

during photoemission.

of —10"^^ s, it is difficult to assess the im-

portance of this effect. As the velocity of an

XPS photoelectron is —10 times that of a UPS
photoelectron, the influence of polarization

should be somewhat less on an XPS spectrum,

however.

(2) In addition to a simple polarization, a localized

hole can couple strongly with localized valence

electrons [17] or with nonlocalized valence

electrons [18]. In iron metal, for example, a 35

hole is found to couple in several ways with the

localized d electron moment, giving rise to an

approximately 4 eV "multiplet splitting" in the

35 photoelectron peak [17]. Also, it has been

predicted that nonlocalized conduction elec-

trons should couple with a localized core or

valence hole yielding asymmetric line shapes

in electron and x-ray emission [18] . Both of the

above effects would act to broaden /fej spectra,

with the former being more important for

systems with adorf shell approximately half-

filled. These effects are indicated in figure 3c.

It has also been predicted that the removal of

a core or valence electron will be accompanied

by strong coupling to plasma oscillations [19].

This couphng would lead to broad sidebands

separated from the one-electron spectrum by

as much as 20 eV [19].

(3) It is also possible that not just one electron is

fundamentally affected in the photoemission

process, but that other electrons or phonons

are simultaneously excited [20]. Electrons

may be excited to unoccupied bound states or

they may be ejected from the sample, and this

effect is indicated in figure 3d. The only direct

observations of such electronic excitations dur-

ing photoemission have been on monatomic

gases, where two-electron processes are found

with as high as 20 percent probabihty [21].

Vibrational excitations have a marked effect on

the UPS spectra of light gaseous molecules

[22] , but it is difficult to estimate their im-

portance in solids. A classical calculation in-

dicates that for such heavy atoms as transition

metals, the recoil energy available for such ex-

citations in XPS is ^10-'- eV [7]. Also, the ob-

servation of core reference levels with

linewidths very close to the lower hmit of the

technique (see fig. 1) seems to indicate that

^ vibrational excitation does not account for

more than a few tenths eV broadening and

shifting to lower kinetic energy of features ob-

served in the valence-band region. This effect

is schematically indicated in figure 3e.

For several reasons, then, XPS seems to be capable

of giving more reliable information about the overall

shape of p(E) than does UPS. However, the present

XPS Unewidth limit of 1.0 eV precludes determination

of anything beyond fairly gross structural features.

With these observations in mind, we now turn to a

detailed study of the XPS spectra for several solids. We
note also that the XPS method is applied to p(E) studies

in two other papers of these proceedings [23,24]

.
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3. Density-of-States Results for Several 3d, Ad,
and 5d Series Metals

3.1. Introduction

Figure 4 shows the portion of the Periodic Table rele-

vant to this work. The twelve elements Fe, Co, Ni, Cu,

Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au were studied as

metals, while the three elements Zn, Cd, and Hg were

studied in the compounds ZnS, CdCl2, and HgO to illus-

trate the positions, widths, and shapes of filled core-like

3rf, 4</, and 5c? shells.

Ultra-high vacuum conditions were not attainable

during our XPS measurements, as the base pressure in

our spectrometer is approximately 10"-^ torr. Surface

contamination of samples is a potential problem,

because the layer of the sample that is active in produc-

ing essentially inelastic photoelectrons extends only

about 100 A in from the surface [6.7]. This depth is not

accurately known, however. Because the contamina-

tion consists of oxide formation as well as certain ad-

sorption processes with lower bonding energy for the

contaminant, all the metal samples were heated to high

temperature (700 to 900 °C) in a hydrogen atmosphere

(10~^ to 10"- torr) during the XPS measurements [6].

These conditions were found to desorb weakly bound

species, and to reduce any metal oxides present.

As mentioned previously, it is possible to do in situ

chemical analyses of the sample by observing core-

level photoelectron peaks from the metal and from all

suspected contaminants [6]. For all metals, the most

important contaminant was oxygen, which we moni-

tored via the oxygen Is peak. Because core electron

binding energies are known to be sensitive to the

chemical state of the atom [7,25], the observation of

core peaks for metal and oxygen should indicate

26 3d64s2

Fe

bcc

27 3dMs2

Co

fee

28 3d84s2

Ni

fee

29 3d'°4s'

Cu

fee

30 3d'°4s2

Zn

44 4d^5s'

Ru

hep

45 4dS5s'

Rh

fee

46 4d'°

Pd

fee

47 4d'°5s'

Ag

fee

48 4d'Ss2

Cd

76 Sd^es^

Os
hep

77 5d9

Ir

fee

78 5d'°

Pt

fee

79 5d'°6s'

Au
fee

80 5d'°6s2

Hg

Figure 4. The portion of the periodic table studied in this work. The

atomic number,free-atom electronic configuration, and metal crystal

structures are given. Zn, Cd, and Hg were studied as compounds. The

crystal structures are those appropriate at the temperatures ofour

metal experiments (700-900 °C).

something about the surface chemistry of the sample.

The intensities of contaminant peaks should also be a

good indicator of the amounts present. Figure 5 shows

such results for iron. At room temperature, the oxygen

Is peak is strong, and it possesses at least two com-

ponents. The iron 3p peak is also complex and appears

as a doublet due to oxidation of a thin surface layer of

the sample. As the temperature is increased in the

presence of hydrogen, the oxygen peak disappears (the

right component disappearing first) and the left com-

ponent of the iron peak also disappears, leaving a nar-

row peak characteristic of iron metal. Our interpreta-

tion of the disappearing components is that the left ox-

ygen peak (higher electron binding energy) represents

oxygen as oxide, the right oxygen peak (lower electron

binding energy) represents oxygen present as more

loosely bound adsorbed gases, and that the left iron

peak (higher electron binding energy) represents ox-

idized iron [6,25]. Thus at the highest temperatures in-

dicated in figure 5, we could be confident that we were

studying iron metal. Similar checks were made on all

the other metal samples and oxygen can be ruled out as

a contaminant for every case except Pd. (We discuss

Pd below.) For example, the core level peaks for Ru and

Ir shown in figure 1 do not indicate any significant

splitting or broadening due to chemical reaction. The
results presented in table 1 indicate similar behavior

for all metals studied. The carbon Is peak was also ob-

served and found to disappear for all cases at the tem-

perature of our measurements.

015 Fe3p

710 715 720 725 1185 1195 1205

Kinetic energy (ev)—

»

Figure 5. Oxygen Is and 3p photoelectron peaks from metallic

iron at various temperatures in a hydrogen atmosphere. Note that the

Fe 3p component at lower kinetic energy (an ''oxide" peak)

disappears at high temperature along with the 01s peaks. MgKa
radiation was usedfor excitation throughout the work reported here.
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Table 1. Summary ofpertinent results for the fifteen solids studied.

The reference core levels used for inelastic scattering correction are listed, along with their binding energies and widths. The widths of the </-band peaks are also given, along with the spacing
of the two components in these peaks (if observed).

SoUd

Fe
Co
Ni
Cu
ZnS

Ru
Rh
Pd
Ag
CdCl2

Os
Ir

Pt

Au
HgO

Reference
core levels

3pi/2-

3pi/2

3pi/2-

3pi/2-

3pi/2-

3(^3/2-

3cf3/2-

3c?3/2-

M3I2-

3/2 (unresolved)

-3/2 (unresolved)'^.

3/2 (unresolved)

3/2 (unresolved)

3/2 (unresolved)

-5/2-

5/2-

5/2-

5/2-

5/2-

4/5/2-7/2-

4/5/2-7/2.

4/5/2-7/2.

4/5/2-7/2.

4/5/2-7/2-

Ref. core

level binding

energy

"

(eV)

52

57
66
75

90

280
307
335
368
408

50
60
71

84
103

FWHM of

core levels

(eV)

2.3

2.5

3.4

4.2

5.4

1.1

1.3

1.3

1.0

1.2

1.3

1.4

1.5

1.2

1.5

FWHM of

(f-band peak
(eV)

4.2

4.0

3.0

3.0

1.7

4.9

4.4

4.1

3.5

2.0

6.5

6.3

5.8

5.7

3.8

Separation of

2 components
in <f-band peak

(eV)

1.5-1.8

3.3

3.3

5.1

1.8

" Binding energy of the / + 1/2 component, relative to the Fermi energy.
* Equal widths assumed for both components in the least-squares fits for 3d and 4/levels.

'^The theoretical spin-orhit splitting for the 3p levels in this series range from 1.6 eV for Fe to 3.1 eV for Zn (Ref. 36). The partially resolved doublet in ZnS is found to have i

separation of 2.8 eV, in good agreement.

All metals were studied as high purity polycrystalHrie

foils, except for Ru and Os, which were studied as pow-

ders [10].

The nonmetallic samples (ZnS, CdCL, and HgO)
were studied as powders at room temperature. Both

considerations of chemical stability and observations

of core levels indicated no significant surface con-

tamination, although high purity for these cases was not

of paramount importance.

The results reported here were obtained with 1.25

keV MgfCa radiation for excitation. However, no signifi-

cant changes are introduced with AlA^a radiation of

1.49 keV energy.

We present below our experimental results for these

d group metals, as well as the results of other experi-

ments and theory. Statistical error limits are shown on

all XPS results. Throughout our discussion, we shall

speak of "pf E)'' as determined by a certain technique,

bearing in mind that no experimental technique

directly measures p(E), but rather some distribution

pecuHar to the experiment {e.g., the UPS "optical den-

sity of states" [5] , or the INS "transition density func-

tion" [4] ), which is related to p(E) in some way {e.g., hy
our eq (5)).

The location of the Fermi energy was determined by
using eq (2). This determination was checked against

photoelectron peaks from a Pt standard [10]. Our esti-

mated overall accuracy in determining is ±0.5 eV, so

that precise comparison of features in XPS spectra

with features present in the results of other experi-

ments (all of which have roughly the same Ef accuracy)

is not always possible.

Finally, we note that the dominant feature in our

results for all cases is a peak due to the bands derived

from d atomic orbitals. The XPS method is not particu-

larly sensitive to the very broad, flat, s- or p-like bands

in metals, and such bands are seen with enhanced
sensitivity only in studies using ion-neutralization

spectroscopy [4].

3.2. The 3d Series: Fe, Co, Ni, Cu and Zn

Our results for Fe, Co, Ni, and Cu have been

published elsewhere [6], but it is of interest to compare

them with more recent results from theory and other

experiments [3,12]. There are now enough data availa-

ble that it is worthwhile to discuss and compare results

for these iron group metals individually, as Eastman

[12] has done.

a. Iron (bcc)

Hanzely and Liefeld [3] have studied Fe, Co, Ni,

Cu, and Zn using soft x-ray spectroscopy (SXS). Their

results for Fe, together with Eastman's UPS results

[12] and our own, are plotted in figure 6a. In comparing

the three p(E) curves we note that their relative heights

and areas have no significance: we have adjusted the

heights to be roughly equal, in order to facihtate com-

parison. Also the UPS curve is terminated at Ef and is

less reliable in the dashed portion, for E < Ef—4' eV
[12]. With these qualifications, the overall agreement



(b)
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Figure 6. Results for iron metal. The XPS data ivere obtained at

780 °C and have been correctedfor the effects of inelastic scattering

and MgKa3,4 x-rays. In (a) the XPS data are compared with UPS (ref.

12) and SXS (ref. 3) cun>es. In (b) theXPS data are shown together

with a theoretical curve obtained by broadening theferromagnetic

density-of-statesfunction ofreference 26. Right ordinate is thousands

ofcounts in the XPS data

among these results from three different experimental

methods is really quite good. The function p(E) appears

to be essentially triangular, peaking just below Ef and

dropping more or less linearly to zero at £' ~ Ef—8 eV.

Upon closer inspection however, the agreement is

less impressive. The SXS results are somewhat nar-

rower, but with more intensity above Ef, probably due

to spurious effects [3]. There is little coincidence of

structure, although the maxima for XPS and SXS coin-

cide fairly well. A shift of ~1 eV of the XPS curve

toward Ef or the UPS curve in the opposite direction

would improve their agreement, but it is unlikely that

the combined errors in the location of Ef location are

that great.

In figure 6b, the XPS results are compared to the

one-electron theoretical p(E) calculated by Connolly

[26] for ferromagnetic iron. The theoretical p(E) has

been smeared at the Fermi surface with a Fermi func-

tion corresponding to the temperature of our experi-

ment (780 °C) and then broadened with a Lorentzian

hneshape of 1.0 eV FWHM. It should thus represent a

hypothetical "best-possible" XPS experiment in a one-

electron model (i.e., eq (5) with &(E') and p'(hv + E'

)

constant). The agreement between theory and experi-

ment is good, particularly above Ef—5 eV. The XPS (or

SXS) results give somewhat higher intensity below

Ef—5 eV than theory. We note that hybridization of the

d bands can lead to significant broadening of the

theoretical p(E) of Ni [14]. A similar sensitivity of the

iron p(E) to the amount of hybridization could account

for the discrepancy in width between XPS and theory.

Our reason for comparing experimental results to

/erromagnetic instead of paramagnetic theoretical pre-

dictions is as follows: In experiments on ferromagnetic

metals, no significant differences are observed between

XPS [6, 17] and INS [4] resuhs obtained above and

below the Curie temperature (Tc, where long-range fer-

romagnetic order should disappear). Furthermore,

exchange-induced splittings of core electronic levels in

iron are the same above and below Tc [17] . It thus ap-

pears that localized moments persist above Tc for times

at least as long as the duration of the photoemission

process. Local moments might be expected to affect

the kinetic energy distributions of electrons ejected

from valence bands and core levels [17] in much the

same way, independent of the presence of long range

order. Thus a comparison of experiment with a

paramagnetic p(E) may be a priori irrelevant, in-

asmuch as a ferromagnetic p(E) takes these effects into

account in an approximate way. Eastman [ 12] has also

noted that UPS results for Fe, Co, and Ni below Tc are

in general in better agreement with ferromagnetic

theoretical pfEfs than with similar paramagnetic

theoretical results. Accordingly, we shall compare our

results only with ferromagnetic theoretical curves for

Ni and Co in the next sections.

b. Cobalt (fee)

The experimental situation is illustrated by the three

density-of-states curves in figure 7a. The comparison is

quite similar to that for iron. Good overall agreement is

apparent, with less agreement in detail. Eastman's UPS
curves [ 12] in both cases show structure near the

Fermi energy that is missing from the SXS [3] and

XPS results, and at lower energies the UPS curve tends

to be higher than the others, especially in the dashed

portion where it is less reliable [12] . In this region the

XPS curve lies between the other two for Co as well as

for Fe. One index of agreement among the three curves

in the full width at half-maximum height, which is about

3,4, and 5 eV for SXS, XPS, and UPS, respectively.

In figure 7b, we compare our XPS results to a fer-

romagnetic theoretical curve of Wong, Wohlfarth, and

Hum [27] for hep Co (our experiments were done on

fee Co, for which no detailed theoretical results are

available). The theoretical curve has been broadened

in an analogous fashion to that for iron. The agreement
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Figure 7. Results for cobalt metal. The XPS data were taken at

925 °C and have been correctedfor inelastic scattering and MgKus. 4

x-rays. In (a) these data are compared with UPS (ref. 12) and SXS (ref

3) results. In (b) the comparison is with an appropriately broadened

ferromagnetic theoretical curve from reference 27.

is good for E > Ef—3 eV, but the XPS results are

somewhat high below that point. In fact, the overall

agreement is probably best between theory and SXS
(cf. fig. 7a).

c. Nickel (fee)

Experimental results for Ni are presented in figure 8a

[3,12]. We note a slight decrease in the XPS results in

the region E < Ef— 4 eV relative to our earlier work [6]

.

This decrease is due to a more accurate allowance for

a weak inelastic loss peak appearing at ~5 eV below

the primary photoelectron peaks. The three sets of data

show poor agreement, with the widths of the main peak

decreasing in the order UPS, XPS, SXS. The SXS
results are considerably narrower than the other two

(FWHM -2 eV, 3 eV, and 5 eV for SXS, XPS, and UPS,
respectively), but agree in overall shape with XPS. The
SXS results in figure 8a were obtained from measure-

ments of L X rays [3]. Similar work on M x rays (for

which transition probability modulation may be a

smaller effect [2]) shows somewhat more fine structure

and a FWHM of ~3 eV [2], agreeing rather well with

XPS. Nickel has also been investigated by INS [4] and

a smooth peak of roughly the same position and width

as the XPS peak is observed. Even with an allowance

-10 -9 -8 -7 -6 -5 -4 -3 -2 -I 0 +1 +2

E-E, (eV)

Figure 8. Results for nickel metal. The correctedXPS data are

based on measurements at 870 °C. Iii(a) they are compared with UPS

(ref. 12) and SXS (ref. 3) curves. In (b) they are compared to the

ferromagnetic theoretical density-of-states functionfrom reference 14,

which has been broadened.

for the poorer resolution of XPS, the two peaks appear-

ing in the UPS results are not consistent with the XPS
curve.

The various theoretical p(E) estimates for Ni have

been discussed previously [2,12]. The FWHM of these

estimates vary from ~3 to 4.5 eV, with the smallest

width coming from an unhybridized calculation [14].

In figure 8b, we compare our XPS results to a

hybridized, ferromagnetic p(E) for Ni [14] which has

been broadened in the same manner as those for Fe and

Co. It is clear that the XPS results are too narrow

(though they would agree in width with the un-

hybridized p(E) [14]), and that, allowing for our

broadening, the UPS results are in best agreement with

theory. In view of the considerable discrepancies

between UPS and XPS, SXS, or INS, however, we
conclude that Ni does not represent a particularly

well-understood case, in contrast with Eastman's

conclusions [12].

d. Copper (fee)

The experimental curves from UPS [12,28], SXS

[3], and XPS are shown in figure 9a. There is agree-

ment in that all curves show a peak between 2.3 and 3.3
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eV below Ef, but with UPS showing more detailed

structure and a somewhat uncertain overall width

[12,28]. The widths and shapes of XPS and SXS are in

good agreement though shifted relative to one another

by —1 eV. (A more accurate £/ location has shifted our

XPS curve relative to our previous results [6].) In

recent UPS work at higher photon energy (hv = 21.2

eV), Eastman [29] has obtained results with more in-

tensity in the region 2.5 to 4.0 eV below Ef and which

agree very well in shape and width with XPS and SXS.

For this case it appears that even a slight increase in

photon energy in the UPS measurement causes the

results to look a great deal more like those of XPS.

Copper has also been studied in INS [4] and the

results for the c?-band peak are in essential agreement

with XPS and SXS.

In figure 9b, we compare a broadened version of the

theoretical p(E) due to Snow [30] with our XPS results.

The agreement is excellent, and would also be so for

SXS if we permit a shift of ~1 eV in E/. The coin-

cidence in energy of structure in the UPS curve with

structure in the unbroadened theoretical p(E) has been

discussed previously [28], but we note that the relative

intensities of the various features noted do not in fact

coincide with theory.

E-E, (eV)

Figure 9. Results for copper metal. The XPS data were obtained at

720 °C and have been corrected for inelastic scattering and MgKa-j, 4

x-rays. Curvesfrom UPS (refs. 12 and 28) andSXS (ref. 3) are com-

pared to the XPS results in (a). In (b) the XPS results are compared

to a broadened theoretical curve based on reference 30.

e. Zinc(asZnS)

Zinc has been studied by XPS only in compounds,

because of the difficulty of obtaining a clean metallic

surface. We present results for ZnS in figure 10. The 3d

electronic states show up as a narrow intense peak with

a FWHM of 1.7 eV and located -13 eV below Ef. (The

separation of this peaJc from Ef may be too large,

because of charging of the sample [25].) The valence

bands are just above the d peak. The d states of metal-

lic zinc have been studied also by SXS [3], and a peak

of FWHM = 1.45 eV, at 8 eV below £>, was obtained.

Thus XPS and SXS are in good agreement on the width

of these core-like 3d states, which are only about 10 eV
below Ef.

3.3. The 4d Series: Ru, Rh, Pd, Ag and Cd

The corrected XPS spectra for the four metals Ru,

Rh, Pd, and Ag are shown in figure 11. The metals are

discussed separately below.

a. Ruthenium (hep)

Our results for Ru are characterized by a single peak

of —4.9 eV FWHM. The high energy edge is quite

sharp, reaching a maximum value at about Ef— 1.7 eV.

The peak is rather flat, and there is some evidence for

a shoulder at £"/— 4.5 eV. The peak falls off more slowly

with energy on the low energy side than near Ef. The
reference core level widths in Ru were quite narrow, as

indicated in table 1, and spurious effects due to surface

contamination are unlikely. There are no other experi-

1 1

\ ZnS

1

i

1*

E-Ef (eV)

Figure 10. CorrectedXPS spectrumfor ZnS, showing a narrow

intense peakfrom the 3 A levels, as well as the broad,flat valence

bands.
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mental or theoretical results on Ru presently available

for comparison with our data.

b. Rhodium (fee)

The XPS-derived p(E) can be described by a single

triangular peak, very steep on the high energy side, and

reaching a maximum at £/— 1.3 eV. There is little

evidence for structure on the low energy side, which

falls off monotonically. The peak FWHM of —4.4 eV is

slightly smaller than that for Ru. No other experimental

or theoretical results on Rh are available for com-

parison.

c. Palladium (fee)

Our corrected results for Pd have much the same ap-

pearance as those for Rh, but the Pd peak is slightly

narrower with a FWHM of —4.1 eV and the maximum
occurs at £/— 1.7 eV. The high-energy edge of the Pd

peak is very steep, and most of the slope must be in-

strumental. Therefore, as expected, the true p(E) for

Pd is apparently very sharp at Ef.

The results presented in figure 11 have been cor-

rected for a weak inelastic loss peak at 6 eV, and also

for the presence of a small peak at Ef— 10 eV, arising

from oxygen present as a surface contaminant. Sam-

ples of Pd were heated in hydrogen to approximately

700 °C and then studied at this temperature with either

a hydrogen or argon atmosphere. It was not possible

under these conditions (or even by heating to as high as

900 °C) to get rid of the oxygen Is peak completely. For-

tunately, the only effect of a slight oxygen contamina-

tion on the valence band XPS spectrum of certain

metals appears to be a sharp peak at Ef— 10 eV

(probably caused by photoemission from 2/?-like oxygen

levels). We have also observed this effect for slightly

oxidized Cu. Thus we were able to correct our Pd
results for this peak (which does not affect the region

shown in fig. 11). A recently obtained uncorrected XPS
spectrum for Pd is in good agreement with our results

[31].

Palladium has also been studied by UPS [32,33] , and

the agreement with XPS is good in general outline.

However, the precise shape of the UPS results below

approximately £"/— 3.5 eV is uncertain [32,33].

In figure 12, we compare our results with the

theoretical predictions of Freeman, Dimmock, and Fur-

dyna [34]. The upper portion of the figure shows the

fine structure of their piE) histogram and in the lower

portion we compare our results to the broadened

theoretical curve. The agreement between XPS and

theory is good, although the shape of the peak is

somewhat different.

d. Silver (fee)

Our results for Ag also appear in figure 11. They

differ in several respects from the Pd curve. The d

bands are filled and below £/, giving rise to a narrow

peak (FWHM = 3.5 eV) with its most intense com-

ponent at Ef—5.3 eV. The edges of this peak are quite

sharp, in view of the instrumental contributions of XPS.

1—I—I—I—I—I—1

—

\—I—I—I—I—

r

E-Ef (eV)

Figure 12. Comparison ofPdXPS results with theory: ( a)

theoretical density-of-statesfunctionfrom reference 34, indicating the

complexity of the one-electron p(E), (b) XPS results and a broadened

theoretical curve.
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The 3f/3/2 and 3c?5/2 levels of Ag are also very narrow (see

table 1), indicating no spurious linewidth contributions

from instrumental or contamination effects. There is

also strong evidence for a weaker component at

—Ef— 6.6 eV. This two-component structure has also

been verified by Siegbahn and co-workers in uncor-

rected XPS spectra [7,31]- Very similar structure ap-

pears in the d bands of several 5d metals and we
discuss the possible significance of this below (sec. 3.5).

Silver has also been studied by means of UPS
[5,29,35], using radiation up to 21.2 eV [29] in energy.

The results of these studies (in particular those attained

at 21.2 eV) are in essential agreement with our own, in

that they show a peak of ~3 eV FWHM at £>-5.0 eV.

No theoretical p(E) predictions for Ag are available

at the present time.

e. Cadmium (as CdCb)

A corrected XPS-spectrum for CdCl2 is shown in

figure 13. The 4d peak appears at —Ej— 14.5 eV and the

valence bands fall between roughly 5 and 10 eV below

Ef. The 4f/ peak is very narrow (a FWHM of 1.7 eV,

compared to 3.5 eV for Ag). As these d levels are quite

strongly bound, we expect them to behave as core

states, and perhaps to exhibit spin-orbit splitting (into

c^3/2 and d^i2 components). There is no evidence for

splitting of this peak, but its shape is consistent with a

theoretical free-atom prediction of only a 0.8 eV spin-

orbit splitting [36]. The analogous 5c?-series levels in

HgO do exhibit resolvable spin-orbit splitting, however

(sec. 3.4.e).

3.4. The Sd Series: Os, Ir, Pt, Au, and Hg

The corrected XPS spectra for the metals Os, Ir, Pt,

and Au are shown in figure 14.

a. Osmium (hep)

Hexagonal Os gives a valence band spectrum similar

to that of hexagonal Ru. As in the Ru case, the Os peak

rises sharply near £/ to a plateau beginning at £/— 1.7

eV. The flat region of the Os peak extends over approxi-

mately 3 eV, and is broader than that for Ru. No com-

parisons with theory or other experiments are possible

as yet.

The low energy tail of the Os peak does not fall to the

base line primarily because of spurious photoelectron

intensity in the valence band region due to the proximi-

ty of the very intense Os4/ levels in energy (see table 1).

These core levels appear to interact with very weak Mg
x rays whose energies are as high as —1300 eV, giving

rise to photoelectrons in the same kinetic energy region

as valence bands interacting with the 1250 eV Mg/Cai
, 2

x rays. Similar problems were encountered with Ir, but

they do not affect our conclusions as to peak shapes

and structure. An additional problem was encountered

in correcting for the MgKa3,4 x rays in both Os and Ir,

as the low intensity 5pi/2 and 5p3/2 photoelectron peaks

overlap the as, 4 regions of the reference 4/ peaks. For

example, this effect appears as a slight deviation of the

data from the fitted function near a kinetic energy of

1202 eV in figure 1. However, the 0:3,4 correction is a

small one and could nonetheless be made with suffi-

cient accuracy not to affect our fundamental conclu-

sions.

Figure 13. CorrectedXPS spectrum for CdCl-i. The filled 4d states

appear at E-E/ = — 14.5 eV. The broader peak at E-E/ ~ — 7 eV

represents valence bands.

Figure 14. Corrected XPS spectra for the .5d metals Os, Ir, Pt, and

Au.
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b. Iridium (fee)

The corrected XPS results for iridium are similar to

those of Os in overall shape and width, but give

evidence for two peaks, at approximately Ef— 1.5 eV
and E/— 4.5 eV. This two-peak structure is even clearer

in the uncorrected XPS spectrum for Ir shown in figure

15. The higher-energy peak appears to be narrower,

and, with allowance for this, we estimate the two peaks

to be of roughly equal intensity.

c. Platinum (fee)

Our corrected XPS results for Pt exhibit two

partially-resolved peaks at E/— 1.6 eV and E/— 4.0 eV,

with the more intense component lying nearer Ef. The
steep slopes of our spectra for both Ir and Pt near Ef are

consistent with the Fermi surface cutting through the

d bands in a region of very high p(E) . The separations

of the two components observed in the d bands are thus

very nearly equal for Ir and Pt, but the relative intensi-

ties are different.

Theoretical results are available for Pt. The band-

structure calculations of Mueller et al. [37] are shown

in figure 16, together with our data. The theoretical

p(Ej is also shown after broadening, to facilitate com-

parison. We note that both theory and experiment show

roughly two major peaks but that the relative intensities

are in poor agreement. The disagreement as to shape is

the same as that observed for Pd in figure 12. (Relative

intensities are arbitrary in both of these figures.) In ad-

dition, the band-structure calculations give a total

33

32

31

30

29

28

1 1 1 1 1 1 ! 1 1 1 1 1 1

1

1 1 1 1

(uncorr) ^

7* \

y,

•

1 1 1 1 1 1 1 1 1 1 1 1 1 1

•

1 1 1 1 1
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Figure 15. UncorrectedXPS spectrum for Ir, in which the two-peak

structure is clearly shown.

Figure 16. Comparison of Pt XPS results with theory: (a) the

theoretical density-ofstates function of reference 37 . (b) the broadened

theoretical curve is compared to ourXPS results.

width at half height of 8 eV, while the XPS data show a

width of only 6 eV. Thus the overall agreement is only

fair.

d. Gold (fee)

The d bands of gold are filled and should lie several

eV below Ef, as our results in figure 14 indicate. Two
peaks are again evident in the corrected XPS results

for gold, and these have been verified in uncorrected

XPS spectra obtained by Siegbahn and co-workers

[7,31]. The statistical accuracy of our data is quite

good, and we can say that the lower intensity peak at

Ef— 6.8 eV is narrower than the higher intensity peak

at £/— 4.1 eV. Apart from this, the shape of the c?-band

peak for Au is very similar to that for Pt.

Gold has also been studied by means of UPS [29,38].

In experiments at photon energies up to 21.2 eV [38],

a two-peak structure is found, with components at

£/— 3.4 eV and Ef— 6.1 eV. The component at —3.4 eV
is also observed to be split into a doublet [38], perhaps

accounting for its extra width in the XPS results.

Furthermore, a spectrum obtained with hv — 26.9 eV

[29] (but not corrected for inelastic scattering) looks

very much like our XPS results, again indicating that

with increase in photon energy, UPS results converge

rather quickly to those of XPS.
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There are no theoretical p(E) estimates at present

available for Au.

e. Mercury (as HgO)

In HgO, the filled 5c? levels should be tightly-bound

and core-like. Figure 17 shows a corrected XPS spec-

trum for HgO, in which the 5</ levels appear as a

doublet whose components lie 13.6 and 12.0 eV below

Ef. Valence bands overlap the high energy edge of the

d peaks and extend to Ef—5 eV. The intensity ratio of

the two Sd peaks, as derived by least-squares fitting of

Lorentzian curves to our data, is 1.4:1.0. The separation

and intensity ratio are consistent with a c?3/2 — c?5/2 spin-

orbit doublet, as the free-atom theoretical prediction is

for a 2.1 eV separation [36] and the intensity ratio

should be given by the level multiplicities {i.e., 6:4 =
1.5:1.0). (We have verified that the intensity ratios for

the 3c?3/2 — 3c?5/2 core levels of the 4<i metals in table 1

follow this rule to within experimental accuracy (± 0.1).)

Thus the 5d levels of HgO appear to be very core-like.

Furthermore, the relative intensity of the two com-

ponents in the doublet is similar to those observed in Pt

and Au. We discuss the possible implications of this

similarity in the next section.

3.5. Discussion of Results

The XPS results for all 15 cases studied are

presented in figure 18. In table 1 are given the binding

energies and widths of the reference core levels used

for correcting valence band spectra, as well as the

-15 -10 -5 0

E-E, (eV)

Figure 17. CorrectedXPS spectrum for HgO. The intense doublet at

E-E/ ~ — 12 eV is due to the core-like .5d:)/2 and Sds/-) states.

Energy (eV)

Figure 18. Summary of the XPS resultsfor the fifteen solids studied

(cf table I). The peaksfor ZnS, CdCli, and HgO lie at E-E/ = - 73 eF,

— 14 eV, and —12 eV, respectively.

width of the peak due to the d bands and (where ob-

served) the separation of the two primary components
in this peak.

Within a 3c?, 4c?, or 5d series, the XPS results show

systematic variation, giving somewhat wider d bands

for Fe, Ru, and Os than for Cu, Ag, and Au, respective-

ly, and even narrower core-like states ~10 eV below £/

for ZnS, CdCl2, and HgO. Much of this variation is no

doubt connected with a one-electron p(E), but we note

also that experimental spectra obtained from metals

with partially filled c? bands might be broadened by the

coupling of a localized hole to localized c? electrons [17]

(see fig. 3c and sec. 2). The 4o? bands studied are only

slightly wider than their 3o? counterparts; the 5c? bands

are considerably wider and show gross structure.

Within two isomorphous series — Rh, Pd, Ag and Ir,

Pt, Au, all members of which are face-centered cu-

bic—there is sufficient similarity of the shapes of the c?-

band peaks to suggest a rigid-band model for p(E). If

p{E) of Ag(Au) can be used to generate p(E} of Rh and

Pd (Ir and Pt) simply by lowering the Fermi energy to

allow for partial filling of the d bands, then this model

would apply. The peaks for Rh and Pd are too wide to

be represented by a Ag p(E), but the shapes of both

could be very roughly approximated in this manner.

The similarity of the two-peak structure for the three

metals Ir, Pt, and Au gives more evidence for the utility

of a rigid band model, especially as the uncorrected

results for Ir (fig. 15) show a narrower peak near Ef (as

though it were a broader peak cut off by the Fermi ener-

gy). The application of this model to the prediction of

the experimental p(£'j's for Ir and Pt is shown in figure

19. The predictions are reasonably good. In our opinion,

this limited success for Ir, Pt and Au probably indicates

some similarity in the d bands in these metals, but we
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Figure 19. An attempt to reproduce the shapes of the experimental

XPS spectrafor theSd metals I r, Pt, andAufrom a Au-like rigid band

density ofstates. Vertical scales are arbitrary. Note that their

experimental curve does notfall to as low a value as Pt or Au at low

energy due to spurious sources ofphotoelectron intensity (see text).

do not take it as a verification of the rigid band model

per se.

The two-component structure observed in the d-hanA

peaks of Pt and Au is very similar to the unresolved

structure found in Ag. That is, a more intense com-

ponent appears nearer Ej. To estimate the intensity

ratios of these components more accurately, we have

least-squares fitted two Gaussian peaks of equal width

to our data for these three metals. The ratios and

separations so derived are: Ag— 1.51:1.00, 1.8 eV;

Pt- 1.60:1.00, 3.3 eV; and Au- 1.48:1.00, 3.1 eV. As

our accuracy in determining these ratios is ~ ±0.1, they

could all be represented by a value of 1.50:1.00. A
possible significance of this value is that it is the ex-

pected (and observed) intensity ratio for a spin-orbit

split d level (e.g., the Sd levels of HgO). Thus, one might

argue that as the 4(f and 5c? shells move nearer to the

Fermi surface with decreasing Z, they must go continu-

ously from core states to valence states, perhaps retain-

ing some degree of simple spin-orbit character in the

process. The observed separations are 1.5 — 2.5 times

larger than free-atom theoretical spin-orbit splittings

[36], but the various perturbations of the lattice might

be responsible for this. Speaking against such a simple

interpretation, however, is our observation (verified in

UPS results [29,38]) that for Au the component nearer

Ef is broader. In fact, the UPS results for hv ^ 21.2 eV

show this component split into two peaks [29,32]. In

view of this, our intensity ratio estimates based on two

peaks of equal width may not have fundamental sig-

nificance, and the agreement of these ratios, particu-

larly between Ag and Pt or Au could be somewhat ac-

cidental. Nonetheless, the similarity in shape of our

results for the d levels of Ag, Pt, Au, and Hg is rather

striking.

We have noted that for Cu, Ag, and Au, the recent

UPS work of Eastman [29] at higher photon energies

(21.2 to 26.9 eV) is in much better agreement with XPS
results than previous studies using a range of lower

photon energies [28,35,38]. It thus appears that as the

photon energy is increased in a UPS experiment, the

form of the energy distributions can be expected to ap-

proach rather quickly that observed in XPS work. We
feel that photoelectron spectra for which XPS and UPS
show agreement ought to be much more closely related

to p(E). Further UPS experiments at greater than 20 eV
photon energies would thus be most interesting.

4. Concluding Remarks

We have discussed the use of x-ray photoelectron

spectroscopy (XPS) in the determination of densities of

states. The application of this technique to the of bands

of 12 metals and 3 nonmetallic solids seems to indicate

that reliable information about the overall shape of p(E)

can be obtained. The results show systematic behavior

with changes in Z and crystal structure and agree

qualitatively and in some cases quantitatively with

theoretical predictions for both unfilled valence ti levels

and filled core-like d levels.

Throughout our discussion, we have placed special

emphasis on comparison of XPS with the closely re-

lated ultraviolet photoelectron spectroscopy (UPS). It

appears that UPS at the present time has an advantage

in resolution, but that XPS results can be more easily

corrected for inelastic scattering, are not significantly

affected by final state density, and are less susceptible

to the effects of surface contaminants. UPS results at

photon energies ^20 eV appear to be more reliable in-

dicators of p(E) in the sense that they agree better with

the rough outline predicted by XPS. The need for

further work at higher resolution and at all photon ener-

gies (including those in the relatively untouched range

from 20 to 1250 eV) is evident.
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Discussion on "Electronic Densities of States from X-Ray Photoelectron Spectroscopy" by C. S.

Fadley and D. A. Shirley (University of California, Berkeley)

F. J. Slatt (Michigan State Univ.): ]ia.\e you ever seen D. A. Shirley (Univ. of California): We have seen

anything which resembles an Auger effect in Auger peaks. We can identify them by using exciting

photoemission? radiation of two different energies.
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Direct-Transition Analysis of Photoemission
from Palladium

J. F. Janak, D. E. Eastman, and A. R. Williams

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 1 0598

The energy distribution of optically excited electrons in Pd arising from direct interband transitions

has been calculated assuming constant momentum matrix elements. Principal features of new
photoemission data (c?-band structure with four peaks at 0.15, 1.2, 2.2, and 3.5 eV below the Fermi level

and a rf-band width of —3.8 eV) are successfully explained by these calculations. The data can be

analyzed with comparable success using the nondirect-transition model, but only by assuming a free-

electron density of unoccupied states, which is shown to be unjustified for Pd. In addition to the

photoemission spectra and the density of states, the imaginary part of the dielectric constant is com-

puted and compared with experiment.

Key words: Copper; dielectric constant; direct interband transitions: electronic density of states;

interband transition; Korringa-Kohn-Rostoker (KKR); "muffin-tin" potential; palladi-

um (Pd); photoemission; plasmon; secondary emission; silver (Ag).

1. Introduction

Subsequent to the interpretation of the optical prop-

erties of Cu and Ag by Ehrenreich and Phillip [1] in

terms of direct, or k-conserving, interband transitions

a controversy has arisen over the applicabihty of the

direct transition model to photoemission data. Although

there had been no reflectance data which contradicted

the model, the failure of early attempts to account for

the characteristic behavior of photoemission data (the

linear shift of structure with photon energy) led Spicer

and others [2-4] to postulate an alternative model

based on nondirect (k not conserved) transitions. While

photoemission data for several transition metals have

been successfully fit using this model [5] , it has proven

very difficult to account theoretically for the postulated

nondirect transitions.

We show, via a first-principles calculation of the opti-

cally excited electron spectra in Pd, that the direct-

transition model is capable of explaining the dominant

features (viz, structure in the energy distribution, and

the frequency dependence of the quantum ^ ield) of new
photoemission results for Pd. Similar results obtained

by Smith and Spicer for Cu [6] (using a histogram

technique employed earher by Brust [7]) and recent

data for Au [8], suggest that the optical excitations in-

volved in photoemission from metals are due to direct

transitions, at least in the transition and noble metals.

The nondirect transition model shows comparable

success in fitting the experimental data, but only if a

smooth unoccupied density of states is postulated; the

latter assumption is inconsistent with the calculated

density of states in palladium (see fig. 1). Both analyses

0.5

-5 -4 -3 -2 -I 0 = Ef
(b) eV BELOW Ep

Figure 1. Density of states (both spins) of Pd (a) above, and (b)

below the Fermi level [N(Ef)= 2.28 states/eVjatom].
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indicate a cf-band width of ~3.8 eV for Pd, with four

peaks in the density of —0.15, 1.2, 2.2, and 3.5 eV below

the Fermi level.

The quantities considered in this paper are the densi-

ty of states N(E), the optical absorption e>{(i)), and the

photoemission energy distribution. The density of

states is given by

^
" (1)

_ 1 r dSn

and, except for a constant factor,

(0-62

tni'

where fn is the Fermi function, £'„(k) the energy at k in

band n, and hoy the photon energy. We shall assume

that the momentum matrix element
|

{/ik| p|n'k) |^ is a

constant independent ofn, n' , and k.

where E is the energy of the excited electron. In this

equation, the first 6-function ensures that only final

states of energy E are considered, while the second 8-

function expresses conservation of energy for the ex-

citation process; the Fermi functions guarantee that the

initial state |rak) is filled and the final state |«'k) is

empty. Note that D(E,(o) is a density function for the op-

tical absorption:

o)^e-z{o))= DiE, (o)dE (4)

The second and third steps in the photoemission

process have been analyzed using the assumptions

The first factor in eq (5) normalizes D'{E,(j)) to a single

absorbed photon and the hot-electron transport factor

(2)

Our direct-transition photoemission analysis as-

sumes a three-step process [2] consisting of (1) excita-

tion via direct interband transitions; (2) hot-electron

transport to the surface; and (3) escape into vacuum.

The first step is described by the energy distribution

D(E,(jj) of optically excited electrons arising from direct

interband transitions:

(3)

described by Berglund and Spicer [2], which include

isotropic scattering of the hot electrons, and a free-elec-

tron surface escape probability (momentum escape

cone). According to this model the transport and escape

processes factorize into a hot-electron transport factor

T{\i.^,o)) (which describes the k-dependence of the

group velocity) and an energy-dependent surface

escape probabiUty. Integration over the k-dependence

of the excitation and transport processes leads to the

energy distribution D'(E,a)) of the fraction of optically

excited electrons per absorbed photon which reach the

crystal surface:

(5)

T is defined in eq (12). The emission intensity N(E,(t)),

including once-scattered electrons, is then given by

D{E, w)
tni'

d^kf„{l-fn')\{nk\p\n'k{\'8{E-E,A\^))8{E-n(o-Enik)),

D'{E, oj) = D{E\ o))dE' '^j dHf„il-fn')\{nk\p\n'k)l'
nn' •'

8(E-E,Ak))b{E-h(o-En{k))T{k, E, co)

N (E, CO) = Tf(l-Tf)\D'{E,(o)+ See{E' ,
E)D' {E' , w)dE'

[

(6)

Here

Tr=^
E-E, {E><t>) (7)
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is the surface escape probability for free electrons (t^) is

the work function), /)'(£', oj) is the lifetime-broadened

D' , and S,.e{E',E) is the probability distribution for

secondary internal electrons of energy E produced by

a primary electron at energy E' (eq (38) in [2] and eq

(17) in [9]). The energy distributions D'iE.oj) are con-

volved with lifetime-broadening Lorentzians to account

for many-electron interactions. The first and second

terms in eq (6) correspond respectively to the emission

of primary electrons and secondary electrons arising

from a single pair-creation process [2]. The quantity

N(E,(o) is the photoemission energy distribution to be

compared with experiment.

Our method of computing D and D' is described in

section 2; the remaining steps in the analysis are

described in section 3. Our results are described in sec-

tion 3 and conclusions are summarized in section 4.

2. Computational Details

The energy distribution D(E,o)) of optically excited

electrons is given in eq (3).

Each of the 8-functions in this equation defines an

energy surface, and the integral can thus be rewritten

as a line integral along the curve of intersection of these

two surfaces:

DiE, oj) -2/
nil' •'

dl
I

(«k|p|n.'k)
I

Vk-E„xVi,E„'

iEn'{k)=E>Ef, E„{h) = E-

(8)

10) Ef)

Our method of computing this integral is an exten-

sion of the Gilat-Raubenheimer [10] procedure of

replacing an integral over a single 8-function (as in the

density of states) by a sum over small cubes in each of

which an energy surface like£'„(k)= £' is approximated

by a plane:

£= £„(ko) + (k-ko) • VA-^„(ko),

where ko is the cube center. The density of states at

energy E, for example, becomes the sum over cubes of

the areas of the plane within each cube divided by

|VA£'n(ko) |. Given accurate values of the energies and

gradients at each cube center, it is found that 10,100

cubes in 1/48 of the fee Brillouin zone are necessary

to give the density of states over a range of energies

with an rms error of less than 1 percent, although the

relative error could be larger for a particular energy

where the surfaces are small or highly curved. (It

should be noted that the problem of loss of relative ac-

curacy of volume integrals which are numerically small

because the contributing subvolume is small is not

unique to the Gilat-Raubenheimer procedure or our

generalization of it. It can be avoided only by holding

the number of mesh points roughly constant in the con-

tributing volume, whatever its size. Thus, for example,

histogram techniques also have this problem.)

Our generalization of this procedure to integrals con-

taining two 8-functions, such as that in eq (3), consists

of approximating both energy surfaces in a given cube

by planes and computing the integral along the straight

line of their intersection. The integral in eq (3) thus

becomes the sum over cubes of the length of the line of

intersection in each cube weighted by [\/i;EnxS/^E n'\''^

evaluated at the cube center.

This procedure depends on having a formula for the

length of an arbitrary line within a cube, which is ob-

tained as follows: let the line be given by

k=d + vf, (d • v = 0) (9)

with respect to the cube center (v is a unit vector along

the line, and d is the shortest vector from the cube

center to the line). If the cube edge is 2b, a portion of

the line will lie within the cube if and only if there is a

range of values of t for which the three inequalities

-6 ^ 0?; + ?;,^ ^ 6, i=l, 2, 3 (10)

are simultaneously satisfied. Each inequality defines a

lower limit /, and an upper limit u, on t. If

= min (//i, u>. Ws), 1-2 = max {U, l>, /»), (11)

a portion of the line hes in the cube if, and only if, ti >
h, and the length of this portion is simply t\ — t-y. Thus

eqs (10) and (11), along with the geometry required to

find d and v in terms of the equations for the planes,

furnish a method of computing the integral in eq (3).

The method replaces a smooth curve by a number of

straight-hne segments, and the cubes must be chosen

small enough to ensure that each curve of intersection

is replaced by enough segments. For cubes of a given

size, the error is largest where the curvature is largest;

just as in the density of states, this will usually occur for

energies where a contribution from a particular band

pair has just begun to appear or is about to disappear,

i. e., for those cases where the length of the entire curve

of intersection becomes comparable to the cube size.

The largest relative errors produced by the method will

therefore occur where the contribution to D{E,(t)) is

small. This is illustrated in figure 2, which compares the

exact D(E,(o) to the computed D(E,(t)) for the test case

(k in units of 27r/a)

E,ik) = 2kj:ky + kl;

E.z{k)^2k'^k'y+ k';

k'. = l-k,

w = l.5 Ry, Ef=0.7 Ry.
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This pair of bands has no physical significance; it

simply forms a convenient test. For this case, for which

D(E,oj) can be worked out analytically, a saddle-point

(logarithmic) [11] singularity occurs at £ = 1.6875 Ry.

The only appreciable errors in the computations occur

for the lower energies, where the curve of intersection

passes through just a few cubes. In practice, it appears

that 10,100 cubes in 1/48 of the fee Brillouin zone (48

cubes along T — X) are adequate to give the line in-

tegral within an error of about 5% which is sufficiently

accurate for our purposes.

The energies and gradients required by the method

were obtained by first computing the energies of 3345

points in 1/48 of the Brillouin zone using the

4g?>** — configuration Hartree-Fock-Slater potential [12]

for atomic Pd, and the nonrelativistic KKR method of

band calculation (a summary of computation times is

given in table 1). The energies and gradients on the

finer mesh were then obtained by 27-point Lagrangian

interpolation [13]. The large number of KKR points is

required to get good interpolated energies and

gradients for palladium (the rms interpolation error in

energy is ~5 X 10"^ Ry^ the maximum interpolation

Table 1. CPU times on the IBM SystemjSdO Model 91

1. 3345 KKR energies for 9 bands 30 min

2. Interpolation to 10,100 energies and gradients 30 s

3. Density of states, 20 V energy range in steps of 0.068 V
(9 bands) 30 s

4. Photoemission EDC's. 12 V energy range in steps of 0.05 V
(9 bands) 3 s/value of oj

5. Construction of first 12 difference bands (from tape cre-

ated in step 2) 20 s

6. Evaluation of e2(cu); 8 V range in steps of 0.136 V (12

bands) 20 s

(a) EXPERIMENT (YU AND SPICER)

(b) DIRECT TRANSITIONS

(c) NONDIRECT TRANSITIONS

5 6 7

tiw (eV)

Figure 3. Comparison of (i>-e>{oj) for direct transitions (b) and
nondirect transitions (c) with experiment (a)[16].

The ordinate is fiiven in arbitrary units for both calculated curves.

error in energy is ~5 X 10"^ Ry, and the rms interpola-

tion error in the gradient is ~1 X IQ-^ Ry/(27r/a)). The
maximum error in the interpolated energies increases

rapidly as the number of KKR points is decreased (for

example, the energies interpolated from 3345 KKR
points differ by as much as 0.05 Ry from those interpo-

lated from 89 KKR points in palladium).

Tile density of states of palladium, computed using

existing Gilat-Raubenheimer programs [14], is shown

in figure 1. The most surprising feature of this density

of states is the rather large amount of structure for

energies about Ej, particularly the pronounced dip at

8.3 eV above Ef. Thus, the density of excited one-elec-

tron states in Pd is by no means free-electron-like.

We have also computed e-A(o), the imaginary part of

the dielectric constant, assuming direct transitions and

constant matrix elements of momentum. This quantity,

which is shown in figure 3, was obtained by forming the

difference in energies and gradients for various band

pairs, and then computing the density of states of the

difference bands. Because interpolation errors are mag-

nified in taking differences, this calculation is less ac-

curate than the ordinary density of states.

To construct theoretical EDC's for photoemission,

we need not only the energy distribution of optically

excited electrons, but also the fraction of these per ab-

sorbed photons which reach the crystal surface.

D'(E,o}), as defined in eq (5), includes the hot-electron

transport factor [2]

T{k,E,(o)^ (12)

fi-'a{(o)T{E)\y,E„.\{l + h-'a{(o)TiE)\V,E,r\y'

which takes into account the photon absorption depth

and the mean free path of the excited electron. The
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(arbitrary units)

INITIAL ENERGY E-aj(eV)

Figure 4. DiE.w) {broken curves) and W {E.co) (solid curves) for Pd,

plotted versus initial energy K-hco.

Solid and broken curves are on different scales.

quantities a-^{w), t{E), and ^VA~^£'n(k) are, respec-

tively, the optical absorption depth, and the lifetime

and group velocity of the excited electron. Under the

frequently-used assumption [2,4,5] that E„'{U.) is free-

electron-hke, \^kEn'\ becomes proportional to E'^/^; T
is then independent of k, and may be taken out of the

integral. The density of states given in figure 1 shows,

however, that this assumption is untenable for Pd.

The factor IVa^h-I in Tenters the integrand in eq (5)

almost linearly (for Pd, T ~ 0.1), and this tends to

reduce the effect on D'(E,(o) of structure in the unoccu-

pied density of states [15] (which involves |Va£'h'|

Figure 4, which shows both D(E,(o> and D' (E,a)) for two

values of o), gives some indication of the effects of the

transport factor. Note that D'{E,(i)) is the "bare" dis-

tribution; to compare with experiment, the curves must

be convolved with Lorentzians to take account of many-

electron lifetime broadening, they must be multipHed

by an energy-dependent surface escape function, and
the distribution of secondary electrons must be in-

cluded, as in eq (6). These calculations, and further

Table 2. k-space locations and variances of contribu-
tions to photoemission energy distribution. Last
column is the integrated contribution of the band
to the photoemission [see eq (4)].

Band It fllnifc; of !?7r/r/^ (T H nit's ( ontriniitinnV> 111 lULllIl^il

of 277/fl) to i fii\

= 7.7 eV

1 (0.66, 0.39. 0.20) 0.18 22.21

2 (0.70. 0.37. 0.14) 0.18 17.16

3 (0 78 0 40 0 ] 3) 0.17 15.50

4 10 R9 0 49 0 14) 0.17 15.52

rO 8S 0 48 0 1 21 0.17 6.02

0.0

ho) == 9.9 eV

1 (0.81, 0.35. 0.11) 0.20 10.12

2 (0.84, 0.37. 0.12) 0.19 10.24

3 (0 8S 0 48 0 09) 0.15 5.19

4 (0.73. 0.50. 0.21) 0.24 8.31

5 (0.70. 0.44, 0.19) 0.18 11.74

6 0,0

flC!}
= 11.6 eV

1 (0.89, 0.40, 0.11) 0.16 4.72

2 (0.74, 0.46, 0.25) 0.21 11.80

3 (0.75, 0.43, 0.18) 0.22 12.21

4 (0.76, 0.39, 0.15) 0.21 10.66

5 (0.63, 0.40, 0.15) 0.16 5.32

6 (0.39, 0.36, 0.33) 0.02 0.05

details on the choice of t(E) are described below.

The most important feature of the energy distribu-

tions in figure 4 is that they show structure which (1)

shifts approximately linearly with photon energy and (2)

reflects the <i-band density of states. The first of these

explains the central feature of photoemission data

which provided the original motivation for the non-

direct transition model [2-4], This behavior occurs in

Pd because the contributing transitions are restricted

to a relatively small region in k-space near the point

(27r/a)(3/4,l/2,l/4) which is midway along the Hne Q
from L to on the (111) zone face (this was determined

by computing the average of the cube center locations,

weighted by the contribution to D(E,(o). Details for

several values of (o are given in table 2). The standard

deviation, ~0.2(27r/a), is a measure of the localization.

In this region each (/-band is almost flat, leading to

linearly shifting structure via the second delta function

in eqs (3) and (5). The excited band £',i'(k), on the other
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Figure 6. Quantum yield {per absorbed photon)for Pd.
Curves (a), (b) and (c) respectively give the measured results and calculated results for

direct and nondirect transitions (see text).

hand, changes by ~3 eV in this region, thereby prevent-

ing severe modulation of the structure (with co) by the

other deha function.

While this localization in k-space explains the linear

shift of structure with oj, it throws doubt upon any

direct relationship between photoemission data and the

<i-band density of states. The localization implies that,

at best, photoemission measures the (/-band density of

states in a small fraction of the Brillouin zone; the

similarity in structure between this partial density of

states and the total density of states in Pd appears to be

coincidental. The localization also justifies our neglect

of the k dependence of
|

(nk|p|n'k) 1^. Thus, the inclu-

sion of matrix elements should affect only the relative

amplitudes of the peaks in figure 4 and not their posi-

tion in energy or their movement with o).

3. Experimental Results and Comparison with
Theory

Photoemission spectroscopy measurements were

made in the energy range 5.5 < h(j) < 11.6 eV on

evaporated polycrystaUine Pd films (see 7. app.). Nor-

malized energy distribution curves (EDC's) are shown

in figure 5 (solid lines). The experimental quantum yield

Y(o)) (number of emitted electrons per absorbed photon)

is shown in figure 6 (solid line). The work function =
5.55 ±0.1 eV was determined from the usual Fowler

plot of (Y((o)pl'^ vs hct) as ho) cf). The experimental

EDC's show 4 peaks (labeled (1), (2), (3) and (4)) at

~ 0.15, 1.2, 2.2, and 3.5 eV below £}; this structure is

stationary in initial energy, with the exception that the

first two peaks merge for Ao) > 11 eV [16,17].

Before describing analyses of the data, we note that

the leading edges of the EDC's are sharper (
~ 0.2 to

0.25 eV from 10 to 90% points) than the theoretical ener-

gy uncertainty t~^(E) determined by normalizing to the

quantum yield. Our conclusion is that the broadening

is one-sided below the Einstein cutoff (hui above E/)

due to overall energy conservation for the photoelectric

process. There is no obvious mechanism for imparting

extra energy (of order t"^ — 0.5 eV) in addition to ho) to

the photoelectron during the excitation and transport

process. Thus the observed broadening of the leading

edge is due to thermal smearing (
~ 0.1 eV at 300 K),

the electron spectrometer resolution, work function in-

homogeneity, etc.

Direct transition analysis. Theoretical EDC's based

upon direct interband transitions (sees. 1 and 2) are

compared with experiment in figure 5. The theoretical

EDC's show 4 peaks at ~ 0.1, 1.2, 2.2, and 4 eV below

Ef, with the second (— 1.2 eV) peak disappearing for

h(i) > \l eV. The theoretical EDC's show good agree-
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ment with experiment, especially in the energy loca-

tions of observed structure. Identifying the lowest

theoretical EDC structure (at —4 eV) with the lowest

observed structure (at —3.5 eV) indicates that our cal-

culated fl?-bands are —0.5 eV too wide. This difference

is well within the uncertainties in the band energies due

to uncertainties in the muffin-tin potential. A central

feature of the theoretical EDC's is that structure

remains essentially stationary in initial-state energy.

The theoretical EDC's in figure 5 were computed

using eq (6) as follows. The required quantities include:

the band density of states N(E) in figure 1 for the occu-

pied and unoccupied bands within hwmax of E/.-, the op-

tical absorption coefficient a{o)) [16], the energy de-

pendent lifetime t{E), the work function ((/) = 5.55 eV),

and the band energies Enili-) and energy gradients

V/,.£'„(k) which enter the computation of D(E,a)) and

D'(E,o}){see sec. 2).

The lifetime t{E) has been computed in the ran-

dom — k approximation (with constant Coulomb matrix

elements) [9] and depends only on energy. Evaluation

of the energy-dependence ofT(E), using the band densi-

ty of states for Pd (fig. 1) and normafizing t(E) to the

measured quantum yield (total number of emitted elec-

trons per absorbed photon) at h(o — 10 eV, yields r(E)

= 28 (E-Ef)-'-'^ eV-i for 5 < £ < 12 eV, e.g. the

hfetime is r — 1.7 eV^^ at 10 eV. The transport factor

T(k^,U)) is of order 0.1 for Pd; i.e., the average value of

the mean free path l{E„>,h) = t Vg is estimated to
o o

decrease from —25 A to —10 A in the 5 to 12 eV range

[18].

Lifetime effects on the energy distributions have

been treated in an ad hoc way by convolving the calcu-

lated sharp distributions with an energy-dependent

Lorentzian lifetime function. Here we have used the

above-mentioned t{E) determined from the quantum
yield, i.e., D' {E,o)) is D' {E,(o) convolved over E with a

Lorentzian of halfwidth hlT{oj). This broadening (with

0.4 eV < T-i < 0.6 eV for energies from 7 to 12 eV)

results in theoretical EDC's with resolution comparable

to that of the experimental EDC's (changing this

broadening does not affect the energy positions of

dominant structure). We have folded back the smeared

energy distributions (/)') about Ej+fio) so as to con-

serve the number of excited states while maintaining

overall energy conservation [9]. (This procedure

produces no new structure in the final EDC's).

In summary, all quantities involved in the theoretical

emission spectra (the energy bands, density of states,

bee{E,' E), Vg, etc.) are specified in terms of a small

number of quantities: the one-electron muffin-tin

potential, the measured work function <p, the measured

optical absorption coefficient a(a)) [16] and the lifetime

normalization constant. Therefore, within the model,

structure in the EDC's is directly related to the one-

electron potential.

In the theoretical EDC's shown in figure 5, secondary

emission contributes less than 25% of the total emission

and does not lead to any observable peaks; thus peak

locations and, to a large extent, amphtudes of the

theoretical EDC's are not sensitive to our treatment of

secondary emission. Comparison of the theoretical

EDC structure with the (/-band density of states (fig. 1)

shows correlation, i.e., peaks in the EDC's tend to

occur near energies corresponding to peaks in the den-

sity of states.

We have also studied the sensitivity of the theoretical

EDC's by altering the muffin-tin potential so as to nar-

row the (/-bands by —0.5 eV. The principal effect of this

change was to shift the locations of the dominant EDC
peaks into better agreement with experiment; however,

amplitude agreement was not improved. The relative

peak amplitudes of the theoretical EDC's in figure 5

show more variation with photon energy than is ob-

served. This behavior might be due to the assumption

of constant matrix elements in the present analysis.

The quantum yield for (j) < hoj < 11.6 eV has been

evaluated for the direct transition model (dashed line in

fig. 6) and shows very good agreement with experiment.

This agreement is a measure of the adequacy of the ap-

proximations of a free-electron escape probability and

energy-dependent lifetime, both of which significantly

influence the quantum yield.

The dielectric constant €2(01) has been calculated as-

suming direct transitions with constant matrix ele-

ments. Comparison with experiment (solid curve in fig.

3) shows some correlation (e.g., the structure at —4 eV
and minimum near 8 eV); however, overall agreement

is mediocre. The increase in absorption observed ex-

perimentally for > 8 eV is Likely to be due in part to

plasmon excitations (the imaginary part of shows a

peak at —7.5 eV [16]. Inclusion of momentum matrix

elements is necessary for a more detailed comparison

with the experimental e-zict)}, especially for hco < 4 eV.

Nondirect transition analyses. An analysis of the ex-

perimental data has been made assuming nondirect

transitions (with constant matrix elements) for two

cases. First, a best fit to the experimental EDC's was

made using the empirical occupied optical density of

states [5] and the unoccupied conduction band density

of states shown in figure 7. This ODS describes the

energy positions and amplitudes of observed structure

(except for the merging of the upper two peaks for hoj

> 11 eV).
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Figure 7. The optical density of states {ODS) for Pd determined
from a best fit to the experimental EDC's.

The nondirect transition analysis closely follows the

work of Berglund and Spicer [2]; the emission N(E,a>)

is approximately given by eq (6) with the energy dis-

tribution D'(Em) given by

(13)
Pi\E— ho})pc(E)

Pi{E — h(jj)pc{E)dE

withr(£,fc)) = a(aj)/(£)(l

1{E) = t{E

Here pv and pc are the occupied and unoccupied optical

densities of states (fig. 7). The energy dependence of

the inelastic mean free path /(£) =tv,„ with v„

was determined in the random-k approximation [9]

using the ODS in figure 7. The mean free path was set
o

equal to 15 A at 8 eV in order to give a best fit to the

quantum yield Y{o)). The resulting quantum yield

(broken line in fig. 6) shows very good agreement with

experiment.

The dielectric constant e>(o}) has been calculated

using the nondirect transition model with the ODS of

figure 7 (see curve (c) in fig. 3) and shows much less

structure than is observed experimentally. As with the

direct transition analysis, the nondirect transition anal-

ysis (with constant matrix elements) fails to explain the

observed increase in €2(0;) for ^oj > 8 eV; this increase

is likely to be due in part to plasmon excitations.

A nondirect transition analysis was also made using

the theoretical band density of states (fig. 1) for both the

occupied and unoccupied bands [19]. It is logical to

describe both the unoccupied states and occupied

states by band states if either are to be so-described.

The resulting EDC's also exhibited stationary structure

similar to that of the direct transition analysis in figure

c 0

o
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fiw = l0.7eV

-
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Figure 8. Comparison of the experimental EDC (a) at h(i) = 10.7

eV with calculated curves for ib) direct transitions, (c) nondirect

transitions using the band density of states {fig. 2), and (d) non-

direct transitions using the ODS offigure 7.

4, but gave poorer agreement with experiment because

of the strong structure in the unoccupied density of

states at — 8.3 eV above Ef. Nondirect-transition (and

direct transition) analyses are compared with experi-

ment in figure 8; curve (c) clearly illustrates the effect

of the conduction band structure at ~8 eV in N(E) (i.e.,

sharp dip at ~ — 2.5 eV).

This result raises an interesting point concerning

nondirect transitions — any reasonable muffin-tin poten-

tial for Pd would appear to lead to strong conduction

band structure, which should be observable in non-

direct transitions between band states are dominant.

This is not observed in practice. Of course it is possible

(but unlikely) that the escape process can suppress the

effect of such structure. (Direct calculation has shown

that inclusion of the transport factor using the k-depen-

dent band group velocity diminishes only slightly the ef-

fect of structure in the unoccupied density of states on

the nondirect-transition EDC's.) Thus, an optimal fit

with the nondirect transition model requires the addi-

tional assumption (unjustified for Pd) of a smooth unoc-

cupied density of states.
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4. Conclusions

The photoemission energy distributions of palladium

calculated using the direct-transition model (constant

matrix elements) and the nondirect-transition model

(with a free-electron unoccupied density of states),

show about equal agreement with experiment. While

we are therefore unable to offer conclusive proof of

either model we have added two new elements to the

controversy. First, the original motivation for the non-

direct transition model has been removed by showing

that the direct transition model does in fact predict

structure which shifts linearly with photon energy over

the limited range ^ < ho) < 11.6 eV [6]. Second, we
have shown that the success of the nondirect transition

model depends on the unjustifiable assumption of a

free-electron unoccupied density of states which is at

best inconsistent with the identification of the optical

density of states with the band density of states.

Nonetheless, we are struck, particularly in view of

these developments, by the apparent success of the

nondirect transition model for many metals [5]. We are

hopeful that experimental data over a broader range of

photon energies will unequivocally establish one or the

other model [8].

The discrepancy between theoretical and experimen-

tal €2(0)) curves above 8 eV can possibly be attributed in

part to the observed plasma edge at 7.5 eV [16]. The
remaining discrepancies between theoretical and ex-

perimental €2(0)) are most likely due to our assumption

of constant momentum matrix elements. Presumably,

the plasmons will also affect the photoemission spectra.

We have not taken them into account in our direct-

transition photoemission analysis.
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7. Appendix. Experimental Conditions

Photoemission EDC's and quantum yields were mea-

sured in the 5.5 to 11.6 eV range using experimental

techniques' similar to those described by Spicer and

coworkers [20]. An ac synchronous detection system

with a 2 — 1/2 inch diameter gold-plated spherical mesh

collector was used (the mesh has 70 lines/inch and is

~ 85% transparent). An ac capacitance bridge was used

to cancel stray capacitance to <.05 pf; with a lO^il

sensing resistor (Keithley Model 601 electrometer) and

1 second integrating time constant, the input noise was

typically ~1 X lO^^'* amperes. The quantum yield was

measured using a calibrated CsSb photodiode (with a

LiF window) which is traceable to Prof. W. E. Spicer's

laboratory calibration.

Palladium films (-1-2X103 A thick) were

prepared by evaporation onto smooth Cr-plated 5/8

inch diajneter quartz discs using an electron-beam gun

in an ion-pumped ultra-high-vacuum system. The pres-

sure (mainly hydrogen) rose from a base of ~7 X 10~"
o

torr to ~1 X 10~* torr during evaporation (at ~2 A/sec)

and then rapidly fell to <4 X IQ-i" torr within 10

minutes after evaporation.
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Discussion on "Direct-Transition Analysis of Photoemission from Palladium" by J. F. Janak, D. E.

Eastman, and A. R. Williams (IBM Thomas J. Watson Research Center)

W. E. Spicer (Stanford Univ.): Historically, when we
saw peaks moving with hv until they disappeared, we
interpreted this structure in terms of direct transitions.

The examination of modulation is very important in

choosing between direct and nondirect models.

Secondly, I guess I would have to comment that it

seems to me the agreement between your calculated

transitions and the experimental data does not seem to

be quite as strong as the abstract indicates. Would you

comment on this?

J. F. Janak (IBM): Well, as I said, I think the agree-

ment on the slide we showed is within about 20-40%.

We never claimed in the abstract that the agreement

was perfect. But inasmuch as we have assumed that the

matrix elements are constant, and we have heard today

how much they can vary, I think that 30%, assuming

constant momentum matrix elements, is really pretty

good.

J. T. Waber (Northwestern Univ.): I would like to rein-

force what you have said about the need of very large

number of points in k space to achieve accuracy in

determining the Fermi energy. A more detailed state-

ment of the reliability of density of states curves is ap-

pended as a short post-deadline paper [1]. The graphs

shown there are for a pure parabolic band,£' = k-, with

k evaluated at points on a regular grid in the Brillouin

zone. The QUAD scheme of Mueller et al. [2] was used

to obtain additional points in the zone. The first graph

is for 5000 points and the relative deviation from the

parabola is 9.8%. It is necessary to go to 100,000 points

to achieve a relative precision of 3.6%.

M. S. Dresselhaus (MIT): Since you deal with a range

of k values wouldn't it be possible to include the k
dependence of the momentum matrix elements without

too much trouble? I am referring here to the method

whereby the momentum matrix elements are computed

from derivatives of the Hamiltonian.

J. F. Janak (IBM): Well, we have been trying. That is

the next step in the analysis. I should point out that

since the region is so small that the k-dependence is

not really the important thing, the main thing is the

band-to-band variation. In fact, the transitions occur in

a region with a standard deviation or radius essentially

0.2 (in units of 27r/a) around a point halfway between L

and W on the (111) zone face. That actually covers

about 20% of the zone, I think, when you use all the

symmetry. But 20% of the total volume of a sphere is a

pretty small shell on the outside. In that kind of a shell

we would want the k-dependence of the matrix ele-

ments.

[1] Kennard. E. B., Koskimaki, D., Waber, J. T., and MueUer,F. M.,

these Proceedings, p. 795.

[2] Mueller, F. M., these Proceedings, p. 17.
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Photoemission Determination of the Energy Distribution

of the Joint Density of States in Copper*

N. V. Smith

Bell Telephone Laboratories, Murray Hill, New Jersey 07974

Measurements have been made of the photoemission properties of cesiated copper, with improved

sample preparation over the previous work by Berglund and Spicer. The energy distribution curves

(EDCs) of photoemitted electrons show structure in the region associated with the copper d bands which

was not seen in the previous data. The behavior in the photon energy range 6 to 8 eV is particularly in-

teresting in that some of these new peaks in the EDCs are observed to move, appear and disappear in a

manner characteristic of direct transitions.

Parallel calculations have been performed of the energy distribution ot the joint density of states

(ED,IDOS) similar to those reported recently by Smith and Spicer. The band structure used was the in-

terpolation scheme of Hodges, Ehrenreich, and Lang fitted to the APW calculation of Burdick. In a con-

stant matrix element approximation, the EDJDOS represents the energy distribution of photoexcited

electrons. This was converted to an energy distribution of photoemt«e(i electrons by introducing ap-

propriate threshold and escape factors. The overall agreement with experiment is good. In particular,

some of the peaks in the theoretical EDCs are predicted to disappear and reappear on varying the

photon energy, and there are strong similarities with the changes observed experimentally.

It is found, therefore, that the optical transitions from parts of the copper bands can be identified

as direct. Theoretical calculations based on the EDJDOS work quite well for these and other transitions.

Photoemission provides a very sensitive tool for verifying and even determining the EDJDOS. Burdick's

bands for copper appear to be essentially correct over a wide range of energies including the whole of

the a!-band region, although minor modifications of a few tenths of an eV would improve agreement. It

is found that the most persistent peaks in the calculated EDJDOS tend to coincide with the peaks in the

calculated true density of states. This indicates that when a phenomenological "optical density of

states" can be obtained, it may well be a good approximation to the true density of states even if transi-

tions are direct.

Key words: Aluminum-insulator-palladium (Al-Pd); augmented plane wave method (APW); cesium;

copper; direct transitions; electronic density of states; joint density of states; non-

direct transitions; optical density of states; optical properties; photoemission.

1 . Introduction

One of the major landmarks in the photoemission in-

vestigation of metals was the observation of the d bands

in Cu and Ag by Berglund and Spicer [1]. Their work

has stimulated much of the subsequent effort in this

area and it is now fair to say that photoemission is one

of our most powerful tools for probing band structure.

The measurements by Berglund and Spicer were per-

formed on samples whose surfaces were covered with

*The experimental part of this work was performed while the author was on assignment at

Stanford University from Beil Telephone Laboratories. The facilities used at Stanford are

supported in part by the Advanced Research Projects Agency through the center for Materi-

als Research at Stanford University and by the National Science Foundation.

a thin layer of cesium in order to lower the work func-

tion. More recent work by Krohkowski and Spicer [2]

on clean Cu has revealed more structure in the energy

distribution curves (EDCs) of photoemitted electrons

than was seen on cesiated Cu. However, the work func-

tion of clean Cu is almost 3 eV greater, so that this

structure could be observed only over a more limited

energy range.

So far, the photoemission data on Cu and other noble

and transition metals [3,4] has been interpreted in

terms of a predominantly nondirect model. The im-

portance of the direct (i.e., k-conserving) nature of the

optical transitions from the Cu d bands did not manifest

itself in any noticeable way, although the direct nature

of the transitions in the vicinity of Ly was clearly
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recognizable. Energy conservation appeared to be the

main factor in determining the behavior of the d band

structure in the EDCs. In fact, it was possible to unfold

the EDCs and extract an "optical density of states"

which bore a strong resemblance to the calculated band

structure density of states [2].

The author has attempted to assess the merits of a

purely direct transition model by performing band cal-

culations of the energy distribution of the joint density

of states (EDJDOS). A comparison of these calculations

with the photoemission data on clean Cu has been re-

ported by Smith and Spicer [5]. In performing the cal-

culations, it became clear that the rnost interesting

behavior characteristic of direct transitions would oc-

cur, if at all, at energies below the vacuum level for

clean Cu. It was decided, therefore, to reinvestigate the

photoemission properties of cesiated Cu. Since vacuum
and sample preparation techniques had improved over

the intervening years, there was hope that it might be

possible to resolve more structure in the EDCs than

had been seen by Berglund and Spicer. A selection of

the results of these experiments is presented below,

and it will be seen that this hope was indeed realized.

2. Photoemission and Direct Transitions

In the conventional theory of optical absorption by

solids, transitions are allowed only between states

which lie at the same point in k-space in the reduced

zone; i.e., the transitions must be direct. If e,(k) and

e/<k) denote the energies in an initial band i and a final

band /, optical transitions at photon energy hu> are

restricted to the surface in k-space given by

a„ ( k ) = e/( k ) - e ,
( k ) - = 0. (1)

The total number of direct transitions at this photon

energy is represented by the well-known joint density

of states given by

J^{hoi) = {2TT)-^^ \ fm(a,/(k)). (2)

The prime on the integral denotes that the integration

is to be performed only over those portions of k-space

for which e, < E/.- < 6/ where Ey is the Fermi energy.

In photoemission experiments, we are interested in

not just the total number of transitions, but also the

energies at which the excited electrons emerge from
the metal. A more relevant quantity for our purposes is

what we call the energy distribution of the joint density

ofstates (EDJDOS) defined by
(3)

^(e, ftw) = (27r)-3 2 j
f/-^A8(n/,(k))6(e-e;(k)).

The additional 8 function picks out those transitions

whose initial energy equals e. In a constant matrix ele-

ment approximation, S>ie,fi(o) represents the energy dis-

tribution of photoexcited electrons referred to initial

states. Strictly speaking, we should weight each transi-

tion with the square of an appropriate momentum
matrix element. This refinement has not been at-

tempted so far, and for the remainder of the paper we
will remain within the constant matrix element approxi-

mation. This has the advantage of making the calcula-

tion of the EDCs extremely straightforward, since

^(eficj) is a property solely of the €,k-dispersion

curves.

The EDJDOS of Cu has been evaluated numerically

from eq (3). The band structure used was the interpola-

tion scheme of Hodges, Ehrenreich, and Lang [6] with

its parameters fitted to the APW calculation by Bur-

dick [7]. A computer was programmed to sample the

energy eigenvalues at more than 10^ points in the primi-

tive 1/48 of the zone, deduce the permitted transitions,

and to keep running scores of these transitions

catalogued according to photon energy and initial ener-

gy. Calculations of this kind were first performed by

Brust on silicon [8].

The EDJDOS at a given hoj obtained in this way still

represents the energy distribution of photoexcited

electrons. This was converted to an energy distribution

of pholoemitted electrons (i.e., an EDC) by multiplying

by an appropriate threshold function [1]. To take ac-

count of electron loss by inelastic scattering, this

threshold function contains a factor a/1(1 + af), where

a is the optical absorption coefficient and / is the elec-

tron mean free path. The details of the threshold func-

tion do not affect the qualitative features of the results,

such as the shape of the EDCs. They do, however,

determine the total photoelectric yield and therefore

the normalization of the absolute magnitude of the

EDCs. In these calculations, a was taken to be constant

at 7.2 X 10-5 cm-' over the whole frequency range. The

energy dependence of the mean free path / was as-

sumed to be given by C(E — Ef)~'^ v,,, where E is the

energy at which the electron emerges from the metal

(i.e., final state energy), and Vy is a free electron group

velocity for an electron of this energy inside the metal.

C is a constant determined by insisting that f should be
o

22 A for E = E/.- + 8.6 eV; this value was found by

Krolikowski [2] in his nondirect analysis. The imagina-

ry part of the dielectric constant was calculated from

the joint density of states making the same matrix ele-

ment approximation. This enabled the EDCs to be nor-

malized to the yield per absorbed photon. Finally, some

broadening was introduced into the curves by convolv-
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Figure 1. Photoetectron energy distribution curves for Cu referred

to initial state energy.

The upper two curves were taken on cesiated copper; the full curve is the present work
ifiw= 10.2 eV) and the dashed curve is from Berjxlund and Spicer (ttco— 10.4 eV). The lower
curve was taken on clean Cu by Krolikowski and Spicer {fiui = 10.2 eV).

ing them with a Lorentzian function whose width at half

maximum was 0.3 eV. The resuhs of these calculations

will be compared with experiment in section 4 below.

3. Experimental Details

The Cu sample was prepared by evaporation in a

stainless steel vacuum system for which the base pres-

sures were on the 10"^' torr scale. During the evapora-

tion of the Cu, the pressure rose to 5 X torr but

quickly dropped to 1.5 X 10"^" torr after the evapora-

tion. It was found that photoemission measurements

performed on this clean Cu sample reproduced the

previous results of KroHkowski and Spicer [2]. The
sample was then cesiated. The cesium was contained

in a glass ampule which had been broken open in the

vacuum chamber at an earlier stage [9]. The cesiation

was performed by gently heating the ampule and then

exposing the Cu sample to the cesium beam for a few

minutes. The EDCs were measured by the conventional

a.c.-modulated-retarding potential technique [10].

The Cu samples used by Berglund and Spicer were

prepared in glass vacuum systems operating at base

pressures of around 40"^ torr. Their cesiation

procedure was also rather different, but it is believed

\

-5 -4 -3 -2 -I 0
E-t)(.u + e<^{eV)

Figure 2. Photoelectron energy distribution curi'es for Cu at

h(ii= 7.1 eV referred to initial state energy.

The upper two curves were taken on cesiated copper: the full curve is the present work
and the dashed curve is from Berplund and Spicer. The lower curve was taken on clean

Cu by Krolikowski and Spicer.

that the differences in the data are due primarily to dif-

ferences in the overall vacuum conditions under which

the experiments were performed.

In figure 1 we compare the EDC obtained at ho) =
10.2 eV in the present work with that obtained at 10.2

eV by Krolikowski on clean Cu and that obtained at

10.4 eV by Berglund and Spicer. The EDCs have been

plotted against E — hco + ecf), where E is the electron

kinetic energy in vacuum, and e(f) is the work function.

This choice of scale refers the photoelectrons to their

initial states and places the zero of energy at the Fermi

level. It is seen that the structure associated with the

Cu d bands is much more blurred in the data of

Berglund and Spicer. Also, the piece of structure

labelled P observed earher at about 7 eV below the

Fermi level is absent in the present data. One possible

explanation for this structure proposed by Berglund

and Spicer was that it was due to a low energy peak in

the density of states unanticipated by band calcula-

tions. The same structure finds its way into

Krolikowski's more refined optical density of states

[2]. The present work, however, indicates that its ex-

istence is questionable. A parallel may be drawn here

with a similar situation in nickel. Early work on Ni [3]

indicated the existence of a low energy peak in the den-

sity of states. However, when samples were prepared

under better vacuum conditions by Eastman [4] , it was

found that this peak was much reduced. The effects of

cesium, or any surface contaminants for that matter,

are still very imperfectly understood.
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Ideally, the only effect of cesium on the surface

should be to lower the work function. If this were the

case in practice, we would expect a detailed correspon-

dence between the pieces of structure seen in the

EDCs on cesiated Cu and those seen in clean Cu. It can

be seen in figure 1 that the present results satisfy this

requirement better than the data of Berglund and

Spicer. This observation holds true at other photon

energies. We will therefore proceed on the assumption

that the present measurements are more representative

of the properties of pure Cu.

The corresponding curves for hoy =7.1 eV are shown

in figure 2. In aU the curves, a peak due to electrons

from the uppermost d band can be clearly seen at about

— 2.3 eV. The energies below this peak were inaccessi-

ble in the clean Cu experiments, but are quite accessi-

ble in the cesiated experiments due to the lower work

functions. In the range —2.6 to —4.0 eV, there is a

marked discrepancy between the earlier data and the

present data. Berglund and Spicer observed a single

large piece of structure in this range which changed lit-

tle with photon energy. The present work reveals two

pieces of structure in this range and the profile is found

to change on varying the photon energy. Indeed, this is

the most interesting feature of the present work from

-6 -5 -4 -3 -2

E-fia; + ec^(eV)

Figure 3. Experimental EDCs from cesiated Cu between h(D=6.5
and 8.2 eV.

The curves are referred to initial stale enerfiy. and the zero of enerjiy is placed at the

F'ermi level.

the point of view of the direct versus nondirect in-

terpretation, and it will be explored in more detail in the

next section. The origin of the differences between the

present results and those of Berglund and Spicer is not

clear, although we have associated it with vacuum con-

ditions during sample preparation and cesiation.

Another indication that the surfaces are physically dif-

ferent is that the work function in the present experi-

ments was 1.75 eV which is 0.2 eV higher than that of

Berglund and Spicer.

4. Comparison of Theory and Experiment

We confine ourselves here to a very limited selection

of the experimental data. Roughly speaking, the EDCs
at high photon energies {ho) > 9 eV) are in fair accord

with Krolikowski and Spicer's data on clean Cu. At low

photon energies {hoi < 5 eV) the new data agrees well

with that of Berglund and Spicer. It is in the photon

energy range 6.5 eV ^ ^o) ^ 8.2 eV that the new and

most noteworthy information has been obtained and so

we will concentrate on this region.

The EDCs for photon energies in the range 6.5 to 8.2

eV are shown in figure 3. As before, we plot the EDC
against the quantity E — ho) + e(f) which places the zero

of energy at the Fermi level. Let us focus attention on

the behavior of the c?-band structure in the energy range

— 2.6 to —4.0 eV indicated by the vertical lines. At ho)

— 6.5 eV, we have two pieces of structure in this range.

At h(x) = 8.2 eV, we once again have a doublet, but for

photon energies in between there is a continual change

in the profile of the EDC. As the photon energy is in-

creased, we find that the peak on the left fades away.

While this is happening, the peak on the right expands

by moving its low energy edge to lower energies, until

at ho) = 7.8 eV there is one broad piece of structure

filling the whole range. On increasing the photon ener-

gy further, this broad peak splits into a doublet. Such

behavior is difficult to explain on a nondirect model,

and is more characteristic of direct transitions.

The theoretical EDCs calculated according to the

prescription outlined in section 2 are shown in figure 4

for the same photon energies. Let us once again focus

attention on the behavior in the energy range —2.6 to

— 4.0 eV, indicated as before by the two vertical lines.

At hoj = 6.5 eV, there are two peaks within this region.

On increasing h(o, the left-hand peak fades away and

then returns. At ho) = 7.8 eV we have a single broad

piece of structure filling the whole range which then

splits into a doublet on going to ha> = 8.2 eV. The
similarity between these trends and those shown by the

experimental data in figure 3 is very striking, and would
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Figure 4. Theoretically calculated EDCs from cesiated Cu between

ho)= 6.5 and 8.2 eV.

The curves are referred to initial state energy, and the zero of energy is placed at the

Fermi level.

seem to support the direct transition interpretation.

Theory and experiment are shown together for three

photon energies in figure 5. The experimental EDCs all

show a large contribution at the low energy end. This is

due to electrons which have suffered an inelastic scat-

tering but are still sufficiently energetic to escape from

the metal. These have not been included in the theory

which considers only those electrons which escape

without scattering. It is seen that the calculations based

on the EDJDOS are quite successful in predicting the

energy location of structure in the EDCs. No great

reliance can be attached to the relative peak heights in

the theoretical curves in view of the crudity of the con-

stant matrix element approximation; but even so, the

agreement is encouraging. The peaks in the theoretical

curves are much more pronounced than in experiment

in spite of the 0.3 eV broadening we have introduced.

Note, incidentally, that theory and experiment are

plotted on the same absolute scale, all curves having

been normalized to the yield per absorbed photon.

Let us very briefly consider the behavior at other

photon energies. Figure 6 shows a comparison of the

theoretical and experimental EDCs at 10.2 eV. These

are typical of the high photon energy behavior. The
relative number of slow scattered electrons is higher

than at the lower photon energies shown in figure 3.

-6 -5 -4 -3 -2 -1

E-fia)-l-e<^ (eV)

Fl(;URE 5. Comparison of the theoretical and experimental EDCs
from cesiated Cu for three representative photon energies.

The full curves are experimental; the dashed curves are calculated theitreticaliy as-

sumin;: direct transitions.

1.2x10^-

0.8

0.2 -

-5 -4 -3

E-fiw + e(^> (eV)

Fl«;URE 6. Comparison of the theoretical EDC {dashed curve) and
the experimental EDC (full curve) on cesiated Cu at ho) = 10.2 eV.
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E-f\ui + e<f> (eV)

Fli.l RE 7. (Comparison of the theoretical EDC (dashed curve) and
the experimental EDC Ifull curve) on cesiated Cu at h(D = 4.9 eV.

Tlu- slructitfc at the htiili fTierjiy end is due In dirp( t transili'Mis in llio \i( inity (il i-j-—* l.j.

The structure predicted in the theoretical EDC agrees

well for the lower d bands, but not so well for the upper-

most d bands. The uppermost (/-band peak in the ex-

perimental curve is a composite of two peaks labelled

1 and 2 which merge at about this photon energy. The

two uppermost pieces of structure in the theoretical

curve are again labelled 1 and 2. It is seen that the

theory places peak 2 a couple of tenths of an eV too low.

A similar discrepancy can be discerned at h(o = 8.2 eV
in figure 5. It may be necessary to make some empirical

adjustment to Burdick's bands to remove this discre-

pancy. However, it should also be borne in mind that

the interpolation scheme is likely to go astray for final

states so far removed from the Fermi energy.

The typical behavior at lower photon energies is

represented by the h(o — 4.9 eV curve shown in figure

7. The c?-band-to-conduction-band transitions are now
distinct from the conduction-band-to-conduction-band

transitions. The latter occur in the vicinity of Li' L\

and give rise to the rectangular shaped contribution at

the high energy end of the EDC. At even lower photon

energies, the EDCs are very similar to those of

Berglund and Spicer. In particular, it is found that at

photon energies below the Lz' Li threshold, there is

still a large contribution to the EDCs all the way up to

the high energy cut-off determined by the Fermi ener-

gy. Our calculations confirm that there are no direct

transitions in bulk Cu which could account for these

photoelectrons. By definition, these transitions must be

categorized as nondirect, and theii origin would be

worthy of further study.

5. Conclusions Concerning the Density of

States

It has been found in new photoemission experiments

that some of the optical transitions from the Cu d bands

can be identified as direct. Theoretical calculations of

the EDCs based on direct transitions work reasonably

well for these and other transitions. If a direct model is

more appropriate than a nondirect model, then

photoemission EDCs measure the energy distribution

of the joint density of states rather than the density of

states itself. (The relative heights of peaks in the EDC
may, of course, differ from those in the EDJDOS
because of optical matrix element variations which

have been ignored here.) To determine the density of

states in such circumstances, the procedure must be to

find a band structure whose EDJDOS is consistent with

the photoemission EDCs; the density of states is then

simply calculated from the band structure. The availa-

bility of high speed interpolation schemes is therefore

of great importance here.

The currently available interpolation schemes [5,11]

are very versatile in that the band structures of many

noble and transition metals can be simulated by adjust-

ments of only a dozen or so disposable parameters. The

photoemission EDCs are rich in structure, so that to ob-

tain the kind of agreement shown in figures 3 — 7 im-

poses very strong constraints on the permitted band

structures. This holds out the exciting prospect that it

may be possible, armed only with an interpolation

scheme and the photoemission data, to arrive at an al-

most purely experimental determination of the E,k

curves for any arbitrary (/-band metal!

How similar is the EDJDOS to the density of states?

Figure 8(b) shows the calculated EDCs for cesiated Cu
based on direct transitions at three widely spaced

photon energies. Figure 8(a) shows the histogram of the

density of occupied states calculated from the same

band structure. Certain similarities are evident.

Prominent peaks in the EDC quite often coincide in

energy location with peaks in the density of states. This

is merely a consequence of the fact that in order to have

initial states for optical transitions one must first of all

have states. In other words, it is possible for the density

of states to impose itself on the EDJDOS and, in certain

cases (such as flat bands) to become the dominant con-

sideration. Noting that the structure in the experimen-

tal EDCs is more blurred than in theory, only the stron-

gest and most persistent peaks will survive. This may
go some way towards explaining the success of the non-

direct approach, and the similarity of the empirically

derived optical densities of states to the band structure

densities of states.
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-5 -4 -3 -2 -I 0
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Figures. Density of filled states for Cu is compared with the
theoretical EDCs for 'hw = 6.5, 8.2 and 10.2 eV calculated on the
basis of direct transitions.

The zero of energy corresponds to the Fermi level.
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The Band Structure of Tungsten as Determined
by Ultraviolet Photoelectric Spectroscopy

C. R. Zeisse"^

Naval Electronics Laboratory Center, San Diego, California 921 52

The technique of photoelectron spectroscopy has been used to probe the band structure of tung-

sten in the energy region where the 5d bands are most prominent. The work function of the clean sam-

ple, a 25 micron thick polycrystaUine foil, was found to be 4.36±0.02 eV, and the yield rose by three or-

ders of magnitude from 5.0 to 11.3 eV without showing prominent structure of any other sort. The elec-

tron energy spectra, on the other hand, contain two pieces of reliable structure which are found to in-

crease in energy at the same rate as the exciting photon energy. A simple analysis of the data gives

evidence that the density of d states in tungsten consists of a shoulder just below the Fermi level, a peak

located about 1.5 eV below the shoulder, and a broad peak which extends at least 7 eV below the Fermi

level.

Key words: Carbon contamination; electronic density of states; photoemission; tungsten (W); UV
photoemission; work function.

1. Introduction

It is expected that the 5d electrons, often cited as the

cause for the high resistivity of transition metals, will

produce the most prominent structure in the density of

states in tungsten. Each of the two tungsten band struc-

ture calculations, Wi and W2, which have been done by

Mattheiss [1] show three peaks below the Fermi sur-

face.

Experimentally, the density of states for tungsten is

well known near the Fermi level, but not at other ener-

gies, and the object of this work is to present experi-

mental photoemission data confirming the existence of

this structure in the density of states below the Fermi

energy.

2. Apparatus and Procedure

Particular attention has been paid to cleanhness and

carbon contamination, known to have caused difficul-

ties in photoemission, ion neutralization, and electron

diffraction work on transition metals [2]. The standard

ac technique of Spicer and Berglund [3] has been used

with a spherical, gold plated collector and a LiF win-

dow. The incident light intensity was measured outside

the window with a sodium sahcylate wavelength con-

vertor and photomultiplier tube. The maximum photon

*MailinK address: Code S350.2. NELC, San Diego, California 92152.

energy used was 11.2 eV, and the total resolution in the

worst possible case of highest photon energy and

highest retarding potential was 1.5 eV. The samples

were 25 micron thick rolled tungsten foils [4] , initially

cleaned ultrasonically in detergent and methyl alcohol

and then processed in a continuously pumped ultrahigh

vacuum in the following manner: The sample was

clamped between heating bars and flashed to high tem-

peratures by passing a high ac current through it for

about 10 seconds. The pressure rose as the gases were

desorbed from its surface, but returned to the base

pressure of 1-2 X 10~" torr within 1/2 minute. The max-

imum pressure during the flash depended linearly on

the time spent by the cold sample between flashes and

was typically 3 X 10"^^ torr for each intervening minute.

Assuming a sticking coefficient of unity, this figure is

just what would be expected from complete vaporiza-

tion of all gases which could collect on the sample sur-

face during the intervening time interval at the base

pressure. The flashing temperature was 2100 K, chosen

because the use of higher temperatures up to 2500 K
produced no change in any of the energy spectra. An
energy spectrum could be started within 1 minute of

the flash and was usually finished within 4 minutes.

Carbon was removed by heating for at least one diffu-

sion time constant (11.4 hours at 2200 K for a 25 micron

thick sample) in an atmosphere of 5 X 10"'' torr oxygen

[5].
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Unfortunately, a measurement could never be re-

peated exactly because of small but systematic changes

in both the energy spectra and yield with the time from

flash. These changes were on the order of a 1% in-

crease in the area of a spectrum in 4 minutes and as

much as a 50% decrease within 15 minutes in the yield

near threshold. After several days in the vacuum the

energy spectra showed increasing numbers of electrons

at all kinetic energies, a factor of 2 increase in area

being commonly observed. Upon flashing again the en-

tire process could be repeated. The increase in area

after long exposures is similar to that observed by

Waclawski et al. [6] during yield measurements from

a polycrystalline tungsten ribbon exposed to various

gases, but the behavior immediately after the flash is

more difficult to explain as a contamination effect since

only about 1/2% of a monolayer can collect in 4 minutes

at 1 X 10~'i torr. Furthermore, the process did not de-

pend on total pressure or light exposure in any syste-

matic way, so that it seems most likely that some

change is occurring in the sample due to the recent

flash. In short, the phenomenon is complicated and not

understood but was taken into account wherever neces-

sary by extrapolating the data back to the time of the

flash.

3. Data and Discussion

The relative yield is shown in figure 1. uncorrected

for reflectivity but corrected for the transmission of the

LiF window. A Fowler plot, used to determine the work

function, is shown in the inset. The sodium salicylate

was at most 2 weeks old for this sample, but was

' '
I ' I

I

« = 4.36 ± 0.02 eV

1

4.50 5.0

PHOTON ENERGY (eV)I.I.].
4 5 6 7 8 9 10 11 12

PHOTON ENERGY (eV)

Figure 1. The relative yield of Sample 11, uncorrectedfor reflectivity.

The insert shows a Fowler plot of the data near threshold. The inclusion of data from
Sample 1 would increase the scatter by a factor of 2.

several months old for Sample I, and since it was ex-

posed to the diffusion oil environment of the monochro-

mator its response probably is only flat to within 25%
[7], which is considered to be the accuracy of the mea-

surement. At any rate, there is no fine structure to the

curve at this precision, but the continued rise in yield

at high energies is interesting. The yield of chromium,

for example, rises by a factor of about 2.5 in the energy

BEFORE CARBON REMOVAL

-AFTER CARBON REMOVAL

hv' 10.20 eV

ENERGY (cVI

Figure 2. A comparison of the electron energy spectra for the two samples before and after carbon removal.
The curves are unnormalized and have been shifted in energy to make the structure coincide.
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Figure 3. Normalized energy spectra for Sample II, referred to initial energy states and labeled with the value of the exciting photon energy
in eV.

The Fermi energy occurs at about — 5 eV on this plot, but its exact location is obscured by the high energy tail caused by scattered hght.

range from 8 to 11 eV [8], whereas the yield for tung-

sten, two elements below chromium in that column of

the periodic table, rises by a factor of 10 in this same

energy region. The following argument implies an ap-

preciably strong density of states in tungsten 11 eV

below the vacuum level: According to Spicer [9], the

yield far from threshold is proportional to A/(A+B),

where A is a factor due to transitions from filled states

to empty states above the vacuum level and B is a fac-

tor due to transitions from filled states to empty states

between the Fermi and vacuum levels. An immediate

consequence of this relation is that the yield is constant

for all energies where B remains zero. Neglecting

processes such as the creation of two electrons from a

single photon or energetic electron (i.e., pair production

and scattering effects), B will be zero for photon ener-

gies larger than the separation between the bottom of

the d band and the vacuum level. Taking the bottom of

the d band as the energy of the point H12 in the

Mattheiss calculation and using the experimentally

determined value of the work function, this energy

turns out to be 10.5 eV for Wi and 12.1 eV for W2. Since

there is no indication of a plateau in the yield up to 11.3

eV, and since the s electron contribution to the density

of states is negligibly small compared to the d electron

contribution, the yield results indicate ad bandwidth at

least as great as 11.3 eV, tending to favor the W2
calculation.

Figure 2 shows the energy spectra from the two tung-

sten foils, both before and after carbon removal. The

shoulder and high energy peak are considered to be re-

liable structures, whereas the small hump at 1.5 eV was

on the order of the noise in the trace and was not

present in Sample 1 before carbon removal. The lowest

energy peak in the first sample is attributed to scatter-

ing, since its ampHtude increased but its position

remained constant in energy as hv was increased. This

interpretation is supported by the fact that the shoulder

smeared out in Sample I for energies larger than 10.5

eV, whereas it was still present at 11.2 eV in Sample II.

The rounding of the high and low cut-offs due to scat-

tered light is particularly conspicuous at zero energy in

Sample II after carbon removal.

The energy spectra for Sample II are shown in figure

3. These curves have been normalized by dividing each

by the incident light intensity and the transmission of

the LiF window. For each curve the retarding potential

E has been shifted down by hv in order to emphasize

structure which "moves with hv.'" It can be seen that

the shoulder and high energy peak, labeled A and B in

figure 3, line up nicely after this procedure, a charac-

teristic feature of transitions from d states which have
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been observed in other photoemission studies [10]. As

mentioned above, the existence of the small peak

labeled C is dubious experimentally. Examination of

other spectra in the vicinity of 10.2 eV shows that it

comes out of the threshold at 10.1 eV and disappears

into the noise at 10.4 eV. Although this behavior is

characteristic of a direct (i.e., k-conserving) transition

[11], a search of the calculated band structures failed

to reveal any direct transition to which this peak could

be attributed.

Photoemission studies in which the structure moves

with hv have customarily been interpreted on the basis

of a nondirect (i.e., non k-conserving) model, but a

recent calculation in copper assuming direct transitions

and using the full interpolated band structure has also

been successful in predicting much of the data experi-

mentally found in the d band [12]. This tends to blur

the distinction between direct and nondirect models of

the photoemission process, although the ability of both

models to successfully predict the structure in the case

of copper may merely be due to the flat E versus k
behavior of the d states in that metal. In any case, a

detailed analysis has not been made here, the major

point being that the shoulder and high energy peak are

somehow related to the density of o? states in tungsten.

The main point in favor of this interpretation is the

coincidence of structure when plotted in terms of initial

energy.

In figure 4 the 10.20 eV spectrum is compared with

the Wi density of states below the Fermi level. The
main difference in the calculation of Wi and is that

the exchange potential in Wi is 30% less than in W?.

This results in the W2 density of states having a slightly

larger separation between the two high energy peaks

(about 1.7 eV) and a broader peak at low energy (a full

width at half-maximum of about 1.7 eV). The energy

spectra provide a sHghtly better fit to the W,
calculation, although the yield data favor the deeper

reach of the d band indicated by the W2 calculation.

Unfortunately, the energy spectra do not give a good in-

dication of the total d bandwidth because the threshold

function cuts off the low energy portion of the spectrum

even at 11.2 eV.

4. Conclusion

Photoemission spectroscopy of two tungsten foils

gives evidence of a shoulder just below the Fermi level

and a peak about 1.5 eV below the shoulder. A broad
peak occurs at lower energies. The evidence for the

highest energy structure comes primarily from the elec-

tron energy spectra, which display these structures

1 1 1 1 1 1 1

r

-8-6-4 -2 0

ENERGY (eVI

Figure 4. A comparison of the 10.20 eV energy spectrum from
Sample II and the Wi density of states calculated by Mattheiss.

The zero of energy is taken at the Fermi level, and the position of the experimental curve
has been shifted to give the best agreement with the calculated structure.

moving with the exciting photon energy and thereby

due to initial states in the d band. The evidence for the

broad low energy peak comes from the continued rapid

increase of the tungsten yield between 8 and 11.3 eV.

Comparison with the band structure calculation of

Mattheiss provides no convincing reason for choosing

his potential Wi over W2, but does confirm the ex-

istence of three peaks in the density of states below the

Fermi level.
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Photoemission Studies of Scandium, Titanium,

and Zirconium

D. E. Eastman

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 1 0598

Photoemission spectroscopy studies of the hexagonal metals Sc, Ti and Zr in the 4 to 1 1.6 eV range

have resolved c?-band structure and have determined occupied f/-band widths (at 1/2 maximum) of 1.6,

2.0 and 2.3 eV respectively. Resolved structure for all three metals correlates with structure in energy

band density of states; however, the observed band widths for Ti and Zr are much narrower than previ-

ously calculated band widths. The relation of the data to the controversy concerning the nature of opti-

cal excitations in transition and noble metals (direct vs nondirect transitions) is discussed.

Key words: Copper: direct versus nondirect transitions; electronic density of states; gold (Au);

nondirect transitions; optical density-of-states; photoemission; scandium (Sc); silver

(Ag); titanium (Ti): zirconium (Zr).

1. Introduction

Photoemission spectroscopy (PES) studies have been

made on Sc, Ti and Zr in the 4 to 11.6 eV range. Energy

distribution curves (EDCs), quantum yields, and work-

functions are reported. The data show narrow occupied

c?-bands with structure that correlates with structure in

energy band densities of states. For example, the EDCs
of Sc show a peak at the Fermi energy E/.-, while the

EDCs of Ti and Zr show a low intensity shoulder at £"/.;

this behavior is consistent with specific heat measure-

ments and APW band calculations, both of which show

a large density of states at Er for Sc and much smaller

densities of states for Ti and Zr.

The experimental data are summarized via the

photoemission optical density of states (ODS), which

has been determined using the nondirect transition

model (with crystal momentum k not conserved in the

excitation process) [1, 2]. In this case the ODS is a den-

sity of states function (weighted by transition probabili-

ties) which describes the energy locations and am-

plitudes of observed structure, and which is expected

to correspond to the occupied band density of states.

Currently, it is not clear that optical excitations in

transition metals are due to nondirect transitions; in

fact, there is evidence that direct (k-conserving) inter-

band transitions [3] can account for observed

photoemission structure. If the excitations are due to

direct transitions, the ODS describes the energy loca-

tions and amplitudes of structure in the measured

EDCs. In this case, the ODS only coincidently reflects

structure in the total band density of states since only

a small fraction of the occupied electron states are

excited. Recent PES evidence for direct transitions is

discussed in section 3.

2. Experimental Results

Photoemission measurements were performed on

evaporated polycrystalline films of Sc, Ti and Zr. Ex-

perimental techniques are described elsewhere [4].

Scandium. Normalized energy distributions (EDCs)

are shown in figure 1 and the quantum yield (electrons

emitted per incident photon [5]) is shown in figure 2.

The workfunction was determined as (/> = 3.5 ±0.15

0

SCANDIUM
(/>

= 3.5eV

1 '7
/ 1/
/ '// 1/ // // /y // /
/ /

h^ = l0.2eV-/ /
1 9.2-/ /
/ / Aae

/ / / /^^

1 I'' / /
1 1 1 1

-8 -7 -6 -5 -4 -3 -2 -1 C)=E

INITIAL ENERGY (eV)

Figure 1. Energy distributions {EDCs) for Sc.

The EDCs are plotted versus the initial energy Ei = E — hv-i-
<t>, with the Fermi level

Ej. set equal to zero.
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Figure 2. The quantum yield (per incident photon) for Sc, Ti

find Zr.

eV. For Sc, maximum emission occurs from energy

states within ~2 eV of E/- for all photon energies; these

states are identified as the occupied d states. A sta-

tionary peak near£'/. and a shoulder at ~ — 0.9 eV are

observed in all EDCs.

The low quantum yield (F — 10"- at 10 eV) is charac-

teristic of the typically short hot electron mean free
o

paths (
~ 10 A at 10 eV above E/. ) in transition metals

[6]. An analysis of secondary electron emission due to

electron-electron scattering [1,6] for Sc indicate that

this mechanism accounts for most of the observed slow

electron emission (with energies less than —2 eV in fig.

1); our analysis assumed the usual optical absorption

depth of —100-150 A. A fraction of the slow electron

emission < 2 eV above the kinetic energy threshold

which is observed ior hv ^ 10 eV (at ~ — 5 eV for hv =
10.2 eV in fig. 1) is believed to be due to surface impuri-

ties (similar comments apply for Ti and Zr).

The ODS for the occupied d bands of Sc is compared
with a theoretical band density of states in figure 3. The
ODS was determined using the nondirect transition

model with a smooth unoccupied conduction band [7].

The band density of states shown for Sc in figure 3 is

the density of states calculated for Y by Loucks [8],

which has been scaled in energy by 0.85 to account for

the ~ 15% narrower d bands in Sc [9]. This approxima-
tion is expected to adequately represent the band width
and major structure for Sc [9]. Agreement between the

ODS and band density of states is excellent. The band
widths agree, and the observed peak at £/. and shoulder

at —0.9 eV agree with the principal structure in the

band density of states.

Titanium. Energy distributions (EDCs) are shown in

figure 4 and the quantum yield is shown in figure 2. The
workfunction was determined as (^ = 4.33±0.1 eV
using the usual Fowler plot. Emission from d states

within ~2 eV of E/- dominates the EDCs for all photon

energies. A low amphtude shoulder is observed at Er,

with two peaks at ~ — 0.7 and —1.2 eV. Transition

probability effects are observed for Ti which cannot be

simply fitted using an ODS with constant matrix ele-

ments: the structure at —0.7 eV, which is a shoulder

for low energies {hv — 8 eV), increases in relative am-

plitude until it equals the amplitude of the —1.2 eV
peak at hv — 10 eV, and then decreases (and washes

out) at still higher energies. This observed behavior

contributes to the increasing evidence against the non-

direct transition model (see sec. 3).

As with Sc, most of the slow electron emission (ener-

gies < — 2 eV in fig. 4) is attributed to secondary elec-

trons created by inelastic electron-electron scattering.

The slow electron peak at — — 5 eV which increases

for hv > 10 eV is believed to be due in part to surface

impurities.

An ODS is shown for Ti in figure 5 which describes

the energy locations of observed structure, and the am-

plitudes for hv — 10 eV [10]. The existence of a low

amplitude shoulder at E/.- and 2 peaks at lower energies

(at ~ — 0.7 eV and —1.2 eV) correlates with the major

structure in the band density of states (fig. 5), however,

the ODS band width (2 eV) is significantly narrower

than the theoretical band width (2.8 eV) [11].

SCANDIUM

THEORY -

(FLEMING a LOUCKS)

-7 -6 -5 -4 -3 -2

ENERGY (eV)

-I 0=Ef

Figure 3. ODS and theoretical density of states for Sc.
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The ODS's of Ti and Sc show a rigid band relation; if

the Fermi level of the ODS for Ti is lowered by —0.7 eV
to account for 3 rather than 4 valence electrons, the

resulting ODS closely resembles that determined for

Sc.

Zirconium. Energy distributions (EDCs) are shown

in figure 6 and the quantum yield is shown in figure 2.

The measured workfunction is 0 = 4.05 ±0.1 eV. The
EDCs show structure and amplitude effects which are

very similar to those described for Ti. An ODS for Zr is

shown in figure 7 which summarizes the observed te-

state structure and occupied band width (—2.3 eV).

The band density of states for Zr calculated by Loucks

[12] using the APW method is also shown in figure 7.

The observed band width (
— 2.3 eV) is narrower than

the calculated band width (
— 3 eV).

3. Discussion

Photoemission energy distributions for Sc, Ti and Zr

show o?-state structure (which is stationary in initial-

state energy) which indicates narrow (
— 1.5-2.3 eV) oc-

cupied d bands. Observed structure tends to correlate

with structure in theoretical densities of states. How-

ever, amplitude effects are observed for Ti and Zr

which cannot be simply described using the nondirect

transition model [1]. This result adds to recent

developments which cast doubt upon nondirect transi-

tions in transition and noble metals.

Two other papers (for Cu [13] and Pd [14])

presented at this conference show that the observation

of stationary d-hand structure (which has been as-

sumed to imply nondirect transitions [1,2]) is con-

2.0

i
•s;

a 1.0

TITANIUM

-I 0=Ef-6 -5 -4 -3 -2

ENERGY (eV)

Figure 5. ODS and theoretical density of states for Ti.

o

I
o
UJ
_l

ZIRCONIUM

(1) ODS
(2) THEORY (LOUCKS)

Figure 7. ODS and theoretical density of states for Zr.
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sistent with direct interband transitions. This stationa-

ry structure results from the relative flatness of the d-

bands (
~ 3 eV) compared to the broad unoccupied

bands (
~ 40 eV), coupled with the limited range of

photon energies usually accessible {4> < hv < 11.6 eV).

Further evidence which casts doubt upon nondirect

transitions is given by recent high resolution

photoemission measurements [15] on Au, Ag and Cu
at 16.8 eV and 21.2 eV. These data show structure

which is quite different from that observed at energies

below LiF window cutoff (11.6 eV) and cannot be ex-

plained using the nondirect transition model [15]. It

remains to be seen if direct transitions can explain this

high energy data.
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Photoemission and Reflectance Studies of the

Electronic Structure of Molybdenum'^
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Department of Physics, Montana State University, Bozeman, Montana 5971 5

Normalized energy distributions of photoemitted electrons for 4.3 < hv < 11.8 eV (threshold is 4.3

eV) and near normal reflectance for 0.5 < hv < 11.8 eV are measured for molybdenum films prepared

with ultra high vacuum. The nondirect transition model with constant matrix elements is found to be

consistent with the photoemission data. The above model, in conjunction with calculations for the emis-

sion of scattered electrons, is used to obtain the optical density of states (ODS) for the occupied states.

Three peaks due to c?-electrons are observed at £" — Ei- = —0.5, —1.6. and —3.9 eV where Ef is the

Fermi energy. No structure is observed for E — E/. > 4.3 eV. The imaginary part of the dielectric con-

stant, go, is obtained by Kramers-Kronig analysis, and the occupied ODS are used to obtain the ODS
for 0 < E — El < 4.3 eV. The latter analysis is done by writing the finite difference approximation for

the integral expression of e-j and solving for the empty ODS. The ODS is compared to the band calcula-

tions of Mattheiss where a molybdenum density of states is obtained by scaling his tungsten (W) results.

Both the measured and calculated occupied densities of states have three peaks and both empty states

have one dominant peak. The calculations predict a low density of states for —1<E — Ei<0 eV

which is not observed in the data. The absorption coefficient has a minimum at 11.3 eV which correlates

with a dip in the quantum yield. The energy distributions of the photoemitted electrons show small

structural changes above the spectral range of the peak in the energy loss function at 10.8 eV. The rela-

tion of these data to the explanations based on the electron density of states for the anomalous isotopic

mass dependence of the superconducting transition temperature is discussed.

Key words: Dielectric constant; electronic density of states; molybdenum (Mo): optical density of

states; optical properties; photoemission; reflectivity; tungsten (W); zinc (Zn).

1 . Introduction vacuum system in the 10"^" torr range and the films

were vapor deposited with an electron beam evaporator

Photoemission and optical measurements were used in the 10~^ torr range,

to study the electronic structure of the 4c? metal molyb- The photoemission and optical data were obtained by

denum. The photoemission data were found to be con- techniques reported elsewhere [1,2] with the exception

sistent with the nondirect model with one possible ex- of the quantum yield measurement. The spectral yield

ception. Because of the essentially nondirect character per incident photon was obtained directly by electronic

of the photoemission data, an optical density of states division of the simultaneous measurement of the

(ODS) graph was constructed. The results are com- photoelectron current and the hght flux incident on the

pared with band calculation of molybdenum's 5c? photocathode. The yield per absorbed photon was ob-

counterpart tungsten and its 3c? counterpart chromium, tained from the above data and the reflectance data.

The signal proportional to the incident light flux was ob-

2. Experimental Procedures tained by using sodium sahcylate inside the high

vacuum chamber to detect a small fraction of the in-

The photoemission and optical data were taken from cident radiation which passed through a small hole in

vapor deposited films of Mo. The measurements were the photocathode. The sodium salicylate was coated on

made with the base pressure of the ion-pumped- the inside of a glass window and its fluorescence was

,R , J I .u A V r^cr fc r u u/irr rA mcasurcd by an external photomultiplier tube. The
Kesearih sponsured by the Air force Offjce of bcienlific Researcti, Office of Aerospace '

Research, United States Air Force, under AFOSR contract/grant number AF-AFOSR-838-65 prOCcdurC produCcd a measurement of the qUantUm
and 68-1450. Based on a thesis submitted by Kenneth A. Kress to Montana State University • 1 J r 1 J il ^ J II •»! i J U
. „ , ifini , f ,1, . f 1 Du r> J yield 01 gold that compared well with that measured by
in partial fulfillment of the requirements of the Ph. D. degree. J o f J

**Supported in part by the National Aeronautics and Space Administration Traineeship. OtllCrS [3,4]. In addition tlleSC StudicS sllOWcd that
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sodium salicylate had stable fluorescent properties in

ultra liiiili vacuum tor several weeks if it was main-

tained at room temperature. This latter observation is

in agreement with other observations [5]. The above

tcchni(]uc does not depend on the optical transmission

of the LiF window used on the experimental vacuum

chamber. Since the window transmission was found to

change with time, this technique gave improved

rcprnducihilily of the measured quantum yield.

3. Optical Studies

The results of the optical studies that are used in the

photoemission analysis are reported here. Complete

discussion of the optical studies are reported elsewhere

[3.6]. The reflectance of Mo films at near normal in-

cidence is presented in figure 1. The reflectance of Mo
falls rapidly as the photon energy increases in the near

infrared spectral region indicating the onset of nu-

merous optical excitations at small energies. The

reflectance obtained in this study is smaller jn mag-

nitude for 2 eV ^ hv < 6 eV than that reported by earli-

er investigators but is consistent in structure [7]. The
magnitude is consistent, however, with the reported

reflectance of Mo's 5c? counterpart tungsten [7]

.

The optical constants were obtained by Kramers-

Kronig analysis. Detailed discussion of the analysis is

given elsewhere [3,6]. The reflectance was measured

between 0.5 eV ^ /it- ^ 11.0 eV under ultra high

vacuum conditions. The spectral range of the

reflectance used in the analysis was extended by

several techniques. The reflectance for hp < 0.5 eV
was obtained from the Hagen-Ruben formula. It was ex-

tended to 14 eV by measurements on polished samples

and to 23 eV by data obtained from the hterature [7].

The magnitude of the latter data was adjusted to fit the

present measurement at 14 eV and is represented by

the dotted Hne in figure 1. In the Kramers-Kronig analy-

sis the reflectance was extrapolated by an inverse

|)ower function for hv > 23.0 eV.

The imaginary part of the dielectric constant e-z of Mo
is shown in figure 1. Shoulders are observed in €>

centered at 1.8 eV, 3.8 eV. and 7.4 eV and are con-

sistent with structure observed in the photoemission

data. The optical functions {hv)''e>{hv) and hvnihv)

which are usef ul in studying the photoemission data are

shown in figure 2. A peak in the energy loss function,

/m(l/e), is observed at 10.8 eV and a relative minimum
in the absorption coefficient, a(hv), is observed at 11.3

eV.

4. Photoemission Measurements

The quantum yield of Mo is shown in figure 3 along

with the plot of the square root of the quantum yield

used to determine the value of 4.3 eV for the photoelec-

tric work function (j) [2,8]. The value obtained for the

work function agrees with those reported in the litera-

ture [9]. This value for was reproducible from all

films deposited at ^1 X 10~** torr with a base pressure

of 6 X 10"'" torr achieved a few minutes after the

deposition. The work function of films deposited at

higher pressure varied from 4.4 to 4.7 eV. For films

prepared at the lowest pressure, 7 X lO"** torr, the value

of 0 increased a few tenths of an eV in eight hours with

little change in the EDC's except for a decrease in

width. A significant drop in the yield is centered at ap-

proximately 11.0 eV. This drop is interpreted as an opti-

cal effect. The maximum value of the quantum yield is

less than 2% indicating that few of the excited electrons

escape the metal even for the highest photon energies.

A representative set of the energy distribution curves

(EDC's) is shown in figure 4. The EDC's are plotted as
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12.0

Fk.URE 3. Quantum yield oj inolybilenum.

a function of the kinetic energy, it — 0, and normalized

to tlie quantum yield. The energy E is referred to the

Fermi energy. The data from all other films studied

were essentially identical with those shown in figure 4.

Even the EDC's from film deposited at higher pres-

sures differed only by a small attenuation of the popula-

tion of high kinetic energy electrons and a small in-

crease in the work function. Inspection of the EDC's in

figure 4 reveals no structure with fixed kinetic energy

and all structures move to higher kinetic energy as the

photon energy is increased.

As shown in figure 5, the structures in the EDC's

have fixed positions when plotted as functions of (E —
hv). Three structures are observed over the entire spec-

tral range studied. The energies of the structures obey

the equal increment rule, Esinicnin- = Mhv) and are due

to initial state structure at —0.5, —1.6, and —3.9 eV.

The peak labeled (1) has a marked change in relative

ampUtude as the photon energy is increased from 10.0

to 11.0 eV. The analysis of this property is compHcated

by the existence of a peak in the energy loss function

(10.8 eV) and a relative minimum in the absorption

coefficient (11.3 eV) in this same spectral region. A
definite shoulder appears at E — hv= —5.0 eV on the

low kinetic energy edge of the EDC's for hv > 10.0 eV
(see figs. 4 and 5). This shoulder persists and moves

toward higher energy with increasing photon energy

and is taken to indicate the bottom of the 4c? bands of

Mo.

5. Optical Density of States Analysis

The characteristics of the structure in the EDC's

which are described in the last section indicate that the

data are consistent with the nondirect transition model

12 3 4 5 6

E - 0 (eV)

Figure 4. Normalized enerfiy distribution curves ofmolybdenum versus kinetic energy.
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Fk.I'RE 5. Arbitrarily normalized enerfiy distribution

molybdenum versus K-\w.

curves of

with the possible exception of the structure labeled (1)

in the 10.0 to 11.0 eV spectral range. The optical excita-

tions in the nondirect model are proportional to the

product of the density of initial and final states. The
energy distribution of emitted electrons in the hmit that

the absorption depth is much greater than the electron-

electron scattering length L(E) is given by [10-12]

N(E-(I). hv) =
BN'P''iE-hv)Nf {£)[! + Si{E, hv)]

where

NfiE)

hvn(hv)

T{E)L{E)Nf"{E).

(1)

The real part of the index of refraction, the escape func-

tion and the scattering function is given by n(hv), T(E),

and S,(E,hv) respectively. The optical density of initial

and final states are respectively Nf>P'(E — hv) and
N<ji"{E) [11,12]. Any {E) or {E-hv) functional depen-
dence in the matrix elements is indistinguishable from
the optical density of final and initial states respective-

ly. Tlierefore such effects will be contained in the ODS

and any other matrix elements effects are taken to be

constant in eq (1) [12].

For this model the imaginary part of the dielectric

constant is given by [10]

lw)-e>{liv)^A N'!'"{E-hv)N""'{E) cIE.
Jo '

'
(3)

Given the function A^,"^' and e->{hv) one can numerically

determine N/p'. Writing eq (3) in the finite difference

approximation and rearranging terms eq (3) becomes.

/V'""[(m-1)A£]
1

AN,AE
{mAE)''e>{mAE) (4)

-AAE ^ A";'"[(L-m-l)A£]A/';"'[(L-l)A£]
/.=i

where Nfi"{0)=Nli"(0)= Ni. =DS at the Fermi energy.

The energy scale is divided into equal increments and

the increments are counted with the index m. Because

e-y was not measured for small spectral values, eq (4)

was not used to obtain the value of A. The constant A
was adjusted to give six empty states per atom for 0 <
£<6.0eV.

The ODS calculation proceeded in two parts [3]. First,

the effect of scattered electrons, S/, was neglected

in eq (1). Equation (1) was used to determine an ap-

proximate initial ODS which was then divided into the

set of EDC's to obtain a set of approximate functions

for Nfff(E). Since the latter set was equivalent (within

5%) for all the EDC's, the initial ODS was assumed to be

a reasonable approximation and provides additional

evidence that the nondirect model is consistent with

the data. The approximate initial density of states and

measured were used in eq (4) to obtain an approxi-

mate final density of states. With the above functions

available, the second part of the analysis was to repeat

the calculations including the effects of scattering,

represented by the function 5 in eq (1). Si(E,hv)

was computed by the once scattered model of Berglund

and Spicer [10] in the limit when the inelastic scatter-

ing length is much smaller than the mean optical ab-

sorption depth and when it is much smaller than the

(2) elastic scattering length. The scattering corrections

were insensitive to the details of the ODS. The results

of the scattering correction on a typical EDC are shown

in figure 6.

The ODS obtained by the above method is shown in

figure 7. Because of the spectral limit imposed by the

LiF window, the states for l^"! ^ 5.0 eV cannot be stu-

died in detail. These less reliable regions are indicated

by dots in figure 7. Since the numerical inversion for

NfP' was done in 0.2 eV increments, the resolution
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6. Discussion

0 1 2 3 4 5 6 7

E -
<t>

(eV)

Figure 6. Measured, corrected and scattered energy distribution

curves ofphotoemitted electrons from molybdenum at hv= 1 l.O eV.

could not be better than this. If, in addition, the density

of initial states used in the inversion for the density of

final states already contains significant broadening, the

details of the density of final states will be distorted.

These effects combine to lessen the significance of the

fine structure displayed in the density of final states

seen in figure 7. The dashed, average curve for NfP' is

possibly a better estimate of the density of final states

even though it will not permit as accurate a recalcula-

tion of the imaginary part of the dielectric constant.

E(eV)

Fk.URE 7. Optical density ofstates ofmolybdenum.

The ODS is compared to a band calculation density

of states (DS) in figure 8. The DS was obtained from

Mattheiss' calculations for W with potential "one"

[13]. Since Mo and W have the same crystal structure,

bcc, and similar atomic electron configurations the

band structures are expected to be essentially the same

within an energy scale factor. The energy axis for the

DS was rescaled by using Mattheiss' estimate of the

relative d-band widths of Mo and W/. There are three

peaks below the Fermi energy in the experimental ODS
(1, 2, and 3) and in the calculated DS (a, b, and c)

although the energy position and amplitude of the

peaks do not agree in detail. Above the Fermi energy

there is one major peak in the ODS with several minor

peaks at smaller energies. The calculated DS also has

one large peak and two smaller ones above the Fermi

energy. As with the structures observed below the

Fermi energy the energy positions and ampHtudes do

not agree with those in the ODS. The most serious dis-

crepancy noted between the ODS and the DS is in the

region near the Fermi energy (
— 1 eV ^ E 0 eV).

The calculated DS has a deep and wide (
~ 1 eV) valley

at the Fermi energy with a small number of electron

states per atom. In contrast, the ODS has a peak cen-

tered a\ E — — 0.5 eV and a larger number of states per

atom at the Fermi energy.

The expected essential difference between the band

structure for Mo and paramagnetic Cr is an energy

scale factor since they have the same atomic structure

and crystal structure. In figure 9 the experimental ODS

E(eV)

Fl(;i!RE 8. The optical density of states of molybdenum {/lotted

line) is compared with the density of states estimated from Matt-
heiss' tungsten (tV,) band structure calculation (ref. [13]).
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E (eV)

Fl(;URE 9. (Comparison of the optical density ofstates ofmolybdenum
{j)resent study) and chromium obtained by Eastman iref [14]).

of Mo is compared to Eastman's ODS for Cr [14] which

is similar to that obtained by Lapeyre and Kress [15].

There are tliree structure points in both Mo and Cr, but

the relative amplitudes are different. The energy values

of the structures are compared in table 1. Mattheiss'

estimate of the <i-band width of Cr gives a scale factor

of 0.75 with respect to Mo whereas that obtained from

the data is approximately 0.6.

The comparison of the ODS of Mo with the estimated

DS from W and the ODS of Cr indicates that the

number of structure points both above and below the

Fermi energy are in reasonable agreement. The com-

parison also indicates that the details such as the ener-

gy position and amplitude are not in such good agree-

ment. It may be that the ODS is simply not a good

replica of the unperturbed ground state density of

states due to systematic variation of the transition

probability matrix elements with the initial state energy

E — hv [14] . Variations of the matrix elements with the

initial energy cannot be distinguished from the initial

density of states effects in the photoemission data.

Some of the difficulties in the above comparison may
be due to an overly simpHfied model used to interpret

the photoemission data. There is some theoretical

evidence that the detailed predictions of the nondirect

and direct transition model for photoemission

processes in copper are not easily distinguished over a

limited spectral range [16]. In addition to these recent

calculations there is possible experimental evidence for

direct transition character in the Mo photoemission

data. In particular, note that the high energy peak of

the EDO's in figure 5 is attenuated suddenly between
hv = 10.0 eV and 11.0 eV. The sudden appearance and

disappearance of structure is consistent with the direct

transition model and is not consistent with the non-

direct model.

The above discussion indicating the possibility of

direct transitions must be considered tentative as there

are other possible explanations for the deterioration of

the high kinetic energy edge of the EDC's between 10.0

eV and 11.0 eV. For example, since the energy loss

function has a peak at 10.8 eV, the photoexcited elec-

trons with E ^ 10.8 eV could interact inelastically and

lose 10.8 eV. With such a large energy loss, these elec-

trons could not escape the metal and would be missing

from the EDC's. This phenomenon has been observed

in photoemission studies on Zn [17].

The relative minimum in the quantum yield at ap-

proximately 11.0 eV is interpreted as an optical con-

stant effect. This interpretation is supported by the ob-

servation that the amplitude of the EDC's and con-

sequently the yield, is dependent on the factor hvn(hv)

[cf. eq (1)] which has a relative minimum at 11.3 eV.

Furthermore, the effect of the minimum in the yield is

compensated by the minimum in the optical function

hvn(hv) in just the manner necessary to produce a self-

consistent ODS without appealing to hv dependent

matrix elements.

A narrow peak just below the Fermi energy in the DS
has been proposed to explain the quenched isotopic

mass dependence in Mo's superconducting transition

temperature [18]. Although the optical studies of this

particular work were not extended below 0.5 eV, the

photoemission data does probe this region. Within the

resolution of the photoemission experiment, —0.1 eV,

no large amphtude, narrow structure was observed

near the Fermi energy. This observation is in agree-

ment with a more recent treatment of the isotopic mass

effect which accounts for the quenched isotope effect

without any anomalous condition being imposed on the

density of states [19].

Table 1. Energies of the structure in the optical

density of states for Cr and Mo

Structure Mo Cr"

1 - 0..5 eV - 0.2 eV - 0.4 eV

(shoulder) (shoulder)

2 -1.6 eV -1.1 eV -1.2 eV

3 -3.9 eV - 2.2 eV -2.3 eV

" G. J. I.apeyre and K. A. Kress. Phys. Rev. 166, .589 (1%8).

" D. E. Eastman, J. Appl. Phys. 40, 1371 (1968).
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7. Summary 9. References

Photoemission measurements were used to study the

electronic structure of Mo. The data show the filled d-

band to be approximately 5.0 eV wide with three peaks

at £" — El- = —0.5. —1.6, and —3.9 eV. The data show

no strong electronic final-state structure for E — £/. >
5.0 eV. The above observations are independent ot the

nondirect model.

The nondirect model was used to obtain an ODS for

Mo. The model was used in conjunction with e-i to infer

an ODS above the Fermi energy. The ODS was com-

pared to a band calculation and to measurements on

Cr. The comparisons showed poor agreement except

for the correlation in the number of peaks.
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Ultraviolet and X-Ray Photoemission from
Europium and Barium

G. Broden, S. B, M. Hagstrbm, P. O. Heden, and C. Norris

Department of Physics, Chalmers University of Technology, Gbteborg, Sweden

Europium and barium are predicted to have very similar outer electronic structures with the excep-

tion that europium has a partially filled 'If shell. Measurements are reported on photoemission from thin

films excited with both vacuum ultraviolet and soft x-ray radiation. The results obtained using the low

energy excitation indicate the similarity of the materials. Both show structure close to the leading edge

in agreement with band structure calculations which indicate an increase in the density of states im-

mediately below the Fermi level. Only a very small feature is observed with europium films which can

be associated with the 4/ electrons. On the other hand using soft x-ray excitation a large peak cor-

responding to 4/ states lying 2.5 eV below the Fermi level is observed. The difference in the magnitudes

is attributed to the size of the matrix elements involved.

Key words: Barium (Ba); /3-tungsten compounds: effects of oxidation: electronic density of states;

europium (Eu): lanthanides: matrix elements: photoemission; rare-earth metals: UV
and x-ray photoemission; x-ray photoemission.

1 . Introduction

Recent band structure calculations [1-3] of the

isoelectronic metals Eu {4f6s~) and Ba (65^) have shown

that their respective conduction bands are closely re-

lated. Both are characterized by a 6sp band hybridized

with a 5d band which extends slightly below the Fermi

surface. Eu differs from Ba in that it possesses, in com-

mon with other rare-earth metals, a partially occupied

4/ state. The 4/ electrons are shielded by the closed 5s

and 5p shells and behave in many ways as core states.

This is illustrated by the chemical similarity of the rare

earths. The 4/'s are, however, important in connection

with the complex magnetic structures of the lanthanide

metals. Although band structure calculations [2,4]

have been successful in correlating these structures

with details of the Fermi surface, they are not able to

accurately locate the energy position of the 4/ state, due

to the sensitivity of this energy to the exact form of the

exchange. We have measured photoelectron spectra in-

duced by both UV light and by soft x rays in order to in-

vestigate the band structure of Eu and Ba, and in par-

ticular to determine the position of the 4/ level in Eu.

This work is part of a wider study of the lanthanides

now in progress.

X-ray photoemission (XPS) and UV photoemission

(UPS) are two important techniques currently em-

ployed in the study of the electron density of states of

solids. Their relative merits are a consequence of the

very different photon energies involved, rather than

competing, the two methods complement each other.

With soft X rays one can probe deeper below the Fermi

level and can also study core levels. This is useful in

that it allows the purity of the sample to be monitored,

and from a measurement of the chemical shift of the

core levels, information can be gained concerning the

nature of the valence states [5]. The more energetic

electrons produced in ESCA have, moreover, a longer
o

scattering length (typically 100 A) compared to the low
o

energy UV induced photoelectrons (typically 20 A).

Greater surface purity is thus required with UPS. On
the other hand, although UPS is liiriited to investigating

states near the Fermi level, it is at present capable of

considerably better resolution.

2. Experimental

Both sets of measurements were made using films

evaporated from tungsten filaments. The metals were

obtained with a purity of 99.5 percent (Ba) and 99.7 per-

cent (Eu). Both Eu and Ba are very reactive and it was

inevitable that some oxidation occurred during mount-

ing. The working pressures were 7 X 10~" torr (UPS)

and 5 X 10"'' torr (XPS). This was found sufficient to
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FlGl'RE 1. Electron energy distribution curves oj a europium film

for different photon energies.

allow measurements for one to two hours without ap-

preciable distortion of the spectra.

The UV photoemission spectra were obtained with

light from an H2 discharge lamp, dispersed by a

McPherson monochromator. The monochromator was

coupled to the measuring chamber via a LiF window.

The photoelectrons were collected with a silver coated

collector by applying a retarding field between the sam-

ple and the collector and using the A.C. modulation

technique [6]. With this method an electron energy

resolution of approximately 0.3 eV could be achieved.

For the ESCA measurements the exciting radiation

was obtained from an x-ray source employing an alu-

minum anode, separated from the sample by a 1.5/u,

thick aluminum window. The photoemitted electrons

were analyzed with a spherical electrostatic analyzer

with a radius of curvature of 36 cm. They were

recorded with standard counting techniques. The
resolution obtained was of the order of 1.5 eV of which

part (0.8 eV) was due to the natural line width of the in-

cident x-radiation (Al Ka) and the rest came from in-

strumental broadening.

3. Results

Figure 1 shows a set of electron distribution curves

(EDC's) obtained from a freshly evaporated film of Eu
for different incident UV photon energies. The results

are referred to the energy of the initial states by plotting

them against E — h(o +
(f), where E is the measured

energy, hco the photon energy, and
(f)

the work function

of the collector. The zero on this scale corresponds to

the Fermi level. A number of peaks, some of them
rather weak are observed and for reference are labelled

A to F. For aU photon energies the curves are charac-

terized by a relatively high number of emitted electrons

near the leading edge. At the higher photon energies

Tiu =10.2 eV Eu film exposed to oxygen

film

at 3x10 torr
-6

at IX 10 torr
-6

at 3x 10 torr

5 -« -3 -2 -1 0

Energy of initial state (eV)

Figure 2. Influence on the EDC curve for europium of exposure to

oxygen.

two large peaks E and F appear. F remains at a fixed

kinetic energy for increasing photon energy and

probably corresponds to inelastically scattered elec-

trons. Electron-electron scattering is an important

process for both Eu and Ba as, according to the band

structure, they are electronically similar to the transi-

tion metals with a high density of states near the Fermi

level.

To determine whether or not any features of the

photoemission spectra were associated with the

presence of oxygen, a freshly prepared film was ex-

posed to oxygen at various pressures for a given length

of time. The EDC's obtained for ^(W=10.2 eV are shown

in figure 2. Apart from the increased scattering peak

which is characteristic of a contaminated surface, there

is a large increase in peak E suggesting that it arises

from the oxidized state. This assignment is confirmed

by recent measurements on EuO [7] in which a strong

peak attributed to p-states was observed at the same

position ( — 4.6 eV).

Very similar results to those of Eu have been ob-

tained for Ba. EDC's corresponding to ho)= 7.7 eV are

shown in figure 3 for both metals. The evident similari-

ty of the curves reflects the closeness of the valence

band structure for the two metals. With the exception

-6 -5 -4 -3 -2 -1 0

Energy of initial state (eV)

Figure 3. Comparison of the EDC curves for barium and europium.
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Figure 4. Photo-electron spectrum obtained with Al Ka excitation

of the Eu 4f band and 0 Is level immediately after evaporation

(a) and after oxidation (b).

of the region between —1.5 and —3.2 eV the features

observed in one curve can be recognized in the other.

Figure 4 shows photoelectron spectra obtained from

a Eu film using soft x-ray excitation. As in the previous

figures the energy scale corresponds to the binding

energy with the Fermi level located at zero. The upper

Eu curve is dominated by a peak at —2.5 ±0.5 eV
which we believe is due to the 4/ state. It is likely that

the feature at —5 to —10 eV is associated with scatter-

ing mechanisms as a similar feature was observed ad-

jacent to the photoelectron peak corresponding to the

3c?5/2 level. The peak near —20 eV is due to the Eu 5p

level. In order to check the contamination of the sample

surface the oxygen \s line was monitored and is shown

by the side of the corresponding Eu signal. The lower

set of results were obtained after exposing the film

briefly to the atmosphere. The intensity of the 4/ hne

decreased and structure at lower energies appeared. A
strong oxygen signal was also observed. Comparing the

two sets of curves it is evident that oxygen had a httle

influence on the films studied immediately after

evaporation, and we therefore feel that we are justified

in regarding them as typical of pure Eu. XPS measure-

ments of the outer electrons for bulk Eu samples have

recently been reported [8]. The results which cor-

respond to samples mounted in air are similar to the

lower Eu curve shown in figure 4.

As a further check that the peak in figure 4 cor-

responds to the 4/ state it is compared in figure 5 with

the corresponding result for a Ba film. Clearly nothing

as strong as the —2.5 eV peak in Eu is seen for Ba. The
small peak at —6 eV corresponds to the oxygen 2p

level. The one at — 16 eV is due to the barium 5p level.

4. Discussion

From figure 1 it is seen that the structure in the Eu
EDC's remains at constant energy (on the reduced

-20 -10 0

Energy below Fermi level (eV)

Figure 5. Photo electron spectrum close to the Fermi level of euro-

pium and barium obtained with AlKa excitation.

The intensities are normalized relative to the 4(/ core levels.

scale) for increasing photon energy. Similar behavior

was found for the Ba films. This indicates that the

structure is associated with features in the initial densi-

ty of states. Furthermore either the initial states have

low dispersion in k-space or the transitions are non-

direct (i.e., transitions in which the electron momentum
vector k is not conserved).

Comparison with the calculated band structures of

Eu and Ba suggests that the hump in the EDC's extend-

ing to —1.5 eV is associated with the filled part of the

5c? band. The broad feature between — 1.5 and —3.5 eV
in the Ba EDC (fig. 3) would appear to be due to the tsp

conduction band. It is difficult to explain the feature

which occurs in both EDC's in figure 3 near— 4 eV. Ac-

cording to the calculations no states exist in this region.

One possibihty is that the peaks are associated with in-

elastically scattered electrons. In this connection we
note that in a recent work [9] peaks observed in alkali

metals have been attributed to scattering via the crea-

tion of surface plasmons.

From the differences in the two EDC's shown in

figure 3 we believe that the 4/ level is associated with

the structure lying between —1.5 and —3.5 eV; that is

with either of the features B or C. This conclusion is

supported by the occurrence at —2.5 eV of the strong

x-ray induced photoemission peak in figures 4 and 5.

The weakness of the 4f structure in the EDC's of the

UPS measurements, compared to the XPS measure-

ments, is presumably due to the magnitude of the

matrix elements involved. For 7 eV < ho) < 11 eV the

4/ level is coupled with empty 6sp states, transitions

between which are not allowed by electric dipole selec-

tion rules. Transitions from the occupied Sd and 6sp

bands will be allowed however. This explains the

similarity of the Eu and Ba EDC's. On the other hand

using soft x-ray excitation all initial states will be
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coupled to plane wave states, approximately 1500 eV

above the Fermi level. Thus in the case where there are

important matrix element effects involved, soft x-ray

induced photoemission spectra will reproduce more ex-

actly the density of states than will measurements em-

ploying UV light.

Electric dipole selection rules will not, however, ex-

plain the optical properties of Ba and Eu [10]. The

reflection curves for Ba and Eu were found to be very

similar, suggesting that the 4/ electrons are not excited

for fid) < 5.0 eV. The band structure calculations and

the present work suggest, however, that there is a high

density of d states at the Fermi level. Transitions to

these states from the 4/ level are allowed and would be

expected to give rise to an absorption edge in Eu but

not in Ba. The nonappearance of this edge is possibly

due to the core-like nature of the 4/ states. The matrix

element between the 4/ and 5c? states would in con-

sequence be small. The conclusion is also in agreement

with recent calculations on free atoms [11].

5. References

[1] Freeman, A. J., and Dimniock, J. O., Bull. Am. Phys. Soc. 11,

216(1966).

[2] Andersen, 0. K., and Loucks, T. L., Phys. Rev. 167 , 551

(1968) .

[3] Johansen, G., Solid State Communications 7, 731 (1969).

[4] Keeton,S. C, and Loucks, T. L., Phys. Rev. 168,672 (1968).

[5] Fadley, C. S., Hagstrom, S., Klein, M., and Shirley, D. A., J.

Chem. Phys. 48, 3779 (1968).

[6] Spicer, W. E., and Berglund, C. N., Rev. Sci. Instr. 35, 1664

(1964).

[7] Eastman. D. E.. Holtzberg, F., and Methfessel, S., Phys. Rev.

Letters 23, 226 (1969).

[8] Nilsson, O., Nordberg, C. H., Bergmark, J. E., Fahlman, A.,

Nordling, C, and Siegbahn, K., Helvetica Physica Acta 41,

1064(1968).

[9] Smith, N. v., and Spicer, W. E., Phys. Rev. Letters 23 , 769

(1969) ; Phys. Rev. in press.

[10] Muller, W. E.. Phys. Kondens. Materie 6, 243 (1967).

[11] Fano, U., Cooper, J. W., Rev. Mod. Phys. 40, 441 (1968).

220



Discussion on "Ultraviolet and X-Ray Photoemission from Europium and Barium" by G. Broden,

S. B. M. Hagstrbm, P. O. Hede'n, and C. Norris (Chalmers University of Technology)

S. J. Cho (National Res. Council): I have one comment

about this interesting experiment on Eu. A few years

ago Blodgett and Spicer (refer to my paper in this con-

ference) had also obtained in gadohnium with uv

photoemission studies a small peak at about 2.8 .eV

below the Fermi level, which is about the same position

as you have obtained. I strongly feel right now that this

small peak in Gd is the/band position. Do you have any

idea about this/ band width in Eu? Is your/band width

due to the Fj multiplets?

D. E. Eastman (IBM): I have looked at gadohnium

again since the earlier work several years ago by Dr.

Spicer and co-workers [1] and I do not see any per-

ceptible 4/-state structure down to seven volts below

the Fermi level that is bigger than 1% in amplitude. In

the cases of europium. Dr. Hagstrom has reported on x-

ray photoemission measurements.

S. J. Cho (National Res. Council): There is a very

small peak over there in the early UPS works men-

tioned above. I do not have any detailed information

about your recent experimental works. However, I do

expect that the 4/ band position in Gd with respect to

the Fermi level should be almost the same as those in

Eu.

D. E. Eastman (IBM): In uv photoemission, no 4/-

state peak is observed in gadolinium within 6 or 7 volts

of the Fermi level.

S. J. Cho (National Res. Council): The reason for the

large /band width of about 2.0 eV observed in Eu and

Yb is still not clear. According to your XPS work, the

/

band positions for both Eu and Yb are practically the

same. My own feeling is that the 4/ band position in Yb
could be somewhat (0.5 eV) lower than that in Eu.

A. R. Mackintosh (Lab. for Electrophysics, Tech.

Univ.): We have recently performed some band calcu-

lations on ytterbium which may throw some light upon

this question [2] . Although the position of the 4/ bands

is very uncertain in these calculations, due to their ex-

treme sensitivity to the approximation used for

exchange, we find that they are situated near the bot-

tom of the conduction band, about 4 eV below the

Fermi level, if Slater exchange is used. This is in

reasonable agreement with the x-ray photoemission

results. Spin-orbit couphng splits the bands into two

sets, corresponding to j = 7/2 and 5/2, separated by

about 1.5 eV. The individual bands have a width of less

than 0.05 eV, because the centrifugal barrier makes the

/ resonance extremely narrow. Perhaps the spin-orbit

splitting could be seen in a high resolution experiment.

S. J. Cho (National Res. Council): I have made exten-

sive studies on the /band problem by using a parame-

terized Slater p^l^ exchange potential for the Eu-chal-

cogenides, which are magnetic semiconductors. Not

only the 4/ band positions, but also the total 4/ band

widths are fairly sensitive to the exchange potential

used. It would be a difficult problem theoretically to

find the proper 4/ band positions for the case of metals.

In spite of such uncertainty they can explain fairly well

the Fermi surface topology, because the localized 4/

bands are located a few electron volts below the Fermi

energy for Eu, Gd, and Yb metals, and do not influence

the Fermi surfaces much. For other rare earth metals

the 4/ bands can cross the Fermi energy. However, it

could be difficult to measure the 4/ Fermi surfaces due

to the heavy effective masses. In the case of the

semiconductors we can adjust a reduced exchange

parameter to produce the right energy gap. It turned

out that the 4/ ( | ) bands become the highest occupied

bands with correct energy gaps for all the Eu-chalcoge-

nides with a fixed value (3/4) of the reduced exchange

parameter. In these studies the/( f ) band positions are

reliable, but there is no reliable experimental data

available to justify the maximumf band width of about

0.5 eV obtained from my work.

W. E. Spicer (Stanford Univ.): In general, I think in

looking at photoemission from something like an/state

one has to take into account not only the ground state

splitting but (I think Dr. Cho was thinking of this) also

the various spin states that can be left after the excita-

tion. I beUeve that in the <i-band of NiO these effects

can give a width of about 2 eV. I don't know what it can

give here, but I suspect it is large. I think it does have

to be taken into account.

J. T. Waber (Northwestern Univ.): I would Hke to

make two observations about papers which have just

221



been discussed. The comparative plot ol tlie atom

eijienvalues lor tlic 3</ and 4r/ transitions series shows

ill n<iiire 1 tliat the 4r/ bands should fall more rapidly

with atomic numbers than the Sd bands do. This dif-

iVienee is borne out by comparin<2; the sell-consistent

band calculations of Snow on silver [3], and of Snow

and Waber on cop|)er [4]. Also, I think the relative

position of the c/ bands accounts for the difference in

color of these two metals. In figure 2, I have compared

the 3 density of states curves which have been obtained

in conjunction with my colleagues at Los Alamos [5].

Titanium is compared with zirconium, vanadium with

niobium and chromium with molybdenum. All six

graphs are for the bcc phase. One striking feature is

that in contrast to the well known two peak structure of

the density of states curves for the 3d transition ele-

ments, the equivalent curves for the 4c? transition series

show three peaks. This result is consistent with East-

man's experimental observations on vanadium and
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niobium. Since the HCP forms of titanium and zirconi-

um were used experimentally in place of the bcc form,

which we have studied, agreement with the number of

peaks in the NiE) curves is not anticipated theoreti-

cally. The final point is that these six N(E) curves are

not very similar. This raises question about the validity

of the rigid band model for the transition metals. I

would like to make a final point. It relates to the very in-

teresting paper by Collings and Ho. The calculated de-

pendence of N(Ei. ) on alloy composition shown in figure

3 was obtained from a very simple model of alloying

which a graduate student, David Koskimaki. is cur-

rently working on.

We hope to report on this model in the very near fu-

ture. By oversight the curve for N(Ei.) for Ti-Mo alloys

was not supphed to Dr. Collings. This graph is similar

to the one for Ti-V-Cr alloys. The shape is similar but

the discrepancy remains between the numerical experi-

mental and theoretical values.

[1] Optical Properties and Electronic Structure of Metals and Al-

loys, F. Abeles, Editor (North-Holland Publishing Co., Amster-

dam, 1965) p. 246.

Calculated Density of States
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Figure 3. Calculated variation of the state density at the Fermi
level for Ti-Mo alloys (Waber and Koskimaki, unpublished).

[2] Johansen. G., and Mackintosh. A. R.. to be published in Solid

State Communications.
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[4] Snow, E. C, and Waber. J. T., Phys. Rev. 157, 570 (1967).

[5] Prince, M. Y., and Waber, J. T. (in press).
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What is a Quasi-Particle?*^

J. R. Schrieffer

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

The concept of a quasi-particle excitation in an interacting many-body system will be discussed

from both the physical and the mathematical points of view. The physical origin of mass enhancement,

wave function renormalization, interactions between quasi-particles, etc. will be presented. Landau's

Fermi liquid theory, including the quasi-particle kinetic equation, will be reviewed. Finally, the domain

of validity of the quasi-particle approximation will be discussed.

Key words: Density of states; Green's function; mass enhancement; quasi-particle; super-

conductors.

1 . Introduction

Since the early work of Drude and of Sommerfeld

[ 1] , it has been clear that an independent-particle pic-

ture represents in a qualitatively correct manner the

electronic properties of a metal. The electronic specific

heat, the transport properties, the magnetic suscepti-

bility, etc. are all roughly accounted for by elementary

band theory, without recourse to explicit many-body ef-

fects. Exceptions to the rule are the plasma modes ob-

served in the energy loss of fast charged particles, as

well as cooperative phenomena such as superconduc-

tivity ferromagnetism, antiferromagnetism, etc.

The success of the independent-particle approxima-

tion (IPA) is particularly striking in view of the large

ratio of interelectronic Coulomb energy to kinetic ener-

gy experienced by electrons in metals. A measure of

this ratio is the electron density parameter rs defined

essentially as the mean spacing between electrons,

measured in units of the Bohr radius. For Tj ^ 1, the

Coulomb interactions between electrons are weak com-

pared to the kinetic energy effects, while if Ts > 1 the

potential effects dominate the kinetic effects. For sim-

ple metals, r., is typically between two and six. Thus,

one might expect quahtative changes in the properties

*An invited paper presented at the 3d Materials Research Sym-

posium, Electronic Density of States, November 3-6, 1969, Gaithers-

burg, Md.
' This work was supported in part by the National Science Founda-

tion.

of metals relative to the IPA since this approximation

includes only the average Coulomb interaction between

electrons. The "correlation energy" neglected by the

IPA is of order 1 to 2 eV per electron and is by no

means trivial.

The qualitative reason that the IPA works so well is

that typical measurements made on metals at normal

temperatures (T <Tf ~ 10^ K, where Tf is the Fermi

temperature) involve only the low lying excited states

of the metal. There is good theoretical (and experimen-

tal) evidence that these many-body states are well

characterized in terms of a set of elementary excita-

tions, called quasi-particles, which for the interacting

system play the same role as the excited electrons

(above the Fermi surface) and the excited holes (below

the Fermi surface) in the IPA. As for electrons and

holes, these quasi-particles are labelled by a wave vec-

tor k and a spin orientation s =± 1/2. It is assumed that

there is a sharp Fermi surface in the actual system as

r ^ 0, although its shape may depend on the many-

body interactions. By convention, one measures the

quasi-particle energies eu relative to their (common)

value on the Fermi surface so that eijr= 0, where kf is

a wave vector on the Fermi surface.

At sufficiently low temperature, few quasi-particles

are excited and therefore this dilute quasi-particle gas

is nearly a "perfect" gas, in the sense that the quasi-

particles rarely collide. Furthermore, at low tempera-

ture only low energy quasi-particles are excited. Since

their intrinsic decay rate varies as 6^', they constitute

long lived, weakly interacting excitations, thereby justi-
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fying their use as the building blocks for the low lying

excitation spectrum.

There is no need in principle for the effective mass

of the quasi-particles (q.p.) to be simply related to the

free electron (or band structure) mass. For simple

metals, it turns out that the q.p. mass m* is of the order

of the free electron mass me, differing from it in most

cases by a factor of less than two. The main source of

the deviation of m* from me (aside from band structure)

is the electron-phonon interaction, which in general

leads to an increase of m*.

Unfortunately, there is at present no truly first princi-

ples proof of the above statements, i.e. the 1:1 cor-

respondence of the low lying excited states of the

noninteracting and interacting systems, a simple effec-

tive mass spectrum, long lifetimes of the quasi-parti-

cles, etc., although one has a proof that these state-

ments are true to all orders in perturbation theory start-

ing from the noninteracting states [2]. This lack of a

rigorous foundation for the theory is not merely a

mathematical nicety, since we know of many systems

(e.g. the superconducting phase) which are not con-

nected perturbatively with the noninteracting system;

nevertheless, quasi-particles are stiU of use even in this

case. One assumes that in normal systems (absence of

cooperative effects) perturbation theory (or alternative-

ly, adiabatic switching on of the interactions) gives the

correct physics of the interacting system despite subtle

nonanalytic effects which are likely present even in

normal systems.

Thus far we have discussed only the excitation spec-

trum and not the many-body wave functions. Response
functions [e.g. transport phenomena) require informa-

tion about both quantities. The remarkable fact is that

a suitably defined kinetic (or Boltzmann-hke) equation

for the quasi-particle distribution function gives an ac-

curate account of the response of the system to long

wavelength, low frequency perturbations such as elec-

tric and magnetic fields. This second property of quasi-

particles is the heart of why the Drude-Sommerfeld

scheme works well for nonequilibrium as well as

equilibrium phenomena.

There is not time here to go into the details of the

Landau theory of Fermi hquids, upon which the present

theory of quasi-particles in metals is based. The excel-

lent books of Pines and Nozieres [3] and of Nozieres

[4] deal in depth with this topic. We would like, how-

ever, to give a brief sketch of the theory and to make a

few comments about it.

2. The Landau Picture of Fermi Liquids

In the Landau picture one assumes that the low ener-

gy excited states of the interacting system have ener-

gies well approximated by the form

E{8nJ = J^€^^8nu. + l X f^;,.8n^Mws- (2.1)

ks kjk .s

Here dn^^ is a measure of the quasi-particle (q.p.) occu-

pation numbers. Assuming there is a well defined

Fermi surface Sr at zero temperature described by the

wave vectors kf , one has

+ 1 , ks outside Sf and occupied by a quasi-

electron
— 1, ks inside Sf and occupied by a quasi-

hole

0, otherwise.

The zero-order q.p. energy e^s is measured relative to

the chemical potential ^t so that Ck^s = 0. One assumes

that e^^ and its derivatives are continuous across Sf and

one makes the effective mass approximation

-1 W (2.2)

The approximation (2.2) often suffices, since one is

usually interested in q.p. states ks in the immediate

vicinity of Sf (since T < Tf). The term involving
f^l^,

represents the energy of interaction between quasi-par-

ticles. This function and m* are considered to be

parameters to be determined from experiment or to be

roughly estimated from a more fundamental theory.

Landau argued that if one views the quasi-particles

as being described by wave packets whose extent is

large compared to the wavelength of a q.p. at the Fermi

surface (Xf ~ 27r/A:/.- ~ 10"*^ cm in metals) then one can

define a distribution function 8nus{r, t){or q.p.'s which

plays the role of the single particle distribution function

/(r,p,f) in kinetic theory. This concept is reasonable as

long as 8ni^{r,t) varies slowly in space (compared to Kf)

and in time (compared to h/ix). By the usual arguments

of kinetic theory one can write down a kinetic (Landau-

Boltzmann) equation for 8n.

dt
Vk- V,8nk.(r, t) - k • Vk8(ek,)

= I{8ni^). (2.3)

J^k and H8nks) are the external force acting on the q.p.

and the colhsion integral respectively, while VrS/lkjis

defined by

V,8Rk.(r, 0 = V>k.(r, t)

+ 8(ek.)2/ki'V>kv(r,0. (2.4)

k's'
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The term ViSnus in (2.4) describes the conventional

streaming flow of q.p.'s familiar from kinetic theory.

The other term, arising from the interactions, may be

viewed as a dragging along of the ground state particles

by the inhomogeneous distribution of quasi-particles,

each q.p. dragging along its own cloud.

Naively, one might guess that the particle current

density J(r,^) at point r may be expressed as

^Vks8nks(r,^). This is not true, but rather

J(r, 0 =2 Vk,8/ik.(r, 0

k's'

8«k.(r, 0. (2.5)

The \8n term represents the current of the quasi-parti-

cle, while the term involving /represents the current of

the ground state particles being "dragged along" with

the q.p. It is clear from the kinetic equation (2.3) that

this definition is correct since the continuity equation

dt

is satisfied by J if we use the fact that

p = Po + ^8nt^^ir, t).

(2.6)

(2.7)

ki

Roughly speaking /kk behaves like a velocity depen-

dent potential acting on particles in k andk'. A change

in duks acts on the particle in k's' like a vector potential

would, and induces a current even though the k'

wavefunction does not change, hke the Meissner effect

in a superconductor.

3. Quasi-Particles in Metals

The above picture is suitable for a system like He^

which is translationally invariant in its ground state and

has only the Fermion degrees of freedom. Metals are

clearly different: they are invariant only under the

translation group of the crystal lattice and have lattice

vibrations as well as electronic degrees of freedom.

How much of the Landau picture survives? The "non-

interacting system" is presumably now the IPA in which

the Coulomb interactions between electrons are treated

in the mean field approximation. In this case the one

particle states are labelled by a wave vector k
(restricted to the first BriUouin zone), a band index n

and the spin 5. We lump n and k together for now.

There is a sharp Fermi surface at T = 0 and excited

states are given by the usual electron and hole excita-

tions. Since the Coulomb interaction has fuU transla-

tion invariance, k remains a good quantum number to

describe the quasi-particles, although the ground state

of the actual system may be the transform of some
excited state of the IPA system, due to changes in

shape of the Fermi surface. Luttinger and Nozieres [2]

have shown to aU orders in perturbation theory that the

volume ofk space inside remains fixed, as it must for

the Landau picture to make sense. The energy expres-

sion (2.1) still holds but /^^' is in general a function hav-

ing only the symmetry of the crystal, rather than full the

rotational symmetry present for say He'^. The effective

mass expression for Vk still holds except is in

general a second rank tensor having only the symmetry

of the crystal. If the crystalline anisotropy of m* and

/

are very weak (as for Na) then the identity

m l+F\

m
(3.1)

relating the effective mass ratio and the spin symmetric

I — 1 term Fi* in a Legendre polynomial expansion of

f^(. for a true Fermi liquid is valid. Here, if MO) is the

density of single particle states of one spin orientation

at the Fermi surface, then

and

Ff=/v(o)iyM +/ti]

fii.=t,fr'Pi(cos kk').

(=0

(3.2)

(3.3)

Thus, for nearly free electron metals the low tempera-

ture electronic specific heat, i.e. m*jm, determines Fi.

Other pieces of information about yj^^' can be extracted

from other experiments such as the anomalous skin ef-

fect, Azbel-Kaner cyclotron resonance, de Haas van

Alphen effect, dynamic magnetic susceptibility, etc.

Presumably the // drop off rapidly with increasing / so

only / = 0, 1 and perhaps 2 need be retained. For non-

free electron metals, it appears that the anisotropy of/

is so large that unravelling this function will be quite in-

volved. However, we know that the transport and the

dHvA measurements have already given us a great deal

of information about 1/m* in complex metals. When
combined with band structure calculations these meas-

urements give information on the many-body effects

in these systems. As we mentioned earlier, most of the

m*lm effect is due to the phonons, for which a

reasonably good first principles calculation is becoming

possible, in many metals. A careful comparison here

would provide an important check on the approxima-

tion of band theory and of the approximate methods

presently used in many-body theory.
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Another problem is that the phonons comphcate the

kinetic equation and the current density expression,

since the phonons carry momentum and energy. The

necessary generalizations of the Landau theory have

been worked by Prange and Kadanoff [5] , although we

do not have time to discuss these questions here.

4. Green's Function Picture of Quasi-Particle

An alternative way of viewing quasi-particles, which

is more general than the Landau theory, is through the

Green's function scheme of many-body theory

[3,4.6,7]. Suppose that an interacting system of A'^

electrons is initially prepared to be in its exact ground

state, |0, A^). If c+ creates a (bare) Bloch electron in

state ks, then we desire the probability distribution

Pks [E) of the energy for the 1 particle state <t>W+ 1

defined by

(4.1)

In general, <J) is not an eigenstate of the full Hamiltoni-

an so that <E> does not have a sharply defined energy, i.e.

PujE) is not a delta function. The rules of quantum

mechanics tell us that if the states |n, + 1) are the

exact energy eigenstates of the A'^ + 1 particle problem

then

PusiE) = J^\
{n,N+l \ct\ 0,N) \^8iE

[E^^^'-E^,]+fi) (4.2)

'd{E

(4.4)

plus a background continuum which in general has a

rather smooth behavior, as sketched in figure 1 for k
just above the Fermi surface. The half-width of the

peak Fk.,, gives the intrinsic decay rate of the quasi-par-

ticle according to I/tu., = ITuslh. Perturbation theoretic

arguments show that F goes to zero as e^^^ for e^, <^ yu, so

that the fractional width (or the reciprocal of the

particle) varies as eio, showing the quasi-particle to be

a well defined excitation near the Fermi surface. To

complete the story, one considers hole states defined

by

(4.5)

-^3'] + At),

Like ^'^i^', is not an eigenstate of energy for the

interacting system. Thus, the probability distribution

ofE for the hole state, which is defined by

PUE)=^\{n,N-l\^lr^)\'

8(£+[^;r'-£,f]+i^)

= 2Kn,A^-l|c^|0,A^)M

8{E+[E;!'-'-En+l^)

(4.6)

is not a delta function in general. Note the change of

sign of the excitation energy term in the delta functions

appearing in (4.2) and (4.6). This ensures that at

zero temperature the holes have negative energy and

electrons have positive energy. Within the IPA, ^^-i

is an eigenstate of H and Pl^'^{E) given by

where the En^'^ are the energy eigenvalues of the

many-body system. Within the IPA, Pks(E) is a delta

function, since creates a Bloch state electron,

which by definition is an exact single particle eigen-

state of energy e^^. Thus, for the independent particle

approximation (IPA)

PZHE)-
S(^-6j

0
ki
<0. (4.3)

Clearly, according to the Pauli Principle P is zero if one

tries to add a particle to an already filled state, e^^ < 0.

For the interacting system, P will be a complicated

(positive) function of E in general, whose shape depends

on the value of hs. The essential point is that if k is

slightly above the Fermi surface, Pks{E) will consist of

a narrow high peak centered about a "quasi-particle

energy,"

ks ^k.<0.
(4.7)

For the interacting system, if ks is just below the Fermi

surface, a narrow, high "quasi-hole" peak centered

about eus appears in Pi^(E), with a continuum

background again occurring as sketched in figure 2.

The quasi-hole and quasi-electron energies presumably

k > kp

^
0

Figure 1. Probability distribution Pks{E)for a "quasi-particle"

corresponding to a bare Bloch state ksfor k > kf

.
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Figure 2. Probability distribution P((.s(E)/or a "quasi-hole" state

with k < kf.

join on smoothly at the Fermi surface so that m* is con-

tinuous across 5f.

At nonzero temperature, one makes a statistically

weighted average over initial states, rather than con-

sidering only the ground state |0, A'^). In this case the

electron and hole probabiHty distributions overlap, in

that they are both nonzero for E > 0 and for < 0. The

overlapping corresponds to creating or destroying ther-

mally excited quasi-particles, amongst other things.

From the Fermi statistics of electrons, there follows the

rigorous sum rule

[P^{E)+PaE)]dE=l. (4.8)

One advantage of the Green's function description is

that it allows the concept of quasi-particles to be use-

fully extended to systems which are not related by an

adiabatic transform or by perturbation theory to the

noninteracting states. For example, in a superconduc-

tor, (E) shows at low temperature a sharp peak at

the "quasi-particle" energy

^ = ^k.= ViI+^, (4.9)

while Pks(E) shows a sharp peak at £' = —Eks as

sketched in figure 3. In addition, P and P show

background continua Hke in the normal metal. Note

however that as k approaches the Fermi surface there

is an energy gap between the quasi-hole and quasi-elec-

tron peaks, the gap being 2Au^, as is well known from

the pairing theory. Thus a minimum energy 2Ak, is

required to make a single-particle excitation in a super-

conductor (i.e. creation of a quasi electron-hole pair).

We should mention that the "background con-

tinuum" mentioned above corresponds physically to

the creation of more complicated excitations, such as

a quasi-particle plus electron-hole pairs, phonons,

plasmons, e?c. Generally these extra excitations are not

strongly coupled together and therefore an incoherent

(smooth) continuum appears. In special cases, how-

FlGURE 3. Pas(E) and Pas(E) for a superconductor showing ia) sharp

peak at E = Ea-s in Pa-s(E) and (6) peak in P^slE) at E = — E/,-,,.

ever, resonant scatterings states of the excitations can

appear, an example being the quasi-bound state of a

hole and a plasmon, as Hedin et al. [8] have discussed.

There is a great deal more one should say about

quasi-particles. The interested reader can follow the

story further in the books mentioned above and the

references contained therein. It is the present author's

view that a clearer physical picture of such questions

as "drag currents," "back flow." "screening," quasi-

particle interactions (both forward and nonforward

scattering amplitudes), particularly in real metals,

deserve careful attention in the future.
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Discussion on "What is a Quasi-Particle?" by J. R. Schrieffer (University of Pennsylvania)

H. Ehrenreich (Harvard): I was wondering just how

far above the Fermi surface one can go before things

really go bad?

J. R. Schrieffer (Univ. of Pennsylvania): I believe

that the perturbation theory shows that, depending on

the density of the particles, one can get high up into the

spectrum and still have reasonably well defined quasi-

particles. Calculations have been made, for example,

for a free electron gas, of the damping as a function of

the excitation energy. While the pair production cross-

section starts up as the square of the excitation energy

for a very fast particle there is a very different form for

the level width, and dep^ding upon the density, it can

be that you never get into the region where the quasi-

particle width is broader than the actual excitation

energy.

L. N, Cooper (Broivn Univ.): Assuming that the ex-

citations of the Fermi level are in one-to-one correspon-

dence with free particle excitations, what kind of ex

perimental result could be said to contradict (or not be

explainable) by the Landau theory?

J. R. Schrieffer ff/niv. of Pennsylvania): If the low

temperature specific heat turned out not to go linearly

with temperature, but rather had a form T logT, for ex-

ample.

L. N. Cooper (Brown Univ.): That would mean that

the excitations were not in one-to-one correspondence

with independent particles. Presumably it has to be

something in the interaction term that goes wrong. I

was just wondering what kind of a result would force

you to the conclusion that you couldn't find an interac-

tion which was consistent with observations.

J. R. Schrieffer (Univ. of Pennsylvania): The reason

I had pulled in the T log T is that it is one deviation.

Presumably, if the collision cross-section or damping

rate did not vary at low energy according to e^, which is

a rigorous prediction based on the Landau concepts,

let's say it varied in a more singular way, e.g., as log

e, for example, then that would violate the Landau

theory.
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Beyond the One-Electron Approximation: Density
of States for Interacting Electrons'^

L. Hedin, B. I. Lundqvist, and S. Lundqvist

Chalmers University of Technology, Gbteborg, Sweden

The concept "density of states" can be given many different meanings when we go beyond the one-

electron approximation. In this survey we concentrate on the definition tied to excitation processes,

where one electron is added or removed from the solid. We discuss the one-particle spectral function for

conduction and core electrons in metals, how it can be approximately calculated, and how it can be re-

lated to different types of experiments like x-ray photoemission, x-ray emission and absorption,

photoemission and optical absorption in the ultraviolet, and the Compton effect. We also discuss the

form of the exchange-correlation potential for use in band structure calculations.

Key words: Density of states; interacting electrons; one-particle Green function; oscillator

strengths; quasi particle density of states; x-ray emission and absorption.

1. Introduction

In the one-electron approximation the concept "elec-

tronic density of states" is unique and simple and is

defined by the formula

(1)

where e; denotes the single-particle energies. Similarly

the optical density of states is given by the joint density

of state for electrons and holes, thus

N2{oj) =^ 6(w-ef+ef). (2)

These functions only describe the cruder aspects of

experiments such as soft x-ray emission or optical ab-

sorption. They must be augmented with the proper

oscillator strengths, which provide important selection

rules and as well give rise to deviations from the density

of state curves.

When one goes beyond the one-electron approxima-

tion and considers interactions not included in a self-

consistent field theory the situation becomes non-trivial

and one encounters a wide variety of density of states

* An invited paper presented at the 3d Materials Research Symposium, Electronic Density

ofStates, November 3-6, 1969, Gaithersburg, Md.

functions. The quantity which is most easy to define is

the true density of states of the fully interacting

systems

(3)

where En are the energy levels of the system. Although

being a key quantity in thermodynamics it is of no use

for the description for e.g. optical, x-ray or energy loss

spectra. We rather need the proper extensions of eqs

(1) and (2) to describe one- and two-electron properties

of the system. A particularly simple case is that of parti-

cles having a Lorentzian energy distribution

1

The density of states is then given by

(4)

(5)

In cases where the line width Fa- is small compared with

the width of the band, the formulas (5) and (1) obviously

will give similar results.

The simple case just mentioned does not really carry

us beyond the one-electron theory. We have in the

general case to abandon a concept based on single-par-

ticle levels and instead use distribution functions or
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spectral densities of which the function Ai; (<w) given

above is a simple and almost trivial case. Such distribu-

tion functions include the proper oscillator strengths,

and they refer to formally exact many-electron states,

properly weighted according to the physical process

considered. They are closely related to correlation

functions and Green functions. An example is the

density-density correlation function {p{rt)p{r't'))

,

which correlates density fluctuations at different times

and different positions. This function is of basic im-

portance for describing optical experiments and energy

loss spectra. Unfortunately it is very difficult to analyze

its structure and we will here instead concentrate on a

simpler entity, the one-particle Green function and its

associated spectral function [ 1]

.

The one-particle spectral function is a generaUzation

of the usual density of states Niio)). It gives an asymp-

totically exact description of x-ray photoemission, is

connected with x-ray emission and absorption and also

has some relevance for uv photoemission and absorp-

tion.

It is, however, not capable to describe edge effects in

general, and does not at all account for final state or

particle-hole interactions. Such effects, which in their

simplest form are described by A^2(aj) or generalizations

therefrom provide intricate problems upon which we

shall only briefly touch here. These questions will be

taken up in detail in the lecture by Mahan.

It has recently been noticed that the one-electron

spectral function should exhibit some marked and

strong structure. This structure is primarily associated

with the interaction between the electron and plasmon

excitations. It should be quite important in x-ray

photoemission, influencing the line shape of the core

electron peak and giving low energy satellites both to

the core electron and conduction band structures. It is

important in x-ray emission and absorption spectra

showing up at the threshold, and giving rise to satellite

structures. Its effect may also be noticeable in uv

photoemission and optical absorption spectra.

We should also mention the structure in the one-elec-

tron spectrum caused by coupling to phonons. This

structure is limited to a region of the order of the Debye
energy around the Fermi level, but in that region it is

quite pronounced, causing e.g. the well-known

enhancement of the quasi particle density of states.

In the next section we wiU discuss the connections

between the one-electron spectrum and x-ray

photoemission, and with x-ray emission and absorption.

In section 3 we discuss the spectrum of the conduction

electrons from calculations to lowest order in the

dynamic interaction between the electrons and

between the electrons and phonons.

In section 4 we take up the core electron spectrum

and discuss calculations to first order in the dynamic

interaction with the valence electrons. We also survey

the recent work by Langreth who obtained the exact

solution to an important model problem. In section 5 we

give a qualitative discussion of some experimental

results for photon absorption and emission, photoemis-

sion and Compton scattering. In section 6 finally we

give some concluding remarks.

2. The One-Electron Density of States in an
Interacting System and its Connection with X-

Ray Photoemission and with X-Ray Emission

and Absorption

In this section we introduce some theoretical techni-

calities, which however seem unavoidable in order to

establish a firm connection between theory and experi-

ment.

The one-electron spectral weight function is defined

as

^(x,x'; a;) = XA(x)//(x')8(a>-e.). (6)

s

In the independent-particle approximation the quan-

tities fs and es are the one-electron wave functions and

energies. In an interacting system the oscillator

strength function fs is defined as

fM = {N-l,s\^U)\N}, (7)

where i/;(x) is the electron field operator. It gives the

probability amplitude for reaching an excited state

|A^— 1,5) , when an electron is suddenly removed from

the ground state lA'^) . The quantity is the excitation

energy

es= EiN)-E{N-l,s). (8)

These definitions apply for co in eq (6) smaller than

the chemical potential fx. For a> larger than p., states

with A'^^^ 1 particles are involved.

In applications of the theory it is often practical to

represent the spectral function as a matrix in a space

spanned by some suitable complete orthonormal set of

single-particle states ^a(x), thus

Akk'{o}) = j u^U)A{jL, x'; w)«fc'(x')tfxdx'

= ;^(iV|a+ \N-l,s) (N
s

-l,s\ak\N)8i(o-es). (9)
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The spectral weight function is the general distribution

function describing one-electron properties, and is a

generalization of the one-electron density matrix, which

is obtained after an integration over the frequencies.

Distributions with respect to a single variable are in the

usual way obtained by summation over all other varia-

bles. Thus, the one-electron density of states is defined

as

(10)

As indicated, the definition is independent of the

choice of matrix basis.

The spectral weight function is a key quantity in the

Green function formulation of the many-electron

problem. A more detailed account is given in many
texts, e.g. in sections 9 and 10 of ref. [ 1]

.

We next discuss the particular cases of x-ray

photoemission and soft x-ray emission, where approxi-

mate reductions to the one-electron spectrum can be

made.

In the x-ray photoemission experiment (XPS), an

energetic photon of energy &j is absorbed, exciting a

photoelectron which leaves the system. If the electron

has a large enough energy we can write the final state

as

1^/ )=a:\N-l,s ), (11)

where k refers to a Bloch wave function of energy ~

^^kV(2m), describing the photoelectron. The probabili-

ty of this event is, by the Golden rule.

W ^\{%\p\^^)m<o-Ef+Ei)

^ KA^-l, s\a^ 2pa-'a-«J. a,\N)\^8i(o-€,+ €s), (12)

A-,A-'

where P is the total momentum and Paa' the momentum
matrix element. For a fast electron, which is outside the

region of ground state fluctuations, a^lTV) = 0, and the

expression for W reduces to

W-^\{N-1,s\2p^^ a,\N) |26(c..-e. + 6.)
K, s A

(13)
K A,A'

The energy distribution of photoelectrons is hence

given by

(14)

k,k'

taking e^^e. Using an average momentum matrix ele-

ment and neglecting nondiagonal terms in A we obtain

the simple result

/(e) ~ V^pyN(e-co). (15)

The neglect of nondiagonal terms should be a good

approximation if the one-electron functions are care-

fully chosen Bloch functions and core-electron func-

tions. We note that if the electron is ejected from a core

level and if we neglect excitations of the core electron

system, the operator oa in eq (13) must destroy a core

electron (ak= ac), giving

W-Y\{N*,s\N,)p^^ |2S(co-e« + 6.). (16)

Here \Nv) denotes the ground state of the valence elec-

tron system, and \N*, s) are excited states in the

presence of the core hole. We recognize eq (16) as the

result in the sudden approximation.

We next turn to soft x-ray emission. In this case we
may write the initial state as [2]

\^,} = ac\N*) (17)

where the star on A'^ indicates that the valence electron

system is relaxed towards the core hole. Applying the

Golden rule again we have for the x-ray intensity

I{co) ~ CO 2 I
( ^/l 2 Pk'kaj^,a,ac\N* ) p.

/ kh-'

8{(o-Ei-hEf)

= oj^\ { N,-l, s\J^ pckOklN* }\-'8{(o+ ec-es).

" (18)

If we could neglect the relaxation effects in the initial

state and replace |A*) by \Nr) , we would again have

the spectral function A involved. The relaxation effects

can be accounted for in an approximate way by only

considering particle-hole excitations, thus

(19)
h.p

Insertion of this expression in eq (18) leads after some

further approximations to a very simple expression

I{co)~wJ^ |p^ff|MAA(a;+ec): (20)

where p*"^ involves the coefficients a and is w-depen-

dent. Such an approximation is however invalid at the

Fermi edge, where, as Anderson [3] has pointed out,

we need an infinite number of particle-hole pairs to

represent |A*).
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The edge problem has recently been treated by sev-

eral people [4— 6]. We choose here to give a brief ac-

count of Langreth's version [6] of Nozieres; and de

Dominicis' (ND) treatment of the problem in order to

show how the one-electron spectrum enters the

problem. The basic quantity needed for the evaluation

of eq (18) is the correlation function

F,,At)= ( N*\T{a,it)at.,ac{t)a+)\N* ). (21)

To evaluate that function ND study the multiple time

function

F.kAt, t'- t, t')

=
{ N*\T{a,{T)atAr')ac(t)a^it')\N* ). (22)

The simple way, in which the core state operator en-

ters their model Hamiltonian, causes the equation of

motion for F to close onto itself and allows a solution as

a product,

Fi,k'{T,T';t,t')=(f)k,,{ry:t,t') Gc{t,t') (23)

where Gc is the core electron Green function,

GAt,t')= {N*\T{ac{t)a^{t'))\N* ) (24)

and (j) ^ valence electron Green function which obeys

an equation with a transient potential from the core

hole. The x-ray spectrum is given by a convolution of

the core and valence electron spectra. Both spectra are

singular at the edge as a power law and so is also the

resulting convolution.

The point in keeping the operator ac in eq (22) is that

the time dependence of ak(t) then can be given by the

same Hamiltonian as that used for lA'^*), while when

studying {N*\T(aK(tjak''^)\Nv) , the time evolution of

ak(t) is given by a Hamiltonian that does not include the

potential from the core hole, and thus the usual many-

body techniques do not apply. X-ray absorption can be

described in an analogous manner by the function F,

only replacing |A^*) by |A^).

It should be mentioned that the ND treatment is

based on a model Hamiltonian that does not include in-

teractions between the conduction electrons. This is

quite appropriate for their purposes of treating the edge

problem but is not sufficient for the spectrum far away
from the edge. It is not clear if their treatment can be

extended to the more general case. We then have to

resort to other methods, such as the approximation in

eq (19) or to a frontal attack on the dielectric function

itself [7].

We have in this section given a definition of the one-

electron density of states and have indicated its relation

to some measurable quantities. We conclude from this

that a theoretical investigation of this kind of experi-

ments can not avoid the calculation of the one-electron

density of states of interacting electrons, but at the

same time due to a variety of effects there may be es-

sential modifications of the density of states as it ap-

pears in the actual experiment. Explicit results from ap-

proximate calculations of the spectral function A and

the density of states N(o)) are discussed in sections 3

and 4, and the actual comparison with experiment is

made in section 5.

3. One-Electron Spectrum of Conduction
Electrons

The common picture of the one-electron spectra of

solids is obtained from energy band calculations, in

which the Schrodinger equation of independent elec-

trons in a periodic potential is solved. For the different

bands one obtains the electron energy as a function of

wave-vector, e(k). The main contribution to the poten-

tial seen by an electron is the average electrostatic field

or the Hartree field. When going beyond the one-elec-

tron approximation the next step would be to include

dynamical effects of the interaction as well as exchange

effects. Such effects can not be described by an ordina-

ry local potential. A generalized "potential," non-local

in space and time, must be introduced.

Let us for simplicity study the case, where specific

effects of the periodicity are of minor importance, and

assume the distribution of conduction electrons to be

uniform. Due to the non-locality of the generalized

"potential," its Fourier transform to momentum-energy

space will show a dependence on both wave-vector k
and energy e,S (k,e). The quantity 2 is called the se//-

energy of the electron.

Adding the self-energy to the average potential, we

have to solve the equation

e = e(k) + X(k,e). (25)

The self-energy includes all the interactions between

the electron state considered and the system. This

necessarily includes dissipative effects, which lead to

the decay of the state. Consequently the self-energy

must be a complex quantity, thus

S(k,e) = 2Mk,e) + S,(k,e). (26)

The spectral weight function defined in section 2 is re-

lated to the self-energy according to the formula 1, sec-
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tion 1

^(k, e)
_l i_

^ {e-e{k)-^ (k,e))^+(2 (k,e)V.

(27)

In the simple case that the self-energy X is independent

of energy, the spectral function for fixed k will have a

Lorentzian shape and S/ determines the width of the

hne. When S depends on energy there are no a priori

restrictions on the shape of the spectrum.

Most of our present knowledge about the self-energy

has been based on calculations, where vertex cor-

rections have been neglected, i.e. using the formulae

[9-13]

;S
(k,a,) e'"'\;(k')€-Mk',w')Go(k

+ k',(o + oj')dh'dw', (28)

where

Go(k,aj) = (aj-e(k) + i8 sign (k-kp))-' (29)

is the propagator for a non-interacting electron, and

v(k) = 477eVk2 (30)

is the bare Coulomb potential. The constant kp means

the Fermi momentum, and 6 is a positive infinitesimal.

To make connection with another approximation, we
note that the Hartree-Fock approximation corresponds

to the choice e = 1 in eq (28). As it stands, eq (28) ex-

presses the lowest order coupling to the density fluctua-

tions of the conduction electrons, described by the

wave-vector- and frequency-dependent dielectric func-

tion e(k,aj). This function contains information about

the static screening, given by e(k,0), but also important

effects of the dynamic behavior of the density fluctua-

tions. The typical small-/:-behavior of the spectral func-

tion for this kind of excitations, — Im e~'(k,ct)), is in-

dicated in figure 1. The clearcut classification of the ex-

citations into electron-hole pairs and plasmons is

characteristic for the Linearized Time dependent Har-

tree (LTH) or Random Phase Approximation [14]. For

small wave-lengths the electron-hole pair excitations

become of increasing importance, while in the k^ 0-

limit the plasmon exhausts completely the sum rule for

Im e"\ i.e. it is the only excitation. The latter property

follows from general arguments about charge conserva-

tion and translation invariance [8, p. 288] , and should

be valid for any useful approximation for e(k,a»). In the

-Im

r^iusmon
peak

Electron -hole
' pairs

(jJp + oCq^

Figure 1. Qualitative behavior ofIm e ' {q,(o)for small q.

LTH approximation the plasmon is undamped for

wave-numbers smaller than a critical value Ac which at

metallic densities is of the same order of magnitude as

kp.

A great part of the literature about the electron gas

is devoted to the search for an improved dielectric func-

tion [15 — 20] , particularly because of the failure of the

LTH formula to describe interaction effects at short

distances. The last word remains to be said in this

question, but it is interesting to note the relative insen-

sibility of the self-energy to the choice of dielectric

function [11,12,21]. An approximation, which has

proved to be most useful, is to take a plasmon-like

sharp absorption for all k according to the formula

e-Hk, oj) = l.+
(J)-

(31)

where o)p is the classical plasma frequency and aj(k) the

resonance frequency at wave number k. The frequency

a)(k) reduces to (Op when |k|^0 and is proportional to

|k|'- for large |k|. This formula correctly represents the

small and large w-Hmits and gives a quite reasonable in-

terpolation for intermediate oj values [1, 1]. With

this choice one can perform the frequency integration

in eq (28) and obtain

2 (k,a,)

(27r)3

1
d^q

d^q

viq)noik+ q)

e(q, e{u + q) -co]

1

(277)

v((l)

2a)(q) OJ — e(h + q) — aj(q)
(32)

The first term in eq (32) is a screened exchange poten-

tial, rao(k) being the momentum distribution for inde-

pendent electrons, and the second term describes the

correlation hole around the electron [ 12,22]

.

Because of the plasma resonance in the dielectric

function there will be a rapid variation in the real part
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Figure 2. The self-energyl. and the corresponding spectralfunction

Afor r.s = 5 [21] . The crossings between the Re S curves and the

straight lines give the solutions to the Dyson equation. The numbers at

the peaks indicate the strengths ofthe lines.

of X at the frequency o) = e(k) + cop for electrons and at

o) — e(k) — (Of, for holes. This behavior of the electron

gas seems to have been first noticed and discussed by

Hedin et al. [23] and has been studied in great detail

by Lundqvist [13,21]. Typical curves for S obtained

with this dielectric function are shown in the upper half

of figure 2. In the lower part of figure 2 we have given

the results for ^(k,a;) calculated from eq (27).

For k = kp there is only one strong peak in the spec-

tral function, corresponding to the usual quasi particle.

For the other /c-values in the figure, we find three solu-

tions of the Dyson equation

a;= e(k) +Sfl(k,(i;). (33)

but a broad resonance with a sharp onset at oi = e(k) +

Figure 3 illustrates how the parabolic quasi particle

dispersion law is accompanied by a second branch of

the spectrum, the plasmaron. In figure 4 the momen-

tum distribution function for the interacting electrons

is given.

The characteristic structure due to plasmon effects

will modify the density of states. This is demonstrated

schematically in figure 5. The conduction band will

retain approximately its paraboUc shape. At an energy

(Op below the Fermi edge there is the onset of the

second band due to the plasmaron states. This band is

terminated at low energies with a rather distinct edge.

For unoccupied states there is an extra contribution to

the density of states starting at an energy oip above the

Fermi level. Figure 6 gives a survey of the density of

state curves at four different values of the electron gas

parameter Ts (r^ = 2 corresponding roughly to the elec-

tron density of Al, and Vg= 4 to that of Na).

So far we have discussed the gross effects due to the

coupling between electrons and plasmons. These are

quite well represented by the plasmon-pole approxima-

tion for the dielectric function in eq (31). Electron-hole

pair excitations are however not included, to represent

One of them, however, falls at oj = e(k) ± Wp, where the

damping is very strong, and therefore this solution is ef-

fectively suppressed. Of the two remaining solutions,

one corresponds to the usual quasi particle, i.e. a bare

electron surrounded by a cloud of virtual plasmons and

electron-hole excitations. For hole states, i.e. for A: < kp,

a new state appears which has an energy lower than

that corresponding to a hole plus a plasmon, i.e. €(k)—
ojp. This result from a low order treatment corresponds

to a coherent state of hole-plasmon pairs, and may be

thought of as holes coupled to real plasmons. This cou-

pled state, which has been called a plasmaron, has a

large oscillator strength, and thus gives an essential

contribution to the sum rule for the one-electron spec-

trum. For electron states, k > kp, there is no sharp state
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Figure 4. The momentum distribution function n(k) at Ts= 2, 3, 4 and

5 [13].

One-electron approximation

Plasmon edge Fermi edge

Figure 5. Density ofstatesfor conduction electrons.

them we must turn to the LTH dielectric function or

higher approximations. These excitations are responsi-

ble for the broadening of the quasi particle peak and

the Auger tail at the bottom of the main band in figures

5 and 6 as well as the broad spectral weight contours in

figure 3.

Figure 7 shows S/(k,e(k)) calculated from eq (28) and

is an indication of the high damping rate for quasi parti-

cles with k greater than kf + kc. i.e., in the region where

they can decay into plasmons [10,24]. However, as il-

lustrated by the typical spectral forms for the quasi par-

ticle peak in figure 8, the quasi particle peak is always

distinguishable from the spectral background, its width

r(k) is smaller than its excitation energy £'(k) — /x.

From eq (28) one can also draw information about the

exchange and correlation "potential" for the quasi par-

ticles. The inadequacy of the Hartree-Fock approxima-

tion in a metal is well-known, and in band calculations

the effects of exchange and correlation are commonly

simulated by using a local potential, such as the Slater

[25] or the Caspar [26,27] expressions. After solving

the Dyson equation one can write the resulting quasi-

£(k) = e(k)-f r(k), (34)

where Vfk.) can be interpreted as an effective exchange

and correlation potential. In figure 9 such a potential is

shown. It has a remarkably weak /c-dependence for

moderate wave vectors, its value lying roughly halfway

between the Slater [25] and "2/3 Slater" values

[26,27].

One of the shortcomings of the Hartree-Fock approx-

imation is its prediction of a large bandwidth. The
width of the occupied part of the main band deduced

from eq (28) is practically the same as the Hartree value

eikp), a result which is in accord with the experimental

findings.

For large momenta {k ^ kp -\- kc) there is a charac-

teristic A;-dependence of F(k), which might influence

properties of electrons involved in photoemission and

Figure 6. The density ofstates for the values of the electron gas

parameter rs= 2, 3, 4, 5. The dashed curve is the result of the one-

electron theory, and the vertical broken line indicates the Fermi level

[13].

/.5

k/kr

Figure 7. The imaginary part ofthe quasi-particle self-energy Im

2(k,e(k))/Ef as afunction ofthe momentum k of the electron at

different metallic densities (Ef= 0.921, 0.409, 0.230, andO.147 Ryat

Ts= 2,3,4 and 5, respectively). The dashed curve is Quinn's result at

r,= 2 [10,13].
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LEED experiments. It is not clear, however, how much
of this structure that may be observed due to the short-

hfetime of the electrons at these energies.

We want to stress again that the discussion we have

given of the one-electron spectrum is based on the as-

sumption that vertex corrections are small. As

discussed in the next section recent work by Langreth

[29] shows that vertex corrections in the core electron

problem can have a quite large effect on the form of

satellite structures, while their effect on the quasi parti-

cle properties seems to be small. Preliminary investiga-

tions by one of us (L.H.) show similar strong vertex ef-

fects on the conduction band satellite. The details of

the plasmaron structure should thus not be taken very

seriously.

The quasi particle states close to the Fermi surface

are of particular interest due to their importance for

thermal and transport properties [30]. To study these

problems the quasi particle density of states or density

of levels rather than the one-electron density of states

is of importance. Because of interactions the quasi-par-

ticle dispersion law is distorted, corresponding to the

well-known mass enhancement at the Fermi surface.

The corrections to the free-electron mass m due to the

electron-electron interaction, as derived from eq (28),

are small [11,12], e.g. Smelm ~— .01 for AI and dnielm

~ .06 for Na, and the properties of the quasi particles

close to the Fermi surface are dominated by the elec-

tron-phonon interaction.

The effects of the electron-phonon interaction on the

quasi-particle dispersion law foUow in a straightforward

way using perturbation theory in the Brillouin-Wigner

form, thus

l-/p
£{k)=e(k) + 2|gu-

+

^(k)

/p

£(k)-e(p)+co(k-p)

e(p) -aj(k-p)

(35)

In this equation gk-p is the matrix element for the elec-

tron-phonon coupling and fo)(k— p) the phonon frequen-

cy.

The qualitative effect of the phonons is to flatten out

the dispersion curve in the immediate neighborhood of

the Fermi surface, and this gives rise to the enhance-

ment of the density of states (fig. 10), or, equivalently,

of the thermal effective mass and one obtains from eq

(35)

mph = m (1 + A.)

dn p-k \gp-k:

477 a)(p — k)' (36)

where No(Ef) is the density of states without electron-

phonon interaction, |p| = |k| = kp and the integration

extends over the full solid angle.

Ashcroft and Wilkins [32] first calculated the cor-

rections for Na, Al and Pb using eq (36), and several

similar calculations have been published over the last

V(k)/ 0

-1 -

-2

"2/3-Slater"

Slater

k/k.

Figure 9. Exchange-correlation potentialfor an electron gas at Ts=

4 compared with the Slater and the Caspar (213 Slater) approximations

[28].
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few years. The most accurate values of \ are those

deduced from tunnehng data by McMillan and Rowell

[33]. For example, the two methods give the values A.

= 0.49 and 0.38, respectively, for Al; \ = 1.05 and 1.3,

respectively, for Pb.

It is obvious that the enhancement varies with tem-

perature and that no enhancement is left at high tem-

peratures, where the phonon system behaves like a

fluctuating classical medium.

Similarly to the case of electron-electron interaction

the electron-phonon interaction gives a characteristic

structure to the spectral function. Engelsberg and

Schrieffer [34] pointed out that in the neighborhood of

the Fermi surface the quasi particle picture will no

longer apply. They calculated the spectral function for

an Einstein model and for a Debye spectrum and ob-

tained a spectral function with a very complex struc-

ture in the region close to the Fermi surface. For sodi-

um no dramatic effects occur because of the rather

weak electron-phonon interaction [31]

.

We conclude this section by noting that inclusion of

dynamical and exchange effects, in particular con-

sideration of the electron-electron interaction tells us

why the one-electron theory works so well in explaining

many gross features of metals and what limitations it

has. However, at least in a low-order treatment there

are also new structures introduced by the interaction,

schematically characterized as due to the resonant

coupling between electrons and plasmons. In section 5

we will discuss possibilities to observe this structure.

4. One-Electron Spectrum of Core Electrons

The preceding discussion has emphasized the strong

effects of the electron-plasmon coupling on the spec-

trum of conduction electrons. Similar strong effects

occur in the spectra of core electrons. For simplicity we

limit the discussion to simple metals with small cores,

so that the core electrons can be physically distin-

guished from the valence electrons and be well local-

ized to a particular ion. The wave function of a core

electron depends only weakly on the state of the outer

electrons. The energy levels on the other hand are

shifted by an appreciable amount compared to the cor-

responding atomic levels, typically of the order of 5 to

10 eV, which is large on the scale of valence electron

energies but is a small relative change in the energy of

a core electron. The core shifts can be measured accu-

rately by the method of x-ray photoemission spectrosco-

py as well as by x-ray absorption and inelastic scatter-

ing of fast electrons.

The shift of the quasi particle energy of a core elec-

tron comes partly from changes in the average Cou-

lomb field, partly from polarization effects. The

Coulomb shift is due to the different valence charge dis-

tribution relative, to that in a free atom. It generally

results in a decrease of the binding energy. The

polarization shift comes from the relaxation of the

valence charge distribution around the hole created

when we remove the electron. The valence electrons

are drawn in towards the positive hole in the ion. This

effect decreases the binding energy by half of the

change in the Coulomb potential calculated at the core

site, i.e. precisely the amount obtained if we calculate

the self-energy of the hole using electrostatics. The

shift in the core energy thus contains information about

the valence electron distribution and polarizability,

measured with the core electron as a probe. Theoretical

calculations for simple metals (Li, Na, K, Al) are in very

good agreement with the experimentally observed

peaks in the XPS spectra [35]

.

In analogy with the strong effects of the interaction

between particles and plasmons previously discussed,

there is a corresponding coupling between a hole in the

core and the density fluctuations of the conduction

electrons. This leads to a strong structure in the core

electron spectrum [36]

.

We assume for simplicity that we can neglect the

spatial extension of the core electron wave function.

Calculation of the self-energy to lowest order in the

screened interaction gives the formula

2(^)=--(^ / d'qdo,^{q)[e-Hq,o>)-n

1

e + 6„ + 18
(37)

where e„ is the core quasi-particle energy. Remember-

ing that €~^(q, co) has a strong resonance in the plasmon

regime, we see that after integration over the frequen-

cy, the self-energy will show a resonance behavior in

the energy region e — en — • This rapid variation will

give rise to two solutions of the Dyson equation. The
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Figure 11. Quasi-particle peak in the spectralfunctionfor a core

electron and the associate plasmon satellite structure for different

densities of the conduction electrons, measured by the electron gas

parameter r, [36]

.

second solution, however, gives a quite broad peak in

the spectral function. The results for different densities

of the electron gas are illustrated in figure 11. The spec-

trum is measured from the shifted quasi particle ener-

gy, i.e. the zero of energy corresponds to complete

relaxation of the electrons around the hole.

We summarize the characteristic features of the core

spectrum

a. A large polarization shift of the core quasi parti-

cle level.

b. The shape of the spectrum is independent of

the core level considered. This results from

neglecting the actual size of the core wave

function.

c. A pronounced satellite structure, which starts

at ft) = — (Op and has a broad peak.

d. An extended tail on the low energy side of the

quasi-particle peak. This tail is due to the

coupling between the hole and screened elec-

tron-hole pair excitations, and corresponds to

states of the whole system involving two holes,

one in the core and one in the conduction band

plus one excited electron above the Fermi sea.

e. There is an appreciable reduction of the spec-

tral strength of the quasi particle. Approxi

mately half of the spectral strength cor

responds to excitations close to the quasi parti

cle state and approximately the same strength

corresponds to high excitations of the conduc-

tion electrons as described by the broad satel-

lite structure.

As discussed in section 2 the spectral function has

the form (cf. eq (16))

Aci(o) = 2 I

(A^*, s\N,) ['8{<o- es) (38)

s

and shows a powerlaw singularity at the Fermi edge.

The first order theory correctly predicts a singularity

but of a somewhat different form, namely (ftjln'^oj)^'.

The core electron spectrum can be obtained exactly

if we use a simple model Hamiltonian

H= €a+a + aa+ ^ gq{bg+btg ) + ^ co.b^bg, (39)

Q Q

Here a+ is the creation operator for a core electron of

energy e and bq^ the creation operator for a plasmon of

energy a)q. The exact solution of this problem has been

given by Langreth [29], and we now give a brief ac-

count of his work, which also shows the close resem-

blance of the problem to the Miissbauer or the impurity-

phonon problem.

The self-energy 2 in this model is given by the sum
of all diagrams where the core electron is dressed with

plasmons (fig. 12). For the true Hamiltonian including

all electron-electron interactions we have the same set

of diagrams, where the plasmon propagator is replaced

by a screened interaction v(q) ((l,oi). Except for the

first diagram the bare Coulomb potential gives no con-

tribution (the hole propagates in only one direction) and

we can thus replace e"^ by (e~' — 1). By choosing the

dielectric function in eq (31) and the coupling

gg' = v(q)(Op^l(2coq), (40)

the plasmon diagrams and the screened interaction dia-

grams become the same. The core Green function

Gc{t)=-i{T{ait)a-{0))} (41)

can be written as (cf. eq (38))

Gc{t) = i{0
I

e'^'
1

0)e-'"d(- 1) (42)

where |0) is the plasmon vacuum state and H is the

Hamiltonian for the plasmon in the presence of the core

Figure 12. Diagramsfor the core electron self-energy.
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hole,

(43)

A canonical transformation shifts the zero point of the

plasmon vibrations, thus

where

A = ^fq{b^ — bq)\ fq= gql(x)q\ Ho = ^(Oqb^bq:
Q Q

Q

We may hence write

(0
I

e'^'
1 0) = {0\e-^e'"oteA\ 0)e~'^^'

= (0|e-^<«'e'^fe'|0)e-''^'',

where

(44)

(45)

(46)

A{t)=e'"o'Ae-'"o'^'^f^{b + e'^q(-bqe-'<-q'). (47)

By applying the well-known formula

gA+B = gA g-ll2[A,B]
^4,3)

repeated times the exact solution follows,

<0
I

e'^'
1

0) = exp ( - AeO exp ^/^ j
exp (^./le'-q'^

This gives for the spectral function (49)

Ac{a>)=-lmGc{(o)=^ e''"-^"(0|e''"|0)(ff
TT 277 J -00

'8(a>-e-Ae) + 2/,-;8((o-e-Ae + a;q)

Figure 13. Comparison of the first order (dotted line) and the exact

result (full curve) for the core spectralfunctionfrom the model

Hamiltonian in eq (39). In this model the quasi-particle peak is a 5-

function. The dashed curve indicates a more realisticform of that

peak. The results areforTs= 4.

2. The oscillator strengths in the satellites are

closely the same.

3. In the exact solution the satellite has two

marked peaks instead of one. and the peaks are

sharper.

The large difference between the first order result

and the exact solution for this model case should be a

warning against taking the details of a low order calcu-

lation too seriously. Knowing the importance of the

higher order diagrams in this case one may ask if not

other higher order diagrams, like those of the paramag-

non problem, may play a role also for the core spec-

trum. Finally, it should be stressed that while the satel-

lite structure may be poorly accounted for in the first

order theory, the position and singular nature of the

quasi particle are quite well represented.

+ ^S/9/9'S(w-e-Ae + aj,+ cu,0+ . . .] (50) 5. Qualitative Discussion of Some Experiments
2- qq' J

To compare the first order results (the first diagram in

fig. 12) with the exact solution we have used the simple

dispersion law (Oq^cap + (in units of the Fermi energy

and the Fermi momentum), which allows an analytic

solution. The result for the electron density of sodium

metal (rs= 4) is given in figure 13.

Since the dielectric function in eq (31) contains no

particle-hole pairs, the quasi particle peak is a 8-func-

tion. A more realistic shape of the peak is indicated in

the figure. The exact solution has structure also at

— 3ctj;^, — 4ajp, etc., which is not shown in the figure.

This structure, however, has weak edges and carries

only a few percent of the oscillator strength.

Comparing the results of the first order calculation

and the exact solution we note:

1. The energy shift Ae is exactly the same.

We shall discuss some different types of experiments

utilizing the connections with the one-electron spec-

trum discussed in section 2 and the results from the ap-

proximate calculations reported in sections 3 and 4. We
can really not put forward much more than guesses

about where many-body effects may possibly occur.

The difficulty is that the predictions by the one-electron

approximation have seldom been worked out in enough

detail to give reliable level densities and matrix ele-

ments, and this knowledge is required both to evaluate

the many-body effects per se as well as to find out how

much of the experimental structure that is accounted

for by the one-electron approximation. Also the experi-

mental data are sometimes not as accurate and reliable

as one would need. Thus surface conditions are often

not under good enough control, background effects are
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l)(>orly known and disturbing secondary effects are not

carefully analyzed and subtracted.

The discussion will neglect the effects of final state

interactions between the electron and hole. This means

that the treatment is a simple extension of the usual

theory for interband transitions in which the density of

states for electrons and holes in band theory is replaced

by the corresponding quantities including many-elec-

tron interactions as illustrated in figures 6, 11, and 13.

Although certainly of restricted validity it seems that

the predictions of such an approach are worthwhile to

summarize.

5.1 . X-Ray Photoemission (XPS)

This experiment has a fairly clearcut relation to the

one-electron spectrum. Ideally the energy distribution

of photoelectrons will be given by eq (15). However, this

equation is valid only if the photoelectrons leave the

solid without being scattered. Structure due to satel-

lites in the density of states will thus be mixed with

structure due to energy losses.

The losses to volume excitations are proportional to

the sample thickness, while the intensity of the satellite

structure in the one-electron spectrum has a definite

relation to the intensity of the quasi particle peak. Thus

by varying the sample thickness one should be able to

separate the two kinds of processes.

Theory predicts an asymmetric form of the core-

quasi particle peak [4,5,6,29,36.37] and sateUite struc-

ture starting at ojp below the main peak. According to

the Langreth model solution there should be two satel-

lites also with an asymmetric line shape (cf. fig. 13),

while the first order theory predicts the satellite in

figure 11. There should be a satellite structure in the

conduction band, as well. Even if the exact shape of

this structure might differ from the results of the low-

order theory discussed in section 3, the total intensity

of the satellite band should be appreciable.

An experimental verification of the many-body struc-

ture would be of great aid for the further development

of the theory. As regards the position of the core levels

there seems to be a good agreement between theory

and experiments but further experimental and theoreti-

cal work on this problem would help to clarify how
point defects polarize and distort their surroundings.

5.2. Soft X-Ray Emission

We consider only the simplest possible case where

we can assume complete relaxation of the Fermi gas

around the hole before the emission takes place. This

limits the approximate validity to the light metallic ele-

ments such as Li, Be, Na, Mg, Al and K and excludes

e.g. all transition metals.

Through the recent work by Nozieres and de

Dominicis and others [4-6] the possibility of a singular

structure at the Fermi edge seems to be well

established. The magnitude of this Fermi edge peak

and the influence of this effect on the intensity at ener-

gies outside the immediate vicinity of the edge is how-

ever so far unsettled, although important progress has

been made [38]. As regards the main band it is clear

that the presence of the core hole will give an enhance-

ment of the intensity [1]. The actual magnitude of this

enhancement factor and its variation over the main

band is so far not well-known. To obtain the one-elec-

tron density of states in the main band from experi-

ments seems to require both careful calculations of

dipole matrix elements and better estimates of the

enhancement factor.

Below the main band the edge for plasmon produc-

tion is well established experimentally [1,39]. The in-

tensity of the satellite structure is strongly affected by
intricate cancellation mechanisms due to the presence

of the core hole and the theoretical predictions are un-

certain. The plasmaron edge (cf. figs. 5 and 6) has been

searched for in Al, but the experiment was not conclu-

sive [40]. As discussed in section 3, it is not clear

whether this edge is a feature of an exact solution of the

problem or just a result of the low order treatment. A
clear experimental confirmation or dismissal would be

of great aid for the further study of these many-body ef-

fects.

5.3. X-Ray Absorption

Consideration of these experiments requires a treat-

ment of final state interactions but in the absence of a

detailed theory for these we shall here take a simple

point of view and treat the structure in the one-electron

spectra as additional levels or groups of levels in a one-

electron scheme. A similar discussion of plasmon ef-

fects in x-ray absorption in metals was given by Ferrell

[41] . Due to the presence of satellite structure in both

core and conduction band spectra there should be a

characteristic structure above the threshold [36]

.

Accurate x-ray absorption spectra for simple metals

have recently [42] been obtained, which show an edge

anomaly very similar to what one may expect from the

Mahan exciton effect [4-6]. The fine structure of the

absorption coefficient for the Lu^n transition in mag-

nesium is shown in figure 14 [43] . Immediately above

the edge there is more detailed structure which
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Figure 14. The fine structure of the absorption coefficientfor the

i^iijii transition in magnesium [43]

.

density. The position of the plasmaron peak should be

given better at higher densities and the discrepancy

with experiment at lower densities is in no way alarm-

ing. More serious is the fact that Langreth's calculation

has shown the higher order effects to be strong. The
strong peak could of course also be due to many-body

effects involving final-state interactions.

5.4. Photoemission in the Ultraviolet

The basic mechanisms of the photoemission process

are still not well understood. It may be regarded in one

extreme as a pure surface effect and in another as a

pure volume effect. In the latter case we have to ac-

count for the very important inelastic scattering effects

of the outgoing photoelectrons. If the surface effects

are not too strong, and if we can sort out the inelasti-

cally scattered electrons, the photoemission results in

the ultraviolet should reflect structure due to the satel-

lite band of the conduction electrons. There is some
hint of such a structure in the recent results for cesium

[46] (fig. 15) at an energy of about 4 eV below the Fermi

edge. However, the structure could also be due to a loss

of two surface plasmons [46]

.

possibly could be due to. ordinary band structure effects

in the final state.

At still higher energies comes a strong peak [43-45]

.

We will argue that this peak may be a many-body ef-

fect. In table 1 we give results for the positions of the

peaks measured from the threshold [43] , and compare

with the position of the core plasmaron peak discussed

in section 3 (cf. fig. 11). There is good agreement for

aluminum but not for the other metals.

The important point, however, is that epeak-liOp is a

very smooth function of the electron density. Actually

its value is closely 0.8 rg in all cases. This indicates that

the peak is associated with properties of the electron

gas rather than being due to oscillator strength effects.

The latter would be connected with the properties of

the ion core and there is then no obvious reason to ex-

pect a regular variation with the conduction electron

Table 1. Position of the strong peak in soft x-ray absorption and

comparison with the location of the satellite peak (Cpm) in

figure 11.

Element rs ^peak •<

Al 2.07 24 1.6 1.7

Mg 2.66 22 2.1 1.8

Na 4.00 18 3.2 2.1

2 3 4 5 6 7

KINETIC ENERGY (eV)

Figure 15. Pkotoelectron energy distribution curves at hai = 10.2 eV

for Na, K, Rb and Cs [46] . The horizontal bars indicate the values of

the surface (lull curve) and volume (dashed) plasmons.
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5.5. Optical Absorption in the Ultraviolet

The description of optical properties of metals in

terms of Drude (see e.g. refs 47,48) and interband con-

tributions is often in qualitative agreement with experi-

ment. To go beyond that description we need to know

the dielectric function including final state interactions.

The many-body effects may show up as changes in in-

tensity and as new structures. Attempts to account for

the former have been made e.g. by Mahan [49], who

considered the contributions from virtually exchanged

plasmons. Absorption caused by electron gas effects

has been considered by Hopfield [50]. He observed

that while the electron gas by itself cannot absorb

radiation the effect of a weak perturbing potential from

phonons or disorder is enough to provide the necessary

momentum conservation for the absorption process and

thus allow the plasmon resonances of the electron gas

to show up.

A straightforward way to extend the one-electron

joint density of states expression is to make a convolu-

tion of the spectral weights of occupied and unoccupied

states. This has been done for semiconductors by Bar-

dasis and Hone [51] who in addition considered vertex

corrections. They obtained improved agreement with

experiment. Calculations for metals by the convolution

approximation indicate the existence of a plasmon-in-

duced structure at photon energies above^^+ wp [52]

,

where Eg is the interband threshold energy. There are

some experimental indications of structure beyond the

ordinary interband absorption in this energy region.

5.6. The Compton Effect

X-ray scattering from an electron gas in the regime

of large momentum transfer is a direct measure of the

Free -electron

Figure 16. The linear momentum distributionfor Li [54,55] .

one-dimensional momentum distribution [53]. From
recent measurements of the Compton profiles of Li, Na
and Al the linear momentum distribution has been

derived [54] . The result for Li is shown in figure 16.

In section 3 approximate values of the momentum
distribution for an electron gas have been shown (fig. 4).

The corresponding linear momentum distribution

shows a too small reduction compared to the free-elec-

tron case to reproduce the experimental results for Li

(fig. 16) and Al, while for Na the electron gas curve falls

almost entirely within the experimental region.

As band structure effects could be expected to be

more important in Li and Al than in Na, this kind of cor-

rection has also been calculated using the OPW
method [55]. As shown in figure 16 these effects

reduce the discrepancy, even if a quantitative agree-

ment has not been obtained.

This kind of experiment provides a way of illuminat-

ing another aspect of the distribution of electrons in

metals and provides a useful way of checking theoreti-

cal models including many-body interactions.

6. Concluding Remarks

This paper has presented a discussion of the possible

nature of many-electron effects on the density of states.

It is based on a study of the one-electron spectrum in-

cluding interactions and points out the existence of

characteristic satellite structure in the density of states

of electrons and holes in simple metals. Considering

the joint density of states of electrons and holes as in

the theory of interband transitions certain predictions

about possible effects in x-ray and optical spectra can

be made. All this material is however only qualitative

and tentative. The structure in the one-particle spec-

trum has been calculated in low order and considerable

changes may result by including higher-order effects.

Further, the convolution of the electron and hole spec-

trum implies neglecting the final state interaction

between the electron and the hole. The final state in-

teractions may partly cancel out the structure in the

electron and hole spectrum, and it leads to charac-

teristic new effects such as edge singularities, and of

course also gives an overall distortion of the spectrum.

With all these reservations, however, the discussion

points out the existence of a number of possible in-

teresting effects which offer a challenge for further stu-

dy. In assessing the possibility of pursuing this ap-

proach to obtain quantitative theoretical results one has

to consider critically the present state of the art with re-

gard to ordinary band theory. Indeed, rather little has

yet been done in a quantitative way to calculate spectra



especially with regard to oscillator strengths. Such

more detailed knowledge from energy band calcula-

tions also forms a necessary prerequisite for making

quantitative statements about many-electron effects.
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Discussion on "Beyond the One-Electron Approximation: Density of States for Interacting

Electrons" by L. Hedin, B. Lundqvist, and S. Lundqvist (Chalmers University)

W. Kohn (Univ. of California): Dr. Lundqvist unfortu-

nately brought in the Slater and the 2/3 exchange cor-

rection. Dr. Lundqvist had his own interpretation — he

had a plot there and said that the reason why these cor-

rections work is that they include things which the

authors do not know they include. The corrections do

not include anything except exchange. The literature

shows very clearly and gives explicit formulas for how

to include correlations in the locally uniform electron

gas model. The question of whether you use 2/3 or 1 or

an intermediate value in the exchange correction has a

unique answer in every particular problem. For years

now there has been a certain lack of rationaUsm here,

although there is in every case, a clear, unique choice

of how to treat exchange and how to treat correlation

within the locally uniform electron gas model. All of

these considerations are, of course, confined to that

model and if that is not good enough, you have to go

beyond it. Nevertheless, there is around an impression

that there is a controversy about the exchange poten-

tial. I just want to say there is no controversy.

S. Lundqvist (Chalmers Univ.): I agree on the whole

with this point of view.

K. H. Johnson (MIT): The electron gas has very little

to do with real soUds. The successful implementation

of energy band theory on real materials has depended

rather critically on the adoption of approximate

exchange potentials based on local electronic charge

density (e.g.. Slater, Kohn-Sham, etc.). Would it not be

worthwhile to explore the possibilities of developing

local approximations to the true nonlocal self-energy or

mass operator, which would attempt to get at the ef-

fects of electron-electron correlation on the band struc-

tures and densities of states of real solids?

S. Lundqvist (Chalmers Univ.): Professor Kohn and

Dr. Sham have done considerable work on this problem

and suggested precisely this procedure. They start

from the energy (dependent and non-local self-energy

and convert this into a kind of consistent local approxi-

mation. We have also developed a similar approach,

but in order to avoid the problems connected with large

density gradients, we apply this procedure to the

valence electrons only and described the ions in the or-

dinary way, whereas my impressions from the papers

by Kohn and Sham is that they intended to use a local

density approximation for the total electron density.

Maybe Professor Kohn would like to add something?

W. Kohn (Univ. ofCalifornia): I have very little to add

to what you said. I am in general agreement with your

point of view.

K. H. Johnson (MIT): Yes. but I think the nature of

the proof is such that it breaks down if the density

changes are too severe, i.e., if the system is too in-

homogeneous. Is that correct?

W. Kohn (Univ. of California): Yes, that is correct, if

you have extreme inhomogeneous systems, and by the

way, we just completed some work on an example of

such a system, namely on a metal surface. The assump-

tions of the proof are a formal matter. In reality, the

results hold remarkably well, even for rather rapid den-

sity changes. I had a discussion with Dr. Hedin yester-

day about how to treat the core electrons and we have

been concerned with that and I would say, if I un-

derstand you correctly, I am again in general agree-

ment with Dr. Lundqvist that the core electrons are suf-

ficiently different from an electron gas that they must,

in effect, be handled differently. Finally, concerning in-

homogeneities, I don't know if Dr. Herman is in the au-

dience now, but I suggest that perhaps he would like to

add some comments. He is very much concerned with

this.

F. Herman (IBM): I would just hke to ask Professor

Lundqvist what his conclusions would be if you did the

same problem and included some inhomogeneities?

S. Lundqvist (Chalmers Univ.): This would in effect

amount to a full self-energy calculation including Bloch

electron states and all that. That has not been done.

M. Harrison (Michigan State Univ.): Are there any ex-

pected effects of the electron-plasmon interaction on

bound states about a charged impurity center, or per-

haps on scattering processes, either on level shifts or on

level broadening, particularly on materials with large

r.s?
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S. Lundqvist (Chalmers Univ.): Yes, we believe that

this effect would occur.

J. R. Schrieffer (C/niv. of Pennsylvania): Back to this

exchange question — if one takes the calculation that

you are speaking about for the exchange and includes

correlation effects which keep electrons apart then

would the effective exchange be reduced towards 2/3

or even to 1/2 or 1/4?

S. Lundqvist (Chalmers Univ.): The answer is that the

sum of these two effects appears in the curve I was

showing. If you look at the contribution of these com-

bined effects to the self energy, you find that it would

correspond more to a classic correlation hole which is

actually more important that the screened exchange.

Screening of the exchange introduces correlations, that

is true, but the correlation hole around a particle is a

major contribution.

J. R. Schrieffer (Univ. of Pennsylvania): I am afraid

I did not explain myself very carefully. There is a

question of a screened U and then a correlated

screened U. If you think of a low density gas, for exam-

ple, you can have two different physical effects. One is

to screen the effective interaction. That reduces the

strength by the usual dielectric effects. With the

screened interaction, one can calculate an interaction

between say a pair of particles. If you go to the Born ap-

proximation, that is the screened exchange. If you go

beyond the Born approximation, that is scattering, and

one gets a new effective interaction. The new interac-

tion for the low density Fermi gas, for example, as in

nickel, we know is less than U and it is limited in

strength by the relative bandwidth. Therefore, the ef-

fective exchange is reduced for two reasons; one is

screening and the other is correlation. Would you ex-

pect the correlation effect on the exchange to be ap-

preciable?

S. Lundqvist (Chalmers Univ.): I would not dare to

guess what happens at very low densities. I have had

too little experience with that problem.

L. N. Cooper (Brown Univ.): Perhaps Walter Kohn
would dare to guess.

W. Kohn (Univ. of California): I want to point out just

one little thing and not try to answer your question

completely, but one thing is evident. The correlation

correction has a completely different density depen-

dence, and the rational way to handle it is to do it right.

In the very high density hmit it becomes negligible

compared to the exchange. It does not go with the same

power of the density, and so certainly the way not to

handle it is to just put a constant in front and say it is

somewhere between 2/3 and 1.
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In the study of soft x-ray transitions in solids, there has always been some hope that the results pro-

vide a direct measure of the density of states. This assumes that (a) matrix element variations over the

band and (b) final state interactions are small. Both of these assumptions are now known to be incorrect.

To illustrate the possible strength of these effects, two approximate calculations are presented: the one

electron oscillator strength of a simple bcc metal as a function of energy; and the strength of the

Nozieres — DeDominicis singularity at threshold, with phase shifts estimated from an assumed Yukawa
interaction between conduction electrons and core hole.

Key words: Density of states; exciton; many body effects; phase shifts; soft x-ray; transition

probability.

I. Introduction

The absorption of a photon can cause an electron to

change its state. The traditional viewpoint of this transi-

tion assumes that if one knew the electrons initial \pi

and final t/// state, then the oscillator strength was

simply proportional to the square of the momentum
matrix element.

Pif= j d'rilj*pi}ji (1.1)

This simple viewpoint is now known to be incorrect.

The proper picture is that the optical transition creates

an electron and hole, and these two excitations interact

with each other, and each separately with their environ-

ment. The coulomb scattering between the electron

and hole is called the exciton effect, named after the

first known example of Frankel excitons in solids. The
electron and hole can also emit phonons, suffer elec-

tron-electron collisions, etc. The sum of all of these

processes are called final-state interactions. The rate

*An invited paper presented at the 3d Materials Research Symposium, Electronic Density

of States, November 3-6, 1969, Gaithersburg, Md.
' Alfred P. Sloan- Research Fellow.

^ Research Supported by National Science Foundation Grant.

of optical absorption is affected by these subsequent in-

teractions of the electron and hole.

Upon reviewing our present understanding of the op-

tical properties of solids, one finds that some solids are

well understood while others are not. We classify as un-

derstood the semiconductors Si and Ge, [1] and simple

metals like aluminum [2,3]. It is noteworthy that in

these materials the final-state interactions are small:

they are small in semiconductors because the large

dielectric constant suppresses the exciton effect.

Ehrenreich and his co-workers have shown that many

body effects are small in aluminum. In these soHds the

simple one-electron picture implied in (1.1) seems to

work quite well.

We classify wide band gap insulators [4], and metals

such as copper [5], as solids whose optical properties

are not well understood. There is not yet good agree-

ment between theory and experiment in these materi-

als. The dominant optical transitions in these materials

create hole states which are heavy, and which are sub-

ject to significant final state interactions [3]. We
speculate that final state interactions are important in

these materials, and explain the difference between

theory and experiments.

In the study of x-ray transition in solids, there has al-

ways been some hope that the results provide a direct
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measure of the density of states [6]. This presumes

that (a) matrix element variations over the band are

small, and (b) final state interactions are small. Both of

these assumptions are now known to be incorrect

[7,8,9].

The importance of exciton effects in x-ray transitions

was reported in an earlier reference [10]. The effects

are large if the hole is highly localized, and if the con-

duction band of the electron is isotropic. Because the

coulomb scattering between the electron and hole oc-

curs in an electron gas, the electron can only scatter

into states not already occupied. This Fermi-Dirac ex-

clusion, as well as the exchange interaction among the

electrons, causes the problem to resemble the Kondo

effect more than the Wannier-exciton case. The hole

also has a large interaction with the entire electron

gas— this leads to a renormalization effect which in-

hibits the x-ray transition near threshold [11]. Nozieres

and DeDominicis [ 12] have shown that the exciton and

renormalization effects combine to give a threshold

behavior for 62(0))

J_
W2

^0

a> — COT

ai

d(0} — (Ot) (1.2)

where cor is the absorption threshold frequency, ^0
~

Ef is a characteristic band energy, and ai is a function

of the phase shifts 8/ of electrons at the Fermi energy

scattering from the static potential of the hole.

2S,
•25 (2/+1) (1.3)

The term 28i/7r is the exciton part which tends to make

the threshold singular, while the second term in (1.3)

arises from renormalization. The angular momentum /

is that of the conduction electron [ 13] . If the x-ray hole

has s-symmetry, the conduction election must have p-

symmetry (/ = 1). If the hole has p-symmetry, the con-

duction electron can have either s- or d-symmetry; in

this case (1.2) has a separate term for each symmetry

type.

The x-ray spectra can only be unravelled with a

knowledge of the phase shifts 8/— these are the phase

shifts for simple electron-hole scattering. These have

been calculated for a free electron gas by Ausman and

Click [13]. They find ao > 0, and a, < 0 for / ^ 1 so that

singularities only occur for the / = 0 case (p-state hole).

These results qualitatively agree with the experimental

results.

We have independently calculated the phase shifts,

and we describe our result in section II. We have con-

cluded that these phase shifts are qualitatively correct

but for the wrong reasons. The wrong potential is used

in the calculation, but it does not seem to make much
difference in this case.

II. Phase Shifts

The present calculations have been performed by as-

suming that the screened electron-hole interaction has

the Yukawa form

^(r)=-yexp (-^,r)

where the Fermi-Thomas screening length is

= ^TTe'^nolEi.-

for an electron gas of density no and Fermi energy £}.

This is only a crude approximation to the actual poten-

tial the electron feels when scattering from the hole.

For example, studies of a point charge impurity in an

electron gas show that its potential differs from a Yu-
kawa at long range where Friedel oscillations occur,

and at short range where its potential is less steep [ 14]

.

In addition, because the hole is part of an atom, there

are term due to the exchange and orthogonality with the

atomic wave functions [7,8]. In a pseudo-potential for-

malism these latter effects contribute a short-range

repulsive term to the interaction. In spite of these short-

comings of the Yukawa potential, we believe that it pre-

dicts phase shifts which are quahtatively correct. The
reasons for this will be presented below.

The phase shifts are defined in terms of the eigen-

values Eh and eigen functions \\ik{r) of the electron in

the region of the potential.

{^^-^V{r)-E)j^\,,{r) = Q (2.1)

The wave is decomposed into spherical harmonics

i//A(r) = J {2l-^\)VPi{k.'r)<^,{k,r) (2.2)

;=o

In solving for the eigen functions in (2.1), one has the

choice of specifying the boundary conditions for states

which are plane wave-like outside of the potential re-

gion. By choosing standing wave conditions, one is solv-

ing for a reaction matrix Ki{k,k') and the phase shifts

are defined in terms of the diagonal k = k' component

[15].

tan 8i{k)^-2mkK,{k,k)

= -2mk rr'drj,(kr)V(r)Mk,r) (2.3)
JO
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Similarly, if one chooses outgoing wave conditions,

then one is solving for a T-matrix ti{k,k') whose

diagonal components give the phase shift [15]

.

sin 8ie'^i^-2mkti{k,k)

^-2mk r'drj,ikr)V{r)(l),{k,r) (2.4)

We have chosen to use the reaction-matrix formalism

(2.3), mostly because it is a real function and this sim-

plifies computation.

The phase shifts 8i{k) go to zero as A:—» oo. Let us now

examine their behavior as k—*0. From (2.3) we have

jiikr) ~ (kr)', so

Itan8,(^) r'+'drV{r)(t>,{0,r) (2.5)

From Levinson's Theorem we know that

8,(0)= 7rM,

where Mi is the number of bound states of (2.1) with

angular momentum /. For example, if Mi= 0 we get

8i~k'+\ Whereas if M,= l we get 8i=TT+ck'+' (where

c is some constant) for small k. A typical case is shown

in figure 1, where Mo= 1, and A/,= 0 for / ^ 1. So the

s-wave phase shift comes into tt with a hnear slope,

while all other 8,~ k'+^ at small k.

So in calculating phase shifts, the first thing to de-

cide is the number of bound states Mi. This is deter-

mined by examining the radial part of Schrtidinger's

equation (2.1) which we put into dimensionless form

d-'
,
/(/+!) ^e-^

^ r(t),
= 0 (2.6)

p=ksr

^ 2me- /27rV/3 r-

In (2.7) we have written \ in terms of the density

parameter Vg for an electron gas. Since metallic densi-

ties vary between 2 < rg < 6, then the range of k values

in metals is 1.8 < \ < 3.1. For an electron gas of

metallic density, there is one bound state for s-states,

and no bound states for any other value of angular

momentum /.

These are the predictions of the Yukawa potential.

We must decide whether these are reasonable conclu-

sions for the problem of interest. For an actual point

charge in an electron gas, e.g., a proton, there is

probably a bound state. For an impurity in a host metal,

e.g., Al atoms in Mg, there is probably not a real bound

state. This is because the atomic core of the impurity

cuts off the attractive potential in the region where it is

the strongest; for example, see Ashcroft's remarks

about the cancellation influence of the atomic cores

[8].

In the x-ray problem there is certainly an atomic

core. Yet there is also certainly a bound state in the

potential. This bound state is the x-ray level itself. That

is, if an electron scattering from the potential of the

hole did not think a bound state existed in the potential,

then it would have no inclination to recombine with the

hole in the final emission process. Since the emission

can occur, a bound state does exist which must be

reflected on the phase shifts.

The cancellation of the potential in atomic core is

caused by the necessity of the conduction electron

wave function to be orthogonal to all of the core states.

In the x-ray problem, one core electron is absent so that

the cancellation requirements are less stringent.

The foregoing discussion shows that any phase shifts

calculated from a simple Yukawa potential are only

going to be qualitatively correct. Yet there is some in-

terest in what this simple model predicts. Our method

of calculation proceeds by solving directly the scatter-

ing equation for the reaction matrix.

Kliku k.^ = V,{k,, k;)

(2.7)

+-
4/71

77 Jo
kldk,

Vijku ks)K,{ks, kt)

ki-kl
(2.8)

The parameter X determines the strength of the poten-

fial. Shey and Schwartz [16] have computed the

number of bound states which exist for each value of A.

and /. For s-waves (/= 0), they find no bound states

exist for A.<1.68, one bound state for 1.68<\<6.45, two

bound states for 6.45<A.<14.3, etc. For p-waves (/ = 1)

bound states only exist for A.>9.08, and d-wave bound

states exist for \>21.8.

where the component of the potential Vi is obtained

from the Fourier transform J^(ki-k2) of V{r)

Viiki,kz)=l r de sin dPiicos e)V{ki-h2)
2. Jo

=-^Qi{{k\ + kl-^kl)i2k,k2) (2.9)
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when cos 6 is the angle between ki and kz, and Qi is a

Legendre function. We will abbreviate the argument of

the Legendre function to write it as Qiiki, k2). Noyes'

method is used to evaluate (2.8). We find

K,ik, k)^V,{k, k)lil-Ai{k)) (2.10)

TTViik, k) Jo p^ — k^

f,{k,p)^V,ik,p)

^ 4m p''dp'Mk,p')

rrViik, k) p'^_,,2 [V,ip,k)V,ik,p')

-V,{p,p')Vi{k, k)] (2.12)

One obtains fi(k,p) from (2.12), perhaps by iterating

this equation. This is used in (2.11) to obtain Ai{k), and

thus one has the reaction matrix in (2.10). This is an

exact result if fi(k,p) is found exactly. The Born Ap-

proximation result is obtained by setting Ki{k, k)=

Viik, A).

Note that it is natural to write A/( k) as a power series

in the interaction strength \= 2/ AsOgin (2.7)

A,(/c)= 2 ^'"g^Kklks) (2.13)

Each successive power of k corresponds to another

iteration of the equation (2.12) which determines

fi{k,p ). For example, the first term is

For / = 0 we can evaluate the integral and express the

integral as a summation.

- sin (2/(/;)]

p= [l+4A2/yf2]-i/2 (2.15)

<p= tan-i(2A/A-,,)

(3o(A,A)=iln (1 + 4A-2/A2)

This form is convenient for numerical computation. In

figure 1 is shown the s-wave phase shift calculated by

approximating Ao by the first term in (2.13)

C>o(A,A)
tan 8o{k) —

kas[l-\g\,'\k)]

Also shown in figure 1 are the phase shifts 8i and 82.

We also calculated the first correction term g'/'W to

Figure 1. The phase shifts 5/ calculated by a Yukawa potential.

This potential represents a coulomb interaction of unit charge,

with Fermi-Thomas screening. The phase shift 82 15 calculated in

the Born Approximation, while So and Si have corrections for

multiple scattering.

the p-wave phase shift, and this correction has been

added into the calculation of the curve labeled 5i. This

only changes the Born Approximation result by 10 per-

cent. The / — 2 phase shift is the Born Approximation

result. The multiple scattering terms are small except

for the s-wave.

In the x-ray transition, the singular effects occur at

the Fermi surface, so we are interested in the phase

shifts evaluated at A/. Figure 2 shows the critical ex-

I.Sr

Figure 2. The variation with electron density rs of the exponents ao

and a,. These depend upon the phase shifts evaluated at the Fermi

surface. Also shown is the renormalization parameter e and the

Friedel sum rate result Z. The value ofZ is rigorously unity, and

our deviationsfrom that value indicate the errors in the calculation.
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ponents ao and ai, in (1.3) plotted versus electron

density rg. Values of ai for 1^2 are essentially equal to

— e. Also shown are the values of the Friedel sum Z
and the Anderson exponent e, where

Z = 2 J (2/+l)(S,/7r)

e=2 § (2/+l)(8,/7r)^'
(=0

The Friedel sum rule should rigorously be given by

z—1. Our deviation —20 percent from the exact result

of 2 = 1 provides an estimate of the error in the calcula-

tion.

Another estimate of the accuracy and convergence

of the calculational method is obtained by seeing how

well it estimates the position of bound states. As 0

we get

2klks

A bound state is predicted if Ao>l. We find that

^!/H0) = i/2

g<2)(0) = ln (4/3) -1/4

If we just use the first term in the expansion (2.13) so

Ao(0)=X/2 then the criteria Ao(0)>l means X>2. This

is an error of 16 percent from the actual criteria

X > 1.68. But using two terms gives X/2 + A''^(ln

4/3— 1/4)>1 or X> 1.765. So a considerable improve-

ment in accuracy is obtained by including the second

term in (2.13). So we conclude that the series (2.13) con-

verges rapidly for the range of \ values of interest.

III. Matrix Elements

The change of the matrix element with energy has

been discussed before and is known to be a large effect

[7,8,9]. We have calculated the change in matrix ele-

ment near the first critical point in a bcc solid for an x-

ray transition from a I5 core level. We used a simple

two band model in each 1/12 of the Brillouin Zone [17]

,

so that the energies and eigenstates are

4^ = |(r,+ rk-G)±
1

1/2

/V,

-1/2

The matrix elements were calculated assuming that the

core was a delta function, and no attempt was made to

orthogonalize the conduction states to the core. Thus,

after averaging over polarizations, the matrix elements

are

-£i|±2k- (k-G)Fr,}

In figure 3 we show the density of states p{E), and also

the absorption strength

A{E)- {{p^y8{E-Et)+ {pl)~8{E-E-,)}

In this figure, energy has been normalized to £'0=
h'-G^I8m so that ^= E/Eo and VgIEq. The choice v

= 0.2 is close to Ham's value for Li (1^ = 0.23). Indeed,

the present calculation was done with Li in mind, since

the lack of core orthogonahzation should not matter

here.

0.5

(a) DENSITY OF STATES

(b) ABSORPTION STRENGTH

V--02

Figure 3. The density of states p(e) and absorption strength Aie)

for a bcc solid such as Li. The energy scale is listed in units

Eo — h'^G'^i\ol8m, and p= VuqIEo- The absorption strength A (e) is

defined as the integral of the x-ray matrix element <p'^> averaged

over the energy band.

The curve for 1^ = 0.2 in figure 3(b) has the expected

shape for Li [18]. Because the wave function is p-like

at the lower critical point ^ = 0.8, the transition is al-

lowed and the absorption strength has the same shape

as the density of states in figure 3a. The density of

states structure at i'=1.2 is washed out in A(g^ because

at the critical point the transition is s-Iike and largely
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forbidden. The curve fori' = —0.2 has the same density

of states, but now the upper critical point is p-like and

A(^ has the same structure as near 1.2. Neither

the curve 1^= 0.2 nor V—— 0.2 has any striking resem-

blance to the density of states [18].

IV. Discussion

Exciton effects should influence nearly all parts of

the absorption spectra. The singular behavior at the ab-

sorption or emission edge is just one prominent feature;

Another result of final state interactions is that oscilla-

tor strength is moved from one frequency range to

another. Often these shifts are small and can be

neglected. Yet in most cases the true magnitude of

these effects are unknown, because the relevant

theoretical calculations are too complicated to do

realistically.

The calculation of exciton effects is a formidable task

which has not been performed properly. Of course

Wannier excitons have been studied in detail. Some
model calculations exist near critical point edges — the

hyperbolic excitons [ 19,20,21] . But the main optical ab-

sorption strength comes from states throughout the

Brillouin Zone [5], and all of these states are included

in the final stale interactions.

So before x-ray absorption and emission measure-

ments can be used to provide information on the densi-

ty of states, two sizable corrections need to be made.

One of these is the exciton effect, and the other is the

change in the matrix element with energy.
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Discussion on "Excitonic Effects in X-Ray Transitions in Metals" by G. D. Mahan
(University of Oregon)

J. D. Dow (Princeton Univ.): I would like to make a

comment about many-body effects vs one-electron ef-

fects in this problem. While I believe that Professor

Mahan's mechanism greatly increases our understand-

ing of the optical properties of metals, I am not con-

vinced that many-body effects are the sole source of

anomalies in the x-ray spectra. In particular, I believe

that a major portion of the broadening of the image of

the hthium Fermi surface is due to gigantic phonon-in-

duced core-shifts — a local lattice distortion squeezes

the 25 electron, changing the 25 wave function at the

nucleus, the effective nuclear charge, and the binding

energy of the I5 state. This electron-phonon mechanism

is similar to one proposed by Drs. Overhauser and

McAlister and is consistent with the x-ray data of Li,

Be, and Na (but does not explain the many-body peak

in Na). It is also consistent with Knight shift data, and

can explain why the x-ray data shows Li to have a broad

Fermi surface image, while Na is sharp. Conclusive

evidence about the relative importance of such

electron-phonon and many-electron effects could be

provided by differential studies of the x-ray spectra,

using temperature or pressure modulation.

G. D. Mahan (Univ. of Oregon): I would Hke to make
a comment on that. I don't mean to say that all the

threshold effects are due to excitons. I think this is par-

ticularly true in lithium and also in beryllium. When the

x-ray emission spectra bends over in a very round way
at threshold some of those effects are probably due to

things not involved with the excitons, Hke band struc-

ture effects. Unfortunately, everybody who calculates

it, calculates it a different way and gets perfect agree-

ment with experiment when they put in band structure

effects or electron-electron effects. So I think that I

agree with you in that. I think it is worthwhile to try to

do the experiment that would test some of these ideas.

W. Kohn (Univ. ofCalifornia): Toward the end of your

talk you discussed the question of the adequacy of the

Yukawa approximation. It occurred to me that when
you knock out an electron from one of the low-lying

states, you are starting out with a closed shell and after

you have knocked out the electron, that shell, for exam-

ple, the L electrons, now constitutes really a

degenerate level. The hole has an angular momentum
associat-ed with it and so there are several degenerate

states. In other words, the situation that you now have

(when you consider the interaction of the other elec-

trons with this core) is quite similar to the Kondo effect

situation. Is there in fact any simple potential that

properly represents the interaction of the conduction

electrons with the missing charge, or could the

degeneracy play an important role?

G. D. Mahan (Univ. of Oregon): I would guess that

spin flip processes, as you suggest, are probably small.

It seems to me that this exchange between a deep core

and a conduction electron would be rather small. Is that

a reasonable statement to make?

W. Kohn (Univ. of California): I don't see why it is.

R. A. Ferrell (Univ. ofMaryland): But is he referring

only to spin flip? Couldn't there be some angular, some

orbital-angular momentum exchange? That could be a

stronger coupUng, couldn't it?

P. M. Platzman (Bell Telephone Labs.): You treat the

emission and absorption problems on the same footing.

I do not understand this. The transition takes place in

a time T—hjE where T < h/wp, the time for the electron

gas to adjust. Thus, in absorption the appropriate final

state, (a sort of Frank Condon argument tells us) is to be

calculated in the absence of the hole. In emission the

hole is there for a long time and then vanishes suddenly

so that the appropriate wave functions are those in the

presence of the hole. Could you amplify on this point?

G. D. Mahan (Univ. of Oregon): I don't agree. I think

that in the absorption, the wave functions would adjust

and in the emission that they have adjusted already.

P. M. Platzman (Bell Telephone Labs.): I don't un-

derstand. It obviously takes time of the order of t ~

l/cop for the electrons to adjust in the presence of a

hole. The time of transition for absorption is much

shorter than that. The energy involved is 50 to 100 volts.

I don't understand how the electrons readjust. It must

be some kind of Frank-Condon principle where you

make transitions to the states that correspond to the
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elcclKiri ^as before you make the hole, not after you

make the hole.

R. A. Ferrell (Univ. of Maryland): Is the implication

that the kind of potential one should use is different

from the usual static screened potential if one wants to

talk about the effect of the core on the conduction elec-

trons?

G. D. Mahan (Univ. of Oregon): You're asserting that

the renormalization term shouldn't be there?

R. A. Ferrell (Univ. of Maryland): Would that mean
that the Friedel sum rule should not actually be obeyed

by the potential which would more realistically

describe the potential acting on the conduction elec-

trons? In other words, there isn't time for static screen-

ing to set in?

G. D. Mahan (Univ. ofOregon): Yes.

J. R. Sehrieffer f f/niv. of Pennsylvania): I would like

to return to the question Prof. Kohn brought up for I

have a closely related question here. If you are making

a p-state hole, the potential is not spherically symmet-

ric, and therefore you have an electron scattering off an

asymmetric potential. One question is: To what extent

is a phase shift analysis an appropriate language in

which to discuss this scattering? Secondly, in addition

to the static asymmetry of the potential there is a

dynamic aspect of sharing of the hole in different mag-

netic quantum states in a given atom. The third

question: What is the effect of the wandering of the

hole from atom to atom?

G. D. Mahan (Univ. of Oregon): The last answer is

easy. I don't think the hole wanders. The first question

is, what about using phase shifts? If you take a simple

model where the p state is reasonably tightly bound and

try to calculate what the potential is, it comes out

spherically symmetric.

J. R. Sehrieffer (f/niy. ofPennsylvania): Are you sug-

gesting that there is a motional averaging to remove the

asymmetry corresponding to an electron in a given

magnetic substate.

R. A. Ferrell (Univ. of Maryland): The question is,

should you average or should you consider the potential

set up by a certain core state in a certain magnetic sub-

state?

G, D. Mahan (Univ. of Oregon): I agree. If you don't

average, then you are going to get a definite lobe in your

potential in some directions.

W. Kohn (Univ. of California): As Bob said, that is

very much part of the same question that I asked. Since

the potential in a given magnetic state (let's talk about

angular momentum rather than spin for a moment),

would not be spherically symmetric, therefore when an

5-like electron interacts with it, it might very well go

into a f/-state. There will be. let us say, an s-d coupling.

Then to conserve angular momentum, that core would

in general make a transition to another state.

R. A. Ferrell ( Univ. ofMaryland): You probably agree

that this is something to look at. It might turn out to be

a small effect.

A. J. Freeman (Northwestern Univ.): Dave Shirley

spoke yesterday about some x-ray emission experi-

ments that he and Chuck Fadley did at Berkeley. He
did not have time to talk about some recent experi-

ments in which they were able to measure the splitting

of the binding energy of core s and p electrons. The
splittings of the 3p binding energy appear to reflect the

multiplet structure of the final possible states of the

system with a hole in the 3p level. This multiplet

splitting gives experimental evidence for the im-

portance of taking a degeneracy effect into account, as

just stated by Sehrieffer and Kohn.

F. Brouers (Univ. Liege): There are two problems if

you calculate this exciton effect for the whole band.

You can only find an exact solution at the Fermi edge;

when you try to calculate the band, the terms which

give this spike have too big an effect in a first order ap-

proximation in the electron-hole effective potential.

The problem is to see if electron-electron interactions

which are missed in the Nozieres and di Dominicis

paper, for instance, can reproduce something which is

Hke a free-electron band between the high and low

energy features which one can presently deal with. But

if you introduce electron-electron interactions, you

have troubles because the theorem of linked cancella-

tion is not correct in this particular case. You have

terms which are divergent in a first order theory

throughout the band. So one of the points is to use some

tricks from nonlinear oscillation theory to sum up all

these secular terms and to put them in the exponential.

You then have just a shift in the energy scale which has

no physical importance. The problem with this method

is to see if the addition of electron-electron correlations

to the contribution which gives this singular spike can

reproduce something which is very like a one-electron

theory over the main band.

R. A. Ferrell (Univ. ofMaryland): Thank you. I think

it would take us too far afield to go into the details of

this interesting question, but I beHeve it is apparent

that it is in the direction of Platzman's question of mak-

ing a more realistic treatment of the potential and its

time dependence.
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Vibronic Exciton Density of States in Some
Molecular Crystals

R. Kopelman and J. C. Laufer

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 481 04

Excited states of molecular crystals, which happen to be the majority of known crystals, are almost

always classified as excitonic. The largest class of well studied systems are very closely described by

the Frenkel model, and a majority of these systems can actually be described by a special case of the

Frenkel model, one with steeply falling-off intersite (intermolecular) interactions. In this specific model

the expression for the band structure depends only on the interchange symmetry of the crystal, with a

small number of intersite parameters. Examples are given for some aromatic crystals, comparing band

structures derived from theoretically calculated parameters, experimentally derived parameters, and

completely experimentally derived band structure.

Key words: Anthracene; aromatic crystals; benzene; excitonic density of states; molecular

crystals; naphthalene.

1 . Theory

Molecular crystals are characterized by intermolecu-

lar ground state energies which are much smaller than

the intramolecular energies within the molecules them-

selves. The intermolecular forces in these crystals are

considered to be weak and of short range. Con-

sequently, it is not surprising that many exciton states

in molecular crystals are best described by the Frenkel

model rather than the Wannier one [1].

The crystal exciton function in the Frenkel model is

constructed as a hnear combination of the wavefunc-

tions called "one-site excitons" which are equal in

number to the number of molecules per primitive unit

cell. For each "one-site exciton," the excitation for-

mally resides on one sublattice only, and all the sublat-

tices are of the same type if there exist symmetry

operations of the crystal which operate on one of these

sublattices and generate the others. These operations

have been designated interchange operations and they

can be formed into groups, called interchange groups

[2]. Interchange groups are basic to the symmetry of

crystals. For example, the unit cell group of a crystal is

the direct product or union of the site group (of the

molecules in the crystal) and an interchange group [2].

One-site Frenkel exciton functions 4^,,^ are con-

structed [3] from a tentative wavefunction which is the

product of a crystal function x^nq^ representing a local-

ized electronic, vibrational, or vibronic excitation /of a

molecule located on the q"' site of the n"' primitive cell,

and the other unexcited site functions of the crystal,

K= Ax',,, n xw

In the above equation A is an antisymmetrizing opera-

tor, is the number of molecules in the crystal, and h

is the number of sublattices which also is the order of

the interchange group. From (j)^,,, the one-site exciton

functions in the Bloch representation can be formed,

cD/(k) = {NIh )
-'/^ 2 exp (ik R,„) (j>',„^^ (2)

where k is the reduced wave vector, and R„g denotes

the position of q"' site in the n"' primitive cell with

respect to a common crystal origin. Rn^ can be written

as

Rnq— fii + Tnq. (3)

where r„ is a vector from the crystal origin to the origin

of the n'^ primitive cell and Tnq is a vector from the n"'

primitive cell origin to its q"' site.

In our model the crystal Hamiltonian H is the sum of

a site-adapted-molecular Hamiltonian H° and an in-

tersite Hamiltonian H'

:

11=1 q=\
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H'^^^il E E il-8„,r8,„y)H'{nq, n'q'). (5)

^ "='i (/=! /r = i y'=i

For the case of a single nondegenerate excited slate /,

the N X N Hamihonian matrix is blocked off along the

main diagonal into Njh h X h Hermitian submatrices,

each submatrix being characterized by a value of k.

The off-diagonal elements ^-^qih) in each submatrix are

due to the interactions between the h sublattices. They

are the sum over the entire lattice of interaction terms

between molecules on sites of type q and q' , modified

by phase factors. The diagonal elements o2^^g,(k) 8qq'

have k-independent terms which arise from the matrix

elements in which simultaneously q= q' and n=n' , and

k-dependent terms which solely arise from the pairwise

interactions of the molecules. The general matrix ele-

ment is (<I>^(k)
I

H
I
4>^, (k) ) which we have designated

Jf^^,{U.). All matrix elements between states of different

k vanish by symmetry. Expanding <5^^^,(k), we write

=S^/,(k)= ^' texp iik) {T,--T,)]

[exp (ik) • (r,,-r„)] ^<i>iyH ^,dR. (6)

Separating the k-dependent terms Jf^^,(k) from the k-

independent terms, we write

=S^/.(k) = (^/+D/)6,,- + L/,(k)

where

and

DJ-

(t)R

(7)

(8)

(9)

ZX is a term representing a "Van der Waals-type in-

teraction" between sites, and is the energy required to

excite a single molecular site locally in the presence of

the rest of the crystal. It shifts the exciton band energy

from g'^, the energy of the molecular site functions.

Usually the major Van der Waals energy shift is

^"^^ where ^"^^ is the free molecular excitation energy.

the "ideal mixed crystal level," can be derived from

mixed crystal data [3].

The expression for a diagonal element ^^^(k) written

out fully rs

K

-ixM\H'\x{^Xll)], (10)

where 8,,, = 1 for a singlet state and S,„= 0 for a triplet

or other multiplet state. R is R»,/; Xo is xi(r where the

subscript of oq indicates the origin of sublattice q, and

X^n is x'loi^ where the subscript R,, indicates the site at

distance R„g from the origin [4]. The off-diagonal ele-

ments L{q(k) are all k-dependent and are conveniently

expressed at this point as

(k)= ^ exp [ik iT<,'-Tq)] exp [ik
ii'= 1

• (r„,-r„)] X
I

c/, C,H'<i>l„4Ki^-8.„'). (11)

In general, in order to find the eigenvalues for a par-

ticular k, it would be necessary to solve an h X h

secular equation. The expression for the eigenvalues

would be a function of all the elements of the secular

determinant. Such an expression for a system where h

= 2 is given by Knox [4]:

Eiky-=njf{, (k)+^/,„(k)]

± {i[i^/, (k) -^i „ (k)p+ |i^/„ (k)
I

^}'/-^ (12)

where the two eigenvalues are and£'", and the two

sublattices are labelled I and II. Although sublattices

I and II are spacially equivalent, =2'^/(k)and ^/k)

are not generally equal because they are k-dependent.

The reduced wavevector k designates a phase factor

relationship with the vectors R which has a spacial

orientation that is usually not isotropic with respect to

the sublattices I and II. In certain cases, such as when
k = 0, (k) equals (k). Equation (12) can then

be written:

Ef{k)^- = ^{Ak)±^l\Ak) (13)

The eigenfunctions for the two states then become

simply

1

mk)- = :^[^f ik) ±%(k)], (14)

The above example is for a system of two interchange

equivalent sublattices. For a system having an in-

terchange group G of order h, there will be h

interchange equivalent sublattices. IfJf-^g(k) is equal to

Jf-^,g,{k) for all q'
, an eq (14) analog for the general case

can be constructed group theoretically from the in-

terchange group to give:

i|/-'"(k)'
^ 2 a'^q^gik).
Vh

(15)

9=1
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where a^'s are coefficients corresponding to the a"*

irreducible representation of G. The corresponding

eigenvalues then become

=;!; a-^g^/Ck). (16)

9=1

Equations (15) and (16) can be obtained [5] for anyk if

certain integrals are excluded from the summation in

eq (10). Consider the effect of an interchange operation

A on sublattice q. Every site in q will be mapped into an

interchange equivalent site in sublattice q' . In other

words, A operating on q generates q' . Equation (10) for

=S^{,,,(k) will be identical to that for =^^,(k) in Ef, Df, and

all corresponding terms within the brackets. But AR
generates i?' in q' and

AR = R7^R for general R (17)

and

k-R7^k-R' for general k (18)

becomes k is a vector in the reciprocal lattice and is not

operated on hy A. However, for those R which are left

invariant (to within a translation) by^, R is equal to R',

and corresponding terms in the summations of (k)

and =2^^,^,(k) are equal. The sublattice q' may also be

generated by another interchange operation fi, which

will fix other R's such that

R = fiR = R (19)

The terms in ^^(k) and Z/^,g,(k) associated with these

R are also equal. By using all the interchange opera-

tions in the crystal and collecting only those terms in

=?'^g(k) and Jf^,^,(h.) which are equal, we can obtain the

eqs (15) and (16) for any arbitrary k, provided that the

rest of the terms are negligible.

By the same procedure we can obtain the restrictions

on k that lead to eqs (15) and (16) for any arbitrary R.

For an interchange operation /4 which generates sublat-

tice q' from q, there must be a corresponding symmetry

operation in the reciprocal lattice which will leave some

k invariant. For this k eq (10) will not change in value

as A changes =2^-^^(k) to =S^-^,^,(k). Repeating this pro-

cedure for all interchange operations, we find all k
which satisfy eqs (15) and (16) for general R. All such

k have the property that the group of k contains at least

one interchange group.

An examination of the terms which are retained in

=^5(j(k) for general k shows that they include the nearest

translationally equivalent neighbors about the origin of

the sublattice. Since vibronic interactions in molecular

crystals are often extremely short-range, next-nearest

translationally equivalent neighbors may be dropped

from the summation as they make only a negligible con-

tribution to =S^^q(k). Equations (15) and (16) are there-

fore believed to be valid expressions for many physi-

cally real cases of excitions in molecular crystals.

For Frenkel excitons the crystal transition dipole

operator M is the sum of the dipole operators on all the

crystal sites. The evaluation of the transition moment
matrix element

( ^Irr«"(A:")|M|^/«(k))

by use of eq (15) shows it to be nonvanishing only under

certain conditions. The first of these is the usual crystal

selection rule, Ak = 0. As long as eq (15) is applicable

the transition moment becomes k-independent [5]. An
important consequence of this requirement is that

every nonvanishing transition moment in a transition

between two exciton bands will have the same intensi-

ty; the band profile of such a transition will be depen-

dent only on the density-of-states functions of the two

exciton bands. The second selection rule for the non-

vanishing of the transition matrix element is that the

direct product

a"Xa,-Xa',

where a, is the interchange group representation of the

electric dipole moment, must contain the totally sym-

metric representation. The combined selection rules,

for all k, are thus those of the interchange group. Ac-

tually they turn out [5] to be those of the factor group.

It follows from the above development that the band

profiles of transitions between two exciton bands can

be computed from the density-of-states functions of the

two bands. If the low energy band is narrow (—10 cm~i)

and the upper band is an order of magnitude broader,

then to a good approximation the experimentally ob-

served band profile for such a transition will be just the

density-of-states function for the upper band [6]. This

function can be calculated directly from eq (16) if the

values of the excitation exchange integrals

j 0/* Hct>i,,,dR

are known. Theoretical calculations of these integrals

using molecular wavefunctions have been made, and

various experimental techniques have also been used

to obtain values for these integrals. The best of these

values have been obtained from Davydov splittings

[7] , mixed crystal data [8] , and exciton diffusion mea-

surements [9].
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The crystals of naphthalene [10] and anthracene per primitive cell occupying sites of C, symmetry. By

[11] both have C5,, space groups with two molecules using a C-i interchange group, eq (16) can be written as

£'-^(k)" = 2M„ cos (K„a)+2M,> cos (/<,;/0 + 2M, cos {Kcc)

+ 2M(„+c)Cos {Kfio) cos (/CfC) — 2M(„+c) sin {K„a) sin {Kcc)

±4M, „ cos {K„\a) cos {Kh\b)±^M^ „- cos {Kcc) cos {K,ka)

X cos =F4A/, „, sin {Kcc) sin {KaU) cos {KiAb)

,

(20)

where the summation has been truncated after

summing out to and including the two translationally

equivalent neighbors at lattice positions (101) and (101)

In eq (20)

K„a = \^ ai, Kbb = \^-h, KcC = k c, (21)

where a, b, and c are primitive lattice translations in

the monoclinic system. Ma, Mb, Mc and M{„+c) are the

excitation exchange interactions between the site-

adapted molecule at the origin and the translationally

equivalent molecules at positions (100), (010), (001), and

(101) respectively; and Mi n and Mi //- are the interac-

tions between the molecule at the origin and the in-

terchange equivalent molecules at (^ i 0) and (111)
respectively.

2. Calculations

We have used eq (20) to compute the exciton band

profiles of the lowest ^B-zu states of anthracene and

naphthalene. The calculations were performed by com-

puter, with each band profile being composed of about

200,000 states. When these states were collected in

energy increments of 1 cm"\ our density-of-states func-

tion was obtained. The band shape was determined

solely by the values selected for the M's of eq (20), the

excitation exchange interactions. A similar equation

was used to compute the band profile of the lowest

^Biu electronic state of benzene. Benzene crystallizes

[12] in an orthorhombic lattice of space group D.}^

(Pbca), and has four molecules per primitive cell.

We chose a Dz interchange group to construct eigen-

values from eq (16). The benzene calculation involved

the generation of about 800,000 states. They were

collected in energy increments of 0.3 cm"^ to obtain

the density-of-states function, which is plotted in

figure 5. The '/?2!/ band profiles of naphthalene and

anthracene, calculated from M values obtained

theoretically from molecular orbital calculations by

Rice and co-workers [13] , are shown in figures 1 and 3,

respectively. The corresponding band profiles for M
values obtained from experimental data are shown in

figures 2 and 4.

states

35,000

30,000

25,000

20,000

15,000

10,000

5,000

10 -10

Energy cm

^B2u Exciton band of naphthalene calculated fromFigure 1

theoretical parameters (see ref [13]).

Ma = 0.0, A/» = 2.4, A/, = U.O. A/,„+ci = O.U, M,„ = -1.4 M, „. = 0.0.

The value of Mi 2 used for the naphthalene calcula-

tion in figure 2 was taken from the Davydov splitting ob-

served by Hochstrasser and Clarke [14]. Hanson and

Robinson [15] have shown that the mean of the ^B-zu

Davydov components is shifted down by about 1 cm~^

from the mixed crystal ^B-zu energy [15]. We have at-

tributed this "translational shift" [3] to the interaction

between molecules at (000) and (010). Mb thus becomes

0.5 cm~^. However, the band profile would be the same
if it were attributed to either Ma or Mc- The anthracene

calculation in figure 4 was based on the constants

derived from two experiments: the Davydov splitting in
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Figure 2. 'B2U Exciton band of naphthalene calculated from
experimental parameters {see refs. [14 & 15]).

M„ = 0.0, Mt = 0.5, A/r = 0.0, M„,^r, = 0.0, Af,,i=l-25, /W,

,

States
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= 0.0.
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States
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Figure 4. ''620 Exciton band of anthracene calculatedfrom experi-

mental parameters {see refs. [9 & 16]).

M„ = 0.0, A/6 = 0.0, Mc = 0.0, A/|„„, = 0.0, A/,„ = 2.5, M, ,,. = 0.30.

the anthracene triplet as observed by Clarke and

Hochstrasser [16] through the electronic Zeeman ef-

fect, and the anisotropy of triplet exciton diffusion as

measured by Ern [9]. Only the absolute value of the

ratio of Mi w to Mi n can be obtained from Ern's work,

but the band profile is not significantly affected by the

choice of sign. It is interesting to note the difference in

band shape between those profiles calculated from

theoretical data and those calculated from experimen-

-I 1 1 r-

25 20 15 10 5 0

-1

-10 -15

Energy cm

Figure 3. ^B2u Exciton hand of anthracene calculated from theoretical parameters {see ref. [13]).

M„ = 0.0. Mt = 3.6. Mc = 0.O. M,„»„ = 0.0, /W,„ = -4.7, M,„. = 0.21.
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Figure 5. ^Biu Exciton band of benzene calculated from experi-

mental parameters (see ref. [17]).

M„ = 0.0, Mt = 0.0, Mc = 0.0, A/, ,,= 1.1, yW,,,, = 0.7, yi/, ,v = -0.3.

tal data. While the theoretical parameters account

fairly well for the observed Davydov splittings and dif-

fusion constants, they seem to fail the test of a more

sensitive criterion — the band profile.

The benzene band was computed from M values

derived from Davydov splittings observed in a triplet

state [17]. Here it is possible to obtain three values to

be assigned to Mj //, Mi m, and Mi iv- The individual

factor group components were not classified as to sym-

metry; thus a set of M/ //, Mi m, and Mi iv can be deter-

mined only to within a permutation. Fortunately, the

symmetry of the density-of-states function is such that

it is invariant to permutations of values of the in-

terchange-equivalent M's.

There has not yet been any direct observation of any

triplet band of any molecular crystal, so it is not possi-

ble to conclude which of our calculated bands, if any,

are accurate in shape. However, the entire ^Bzu

exciton band of naphthalene has been observed [6].

The agreement between this band profile and the

profile calculated for the 'fi2« state from Davydov
sphttings and mixed crystal data is very good [6,8].

Such agreement is supporting evidence that eqs (15)

and (16) are substantially correct for narrow molecular

crystal exciton bands, and that the assumptions in the

Frenkel theory which were used to derive them are

vahd. In fact, the agreement for the triplet bands is ex-

pected to be even better than for the singlet bands, as

the former are narrower and in addition cannot have

even small contributions from long-range interactions

(e.g. dipole-dipole) in view of the fact [7] that 8m = 0 in

eq (10).
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Effect of the Core Hole on Soft X-Ray Emission

in Metals

L. Hedin and R. Sjbstrbm

Chalmers University of Technology, Gbteborg, Sweden

We report a simple type of calculation to estimate the enhancement factor on the intensity of soft

x-ray emission in free-electron like metals due to the effect of the core hole. We consider an electron gas

in the presence of a perturbing potential and calculate the x-ray intensity assuming the dipole matrix

elements to be constant. The calculation is based on a simple type of trial function for the initial state of

the valence electron system and the coefficients are determined from the variation principle. The calcu-

lation does not give the Fermi edge singularity, which has recently aroused such a large interest, but in-

stead aims at giving the gross effects for the whole spectrum. The results indicate an increase in the in-

tensity by 25 to 50% at metaUic densities. The enhancement factor is found to vary roughly linearly over

the main band, increasing about 50% in going from the bottom of the band to the Fermi edge.

Key words: Aluminum; core hole; electronic density of states; Fermi edge singularity; pseu-

dopotential; sodium (Na); soft x-ray emission.

1. Calculations

We consider the Hamiltonian

k- kk'q

-^v{q)F{q)a^,^gak, (1)

kq

where F(q) is a form factor, taken as cos qR and as (sin

qR)lqR. The initial state is represented as [1]

/V+ ) = ('a +2 a^a + a„] |/V), (2)

where lA'^) is a Slater determinant of plane wavefunc-

tions. Restricting the coefficients to have the form

o^l^giq-p) {l-nq)n^. (3)

the energy is minimized, neglecting some small

exchange terms. The x-ray intensity is then calculated

taking the dipole matrix elements as constants. We ob-

tain [1] for the intensity /(w)

1 unocc occ

A- A:iA-2

(4)

The function g(q) is singular as q~^ for small q. The

coefficient determines the magnitude of the polariza-

tion charge [2]. The variational calculation gives a

polarization charge of 2a-. We can easily obtain a

charge of 1 by using a subsidiary condition in the varia-

tion, but the significance of this is not clear.

2. Results

Calculations were made for different rs-values, with

and without form factors. We find that the first term in

eq (4) gives the dominant contribution in the main band

while the multiple excitation term contributes to the

Auger tail. The results are summarized in tables 1, 2

and 3. The total increase in intensity is proportional to

the increase in charge density p(0)/po at the center of

the perturbing potential. The energy difference

Table 1. Results without form factor

p(0)/po eo/€f Mult. exc.

%

2 3.7 0.81 0.88 5

3 4.8 0.78 1.44 4

4 5.9 0.76 2.03 4
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Table 2. Results with form factor F(q) = sin (qR)/(qr)

Increase of

P(0)/po Mult. exc. enhance-

% ment

factor %

Al 2 2.15 1.25 0.86 0.59 12 40

Na 4 3.26 1.49 0.81 1.42 14 50

' Values for R are taken from R. W. Shaw, Jr., Phys. Rev. 174, 769 (1968).

Table 3. Results withformfactor F(q) = cos qR

p(0)/po a2 Mult. exc.

%

Li 3.26 1.06 1.41 0.80 1.30 16

Na 4.00 1.67 1.01 0.81 1.52 24

Al 2.07 1.12 0.90 0.86 0.66 19

' Values for R are taken from N. W. Ashcroft and D. C, Langreth, Phys. Rev. 155 , 682

(1967).

between the states lA'^) and |A^*) is denoted by eo. The

increase in charge density p(0)/po agrees very well with

the positron annihilation rates at higher electron densi-

ties. We do not give the intensity function /{oj) explicitly

since the enhancement factor /(co)/Vaj is closely Unear.

Instead we give the increase in percent of the enhance-

ment factor from w = 0 to w = e/^ and the total enhance-

ment which is proportional to p(0)/po. The column

"multiple excitation" gives the integrated intensity of

the last term in eq (4) in percent of the integrated inten-

sity of the first term.

The results we have obtained give only a very crude

picture of the magnitude of the effect from the core

hole. In particular we see that use of different form fac-

tors give quite different results. We beheve the results

in table 2, to best represent the actual conditions. The
reason is that the charge enhancement at r = R rather

than at r = 0 should be taken as a measure of the inten-

sity increase since it is at roughly that point where the

pseudowavefunction should be matched to the correct

Bloch function. With the Ashcroft pseudopotential,

which in real space is zero for r <R, the charge density

has a minimum at r = 0 while with the Shaw pseu-

dopotential, which in real space is constant for r < /?

and joins continuously to the outer ( — l/r)-part, the

charge density has a maximum at r = 0 and probably

does not vary much out to r= /?. The results in table 2

should thus represent an overestimate of the enhance-

ment effects. Another reason for believing the results

to be too large is that the total screening charge, 2a'^, is

larger than unity. Calculations with a subsidiary condi-

tion to give a screening charge of unity indeed cuts

down the enhancement but not however, by the full 2q;^-

factor.

Neglecting the last term in eq (4), that is, the multiple

excitation term, we see that the intensity has the form

I{(o) = VZ
pI,,, (5)

where the effective matrix element is

Peff=a + i8(aj). (6)

The results for j8(a)) at the Fermi surface obtained

with the Shaw pseudopotential are 0.21 and 0.33 for Al

and Na, respectively. Even if these values are

somewhat too large they indicate that the mixing in of

matrix elements from states above the Fermi surface

can have a significant influence if there is a strong

variation in matrix elements and density of states at the

Fermi surface.

The contribution to the intensity from the multiple

excitation term is zero at the Fermi edge, rises

quadratically and reaches a maximum in the bottom of

the main band. The tail intensity is down to 1/e of the

maximum intensity at about 2e^ below the Fermi edge.

Our results essentially confirm the conclusion by

Stott and March [3] that the shape of the intensity

curve in general should not be very much affected by

the core hole, and our results also indicate that the total

intensity enhancement is quite small, contrary to the

results by Ghck, Longe and Bose [4].

It should be emphasized that the present calculation

does not take the edge effects, just discussed by Dr.

Mahan, into account. Actually if we consider the An-

derson orthogonahty catastrophe [5], the coefficient a
in eq (2) should be equal to zero. If, however, the edge

effects are restricted to a narrow energy region, as in-

dicated by the experimental data, the approximations

employed here should not be serious.
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Discussion on "Effect of the Core Hole on Soft X-Ray Emission in Metals" by L. Hedin
and R. Sjbstrom (Chalmers University, Sweden)

B. Mozer (NBS): I am a little confused about the An-

derson catastrophe. I agree that if you have a polarized

state it might well be orthogonal to the pure state you

started with before the interaction was turned on. But

are you not really interested in the dipole matrix ele-

ment, or interaction Hamilton matrix elements between

N* and N?

L. Hedin (Chalmers Univ.): Yes, but since the states

are orthogonal, then independently of the matrix ele-

ments, you actually have the result, according to An-

derson's theorem, that the intensity vanishes at the

edge. This is, however, not the full story as just

discussed by Mahan, in the vicinity of the edge the in-

tensity has a power law behavior and may show a singu-

larity.

B. Mozer (NBS): I think you have a problem. You have

a problem that there are bound states. You get into the

time dependence of the way things go. I forgot to say

that the N* state is orthogonal to N. That is quite true,

but you are interested in a matrix element that carries

you from a case where you have no radiation in emis-

sion to a final state where you have a built-up hole in

the core and a gamma ray floating around.

R. A. Ferrell (Univ. of Maryland): As a many-body

system, suppose we have N + 1 electrons; we calculate

the dipole moment for the (N+l)th electron but the con-

tributions from the remaining N electrons are in terms

of their overlap from their initial to final states. Ander-

son pointed out that that vanishes. It is a many-body ef-

fect. In other words, if one electron makes a transition

you also have to consider what happens to all the

others. Here you just have to calculate the overlap and

that vanishes when you suddenly change the potential.

I think you would agree with that. Dr. Hedin.

L. Hedin (Chalmers Univ.): Yes.

B. Mozer (NBS): I am surprised at that. Hartree-Fock

method wave functions you would still get some overlap

that is non-vanishing.

R. A. Ferrell ff/nii;. ofMaryland): It is a characteristi-

cally many-body effect. Every overlap factor is finite,

but the product of an infinite number of such factors,

each less than unity, vanishes in the limit. One can look

at it various ways.

B. Mozer (NBS): Most of the Hartree-Fock wave func-

tions away from the impurity are equal to the original

wave functions times the phase factor. Consequently,

the overlap factor is unity and the product of the in-

finite number of such factor is unity times the phase

factor. The problem is how you handle the region

around the impurity and whether or not you have local-

ized impurity states.
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Cancellation Effects in the Emission and Absorption
Spectra of Light Metals
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1. Summary

The influence of the many-body effects and of the

presence of a deep localized hole on the shape of soft x-

ray spectra in light metals has been widely discussed

recently.

Two observed features of x-ray spectra which cannot

be explained by a one electron theory have particularly

been emphasized.

(1) The first feature is the low energy tailing of the

emission bands superposed by a weak plasmon satellite

band. To obtain the correct order of magnitude,

Brouers [1] and Longe and Glick [2] have shown that

it is essential to take account of strong cancellations

due to destructive interferences of the charge clouds

surrounding the core hole and the electron performing

the transition.

(2) It is now well established theoretically and experi-

mentally that the effect of the core hole sudden

switching causes an anomalous behavior near the emis-

sion and absorption Fermi edges. If effects causing the

width of the core state are neglected together with

many-body effects, Nozieres and de Dominicis [3] have

shown that there will be a power law singularity near

the threshold. Independently, we have shown [4] , that

this result is expected already from simple positive

definiteness arguments.

In spite of the success of the theory to explain the low

and high energy features of the band, there is not until

now a complete theory satisfactory for the whole spec-

trum. One difficulty in applying cc entional many-

body theory to x-ray spectra is the occurrence of dia-

grams diverging throughout the parent band in the first

order theory [2]. If, on the other hand, a renormahzed

theory is formulated to get rid of these divergences, one

has no information on the relative areas of the singular

and nonsingular part of the spectrum. Nozieres and de

Dominicis have computed an exact solution only at the

Fermi edge and with a rough potential.

We have obtained a number of formal and numerical

results which fill a part of the gap between previous

treatments and a good and complete theory for the

whole band.

Since a first order theory is useful for gaining insight

into the structure of the theory and the physical

processes which contribute to the ^emission, we have

shown that the divergences of the first order theory can

be eliminated. This can be done if certain energy shifts

are extracted in a consistent fashion and if one realizes

that there is not an exact cancellation of unlinked dia-

grams between numerator and denominator in the in-

tensity function. It has been shown [5] that this

noncancellation is due to the sudden change of the

potential when the electromagnetic transition occurs.

In the satelUte and tailing region, this divergence free

theory coincides with the previous first order theory. In

the main band, the effect of electron-electron correla-

tions neglected in the Nozieres model and the one-body

effect of the core hole can be separated. Contrary to

what happens in the satellite region, there is no cancel-

lation effect and it is obvious from the results that
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inaii\-b()dy and one-body effects cannot he treated on

the same foot. The electron-electron effects give a cor-

rection of the order of 10% to the one-electron Sommer-

feld theory [6j but to obtain the correct contribution of

the electron-core hole transient potential one has to

evaluate a vertex correction which is equivalent to in-

troduce ladder type diagrams as this is done in the

positron annihilation theory.
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Photoabsorption Measurement of Li, Be, Na, Mg, and
Al in the Vicinity of K and L„

|„
Edges
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The absorption structure of live light metals has been measured in the vicinity of the onset of K
shell respectively Lu.iii shell absorption. In accord with recent theoretical investigations a peaking of

the cross section at the edge is observed for the Lu.iii edges of Na, Mg, and less pronounced for Al.

There is structure of a different type at the K edges of Li and Be.

Key words: Aluminum (Al); beryllium (Be); electronic density of states; electron synchrotron light:

K spectra: light metals; hthium (Li); L spectra; magnesium (Mg); photoabsorption;

sodium (Na); transmission measurements.

Recent theoretical investigations [1-10] iiave shed

new light on the old problem of the absorption and

emission structure near the onset of inner shell transi-

tions in simple metals. As the results are completely

symmetric for emission and absorption we shall discuss

here only the absorption behavior. The essential im-

provement of these theories is that they include the in-

fluence of the deep level hole potential on the electron

states near the Fermi surface. As the charge of this hole

is shielded by the conduction electrons the potential is

confined to a small region around the excited atom.

This implies that mainly the final states of s symmetry

are influenced by this potential. As a consequence, the

onset of p-electron transitions (e.g., L//,/// edges) is ex-

pected to show up as an infinite singularity instead of

a simple discontinuity. The result is [1-10]

in the region immediately following the onset. A£' is the

distance from the onset and a a positive exponent ap-

proximately equal to 1/2 [9]. (Actually a prominent

peak rather than a singularity is expected due to Auger

and temperature broadening.) On the other hand no sin-

gularity should occur at the onset of 5-electron transi-

tions since for them a is expected to be negative and

small. More details on the theoretical background of

these anomahes are given in other papers at this con-

ference.

*Fresenl address: Department of Physics and Astronomy, University of Maryland. College

Park. Maryland 20742.

Optical absorption at the hi/jn edges of Na, Mg, Al,

and at the K edges of Li, Be has been investigated for

several decades. Because of the inherent experimental

difficulties in the XUV range, many of these results are

in disagreement with each other. As the situation has

improved with the availability of electron synchrotrons

as intense continuous light sources, it appeared desira-

ble to investigate these materials in the light of recent

theoretical interest. Our experiments were performed

at the 7.5 GeV electron synchrotron DESY [11,12]. The

results reported were obtained by lueans of transmis-

sion measurements on thin evaporated fihns. Details of

the experimental procedure will be given elsewhere.

Figures 1 to 3 show the absorption coefficient of Na.

Mg and Al near the Lujn edges. The spectra of Na [13]

and Mg are very similar in shape. A peaking toward the

edge, as postulated by the theory, is clearly recognized

for both metals. The peaking is less pronounced for Al.

The spectra, as shown, were taken with the samples at

77 K. The structure is complicated, due to the spin orbit

sphtting of the ground state. It should be noted that the

intensity ratio of L///:L// is not 2:1 as expected from

simple statistics but 3.1:1 for Na, 2.8:1 for Mg, and

2.5:1 for Al.

As present theories give no prediction about how the

singularity of eq (1) should merge into the normal ab-

sorption behavior for large values of Af", we have tried

to fit our results to a tentative law:

M = ^^" +
;^fl77

(2)
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Figure 1. Photoabsorption o/Na in the neighborhood of the Ln

m

edge.
Included is the emission curve given by Crisp and Williams [14J. The dots show the best

fit of the experimental data by a function given by eq (2).

for Na and Mg. The best fit is indicated in figures 1 and

2 by dots together with the level of (Xq.

In order to compare our results with emission data

we have reflected the energy axis in these data and

brought the L/// edges into coincidence for Na [14] and

Mg [15]. Peaks are seen also in emission, but they are

less pronounced.

In the results of earlier absorption measurements on

Na [16] and Mg [17] the peak at the edge can be seen,

but no special attention has been attributed to it. For Al

only the plate density curve of Codling and Madden

[18] shows a faint peak at the edge.

The absorption curves near the K edges of Li and Be

are shown in figures 4 and 5. The samples were cooled

•emission
• fitted curve

52 (eV)

Figure 2. Photoabsorption o/Mg in the neighborhood of the Ln, m
edge.

Included is the emission curve given by Watson el ai. [IS). The dots show the best fit of

the experimental data by a function given by eq (2).
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Figure 3. Photoabsorption of A\ in the neighborhood of the Ln.m
edge.

to 77 K. Beryllium shows a peak which is clearly

separated from the onset of absorption. Therefore it

cannot be attributed to the type of singularity given by

eq (1). This peak, which has been found previously by

other authors [19,20] , may be associated with a density

of states maximum above the Fermi surface as shows

up in band calculations [21,22].

The spectrum of Li also shows a peak above the

edge. Band calculations indicate [23] that it could be

caused by a singular point above the Fermi surface. In

comparison to the Be spectrum, no shoulder can be

seen; the edge appears to be very broad. We do not

think that we can count the smooth rise of the edge as

evidence for a negative value of a in eq (1). This is

because of the fact that at least part of the width may

be due to Auger broadening as we have found similar

widths for exciton peaks at the K edge of Li haUdes
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<
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Figure 4. Photoabsorption ofLi in the neighborhood of the K edge.

Included is the emission curve given by Aita and Sagawa [25],
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Figure 5. Photoabsorption ofBe in the neighborhood oftheK edge.

[24]. Here again the comparison with emission data

[25] has been performed in figure 4. These show, quite

similarily, a smooth behavior at the edge.
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Optical Absorption of Solid Krypton and Xenon
in the Far Ultraviolet
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xenon.

We have performed an experimental comparison of

the absorption behavior of both sohd and gaseous kryp-

ton and xenon in the far uhraviolet using the 7.5 GeV
electron synchrotron DESY as light source. We have

measured Kr from the onset of 2x1 electron transitions

(
~ 90 eV) to 128 eV and Xe from the onset of 4c?

electron transitions (
~ 60 eV) to 155 eV. The most re-

markable feature in the gas absorption of Xe the broad

hump [1] at 100 eV, where most of the oscillator

strength is concentrated, is virtually pertained in the

sohd. This maximum has previously been attributed

[2] to the delayed d to f transitions which are sup-

pressed at the onset due to a centrifugal barrier in the

atom. Our result gives an experimental justification for

the application of atomic calculations to a solid in the

region far above the onset.

Part of the fine-structure which is superimposed onto

the low energy rise of this hump has been identified for

*Present address: Department of Physics and Astriinomy. University of Maryland, College

Park, Maryland 20742.

Xe gas as double excitations [3]. It cohicides with

structures in the solid in energy position but not in

shape. Most of the structure near the onset does not

agree in gas and solid, but the first prominent lines al-

most coincide for both Kr and Xe. This leads to the

identification of Frenkel type excitons in the solid. Also

Wannier exciton aspects are recognized in the spectra.

Other members of a series show up especially clearly

in Kr. An analysis made with the help of Fowler's band

calculation [4] has led us to the conclusion that they

are members of a second class exciton series ("forbid-

den excitons" according to Elhot [5]). Details of this

work are to be published in the Physical Review.
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The Piezo Soft X-Ray Effect

R. H. Willens

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974

In principle the soft x-ray emission spectrum should reveal the electronic structure of a material

below the Fermi surface. In general, but for a few exceptions, the beginning and termination of the band

structure are masked by low and high energy tails. The Van Hove singularities and critical points are

unresolved due to effects such as Auger, lifetime and instrumental broadening.

The modulation of the Lni emission band of polycrystalline copper by an alternating elastic strain

has recently been measured. Two effects are observed. First, there is an overall band shift which gives

a measure of the deformation potentials. The band shift is not uniform as different sub-bands can shift

varying degrees. For an applied load of 12,000 psi in uniaxial tension, the shift of the high energy side of

the band is 0.015 eV and the low energy side is 0.010 eV. Because of the preferred orientation and

polycrystalline nature of the sample, the exact microscopic sample is isotropic with a Young's modulus

of 20 X 10^ psi, the average deformation potential is 25 eV at the top of the band and 17 eV at the bottom

of the band. Secondly, superimposed on this band shift is structure which is unresolved in the normal

emission spectrum. The origin of this structure is presumed to be from positions in the electronic struc-

ture which are extra sensitive to strain as far as altering the x-ray emission. This would be at Van Hove

singularities or critical points where a high degree of degeneracy and wave function mixing is prevalent

which can be changed by the symmetry alteration of the lattice due to strain. Comparison between the

theoretical band structure calculations of copper and the emission structure due to strain modulation

show several similarities.

The application of this technique to aDoys should be useful for studying their electronic structure.

Keywords: Copper: electronic density of states; mechanical strain; modulation technique; nickel;

soft x-ray.

1 . Introduction

X-ray emission, at first glance, seems to be a simple

and easily interpretable technique to probe the energy

band structure of solids below the Fermi energy. The

states involved in the emission process are fairly well

defined, one of them being a core level. Surface

preparation and contamination should not be as critical

as that required for low energy optical and photoemis-

sion studies as the active volume can extend several

microns into the material. However, on closer investiga-

tion, the interpretation of the emission spectra is not as

simple as might be inferred from the one-electron

description of a solid. The shape of the emission spec-

trum is not a good representation of the density of

states due to such effects as variation of the transition

probability within the band, life time broadening distor-

tions mainly due to Auger transitions, and many body

effects [1]. Peaks in the density of states which would

correspond to Van Hove singularities in the electronic

structure are usually unresolved. Also, except for a few

simple metals like aluminum and magnesium, the

beginning and terminus of the band are masked by the

low and high energy tails.

Within the past five years, derivative techniques,

which are the result of modulating a measured property

by an external parameter, have come into prominence

because of the enhanced structure which can be ob-

tained. These modulation experiments have been ap-

plied mostly , to optical studies like electroreflectance

[2], thermoreflectance [3], and piezoreflectance [4].

The piezo soft x-ray effect is in the category of modula-

tion experiments. It corresponds to the modulation of

the emission spectrum due to an alternating mechani-

cal strain. The intent is to reveal structure which is un-

resolved in the normal emission spectrum which can be

correlated with Van Hove singularities or critical points

and the Fermi energy. When a mechanical strain is ap-

plied to a material the sub-bands shift in energy as a

consequence of the deformation potentials. The shifts

are not uniform and depend both upon the band posi-

tion and the strain conditions. Also, the strain alters the
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Figure 1. Piezo soft x-ray spectrometer.

symmetry of the lattice and may split formerly

degenerate levels which would be most prevalent at

Van Hove singularities or critical points. This could be

in the form of either orbital of k-space degeneracy.

Extra sensitivity of these locations as far as altering the

x-ray emission due to strain could be attributed to

either greater displacement with strain than adjacent

energy levels or altering of the matrix element of the x-

ray transition due to changing symmetry of wave func-

tion mixing of degenerate levels. Strain effects such as

these were first observed accidentally in optical studies

of the excitonic absorption in germanium [5,6] and the

principle has been subsequently applied to numerous

optical experiments [4,7]. The experiments reported

here, which are very encouraging, are stiU in the early

stages of interpretation and future experiments will dis-

close the usefulness of this technique to reveal the

energy band description of metals and alloys.

2. Experimental Apparatus

Several experimental requirements must be satisfied

in order to observe the piezo soft x-ray effect. First, the

order of magnitude of the effect (between one part in a

thousand to one part in ten thousand) requires the emis-

sion spectrum be excited to a high counting rate in

order to perform the experiment in a reasonable time.

This means that direct excitation by electrons is

preferable. Secondly, a single scan of an emission band

needs several days so the rate of contamination build-

up on the specimen surface must be reduced to a

minimum and finally, care must be taken to minimize

any distortion strains transmitted to the spectrometer

by the specimen stressing device.

The spectrometer is shown in figure 1 and schemati-

cally in figure 2. The spectrometer radius is 6 inches

and the analyzing crystal is bent to the approximate

focusing radius of 12 inches. The sample remains sta-

tionary and the analyzing crystal mount moves in a

linear motion with the current angular motions trans-

mitted to crystal and detector to maintain the focusing

conditions. The specimen is excited directly by elec-

trons at an incidence angle of about 75 to 80° with the

specimen surface. The detector is a flow proportional

counter with a stretched polypropolene window. The

counter tube gas is usually P-10 maintained at a

reduced pressure. The detector and analyzing crystal

are located in a low vacuum chamber, the order of 10

microns pressure. The sample chamber box is,isolated

from the low vacuum chamber and pumped to a

vacuum of 10~^ mm by ion and titanium sublimation

pumps. The x rays from the sample pass through a

stretched polypropolene window which separates the

two vacuum systems. A liquid nitrogen cold finger in

the proximity of the sample was necessary to reduce

the contamination rate. Typically, there is less than 4%
change in the intensity over the period of one week for

the emission spectrum reported here. The sample is

stressed by the force from a hydraulic cylinder which

is actuated with a high speed solenoid valve. The load-

ing system can apply a maximum stress of 40,000 psi

(the specimen cross section is 1/8" X 1/4"). The time

required to load or unload the sample is about 15 msec.

The loading of the sample is done in a coaxial manner,

so that negligible distortion strains are transmitted to

DETECTOR

ANALYZING
CRYSTAL

Figure 2. Schematic ofpiezo soft x-ray spectrometer.
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Figure 3. Copper emission band.

the spectrometer which might introduce spurious emis-

sion intensity changes.

3. Experimental Results

The first experiments were performed on polycrystal-

line copper [8]. Tlie hm emission band, which has a

maximum intensity at 930.1 eV [9] , and corresponds to

transitions between the SdAs levels to the 2p3/2 level,

was step scanned in wavelength increments of 0.002 A.

The analyzing crystal was KAP (2c?= 26.8 A). At each

position the sample was alternately loaded, to a stress

of 12,000 psi in tension, and unloaded 100 times at 10

sec intervals. The difference between the intensity

under the strained and unstrained state was deter-

mined by subtracting the averaged corresponding

readings. The magnitude of the strain effect required
0.6

I
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Figure 4. Modulation of L|,i emission band of copper due to an
alternating strain.
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Figure 5. Subtraction of derivative of emission band from
modulation curve.

Curve 1 is original curve. Curves 2 and 3 are resultant subtractions assuming shifts of
0.010 and 0.015 eV. respectively. Location of Fermi energy and Van Hove singularities

are from Burdick's calculation (ref. [11]).

between 10' to 10* counts to be accumulated at each

step position to assure statistical significance.

Figure 3 shows the observed emission spectrum nor-

malized to a peak value of 100. It is completely struc-

tureless without any indication of the location of the

Fermi energy which should be located somewhere in

the region of 932 to 934 eV as determined by x-ray ab-

sorption measurements [10]. The lack of any indica-

tion of the Fermi energy is probably masked by satelhte

emissions or many body effects. There should only be

natural lifetime and instrumental broadening at this

energy as Auger processes would not contribute to the

Ufetime broadening. Figure 4 shows the change of the

emission intensity which results when the copper

specimen is stressed in tension. The modulation curve

appears to be fairly representative of the derivative of

the emission peak. There is also apparently additional

structure present. One prominent feature, besides the

small wiggles and peaks, is the abrupt change in slope

that occurs at about 934 eV. For the same copper sam-

ple this curve reproduces itself when rescanned, in-

cluding the fine structure. Additional copper samples

show different modulation curves. The gross shape

remains the same and an apparent sudden change of

slope at about 934 eV is evident, but there is significant

modification in fine structure and intensity. This is at-

tributed to the difference in crystallographic texture

between specimens.

If the modulation curve was the result of a rigid shift

of the emission band, then the curve should exactly be

the derivative of the emission band. To check this pos-

sibility, the product of the derivative of the emission
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band and a suitable constant, which would correspond

to the energy shift of the band, are subtracted from the

modulation curve in an attempt to produce a null curve.

F^igure 5 shows the attempt to carry out this nulling

procedure. Curve 1 is the original curve and curves 2

and 3 are the resultant subtraction curves assuming

shifts of 0.010 and 0.015 eV, respectively. It is apparent

that no appropriate uniform or smoothly varying band

shift can account for the total modulation curve. The
energy shift which reduces most of the effect to zero is

0.010 and 0.015 eV at the bottom and top of the band,

respectively. Since the sample is polycrystalline, has

preferred orientation, and elastically anisotropic, the

microscopic strain conditions are not known. Assuming

the sample is isotropic with a modulus of 1.38 X lO^*

dynes/cm^, the average deformation potential is 25 eV
at the top of the band and 17 eV at the bottom. These

numbers can only be considered approximate until ex-

periments with single crystals are performed.

The remaining portion of the modulation curve which

cannot be nulled by the derivative subtraction

technique must be associated with regions in the band

which are extra sensitive to strain as regards altering

the x-ray emission intensity. This could be at the Fermi

energy and Van Hove singularities or critical points.

There is some arbitrariness between the energy scale

as measured by x-ray emission and the scales used in

the theoretical band structure calculations. Burdick

[11] has correlated his energy scale to the x-ray emis-

sion scale by matching the peak in the density of states

with the peak in the emission band. Burdick's calcu-

lated values for the Fermi energy and Van Hove singu-

larities are indicated in figure 5. The abrupt slope

change at 933.8 matches the Fermi energy and much of

the fine structure matches with the Van Hove singulari-
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Figure 6. Nickel Lm emission band.

ties. Whether or not this is the correct match should be

revealed by investigations of single crystals.

The Liu emission spectrum of nickel is shown in

figure 6. It is quite similar to the copper emission spec-

trum except there is a noticeable satellite on the high

energy tail. The origin of this satellite is presumably

due to multiple ionizations produced by Auger transi-

tions from the initial L/ and L// ionizations [12]. The

peak in the emission band occurs at 14.561 A or 851.5

eV [13]. X-ray absorption measurements [14] indicate

that the Fermi energy is close to the emission peak

(within 1 eV).

The piezo soft x-ray effect in nickel is quite different

than that observed for copper. Generally, two different

types of results are seen depending upon the initial con-

dition of the nickel sample. Figure 7 shows the modula-

tion curve for a nickel sample which was heavily cold

worked by rolling and measured using the same experi-

mental conditions as previously mentioned for copper.

Figure 8 shows the modulation curve when the nickel

specimen is not subject to the same degree of cold

work. As can be seen from the figures, there are two

modulation peaks. The magnitude of the effect in-

creases about 7 fold for the sample which is not heavily

cold worked and the fine structure which is present on

figure 6 is unresolved. Why there is such a difference

between the two specimens will be discussed later. It

is quite evident that the strain must be altering the

matrix element for the x-ray transition since the total

emitted intensity is greater when the specimen is under

tension (in compression the modulation curve is nega-

tive). The high energy modulation peak evidently cor-

responds to the satellite emission of nickel and the low

energy peak to the normal 3<i-45 to 2p3/2 transition. The

0,6
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Figure 7. Modulation of emission band for heavily cold-worked

nickel.
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Figure 8. Modulation of emission band for annealed nickel.

separation of these two peaks is about 6 eV and the

relative intensities of the two vary from sample to sam-

ple, probably dependent on the preferred crystallo-

graphic orientation.

First, refer to figure 7, which corresponds to the

heavily cold worked sample. This sample is mostly ex-

hibiting fine structure mostly associated with mechani-

cal strain. The high energy modulation peak has a

break at 856.9 eV and another at about 851 eV which is

indicated by the arrow on the figure. This feature is also

present on the high energy side of the low energy modu-

lation peak. Assuming that this feature is the spin

exchange splitting* the measured value, from extrapola-

tions of the modulation curve, is 0.6 ±0.05 eV. This

agrees very well with the theoretical values of 0.4 or 0.6

eV [15]. The same kind of derivative analysis as that

used for copper cannot be used for nickel because the

gross shape of the curve is not representative of the

derivative. However, one can attempt to null portions

of the modulation curve by the derivative scheme as-

suming that the high and low energy parts of the emis-

sion curve shift in opposite directions with strain. By

doing this, it becomes evident no simple shifts can null

the modulation curve. The fine structure which can be

readily seen on the modulation curve becomes

enhanced as well as the abrupt changes in slope which

occur on the high energy side of each modulation peak.

The high energy modulation peak has its abrupt in-

crease of intensity at 856.9 eV.

The mechanism for the increased piezo effect for the

nickel sample not subject to the heavier cold work has

been discussed in detail elsewhere [16]. Apparently,

rather than mechanical strain being the dominant

mechanism for producing the modulation, the mag-

netization of the sample rotates. This alters the spin-

orbit splitting of the sub-bands and displaces the total

band structure to a much greater extent than could be

produced by mechanical strain, resulting in changes in

x-ray emission throughout the total band. This explana-

tion is tentative at this time and further investigation is

required by doing solely a magnetic modulation experi-

ment.

4. Conclusions

A new experimental technique has been developed

to probe the energy band structure of solids. Although

the interpretation of the results are still in a primitive

state, it is evident that this method can be a useful

means for studying the electronic structure of metals

and alloys. One of the notable features of these experi-

ments is that we have transformed a structureless emis

sion spectrum to a modulation curve which contains

considerable structure and awaits theoretical in-

terpretation.
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Soft X-Ray Band Spectra and Their Relationship to the

Density of States *

G. A. Rooke

Metallurgy Department, University of Strathclyde, Glasgow^

The paper concentrates on the similarities and differences between the one-electron spectrum and

the density of states; many-body effects, although important, are listed but they are not considered in

detail. It is shown that the only reliable information about the density of states that can be obtained from

soft x-ray spectroscopy are the energies of the Fermi surface and the van-Hove singularities, although

the shape of the density of states can be derived indirectly from the energies of the van-Hove singulari-

ties.

It is the differences between the density of states and the one-electron spectra that may prove to be

most important. These differences can give information about the symmetry and the local nature of the

screening electrons. This is particularly interesting when studying alloys.

The Li K, the Al L23 and the Zn L3 spectra are given as examples which illustrate the above argu-

ments. Finally, a brief discussion on the soft x-ray spectra from the Al-Mg system show how the results

may be used to study alloys.

Key words: Alloys; auger transitions; density of states; many-body interactions; plasmons; singu-

larities; soft X rays.

1. Introduction

Before commencing my discussion, I would like to

state our objectives in attempting to measure the densi-

ty of states: they are

(a) to compare experiments that are in some way

related to the density of states;

(b) to derive some information about concepts of a

more fundamental nature, the band structure,

the effective potential, etc., and

(c) to attempt to predict the properties of other

metals and alloys.

It is important to bear these in mind, as sometimes

our objectives can be achieved more directly by not

making use of the density of states.

It will be remembered that when transitions involv-

ing atomic core states occur, x-rays may be emitted or

absorbed. The x-rays have an energy equal to the ener-

gy difference between the two states involved in the

transition. If one of the states lies in the valence band

or the conduction band, a band spectrum is produced

*An invited paper presented at the 3d Materials Research Symposium. £/ec/ronic Density

of States, November 3-6, 1969, Caithersburfi, Md.

' Present address: Ferranti Ltd., Western Road, Braclinell, Berlss, U.K.

(see fig. 1). Experimentally, better energy resolution is

obtained from the band spectra with lower energies;

these are called soft x-ray band spectra. Ahhough this

paper specifically discusses soft x-ray spectra, the con-

cepts are applicable to all band spectra.

For an introductory review of soft x-ray band emis-

sion spectroscopy, I recommend either Skinner [1] or

Tomboulian [2]. An excellent bibHography of Yakowitz

and Cuthill [3] reviews the literature up to 1961. Some

of the most recent work in the field is described in a

conference proceedings edited by Fabian [4]. AU of

these omit very interesting Russian work for which no

comprehensive review is known to me.

2. Many-Body Interactions

The many-body interactions are treated in this paper

as uninteresting comphcations that tend to hide the in-

formation we are seeking. Each interaction is con-

sidered as a perturbation on the one-electron spectrum.

The interactions between individual electrons create

two types of perturbations on the spectra, the excited

initial and final states, which directly affect the spectra,

and exchange and correlation, which affect the spectra
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Hard X-rays

Figure 1. One-electron energy-level diagram showing x-ray transi-

tions.

through their effects on the band structure. The

exchange and correlation only cause trouble when com-

paring uncorrected one-electron band-structures with

experimental results [5]. They are normally allowed for

by theoreticians and are only important to experimen-

talists when they are measuring many-body effects or

when they are trying to derive the uncorrected band-

structures.

Excited states occur whenever electron transitions

occur. For all radiating transitions, two single-particle

excitations are involved; in emission processes both the

initial and the final states are normally excited while in

absorption processes the initial state is normally

unexcited and the final state contains two single-parti-

cle excitations. Each excitation affects the spectrum

through its lifetime and through its perturbing effects

on the unexcited one-electron spectrum. Three types of

one-electron excitation can occur and their effects on

the spectra are discussed separately.

First, the hole in the core state perturbs the valence

electrons, so that the intensity at the Fermi surface is

reduced for K spectra (transitions to Is-states) and

enhanced for L23 spectra (transition to 2p-states) [6].

The lifetime of the hole in the core state causes the

spectrum to be broadened because of the uncertainty

in its energy. If this lifetime is known, it is possible to

correct for this broadening [7] . The hole in the core

state can only affect spectra that involve x-rays.

Second, a hole in the valence band can be filled by an

electron in the same band, provided another valence-

band electron is excited into the conduction band,

thereby conserving energy; this interaction is called the

Auger process. Because of this, there are both holes

and excited electrons with energies close to the Fermi

energy and this raises the possibility of excitons occur-

ring in the metal. Also, Auger processes shorten the

lifetime of the hole and this broadens the spectra con-

siderably. Because many more electrons are capable of

filling holes near the bottom of the band than those near

the top of the band, the lifetime of a hole near the bot-

tom of the band is shorter and the spectrum is

broadened more near the bottom of the band than near

the top. It has not yet proved possible to remove the

Auger broadening from spectra, because the broaden-

ing is not constant throughout the band. Auger

broadening is important to any spectroscopy involving

the absorption of the ultraviolet light, to x-ray emission

spectroscopy and to ion-neutralization spectroscopy.

Third, the scattering of electrons excited into the

conduction band is important to any process involving

the absorption of radiation. This scattering is very

similar to the Auger process; an excited electron falls

to an energy level closer to the Fermi energy, giving its

energy to another electron which is excited out of the

valence band and into the conduction band. The

remaining holes and the scattered electrons could form

excitons. For any electron emission spectroscopy the

scattered electrons can contribute to the spectra and

they enhance the spectra near the Fermi edge. In

general, the lifetime of the excited states decreases as

their energy increases, so that the resultant broadening

is not constant throughout the band and is exceedingly

difficult to remove.

For each type of optical spectroscopy discussed at

this conference, two of these three types of one-elec-

tron excitations are involved and for ion-neutralization

spectroscopy, four excitations occur.

The first two types of excitations are involved in soft

x-ray band emission spectroscopy. The perturbations

of the valence band, near the Fermi edge, by the hole in

the core state is possibly the cause of the drop in inten-

sity near the Fermi edge in the hthium K spectrum and

the cause of the small pip near the Fermi edge in the

sodium L23 spectrum [6]. It probably contributes more
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to the shape of all light metal spectra than to the heavy

metal spectra, because the hole represents a larger pro-

portion of the core electrons in the light metals. The

core broadening prevents the detection of spectra

resulting from transitions to 2s, 3s, etc. core states and

it also is important in changing the shape of the spectra

from heavy metals; the lifetime of the excited state is

considerably reduced because of competing non-radia-

tive transitions. Auger broadening is responsible for the

low-energy tails in the spectra from metals and this in-

troduces uncertainty into the measurement of the band-

widths.

For other spectroscopic techniques, these excitations

are also highly important, their importance depending

on both the technique used and the metal examined.

Besides exciting a single electron state, it is also

possible to excite the electrons collectively into plasma

oscillations. When this occurs, together with the emis-

sion of an x-ray photon, the photon loses enough energy

to create the plasmon and a satellite spectrum is

formed at lower energies [8,9]. Interactions between

individual electrons and the plasmons, which are called

plasmarons [10] , have a measurable effect on the

plasmon satellite [11] but not on the parent band.

3. The Density of States and Band Spectra

Irf order to discuss the relationship between the den-

sity of states and the spectra, it is assumed in the

remainder of this paper that the effects of the many-

body interactions can be corrected for. The word

"spectrum" then implies "one-electron spectrum that

would result if such corrections were made"; this spec-

trum has the same width as the valence band, its shape

is related to the density of states but it is affected by the

transition probabilities.

The similarities between the density of states, N(E),

and the one-electron spectrum divided by the cube of

m)
the radiation frequency,

the following equations:

N{E)

are seen by comparing

(1)

(2)

where E is the energy of the state with wave vector k
and the integral is taken over the surface, s, of constant

energy, E. For the density of occupied states and for the

emission spectrum, the integral is taken over the region

of k space that lies inside the Fermi surface, while, for

the density of unoccupied states and for the absorption

spectrum, the integral is taken over the region of k
space that lies outside the Fermi surface. The square

of the modulus of the matrix element, / \^ySJ ^\\)fdT , is

the transition probability, whose properties determine

the difference between the two functions; the dipole ap-

proximation has been assumed.

A striking similarity between the two functions oc-

curs because the integrations are terminated at the

Fermi surface; this produces the Fermi edges in the

functions. Unfortunately, for some heavy metals, the

core-state broadening and the transition probabilities

combine to make the Fermi edge almost impossible to

measure.

The Brillouin zone effects are also common to both

functions; at certain points of high symmetry on the

Brillouin zone boundaries, the gradient, V^E, is zero

and van-Hove singularities exist at corresponding

points in the two functions. Certain van-Hove singulari-

ties are of particular interest; in particular the energy

of the bottom of the band can be used to estimate the

bandwidth and the energy of the top and bottom of the

d-band give the width of this band and its relation to the

Fermi energy, both of which are of considerable

theoretical interest.

Because the matrix element is k-dependent, it is not

possible to remove the transition probabilities from in-

side the integral in eq (2). Hence, it is not possible to

write the intensity as a product of the density of states

and the average transition probability and, even if the

transition probabihties are fully known, it is not possi-

ble to remove their effects from the spectra. Rooke

[12] has shown that the k-dependence of the matrix

element is large, sometimes changing it from nearly 1

to nearly 0 on the same constant energy curve, so that

errors created by removing the matrix element from the

integral can be serious.

From the above considerations it can be seen that the

detailed density of states cannot be directly derived by

using soft x-ray spectroscopy; or by using any form of

spectroscopy, for that matter. Sometimes a spectrum

and the density of states will have similar shapes and

they will certainly have the Fermi edge and some van-

Hove singularities in common. If the spectrum changes

under different experimental conditions, such as heat

or pressure, it may be possible to assume that the

changes will be entirely due to the density of states and

to obtain a little more information about the density of

states in this way. This technique has been used to find

the effect of the Fermi-Dirac statistics on the density of

states, by heating the target (1) and to find the effect of
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alloying on the density of states. A more sophisticated

version of this approach has just been developed by J.

H. Willens in Bell Laboratories [13]. In another

method for obtaining more information about the densi-

ty of states, one derives a band structure that fits the

measured van-Hove singularities and then uses this to

calculate the density of states. Hov^ever, as Fermi sur-

face techniques are capable of making fine distinctions

between band structures, they can also be used to ob-

tain densities of states which are often more accurate

than those obtained from soft x-ray spectroscopy. Even

though it is only possible to obtain limited information

about the density of states, this information is often

very interesting. However, it is often even more in-

teresting to examine the information that can be

derived by studying the effect of the transition proba-

bilities on the spectra. This information is discussed in

the next section.

4. The Transition Probability and the Band
Spectra

The differences between the functions defined in eqs

(1) and (2) are determined by the matrix element

The integration is taken over all real space and is

the component of the real-space gradient-operator in

the X direction.

i/*/ is the wavefunction of the core state and, because

of its high symmetry, it is a good approximation to ex-

press it as

i///(r, e, (t>)
= Rn'{r)Yr{d) e''"'<* (3)

where R„' (r) is a radical function, Y;- (6) is a Legendre

polynomial and n', 1' and m' are the usual quantum
numbers. The radial function has appreciable mag-

nitude only near the center of the atom and the state is

localized. Because only one Legendre polynomial is in-

volved, the state can be labeled by atomic notation; Is,

2p, 3d, etc.

i|/k is the wavefunction of a valence state and it may
be expanded as a series of spherical harmonies

i//k=2 C, (k)a,,u(r) F,(^)''"*
(4)

/, m

Normally, only the first three values of / are important.

The radial terms are roughly constant throughout real

space so that the state is shared by all atoms and is not

localized like the core states.

Substituting these expansions of the wavefunctions

into the matrix elements gives

I

i/'kV, .//^tfroc;^ C,(k) X f R„.{r)ai,^,{r)r^dr
I, m J

X j Yr id) Y,{d) fif}- d)dd X
j e'^>n-,.n(f>gig1cf>)d<ji

(5)

where f and g are functions whose form depends on the

polarization. Each of these four terms contributes a

distinct characteristic to the transition probabihty. The
k-dependence of the first two terms, as shown in the

last section, prevents the direct derivation of the densi-

ty of states from the spectra.

The third term is zero unless

l= l'±l (6)

This selection rule is particularly important for x-ray

transitions, because the core state involved has a well

defined symmetry described by a single spherical har-

monic. If the core state is an s-state, only p-like states

can make the transition to it. Similarly, only s-like and

d-like states can make the transition to a p-state.

This selection rule enables us to describe states in

terms of partial densities of states; the density of s-

states, the density of p-states and the density of d-

states. K spectra (transitions to the s-state) give approx-

imate estimates of the density of p-states, while L23 or

M23 spectra (transitions to the 2p or 3p states respec-

tively) give approximate estimates of the density of s

and d states.

Because these partial densities of states only approx-

imate to the shape of the spectra, it is not possible to

add them and to derive a meaningful density of states.

However, this symmetry dependence of x-ray band

spectra makes them unique in the information that they

can reveal. This is particularly interesting in the case

of alloys, for which this characteristic of x-ray spectra

should be fully exploited to determine the nature of the

screening charges. Further, it is the authors unsubstan-

tiated view, that the extended fine-structure occurring

in absorption spectra can also be attributed to this

selection rule.

Besides creating gross features in the spectra, this

selection rule modifies the magnitudes of the van-Hove

singularities. The symmetry of the crystal dictates that

the states associated with points of high symmetry in

the Brillouin zone will have high symmetry themselves.

Thus, some of these states are almost entirely p-Uke

while others are s-Hke or s and d like. If a state is entire-

ly s-like, it will not contribute to a K spectrum and, if it
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is associated with a van-Hove singularity, that singulari-

ty will not be seen in the K spectrum. Similarly, as most

states contain a mixture of symmetries, van-Hove sin-

gularities associated with states that are entirely p-like

will be exaggerated in the K spectra. The reverse situa-

tion occurs for L23 or M23 spectra, for which p-like sin-

gularities will not be observed and s and d like singu-

larities will be exaggerated.

The last term in eq (5) is dependent on the polariza-

tion of the radiation and it is non-zero if m = m' ± 1 , but

if the polarization is suitable it may also be non-zero if

m = m'. We therefore write the second selection rule as

m=m'=±l orO (7)

This rule implies that not all the transitions described

in the second last paragraph are allowed. For any one

type of transition, say s to p, only a fraction of transi-

tions are allowed and this fraction may vary throughout

the band, thereby distorting the spectrum. However,
this distortion may not be serious, as the fraction may
be nearly constant throughout the band. Of course, the

constant fraction for d to p type transitions will be dif-

ferent from that for s to p type transitions and, in fact,

the fraction for these transitions can be shown to be

about 2/5 of that for the s to p transitions. This means
that the L23 or M23 spectra give an approximate mea-

sure of the density of s-states plus 2/5 density of d-

states. This is one reason why the L23 and K spectra,

when added together, do not give the full density of

states.

The second term in eq (5) provides the spectra with

some very interesting properties. The integral effective-

ly takes a weighted average of a(r), using a weighting

factor of rR„'(r). Because of the localized nature of

Rn'(r), this integral can be considered to take an

average of a(r) in the region near the core state of the

emitting atom. This is exceedingly interesting when
studying alloys, as the spectra from each component

metal will sample the wavefunction in the region of that

type of atom. These local properties are of great in-

terest and are only obtainable by the spectroscopies in-

volving x-rays.

Finally, the degree of approximation involved in as-

suming that spectra are similar to the partial densities

of states is discussed. Consider the case of the K spec-

trum, which samples p-states. Because the wavefunc-

tions are normalized, the term / dr may be inserted

into eq (1) without changing it. This term may be

written as

^ (2/+l)^q(k) ja,\ (r) r-^dr

and the density of p-states may be defined as

Xr)r'dr
cc

/. k (8)

By replacing the last two terms in eq (5) by non-zero
constants and restricting the summation to /= 1, eq (2)

may then be written as

rf2 k
1

Cf(k) a/,i,{r)r''dr
(9)

where the zero on the radial integral indicates that it is

now restricted to the region of the core state of the

emitting atom. The final terms in these equations

differ, one being the average of the square of a(r) and
the other being the square of a local average of a(r). For
the densities of s-states and of d-states and the cor-

responding spectra, the situation is comphcated by the

factor of 2/5 and by cross terms, but the differences

arise in the same way.

5. The Spectra from Pure Metals

It is shown above, that x-ray spectra sample only

those wavefunctions that have specific symmetries and

that He near the core of the emitting atom. Apart from

these restrictions, they tend to show some of the

behavior of the density of states, particularly the Fermi

edge and the van-Hove singularities. The spectra are

broadened by the experimental resolution and by many-

body effects and it is possible that these many-body ef-

fects also change the shape of the spectra near the

Fermi edge. These ideas are now illustrated by three

pure metal spectra; the Li K, the Al L23 and the Zn L3

emission spectra.

The Li K emission spectrum [14] is shown in figure

2. The Auger tail is immediately obvious but the Fermi

Figure 2. Lithium K emission spectrum. Reproduced from Crisp

and Williams [14].
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Figure 3. Aluminum L>3 emission spectrum. Reproduced from

Rooke [15].

edge at eV is not so obvious because of the fall in inten-

sity towards the edge; this fall in intensity is attributed

to the effect of the hole in the core state. Because of the

low bandwidth, no van-Hove singularities occur below

the Fermi edge. The shape of the density of states is al-

most certainly close to parabolic, but, because of the

lack of p-Hke states near the bottom of the band, the

spectrum does not reflect this; its intensity is con-

siderably reduced near the bottom of the band.

The Al L23 emission spectrum [15] is shown in

figure 3. The Fermi edge and the Auger tail are particu-

larly obvious and the van-Hove singularities appear as

discontinuities in the top half of the band. It is seen that

the p-hke van-Hove singularities, X4' and L2', are much

less obvious than the s-Hke singularities, Xi and Li. The

bottom of the band rises sharply to a broad hump at

about 66 eV; this reflects the parabolic rise of the densi-

ty of states and the fact that the states near the bottom

of the band are nearly all observed because they are

mostly s-Hke. From 66 eV to about 70 eV, the intensity

02

Pure metals
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A ^2 "9,7
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Figure 5. Magnesium L23 and Aluminum L23 emission spectra from

Al-Mg alloys. Reproducedfrom [1 7].
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Figure 4. Zinc L23 emission spectrum. Reproducedfrom Liefeld [16].

falls but then it rises again towards the Fermi edge.

This occurs because the states change from being

mostly s-like at the bottom of the band to being mostly

p-Hke near the center of the band and then to having

both s and d character near the top of the band.

The Zn L3 emission spectrum [16] is shown in figure

4. This spectrum has been obtained after considerable

effort in allowing for the various experimental errors

that occur. The tall peak at the center of the spectrum

is possibly the d-band while the sharp fall in intensity

at about + 7 eV may be the Fermi edge.

6. The Spectra from Alloys

Soft x-ray spectra are proving to be of considerable

value for studying alloys and it is for this purpose that

soft x-ray spectroscopy will be developed in the next

few years. An excellent review of the work done in the

West has been given by Curry [17] , but the Russians

have also done some interesting work, particularly on

alloys containing d-band metals.

As an example the very interesting results from the

Al-Mg system are discussed. The Mg L23 and Al L23

emission spectra from two alloys are shown together

with the pure metal spectra in figure 5. At first sight, it

is seen that the apparent bandwidths of the alloy spec-

tra are not greatly different from those of the pure

metal spectra. On alloying, the intensity of the Mg spec-

trum is relatively enhanced at the top of the band while

the intensity of the bottom of the Al spectrum is rela-

tively enhanced. The spectra have been carefully and

independently checked by Dimond [18] and it is felt

that the results are not due to clustering.

The following analysts produces some very interest-

ing information. First, the width of the density of states

must be at least as wide as the bandwidth of the Al

spectrum; this fact is in contradiction with most theo-
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ries of alloys. Second, either the states at the bottom of

the band must be highly localized around the aluminum

atoms or they must have mostly s-symmetry in the re-

gion of the aluminum ions and mostly p-symmetry in

the magnesium ions; the former alternative is the most

likely. It is possible that the states are tunneling

through a potential barrier in the region of the magnesi-

um ions and can only contribute to the spectra when

they are in the vicinity of the aluminum ions. Third,

states that are localized near the aluminum ions tend to

be relatively more s-like than the states at the same

energy in the pure metal. For magnesium, the states

near the bottom of the spectrum tend to be relatively

more p-like, reflecting the fact that they are now not

near the bottom of the band.

This example shows how useful it can be to sample

electrons locally and with selected symmetries.

Another example involving d-band metals is given later

in the conference by Lindsay, Watson and Fabian.
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Orbital Symmetry Contributions to Electronic Density

of States of AuAl*

A. C. Switendick

Sandia Laboratories, Albuquerque, New Mexico 971 1

5

From an augmented plane wave calculation of the valence and conduction bands of AuAl2 we have

constructed density of states histograms. From further calculations of the wave functions, one can at-

tribute atomic-like character of the band states, e.g., Au 5c?-bands, Al Si-band, Al 3p-band. One can then

partition the total density of states into atomic-like components according to the fractional atomic-like

character of each state.

From the total density of states an electronic specific heat coefficient of 2.81 mj/mole was calcu-

lated compared with the experimental value 3.03. The aluminum 3^ density of states is compared with

the aluminum L2,3 soft x-ray emission spectra. Excellent agreement with experiment is obtained for the

absolute location, and location relative to the Fermi energy, of the low energy peak. About half the cal-

culated peak is attributable to tails of wave functions associated with the gold (f-bands. Additional struc-

ture in the experimental curve is quite well reproduced in the calculation. This we take to be confirma-

tion of the overall correctness of our bands.

Key words: Augmented plane wave method (APW); electronic density of states; electronic specific

heat; gold aluminide (AUAI2); "muffin-tin" potential; orbital density of states; soft x-

ray emission.

1. Introduction

Augmented plane wave (APW) energy band calcula-

tions for AuAla [1] have been extended to nineteen in-

equivalent points in 1/48"' of the Brillouin zone for the

energy range —0.20 to 1.15 Ry. This gives a total of 256

points in the full Brillouin zone and includes bands

derived from the aluminum 3s- and Sp-states and the

gold 3c?-states. Two sets of bands fall in the energy

range —0.2 to 0.1 Ry. The lowest one from —0.2 to 0.1

Ry can best be described as the aluminum Ss-bonding

band derived from the 85 atomic states of the two alu-

minum atoms in the unit cell. The narrow set of bands

from —0.05 to 0.05 Ry are the gold (/-bands. These

bands are filled and contain twelve of the seventeen

valence electrons per unit cell and are about 0.5 Ry
below the Fermi energy. From .1 Ry to slightly above

the Fermi energy (0.56 Ry) lies a partially filled alu-

minum 35-antibonding band. A complex of bonding and

antibonding bands formed from the aluminum 3p-levels

extends from 0.3 to 1.2 Ry. The Fermi level falls in the

region of aluminum 3s-antibonding and aluminum 3p-

bonding and -antibonding levels. The interpretation of

*This work was supported by the U.S. Atomic Energy Commission.

these bands in terms of their atomic geneses is con-

firmed by charge density calculations which were also

made in this energy region. The APW method gives a

very convenient description of the charge density, i.e.,

atomic-like near the nuclei and plane-wave-like in the

exterior "muffin tin" region. We shall utilize this

description to compare calculated values of the density

of states and orbital densities with experimental values

for the electronic specific heat and aluminum soft x-ray

L2,3 emission spectra, respectively. We shall be quite

explicit in describing the numerical procedures and ap-

proximations which we have made, given the band

eigenvalues and wave functions, leaving details of the

band calculation for a more appropriate publication.

2. Fermi Energy

The Fermi energy is determined by the relationship

N-T^J d'k (1)
(277)-' }E(k)*Ep

where A'^ is the total number of electrons, the factor

VI{2TTf represents the density of spin states in k space,
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and I he lactor 2 the fact llial we can put two electrons

ill each s|)in state, one up ami one down. We shall en-

deavor to explicitly display this factor whenever it oc-

curs. If we divide both sides by V and niiiltiply by fi,

the unit cell volume, and subtract the electrons in filled

core bonds then we have

Z =
m

(277)
d-'-k

(2)

where Z is the number of valence electrons in the unit

cell and the integral excludes core states. The number

of cases for which the integral can be done analytically

are few and we will always have to resort to numerical

technicjues. From the definition of the integral

20
(277)^'

2n

</-;(/,-)=s/;,. (27r)-'
(3a)

where A-'A', is the j"' subvolume of the division of the

Bi'illouin zone into /; parts. For our calculation we

choose A^A, to be of equal size with the volume centered

on A;. This gives

n 1
i

1 (3b)

By increasing n and varying the subinterval shape we
can investigate the accuracy of this approximation as

shown in table 1. The asymmetry in the table between

Table 1. Convergence of sum determining Fermi

energy, Ep, as a function of number of points, n, in

k-space eq 3b

n z(E{ki) <£,.) z{E(ki) ^Ei.)

32 0.5442 0.5620 16.75 17.125

64 .5442 .5620 16.875 17.0625

128 .5442 .5480 16.75 17.125

256 .5480 .5620 16.97 17.02

greater than and less than or equal to reflects the fact

that many A'i's (up to 48 for cubic symmetry) all have the

same energy so the sum rarely comes out exactly Z as

the last column indicates. The statements [2,3] that

both the state No. Zn/2 and the state No. (Zn/2)—1 have

the same energy which is thus the Fermi energy we be-

lieve to be misleading. The second and third columns

represent more accurately the precision with which the

I'Crnii energy is determined. Mtliougli the results in-

dicate a value closer to .560 Ry, the results for 128

points indicate a value below .550 Ry. In what follows

we shall quote values of results 'ds X(y,z) whttraX is the

value which seems most reasonable, y the increment

gained by choosing the higher Fermi energy, and z the

increment gained by choosing the lower one. The value

X is the one one might see in less candid treatments.

This presumes the correct solution of some ad hoc

potential and reflects only the inaccuracy of our sam-

pling and ignores any further inaccuracy due to the in-

adequate physical relevance of the potential used. Thus

we quote a Fermi energy of .557 (+ .005, — .009) Ry.

3. Total Density of States

If one replaces £"/ by E in eq (2) and considers Z as a

function of E then the number of valence electrons

states per unit cells between £ and£' and dE is give.i by

dZ{E)
20 d

(277)-' dE
dH dE (4)

or the number per unit energy range

20 d
z(E)

(2/7) dE jE^.<Ey(k)^i-:
d^k (5a)

Again, of course, we must resort to finite techniques

and our result is

A£ ^E
.„ <E{k^)^E,+

2

(5b)

If we let A£' go to zero in eq (5b) then our approximate

density of states becomes just a series of delta func-

tions located at E(ki) and is of no use to us. We there-

fore choose some mesh of energy Eg= Eo+ q^E with

finite AE and hope eq (5b) represents some average

density of states over this interval. If we choose AE too

large then our curve will be structureless and again of

no use to us. Again we look for some sort of convergent

procedure, decreasing A£' until the resulting curve has

stability of structure yet not so small to lose this stabili-

ty. When we do this, we find minor variations as a state

goes from one A^ to the next higher. These minor varia-

tions become major ones if AE is too small and the

curve reverts to regions of no states and delta-function-

hke square spikes. These minor variations of shifting

states from one subinterval to another, similarly de-
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pend on Eo, where we start our finite partition. Com-
parison of averaging over various starting points as

done by Snow and Waber [4] with more sophisticated

calculations [5] employing the same data indicate that

where the number of states is large (fl?-bands), credible

structure develops: but where the number is small,

structure develops which may or may not be believable.

All of which is to say they could have chosen a smaller

A£' in the region of the c?-bands and probably should

have chosen a larger one in the region of the 5-bands.

Since we have about twice as many states per unit ener-

gy range as Snow and Waber, and shall choose a larger

Af", we shall tend to believe any structure which

develops. We have then

m n llE V m

E^^^nEZ^^^,,^E„+'-2n^') (6)
2/7?

The integer p gives the region of interest, where E„ is

the arbitrary starting point, is the sampling width

and we are averaging over m histograms starting at E,,,

Eo + Mlm, . . .,Eo+ (m-l)AEIm.
Using this procedure with Eo = - 0.281625 Ry Ai? +

0.03675 Ry, and m = 5 the histogram shown in figure 1

shows z/2 for AuAl2. The large peak near .5 eV is the d-

band which has been spread out somewhat by our

averaging procedure. The Fermi energy falls in a region

of rising density of states. The value of the density of

states at the Fermi energy which we calculate is 1.19

(+.05. —.14) electrons/(eV-unit cell). This gives us a

value for the electronic specific heat coefficient y =
CelT of 2.81 ( + .12, - .33) mj/mole compared with

the experimental value of 3.03.

4. Orbital Density of State and Soft X-Ray
Spectra

The intensity of soft x-ray emission spectra can be

written as

I{co) ^ j \Hji\- 8iEi{k)-hoj-Ejik))d-'k (7)

where H/i is the transition matrix element between the

initial and final state. For x-ray emission Ef is a low

lying core state and its k-dependence may be

neglected. If we make the dipole approximation and

use the APW expansion of the wave function inside the

n"' sphere

I. in

(8)

we obtain

/(w) ^oj-^
j j P{q^^ Pi^^ r'dr\-'8(Ei{k}-hco)dH-

(9)

5.0

Ll

O
^/) 1.0
LlI

I-

<
^ 00

-5.0 0.0 5.0 10.0 15.0

ENERGY (ELECTRON-VOLTS)

Figure 1. Density of states for AuAU constructed following the

procedure outlined in Section III, factor of two in eg 6 has been

omitted.

Specializing further to the L2,3 emission spectra in

AuAL the final state is aluminum 2p and only the alu-

minum 5- or c?-like components of the wave function

contribute to eq (9). If we assume that the radial wave

function Pi'(r) is a slowly varying function of energy and

can be written

Pi{>-)^Pnr)fi(r) (10)

where Pi''(r) is some average radial function and fi'(r) is

smooth and in our approximation = 1. The only k-de-

pendence is now in the C''s and we can write

(11a)

I{uj)l(o-^S'j{(C^yRf,^

+ {qirRl,}8{Ei(k)-hco)dyc

where

Rpi = j Pi{r)Pt(r)rdr (12)
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with discrete representation (taking out a proportionali-

ty factor

n^,)l^^ = J,[(C;,)'+{C;,)'R^jRf„] (lib)

Defining

Qi=l {C\)HPl{r)Ydr (13)

spheres

The amount of /-Uke charge in the aluminum spheres

for the i"' state, and an aluminum /-like density of spin

states A^;'^'(^)

2/V,^'(^)^---^2^'
m nAE^

(14)

Again approximating P/Yr) hy Pi°(r)

Qi={Ciyj {P}^{r)ydr, (15)

dropping all irrelevant factors of proportionality we get

l{Oll^'^N-r(0+CN;l'{li) (16)

where C ~ 1. Plots of the orbital densities of states are

shown in figures 2 and 3. The aluminum (^-contribution

is small and will be disregarded. The 5 curve fairlv well

replicates the total density of states in figure 1 with the

exception that the low energy peak is shifted about a

volt lower and the structure on the low side is more

pronounced. This low energy peak corresponds to the

ll 0.50

-5.0 0.0 5.0 iO.O 15.0
ENERGY (ELECTRON-VOLTS)

Figure 2. Density ofaluminum 3s-Uke-states, N^'.

aluminum 3s-bonding band although about half of its

magnitude is attributable to tails of the gold (i-band

wave functions overlapping the aluminum sites.

This figure should be compared with the experimen-

tal results of Williams, et al. [6] reported in these

proceedings as shown in figure 4 graciously supplied by

Dr. A. J. McAlister. We see that their peak =8 eV
below the Fermi energy is well reproduced in our figure

2. This we take to be partial confirmation as to the loca-

tion of the gold (i-bands. Also the structure on the low

energy side seems to be present in our calculations.

Structure between the peak and the Fermi energy

seems to be present in both curves although our values

seem about 1 eV too high. We have calculated alu-

ENERGY (ELECTRON-VOLTS)

Figure 3. Density ofaluminum 3d-like states, '.

1 Oi ! 1 1
1 1 1 1 1 1 r

-10.0 -5.0 0.0

E - Ep (ELECTRON-VOLTS)

Figure 4. Relative Intensity/co'^ ofaluminum L2,.) soft x-ray spectra

{courtesy ofA. J. McAlister).
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minum 2p-core bands and find them 73.8 ±0.1 eV

below the Fermi energy compared with the experimen-

tal value of 73.5 ±0.5. This band is less than .02 eV

wide and every state is 99.97% aluminum 2p-like. This

confirms our neglect of final state energy.

In table 2 we give the ratio

for the states Tl = - .194 Ry and ¥2' = .625 Ry, the

bottom and top of the aluminum 35-bands, respectively.

Although this varies by a factor greater than three from

the origin to the sphere radius, in the region of overlap

with the 2p peak it varies by less than 10% (discounting

the value for r = .8660 which is small because it is near

a node of [P^^ {r)]'~) . To the extent we can neglect the

variation of the radial function with energy and define

Ps''(r) and fsHr), the ratio given in eq (17) should be

equal to a constant, Ol^lQl'', which is .5114 com-

pared to a variation of from 0.33 to 1.25 within the

sphere. Thus we may have overestimated low energy

C^'s by 25% and underestimated the high energy C^'s

by 25% at most. The extra factor or r in eq (9) would

tend to prejudice the integral towards larger r values,

reducing these errors to about ± 10%. In any case one

could calculate the corrections throughout the band if

more accurate results were needed.

In summary we conclude that our band structure cal-

culation reproduces density of states information over

an energy range of 10 eV with reasonable accuracy.

Table 2. Variation in P^, radial wave function from

bottom to top of band

r (a.u.)

0.0019 0.3301

.0188 .3302

.0377 .3303

.0754 .3310 2p Peak/5.

.1130 .3330

.1883 .3209

.2636 .3281

.4142 .3371 2p Peak.

.5697 .3617

.8660 .1977

1.1672 .3013

1.7697 .4469 2p Peak/ 10.

2.3721 1.0410

2.4549 1.2495 Sphere radius.
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Discussion on "Orbital Symmetry Contributions to Electronic Density of States of AUAI2" by
A. C. Switendick (Sandia Laboratories)

F. M. Mueller (Argonne National Labs.): Since you

have the wave functions point by point in the zone

separated into 5, p, and d characters, do you have any

plans to calculate dipole matrix elements as a function

of position in the Brillouin zone itself? Presumably you

could do this, but it would be rather difficult perhaps?

A. C. Switendick (Sandia Labs.): I think it would be

fairly easy. I think the essential variation is in how

much 5, p, and d character there is in the wave func-

tion, but one certainly could do it quite easily with the

wave functions we have.
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Soft X-Ray Emission Spectrum of Al in AuAl2

M. L. Williams, R. C. Dobbyn, J. R. Cuthill, and A. J. McAlister

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

Recently, Switendick and Narath have reported results of a systematic calculation of the electronic

band structure of the compound series AuXsiX = Al,Ga,In). We have measured the L2,3 soft x-ray emis-

sion spectrum of Al in AuAlo and from it, estimated the Al L3 emission profile. We compare the latter to

the distribution in energy of j-like charge at Al sites, estimated by Switendick from his band calculation.

This 5 density is the dominant factor in a one-electron estimate of the soft x-tay emission rate. Quite

good agreement is found, lending strong support to the calculations for AuAU. This result also supports^

interpretation of a recently observed low energy peak in the L2.:! emission spectrum of Al in Ag-Al alloys

in terms of Agd and Als-p hybridization.

Key words: Electron density of states; gold aluminide (AuAU): gold-gallium (AuGa2); gold-indium

(Auln^); intermetallic compounds CsCl structure; L spectra; silver-aluminum alloys

(AgAl); soft x-ray emission; 5-orbital density of states.

1. Introduction

The series of intermetallic compounds, AuX2(X =
Al,Ga,In), is of considerable current interest, largely

because of the unusual behavior of the magnetic

susceptibility and Ga Knight shift in AuGa2. Specific

heat [1] and de Haas-van Alphen Fermi surface studies

[2] indicate that these materials are fairly well

described by the nearly free electron model, and reveal

no strong differences between them. Yet while the Al

and In Knight shifts are positive and essentially tem-

perature independent, the Ga Knight shift displays a

large and unusual temperature dependence, ranging

from -0.13% at 4 K to +0.45% at 230 K [2]. The mag-

netic susceptibilities of AuAIj and Auln2 are tempera-

ture independent, but AuGa2 displays a temperature

dependence [2]. Switendick and Narath [3] have

recently reported a systematic calculation of the elec-

tronic band structure of this compound series, and from

it, suggest an interpretation of the Fermi surface and

Knight shift data. A somewhat surprising feature of

their results is the location of the d bands at 7 to 8 eV
below the Fermi level. This is in sharp contrast to the

2 eV or so suggested by interpretation of the optical

properties of these unusually colored materials via d
band to Fermi level optical transitions [4]. While not

giving a detailed analysis of the optical properties,

Switendick and Narath suggest that the d bands are not

necessary to an explanation of the optical properties,

since the calculation predicts a large number of 5- and

p-like states both above and below the Fermi level.

We report here a measurement of the L2,3 emission

spectrum of Al in AuAL. From it, we estimate the Al L:j

emission profile, and compare it to the s-orbital state

density at Al sites (the leading term in a one-electron

calculation of the L spectrum) estimated by Switendick

from his band calculation, and reported elsewhere at

this conference [5]. Good agreement is found, lending

strong support to the validity of the AuAl2 band calcula-

tion. Analogies between the present work and the

recent observation of a low energy peak in the L2,.3

emission spectrum of Al in Ag-Al alloys [6] support in-

terpretation of the latter in terms of Ag d and Al s-p

hybridization.

2. Experimental Details

Measurements were made in a previously described

[7] glass grating, vacuum spectrometer using

photoelectric detection. The spectrum was scanned

continuously, total counts being recorded over succes-

sive short time intervals. Successive runs were

summed to enhance signal to noise ratio. The relative

counting error in the raw data, (N)~'^l'^, where A' is the

accumulated count per channel, ranged from 1.8 to

0.8% This degree of statistical assurance was achieved

at the expense of instrumental resolution, which we

estimate to be 0.35 eV at the Al emission edge. Mea-
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surements were made at an average pressure of 7 X
10"** Torr, at approximately 500 °C. Electron beam ex-

citation was used, at an energy of 2.5 keV. The sample

was a polycrystalline rod, lightly machined and washed

in acetone and absolute alcohol before mounting in the

instrument. It was prepared from 99.999% pure Au and

Al starting materials, by first adding Au in stoichiomet-

ric proportion to Al induction melted in an alumina boat

under vacuum, then drawing the final melt into a graph-

ite lined quartz tube. Optical metallographic exam-

ination;of ,the samplefshowed that toward the center,

the last part to freeze in this preparation technique,

traces of free Al (much less than 1%) occurred at the

grain boundaries. None was observed at the surface.

Such Al contamination as might occur at the surface

should not noticeably affect the results. A practical

check of this is possible. The pure Al profile differs

strongly from that of Al in the compound, and any sig-

nificant distortion from this source would have been

evident.

A further complicating factor is the Au 0-2,3 spectrum

which overlaps the Al L2,3. Supplementary measure-

ments on Au, not reported here, show the 02,3 band to

be very weak in the pure metal. If we make the reasona-

ble assumption [8] that the Au 09,3 and Ne,? bands in

the alloy have the same relative intensity as in the pure

metal (Au Nt^j does not overlap Al L2,3), then we can as-

sign a maximum peak intensity to Au 02,3 in the alloy of

no more than 2% of the Al L2,3 maximum. Since an oil

diffusion pump was used to evacuate the instrument,

the fourth order of the C K band might also be expected

to distort the observed spectrum. However, scans of the

first and second order C K bands show them to be quite

weak, and past experience indicates that C K lies very

near or beyond the fourth order cutoff of our instru-

ment. In view of the weakness of these distorting fac-

tors, we make no attempt to correct for them, and in

treating the data, ignore their presence.

3. Comparison with Calculated 5-Density

The upper curve of figure 1 is our corrected experi-

mental estimate of the L3 emission profile of Al in

AuAl2. The following procedure was used to construct

it. First, a curve was drawn through the raw data in a

manner consistent with the standard counting error.

The background continuum was estimated according

to a prescription given elsewhere [7], and subtracted

off. The spectrum was then corrected for the presence

of the L2 band, using pure Al values of the L2/L3

intensity ratio (0.21) and spin orbit sphtting (0.4 eV)

determined from inspection of the pure Al emission

edge in second order. Next, a first order correction was

applied for the changing energy resolution of our spec-

trometer [7] . Finally, the spectrum was divided by the

cube of the photon energy to reduce it as far as possible

to a representation of thes-orbital density. The ordinate

of the plot is arbitrary.

In the one-electron approximation, the soft x-ray L3

emission rate per unit energy from the I'th component

of a compound may be written

Ri(h(o) ^ {Eih-ErV ^ I

<2p
I

r
I

A > I'Sifiw- E(k) + E,.)

The matrix element is evaluated at the site of the ith-

type ion from normalized band wave functions |k), of

energy £"(14.). \2p) is the core wave function and Ec its

energy, fuo = E(h)—Ec is the photon energy, n is a band

index. The sum extends over the Brillouin zone and all

bands. Within the framework of an augmented plane

wave (APW) calculation, one can estimate for a given

state |k) the fraction of the total charge within a unit

cell which resides in the plane wave region, Wpu-, and in

the various orbital components within APW spheres of

a given ion type, wi'. These orbital weights can be in-

troduced into a sum over states to yield orbital state

densities, ni'(E). If the inner level wave function is well

localized in the APW spheres (this is the usual case),

then it is a straightforward, although tedious, task to

show that the L3 emission rate may be written

Ri{h(o) ^ {E-EcV

where

Mi„,o{E)nUE) +- Mi,,,{E)n!>{E)

M.,pj= r' dr R'.,,^{r)R',{r, E)
J 0
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I

E- Ep (ev)

Figure 1. The lower curve is the s-orbital state density at Al sites

in AuAL estimated by Switendick [4].

The middle curve illustrates, in a rough approximatitm, the effects of spectrometer,
inner level lifetime, and final state lifetime smearing on the calculated curve. The upper
curve is the measured Al Z.j emission profile from AUAI2, corrected as described in the text.

depends only on energy. The 7?'s are radial wave func-

tions, being normalized over the APW sphere of

radius A\. For Al in AuAL, we anticipate negligible d

contributions, on the basis of the nature of the potential

within the Al spheres and symmetry considerations.

The integral M-ip.o is smoothly varying and will not af-

fect structure in no*'(E), the quantity estimated by

Switendick [5] from his band calculation and shown as

the bottom curve of figure 1. In the middle curve, we
have attempted to illustrate the effects of spectrometer,

inner level lifetime, and final state Hfetime smearing on

the spectrum by folding into Switendick's curve a

Lorentzian smearing function of energy dependent

width. The width y(E) is the sum of two parts

y{E)=yu+yf{E)

The constant yo was taken as 0.5 eV, to represent the

effects of the spectrometer and the inner level. The

energy dependent part varies from 0 at the Fermi level

to 2.0 eV at the bottom of the band, and has been taken

to be proportional to the total fraction of 5-charge lying

above the level in question. It is intended only as a

rough approximation to the many body final state level

broadening which occurs in an interacting electron gas

[9].

The general agreement between the calculated s

density and the measured Al L.-j profile is quite striking.

There is in fact, a one to one correlation of structural

features, marred only by the slightly greater overall

width of the measured spectrum, slight displacements

of the peaks, and certain not too gross ampHtude dis-

crepancies. In all, the validity of the AuAL band calcu-

lation is strongly confirmed by this comparison.

The large calculated peak at about —8.0 eV is of par-

ticular interest. The band calculation [4] indicates that

about half its intensity arises from a high density of

states which are d-\\ke on Au sites and strongly local-

ized there, but have roughly 5% of their total charge in

5-like orbitals at Al sites. The occurrence of similar

sharply peaked structure at —8.3 eV in the Al L3 profile

from the compound is consistent with this predicted lo-

cation of the d bands. We further note that this

behavior is strongly reminiscent of the distinct peak at

7.5 eV below Er recently observed by Marshall et al.

[5] in the L2,.3 emission spectrum of Al from alloys of up

to 20 atomic percent of Ag in Al. It suggests that their

interpretation in terms of Ag d and Al s-p hybridization

in the alloy is correct.
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Soft X-Ray Emission from Alloys of Aluminum
Silver, Copper, and Zinc
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Measurements of the soft x-ray emission from the alloys Al-Ag, Al-Cu and Al-Zn are reported, and

the effect of the (f-bands of the metals Ag, Cu and Zn on the Al Lj.s-emission for these alloys is ex-

amined. For Al-Ag and Al-Cu alloys, sharp resonance peaks are observed in the Al L2,:)-spectra and are

attributed to transitions from states in the hybridized silver and copper <f-bands to core states of the alu-

minums atoms. The observations agree with the general theoretical considerations discussed by Har-

rison [7] for a simple metal alloyed with a noble metal. For the Al-Zn alloys the rf-bands of Zn do not

contribute to the Al Ls.iremission.

Key words: Aluminum-copper alloys (AlCu): aluminum-zinc alloys (Al-Zn); electron density of

states; silver aluminum alloys (Ag-Al); soft x-ray emission.

1. Introduction

Soft x-ray emission investigations for studying elec-

tronic structure have been steadily gaining the atten-

tion of physicists and metallurgists interested in the

theory of alloys, despite the well estabhshed problems

of interpreting the spectra of pure metals. Curry [1]

usefully summarizes the experimental findings for

many of the alloy systems examined to date. With al-

loys the problems of interpretation are further com-

plicated by the absence of a fully satisfactory theory

that explains the electronic behavior of a metal when it

is alloyed with a second metal.

Theoretical work in this field is continually develop-

ing, and among the models that have been proposed for

alloys are: the rigid-band model, first described by

Jones in 1934 [2]; an "impurity" model that assumes

restricted sharing of the valence electrons of the com-

ponents, with consequent localized screening effects,

developed chiefly by Friedel in 1952 [3] ; and the two-

band model successfully used by Varley in 1954 [4] to

correlate thermodynamic heats of formation of binary

alloys. The degree to which these models assume

distinct valence bands for the two components of the

alloy increases in the order listed.

At the one extreme, the rigid-band model assumes a

common band of valence electrons, for which any in-

*Present address: Visiting Professor at the Laboratory for Solid State Physics, Swiss

Federal Institute i)f Technolofiy, Ziirich, Switzerland.

coherent scattering due to the additional random "im-

purity" potential, superposed on the basic periodic

potential of the lattice, is negligible. Appleton [4]

discusses this effect in relation to soft x-ray emission

and also extends, qualitatively, the restricted-sharing

approach used by Friedel to alloys with concentrations

of solute that are greater than generally regarded as im-

purities, and to alloys of higher valence components.

At the other extreme we have the two-band model in

which the valence electrons for a binary alloy are as-

sumed to exist in two sets of energy states each as-

sociated with the potential fields of the ions of one com-

ponent; this model is a consequence of the changes that

arise in Wigner-Seitz boundary conditions for the

valence electrons when the pure-metal atoms are ran-

domly mixed.

Basically, both extremes recognize a valence band

that is common to the alloy. Rooke [5] lends support to

the two-band approach, pointing out that the pseudo-

atom model, Ziman [6] , will require local electron den-

sities to remain unaffected on going from the pure

metal to the alloy, provided that predominantly the

electronic density for the pseudo-atom lies close to the

ionic core; while Harrison [7], with a slightly different

approach using pseudopotential theory, supports the

view— for the simple metals — that the alloy com-

ponents exhibit a common band structure.

In the case of a simple metal alloyed with a noble or

transition metal, characterized by a narrow (^-band.
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Harrison considers that this d-hand for the transition

metal will tend to retain its structure and carry over to

the alloy; so that, if this is the "solute" metal, each

solute atom will produce a strongly localized set of

states at an energy that corresponds to the narrow <l-

band for the pure solute metal.

We describe here measurements of the soft x-ray

emission from alloys of aluminum with, respectively,

the metals silver, copper and zinc, and we examine the

effect of the (/-bands of these solute metals on the Al

L.,:i-emission from the alloy.

2. Experimental, and Specimen Preparation

The spectrometer used in these investigations, and

the method employed for processing the emission spec-

tra, are fully described elsewhere; see Watson, Dimond

and Fabian [8,9]. For the examination of alloys addi-

tional difficulties arise associated with preparation and

homogeneity and with precise determination of struc-

ture during the excitation of soft x-ray emission. Where
possible single-phase solid solutions were investigated

for the measurements described here; for the Al-Ag

and Al-Zn systems this necessitates quenching the

alloy from the equilibrium temperature for the ap-

propriate single phase. The Al-Cu alloys were mostly

two-phase but were heat-treated in the same manner.

The alloys were prepared from high-purity com-

ponent metals by melting and casting in a reducing at-

mosphere. Selected small ingots, free from imperfec-

tion, were homogenized for 7 days in evacuated cap-

sules at a temperature chosen according to the

equilibrium phase diagram for the system and then

rapidly quenched. Specimens in the form of thin slabs

10 mm X 5 mm, and ~1 mm thickness, were obtained

from the homogenized ingots by hot or cold rolhng ac-

cording to the physical properties of the alloy, one sur-

face was ground flat and pohshed, and the slab then

subjected to further annealing and quenching. Struc-

ture was checked metallographically before and after

examination in the spectrometer.

All spectra reported here were recorded using a

platinum coated, 1-meter radius, blazed grating with

600 hnes/mm. The alloy specimens during measure-

ment were supported on, and in good thermal contact

with (using conducting cement), a water-cooled stain-

less steel target anode. Vacuum of ~1 X 10"*^ Torr was

estabhshed in the target chamber, after considerable

out-gassing of the alloy, and spectra were recorded

using 3 kV and 5 mA respectively for target voltage and

current. For each alloy investigated, spectra were

summed, in the manner previously described [8,9],

until the total count obtained at a given wavelength

position of the spectrum, was sufficient to reduce

statistical uncertainty to <1%.
The spectra are corrected for background (chiefly

Bremsstrahlung) and for the intensity fall-off during a

scan due to contamination of the specimen surface.

The background is assumed to be Unear with

wavelength, and the contamination linear with time

after an initial rapid fall-off which avoided by delay-

ing the start of a scan. The specimen surface is scraped

clean, under vacuum, between scans.

3. Results and Discussion

The Al L2,3-emission spectra obtained for a series of

aluminum-silver alloys, of varying silver content, are

shown in figure 1. The spectra are plotted in terms of

I/v^ (in arbitrary units) as a function of energy (in eV).

The division of the emission intensity by the fifth power

of the frequency takes account firstly of v'^ in the rela-

tion

Ii\)dK^-,Iiv)dv (1)
V-

\ S2A5

-4:a,

2%A,

74 72 70 68 66 64 62 60 58

ENERGY tV)

Figure 1. Al hy,3-emission from quenched Al-Ag alloys of com-
positions 0-20 atomic percent Ag.

All are single-phase fee solid solutions. The spectra, shown as llf" in arbitrary units versus

enerjiy in eV. are compared by normalizinfi to equal peak maximum. Each spectrum is the

sum of 20 to 50 scans. Vertical bars indicate the statistical uncertainty in count rate,

calculated from the total count.
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which converts intensity at wavelength A. to intensity at

frequency v, and secondly of in the relation

P{E)
j 4>^J^

ri})->dT\' (2)

which gives the transition probability for the transition

from initial state 1 to final state 2. Because an accurate

knowledge of the initial-state and final-state wavefunc-

tions is required, and is impossible to determine, no at-

tempt is made to account for the matrix elements in this

correction for transition probability, and the curves

obtained— //I'S vs E—are regarded as only approxi-

mately but usefully related to the density of valence-

band states for the alloy.

With Al L2,:i-emission these will be the valence-band

states as seen by aluminum atoms in the alloy. On com-

paring the emission spectra for Al-Ag alloys (fig. 1) for

varying silver concentration, clearly the most important

feature to emerge is the peak, at ~65.5 eV. that first ap-

pears at ~10 at. % Ag and rises sharply in intensity as

the silver concentration is increased to 20 at. %. Over

the whole of the composition range investigated these

alloys form single-phase solid solutions at the tempera-

tures selected for annealing, and the alloys were

quenched from this temperature to retain the a-phase

structure. The specimens showed, metallographically,

no observable segregation before or after examination.

The quenched alloys are known [10,11] to exhibit

clustering of silver, but this we do not expect to observe

in simple metallography.

We attribute this peak, in the Al L2.3-emission from

the alloys, to transitions from the lower part of the

hybridized c?-bands of silver to vacant aluminum core

states. A preliminary comparison by Marshall et al.

[12] , of the emission spectrum for the 20 at. % Ag alloy

with the band structure for silver metal (fig. 2), drew

attention to the close correspondence of this peak with

the energy at which the cf-bands of silver are expected

to hybridize with the 5,p-band. This hybridization is of

course common with c?-bands, but for silver the

hybridized states lie in a narrow band right at the

bottom of the silver valence band, giving rise to a low

grad k£' and consequently a high density of 5- and in-

states. This will occur at ~ 7.2 eV (5.3 Ry, fig. 2) below

the Fermi-energy and agrees well with the peak ob-

served in the Al L2,3-emission from Ag-Al alloys which

appears at ~ 7.5 eV below the emission edge.

Our interpretation requires that the states in the

upper regions of the hybridized c?-bands contribute less

strongly to the Al L2,3-emission, and this is probably so

because these states will tend more to hybridize with p-

states which do not contribute to L spectra. The in-

terpretation further requires that the c?-bands for silver

will remain, for the alloy, at much the same energy at

which they occur for pure silver metal. This assumption

may not be unreasonable, particularly in view of the

clustering or coherent precipitation of silver that is

known to occur to some extent for these quenched

alloys.

The bandwidths observed appear to remain constant

with varying silver concentration and this result lends

no support to the rigid-band model for these alloys. An
attempt was made to measure the Ag N2,3-emission but

the intensity was too low to permit this emission band

to be detected above the background. However, our

results for the Al L2,3-emission support the conclusions

reached by Harrison [7] that the c?-bands of the solute

metal will carry over to the alloy; we find that they con-

tribute to the valence band and are "seen" by the sol-

vent atoms.

The results can also be explained, although less

neatly, using the approach developed by Friedel [3].

Restricted sharing of valence electrons between com-

ponent atoms will lead to local screening of the higher

positive charge on the aluminum ions and cause the

electron wavefunctions to increase near these ions.

This will result in a relative increase in intensity of

emission at the bottom of the valence band since the

electrons in the higher energy states will be more in-

volved in sharing with other atoms in the alloy.

Our measurements of the Al L2,3-emission from alu-

minum-copper alloys show a similar peak, first appear-

ing for approximately 10 at. % Cu and increasing

sharply with additional Cu concentration. For the 20 at.

% Cu alloy which is a two-phase structure of fee a-Al

and tetragonal ^-ALCu, the general shape of the spec-

trum, shown in figure 3, agrees well with that obtained

by Curry [1] for AbCu; the same intense peak is ob-

served at —66 eV. The Cu M2,3-emission overlaps the Al

L2,3, but its intensity for the 20 at. % Cu alloy was too

low to have any significant effect. The energy at which

the hybridized c?-bands for copper, figure 2, can be ex-

pected to contribute to transitions to Al core states does

not in this case correspond as closely with the observed

peak in the Al L2,3-emission as for Al-Ag. The peak oc-

curs at —6.0 eV below the emission-edge, and the bot-

tom of the hybridized copper rf-bands at —5.0 eV below

the Fermi energy. However, the emission in the case of

this alloy will come largely from the ALjCu phase which

tends to order, and the emission from the a-Cu phase

will be affected also by the coherent precipitation of or-

dered AI2CU that occurs for this quenched alloy [13];

if the transitions that give rise to the observed peak are

assumed to be transitions from rf-bands of ordered
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Figure 3. Al h-i^^t-emission from quenched A\-Cn alloy containing
20 atomic percent Cu.

Two-phase alloy, a-\l (fee) plus /S-Al.^Cu (tetrational). The spectrum is the sum of 25
scans; vertical bars indicate statistical uncertainty in count rate.

I/^

1* 79 71 71 X M M C7 M 65 CI (3 62 El 60

Figure 4. Al L2, ^-emission from quenched Al-Zn alloy containing
55 atomic percent Zn.

Single-phase alloy, cph. Spectrum is the sum of 30 scans; vertical bars indicate statistical

uncertainty in count rate.

AI2CU to Al core states, we can explain the energy shift

in terms of the lowering in energy of the Cu t/ bands

that must occur when Cu atoms form a locally ordered

structure with Al atoms.

This is again the <f-band structure of the solute metal

carrying over to the alloy and being "seen" by the sol-

vent atoms. The strong intensity of the observed peak

must be attributed either to a high narrow density of

these c?-band states or to a matrix-element effect for

these transitions.

In the case of Al-Zn alloys we find no contribution to

the Al L2,3-emission from the <i-bands of Zn. This is en-

tirely what we should expect from the band structure of

zinc (fig. 2) where the (^-bands do not appear because

they are much lower than for Ag or Cu and are found

below the 45, so that little or no hybridization with s-

states occurs. Our result for the Al L2,3-emission from

the 55 at. % Zn alloy is shown in figure 4. The band-

width for these alloys remains constant and nearly

equal to that for pure aluminum, indicating again that
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the rigid-band model does not apply to these alloys. A
small relative increase in intensity in the lower-energy

part of the emission band does occur and is probably

due to the localized screening of aluminum ions due to

the restricted electron sharing discussed by Friedel,

but no peak is observed such as that found for Al-Agor

Al-Cu. Clustering of Zn in the quenched alloys is also

known to occur in this system [14] , and clearly in itself

does not affect the emission spectra. This suggests that

for Al-Ag and Al-Cu, clustering cannot alone explain

the features of the Al L2,3-emission.

The results observed for the L2,3-emission from Al-Ag

and Al-Cu alloys show marked similarities to the effects

observed in the K-emission spectra for these alloys by

Baun and Fischer [15] , and for the K-emission from Al-

Ag by Nemnonov [16]. We believe that the same in-

terpretation can be applied to the K-emission results.
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Soft X-Ray Emission Spectra of Al-Mg Alloys

H. Neddermeyer

Sektion Physik der Universitdt Munchen, Miinchen, Germany

In recent years the interpretation of soft x-ray emission band spectra has made good progress. With

a detailed knowledge of the electronic band structure, of transition probabilities, and of lifetime

broadening effects, it has been possible to calculate the shape of emission band spectra of a few pure

elements [1,2]. However, the situation is much more complicated in the case of alloys where the

problems are far from being solved. The different shapes of emission band spectra of the components of

an alloy make the applicability of the usual model to alloy spectra doubtful.

As a contribution to these problems we have remeasured the soft x-ray emission band spectra of Al-

Mg alloys using improved experimental techniques. The Al L2,.i- and Mg Li.s-emission spectra lying in

the same wavelength region can be studied in the same spectrometer. Since the spectra of the pure

metals have characteristic details and the energy resolution in this wavelength region is good, shapes

and changes of shape can be registered very precisely.

Key words: Aluminum (Al); aluminum-magnesium alloys lAl-Mg); charging effect; electronic densi-

ty of states; emission spectra; magnesium (Mg); rigid-band approximation: soft x-ray

emission.

1 . Theory

For electronic transitions from occupied valence

states to empty core states, causing a soft x-ray emis-

sion band spectrum, the basic formula for the intensity

distribution of the spectrum can be written as [3]

:

(Ik

877-'
\e Mr,v\- 8{E,-Ec-fi(o) (1)

Ic,v{(^) means the number of transitions of energy hoj per

unit time, ^ is a constant, |e-Mc,ii| the matrix element

for the transition probability, and Er the energies of

the valence and core states. The integration has to be

carried out over all possible wave vectors k. Using the

property of the 8-function the integration can be per-

formed and we obtain

s
877'' Vk(£',- — Ec)

I
E,-Er=ha (2)

where dS represents an element of a surface in the k-

space defined by the equation

£,(k)-£.(k) = ^w. (3)

Usually one assumes £'c(k)= const for all k, thus imply-

ing that the inner level is sharp, and one obtains the

well known formula

f dS
1

e Mc, v\

|Vk£,|
(4)

In simple cases this integral can be split into a product

of two factors, namely the transition probability and the

density of states.

In the case of alloys the difficulty arises that we know

neither the transition probability, nor the density of

states nor £'(k)-curves. In the case of a well defined sin-

gle-phase Al-Mg alloy one would first apply the concept

of the rigid-band model. This would mean that the

valence electrons of the Al and Mg atoms constitute a

single valence band. The validity of the rigid-band

model for dilute Al-Mg alloys has indeed been proved

by measurements of the Fermi surface [4]. Thus one

should expect similar Al and Mg spectra. The fact that

the two spectra are different [5-7] can be explained by

a charging effect of Al atoms having a higher valence

than the Mg atoms [8]. Charging leads to a nonu-

niformity of the valence electron distribution within the

crystal, i.e., the electron density near the Al atoms is

higher than near the Mg atoms.

2. Experimental

The Al L2,3- and Mg L2,3-emission spectra of the al-

loys and of the pure metals have been obtained using a
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concave grating spectrometer with ultrahigh vacuum

conditions [9]. The x rays were excited directly by

bombardment voltages of 2 kV and emission currents

of 1 to 3 mA. The spectra were recorded either continu-

ously with a strip-chart recorder or stepwise using

digital equipment. The influence of contamination and

self-absorption could be neglected. The spectra were

corrected for the known reflectivity of the grating. The
influence of the quantum efficiency of the multiplier

photocathode seemed to be small.

Besides the pure metals Al and Mg, the following Al-

Mg alloys were investigated: Al5]VIg9.5, AlioMggo,

AUMgTo, Ali2Mgi7, Al;,Mg2, and ALMg. Microscopic

and x-ray diffractometer studies were made to check

the crystallographic order. According to the phase dia-

gram [10] Ali2Mgi7 and AlaMg; are single phase alloys.

The dilute alloys AlsMga,-, and AlioMg^o are single

phases at 430 °C; at room temperature these alloys

decompose slowly into binary phases. During the spec-

troscopic studies this decomposition could be recog-

nized shghtly in the case of AlioMggo. Al^joMgTo and

Al2Mg are binary phases.

3. Results: Dilute Alloys

The Mg L2,3-spectra of AlsMg,^ and AlioMgqo agree

with the Mg L2,3-spectrum of pure Mg (fig. 2) within the

limits of statistical error, of less than 3%. Also the posi-

tions of the emission edges agree within ±0.01 eV with

the emission edge of the pure metal. On the other hand,

the shapes of the Al L2,3-spectra of these alloys (fig. 1),

which are in agreement with measurements reported

earlier [5] , differ markedly from the Mg L2,3-spectra.

So one has to conclude that the rigid-band model is

not applicable to these alloys. The differences between

the Mg and Al spectra can hardly be explained by even

a considerable influence of the unknown transition

probability. As a possible explanation one would rather

assume the existence of clusters and localized bound

states. A further argument for this assumption is the

good agreement between the Al L2,3-spectra of AlsMggs

and AlioMggo.

4. Nondilute Alloys

The Mg L2,3-emission spectra of the nondilute alloys

are shown in figure 2. In figure 3 the emission edges of

these spectra are drawn in an enlarged energy scale.

The Al L2,3-emission spectra of these alloys are

presented in figure 4, and the emission edges on an en-

larged scale in figure 5. The exact positions of the edges

and peaks and the widths of the edges are listed in table

1. The spectra of AlnMgn and AlsM^ are in rough

agreement with those published by Appleton and Curry

[7] . but some fine structure features have not been re-

ported previously.

The statements of Appleton and Curry concerning

the general behavior of the spectra of metals on alloying

are verified to a certain extent by the present measure-

ments, but there are also some essential deviations. An
increasing concentration of one alloy component does

not always affect continuous variations of the shape of

the emission bands. So the Mg L2,3-emission spectra of

Al3Mg2 and Al2Mg are in good agreement with each

other, and the Al L2,3-emission bands of the dilute al-

loys AlsMggs and AlioMggo also agree with the emission

band of AljoMgro.

Appleton and Curry further state that the widths of

the emission bands of Al-Mg alloys are equal to those of

Al L2.3

60 65 70

Entrgit (aV)

Figure 1. Al L2. 3-emissiore spectra of AlsMggs, Al,oMg9o, and

AlsoMgyO.
The spectra have been normaUzed.
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The spectra have been normalized. Energie(eV)

Figure 3. Mg L>,3-emission edges of Mg and nondilute Al-Mg-
alloys.

The theoretical resolving power in this wavelength region amounts to 0.07 eV [9J.

Energie(eV)

Figure 4. Al L^.a-emission spectra of Al and nondilute Al-Mg-
alloys.

The spectra of the alloys have been normalized at the broad maxima. The spectrum of

pure Ai has been adjusted to the low energy side.

the pure elements within 0.5 eV. Our measurements

show that the usual parabolic extrapolation of the low-

energy side of the band is not possible since the bands

always have a concave shape. Therefore it can not be

concluded from the experimental data that the Al and

Mg atoms have valence bands of different widths.

On the other hand, if the Al Lz^- and Mg La^-spectra

of the single phase alloys Ali2Mgi7 and Al3Mg2 are fitted

to each other at the emission edge, one sees a similarity

which is most pronounced in the high energy region

(figs. 6 and 7): (1) the emission edges have the same

width if the broadening by the spectral window function

is taken into account;(2) the widths of the peaks agree

rather well; (3) the characters and shapes of the emis-

sion bands are similar; both spectra of Al3Mg2 being

smooth whereas the Al as well as the Mg spectrum of

Ali2Mgi7 has a fine structure.

These similarities indicate a common valence band

and support the views expressed by Harrison [11] . The

differences of the spectra in the low energy region seem

to be connected with the fact that the Al atoms with its

higher valence are screened by the nearly free valence
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Al L2.3

Al

— AI^Mg
-- AljMgj

AI,2Mg,7

Figure 5. Al

The theoretical

Energie(eV)

1^2 . :i-emission edges of Al and nondilute Al-Mg-alloyx.
resolving power in this wavelength region amounts to 0.14 eV.

Table 1. A\-Mg-alloys and the pure metals Al and Mg: Positions

of the Ls-peaks {maxima), \^,redges {50% points on the L^-edges).

It^idths of the emission edges {twice the difference between 50 and

90% points on the Ls-edges). Data in eV. No correction for instru-

mental line width has been made.

L3-peak L 3-edge La-width

Mg L., 3 Mg 49.40 ±0.04 49.55 ±0.03 0.14 + 0.02

AUMgss 4y.4U z:U.U4 /in -4- A AQ4y.Do ± U.Uo

AlioMgio Art en -*- r\ AQ4y.D0 ± U.Uo 1 ^ -1- A AO
. ID It U.Uz

Al,oMg70 An Al -I- A nA AC\ CO-t-A AO4y.ao ± U.Uo OA -1- A AO

Al,2Mg,- Art A A ~i— A A/1 Af\ A'7-4-A A"3 00 -1- A AO./o It U.Uo

AliMfi) AQ /I C _i_ A HA4y.4D — u.uo AQ 7Q -4- A fi'X4y. /y _ u.uo

ALMg Art A A -(-A A/; AQ 7Q _i_ A AO
4y. /y IE u.uo .00 It U.UO

Al L2.

3

Al 72.53 ±0.05 72.74 ±0.05 0.22 ±0.02

AUMg 72.39 ±0.08 72.72 ±0.05 .34 ±0.03

AljMgs 72.28 ±0.08 72.62 ±0.05 .36 ±0.04

Al,2Mg,7 72.30 ±0.06 72.57 ±0.05 .30 ±0.04

AlaoMgTo 72.57 ±0.05

Al,oMg)o 72.59 ±0.06

AlsMgss 72.61+0.06

Energie(eV)

Figure 6. Al L2,3 and Mg L^. .remission spectra of single phase
alloy AljoMgiT.

The spectra have been adjusted to the emission edges.

electrons. Thus in the crystal the valence electrons are

not distributed uniformly. This has an influence on the

matrix element occurring in eq (1). The screening part

of the valence electrons mainly will make transitions to

the core states of the Al atoms because of the strong

overlapping effects. These electrons are absent in the

corresponding Mg spectra the intensity of which is

lowered at the low energy side.

The differences of the emission spectra of well

defined, homogeneous phases of binary alloys therefore

would be a consequence of different transition proba-

bilities. The knowledge of the transition probabilities is

thus an essential prerequisite for statements on the

density of states, and this holds especially in the case

of alloys. It is clear that the emission spectra of all alloy

components must also be taken into account.

The situation is more complicated in the case of two-

phase alloys hke AlsoMgro and Al2Mg. It appears that

the emission spectra of the pure phases do not super-

pose corresponding to their quantity ratio. The experi-

mental and theoretical investigations should therefore

be restricted at first to monophase systems.
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An L-Series X-Ray Spectroscopic Study of the Valence
Bands in Iron, Cobalt, Nickel, Copper, and Zinc
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1 his paper presents the results of an attempt to evaluate the merits of the soft x-ray spectroscopic

method by examining a group of neighboring elements possessing a variety of valence band properties.

The emission lines studied were the threshold level L„ (valence Lm shell) lines obtained from high

purity, polycrystalline bulk samples under bombardment by a nearly monoenergetic (Af ~ 1 eV) elec-

tron beam. The associated Lm absorption spectra were obtained in this work as self-absorption curves

from the same anode samples. Experimental and instrumental distortions were either eliminated,

minimized or explicitly corrected for. The results indicate the presence of some anomalous emissions on

the high energy side of the La line in elements possessing a large density of unfilled valence levels just

above the Fermi energy. The valence band emission line shape for these elements (iron, cobalt, and

nickel) is found to be strongly dependent on the incident electron beam energy even for near-threshold-

level excitations. Analysis of the emission and self-absorption curves demonstrates that the x-ray spec-

troscopic method is capable of exposing meaningful differences among the valence band energy struc-

tures of the solids examined here.

Key words: Cobalt; copper; electronic density of states; iron; nickel; satellite emissions; self ab-

sorption; soft x-ray emission; x-ray spectroscopy; zinc (Zn).

1 . Introduction

It has been the purpose of this work to record L se-

ries valence band spectra of some first transition group

metals, correct these for a number of experimental and

instrumental distortions, and use the results to assess

the utility of the x-ray spectroscopic method for the

study of valence band energy structures in these solids.

1.1. The State of the Problem

X-ray spectroscopy has long been acclaimed to yield

accurate and useful information about valence band

densities of states in solids. An x-ray valence band

emission line spectrum and the associated photon ab-

sorption spectrum are said to represent, in principle,

the electronic densities of states (times appropriate

transition probabiHties) in the filled and empty portions

of the valence band, respectively. This interpretation

has been questioned on theoretical grounds [1].

Furthermore, the recorded data are unavoidably

distorted by effects inherent in their acquisition [2,3].

Compensation of the observed spectra for such afflic-

tions has largely been neglected in the past. Finally,

although the last decade has brought forth experimen-

tal results and theoretical predictions that are in better

general agreement [4] , much discrepancy still remain^

between calculated band shapes and x-ray spectroscop-

ic results that purport to show the densities of states in

these bands.

There exists, therefore, a need to acquire statistically

accurate raw data, obtained under desirable operating

conditions, and to remove the distortions implicitly in-

volved in their accumulation. Such corrected results

would facilitate their own interpretations and the

evaluation of the x-ray spectroscopic method for reveal-

ing significant features in the valence band charac-

teristics of the source materials.

1.2. Materials

The materials chosen for this study offer a unique op-

portunity for accomplishing the above objectives.
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Among them one finds a variety of crystal structures,

associated band shapes and band positions, two dif-

ferent states of magnetization, filled and unfilled 3(/-

and 45-type valence orbitals. They are available in a

homogeneous and chemically stable form of high purity

and do not change their physical characteristics either

in a prolonged ultrahigh vacuum environment or under

the high (less than sublimation) temperature operation

caused by incident electron beam bombardment.

Finally, selection rule-allowed valence band transitions

occur in regions of the x-ray spectrum which are ac-

cessible to high resolution instruments.

1.3. Methods

Of the three series of x-ray spectra which exist for

these materials, the K spectrum contains no selection

rule allowed transitions involving the valence electrons.

It is, therefore, of no relevance here. Although the

Miijii spectra possess the desired valence band infor-

mation, the recording of the corresponding Lnjn
valence band spectra appears to be a better choice. For

one thing, the small M//-M/// separation, being about

(me tenth the corresponding L//-L/// separation of ~13

eV for Fe to —23 eV for Zn, causes an undesirable over-

lapping of the Mil and Mm bands. For another, the

probabihty for radiative de-excitation of the initial x-ray

state decreases rapidly toward the ultrasoft x-ray re-

gion. Experimental factors such as vacuum conditions

and clean sample surfaces become particularly impor-

tant during the production and detection of the relative-

ly low energy M x rays.

Considerable disagreement is apparent in previously

published results on the L series valence band spectra

of first transition metal elements [3,5,6]. The major

source of these discrepancies can be attributed not to

differences in instrumentation, but rather to the nature

of the incident electron beam that was used to generate

these spectra. Depending on the incident electron ener-

gy, line shape distortions can be grouped into three

more or less distinct categories.

a. The Self-Absorption Region

When the energy of the incident electrons exceeds

about three or four times the L///-state threshold ener-

gy, one observes line shape changes and peak position

shifts which are attributed to x-ray photon self-absorp-

tion in the source material. The phenomenon has been

documented for some time [7], but its effects on

valence band hne shapes have only recently been
demonstrated [3,8,9].

b. The Satellite Region

When the incident electrons possess energies in the

range between the L//-state threshold and about three

times that amount, the high energy side of the diagram

lines becomes distorted by the progressive develop-

ment of satellite emissions from multiply ionized atoms.

c. The Threshold Level Region

When the incident electrons possess sub-L// (but

above-L///) state excitation energies, multiple vacancy

satellite emissions can be largely eliminated and,

together with a normal electron incidence-normal x-ray

take-off tube geometry, self-absorption effects become
negligible.

The threshold level mode of excitation is admittedly

the least desirable for intensity considerations. It is

evident, however, that with the expenditure of addi-

tional time to accumulate statistically accurate data,

this method permits the recording of valence band

spectra which are free of the significant distortions

mentioned above.

2. Apparatus and Techniques

The equipment used to produce and detect the spec-

tra discussed here consisted basically of an ultrahigh

vacuum demountable x-ray tube, an externally manipu-

lated two-crystal vacuum spectrometer using potassi-

um acid phthalate (KAP) crystals and a flowing gas (P-

10) proportional counter. A detailed description of the

instrument can be found elsewhere [10]

.

The X rays were generated by about a 100 mA beam
of nearly monoenergetic (A£' ~ 1 eV) electrons emitted

from directly heated, thoria coated iridium filament

strips and accelerated to the target anodes by the in-

terelectrode potential. The accelerating potential was

monitored with a volt box-potentiometer arrangement.

Positioning the filament strips "edge-on" with respect

to the anode allowed the x rays to pass between them,

through a thin x-ray transparent Formwar window, into

the spectrometer. The Formwar window, mounted in a

self-supporting fashion, was used to separate the ul-

trahigh x-ray tube vacuum from the moderate spec-

trometer vacuum (~ lO"'* torr). The anode-filament

geometry permitted the electrons to strike the target at

normal incidence and the x rays to "take-off at 90°

with respect to the spectrometer.

The x-ray tube vacuum was achieved by initially

pumping the system with a mechanical forepump and

an oil diffusion pump, both liquid nitrogen trapped.

This was followed by a 3 to 5 hour bakeout period at
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about 100 °C during which the target and the filament

strips were outgassed at progressively higher tempera-

tures. After isolating the system from the oil diffusion

pump, the vacuum was improved to the eventual 10"^

torr operating level and maintained there by a titanium

sublimation-ion pump combination. The x-ray tube

components thus became immune to the effects of oil

backstreaming and the resulting deposition of car-

bonaceous materials on the anode surface.

Prior to introducing the high purity (99+%)

polycrystalline bulk samples into the x-ray tube, the

sample surfaces were first mechanically polished and

then electropolished. During actual experiments the

anodes (except zinc) were generally kept red hot under

about 100 watts of input power provided by the incident

electron beam.The zinc anode was prepared by melting

a layer of pure zinc onto a water cooled copper anode.

The practice of enclosing the carefully cleaned, high

purity samples in an ultrahigh vacuum environment

and the subsequent operation at elevated temperatures

was regarded as essential in minimizing contamination

of the sample surfaces being studied.

3. Correction Procedures

The experimental curves used here as raw data

represent intensity values accumulated at a series of

regularly spaced Bragg-angle settings for preset count-

ing times during which the bombarding electron energy

was held constant. The spectrum constructed of such

individual data points is affected first by contributions

from extraneous atomic phenomena occurring simul-

taneously with the production of the x rays of interest

and second by changes in the response of the instru-

mental components when they interact with photons of

different energies. An enumeration of the relevant

distortions and the procedure for their removal follows.

(1) The "x rays off or detector background was

found to be a constant 25 counts per 100

seconds of counting time and was simply sub-

tracted from the observed data.

(2) The detector signals, after being preamplified,

were stored in a multichannel analyzer. The

dead time of the multichannel analyzer in the

multichannel scaler mode was measured and

found to be between 3 and 4 microseconds.

With the counting rates afforded by the

threshold level excitations used here (
~ 100

cts/sec at the line peaks) dead time losses

became neghgible.

(3) The spectrometer Bragg-angle scale was con-

verted to a linear energy scale according to

(2fl?)KAi' sin dn

o

where {2d)KAP = 26.6 A and where h and c have

their usual significance.

(4) Corrections for response variations of the KAP
crystals and of the proportional counter with

photon energy have been discussed elsewhere

[10]. Such an operation was based on data

(counter pressure, active counter path length,

entrance window thickness, etc.) that is

probably unique to our instrumentation and,

therefore, of little or no use to any other

system.

(5) Removal of the continuous spectrum back-

ground intensities was accomplished on the

basis of a method developed by Liefeld [3].

The sensitivity of the spectrometer permitted

the recording of the continuous spectrum alone

(using an incident electron beam energy

slightly below the L///-state excitation

threshold) with intensities at least ten times

that of the "x rays off background. The con-

tinuous spectrum was then displaced with

respect to the line + continuous spectrum

and subtracted from it. The amount of shift was

equivalent to the difference in incident elec-

tron beam energy between the two curves.

(6) The true spectrum T(E) and the observed spec-

trum O(E') are related by

0{E')= j^^ T(E) xS{E-E')dE (2)

where S(E — E') is the instrumental smearing

function and is proportional to the (1, + 1) posi-

tion diffraction pattern for a two-crystal spec-

trometer. Until recently [11], measurement of

the dispersive position diffraction pattern has

been difficult at best in the absence of

adequately intense monochromatic x-ray

sources. Liefeld, using the relatively narrow I5-

3p resonance absorption line of neon as a spec-

tral resolution probe, estimated that for KAP
crystals the (1, + 1) position spectral window is

about 0.7 eV wide at half maximum and not

grossly asymmetric [12]. Coupled with the

result that the widths of the (1, +1) and (1,

— 1) position patterns are roughly the same [7]

,

the customary [13] procedure of approximat-

ing the former by the nearly Lorentzian shape

and width of the measured (1, — 1) position
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rocking curve has been adopted here. The
smearing function S(E — E' ) was formed from

the product of a Lorentzian with a 0.63 eV
width at half maximum and tlie recorded trian-

gular transmission function of the spectrome-

ter. Solution of eq (2), based on a method

described by Schnopper [14], was carried out

by electronic computers. The computer was

programmed to generate, from a smoothed

curve of original data points, a curve which

when smeared with S(E — E') yielded the ob-

served spectrum. The results converged to the

extent that the change in the peak value

between the last two iterations was of the order

of 1%. Figure 1 illustrates the impact of the

procedure on an iron self-absorption curve and

on a threshold level iron emission profile

which were introduced into the computer as

"original" data. (Except for the presence of the

continuous spectrum background in the self-

absorption spectra, such "original" data have

previously been adjusted for the foregoing

distortions (1) thru (5).) The comparison shows

that removal of the spectral window smearing

introduces no new structures but merely nar-

rows and refines the original features.

Additional distortions such as Auger electron in-

duced satellite emissions and anode self-absorption

were minimized or eliminated by using threshold level

excitations and by carefully selecting the anode to fila-

ment geometry. The remaining experimental affliction

is that due to the finite width of the high energy inner

state. The Lm states for these elements are judged to

be Lorentzian in shape and possessing widths at half

maximum of about 0.5 eV [2], although there is a

marked variation among the values reported in the

literature. Moreover, the correction for the inner state

smearing presupposes the existence of very precise

original data and accurate knowledge about the shape

and width of the core state [2]. Because of the above

difficulties and because such correction was not re-

garded as imperative for present interpretation, none

of the spectra presented here have been adjusted for

the L///-state width.

4. Results and Discussion

The corrected, threshold level valence band emis-

sion line shapes for bulk iron, cobalt, nickel, copper,

and zinc are presented in figures 1 through 5. The
statistical precision of the original data from which

these curves were derived was 1% or better at the line

peak.

A portion of the associated self-absorption spectra,

obtained with the same anode samples, are also in-

cluded in these figures. They were constructed by tak-

ing point by point ratios of two emission curves, one of

which was negligibly distorted by self-absorption while

the other was seriously altered by it. The statistical ac-

curacy of the emission data was better than 1% in re-

gions of significant self-absorption curve structure.

Figure 6 offers a direct comparison of the corrected,

threshold level La emission line shapes. The curves are

_ IRON
orlginol dota !

corrected for

700 702 704 706 708

Photon Energy i

774 778

Energy in ev.

Figure 1. The effect of "spectral window" smearing on a threshold FIGURE 2. The threshold level cobalt L„-/;ne shape and a self-

level iron L„-line shape and on an iron self-absorption spectrum. absorption spectrum.
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Figure 3. The threshold level nickel La-line shape and a self-

absorption spectrum.

Energy in ev,

FiGUaE 4. The threshold level copper L„-/me shape and a self-

absorption spectrum.

1006 1010 101»t 1018 1022

Energy in ev.
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Figure 5. The threshold level zinc L„-line shape and a self

absorption spectrum.
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Figure 6. Comparison of the threshold level iron, cobalt, nickel,

copper and zinc La-line shapes matched at their estimated Fermi
energies.

matched at their estimated Fermi energies (taken as

the position of the first inflection point of the relevant

self-absorption curve) and their areas are proportional

to the number of valence electrons possessed by each,

i.e., Zn:Cu:Ni:Co:Fe= 12:11:10:9:8.

4.1. General Remarks

It is well known that the recorded intensity in an x-

ray valence band emission (or absorption) spectrum is

proportional to the product of the density of filled (or

unfilled) valence states and the probability of transition

P(E) between the initial and final states. X-ray valence

band spectra, therefore, cannot yield direct information

about the distribution of valence states. Neither can

they be used to determine the behavior of P(E) over the

domain of the band as such information must come

from theory. Inasmuch as even crude calculations of

the pertinent transition probabilities are scarce, the of-

tenmade first approximation that P(E) is relatively con-

stant over the extent of the band will be invoked here.

It is further proposed that the intense, narrow features

in the emission spectrum represent contributions from

valence states of 3c?-type symmetry. Although both 3d

and 4s electrons can (and apparently do) contribute to
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the observed L„-line intensity, the former will

presumably dominate since they are more abundant.

Analysis of the data shows that, except for Cu, the

width of the prominent id band decreases as the shell

gets filled in progressing from iron to zinc. In going

from Ni to Cu, the orderly fiUing of the 3d band is inter-

rupted. The configuration of valence electrons changes

from SdHs- for Ni to 3d^Hs^ for Cu. The two additional

electrons that are added to the Cu 3c? band complete it

and the larger than Ni bandwidth is exhibited in the

resultant Cu La emission spectrum. The broad, low in-

tensity structures in the Zn and Cu L^-line spectra sug-

gest the presence of the overlapping 45 band. Theoreti-

cally, the Fermi level in Zn is predicted to be in the re-

gion where the 4s and 4/> bands begin to overlap, but

since p to p type transitions are selection rule forbid-

den, our measurements should not display any4/j» band
contributions in the observed intensity. The density of

filled valence states at £/ is seen to increase gradually

from Fe through and then abruptly decrease in Cu and

Zn. This behavior is strongly confirmed by Slater's [1.5]

results deduced from specific heat measurements.
Table 1 summarizes the valence band structure mea-

surements made from the above figures. The Hsted

base widths include some allowance for inner state

Table 1. Valence band energy measurements in eV

Material

La peak to L,„

edge separation

Estimated base

width of principal

feature

Iron 1.2 M: 6 45: -
Cobalt 0.8 .5

Nickel 0.4 3-3.5

Copper 2.2 4

Zinc 8.4 2.5 12

The associated self-absorption curves have been in-

cluded here because of their demonstrated similarity to

conventional photon absorption spectra [3] and

because of the consequent parallels in their interpreta-

tion. The self-absorption curves are purported here to

give some indication of the distribution of available, lo-

calized 3<i orbitals above E/.-, with the assumption again

that transition probability variations are neghgible over

the region of interest.

The above results are not at variance with existing

knowledge regarding the valence bands of these

metals. Band calculations for Cu [4,16] and Ni [17],

for instance, correspond well to the values presented

here. Where comparison is permitted, our emission line

shapes are in remarkable agreement with the x-ray

photoelectron spectroscopic results of Fadley and Shir-

ley [18], although their Cu curve lacks any structure

analogous to what has here been interpreted as the 4s

band. In contrast to earlier photoemission spectroscop-

ic studies on Cu [19] and Ni [20], the results of East-

man and Krolikowski [21] show improved accord with

our valence band structure measurements. Finally, and

perhaps most significantly, the results demonstrate

that the x-ray spectroscopic method yields information

which does not merely reflect the nature of a localized

high energy inner state but is capable of exposing

meaningful differences in the valence band energy

structures among the solids examined here.

4.2. Iron Data

Figure 7 presents at iron L„-hne excitation curve ob-

tained with a primary electron beam of ~ 0.2 eV.

Such contours are recorded by setting the spectrometer

at the Bragg-angle position corresponding to the peak

of the La line and by observing the emitted photon in-

tensity at a series of incident electron energies. The ex-

citation curves are used to determine the interelectrode

potential in the L//-L/// region which will yield the max-

imum L„-line intensity. A study of their respective L„-

line excitation curves [10] indicates that for Cu and Zn

the condition for maximum La-line intensity exists

when using just-less-than L//-state threshold energy

electrons. Figure 7 shows, however, that for Fe max-

imum emission, intensity is gleaned by using just above

L///-state energy electrons to excite the iron La line.

702 706 710 714

Energy in ev.

Figure 7. The iron L„-line excitation curve.
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When the Fe La line was recorded under such excita-

tion conditions and the continuous spectrum removed,

some anomalous emissions were found to distort the

resultant line shape. Similar results have subsequently

been observed for Co and Ni. The extraneous intensity

structures possess the following properties: (1) They

appear only on the high energy side of the L„ Hne. (2)

Their intensities and their positions with respect to the

L„ line are functions of the incident electron energy in

contrast with conventional Auger electron induced

sateUites. Figure 8 compares four corrected Fe L„-line

shapes, plotted to the same peak intensity, which were

generated with incident electrons whose energies rela-

tive to the iron Fermi level are indicated by the arrows

and whose values are represented by the arrows in

figure 7. (3) Such structures seem to be particularly ac-

centuated in the materials which are known to possess

large densities of empty, localized 2>d orbitals just above

£"/.
, although the distortions become progressively less

pronounced with the filling of the d>d band. Zn and Cu
both have the maximum allowable number of "id

electrons, their self-absorption curves suggest the

presence of a relatively low density of available states

just above Ef and as a result their valence band emis-

sion spectra are not expected to display such afflic-

tions. (The broad and feeble features in these two

metals have been interpreted here to represent con-

tributions from the 4s band.)

Our present interpretation of these results suggests

that the anomalous intensity structures represent radia-

tive transitions from resonantly excited, bound-electron

orbitals. Such emissions have not been reported before;

Relative Photon Energy in ev.

Figure 8. Shape of the threshold level iron L„ line as a function of
the incident electron energies indicated by the arrows.

the production of such bound-ejected-electron (BEE)
excitation states, in fact, is thought to be unHkely when
using electrons as the excitation source [2].

Friedel [22,23] claims that the valence electrons will

respond to the presence of the inner shell vacancy by
occupying discrete, bound electronic screening levels

which possess the symmetry (or symmetries) of the

valence electrons. His analysis shows that radiative

transitions between these orbitals and the initial state

vacancy can occur only if the position of the final state

vacancy is at the top of the Fermi distribution, i.e., at

Ef- As a result, the emission line shape should be

distorted near the emission edge. (Skinner et al. [24]

proposed that if such structures exist, they should be

apparent in the vicinity of both emission and absorption

edges. While the distortions are obvious in emission, a

definite change in slope is also discernible in the lead-

ing edge of the Fe, Co, and Ni self-absorption curves.)

Friedel's approach then apparently accounts for the ex-

perimentally observed excess intensity on the high

energy side of the La line, but it fails to explain either

the incident electron energy dependence of these ex-

citation satellites or the fact that they seem to appear

only in the elements possessing large densities of un-

filled states just above Ef. There is some reason to be-

lieve that two different phenomena are contributing to

the line shape distortion. A closer examination of figure

8 reveals a relatively stationary structure about 2 eV
above the Fermi level in all but the very-near-threshold

curve (perhaps because the electron energy was insuffi-

cient to excite it in this case), while the extraordinary

emissions are seen to respond to changes in incident

electron energy.

HoUiday [25] and Bonnelle [6] have also reported

some structure on the high energy side of the iron La

line. Neither of these observations, however, appears

to be the excitation satellites discussed here as both in-

vestigators employed incident electron energies well in

excess of the L//-state threshold. HoUiday reports a

"double peak" near the maximum of the emission

profile, but it is too far removed from the emission edge

to correspond to our results. Bonnelle's iron curve was

apparently recorded under rather poor vacuum condi-

tions (
~ 10^5 torr). Considering further the fact that

iron is a relatively reactive metal and that previously

published results on Fe20;3 [26] match Bonnelle's iron

curve in every important detail, it appears that she was

examining a somewhat oxidized iron sample.

A final note of caution is perhaps in order. In spite of

the careful anode preparation techniques employed

here and the operation of the target at elevated tem-

peratures in an ultrahigh vacuum environment, it is still
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possible that a thin layer of oxide persisted on the

anode surface. The possibihty exists that the radiating

source was characterized by a metal and metal oxide

system, each exhibiting its own spectrum. This may be

especially true for iron which is found to be very dif-

ficult to separate from its oxide. It does not appear like-

ly, however, that such an oxide film was accumulated

during actual experimentation, because the L„-line

peak intensity remained within statistical limits over

extended periods (typically two weeks) of observation.

5. Summary

It has been the object of this investigation to extract,

from corrected threshold level L„-Hne shapes, incident

electron energy independent emission contours and use

these for further analysis regarding the distribution of

valence states in the relevant solids. Such expectations

have been thwarted in three of the elements studied

here by extraordinary emissions that distort the

resultant line shape and may thus prevent the observa-

tion of sharp emission edges in these metals. Such

results, however, clearly support the contention that

the x-ray spectroscopic method is capable, when care-

fully executed, of exhibiting significant differences

among the valence band characteristics of the materi-

als analyzed.
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Discussion on "An L-Series X-Ray Spectroscopic Study of the Valence Bands in Iron, Cobalt,

Nickel, G>pper,and Zinc" by S. Hanzely (Youngstown University) and R. J. Liefeld (Los Alamos
Scientific Lab)

K. J. Duff (Ford Motor Co.): For the magnetic materi-

als is there any hope that the experimental results can

be analyzed into separate contributions for majority

spin and minority spins?

S. Hanzely (Youngstown Univ.): Let me say that we

have done the following. The threshold level emission

spectra, say in particular for the ferromagnetic materi-

als, were taken with the anodes in the paramagnetic

state. In other words, the anode temperatures were

somewhat above the Curie point. However, when the

self-absorption spectra were constructed, one of the

two curves from which such self-absorption spectra

were constructed was taken with the anode in the fer-

romagnetic state and it appears that there is no noticea-

ble experimental evidence for any shift in the

prominent structure whether the anode is in the

paramagnetic or the ferromagnetic state.

W. Spicer (Stanford Univ.): There was mention of or-

bital states which appeared to He above the Fermi ener-

gies if I read the diagram right. I don't understand

these. Could you say something about them?

S. Hanzely (Youngstown Univ.): Your question is that

you would Like to know more about the origin of these

transitions. It appears that they are particularly

prominent in materials which have a high density of va-

cant states just above the Fermi level. These include

iron, cobalt, and nickel in that order. The density of va-

cant states above the iron Fermi level is very large. It is

still large but not as large in cobalt and somewhat

smaller yet in nickel. If you analyze the copper and zinc

graphs carefully, in those two metals the d shells are

full and it turns out that the density of vacant levels

above the Fermi level is very small. Structures on the

low energy side of the Fermi level in these elements

have been interpreted to indicate the presence of the

underlying 45 band rather than 3d band.
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The Electronic Properties of Titanium Interstitial

and Intermetallic Compounds from Soft X-Ray
Spectroscopy

J. E. Holliday

Edgar C. Bain Laboratory for Fundamental Research, United States Steel Corporation,

Research Center, Monroeville, Pennsylvania 15146

The TiL;,,/,; emission bands (3rf + 4s —> 2p transition) have been obtained from TiCo.95 and TiNj-

= 0.2 to 0.8) interstitial compounds and TiCr2, TiCo, TiNi and intermetaUic compounds. Additional

peaks on the low energy side of the TiL;;, band from TiC and TiNj. appear to be cross transitions from

the 25 and 2p bands of the nonmetal to the 2p level of titanium. Agreement was found between the soft

x-ray band spectra and the band calculations of Ern and Switendick on TiC and TiN. The soft x-ray

emission spectra from TiC indicated strong admixture of the titanium 3d and carbon 2p bands which is

in disagreement with LCAO band calculations of Lye and Logothetis. However, the 2p band of nitrogen

was shown to be below the Ti 3d band indicating a localized state and a possible transfer of electrons

from titanium to nitrogen.

The TiL/;,;;; bands from TiCrj, TiCo and TiNi show a progressive change with increasing elec-

tronegativity difference between titanium and the combining element indicating possible ionic charac-

ter to the bond. No peaks were observed on the low energy side of the TiL;;; bands, but a distinct

splitting was observed in the peak of the TiL;;; band from TiNi.

Key words: Electron concentration; electronic density of states; localized states; soft x ray; titani-

um compounds.

1 . Introduction

The electronic structure of the first series transition

metal interstitial compounds, especially the borides,

carbides, and nitrides, are of particular interest

because of their mechanical, electrical, and thermal

properties. Two electronic structure models have been

proposed for these materials. Utilizing LCAO (Linear

Combination of Atomic Orbitals) type of band calcula-

tions. Lye and Logothetis [1] have calculated energy

bands for TiC and preliminary calculations on TiN.

Their band calculations are semiempirical and show lo-

calized states in the bands. In order to be consistent

with the Madelung displacement of the energy levels

and their own observed optical properties, they applied

an electrostatic correction to their band calculation

which resulted in the carbon 2p band being separated

and lying above the titanium 3d band. As a result of this

separation and from the filled portion of their density of

states histogram they predicted that 1 — 1/4 electrons

would be transferred from the carbon 2p band to the

titanium 3d band for TiC. In the other model Ern and

Switendick [2] using the APW (Augmented Plane

Wave) method showed no separation in the carbon 2p

and titanium 3d bands and thus no electron transfer.

For TiN they showed the nitrogen 2p band at the bot-

tom of the titanium 3c? band. These two band pictures

have generated considerable controversy over the past

several years. Lye and Logothetis [1] state that the key

to solving the problem is to locate the position of the

carbon 2p and titanium 3d bands experimentally. Ern

and Switendick stated the L spectra from TiC and TiN

would be an aid in understanding the electronic struc-

ture of these compounds. As a result of these com-

ments the soft x-ray L emission spectra from TiC and

TiN was measured to determine the relative location of

the 2p and 3d bands, the degree of localization in the

band and if there is some ionic character in the bond of

these compounds.

Localized states may also be important in the band

structure of alloys as demonstrated in recent soft x-ray

measurements by Curry et al. [3] . Similarly, in a paper

presented at the Density of States Conference, Rooke

[4] suggested localized states around the aluminum
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atom to explain some of the soft x-ray measurements on

Al-Mg alloys. Since a localized band picture and ionic

character in the bond would be more pronounced in in-

termetalhc compounds than in alloys, the soft x-ray

emission bands were measured for a series of titanium

intermetallic compounds to determine if localized

states and ionic character were present. The com-

pounds were selected so there would be a progressive

increase in the electronegativity difference between the

titanium and the combining element.

2. Experimental Results

The soft x-ray emission bands were measured with a

grazing incidence grating spectrometer. The grating

used is a 1 meter radius 3600 groove/mm with a

platinum surface and a 1° blaze. The target potential

was 4 kV, and the beam current was 1.5 mA. Since the

spectrometer has been thoroughly described in other

publications [5], the details will not be presented here.

The TiC and TiN.r targets were made from compressed

powders of the compounds,' and the titanium inter-

metallic compounds were made by levitation melting of

stoichiometric mixtures of the elements. The composi-

tion of these intermetallic compounds, determined by

chemical analysis after the formation of the compound,

is shown in table 1.

Table 1. Composition of Intermetallic Compounds

' (Wt. Percent of Element)

Cr Fe Co Ni

TiCr, 67

TiFe 52.8

TiCo 55.2

Ti.,Ni 38.0

55.4

77.6

TiNi

TiNi:,

The TiL//,/// emission band from TiC is shown in

figure 1. The peak A, approximately 7.5 eV on the low

energy side of the TiL/// band (3af+ 45 2p transition),

is not observed for the pure metal. In addition, the

TiL///L/// intensity ratio for TiC has been reduced rela-

tive to metallic titanium, and the peak of the TiL///

band has shifted toward lower energy. Changes in the

TiL///L/// intensity ratio have been shown previously by

both Holliday [6] and Fischer and Baun [7] to be due

to changes in self absorption.

The TiL//,/// emission bands from TiNj nitrides

where x is varied from 0.2 to 0.8 is shown in figure 2.

10

9

8

7

t ^

5g 5

^ I

d 0

\ \
• \

#

/

TiC

\
\

\

A

7.5ev-^

26.5 S 27 i 28A 28.5i 29A
r-r-t-,

470 460 450 440
ELECTRON VOLTS

I

I

430

' Prepared by Cerac, Inc.. Butler, Wisconsin.

Figure 1. The TiLnjn emission bands from Ti and TiC; target

voltage was 4 kV.

The Peak A' , on the low energy side of the TiL/// band,

is seen to increase in intensity relative to the TiL///

band with increasing x. There is also a shift in the TiL///

band toward higher energy, with x (fig. 3). A slight in-

crease is observed in the TiL///L/// intensity ratio with

X, but there is less of a change for a given range of x

than that reported for TiOj- oxides [6]. In general, the

changes in the TiL//,/// emission bands from TiNj

nitrides are the same as those observed for TiOj oxides

but are somewhat less pronounced.

The TiL//,/// emission bands for the titanium inter-

metallic compounds are shown in figure 4. These reveal

an increase in the TiL///L/// intensity ratio, and a slight

shift of the TiL//,/// bands toward higher energy with in-

creasing electronegativity difference between the Ti

and combining atom. These changes are similar to that

observed for the TiL//,/// band from TiNj with increas-

ing X. The TiL//,/// emission band from TiNi shows a

split in the TiL/// peak which was not observed for the

TiL/// bands from the other compounds. The separation

of the peaks is approximately L5 eV which is the same

as the separation of the two peaks in the NiM//,/// bands

from TiNi reported by Cuthill et al. [8].

3. Discussion of Results

As indicated in the introduction, the degree of lo-

calization and the amount and direction of electron

transfer in TiC and TiN will depend on the amount of

separation and position of the nonmetal 2p bands rela-
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Figure 2. The TiLu i,, emission bands from TiNx nitrides where x

varies from 0.2 to 0.8.

The target voltage was 4 kV.

Figure 3. The shift in the TiL,,] band relative to pure Ti /or TiN,
nitrides as afunction of x.

tive to the Ti 2>d. Of particular interest in this regard are

peaks A and A' in figures 1 and 2. The fact that peak A'

increases in intensity relative to the TiL/// peak with in-

creasing N/Ti atom ratio indicates that the peak is as-

sociated with the amount of nitrogen in TiN. A peak

also appears on the low energy side of the TiL/// band

from TiOj- oxides, whose intensity increases with an in-

crease in the 0/Ti atom ratio [6]. Fischer [9] has

TiNi
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.
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Figure 4. The TiL,,. „, emission bands from Ti and TiCr2, TiCo and
TiNi intermetallic compounds: target voltage was 4 kV.

presented arguments that this peak is a cross transition

between the O 2p band and the Ti 2p level, and has cor-

related his TiOj- spectra with Ern and Switendick's

band calculations on TiO. Zhorakovskii and Vain-

shlein [10] and Blochin and Shuvaev [11] have estab-

lished justification for believing that the K/3" peak

which appears on the low energy side of the K/35

(2>d + 45 —^ Is quadrupole transition) emission bands of

TiX compounds, where X is a 2nd period element,

represents a cross transition between the 25 bands of

the nonmetal and the Is level (quadrupole transition) of

titanium.

From the above discussion there appears to be suffi-

cient justification to call peak A' in figure 2 a cross
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transition from the nitrogen valence band to the titani-

um 2p level. Em and Switendick [2] have compared

the energy separation between the K/S.i band and the

K^" cross transition from (N2s-^Ti Is) which is 11 eV

[11], with their calculated separation of 10.7 eV between

the 25 and 3d + 2p bands (fig. 5), the separation between

the peak of the TiL/// band (3d + 45 ^ 2p) and peak A'

in figure 2 is 4.2 eV. Since the peak of the 2s band is ap-

proximately 11 eV from the peak of the 3d band, then

peak A' appears to be a cross transition from the

nitrogen 2p band to the 2p level of titanium and any

electron transfer would be from titanium to nitrogen.

This indicates that there is a greater separation

between the 2p and 3d bands than Ern and Switen-

dick's [2] calculations show. However, Ern and

Switendick state that the discrepancy between the ini-

tial and derived charges in the nitrogen sphere show

that they should have assumed a greater separation in

the 2p and 3d bands. Also, the experimental shifts of

the K|Q" and Kfi^ bands of TiN relative to TiO when

compared to Ern and Switendick's computer density of

states show that TiN band picture is closer to TiO than

that predicted by Ern and Switendick. The idea of elec-

tron transfer and ionic character in the bond for TiN is

Figure 5. Density of states histogram for TiC and TiN calculated
by Ern and Switendick using the APW method.

(Reprinted by permission -,V. Ern and A. C. Switendicli, Phys. Rev. 137A, 1927 (1965).

also shown by the increasing shift of the TiL/// band

toward higher energy with x in figure 3. Shifts in the

kinetic energy for the nitrogen I5 and titanium 2p-M->

levels from ESCA (Electron Spectroscopy for Chemical

Analysis) by Ramquist et al. [12] shows that the elec-

tron transfer is from titanium to nitrogen.

In the case of TiC, peak A (fig. 1) is approximately 7.5

eV from the peak of the TiL/// band. Ern and Switen-

dick calculate that the 2s and the 3d + 2p bands of TiC

are separated by 7.1 eV as shown in figure 5. Blochin

and Shuvaev [11] show a separation in the Kj8.-, band

(3c? + 45^ Is) and the KjS" (carbon 2s^ titanium I5) of

7.0 eV. It would thus appear that peak A is a cross

transition from the carbon 25 band to the titanium 2p

level. Although Lye and Logothetis [1] do not give a

value for the separation in the maximum of the 25 and

3d bands in TiC the maximum in the 25 band is about 2

eV below the maximum of the 3d band. Thus the soft x-

ray L emission spectra from TiC supports the band cal-

culations of Ern and Switendick. It would appear that

there is complete admixture of the carbon 2s and the

titanium 3d bands because no peak was observed in the

TiL spectra from TiC corresponding to the 2p band.

This would indicate equal sharing of electrons. How-

ever, Ramquist et al. [13,14] have performed a number
of ESCA and K x-ray measurements on the shifts of the

Is level of carbon, the K/3i3, Ka„ x-ray lines, and L///

and M/// levels of titanium from TiC relative to the pure

element. From these measurements they conclude that

electrons are being transferred from titanium to carbon

which is opposite to that predicted by Lye and

Logothetis. HoUiday [15] has reported shifts in the

Ti L/// peak which indicates the possibility of electron

transfer in TiC.

The above experimental measurements on TiC show

that Lye and Logothetis are incorrect in placing the 2p

band of carbon higher than the 3c? band of titanium.

The degree of localization of the bands is somewhat un-

certain. IVIore theoretical work is required to fully un-

derstand the meaning of shifts in the inner atomic

levels of the atoms relative to the uncombined atom in

relation to electron transfer and ionic character of the

bond for TiC. In the case of TiN the experiments and

the calculations of Ern and Switendick show the 2p

band below the 3d band with electron transfer from

titanium to nitrogen. Although Lye and Logothetis did

not- publish any band calculations on TiN they state

that the 2p band would lie closer to the 3c? than in TiC.

This is not in agreement with the above measurement

on the TiL emission spectra from TiC which shows a

wider separation in the 2p and 3c? bands in TiN and

none for TiC.
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The observed progressive change in the wavelength

and the intensity distribution of the TiL/// band from

TiCr-i, TiCo and TiNi with increasing electronegativity

difference between Ti and the combining element (fig.

4) suggests an increase in ionic bonding with increasing

atomic number of the combining element. This in-

terpretation is further substantiated by the fact that

prehminary measurements of the L/jju bands from Cr,

Co, and Ni do not have the same intensity distribution

as the TiL/// bands. This is similar to the results re-

ported by Neddermeyer [16] on Al-Mg alloys where

large differences were noted between the bottom ol the

Al and MgL//,/// bands. Neddermeyer attributed these

changes to clusters and localized bound states at the

bottom of the valence band which resulted in the densi-

ty of states having a different distribution when in the

vicinity of a given atom.

Since detailed band calculations have not been car-

ried out for these intermetallic compounds, it is of in-

terest to compare the present results for the TiL///

bands (fig. 4) with the 3dN{E) curve obtained by Cheng

et al. [17] from specific heat measurements for bcc 1st

series transition metals. Cheng deals in valence elec-

tron concentration rather than electron volts, and the

approximate values for TiCr2, TiCo and TiNi are 5.3,

6.5, and 7, respectively. Even though TiNi is a CsCl

type structure, its soft x-ray band spectra shows a dou-

ble peak in the 3d band which is also predicted from the

A'^(£') curve of Cheng et al. for an alloy with a valence

electron concentration of 7. However, bcc and TiCo

does not have a double peak even though the N{E)

curve of Cheng et al. predicts that a bcc alloy with a

valence electron concentration of 6.5 should have a

double peak. These results appear to add further ex-

perimental support to the fact that the rigid band model

is a poor approximation to the density of states. How-

ever, before a complete interpretation of the results

on the intermetallic compounds can be made, an under-

standing of the degree of oxidation of titanium in the

alloy relative to uncombined titanium must be obtained.

4. Conclusion

The foregoing results on the L emission spectra from

TiC and TiN support the band calculations of Ern and

Switendick. Localized states and ionic character in the

bond appear to be a part of the electronic structure of

TiN but is somewhat uncertain in TiC. In addition the

soft x-ray measurements on titanium intermetallic com-

pounds have shown that the concepts of localized/

states, ionic character, and electronegativity appear to

play a more important role in the electronic structure ofli

metallic compounds than had been supposed previ-V

ously. In his summarizing comments before the Elec-'

tronic Density of States Conference, Ehrenreich [18]*'

has emphasized that the idea of localized states should

be given more consideration when considering the elec-

tronic structure of alloys.
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Discussion on "The Electronic Properties of Titanium Interstitial and Intermetallic Compounds
from Soft X-Ray Spectroscopy" by J. E. Holliday (U.S. Steel)

F. M. Mueller (Argonne National Labs.): 1 have one

brief question for Dr. Holliday. I noticed in the curves

for titanium and for titanium nitride you had an L2

emission spectra and this was absent in the carbide. Is

there a simple explanation for this?

J. E. Holliday (U.S. Steel): Even though the TiL,/L,

intensity is greatly reduced for TiC relative to Ti, the

TiL-i band from TiL is still observed. I have shown in

other publications that the TiLo/Ls intensity ratio is

strongly influenced by changes in self absorption.

334



Soft X-Ray Emission Spectrum and Valence-Band

Structure of Silicon, and Emission-Band Studies of

Germanium

G. Wiech and E. Zdpf

Sektion Physik der Universitdt Munchen, Munchen, Germany

With a photon-counting concave grating spectrometer the L2,;remission band of silicon and the

energy range of the M2,3-emission band of germanium were investigated. The Si L spectrum shows new

structural details. The measured intensity distribution for both the K- and L-emission bands of silicon

are compared with recent calculations of the K- and L-emission spectra and with the density-of-states

curve.

Key words: Carbon; diamond; electronic density of states; germanium; kp method; orthogonalized

plane wave (OPW) method; silicon; soft x-ray emission.

1. Introduction

X-ray spectroscopy has proved to be a valuable

method for obtaining information about the electronic

structure of solids. The x-ray emission bands resulting

from valence electron transitions to excited core states

allow? the study of the whole energy range of the valence

band. According to the selection rules, K-emission

bands give information about the p electrons, L2„i-emis-

sion bands about the s and d electrons in the valence

band.

This paper deals with the elements carbon

(diamond), silicon, and germanium which are of special

theoretical and practical interest. Because they have

the same crystal structure (diamond type) the energy

band structure of these elements is very similar. There-

fore their x-ray emission bands are expected to show a

similar intensity distribution.

To date, theoretical work was limited to calculations

of the band structure and the density-of-states.

Recently the intensity distribution for the L^,:)- and the

K/3-emission bands of silicon, and for the K-, L-, and M-

emission bands of germanium have been calculated. In

the case of silicon the agreement between the results of

the calculated and observed bands is very good; the Si

K)8 band was observed in our laboratory by Lauger [1]

,

the Si L2,3 band was measured recently by the present

authors.

2. Experimental

The concave grating spectrometer used for the meas-

urements of the Si L2,3 and C K band has been de-

scribed elsewhere [22]. The Rowland circle radius is

1 m. A 600 grooves/mm grating with aluminum surface,

and a 2400 grooves/mm grating with gold surface and

blaze angles of TSl' and 1°0' respectively were used.

The sht width was 30 /x. The x-ray tube was operated at

a pressure of about 10"** Torr to keep target contamina-

tion by carbon low. The tube voltage was 2.5 kV, the

beam current 0.6 to 3.2 mA. All measurements were

performed with an open magnetic electron multipUer

with a tungsten photocathode.

3. Results

3.1. Silicon

The Si L2,3-emission band (and the C K-emission

band of diamond) were measured stepwise. In order to

obtain high accuracy about 4x10^ pulses were taken

for each point. Special care was taken of the influence

of the 3rd order C K emission which is superimposed on

the Si L2,3-emission band, the peak intensity of the

former being less than 1% of the latter. This means that

in the region of 95 eV the intensity of the Si L2,3-emis-

sion band is influenced by carbon only to an extent of

0.5%.
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The measured band, expressed in terms oi I(E)lv-,\s

presented in fi<iure Ic. There are two pronounced

peaks at 89.55 and 92.05 eV. The high energy part of

the band shows more details than have been observed

in earUer investigations [3-5] : a small dip between 94

and 95 eV, a peak at about 95.2 eV and a sudden

change in the slope at 97.5 eV. The dip is about 1% of

the peak intensity.

The intensity obtained using the grating with 2400

grooves/mm was much less than that using the 600

grooves/mm grating, but the resulting intensity dis-

tributions agree within statistical uncertainty. No cor-

rections have been appUed for the instrumental distor-

tion or for self absorption, because they have only little

influence on the following discussion.

The theoretical curves for the intensity distribution

of the x-ray emission bands, shown in figures lb and Id,

have been calculated by Klima [6] according to the for-

mula

Tiv)- —— d\S,
h^hi, \gTa.d^^E\

P — rcore rvalence

H3 -12 -II -10 -9 -8 -7 -6 -5 -4 -3 -2 -I 0

Si L 2.3

Theofyd) / \ ,

Figure 1. Valence-band structure of Silicon.

(a) Density of stales (Kane [9]).

(b) Calculations of the Si U.j emission band (Klima [6]),

(c) Experimental Si L2.3 emission band, and

(d) Calculation of the Si K^ emission-band (Klima [6] ) and experimental curve (Liiuger[l])

For the computation of the curves labelled (1) in figures

1 and Id he used the energy bands as given by Cardona

and PoUak [7] (kp-method). The energy bands on

which the curves labelled (2) are based were recalcu-

lated by Klima using the kp-OPW method. Spin-orbit

splitting of the core state has been neglected, because

its influence is small. The curves are corrected for

broadening effects due to the lifetime of core states and

valence states (Auger effect). The agreement between

both the calculated curves and the measured curve

(Lauger [1]) is quite good for the K/3-emission band,

while in the case of the L-emission band the calculated

curve (1) is in better agreement with our experimental

curve (fig. Ic) than curve (2). The reason probably, is

that more experimental data have been introduced into

the calculations of Cardona and Pollak than in Klima's

kp-OPW calculations. A comparison of the experimen-

tal K and L bands shows that both curves have charac-

teristic features indicated by A, . . ., E, and in both

curves these characteristics have nearly the same rela-

tive energy with regard to the top of the valence band.

The energy scales of the K and L bands have been cor-

related by the energy of the Kai line (1739.66 eV; Kern

[8]).

In the density-of-states curve (fig. la) calculated by

Kane [9] the same characteristics A, . . ., E are ob-

served. The energy position of these points relative to

the top of the valence band depends on the particular

energy band structure used for the calculation of the

density-of-states.

A more detailed analysis shows that due to the transi-

tion probabihty observed emission band is considerably

different from the N(E) curve, but the energy position

of the characteristic features will be changed very little.

As expected the K band of diamond (fig. 2) agrees

quahtatively with that K/3 band of Si. In both cases we
have electron transitions from the valence band into an

5 state.
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Energy (eV)

Fl(;URE 2. K-emission band of diamund (4th order).

3.2. Germanium

The calculated M2,.3 bands of germanium look similar

to the L2,3 bands of silicon. These calculated bands of

Ge disagree with the experimental results of Tombou-

han [10] which are to date the only measurements of

the Ge M2,3 bands available. To clear up this discrepan-

cy the energy range of the Ge M2,3 band was in-

vestigated.

Using the crystal powder, and a thin plate of a single

crystal with a target input of 2.5 kV, 3 mA, only two

relatively weak lines could be observed (of intensity

1200 and 1700 counts/min). The characteristics of these

two lines are presented in table 1. In the energy range

of the Ge M2,3 -emission band the intensity was only

about 400 counts/min higher than the background in-

tensity (about 400 counts/min), and no reproducible

fine structure could be observed. The Ge M2,3 emission

is therefore of very low intensity; the same was found

for the L emission by Deslattes [12].

The two weak hnes observed may be interpreted as

due to the intraband transitions M4,5 — M2 and M4.5 —
M3 (table 1). A surprising observation is the big dif-

ference between the energy splitting of M2 — M3 as

tabulated by Bearden and Burr [11] (7.16 eV) and

found in our measurements (3.5 eV).

On the basis of these new theoretical and experimen-

tal data Tombouhan's interpretation of his results

seems unHkely.

Table 1. Characteristics of the intraband transitions

M4,5-M2 and M4,5-N3.

Bearden and

Burr [11]

Tom-

bou-

lian

[10]

Present authors

x(A) £(eV) ^(eV) MA) £:(eV)

Half-

width

(eV)

Inten-

sity

M4,5-M2
M4,5-M3
M,-M3

124.94

134.65

99.24

92.08

7.16 2.0

129.3

134.2

95.9

92.4

3.5

1.7

3.1

1

2
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Density of States in a and ^ Brass by
Positron Annihilation

W. Triftshduser and A. T. Stewart

Queen's University, Kingston, Ontario

Positron annihilation experiments using a long slit angular correlation apparatus have been per-

formed to investigate the momentum distribution of photons resulting from positron annihilating with

electrons in brass. Single crystals of a and j3 brass which had been oriented along the 100. 110 and 111

directions respectively, were used for the measurements. The counter slits subtended an angle of 0.32

mrad at the sample. Thus, keeping the samples at liquid nitrogen temperature to reduce the positron

motion, a total resolution of 0.42 mrad was achieved. The results show clearly deviations from a spheri-

cal Fermi surface. The observed anisotropics are found to agree very well with the theoretical predic-

tions based on cross-sectional areas of the Fermi surface.

Key words: Angular correlation; brass: electronic density of states; positron annihilation.

1. Introduction

Positron annihilation experiments yield directly the

density of states of electrons in A:-space and the results

are approximately independent of the electron mean
free path. Thus, it can be used to examine the electron

structure of alloys which, because of electron scatter-

ing, cannot be easily examined by the more usual trans-

port techniques.

The principles of the positron annihilation technique

are simple to describe. A positron from a radioactive

decay is shot into a metal specimen and loses energy

very rapidly, arriving at about thermal energy in a time

somewhat less than the average lifetime which is of

order lO"!" sec. Then the positron annihilates with one

particular electron. The usual annihilation process

results in the emission of two photons. These two

photons have a total energy of 2\\v = Imc^ and are

emitted at exactly 180° to each other to conserve mo-

mentum. In the laboratory a slight departure from 180°

can be observed and, since the positron is thermalized,

it is a direct measure of the transverse (to the photon

direction) component of the electron's momentum.
Using independent particle language, the wave function

product t//+(r)i//K(r) of the annihilating pair acts Uke the

wave function of the center of mass and thus also of the

gamma rays. The Fourier transform of this wave func-

tion product is then the momentum amplitude function,

the square of which is the observable distribution p(k).

Of course the positron and electron are not inde-

pendent. The positron always surrounds itself with a

polarization cloud of negative charge and annihilates

with these electrons and not with the unperturbed elec-

trons. The momentum distribution of electrons in this

cloud — really of one electron and the positron — has

been calculated for two extreme situations: (a) the elec-

tron gas, and (b) electrons in closed atomic shells. In

both cases the distribution in momentum of the an-

nihilation photons resembles quite closely that of the

unperturbed electrons of the particular system being

considered. In particular a sharp cutoff at the Fermi

surface is both expected and indeed observed. Thus

while the effect of the positron on the electrons in brass

is not yet known, we have good reason to expect experi-

mental results for momentum distributions of annihila-

tion photons to resemble closely the momentum dis-

tributions of the electrons in the alloy.

The possibility of measuring momentum anisotropies

in oriented single crystals has been first shown by

Berko and Plaskett [1] for copper and aluminum. Meas-

urements on other metals have been reported by other

authors [2,3]. In this paper we present observations on

single crystals of /3 and a brass, in order to examine

how well this technique can be used in the determina-

tion of the electron states in alloys and especially in dis-

ordered alloys. Properties of ordered alloys, particu-

larly the shape of the Fermi surface, can be obtained

through de Haas-van Alphen measurements more accu-
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rately than by the positron annihilation technique. We
chose ordered /3 brass as a "test alloy" because the

Fermi surface of this metal is very well known. We then

used a brass to explore the possibilities of this

technique. We shall discuss in this paper to what extent

our results can be analyzed directly in terms of electron

momentum distribution and cross-sectional areas of the

Fermi surface.

2. Experimental Arrangement and Procedure

Let p(k)dk be the probability that a positron anni-

hilates with an electron emitting two photons having

total momentum between k and k + dk in the labora-

tory system. The conventional long-sht apparatus then

measures the coincidence counting rate N{kz), where

pih)dkj-dky (1)

The integral is taken over the plane of constant k,. In

the independent particle approximation p(k) is given by

p (k) = Const. 2/ '/'+(r)i/'Ki(r)e (2)

where i//+(r) is the positron ground state wave function,

and tpKii^) is the electron wave function with wave

number K and band index 1. The summation is over all

the occupied states. In the lowest approximation of free

electrons and a zero momentum positron, N(kz) is

directly proportional to the cross-sectional areas of the

Fermi surface in the extended zone scheme. For a less

simplified situation, the importance and influence of

the positron wave function, the higher momentum com-

ponents of the electron wave functions, and the core

electrons has been discussed already by De Benedetti

et al. [4].

We present data both in the form of momentum dis-

tribution, that is N(kj, and also as the derivative of

N(kz) with respect to kz-

The derivative presentation of the data shows more
sensitively the effects of changing Fermi surface

topology and occupation probabihty.

In the experimental arrangement we used the long-

slit geometry having 30 cm long Nal detectors, with

slits subtending 0.3 mrad at the specimen. The brass

single crystals had been oriented by x rays and were

spark cut to rectangular solids of 6 X 6 X 12 mm. After

cutting, the surface of the specimens was carefully

etched to remove possible distortions due to spark

machining. As a positron source we used approximately

180 mCi of Co^^ diffused into a very thin Cu foil. The

radioactive area was sealed by an 0.005 mm thick stain-

less steel window to avoid contamination. All experi-

ments were performed with the specimen at 78 K in

order to reduce the thermal motion of the positrons and
its broadening influence on the instrumental resolution

[5]. The coincidence data were taken automatically

and corrected for source decay.

3. Results and Discussion

The results for (3 brass are shown in figure 1. The
three curves represent the angular distributions for

[100], [110] and [111] directions (A-, was parallel to

these directions) normalized to equal areas using the

best visual fit through the data points. The statistical

accuracy at kz= 0 was about 0.65%. In order to evalu-

ate the part due to conduction electrons we subtracted

the higher momentum tail from the angular distribution

by fitting a Gaussian function in the region from about

7 to 14 mrad. From the resultant curve, we calculated

the derivative by taking the difference of adjacent meas-

ured points. This is shown in figure 2 for the three

crystal directions. The sohd Hues drawn through the

points represent the momentum distributions obtained

from calculations by Taylor who fitted the de Haas-van

lOOr
BETA BRASS

I I 0

I I I

2 4 6 8 10 12

ANGLE IN MILLl RADIANS

14

Fl(;URE 1. Experimental angular distribution curves for [100]. [110],
and [111] directions in f3 CuZn at liquid nitrogen temperature.
The curves are n<irmalized lo equal areas. The statistical accuracy of the data pciints at

the peak is 0.65 percent.
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BETA BRASS
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Figure 2. Electron momentum distributions in ft CuZn.
These data are obtained from figure 1 by diBerentiating as discussed in the text. The

theoretical difference curves were obtained from cross-sectional areas calculated by R.
Taylor [6]. The Fermi surface was confined to the first two zones.

Alphen data to a six parameter description of the Fermi

surface of ordered (3 brass using nonlocal pseudopoten-

tials [6]. This calculated result shows the differences

of adjacent cross-sectional areas of the Fermi surface.

Higher momentum components are not included in this

calculation. The agreement with the experimental data

is remarkably good considering this approximation.

The electron momentum distribution is quite different

along the main cyrstallographic directions and deviates

clearly from that of free electrons. The [110] necks and

the [111] holes, lying at different positions for each of

the three orientations are mainly responsible for the

detailed structure in these momentum distributions.

Under the same experimental conditions the mea-

surements on single crystals of a brass were per-

formed. We used a specimen with 22% Zn and 78% Cu.

This alloy has a face centered cubic lattice structure

like pure copper. The angular distribution for the

[100], [110] and [111] directions normalized to equal

areas are shown in figure 3. The statistical accuracy at

the peak was again about 0.65%. The angular distribu-

tion for the three orientations is different up to about

the free electron momentum of 5.5 mrad. The higher

momentum part of the curves is identical and was again

fitted by a Gaussian distribution and subtracted. By
this technique we hope to eliminate the momentum dis-

tribution due to core annihilations. It should be noted

that this broad component is higher for a brass than for

)8 brass because of the higher copper concentration.

The differentiated data are shown in figure 4 for these

three orientations. As in the case of /3 brass the devia-
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Fl(;URE 3. Experimental angular distribution curves for [100], [1 10\,

and [ill] directions in a CuZn at liquid nitrogen temperature.

The curves are normalized to equal areas. The statistical accuracy of the data points at

the peak is 0.65 percent.
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Fl(;URE 4. Electron momentum distributions in a CuZii.
These data are obtained from figure 3 by differentiatin;; as discussed in the text. The

theoretical difference curves were obtained from cross-sectional areas calculated usinj;

free electron approximation and an empirical Fermi surface confijiuration with a [111| neck
radius of (0.29±0.02)/lf

.

341



tion from a free electron momentum distribution is ob-

vious.

The solid line is the result of a calculation using

nearly free electron theory [7] and an empirical model

derived from the known Fermi surface of copper [8].

We assumed the [111] necks expand and that the total

sphere expands such that the volume remains the

proper volume for the number of free electrons one

would anticipate in copper and zinc. We joined the

necks to the sphere by a smooth curve and tested vari-

ous neck diameters in our model. Using the band gap

energies given by Segall [9] and Burdick [10] we ob-

served that the higher momentum states are important.

We then calculated the expected momentum distribu-

tion taking into account the higher momentum com-

ponents in an approximate way. The derivative of this

calculation is shown as the full line in figure 4. The par-

ticular curves we have drawn here correspond to a neck

radius of 0.29 ±0.02 (units of For pure copper the

neck radius is 0.20 in these units. This indicates an in-

crease in neck size of almost 50% compared with

copper.

In the case of /3 brass as well as in the a brass data,

these theoretical calculations agree remarkably well

with the experiment in overall shape but they exhibit

differences in detail in certain regions. Even folding

these calculations with the experimental resolution will

not completely smooth out these differences. Possible

explanations for these small discrepancies can be

found in effects not considered in the approximations

used, e.g. (1) anisotropy of the ground state positron

wave function; (2) a more accurate consideration of the

higher momentum components of the electron wave

function; and (3) many-body correlation effects leading

to a /r-dependent annihilation probability [11,12].

4. Conclusions

In this paper, we have shown that the positron an-

nihilation technique can be used to yield information

about the occupation in /:-space of electrons in alloys.

This preliminary analysis has shown surprising sen-

sitivity to small details of the topology of the Fermi sur-

face and of the occupation of higher momentum com-

ponents. In particular this preHminary analysis shows

for this particular a brass specimen a neck size approx-

imately 50% greater than that of copper. We anticipate

that future calculations and experiments will yield

much more detailed information.
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Discussion on "Density of States in a and fi Brass by Positron Annihilation" by W. Iriftshduser
and A, T. Stewart (Queens University)

P. Platzman (Bell Telephone Labs.): I would like to

correct the impression given here that the positron an-

nihilation unambiguously measures the momentum dis-

tribution. It measures the momentum distribution of

the electrons in the metal in the presence of the

positron, not in the absence of the positron. It may be

true, under certain situations, that the momentum dis-

tribution is not significantly distorted by the presence

of the positron but this is not obvious. Only if one as-

sumes that the positron does not interact with the elec-

tron gas does one get an unambiguous connection

between the annihilation spectrum and the momentum
distribution of the host metal. I think that in some cases

you may push things too far in trying to sort out certain

small details of momentum distribution tf the metal

and not keep in mind that the positron is really distort-

ing that distribution.

W. Triftshauser (Queens Univ.): Now in one way you

are right since there are certainly some effects that we
are neglecting in this calculation. But as it comes out its

effects are very small and therefore we have proceeded

in first approximation by neglecting these effects,

because it seems to be impossible at the moment to ob-

tain a better calculation of the distortion of the electron

momentum distribution by the positron than that of

Carbotte and Kahana. This calculation shows that the

distortion is surprisingly very small. Therefore, we are

confident that the observed small details of the momen-

tum distribution are real, which is proved also by the

good agreement of the theoretical calculated cross-sec-

tional areas of the Fermi surface with the experimental

results. Thus it is reasonable to neglect these effects

until better calculations are available.

A. T. Stewart (Queens Univ.): It is true that not enough

is known about the effects of the positron in anything

but simple situations. However, the k-dependence of

the perturbation is probably not great and probably

smooth. Thus the fine structure seen in these data for

brass can probably yield fairly reliable conclusions

about occupation in k-space, F. S. topology, etc.

Since the authors (Triftshauser and Stewart) cannot

answer this question, I (Stewart) wish to put it to the au-

dience. The question is this: Why cannot the perturb-

ing effect of the positron upon the electrons be handled

in a way that is easy to understand and use? Since the

results of these quite complicated calculations are

usually simple, there should be a simpler way to look at

the problem. It has long been known that in an electron

gas the polarization cloud around the positron, although

an order of magnitude more dense than the charge den-

sity in the metal, has a momentum distribution that is

much like a Sommerfeld gas. The electrons from the

Fermi surface are relatively 30% more dense in the

polarization cloud than they are in the rest of the metal.

And this is the most perturbable of electron systems! In

an atom, lecent work of Drachman, and of Salvadori

shows that while the "enhancement" at the positron

may be a factor of four, the momentum distribution in

this polarization cloud is almost the same as that of the

outer electrons of the above.

The need for a simpler outlook is especially impor-

tant in interpreting the increasingly accurate data from

positron annihilation experiments. Consider a Fermi

surface touching a zone boundary as in figure 1. Along

a direction like OA it is reasonable to use the usual

enhancement as in figure 2. However, along the

direction OB might we not find electrons less perturba-

ble so that the enhanceiiicnt function might look like

figure 3?

A

—
s

^ 0 ^ B

Figure 1. A Fermi surface contacting the zone face.
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ehancement

0
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Figure 2. The sort of momentum distribution enhancement usually
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Compton Scattering from Lithium and Sodium
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Recently Phillips and Weiss [1] have shown the ex-

perimental possibility of using the Compton effect to

measure the gound state electronic linear momentum
distribution function. In this work will be reported ex-

perimental results on single crystals of Li and Na.

The results on single crystals of Li reveal for the first

time the true anisotropic ground state electronic linear

momentum distribution function of the conduction

electrons. As expected it is in the [110] directions that

the major distortion from spherical symmetry occurs.

However, the band structure distortion has secondary

effects due to electron-electron interactions. These ef-

fects arise because the distortion of band near the

[110] direction changes the ratio of the potential ener-

gy to kinetic energy for those states and thus the

discontinuity at the Fermi surface and the high

momentum tail of the momentum distribution are af-

fected. These effects are not observable by positron an-

nihilation experiments because they are relatively in-

sensitive to electron-electron interactions [2].

The effects of band structure distortions on the elec-

tron-electron interactions are further stressed when the

Li results are compared with those of Na. As expected

Na is isotropic and thus the discontinuity at the Fermi

surface and the high momentum tail are, except for

small electron phonons effects, basically determined by

the electron-electron interactions. The results for Na
will be compared with the existing calculations [3] for

the ground state momentum distribution function in

which electron-electron interactions have been in-

cluded.

In addition to the above completed work, experi-

ments are already in progress on He, Ho, and K. The He
experiments will provide a good test of the accuracy of

Compton scattering for measuring linear momentum
distributions since the helium distribution is fairly well

known. It will enable one to make more quantitative

statements about Compton scattering results. The ex-

periments on Ho will illustrate the power of the

technique in studying molecular systems in which

bonding considerations- are important. Finally, the ex-

periments on potassium should provide a further test of

the electron gas calculations when electron-electron in-

teractions are considered.
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Discussion on "Compton Scattering from Lithium and Sodium" by P. Eisenberger and P. H.

Schmidt (Bell Telephone Laboratories)

M. Dresselhaus (MIT): At one time I thought there

was some controversy as to whether there was contact

made by hthium's Fermi surface with the Brillouin zone

boundary. Have you concluded from your work that

there definitely is no such contact?

P. Eisenberger (Bell Telephone Labs.): No, as a

matter of fact, one of the critical features in determin-

ing whether there is contact will be that the nature of

the electron core contributions or the crystal field con-

tributions will vary greatly if there is in fact contact at

the surface. In other words, one will get a completely

different spectrum. Before I can answer the question,

I have to be sure what the relative magnitudes are. If

they are actually touched, then one could expect the

same sort of general shape for the tail as electron-elec-

tron interactions would predict. If they did not touch,

then one would expect gaps. So one really has to do a

calculation of all three effects before one can really sin-

gle out and say anything about any one of them. By

going to sodium where there definitely is no contact, we

hope to be able to show what the nature of the electron-

electron interaction is by itself.

L. Muldawer (Temple Univ.): Is your method similar

to that of Weiss [1] at Watertown?

P. Eisenberger (fie// Telephone Labs.): Definitely.

L. Muldawer (Temple Univ.): Have you gotten similar

type results?

P. Eisenberger (Bell Telephone Labs.): Weiss did not

do the experiments in helium at all. He did the experi-

ments in lithium and saw no single crystal effects. I

think Dr. Weiss deserves great credit for pioneering

this field experimentally. But I think that there is a

phase shift between the experimental results and the

theory as far as lithium is concerned.

S. Hanzely (Youngstuwn Univ.): You mentioned that

you were using monochromatic x rays at different

wavelengths. I would like to know just how monochro-

matic the X rays were and how you achieved the dif-

ferent wavelengths.

P. Eisenberger (Bell Telephone Labs.): By your stan-

dards, they are not monochromatic. They have a spread

in energy of roughly 2 to 3 eV.

S. Hanzely (Youngstown Univ.): I presume then that

your technique is not too sensitive to the fact that it is

not monochromatic.

P. Eisenberger (Be// Telephone Labs.): No, at the mo-

ment I am not even limited by that width. I should have

pointed out that in the Doppler shifting technique at x-

ray frequencies, one has a built-in amplifying factor in

the wavelength shifts one is talking about, because it is

the product of the electron's momentum and the

photon's momentum. The photon is at very high energy

so you get a very spreadout spectrum. For a Fermi mo-

mentum of 4 eV one is actually talking about a couple

hundred eV energy shift at x-ray wavelengths. So one

does not need that good a resolution as one might if one

were directly measuring the Fermi surface as one does

in soft X ray, for example.

[1] Weiss, R. J., and Phillips, W. C.,Phys. Rev. 171,790(1968) and

176,900(1968).
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Ion-Neutralization Spectroscopy"^

H. D. Hagstrum

Bell Telephone Laboratories, Murray Hill, New Jersey 07974

The ion-neutralization spectroscopy (INS) is discussed in comparison with other spectroscopies of

solids. It is shown that INS probes the local density of states of the solid at or just outside the solid sur-

face. It is believed that this accounts for the clear-cut differences between INS results and those of

other spectroscopies. Because of its unique specificity to the surface re^iion INS is particularly useful in

studying the surface electronic structures of atomically clean surfaces and of surfaces having ordered

arrays of known atoms adsorbed upon them. In the latter case INS determines a portion of the molecu-

lar orbital spectrum of surface molecules formed from the adsorbed foreign atom and surface atoms of

the bulk crystal. Such spectra provide information on local bonding symmetry and structure and electri-

cal charging within the surface molecule which is as yet unavailable by any other method. INS is the

first attempt to base a spectroscopy of electronic states on a two-electron process. More recent work on

experimental and mathematical problems which such a spectroscopy entails are also briefly mentioned

in this paper.

Key words: Auger processes; autoionization; density of states; ion-neutralization; transition proba-

bility.

1. Introduction

In general, spectroscopies of electronic states have

been based on the absorption or emission of elec-

tromagnetic radiation when the system under observa-

tion is excited or de-excited. In absorption spectrosco-

pies one can observe the absorption of the photon or ob-

serve the electrons emitted when the photon is ab-

sorbed as in photoelectron spectroscopy. All of these

spectroscopies are based on one-electron transition

processes. The ion-neutralization spectroscopy (INS),

on the other hand, is the first, but not the only spec-

troscopy, to be based on a two-electron process in

which a band transition density function is obtained. It

is like the photoelectron spectroscopies in that the

spectroscopic information is obtained by measurement

of the kinetic energy distribution of electrons ejected in

the process. However, because INS employs a two-

electron process, the kinetic energy distribution con-

tains the "spectroscopic function" in folded or con-

volved form, making data reduction somewhat more in-

* An invited paper presented at the 3d Materials Research Symposium. Electronic Density

ofStales, November 3-6. 1969, (".aithersburs:. Md.

volved than for a spectroscopy based on a one-electron

process.

INS is a relatively new spectroscopy of soHds having

its own unique set of characteristics, advantages, and

limitations. It is the purpose of this paper to review

these properties in comparison with other spectrosco-

pies. We discuss the method and what it measures, its

resolving power and operational limitations, and its

unique contributions to our knowledge of electronic

state densities.

2. The Nature and Method of INS

When an excited and/or ionized atom is projected at

a solid surface, an excited solid-atom system is formed.

The ion-neutralization process upon which INS is

based is one of the processes of auto-ionization by

which such an excited soHd-atom system de-excites it-

self. Not all such processes are appropriate to INS,

however. The autoionization processes can be divided

into two principal classes depending upon whether un-

filled electronic levels in the atom do or do not lie op-

posite filled electronic levels in the sohd. These are in-
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METAL

Figure 1. Electron energy diagram showing metal at left and two

atomic wellsfor He* and He++ cores. V is the vacuum level, F the

Fermi level and B the bottom of the filled band. Transitions 1 and2
are those ofthe ion-neutralization process.

dicated schematically in figure 1. Here we show the

electronic energy level diagram of a metal to the left

and two atomic wells outside. One atomic well is that of

the He+(ls) core in which the levels are those of He*^.

The second well is that of the He++ core in which the

energy levels are appropriate to He+. We see that the

two wells differ in that one (He++) has two states

[He+(2s) and He+(35)] lying in the energy range of the

filled band of the metal, whereas the other (He+) has no

states in this energy range.

We expect that atomic levels lying in the range of al-

lowed levels of the solid will become resonances or vir-

tual bound states and that of these allowed levels, those

lying in the range of the filled band will fill. Thus the

atomic levels should control the autoionization process

in some energy ranges when they can fill by tunnehng.

Prehminary experiments with doubly-charged He++
ions and with metastably-excited He+(25) ions appear

to bear this out. Thus if we want the autoionization

process to be dominated by initial state electrons whose
state density is determined by the sohd or its surface

there should be no atomic levels lying in the energy

range of the filled band as is the case in figure 1 for

He+. This is a fundamental restriction on the ion-soHd

systems to which INS can be appHed. For He+ ions the

solid band should lie within the energy range from —4.5

eV to ~22.5 eV below the vacuum level. Earlier work

has shown that the effective ionization energy of He is

about two eV less than its 24.5 eV free-space value [ 1]

.

The transitions (1 and 2) of the two-electron. Auger-

type, ion-neutralization process are also shown in figure

1. Since C,\ and ^2 may vary over the entire filled band

we expect the ejected electrons to have energies lying

in a broad band. Experimentally the kinetic energy dis-

tributions are measured by regarding potential means
using apparatus we shall not describe here [2,3]. Ex-

amples of recorder plots of several kinetic energy dis-

tributions, X(E), are shown in figure 2. It is clear that

the X distribution is sensitive to the nature of the solid

and the preparation of its surface. The spectroscopic

information obtained by INS resides in these distribu-

tions. In order to extract it we must understand the

structure of these distributions in detail.

The distribution functions which we need to un-

derstand the ion-neutralization process are shown for

an atomically clean copper face in figure 3. Suppose we
start with the simplification of constant transition

probabihty independent of the initial energy ^. Then it
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Figure 2. Kinetic energy distribution ofelectrons ejected by 5 eV He*
ionsfrom atomically clean surfaces ofGe(lOO), Ni(lOO), andCu(lOO)

andfrom Ni(100) surfaces having ordered c(2x2)0 and c(2x2)Se

structures upon them.
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the variation ofground state position Ei'(s) in the lower right-hand

quadrant ofthefigure.

is clear that the probability of the elemental process in-

volving valence band electrons initially at and ^2 is

N{^i)N{C^2) where A'^(^) is the appropriate state density of

the combined metal-atom system. If we ask the relative

probability of producing excited electrons in dE at E we

see that all elemental processes contribute in which the

electrons are symmetrically disposed on either side of

the level ^ which lies halfway between the level E and

the ground level of the atom at —Ei'(st). Thus we must

integrate over A obtaining the restricted pair distribu-

tion function FdO appropriate to the assumption of con-

stant transition probability:

Fc{C) = NU-^)NU+^)d^. (1)

Relaxation of the restriction on transition probability

to obtain a general F(^) function requires introduction

into eq (1) of a factor proportional to the square of the

matrix element. Thus:

FiO^ j^^ \Hfi\^NU-^)NU+ ^)d^. (2)

We shall sidestep questions of antisymmetrization of

wave functions discussed elsewhere [4] and discuss

only the one elemental matrix element:

H'=jj u*{l)uUl){eVrr2)u*i2)u:,{2)dndT2 (3)

in which Uv' and Up" are initial state functions in the

band, Ug is the atomic ground state function, and Ue is

the function for the excited electron. In eq (3) terms

have been rearranged so that functions of the variables

of the same electron are brought together.

We see that the matrix element may be viewed as a

Coulomb interaction integral between two electron

clouds of spatial extent UgUi! and Ugu". Since Ug is

limited to the general vicinity of the atom the term Ugiiv'

varies in magnitude with Uv'. Thus the "down" electron

makes a contribution to H' which varies with energy as

[uv (i,—^)]A, the Up' function evaluated near the atom

position. If the "up" electron were also restricted to the

vicinity of the atom we could make a similar argument

relating to the energy variation of the contribution of

the up election to H' to the magnitude of [u„"(^ + A)] .4.

This requires in addition that Ue' vary little and

smoothly with energy as appears reasonable.

Several reasons can be adduced for believing that the

up electron is excited near the atom position. These are

listed here without really adequate discussion:

(1) Experimentally the prominence of the molecu-

lar orbital peaks in the results for surface

molecules indicates that the wave function

magnitudes in the surface region are con-

trolhng.

(2) Dominance of atomic level resonances in the

results for ions in which atomic levels fill also

points to the dominance of wave function mag-

nitude at the atom in governing the autoioniza-

tion process.

(3) The difference between INS and photoelectric

results for atomically clean surfaces can be un-

derstood only if INS is surface dominated.

(4) Energy broadening in the X(E) distribution is

reduced by a factor 10 when an ordered

monolayer of O, S, or Se is formed on the sur-

face of Ni(lOO). This must be the result of

reduction of the density of states just above the

Fermi level. Since this reduction can occur

only in and outside the monolayer we have

evidence in this result that the INS process oc-

curs predominantly in this region.

(5) There appear to be many fewer inelasticaDy

scattered electrons in INS than for equivalent

photon energy in photoelectric emission, again
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suggesting a surface source of excited elec-

trons.

(6) Theoretical considerations by Heine [5] and

Wenaas and Howsmon [6] lead to the conclu-

sion that the up electron is excited predomi-

nantly outside and in the first layer of the solid.

(7) Large momentum transfer between the two

participating electrons means a close collision

near the atom where we know the down elec-

tron is concentrated. Also viewing the Auger

process as photoemission by the down electron

followed by photoabsorption by the up electron

points to the conclusion that the up electron is

most likely excited in the rapidly-decaying near

field of the dipole of the down electron transi-

tion.

(8) If the up and down electrons made very dif-

ferent contributions to Hj, we could not con-

clude that F is the convolution square IJ*U but

must be the convolution product V^W of two

dissimilar factors. When V*W is inverted as

though it were a convolution square it can be

shown that spurious features will be introduced

into /7(^) unless V=W. These are not found.

We are thus led to the general conclusion that:

Hj^S [u:,(^-A)],K(C+A)].4, (4)

from which eq (2) becomes:

FU) j^^ [«: (^- A)] ^/v(^- A) [«;' a

+ A)]lNU+A)dA. (5)

eq (5) may be written as:

FU) = j^^ U{^-A)Ua+ A)dA=U*U, (6)

defining the transition density function UiQ which thus

includes both state density and transition probabihty

factors. We see also from eqs (5) and (6) that is es-

sentially the so-called local density of states in the

vicinity of the atom, i.e., the actual state density

weighted by the local wave function magnitude at the

atom position. This wave function magnitude must, of

course, include the effect of the presence of the atom
itself in this vicinity.

The pair distribution function F(^) of eq (6) becomes
the distribution in energy of excited electrons, F(E),

when band variable C, is replaced by the outside energy

variable E according to the relation:

E= E'.{s,)-2U+ ip). (7)
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This equation is obtained by equating magnitudes of

the energy transitions 1 and 2 in figures 1 or 3. The ex-

ternally observed electron energy distribution X(E) is

related to F(E) by the equation:

X(E)= F(E)P(E), (8)

where P(E) is the probabihty of escape over the surface

barrier and includes any other dependences on E such

as variation in density of final states.

The method of INS consists in reversing the above

development to obtain f/(^) from measured X(E). It

proceeds in the following steps:

(1) Experimental determination of two Xii(E) at ion

energies K = Ki and K-z. Usually = 5 eV and

K2=10eV.
(2) Linear extrapolation of Xk, and X^^ to Xo to

reduce the natural broadenings present in the

Xk distributions. This is done by use of the rela-

tion:

XoiE) =Xk, [E) +R[XkAE) -XkAE)]. (9)

Since it has been shown that broadening varies

with ion velocity, it is possible to write Rk,k2 as

RK^K,= {K2|K^)'l'-l. (10)

(3) Division of Xo(E) by a P(E) function, reversing

eq (8), to obtain F(E). This step is really not

necessary since replacement of P(E) by a con-

stant merely changes the intensity level of UiQ
progressively as ^ increases without disturbing

the structure. However, we have usually di-

vided by a parametric P(E) whose parameters

are chosen so that the pieces of F(^) obtained

by He+, Ne+, and Ar+ ions are essentially coin-

cident.

(4) After change of variable, F((,) is inverted by a

sequential deconvolution procedure. The for-

mulas used are:

Uo={F,l2H)^i\

f/2=(l/f/o)(F2/2AO,

U2„-2= (l/2f/o)[(F„/2AO

— X p=l,n-2 U'in-'lp-iUo,,], n^2, (11)

in which F and U are digitalized as F„ =
F(nAO, n = l,m; U-m-i = U[(2n-2)A(] ,n=l,m.

(5) Tests of the mathematical uniqueness of

by variation of its origin and by comparison

with F'{Q, the derivative of the fold function.

These steps cannot be discussed in this paper



but will be discussed extensively in a forthcom-

ing publication [7]. Suffice it to say that,

although deconvolution is in general a difficult

procedure, the sequential unfold works ex-

tremely well for the general class of F(^) func-

tions we have for which F(0) = 0, F'(0) = k, and

F{Q does not depart drastically from FiQ = kl,.

The procedure we now use is essentially that given

when the INS method was first discussed [4] . How-

ever, in the interim we have learned a good deal about

the mathematical side of the data reduction, particu-

larly the unfolding procedure. We have derived all

possible digital sequential unfold formulations which

invert directly or with the independent calculation of no

more than the first data point f/o. We have also studied

the noise characteristics and shown that the step-mid-

point formulation given above in eq (11) not only is the

only one which inverts directly without independent

calculation of the first point but also has by far the best

stability characteristics with respect to noise in the

data. We have also faced up to the problems involved

in the possibility that we are inverting as a convolution

square (U*U) a function which is in reality a convolu-

tion product {V*W) and have devised tests to determine

if any spurious structure could possibly be introduced

in this way. The data reduction procedures, although

more complicated than for a one-electron spectroscopy,

proceed smoothly on the digital computer and produce

unique and correct answers. We shall discuss further

some of the properties and limitations of INS in section

4.

3. Examples of INS Results

We turn now to the presentation of INS results.

These are in two categories: (1) results for atomically

clean surfaces of the transition metals Cu and Ni [8]

,

and (2) results for the Ni(lOO) surface with ordered

monolayers of O, S, and Se adsorbed upon it [9] . Some
unpublished results for Si and Ge will be mentioned in

the discussion of item (1).

In figure 4 we reproduce figure 6 of reference 8 show-

ing F{iQ and for Cu(lll). Also shown in the correct

relative position is the P{E) function used, indicating

how flat it is over the energy range of the data. The

average U(l) function for (100), (110), and (111) faces of

Cu (fig. 15 of ref. 8) is compared in figure 5 here with

the optical density of states curve (ODS) of Krolikowski

and Spicer [10]. In figure 6 the 11(1) curve for atomi-

cally clean Ni(lOO) from INS is shown and compared

with Eastman's ODS curve for a nickel film obtained by

photoemission [11].
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Figure 4. Y andM functions for atomically clean Cu(lll) and He^

ions [fig. 6 of ref. 8] . The probability of electron escape used in the

data processing is also shown.

First, it is evident that the INS results show a peak in

the general vicinity of the bulk c/-band in both Cu and

Ni. However, it is equally evident that this peak does

not have the shape or width to be expected from band

theory or measured by ultraviolet photoelectron spec-

troscopy (UPS). A strong case can be made that the dif-

ferences evident in figures 5 and 6 are due to the fact

that the two spectroscopic methods are sensitive to dif-

ferent things. Although the energy resolving power of

INS is somewhat poorer than that of UPS, one cannot

by any stretch of the imagination consider the INS U{Q

curve as a smeared out version of the ODS curves. In

reducing the Ni data of figure 6 very httle digital

Cu /v
\ / '\V 1 \
/ ' 1

/ ' 1

^^^^
/ ' 1

'
1

V
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Figure 5. Comparison of the average function for (100), (110),

and ( 1 1 1 )faces ofCu [fig. 15 of ref. 8] compared with the optical

density ofstates curve (ODS) ofKrolikowski and Spicer (ref. 10)

obtained by photoelectron spectroscopy.



work of Pendry and Forstmann [13] who predict that

on some faces of transition metal crystals a new type of

surface state appears which should clearly modify the

surface local density of states from the bulk density.

The second category of INS experimental result to be

mentioned in this paper is found for metal surfaces

upon which ordered monolayers of adsorbed atoms are

present. In figure 7 is reproduced the UiQ functions

from reference 9. Here in curve 1 is repeated the transi-

tion density for atomically clean Ni(lOO). Curves 2, 3, 4

are for c(2x2) structures of O, S, Se, respectively, and

curves 2', 3', and 4' are for p(2x2) structures involving

these same adsorbed atoms, respectively. We note a

very interesting increase in complexity of the U
functions for the covered surfaces. These appear now

10 8 6 4 ?. 0

5 IN ev

Figure 6. U(^) for NiilOO) compared with the ODS curve ofEastman

(ref. 11) also obtained by photoelectron spectroscopy. The amount of

smoothing used in the INS data reduction was deliberately reduced to

the point ofleaving in the data the noise seen in an attempt to

demonstrate the best resolving power ofthe I\S method.

smoothing of the data was used in an attempt to in-

crease the resolving power at the expense of letting

through low-frequency noise. Some increase in resolv-

ing power (about 20%) is evident when comparison with

similar curves in reference 9 are made. The sharpness

of the peak in Ui^) at ^ = 1 eV is an indication of the INS
resolving power. In view of the characteristics of INS
discussed above it is believed that the U(Q curve is in

fact the local density of states at or just outside the sur-

face whereas the UPS results are characteristic of the

bulk.

Why the local density of states for d bands of transi-

tion metals outside the surface differs from the bulk

band is an interesting question in surface physics. The

reduction in number of nearest neighbors as well as a

probable small dilatation of the lattice at the surface

could narrow the tight-binding d band and make it more

like an atomic level. Tight-binding bands are particu-

larly vulnerable to such modification in the surface re-

gion. Unpublished work on Si and Ge appears to in-

dicate that the INS results will much more closely

mirror what is expected from bulk theory [12]. This

is probably attributed to the fact that the 5 and p
wave functions of the semiconductor valence bands

overlap more strongly at the surface even though the

surface atoms may be displaced from their "bulk posi-

tions" by larger amounts than are surface atoms of the

transition metals. Another interesting suggestion to ac-

count for the INS results in Cu and Ni arises in the
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Figure 7. Transition densityfunctions, for atomically clean

Ni(lOO) (curve 1) andfor the surface with c(2x2j structures of0, S,Se

(curves 2, 3, 4, respectively) and with p(2x2) structures ofO, S, Se

(curves 2'
.
3'. 4'. respectively). Energies labelled p, lb\, 3au and Ib^

are identified in the text.
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Figure 8. Electron energy diagram illustrating the effect on INS of

a resonance or virtual bound state ofa surface moleculeformed on a

metal surface. The bond resonance in the surface molecule is assumed

to lie at ^1 (which is also the initial energy ofthe down electron) and

to increase the magnitude of the surface wave function tps over a

broadened energy range as indicated on the right-hand side of the

diagram. The increase in wave function outside the solid in this

energy region is indicated by th e dashed-line modification of the

electronic wavefunction at ^i.

to indicate the energy spectra of electronic orbitals of

electrons in the bonds of so-called "surface molecules"

formed from the adsorbed atom and atoms of the sub-

strate.

The electronic states to be associated with bond or-

bitals in surface molecules form resonances or virtual

bound states. These will evidence themselves in the

transition density for reasons we attempt to make clear

by figure 8. The presence of the electronic orbital at the

surface will increase the wave-function magnitude in

the vicinity of the surface molecule as indicated by

in the figure. This will in turn increase the tunneling

probability for band electrons into the He+ well. The

dashed line indicates how a band wave function in the

absence of the surface molecule (full line) is increased

in the presence of the surface molecule (dashed line).

These wave function increases in the He+ well will

result in peaks in the local density of states and hence

the U{(,} transition density function observed by INS.

This paper is not the place to discuss the results in

figure 7 in any great detail. A preliminary discussion is

to be found in the original pubUcation [9] and an exten-

sive paper is in preparation [7] . However, it is essential

to an understanding of the scope of INS as a spec-

troscopy of electronic states to mention briefly the prin-

cipal results for these cases of chemisorption. Several

energies are indicated in figure 7. These are the levels

of the atomic p orbitals in free O, S, and Se, labelled p
in the figure. In the figure the second, third, and fourth

panels from the top refer to adsorbates O, S, and Se

respectively. The lines labelled Ibi, 3ai, and lb2 are

molecular orbital energies in the free molecules HgZ
where X is O, S, or Se in the second, third, or fourth

panels of the figure, respectively.

Three types of molecular orbital spectrum are to be

found among the six curves for adsorbed species in

figure 7. Curves 3 and 4 are the most complex spectra

having peaks near the orbitals indicated for the free

HzX molecule. These have been attributed to the

bridge-type bonding illustrated in figure 9(a) and (b).

Relatively small negative charging of the X = S,Se end

of the surface molecule is indicated by the fact that the

lone-pair orbital peak near (l)bi also lies near the

atomic p orbital energy as for free HjX-

When the structure is changed from the c(2 X 2) [fig.

9(b) to the p{2 X 2) [fig. 9(d)] by removal of half of the

adsorbate we see that the molecular orbital spectra

change completely to those of curves 3 and 4 in which

there is a single peak below the Ni d-band peak indicat-

ing a change in the local bonding structure. The only

other reasonable alternative is the vr-type symmetrical

bonding as shown in figure 9(c) and (d) for which we ex-

pect a nonbonding orbital in this energy range.

Removal of the "center atom" in the c(2x2) structure

removes the agent which distorts the square of Ni

atoms of C41, symmetry below each X atom into a rhom-

bus of C-zv symmetry. C-zv symmetry is essential if the

molecular structure is to resemble H-zX. Reversion to

C41, symmetry when the center atom is removed de-

mands change of the molecular structure and spectrum

as is indeed found.

Finally, both c(2x2)0 (curve 2) and p(2x2)0 (curve 2')

show a single peak shifted by a much larger amount

toward the Fermi level from the atomic p level than is

the case for either S or Se. This orbital spectrum (single

peak in the available energy range) and larger negative

charge (orbital energy shift) together with small work

function change on adsorption can be shown to be con-

sistent with a reconstructed surface in which the ad-

sorbed atom is incorporated into the top layer of sub-

strate atoms where relatively large charge will not

result in large work function change. Although the

above account of the data in figure 7 is admittedly
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Figure 9. Surface structures suggested (ref. 9) to accountfor the

molecular orbital spectra offigure 7. (a) and (b) arefor a bridge-type

Ni-iX-type structure repeating over the surface in a c(2x2) pattern to

accountfor curves 3 and 4 offigure 7. (c) and(d) illustrate a p('2X'2)

structure adequate to accountfor curves 3' and4' offigure 7. (ej and

(f) illustrate a reconstructed c(2x2) structure to accountfor curve 2 of

figure 7. Simple removal of the "center atom" in (f) without other

change produces the p(2x2) reconstructed surface thought to account

for curve 2' offigure 7. In these figures bond orbitals are indicated by

the heavy arrows with conical arrowheads.

sketchy, it does indicate how INS determines a portion

of the molecular orbital spectrum of a surface molecule

and the power such information has in elucidating sym-

metry and bonding character.

4. Comparative Critique of INS

A comparative critique of INS is perhaps best car-

ried out by listing its characteristics and attempting to

assess them as advantages or disadvantages in com-

parison with other spectroscopies of solids. The other

spectroscopies are the two forms of photoelectron spec-

troscopy, ultraviolet photoelectron spectroscopy UPS
[10,11] and x-ray photoelectron spectroscopy XPS
[14]; soft x-ray spectroscopy SXS [15], and the sur-

face Auger spectroscopy SAS [ 16]

.

In the first place INS is a two-electron spectroscopy

as is SAS whereas UPS, XPS, and SXS are one-elec-

tron spectroscopies. SAS is based on a two-electron

Auger process similar to that underlying INS except

that the vacant ground level in the excited system is an

inner level of a surface atom rather than the ground

level of the parent atom of an incoming atomic ion. The
SAS process has been used extensively in the identifi-

cation of surface impurities but AmeHo and Scheibner

[ 16] were the first to attempt to separate the Auger dis-

tribution from the large background of secondary elec-

trons and to unfold it to obtain spectroscopic informa-

tion as has been done in INS.

The fact that INS, like SAS, is a two-electron spec-

troscopy must in itself be considered a drawback since

it necessitates unfolding of the data. However, in INS

the data are of such quality that unfolding now offers no

significant problem. We have learned much about un-

folding methods and possible errors since the last

discussion of these matters in the literature [4]

.

A second characteristic of INS is its surface

specificity and hence surface sensitivity. This means,

as we have seen, that INS results can be compared with

the results of bulk spectroscopies only in special cases.

However, INS gives us a tool to study variation of elec-

tronic band structure from bulk to surface, to study sur-

face states on both metals and semiconductors, and,

perhaps most importantly, to measure molecular orbital

spectra of surface molecules formed in chemisorption.

Some recent UPS work [17] with 21.2 eV radiation and

grazing incidence has shown the possibility of detection

of large molecules adsorbed on surfaces. Whether sur-

face molecules of the type discussed here can be ob-

served in this manner has yet to be demonstrated.

The transition probability factors of INS arise from

its surface specificity and the tunneling character of

the electronic transitions. Four types can be listed: (1)

a tunneling factor which decreases with depth in the

band, (2) a symmetry factor arising from extent of the

surface wave function which decreases as the

character proceeds from 5 to p to d, etc., (3) a second

tunneling factor which favors bulk states whose k

vector is normal to the crystal face used, and (4) the

enhancement in certain energy ranges caused by the

surface resonances of adsorbed atoms. Although they

are distinctive, there appears to be no particular disad-

vantage associated with these transition probability fac-

tors. It is the last one which makes possible the study

of surface molecules and this must be listed as an ad-

vantage.

The energy range which can be explored in the solid

is Ei'—2(p where E/ is the effective neutralization ener-
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gy of the incident ion near the surface (effective ioniza-

tion energy of the parent atom) and <{> is the work func-

tion of the sohd. This means that INS is the equivalent

of a photoelectric process for which hv = Ej' — (p. For

He, Ei' —22.5 eV and for a representative solid (^ — 4.5

eV. Thus Ei— (p~18 eV. To equal this range with UPS
one must use the 21.2 eV He resonance radiation. XPS,

SXS, and SAS, on the other hand, have essentially no

energy range limitation with respect to the valence

bands of solids. Like UPS, INS is limited by vacuum

level cutoff making it difficult to extract data near the

vacuum level because of the rapid variation of escape

probability there.

Energy resolving power of INS is undoubtedly

somewhat less than that of UPS but as figure 6 in-

dicates not greatly less. It is in all probability better

than that of SXS, XPS, or SAS since each of these in-

volve the relatively broad inner level of an atom at one

point or other.

Finally, we shall mention a series of side effects

which must be considered in evaluating any spectrosco-

py. There appear to be fewer inelastically scattered

electrons to contend with in INS than in UPS at higher

energies. SAS has a serious background problem unk-

nown to INS. Plasma losses, which can be a complicat-

ing interpretive factor, apparently play no role in INS

results. SXS has a serious spectral superposition

problem unknown to INS. The signal intensity in INS

is adequate which sometimes cannot be said for SXS or

SAS. INS has the possibility of variation of natural

broadenings by variation of a controllable experimental

parameter, namely incident ion velocity, making it

possible to extrapolate out broadenings admittedly

greater than those of UPS.

In conclusion it is possible to state that ion-

neutralization spectroscopy is a viable spectroscopy of

solids having its own peculiar set of characteristics. It

appears that its most important area of application at

present is to the study of the molecular orbital spectra

of surface molecules formed in chemisorption. Here it

holds promise of extending our knowledge of surface

structure beyond what low-energy electron diffraction

(LEED) now can do. LEED tells us how a given adsorp-

tion or bonding structure repeats itself over the surface.

INS yields information about bonding symmetry, or-

bital energy-levels, and electric charging within the sur-

face molecular structure, which in many cases, using

LEED and work function data, will permit the specifi-

cation of bonding structure. Surface state and surface

modifications of band structure also promise to be in-

teresting fields in which INS can make a contribution.
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Discussion on "Ion-Neutralization Spectroscopy" by H. D. Hagstrum (Bell Telephone Laboratories)

W. Plummer (NBS): I am very much concerned that

you interpret the low energy structure as due to density

of states when, in fact, you have assumed a constant

escape probabihty, before and after adsorption of these

gases. It is a well known fact, both experimentally [1]

and theoretically [2] , that adsorption will cause

coverage dependent structure in the reflection which

should be related to your escape probability. If you do

not accept any structure, say for 4 eV above the

vacuum level, then basically you have only two kinds of

structure in all your curves. All of them would then

have one broad hump with only the p(2X2) structure of

Se having an extra peak. I understand from your 1966

paper that when you parameterized the escape proba-

bihty, you could not explain satisfactorily the low ener-

gy escape probabihty for the various ions used, i.e.,

from 2 to 4 eV above the vacuum level. It is very impor-

tant to your interpretation that some of the gases have

three humps while others have only one or two.

H. G, Hagstrum (Z?e// Telephone Labs.): Dr. Plummer

is certainly correct that one should consider seriously

the effect of the results of Madey and Yates for escape

probability of the ion-neutralization process. If the

lowest energy structure observed with He+ ions were to

be due to a variation of escape probability with energy,

this structure would have to appear at the same energy

above the vacuum level in the results for Ne+ ions. We
have looked again at our results for Ne+ ions and find

that they give the same spectrum as we observed for

He+ from the Fermi level down to that energy below the

Fermi level to which the Ne+ ion-neutraUzation energy

enables us to eject electrons. From this it does not ap-

pear that the structure in either of the electron distribu-

tions for He+ and Ne+ ions results from the variations

observed by Madey and Yates in a different system. I

would suggest that the reason for this is that the elec-

trons we observe in the ion-neutralization process are

electrons which are in the main excited outside the

solid surface and, therefore, do not interact nearly as

intensely with the surface barrier as do the electrons in

the experiment of Madey and Yates. I would also sug-

gest that our result which shows that the lowest energy

peak disappears in going from the c{2x2) Se to the p(2

X 2) Se structure is quite strong evidence that the peaks

in the spectrum are of molecular orbital origin and not

due to variation of the escape probability. Dr. Plummer
has alluded to the discussion in my 1966 paper concern-

ing the difficulty of obtaining rehable data in the range

0 to 4 eV above vacuum level. Since the 1966 paper was

published, we have worked very hard to improve our

data in this region. In the retarding potential configura-

tion we have been using, this problem relates to the dif-

ficulty in keeping the ion beam well focused at the

lowest kinetic energy. We have been able to improve

our situation since that time to the point where we be-

lieve that the presence or absence of a peak in the

range 2 to 4 eV above the vacuum level is no longer in

doubt although we cannot, with that experimental con-

figuration, claim to know the peak position or width

with the same accuracy that we know these data for

other peaks at higher energies. During the last year we
have rebuilt our apparatus so as to eliminate the effect

of the electron retardation upon the incoming ion beam.

With this apparatus we have been able to reproduce

very well the results of the earlier apparatus, thus bol-

stering our confidence in the results in this energy

range.

[1] Madey, T. E., and Yates, J. J., Supp. Nuovo Cimento, Vol. 5,

Ser. l,p. 483.

[2] Gadzuk, J. W., to be published in Surface Science.
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Potential and Charge Density Near the Interface of a
Transition Metal *

E. Kennard** and J. T. Waber

Northwestern University, Materials Science Department, Evanston, Illinois 60201

The early literature on methods of calculating surface energy and charge density and of dealing

with potential barriers at an interface are reviewed.

The three dimensional potentials and charge densities were obtained by superimposing the rele-

vant atomic information which had been obtained from Dirac-Slater self-consistent field calculations on

free atoms.

The total charge density at each point P was found by summing the contributions from atoms

located within a sphere of radius R centered at P. The local exchange potential was estimated at P by

means of Slater's p''^ method. This was included with the overlapped atomic Coulomb potentials to ob-

tain the crystal potential near the surface.

Key words: Absorption potential; charge density; metal-vacuum interface; platinum; surface

energy.

1 . Introduction

The theoretical investigation of the surface energy of

metals has received considerable attention in the last

few years. This trend has been stimulated by a large

amount of excellent experimental data which has been

appearing in the literature.

The first theoretical attempts to explain experimen-

tal values of surface energy were made in the late

1930's; the nearly free electron theory of metals was

used. This is quite a reasonable approach for the alkali

metals. The results were on the whole in reasonably

good agreement with the experimetal data. But, as in all

such studies, the results were strongly influenced by

the model chosen. It is the aim of this paper to examine

some of these models and then to discuss the calcula-

tion of more realistic models.

In reality, all metal specimens are finite and are

bounded by surfaces. However, theoretical calculations

of electronic structure can be simplified by assuming

an infinite solid. When there is a regular arrangement

of ion cores in a metal, calculations need only be car-

ried out over one unit cell. That is, the infinite solid pos-

sesses a very high degree of translation symmetry.

*Research supported by the National Aeronautics and Space Agency, Washington, and by

the Advanced Research Project Agency of the Department of Defense through the Materials

Research Center at Northwestern University.

•'Submitted in partial fulfillment of the requirements for the degree of Doctor of Philos-

phy. Northwestern University, Evanston, Illinois.

At this conference on the electronic structure of

metals and semiconductors, it is appropriate to con-

sider the special quantum mechanical problems which

occur when a surface intrudes into an infinite solid.

There is a reduction in the symmetry; translational in-

variance is lost along some directions [h k I] which is

perpendicular to the free surface and in general certain

planes which were mirror planes are no longer effective

in "mapping" the crystal lattice onto itself. In general,

Bloch's theorem will hold for translations having their

components strictly parallel to the free surface, but not

for translations with a component perpendicular to the

surface.

For a realistic model of a solid, there will be a non-

vanishing probability of finding electrons in a region

slightly beyond the last row of ion-cores, and the

average charge densities will decrease in a more or less

exponential way toward zero over a region of several

interatomic distances.

Surface studies are pertinent to the theme of this

conference because certain experimental methods for

determining N(E) curves, such as photoemission and

ion-neutralization spectroscopy, involve electrons

passing through or coming from the surface regions of

a metal. More understanding of the effects of crystallo-

graphic orientation on surface potentials would

enhance our knowledge of the processes which occur

at surfaces; in addition, it would increase our
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knowledge of the bulk electronic structure of metals

and semiconductors.

waves will occur near the interface due to reflection at

the interface.

2. Review of Pertinent Studies 4. Treatment of the Electronic Problem

To illustrate the problems associated with making

realistic calculations of surface potentials and surface

energy, we will review some of the early studies which

utilized primarily the methods for studying the bulk

density of states. Certain earlier studies of surfaces

used the nearly free electron model of metals; these are

related to the use of the "jellium" model. The several

researchers in this field have assumed an infinite

potential wall at the surface of the metal. Later, the ef-

fects of a finite barrier and the penetration of that barri-

er by electrons were considered. Although the

"geometric" surface can be defined as the plane con-

taining the last row of ion cores, those properties

directly connected with the electron distribution cannot

be considered to change abruptly from one side of this

plane to the other. Instead, one should consider a sur-

face region surrounding the last plane of ion cores and

in that the properties of the finite solid may be different

in this narrow region from those of the bulk.

The boundary-layer region and the charge density

variations in this region have been treated in recent stu-

dies. Let us begin by defining the increase in energy as-

sociated with "cutting" a metal and forming an inter-

face.

3. Surface Energy

The surface energy of a solid may be defined as the

difference in energy between that of a given volume of

metal contained in an infinite solid and the energy of an

equivalent volume of metal removed from the metal

and placed in vacuum — it is the energy increase which

results from the presence of one or more surfaces. For

ionic or covalent solids, one might reasonably consider

surface energy in terms of broken bonds or dangling

bonds.

The relatively free electrons and the ion cores are the

ingredients of a metal; the mutual interactions between

the many electrons and the many cores can lead to an

increase in energy. Thus, the surface energy must be

related to a change in the local concentration and

kinetic energy of electrons. The redistribution of the

ion cores which apparently occurs may be another con-

tributing factor near the "surface." The attendant

change in potential alters the local concentrations of

electrons. If one thinks of a metal as a collection of

plane waves (electrons being scattered about in a metal

by the ion cores), it becomes very likely that standing

Brager and Schuchowitzky [1] considered that the

extra energy arose from the fact that the presence of a

surface serves to define the position of the metallic

electrons more exactly, i.e., it partially "localizes"

them, and hence leads to an increase in their energy by

the Heisenberg principle. These researchers did not

clearly indicate whether the increase in surface energy

would be confined to a surface region or whether it

might lead to a general increase in energy of all the

electrons.

Because of the penetration of the electrons beyond

the geometric surface, a "double layer" is formed with

a net positive charge inside and a negative charge out-

side. The energy of the dipole layer is also associated

with surface energy. Early workers [2,3] attributed all

of the surface energy to the potential energy which

comes from separating the electrons from their ion

cores, i.e.. with the energy of the double layer. Sub-

sequent calculations have shown that this contribution

is negligible in comparison with the local change in

kinetic energy [4,5]

.

5. Nearly Free Electron Model

In 1946, Brager and Schuchowitzky [ 1] assumed that

the electrons move in a cubic box with side L and that

the potential field becomes infinite at the walls of the

box. The appropriate wave functions are of the form:

\\)(r)=A sin {nk^x) sin (mkyy) sin (Ik^z). (1)

Each such state is represented by a point in k space,

i.e.. reciprocal space which lies on a grid of spacing

{mrlL, rmrlL, Itt/L). In the usual way, one finds that the

density of states at the Fermi level is:

dk 2 (I (2)

where kmnx is the radius of the Fermi sphere. The total

kinetic energy of these states is given by:

Etot
— (3)

lOTr'-m"^

where fl is the (cell) volume and m* is the effective

electronic mass.

The number of states has been over-counted in this

Sommerfeld model because the particular boundary

conditions require that the functions vanish on the

walls or hmiting planes of the octant in k space, i.e.,

that states where n, m, or 1 = 0 are inadmissible. Brager
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and Schuchowitzky obtained the number of reciprocal

lattice points contained in the si)here of radius K and

excluded those on the walls of the octant, using a for-

mula given by Vinogradov [6], namely:

o o
(4)

where O indicates the number of magnitude of the cor-

rection term. This correction arises from approximating

a sphere by a collection of equal volume boxes centered

on a lattice of points.^ It leads to a total energy of

+
Stt/;- //.

77
(5)

IOtt'-//; 32m

The energy of such a bounded metal is made up of a

term dependent on U and a term dependent on L- plus

correction term of order IJ^. The surface energy in

(eV/cm^) (namely, the excess energy over the energy in

the volume IJ when divided by the surface area)

becomes:

P " max
'-'surface 6)

32 TT/n

When L > a,), the latter term relates to surface irregu-

larities and can be neglected. Sugiyama [7] proved that

the same result held for any shaped metallic mass.

Brager and Schuchowitzky [1] showed that the sur-

face energy is primarily dependent on the electronic

charge density in the bulk of the metal. Figure 1 is a log-

log plot of the experimental values of the surface ten-

sion of liquid metals against iplA) where p is the density

of the metal in gm/cm^ and A is the atomic weight. Con-

version of eq (6) indicates a slope of 4/3; the slope found

is 1.2. Another result is that the second term, E-z, in eq

(5) is one-fourth of the energy of a two-dimensional

Fermi gas located on the surface.

The common model potentials have some form of a

step at the geometric interface. When one uses an in-

finite, three-dimensional potential step, as several wor-

kers have done, the values of i|/frj^ 0 on this boundary.

Sugiyama [7] illustrated the spatial dependence p(y)

of the electron gas when an infinite barrier is erected at

a geometric surface. There is a surface thickness which

is the region in which the electrons are excluded. As a

consequence of the barrier, the charge density must in-

crease in other regions. This is illustrated in figure 2.

Charge oscillations are also shown.

If it is assumed that the interior charge density

remote from the surface is not altered by the presence

of the surface and further, that kmoj- is not altered from

its bulk value, then it can be shown [5,7] that the

charge may be conserved by displacing the infinite

' In principle, a similar correction might be used to take account of the asphericity of the

Fermi surface, but Brager and Schuchowitzky were content to use m* for that purpose.

log CTexper-*

2.9 .3.

Figure 1. Variation of the logarithm of the experimental values of
the surface tension (cr) against the logarithm of the approximate
electron density iplA).

The slope nf the line is 1.2.

potential barrier outward from the geometric surface,

by a length of the order of a lattice parameter. How-

ever, an imaginary node then occurs at y = o, a little

way beyond the geometric surface.

The k vector is inversely proportional to the distance

between nodes of i//(r); thus k,j = rmrlL — S/L where the

"phase shift" S due to barrier penetration can be

defined by:
f.

tan S = "

4 6 8

Distance from surface

10

Figure 2. Local variation of the charge density of free electron

gas caused by an infinite potential wall placed at the geometric

surface.

Pi exceeds pa when the infinite step is at y = 0.
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where 0 is not the work function but the inner potential

observed in LEED experiments. One notes for the wave

vectors, that

riTT 8

2{Ly + a) (Ly + a)
(8)

The term a is of the order of an interatomic distance.

The surface energy computed with this model contains

a term which is similar to the one in eq (6). A negative

correction term cr-i arises due to the reduction of each

component of k hy d/L. Thus:

d-,= [3(2-A)(A-l)"^+ (3A--8A + 8) arc sin (A-'/^j]
16mh

where the parameter A = </)/£'f is greater than unity.

Huang and Wyllie [4] were apparently the first

researchers to use a realistic finite step at the surface.

The height of the barrier (j) was estimated from the

Fermi energy Ef and experimental values of the cohe-

sive energy W. With such a finite potential barrier, the

wave function i//(r) is not forced to approach zero at the

barrier step. Instead it undergoes a change in phase as

electrons penetrate into vacuum and k has an imagina-

ry component. This will be discussed below. The calcu-

lations of Huang and Wyllie give better agreement with

experimental data than those of Brager and

Schuchowitzky. The results are compared in table 1.

However, it was pointed out by Stratton [5], Su-

giyama [7]. and Huntington [8], that such realistic

potential barriers do not necessarily conserve charge.

Even a finite potential step cannot be placed at the

position y = L, because such a step leads to an excess

of charge in the interior. Thus, the position must be al-

tered so that charge is conserved. Sugiyama [7]

showed that the Brager and Schuchowitzky energy Es
was in fact a poor approximation. He obtained a surface

energy one fifth as large.

Stratton [5] similarly used a finite step function

located at y~+a, that is, one somewhat in front of the

Table 1. Surface energy cr due to the change in the

kinetic energy of the electrons

(9)

Metal

Surface energy (ergs/cm^)

B&S H&W Stratton Exp

Lithium 960 350 398

Sodium 777 470 165 190

Potassium 333 208 68 101

Copper 3720 2180 800 1103

Silver 2170 1400 490 800

Gold 2120 1490 500 580

2330 743

Cadmium 1670

1550

630

465Mercury 341

geometric surface. The Stratton charge density is

similar to that of Sugiyama [7], except that the effect

of penetration of a finite barrier is more explicitly in-

dicated. For a finite steji the relation which will con-

serve charges requires that

^ [(A- 1)'/^+ (2-Aj arc sin ( VA)]a.
4^n

(10)

where Ox is the value for an infinite step, i.e., when fx.
—

>

00 and A is defined to be iix^lk^majr)- The quantity Cy,

becomes 37r/8A;,„„j. This idea leads to a surface energy

of

h-L-"' "max tt-H"' " max

16077/71* 16077-m*

[(14-15A)\/r-A+ (8-24A + 15A-) arc sin ( VA)]

(11)

agreeing with Sugiyama's calculation for <^
—» How-

ever, Stratton's values of the surface energy tend to be

smaller than those given by Huang and Wyllie. Stratton

[5] found that the contributions to the surface energy

are confined to a narrow region which contained a lat-

tice boundary or edge. Some of his results are also com-

pared in table 1. A similar calculation was carried out

by Huntington [8] . His value of cr for sodium was very

close to that obtained by Stratton.

Huntington [8] also calculated the surface energy of

sodium using the self-consistent image barrier worked

out by Bardeen [9] . Huntington's values appear to be

approximately 40 percent of the experimental values.

The probable cause for the substantial reduction of

the surface energy can be illustrated in the following

manner. In figure 3, the density of states for the bulk

metal is drawn as a full curve. When the infinite barrier

is located at one-half an interatomic distance beyond

the last layer of atoms, those states are excluded for

which one or more components of vector k are zero.

The formula for the density of states remains the same.

The number of disallowed states per unit energy is con-

stant; because E is proportional and the number of

points lying inside circles on the three orthogonal (Car-

tesian) planes inscribed by the Fermi sphere are also

proportional to k^. The excluded states which are
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N(E)

N(E)

Figure 3a. Curve A is for Density of States Curve for a infinite

metal assuming nearlyfree electrons.

The excluded states on the walls of the XY, YZ, and XZ planes in the Fermi sphere are
indicated by curve B. The net effect is to increase the Fermi level at 0 K XoE'r-

Figure 3b. The dotted curve C is the N(E) curve obtained by ap-

proximating barrier penetration by relocating the effective infinite

barrier at a and thus increasing the constant of the parabola.
The net density of states curve D (crosshatched) is obtained by subtracting B from C.

The net effect of the increased number of occupied states is that E"f ~Ef is smaller.

shown as shaded area must be added to the top of the

band thus increasing kmax- The dashed curve

represents the situation with an infinite barrier.

Alternatively, the electrons could be accommodated

by altering the spacing of the states in k-space and

keeping kmnx a constant. The alteration of the spacing

of allowable states in k-space is accomplished by in-

creasing the distance between nodes of the wave func-

tion in real space, i.e., by moving the position of the

potential barrier.

Due to barrier penetration the effective node lies at

L'—L+a. The consequence of the analysis is that each

new k'y is reduced by {alnL). The lowest state which is

now included is somewhat lower than in the case of an

infinite barrier as indicated on the lower portion of

figure 3. However, the density of states is increased

because L' exceeds L and hence the density of ex-

cluded states remains the same, being constant for all

E. In the analysis of Sugiyama, the Fermi level Ef is

barely shifted and the unoccupied states are accom-

modated by the enhanced "width" of the A'^f^'j curve. It

is reasonable that the additional energy in the lower

portion of figure 3 may be less than on the left-hand

side.

Huntington [8] in his paper showed that, providing

the barrier was consistent at least with regard to charge

conversation, i.e., that the height and position of the

barrier were such as to conserve charge, then the sur-

face energy varied by little more than 10 percent con-

sidering a wide range of possible values of height and

position. Any barrier which conserves charge gives a

good approximation to the surface energy.

6. Electrostatic Energy of the Double Layer

A double layer is formed near the interface of a metal

because the electrons will penetrate into the "forbid-

den" region if the potential is finite at the edge or boun-

dary. Because of the distribution of electrons beyond

the boundary, a local depletion of electrons will occur

just inside the boundary. Thus, a dipole layer will be set

up with the negative side outside the boundary, i.e.,

outside the metal.

One may calculate formally the energy of this elec-

trostatic double layer inside and beyond the lattice sur-

face by means of the following integral:

P(yi)p(y2)|ri — 72] ^dyidy-z (12)

where y is the coordinate perpendicular to the surface

and p is the local charge density. Evaluation of this in-

tegral requires a detailed knowledge of p.

Stratton [5] used free electron wave functions and

found that

0-3= vNe'^ (13)

where f is a universal constant, 5 X 10~^ for all metals.

His values for 0-3 amount to a small increase in kinetic

energy, namely, to approximately 10 to 20 percent of

the major contribution to the surface energy.

The small contribution to the surface energy from the

double layer at the surface is in agreement with the ob-

servation by Bardeen [9] that the surface barrier is due

primarily to exchange and correlation forces. Ju-

retschke [10], using Slater's method for the potential

[11], was able to calculate the variation of the

exchange potential along a line perpendicular to the

surface. His results showed good agreement with those

of Bardeen.
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If one were to bring a test charge up to the vicinity of

the lattice boundary, then its potential will cause an ad-

ditional redistribution of electrons in the metal, i.e., it

will cause local polarization. The effect would be

equivalent to that of a classical image force with essen-

tially an electron hole distributed over a region several

Angstroms in extent. This, of course, is a further con-

tribution to the apparent dipole moment at the inter-

face.

The photoemission of an electron causes the kind of

a localized redistribution of charges which is associated

with an exciton. However, the statistical approximation

possibly is inadequate beyond the surface because this

is a region of low density or of rapidly varying density.

Loucks and Cutler [12] calculated the effect of

using a screened exchange energy in the Bohm-Pines

formalism. They obtained exchange potentials whose

shape was very similar to that of Juretschke but whose

magnitude varied with the screening parameter. These

authors also included a long range correlation term

which was independent of position. The exact form of

the surface potential has been further investigated and

apphed by Davies [13] and Gadzuk [14]. At the

present, it appears that these calculations of surface

potential of a free electron metal are as exact as neces-

sary. Gadzuk [14] remarks ".
. . unfortunately there

is very little experimental data which can be used to

evaluate the exact shape and magnitude of the surface

barrier."

7. Metallic Interfaces

Recently, a number of pertinent studies have ap-

peared in the literature. Stern [ 15] discussed the

problem of surface states in terms of scattering of

nearly-free electron waves. He suggested that surface

effects might extend into the metal to a depth ap-

proaching 50 lattice parameters and that such a skin ef-

fect should influence the optical properties of the metal

since the penetration depth of electromagnetic waves

in the visible range of wavelengths is comparable to this

figure.

Bennett and Duke [ 16] studied the interface formed

between two metals. This problem has many formal

similarities to the problem of a metal-vacuum interface

and the analogy grows in accuracy when the electron

density in one metal is significantly lower than that in

the other. This case has been subsequently studied by

many investigators [17-20]. Tunneling from the high

into the low density region occurs but there are

generally no surface states of either the Tamm or the

Shockley type. The "localized" states which Bennett

and Duke [17] found on the high density side of the in-

terface in the early stages of the calculations tended to

disappear during successive iterations and were not

found at the stage of achieving self consistency.

They observed that there are oscillations in the

charge density near the interface which are similar to

Friedel oscillations [21]. Such oscillations are to be

contrasted with the simpler dipole layer which occurs

near a metal-vacuum interface. In a subsequent paper,

Bennett and Duke [22] studied the general effect of in-

cluding the spatial dependence of the total exchange

and correlation terms in the potential (rather than the

bulk values as in their earlier paper) was to increase the

size of the depletion region in the low density region.

Since these effects arise from the evanescent waves

and the tunneling into the low density metallic region,

similar effects are to be anticipated for the metal-

vacuum case. The depletion region and the charge

oscillations were stabilized by exchange-correlation

forces and did not disappear on subsequent iterations.

Surface states associated with a metal are similar to

those one encounters with semiconductors. In the latter

case, the levels typically lie in the energy gap of the

semiconductors. The metallic surface states will be

mixed with the Bloch states in the conduction band.

The evanescent charge contributions are the electron-

gas analogues of Heine's "virtual surface states," for

metal-semiconductor interfaces [23]. Metal surface

states have recently been predicted and observed ex-

perimentally [24-26]. Davison and his collaborators

Stgslicka, Koutecky, and Cheng [27, 28], at the Univer-

sity of Waterloo have studied most of the cases of sur-

face and impurity states which are tractable to analytic

methods. In general, either a tight binding approach or

a molecular orbital approach was used. The effects of

deforming a surface layer and the correlation between

electrons were also incorporated. St^slicka [28] has

added the additional compHcation of the relativistic

wave functions in the crystal. That is, the typical free

electron wave function A,, exp(iknx) is replaced by its

four component, relativistic counterpart. Additional

states were found by her.

The principal limitation in these researches is that a

one-dimensional or linear crystal was assumed. Their

concern was in proving the existence of solutions to the

problems posed by the interruption of the full transla-

tional symmetry of the lattice by either changing (a) the

spacing between atoms, (b) the nature of certain atoms,

and (c) by truncating the crystal. Beyond the formal ap-

proach, they have not attempted to include interelec-

tronic effects; however, because of their work, the

reduction of the problem to numerical solutions and the
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efforts to obtain self-consistency in the charge redis-

tribution and surface potential will be simplified and

facilitated. Sharma and Shrenk [29] recently studied

analytically, the emission of electrons from a potential

distribution modeled to stimulate the crystal structure

of a metal.

There are two further simple approaches to calculat-

ing surface energy properties. We will take up these be-

fore proceeding to discuss the present analysis on

potentials and other surface effects. The first involves

a modification of the tight-binding method used to cal-

culate energy bands; the second, the Lennard-Jones

potential.

8. Tight-Binding Method

Cyrot-Lackmann [30] has used the tight-binding

method to calculate several moments of density of

states.

E"N(E)dE (14)

and expressed Mn in terms of the nearest neighbor

resonance (overlap) integrals. For a simple non-

degenerate band, the moments are easily calculated

from the resonance integrals and a permutation opera-

tor representing the number of ways the nearest-

neighbor interactions can be counted. The surface is

then readily introduced by its effect on the permuta-

tions which can be made. In this way, the density of

states with and without a surface can be calculated,

and from this the surface energy is obtained. This

model is interesting in that it is dependent on the

geometry of the ions at the surface and thus enables a

comparison of the surface energy of different crystallo-

graphic faces to be carried out. Although absolute

values of surface energy for different faces of a solid

metal are difficult to obtain experimentally, it is possi-

ble to obtain the ratios of surface energy of different

crystallographic faces. Cyrot-Lackmann has shown her

calculations to give good agreement with experimental

ratios.

An atomic approach to adsorption properties was

used by Neustadter and Bacigalupi [31] who assumed

that the binding energy of the metal adsorbate was

given by a Lennard-Jones 6-12 potential

Vi{r)=--+ -^, (15)

at a given site and then summed over the lattice. Their

values of absorption energy and surface diffusion ac-

tivation energy agreed very well with values obtained

experimentally. These authors showed that binding was

greatest at certain sites where it would be expected that

the maximum numbers of substrate atoms would in-

teract with the outermost electrons of the adsorbed

atom (or ion). Thus, although these workers did not in-

clude any electronic effects and did not investigate the

actual nature of the interaction, they were able to esti-

mate those properties arising from the "granular"

geometric structure of the surface. It might be noted

that Plummer and Rhodin [32] have presented experi-

mental and analytic results for the adsorption of transi-

tion metal atoms on transition metal substrates which

suggest that nearest neighbor arguments are in-

adequate. That is. they were unable to find a consistent

set of a and b values for different crystallographic faces

of the substrate.

9. Treatment of the Crystal Potential

It has been convenient in the past to deal with a

crystal potential and the surface barrier in a very sim-

plistic way. Basically two types of model potential have

been in vogue: the one-dimensional Kronig-Penney

model where one replaces the atom potentials by delta

functions and secondly, where the atoms are

represented by sinusoidal functions. There are evident

advantages to such simple potentials; namely, (a) they

lend themselves to analytic solutions, (b) they illustrate

many of the features such as surface states, etc., which

should also emerge from a full scale calculation, and (c)

they do not involve extensive use of computers. Some
surface properties, such as the average surface energy,

are not so sensitive to the exact geometric structure of

the surface and have been treated fairly successfully

using a simple model of a surface potential as shown in

figure 2. Levine [33] has made an interesting compara-

tive analysis of various simple models and studied the

accuracy of using a one-dimensional rather than a

three-dimensional model.

As the greater complexities of a realistic crystal

potential are incorporated into the model, the analytic

solutions become less tractable. A numerical evalua-

tion must be sought. Thus, a more realistic treatment

of the potentials near the surface of a metal will be

taken up below. Models of surface potential which do

not consider the atomic structure at the surface, cannot

be expected to give good information relating to effects

such as surface diffusion and adsorption which are de-

pendent on the arrangement of atoms at the surface.

Figure 4 represents the potential along a line perpen-

dicular to a metal surface. In region I we have the re-

peated atomic potentials of the bulk material, and in re-

gion III a zero potential corresponding to free space

outside the metal. Region II is the surface region in
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SCHEMATIC ILLUSTRATION Of THE

CRYSTAL POTENTIAL NEAR A FREE

SURFACE

IIITERFACIHL POTEKTKL OF PHTlmill

POTENTIAL

esj PHYSICAL SURFACE

-GEOMETRIC SURFACE

REGION I REGION II REGION III

Figure 4. A representation of surface potentials of a truncated
crystal.

The finite step associated with a "jellium" model is shown as a dotted line. Potential
variations near the center of each atom are indicated by the full line. They are in<-Iuded

in this schematic drawing: for coinparison with the model potentials previously used. The
excess distance a needed to conserve charjie in the interior of the metal is indicated beyond
the last row of atoms.

which both the potential and the electronic properties

are changing from those of the bulk material to those of

the free space region, i.e., are approaching zero. The
calculated properties will be highly dependent on the

exact model which is chosen to represent region II. The
potential behavior pictured in figure 4 is, of course,

very simplified. Even for the (100) surfaces of a face-

centered cubic metal-like platinum, the potential sur-

face resembles an egg carton. Neustadter and Bacigalu-

pi had presented potential surfaces for various crystal-

lographic orientations of the surface. In effect, the

potential barrier shown in figure 5 will be different in

shape and magnitude for each point on the surface.

Added to this is the fact that LEED studies have shown
that there may be a contraction or expansion of lattice

spacing in a direction perpendicular to the surface, and

they have also suggested that reconstruction of the sur-

face layers possibly occurs.

10. Present Model

The model used to calculate the potential and charge

density at a free surface assumes that the lattice con-

sists of free atoms brought together and that the poten-

tial at any point is obtained by summing the (over-

lapping) potential contributions from the surrounding

lattice sites. Using this model, a free surface is

represented by removing the contributions from atoms

located at lattice sites which lie outside any chosen

crystallographic plane.

The starting data for these calculations has been the

atomic charge densities obtained by Waber using a

relativistic Dirac-Slater calculation [34]. The atomic

POTEDTItt »
laFIHlIT

Fl(;URE 5. Three dimensional representation of one-electron poten-

tial variation near the Metal-Vacuum Interface of Platinum.

The center line of the last row of atoms is indicated by a dot-dash line. Only one atom of

second row of this face-centered cubic metal is indicated. Method of computing of potential

is discussed below in the text.

potentials were obtained by numerical integration of

Poisson's equation using a Simpson integration routine.

As the summation procedure is essentially the same for

potential and charge density, the description given

below applies equally to either.

A face-centered cubic lattice with a cell side of 2

units was considered; its origin was at the center of a

unit cell. The positions of the atoms on this lattice are

given by the position vectors (/x, my, nz) where (x,y,z)

are unit vectors along the cube axes and the integers

l,m,n satisfy the conditions:

/ + m + n= (2A^+ 1) an integer. (16)

It was decided to limit the summation of the potential

to contributions from those sites located within a fixed

sphere of radius R from the point under consideration.

Convergence of the summation is discussed.

The unit cell was divided into 8000 points (a,b,c) at

which calculations would be made. We used 20

points/cell edge. As a prehminary calculation, the

atoms within a distance of 5 units from each point

(a,b,c) were listed together with the distance r;,„„. How-

ever, of course, due to the symmetry of the cubic lat-

tice, only points lying within the basic 1/48 of the unit

cell were considered. This leads to a total number of

286 points. Thus from the set these 286 points (l,m,n),

we select those atoms which will contribute to the

potential at (a,b,c), and calculate the distance to these

atoms.

Now consider a face-centered cubic lattice with cell

edges parallel to coordinate axes, X, Y and Z. We as-

sume that the lattice exists only for F ^ 0 and that there
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is free space in the positive y region. TheXZ plane thus

represents a (010) surface.

Consider a new unit cell inbedded in the lattice. Let

the distance between the two origins be equal to d units

on the Y axis, where c? is a negative integer and
\

d\ > R
+ 1 units. This new unit cell may be considered to be

unaffected by the surface in that for all points within

the unit cell, the sphere of radius R falls completely

within the lattice side of the surface and all atoms con-

tributing to the potential are present. Next consider

some other particular point (e,f,g) which is nearer the

surface, partially together with its sphere of radius R.

At some such point, the sphere will lie outside the sur-

face and as d becomes more positive, some lattice sites

within the sphere will be empty. The potential at the

point (e,/, g) will thus be increased. When one continues

to increase the Y coordinate at some point (j,k,l) the

sphere will be completely empty, i.e., this is a point in

free space.

This is the way in which the summation is carried out

by the computer. The X Y Z coordinates are arranged

so that theXY planes contain the origin of a unit cell. At

the start
|

d\ is set equal to /? + 1. A point (xyz) in the ini-

tial unit cell, together with its set of vectors {l,m,n] to

atomic sites, and the set of distances {r} are read. The

distance rimn is multiplied by the lattice parameter and

the potential contribution at that point Vimn is calcu-

lated by interpolation of the values of atomic potential.

The charge density pimn is also calculated. This

procedure is repeated for all (Imn) values and the

potential and charge density contribution are separate-

ly summed, giving the Coulomb potential V'^xyz at that

point and the total charge density p%yz at that point. A
table of values of l,m,n,r,Vimn,pimn is maintained. The

exchange potential contribution is then evaluated using

Slater's original free electron approximation [ 11]

,

V„(r) 1/3 (17)

giving the total potential Vxyz at this point. The value of

d is then changed to d'— d+2, which is equivalent to

moving to the next unit cell. At this position, the list of

m's is scanned for those values for which m > + d.

These represent empty lattice sites and the potential

contribution Vt,m,n is subtracted from Vxyz [also, p(m„

is subtracted from p^^J- When all m values have been

tested, the remaining potential V^y^ (d') is added to the

new exchange potential obtained from {d') to give

Vxyz id'), the potential of the point (xyz) in the unit cell

where the origin is at a distance d' from the surface.

This process is repeated until d'= (R + l), i.e., we in-

clude the potential outside the last row of ion cores for

a distance equivalent to that inside. For unit cells which

have lost potential contributions due to the surface, the

potential distribution no longer has full cubic symmetry

and thus the potential at the point (xyz) will no longer

be equal to the potential at the 48 equivalent points.

Thus corresponding to each point (xyz) the potential,

must be calculated separately for those equivalent

points which are not produced by a rotation around Y.

The procedure is thus to calculate Vxyz for each value

of d and then repeat this for each equivalent position

before proceeding to the next (xyz) value.

1 1 . Convergence of Potential Summation

As was discussed in the method section, the radius

R of the sphere which contains atoms contributing

potential to any point was arbitrarily given some value

and the infinite summation truncated after the same

term at any point (xyz). In order to do this, we must

determine whether the infinite summation converges

rapidly or slowly and if so what error is to be expected

by stopping the summation at any given point or R
value.

Let us consider a sphere of radius R (as before we as-

sume the side of our cell equal to 2 units) and calculate

the number of lattice points n contained within it:

27T
nir)=^R'^

then

R^

dn{R)

for a FCC lattice (18)

dR
= 27tR' (19)

If the potential at a distance R due to a single atom is

V(R), then the total potential

V
Jo

{2TrR^)V{R)dR. (20)

In order for this integral to be finite, the potential V(R)

must decrease at a rate faster than Figure 6 shows

that the atomic potential V(R) for platinum for high

IV(r)l

xlO'

V(r)

r(Bohr Units)

Fl<;URE 6. Variation of atomic potential for platinum at distances

farfrom the nucleus.
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Table 2. Convergence of the summation V(xyz)

for a sphere lying entirely in the lattice

sphere
radius

No. of atoms
within

sphere
1 otential

Potential

increment %
from R = S

5 286 -2.26849

7 736 -2.28695 0.815

9 1566 -2.28879 .895

11 2796 -2.28941 .92

values oiR. It can be seen that the potential is decaying

at a rate much faster than R~'* and, therefore, it may be

assumed that the potential summation is bounded. In

order to determine the error introduced by truncation

the summation at some arbitrary value of R, the value

of the potential at one point in the unit cell of platinum

was calculated using different values of R. The point at

vs^hich the potential was calculated was in the center of

the fee unit cell where the nearest neighbor atoms con-

tribute most to the potential and where the error in-

troduced by series truncation would be expected to

Table 3. Effect of Increasing Radius R on the

Summation of the Potential V(di)

Distance
from sur-

face di

units of

ao/2

Radius
R -n

units of

ao/2

Number
of atoms
counted

Potential (no

exchange contribu-

tion)

V(y) Multipher

0 5 155 - 2.805371 101

0 6 104 -2.805371

0 7 149 -2.805371

0 8 164 -2.805371

2 5 74 -9.398146 10^

2 6 76 -9.398379

2 7 109 -9.398419

2 8 120 -9.398427

4 5 17 -2.362965 10^

4 6 36 -2.467100

4 7 61 -2.491470

4 8 88 -2.498100

6 5 0 0 lO**

6 6 0 0

6 7 25 -1.024532

6 8 40 -1.323857

have the highest relative value. The results of the calcu-

lations are presented in table 2.

The question of whether there were sufficient points

in the sphere of radius R to assure convergence of the

potential was investigated for a point di well beyond the

surface, that is, where di > R units. The filled lattice

sites will lie only in a "cap" of the sphere. The data in

table 3 illustrates the effect of increasing/? the number

of units of ao/2. The number of atoms counted with R =
5 were 155, 74, 17, and 0 when di was 0, 2, 4, and 6

respectively. These values are underlined. The other

entries in column three of table 3 are the number of ad-

ditional points counted when R was increased from 5 to

8. For di = 0, the potential V(di) was multipled by 10, for

di = 2, by 10*, for di = 4, by 10^ and for di^ 6 hy W. It

will be seen that for di < 4, the percentage changes are

small. Although a large percentage change is obtained

for a point at <ii = 6(ao/2), the magnitude of the change

is trivially small.

It is considered that the level of accuracy gained by

using R = 5 was sufficient at least as a starting point.

From the point of view of the computer calculations,

the time used for calculating a potential increases with

the number of neighboring atoms considered, i.e., in-

creases as R'-^. Thus, from this standpoint very little in-

crease in accuracy is gained by increasing/? and a good

deal of computer time is consumed.

1 2. Variation of the Potential Perpendicular to

the Surface

Figures 7, 8, and 9 show the calculated potential dis-

tribution along lines perpendicular to a (010) surface of

platinum. The cross section of the unit cell drawn on

each figure shows the position of each line with respect

to the surface atoms. The great variation of the shape

SURFACE

Figure 7. The potential distribution along a line perpendicular

to a [010] surface ofplatinum.

The line passes through atom centers.
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Fk.URE 8. Potential along a line perpendicular to a {010) surface

ofplatinum.

The line passes near to the atom centers.

Fl(;URE 10. Three dimensional plot of the potential variation on a

(0(11) plane through the centers of atoms.
The local depression near tile (ixy{ien atom would facilitate electron tunnelin;:.

of the potential along different lines is apparent. Figure

7 shows the potential on a line passing through atom
centers which shows the periodic behavior expected.

Figure 8 is along a line which passes close to but not

through the nucleus (atom centers). Here the periodic

behavior can be seen. The fact that the potential far

from the atom centers is very nearly flat can also be

seen very clearly. In figure 9 the potential along a [010]

ray in between atomic centers is illustrated. There is a

small ripple about the mean "muffin-tin" potential V,n

as each atom is '"sliced. " The muffin-tin value is inde-

pendent of the distance from the surface. The "step"

due to charge overlap and penetration which was in-

dicated in the schematic drawing of figure 4 is seen in

the curves of figures 7, 8. and 9, which were rediawn

from the computer generated curves. The 3-dimen-

sional drawing in figure 5 was obtained by combining a

number of figures such as these last three figures.

1 3. Calculation for an Adsorbable Atom

The previous section described a method for deter-

mining the potential distribution at a perfect crystallo-

graphic surface. This method can easily be adapted to

determine the potential distribution around a surface

defect. Once the perfect surface potential distribution

has been calculated and stored, the effect of a defect

such as, for example, a vacancy in the surface layer,

can be determined by subtracting the potential con-

tribution due to this atom (or ion) from our crystal

potential distribution. The effect of a foreign ion or

atom on or above the surface can similarly be deter-

mined by adding the additional contributions to the ex-

isting potential. The results are shown in figure 10 for

an oxygen atom approaching the (010) surface of

platinum.

14. Surface Vacancies and Migration

SURFACE

Potential along a line perpendicular to a (UW) surface

of platinum.
Line does not pass near to the atom centers.

Figure 11 shows equipotential contours on a (100)

surface for platinum for the viewing plane cutting

through the centers of the ion cores in the last plane.

One atom has been removed from its position in this

plane and the resulting distortion of the potential can

be seen. It should be noted that the equipotential hnes

around the vacancy and the ions reflect the four-fold

rotational symmetry of the lattice in this plane. Figure

12 shows the same surface but constructed by remov-

ing two adjacent atoms removed and replacing one

atom in saddle point halfway between the two vacan-

cies. This is a crucial stage during vacancy migration.

The results obtained for the potential distributions

along hnes perpendicular to a (100) surface are interest-

ing in that they point out the great difference in poten-
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EQUIPOTENTIALS IN A PLANE ABOVE THE ( 100 } FACE OF PLATINUM
WITH A SINGLE VACANCY DEFECT

EQUIPOTENTIALS IN A PLANE ABOVE THE llOO| FACE OF Pt
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Figure 11. Equipotential lines on a [010) face of fjldtinum with a

single vacancy defect.

tial along different lines. In particular, along lines

which do not pass close to the atom centers there is

only a small oscillation in the potential. Thus the poten-

tial along such a ray is similar to that employed in the

free electron models of surface behavior.

1 5. Previous Treatments of Adsorption

Potentials

The various approaches described above all had the

goal of predicting the properties of a clean metal sur-

face in contact with vacuum. Other theoretical work

has been concerned with the investigation of the effects

of a foreign ion or atom approaching the surface and

being adsorbed. Bennett and Falicov [35] and Gadzuk

[36] have examined the problem of an alkah atom in-

teracting with the surface of a free electron metal,

using perturbation techniques. The effect of the in-

teraction is to shift the level of the outer electron of the

alkali metal.

Grimley [37] has shown that the charge density in

the metal is disturbed in a long range oscillatory fashion

by the presence of the adsorbate atom. The analysis he

used was similar to that which leads to the Friedel oscil-

lations. These three references are illustrative but do

not represent the large number of approximate studies

made in the past.

— ' V

I"

< I

I

\
y

\ 1

- - 4 _
1

1

V /

\\
1 1

\

/
^-

(

\

.
f

.

~ ^ \
S ^ - -

— ' ^ — ^

!> \

' V
^ '\

\ ^-
1

1 1

' 1

/ '

\ /

l! : .V
'I

/ ~- -

/' ^ •

-' /'

_ /

t \
/

\

N
\ ,

.
1 .'

•
1

y
• ^ /

I

I

'

• I

I'
. I

/

«

f

• — /

! \ :

.
—

' \— - . \

) '!

^
^ /'

!i

;> •.

/ V

(—
: -1.5 Ry, ; -1.75 Ry* : -2.0 Ry; ;-5.0Ry )

Fk.URE 12. Equipotential lines for a (010) face of platinum.
Twn neijlliborinf: atoms have been remnved and one atom replaced at the saddle point

between tlie two sites, to simulate surface mifiration.

1 6. Variation of Total Charge Density

Figure 13 shows the electronic charge distribution for

Pt, obtained by summation of charge contributions

from neighboring atoms within a sphere of radius 5/2

«(). The density (full line) is plotted along a line in the

[100] direction connecting two atoms in the lattice. For

comparison, the face atom charge density is also

plotted. Close to an atom site the metal charge density

is very httle different from the free atom charge densi-

ty, the overwhelming contribution coming from the

atom at the site. However, as we move away from the

actual lattice sites the contribution of the neighboring

atoms become more and more important. It can be seen

that for distances greater than ~1 Bohr unit (B.U.) from

any lattice site there is an increasing discrepancy

between the crystal atom and that of the free atom den-

sities.

Note that the plot is made on semilogarithmic scale

and the overlapped charge density at the midpoint

between atom centers is 6 times as large as the free

atom value. This position has an octahedral arrange-

ment of atoms surrounding it. The accumulation of

charge on the surface beyond the last atom is due to the

Coulomb tails of the free atom. That is no redistribution

of charge due to the presence of this metal-vacuum has

been taken into account.
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Distance from surface (in units of ao/2)

Figure 13. Variation of the local charge density along a [010\ as

indicated in the inset.

The excess surface charge due to the overlappinj; of the Coulomb tails of the atoms near
the surface is indicated.

In figure 14, which is similar to figure 13, is a plot of

the charge density along a ray parallel to the [Oil]

direction which is the close packed direction in fee

metals. At the midpoint between atoms the summed
charge density is only 4 times as high as the value for

the free atom but it is somewhat larger than the mid-

point value in figure 13. The point (0,1/2,1/2) has a

tetrahedral arrangement of neighboring atoms, but its

distance from the center of an atom is smaller. The fact

that p(r) is larger leads to the higher value of the crystal

charge density p(xyz).

These last two figures illustrate the point made by

Herring [38] ; namely, that some of the electrons will be

found in free space beyond the last row of atoms, just

due to the overlap of Coulomb tails. Relatively little at-

tention has been paid to this point in recent years.

There is a figure in the book by Mueller and Tsong [39]

which illustrates the probable redistribution of elec-

tronic charge and partial neutralization along the sur-

face. This apparently has not been investigated to date.

The present figures appear to be first quantitative

presentations which have been made for a finite solid.

These are not based on the assumption of penetration

of the electrons into the "forbidden" region beyond a

finite step but result from the process which

Smoluchowski qualitatively discussed [40].
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Figure 14. Variation of charge distribution for platinum along a

[110] direction passing through atom centers.

17. Remarks

The model used here, namely, of superimposing

atomic potentials and then of superimposing atomic

charge densities so as to calculate local exchange

potential has one or two deficiencies in addition to its

clear effectiveness.

This resulting potential is a one-electron potential

which would be the input to a band-structure calcula-

tion when one uses either the KKR or APW methods or

even to the simpler tight-binding method. The accuracy

and limitation of the muffin-tin potential is directly in-

dicated in accompanying figures. Sometime ago this ap-

proximation might have presented a stumbling block.

But now both the KKR [41] and the APW [42]

methods have been modified to permit angular varia-

tion V(r,d) in the "muffin-tin" region, namely /?« ^ r ^
Riv.s where Rg is the contact radius and Rws is the

Wigner-Seitz radii.

Band structure calculations permit one to calculate

the range of energies E(k) associated with each valence

and conduction band. These band energies lie above

the potential calculated by the present method. Thus,

although the values in table 2 are approximately —2
Ry, the lowest energy state is approximately 0.5 Ry
above this and the band width of approximately 1 Ry for
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Figure 15: Isopotential plots on a plane perpendicular to the (100) surface of platinum.

platinum leads to a Fermi energy perhaps 0.5 to 0.75 Ry
below vacuum level. This is, of course, consistent with

experimental values of work functions. In short, the su-

perimposed potential in the region between atoms may
be very negative, but when the energy of the electrons

is taken into account, what appears to be a significant

error in the present calculation, would be substantially

reduced. Nevertheless, the potential values reported

here do not yet include these terms; they will be the

subject of a subsequent report.

A more serious drawback is that the variations in the

potential and charge density which arise from the

reflection of the electrons near the surface and which

cause Friedel-like oscillations (such as are indicated in

fig. 2) are not incorporated into the present model.

Bennett and Duke [16,22] have shown these oscilla-

tions to be substantial in a free-electron gas. Without

first calculating these local variations, it is relatively

pointless to include detailed exchange and correlation

corrections. For any serious, self-consistent calculation

of the potential in a solid which contains either lattice

defects or a free surface, these important corrections

must be included. The present study of the initial

potential is the first step, but not the last one, toward

obtaining realistic potentials near an interface.

18. Summary

The background information associated with the

behavior of nearly free electrons has been reviewed as

well as the possibility of computing surface energies

from such simplified model. Typical potential plots

have been calculated to illustrate the variation along

various rays parallel to the [010] direction of platinum.

The granular nature of the surface and crystal poten-

tials have been illustrated for an element of high atomic

number. The local variation of charge density along

rays parallel [010] and [Oil] directions drawn through

the centers of atoms has also been computed.

NOTE ADDED IN PROOF:

Recently a numerical multiplicative error was found

in the calculations on platinum reported in this paper.

The potential (see fig. 15) in the flat square region is

approximately —0.5 Ry, a value more consonant with

experimental values of the inner potential. The

variation along a [110] ray would be seen to be rela-

tively small.
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Discussion on "Potential and Charge Density Near the Interface of a Transition Metal
by E. Kennard and J. T. Waber (Northwestern University)

J. W. Cadzuk (NBS): It is usual to believe that far

from a surface (far being several Fermi wavelengths),

the exchange and correlation effects which dominate

the surface forces result in an apparent image poten-

tial. This is of a long range nature, varying inversely

with distance. How do you reconcile your very short

range potential with the idea of the long range image

potential?

J. T. Waber (Northwestern Univ.): Well, I think the

dipole force which is the type of thing that you are talk-

ing about, comes about from the oscillating charge built

up in the vicinity, i.e., local charge depletion, of the sur-

face. What Fve shown you here today was the static

potentials. We have not yet described properly the

response of the electrons to this potential. To consider

your question we must do the job self-consistently.

Finally, I think the point you raise is quite relevant and

important.

E. Callen (American Univ.): But isn't it true that the

correlation field seen by an electron outside the surface

in a Pz level will be different from that seen by one in a

P,i or P,j level and that this would alter, and, in fact,

might even reverse your crystal field ordering?

J. T. Waber (Northwestern Univ.): I do not feel com-

petent to answer your question directly. We are trying

to do this sphtting of levels in an inhomogeneous field

to illustrate a basic point. When we have gained a

deeper understanding I hope we will be able to answer

your question. I agree that such points as you raise are

significant and merit our further attention.
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Virtual Impurity Level Density of States as

Investigated by Resonance Tunneling

J. W. Gadzuk, E. W. Plummer, H. E. Clark, and R. D. Young

National Bureau of Standards, Washington, D.C. 20234

The analogy between a virtual electronic state of an atom adsorbed on a metal surface and an An-

derson type magnetic impurity state is pointed out. The density of states of the impurity can be charac-

terized through a knowledge of the host induced shift and broadening of the atomic state. This density

of states can be related to the current-voltage characteristics in a field-emission resonance tunneling ex-

periment in the same manner as Appelbaum has done for describing spin flip Kondo type resonance

tunneling in junctions.

Experimental current-voltage (field-emission total energy distribution) characteristics for single zir-

conium, barium, and calcium atoms on atomically perfect tungsten surfaces are analyzed in terms of the

resonance tunneling theory described here and the virtual impurity level density of states is thus deter-

mined. Preliminary results for a metal-thin semiconductor-vacuum junction are also discussed.

Key words: Anderson Hamiltonian; barium (Ba); calcium; chemisorption; electron density of

states; field-emission resonance tunneling; germanium; tunneling; tungsten (W);

zirconium.

1. Introduction

The chemisorption of single atoms on metal surfaces

is now recognized as being nothing more than an impu-

rity problem and thus a solvable impurity theory should

provide us with an equally solvable chemisorption

theory. The "solvable" impurity theories we have in

mind are those which have evolved in the theory of lo-

calized magnetic moments [1-4]. The key result of

these theories, as relevant to surface impurities

(chemisorption), is that the level associated with a

valence orbital of the impurity will either be pulled

away from the conduction band of the host, thus form-

ing a true impurity state in the Koster-Slater sense [5]

or a virtual state within the conduction band will be

formed. The interesting case for present purposes is

the virtual state. The spin up and down levels are split

by an amount dependent upon the intra-atomic Cou-

lomb integral and also upon the energy of the level rela-

tive to the occupied portion of the conduction band. If

one level lies above the Fermi energy and the other

below, then a localized moment is formed. To solve the

problem within the context of the Anderson Hamiltoni-

an [2] , various approximations for achieving self-con-

sistent solutions have been put forth. In all cases it is

recognized that due to the coupling of the impurity or-

bital with the continuum of metal states, the impurity

level is broadened into a band of energies. Thus the im-

purity theories could be discussed in terms of a virtual

impurity level density of states. The usual picture of a

magnetic impurity density of states illustrating the

manner in which localized magnetic moments of nonin-

tegral Bohr magnetons are formed is shown in figure la.

LOCALIZED MAGNETIC CHEMISORBED
IMPURITY ALKALI IMPURITY

Pi Pt Pi

(0) (b)

Fi(;URE la. Density of state distributions for a magnetic impurity.

The monotonic parabolic curve is a free electron metal density of
states, b. Density of states for an electropositive adsorbate. The
area in the cross hatched area is the amount of electron charge on

the adsorbate.
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Figure 2a. Model potential and total energy distribution for field

emission from a metal, b. Model potential and total energy dis-

tribution for resonance tunneling field emission from a metal with

a narrow band adsorbate.

A similar picture has been adopted for describing the

chemisorption of electropositive atoms on metal sur-

faces [6-12]. Obviously each theoretical approach has

its own set of approximations to achieve a (hopefully)

self-consistent solution to a model problem. Of particu-

lar interest have been the instances when the surface

impurity was either an alkali or alkaline earth atom. In

these instances, the ionization potential of the atom is

sufficiently small so that both the spin up and down
levels lie above the Fermi energy as shown in figure lb.

The occupation of the lower lying spin level n+, (where

n+ > n-) is small enough so that the question of the

magnetic state of the impurity determined by n+-n- has

not been considered at very great length. In a similar

manner to the nonintegral Bohr magnetons, we see how
it is possible to have a fractionally charged ion for the

surface impurity. Obviously if we know the virtual sur-

face impurity density of states, then the charge on the

impurity, among other things, would be immediately

deduced. Knowledge of the density of states would then

permit theoretical calculations of the dipole moment as-

sociated with the metal-impurity complex (and thus

work function changes) [8] and chemisorption or bind-

ing energies [8,11,12].

Duke and Alferieff have shown, through model calcu-

lations, how the presence of a potential well (impurity)

could give rise to altered current-voltage charac-

teristics in field-emission resonance tunneling experi-

ments [13]. In the language of field-emission workers.

the analog of conductance versus voltage curves in

junction tunnehng is called the total energy distribution

(TED) [14,15]. The measured quantity is the incremen-

tal change in current per change in energy and is shown

in figure 2a. As Duke and Alferieff pointed out, a poten-

tial well can give rise to resonance effects which

manifest themselves as structure in the TED as shown

in figure 2b. We have presented an alternate theory and

experimental evidence of resonance tunneling in which

the virtual impurity level density of states is of key im-

portance in our interpretation [16-18]. It turns out that

the resonance aspect of the theory is equivalent to Ap-

pelbaum's spin flip tunneling theory [19,20].

The structure of the paper is as follows. In section 2,

the main equations in the theory of surface impurities

and resonance tunneling are established. It is shown

how experimentally determined TED's are related to

the impurity density of states. Experimental results for

Zr, Ba, Ca, and Ge on a tungsten host are presented in

section 3 and the impurity density of states is thus

determined.

2. Theory

The Anderson Hamiltonian describing the coupling

of a surface impurity single electron orbital to the con-

tinuum of conduction band states is

// = 2 eAs"/,-.v +^ easthis +^ ( VakCl.s^C„s+ H.C.)

+ u
ks

(1)

where we have adopted the usual notation [2-4,11].

The atom-metal hopping integral Vak has been

discussed in detail for particular model surface poten-

tials by several people [6-12]. We write the intra-

atomic Coulomb integral U Uejj to note that when

deaHng with alkaH impurities or alkaline earth impuri-

ties in the single electron approximation [18], we

should really be working in the low density approxima-

tion of Schrieffer and Mattis [3] in which U is replaced

by some Uefj- [3] . In fact, in the present analysis of a low

density impurity, since bothnf,+ and n„- are much less

than unity, Ueff nn+ ria- is neglected here relative to the

other terms with the subsidiary provision that the

resulting single electron impurity density of states, in-

tegrated over all energies, contains only one electron.

With this approximation, eq (1) can be subjected to a

standard Green's function analysis in which the virtual

impurity Green's function is

= [e— Cci + iAsgne]" (2)
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with A = TT S 8(e — e/,)|r„A |^ and = e„ + Ae where Ae

is whatever shift the real part of the impurity energy

level experiences [8,18]. An impurity density of states

is identified as

R{€) = 1 +

p„„(e) =- Im 6„„(e) =-
,

TT TT (e-e</J^ + A2
(3)

Note that the total electronic charge on the impurity is

'

" 1

(/(„)=) p„„(e)^/e==— cot"

Here is measured from a zero at the Fermi level and

is given by (pe — Vi + A£' with (/)e= metal work function

and Vi the first ionization potential of the isolated impu-

rity atom. Typically for alkali and alkaline earth atoms

e,/, > A so {ua) < .25 and the low density approximation

seems valid. We will now see how e,;, and A, and con-

sequently the impurity density of states, are deter-

mined from resonance tunneling measurements.

We have noted that the TED in field emission is the

analog of a conductance versus voltage measurement

injunction tunneling. The TED is given by

^" de d '^^ '

with Jo and d some constants depending upon system

parameters and applied field but not energy and/(e) the

Fermi function [14,15]. The idealized TED is shown in

figure 2a for zero temperature. Usually .1 < d $ .2 eV

in field emission experiments so the width of the TED
is restricted by the exponential decay to something less

than 1 eV due to instrumental limitations of presently

existing energy analyzers [17,22]. Since we are dealing

with a tunneling problem, in the transfer Hamiltonian

formulation, Jo' is also proportional to the square of an

appropriate tunneling matrix element = Tlli-j [15,21].

If an impurity is on the surface, the TED is altered as

shown in figure 2b. Duke and Alferieff chose to charac-

terize this enhanced tunnehng by a factor multiplying

the original TED [13]. Thus in the presence of an impu-

rity /(e) = R{€)jo'{e) hereby defining R{e) the enhance-

ment factor. As with jo'ie). /(e) is proportional to the

square of a resonance tunneling matrix element Tm-j so

R(e) —
\
T„i-f\^l\Tn,-f |2. A simple perturbation expansion

allowing for the possibility of an intermediate virtual

impurity state for the tunneling electron is

where Tm-a is the tunneling amplitude for going from

the metal to the atom, T„-f is the amplitude to go from

the atom to free space and G„„ is the impurity Green's

function given by eq (2). If all the amphtudes are real,

then

'"./

(6'„„(e) xr;*,(e))

^^iC„„{e) + C:„U)). (4)

' "If

Since the presence of the atom effectively cuts a hole

out of the tunneling barrier, the tunnehng amphtude

through the atom T,,,,, T,,/ should be greater than the

direct channel amphtude T,\\f . In fact we have shown

that the quantity

T{e,
_ T,i,„T„f _ e) fi - /,

^ III]'
:m IV

(5)

with A- ~ [2mliV-{4>e — e)Yl- and w an effective well radius

for the model atom potential. The function g(e)= 1 if the

intermediate state is an s state whereas ^(e) < 1 for in-

termediate d states due to the spatial contraction and

thus reduced tunnehng probabilities for d states

degenerate with 5 states [18,23]. We also should note

that eq (4) is identical with Appelbaum's expansion

although he implicitly drops the second term on the

right hand side, the direct resonance channel and con-

centrates on the interference channel, the third term

[ 19] . As he was investigating a Kondo type mechanism

this was the appropriate procedure. On the other hand,

for our pur-poses the "uninteresting" direct term is the

most significant. If we neglect the unity term on the

right in eq (4) and combine eqs (2-5), the enhancement

factor is then

/?(e) -p„„(e: F)
nTie)- r(e)

(6)

Thus we see how an experimental determination of R
can be used to obtain the virtual impurity state density

of states. The situation is sHghtly more comphcated

when there is the possibility of observing excited states

also. This has been discussed at some length together

with methods for approximately treating two electron

states [17.18]. Note that we have written p„„ also as a

function of F, the apphed electric field. The field shifts

the impurity level downward such that e^, is replaced by

e,fr
— eFs with s the distance of the impurity center from

the surface. The field thus brings the virtual levels

below the Fermi level and consequently allows these

levels to be observed in a resonance tunneling experi-

ment. However, all results will be extrapolated back to

the zero field limit.

Finally we note that the decomposition of the

enhancement factor into a product of a density of states

times another function of energy, R{e) = p„o(e)G(e) as we
have done in eq (6), is useful for the following reason.
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Any sharp structure in R{e) will appear through the den-

sity of states factor. The factor in brackets in eq (6),

C(e), is a smoothly varying monotonic structure. Thus

an interpretation of the structure in an enhancement

factor is almost identical with determining the impurity

density of states.

3. Results

It is our feeling that junction and field-emission tun-

nehng measurements can and should serve to comple-

ment each other as each technique has strengths where

the other technique is weak. In particular the ad-

vantage of field-emission measurements is that one is

dealing with atomically perfect surfaces. It is possible

to look at emission from a patch of say 25 atoms and

then add a single impurity atom and monitor the

changes in the TED due to the presence of one

impurity. The experimental procedure has been out-

lined in great depth elsewhere [17,24].

3.1. Zirconium

The ionization potential of an isolated zirconium

atom in the 5s^ ground state is 6.84 eV. It is expected

that such a level would shift upwards 1 to 2 eV when in-

teracting with a tungsten surface [8,18]. Analyzing the

experimental enhancement factors in terms of eq (6), it

is found that the energy parameters in the virtual 5^^

density of states are ~ 1.6 eV and A ~ 1.0 eV, in

agreement with expectations. No excited states were

observed.

3.2. Barium

The 65- ground state of free barium lies 5.2 eV below

the vacuum level. Triplet 6s5d ''D excited states lie

between —4.03 and —4.1 eV and a singlet 6s5d

lies at —3.8 eV. With the applied field, the 6s5d states

should be pulled below the tungsten Fermi level and

thus be observable. We would expect the width of the

6s5d state to be about 1/10 of the 65^ state and the shift

AE" to be smaller [18]. An expression for the enhance-

ment factor for two electron excited states, similar in

principle to eq (6), has been derived [18]. A com-

parison between a typical experimental R factor and

the theoretical curve is shown in figure 3. The energy

zero is taken with respect to the vacuum. As can be

seen, structure related to excited states is both observa-

ble and predictable. The spectroscopic findings for use

in the density of states are: A£^^ = .95 eV, A^s— .75 eV
and A£"^ = A£"^«0, A3,, = A 1, = .1 eV; again in agree-

ment with expectations.

E(eV)( ZERO-FIELD EXTRAPOLATION)

-5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2

E(eV) (WITH APPLIED FIELD)

Fk.URE 3. Theoretical and experimental values oj the enhancement
factor and virtual energy level spectrum for barium on tungsten.

The mafinitude of H is left arbitrary due to experimental uncertainties but would j:enerally

fall in the ranfie 10 < H,„;,:^ < lO"'. The scale on the itottom is that used in the experiment.

The scale on the top is that resultinj: from an extrapolation to the zero fieltl limit. In both

cases the zent of energy is at the vacuum level. Note the positions of the unperturbed atomic
levels and the position of Ey relative to the maximum in H. The theoretical curve is solid

and the ex|)erimental one dashed.

3.3. Calcium

The 45- ground state of calcium lies at 6.1 eV below

the vacuum level. We suspected that with the appHed

field this state would lie too far below the Fermi level to

see with the present equipment. This was confirmed in

the experiment. A454p excited state exists at —4.25 eV

which would be pulled below the Fermi level at —4.4

eV with the appHed field. Because on parity selection

rules involved in a partial wave analysis of the level

width A, we felt that the 454p level would lie somewhere

between the narrow d levels in barium and the wide 5

levels. Analysis of the data in terms of eq (6) and its two

electron counterpart shows that AE41, ~ .4 eV and A4,j

~ .3 eV as expected.

In figure 4 is shown a schematic energy level diagram

for barium and calcium which depicts how the levels

we have observed vary as a function of distance from

the surface. The distance scale is arbitrary as are the

relative heights of the density of states for each level.

On the other hand the position of the structure is not ar-

bitrary as it has been both observed and predicted.

3.4. Germanium

Using the techniques of resonance tunnehng, a

detailed study of the electronic states in "amorphous"

germanium formed on a tungsten substrate,

progressing from a single atom to several hundred

layers is underway. Preliminary studies have been re-
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Figure 4. I'ictorial rei>resentation oj the broadening and shifting

of the enerfiy levels o/Ba and Ca as they interact with the surface.

The siiape^i and position of tlie virtual levels at the surface are taken from the data on
the hiw work function planes of tun;isten.

e (eV) (RELATIVE TO FERMI LEVEL)

Figure 5. Experimental total energy distribution of a system con-

sisting of approximately one monolayer of germanium deposited

on tungsten.

ported on resonance tunneling through Ge films from

a fraction of a monolayer up to tens of layers thick [25]

.

A characteristic TED for an approximately monolayer

film is shown in figure 5. The peak near the Fermi level

is associated with pseudo-clean tungsten as the con-

tinuation shown by the dashed line suggests. The in-

teresting feature is the lower lying peak. We believe

that this peak may be related to tunneling through the

45'^4p- "level" which ultimately would become the

valence "band" in amorphous or crystalhne Ge. We
would expect the peak height to lie somewhere between

the 7.88 eV ionization potential of the isolated atom and

the 4.76 eV work function or position of the top of the

valence band of sohd Ge which it does. If the TED in

figure 5 is decomposed into an R factor, the full width

at half-maximum of R is —1.5 eV, a not unreasonable

value. Since the theory of dense, interacting impurities

on the surface is incomplete at this time, it is not possi-

ble to precisely analyze these monolayer resuhs in

terms of a density of states as in eq (6) and thus this

width is not to be identified with A, the single impurity

width. Further studies have been made in which the

layers are thicker, hopefully approaching the stage

where the properties of the film can be discussed in

terms of bulk "amorphous" germanium. The evolution

of the Ge peak in figure 5, as the thickness increases,

is not inconsistent with the interpretation given here in

which we claim to see early stages of a rudimentary

valence band. These studies will be reported on in more

detail in the future.
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What Properties Should the Density of States Have
in Order That the System Undergoes a Phase

Transition?

p. H. E. Meijer

National Bureau of Standards, Washington, D.C. 20234 and The Catholic University of America,

Washington, D.C. 20017

We have solved nothing that needs to be solved regarding the density ot states problem in a system

that undergoes a phase transition. We, however, raise the question of v/hal conditions the density of

state function of the total system {not the temperature dependent quasiparticle spectrum) should have

in order that we are observing a phase transition. In general, one needs an extremely strong increase in

the density— how strong can only be illustrated by using models. From these models we tried to obtain

' the density of states using the inverse Laplace transform. The results reveal that a vertical slope seems

to be a necessary condition. There are reasons to believe that the condition is not sufficient.

Key words: Density of states; Ising model; Onsager model; partition function; phase transition;

Weiss model.

1. Introduction

In order to obtain the physical properties of a large

system, one has to calculate the partition function and

this is in general preceded by the determination of the

density of states. Let us take a discrete systein: the

density of states is a weight factor w(E) indicating how
many ways an energy £ can be realized. If this factor is

known, the partition function is found by summation

over the values of £':

Z{f3)=^iviE) exp i-^E) (1.1)

E

where /3 — l/kT [1]. Although such a summation may
not be feasible analytically, this obstacle is much less

of a stumbhng block than the first requirement, the

determination of w(E).

It is of course possible to evaluate the general expres-

sion for the partition function directly. One sums over

the microscopic variables, such as the spin variable(s)

of each individual spin and calculates the value of for

each set of values of the spin variables. Since each

value of E carries a different Boltzmann factor, this in-

troduces a constraint on the summation. If one tries to

eliminate this restriction by introducing a delta func-

tion or similar device, one arrives again at the density

of states:

w{E„)=J^. . . ^8{E{s, . . .s„)-E,) (1.2)

as an intermediate step to obtain the partition function.

For the sake of completeness, we give also the con-

tinuous description. The partition function can be writ-

ten as':

Z(/3) =
I

exp [-(BEip, q)]dpdq (1.3)

or as

ZiP)^ !^ exp {-fiE)p{E)dE (1.4)
Jo

Here p,q stands for pi .... ps.v, q\ •••• Qsn and p(E) for the

density of states. One can consider p(E) also as a

Jacobian, the variables p,q are replaced by (X\ — a6,v,

where ai = E and all other a's arbitrary but independ-

ent. The density of states is given by

p(£')=J
J{p, q; ai . . . ax)da-, . . . da^x,

or one can introduce the accumulated density of states

ft(E), also called "volume in phase space," given by

n{E)^ r dp . . . dq
Jo
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wliicli leads directly to the density

The function ri(E) is, in the discrete language, the total

number of states with energies less than a given value.

The phase volume integral can be written with a step

function

n(£„)= j^^' 0(E{p-q)-Eu)dlulq

and the density function in a similar way

p{E,)) =
j^

8{E(p-q) —Et))dpdq

Such an artifact is useless in itself, but one may in-

troduce transforms of these functions. The main

question is, what properties should p(E) have so that

the system undergoes a phase transition?

Spht

t

Figure 1. Specific heat ofa three level system.
The lemperature is measured in unils^ = E, — E,:( = iTjAE. The relative location of the middle level £2 is given by Jf= (£2 = £,)/A£.
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Since it is impossible to obtain p(E) for almost any N-

body system, we try to extract same information from

the Zip), which is in some cases approximately known.

We observe that eq (1.4) can be considered as a

Laplace transform executed on p(E). Hence we can ob-

tain p(E) fromZ(/8) by an inverse Laplace transform

p(£)=f"''' Z{IB)e0'-dp (L5)

This idea is not new. The use of the partition function

to reconstruct the density of states was used as early as

1911 [2].

2. Quasiparticle Description, the Three Level

Model

In the quasiparticle description, the individual spins

are described by a density of states that depends on the

temperature Wi(E,P). The subscript i stands for the site.



or if the system is homogeneous, for "individual." For

a spin 1/2 system there are only one or two values of £'

for which this quantity is non-zero. In the first case, the

Weiss theory above the critical temperature, we have

Wi= 2 and the system shows no spontaneous magnetiza-

tion; in the second case, the Weiss theory below the

critical temperature, each Wi = 1 and the system is or-

dered. At the critical temperature, the levels move
apart and this causes a peak in the specific heat. This

motion of the level or levels with the temperature is a

highly unsatisfactory description since the level struc-

ture should be given once and for all, independent of

the temperature. Moreover, a very fine splitting

between two levels does not give rise to a specific heat

peak unless the level is situated at the bottom of the

spectrum. This can be easily illustrated by a three level

scheme.

If three levels are given by Ei — 0, E2— X and E.j

=A.E, {0 ^ 1), then {or X ~ 0 one has a peak and a

Schottky curve, for X ~ 0.1 two maxima and for all

other values a single Schottky-Hke curve. The caseZ =
1 does not give a peak (fig. 1).

Hence the quasiparticle level structure is of no use

to find out what is the typical behavior of p(E).

3. Density Structure from the Accepted
Theories

Assuming the generally accepted form of singularity

[3] inCv

A
.

Crik-
T-Tr

1

a

Tr

P(6)

r i X + y

J - / =c + 1

exp
1

one can try to deduce the behavior of the density of

states. A is the amplitude or residue of the singularity

andf(T) is a regular function. Using

dfS-

We try to determine In Z by twice integrating the

specific heat

4; In Z = -
dK Jo

where K — fBJ , is a dimensionless inverted temperature.

We know that U(K — 0) is regular, hence the singular

behavior near K = 0 in the first and the second term

must cancel. Around Kc we can replace the integral by

a In Z
dK

wheref(K) is K -f(K) minus the singularity at = 0.

f) In Z I A
BK a

{k)dk\n Z

^ 4r,\K-Kr\-"^-' + ^-{K)
a(a-l) K-^

1 A

Compare this with eq (1.5), it leads to the inverse

Laplace transform

_a{a-l)
-|/<-/C|-" + - + ^'(/i)+/<e dK{e = EIJ)

This integral cannot be accompHshed with the undeter-

mined function g(K), since the integrand is only known

nearKc. In order to perform the line integral the value

of the integrand must be known at some line or curve

parallel to the imaginary K-axis. There is an additional

handicap. The previous integrations assumed that the

first and second integrals were continuous function in

the point Tc, which does not have to be the case. Hence

this approach is not leading to much information about

the characteristic properties of the density of states.

4. Density of States of the Solvable Models

The One Dimensional Ising Model. The density of

states is

P (£) = ( (
1 - £ )

'/2 + 2/.'
(1 + £ ) v. -2K )

.V

where E is in units A'^e and ranges from —1 to+1. The
curve has a peak for E = 0, which becomes more

pronounced for larger A^.

A similar calculation can be made forH 9^ 0.

For the Weiss Model we find

(p(£))-^/-^ = e^'"-'(l+ V£')-(' + ^'^'(l- V£i)-<"-^^)

where E^ = I — 2E. E is in units Nez, where z is the

number of nearest neighbors and e the absolute value

of the negative interaction energy. E is measured from

the ground state. For£'= 0 the degeneracy is 1, it goes

up to 2-^ at £ = 1. The slope at £ = 0 is infinite and at E
= 1 is zero, using the quantity p^l'^ as vertical axis (fig.
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E

Fl(;i'RE 2. Effective density ofstatesfor the Weiss model.

2). If one plots p it is "infinite" everywhere. There is

not such a thing as a steep increase in the density of

states forE ~ Tc.

For the Onsager Model. In order to obtain a solution

we use the method of steepest descent. This can be

done easiest in thermodynamic terms

where / is a Gaussian integral in terms of (^.s — /3p. The
value of ySs is determined by

Hence the integral is proportional to the exp(NSIk) and

p(£) =e.v.s7A-

To find p(E) one has to convert S(T) into S(E). This

needs the inversion E — E(T) into T = T(E). Since the

first goes hke x Inx, the second cannot be found. Hence

the conclusion is that although the density undergoes

a very sharp (vertical) increase near^c, the value at this

point cannot be determined. It is possible that one finds

superposed on the sharp increase a delta-function-hke

spike.

5. First Order Phase Transitions

We like to consider briefly the first order transitions.

Characteristic for a first order transition is the

presence of another parameter such as the chemical

potential or the external field. The density of states will

depend on this parameter: p = p(E^). The entropy un-

dergoes a jump when X is varied at a temperature

below the critical temperature. This discontinuity can

be calculated from the Clausius Clapeyron equations:

(IT ^x

6. Summary

In this note we raise the question as to what the con-

ditions are to obtain a system with a phase transition on

the density of states. A phase transition is observed by

a singularity in the specific heat or by the appearance

of a magnetization (or a similar form of condensation)

in the absence of a field (or similar order-inducing ther-

modynamic variable).

Although it is easy to trace in a quasiparticle descrip-

tion how such a singularity comes about, the general

features are much harder to establish in terms of the

proper many-body theory. An attempt is made to see

what is at least required, using the general features of

the scaling laws and the well known models that can be

calculated. The basis of the consideration stems from

the almost obvious relation between the underlying

density of states on one hand and the Laplace trans-

form on the other hand.
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On Deriving Density of States Information from
Chemical Bond Considerations

F. L Carter

U.S. Naval Research Laboratory, Washington, D.C. 20390

The chemical picture of bond formation between neighboring atoms in crystalline solids can give

valuable electronic density of states information including the rough shape and relative filling of bands.

In addition, from the representation of the chemical bond in momentum space one can readily predict

the distortion of the Fermi surface from sphericity. This latter approach appears to provide an alternate

explanation of the apparent attraction of the Fermi surface to the Brillouin zone faces.

The first relationship is best demonstrated in cases where relatively unique schemes of bond for-

mation can be devised. This is possible in many intermetallic compounds having high coordination by

the use of orthogonal sets of bidirectional orbitals: their use leads to multicenter bonds or cycles which

are approximately orthogonal. Via the Fourier transform, the series of Slater determinants (representing

the multicenter bond) can be transformed into momentum p space and then related to the usual band

picture. The occupation or filling of bands can be estimated from bond orders of the associated bonds

and obtained from known interatomic distances by using Pauling's metallic radii. Bond hybridization is

obtained from orthogonality requirements and bond angle considerations characteristic of valence bond

theory. These ideas can be applied to FCC and HCP transition metals. For copper one would expect a

sharp peak in the density of states corresponding to two unshared filled local d orbitals. In addition

there would be a broad bonding band fiOed with electrons (6 per atom) containing large amounts of p
character; and a half-filled 5 band. As one moves downward through the periodic table to iron while

maintaining either FCC or HCP structures the high melting points of the elements involved indicate

that the broad bonding band remains relatively unchanged (filled) while the number of electrons in the

narrow d band is steadily decreased.

In the rare earth cubic Laves phases of composition AB2. this relatively simple chemical approach

suggests the presence of four bands. The two more important bands are: (1) a large narrow-width densi-

ty of states band associated with two unshared local d orbitals per B atoms, and (2) a band which is

generally more than half-filled associated with all the transition metal B — B as well as the A — B bonds.

The other bands include an 5 band associated with the B atoms which is less than half-filled due to the

transfer of electrons from the hyper-electronic B atom, and a band of unusually high d character as-

sociated with the A — A bonds and probably not occupied for the lighter rare earth compounds.

From the study of simple cr bonds, Coulson has shown that the momentum distribution function is

compressed in the direction of the internuclear axis. By using this idea in conjunction with the Fourier

transform of hydrogenic atomic orbitals it is comparatively easy to show that for a CCP* transition

metal like copper the momentum distribution function has its principal projections in the (111)

directions while the BCC transition metals should have projections in the (110) directions. Projections

in more complicated structures can be obtained from considerations of bond hybridization and bond

order. In summary, we see that the valence bond concepts of bond hybridization and bond order cou-

pled with known structures and bond distances can be used to suggest band shapes, filUng, and

hybridization. It is apparent that the increased use of chemical concepts in the interpretation of infor-

mation concerning the electronic density of states is an area of promise.

Key words: Aromatic compounds; chemical bond; electronic density of states; Fermi surface; Paul-

ing radii; transition metals; rare earth intermetallic compounds.

*The abbreviation of CCP (cubic close paclced) is preferable to the usual FCC (face

centered cubic) terminology as many structures are FCC without being CCP.
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1. Introduction

The chemical concept of bond formation between ad-

jacent atoms can be used to obtain density of states in-

formation such as the approximate shape and the rela-

tive filling of bands for many crystalline materials.

Such qualitative information should be particularly use-

ful in interpreting trends of density of states in related

series of compounds and in making rough predictions

about compounds having new structures. Moreover,

from the representation of the chemical bond in mo-

mentum space, one can readily predict the distortion of

the Fermi surface from sphericity. We intend to show

that this representation provides an alternative ex-

planation of the apparent attraction of the Fermi sur-

face to the Brillouin zone faces.

As indicated above, the paper is in two parts. Some
of the older chemical concepts of the valence bond ap-

proach are appHed to a new set of hybrid orbitals in a

discussion of transition metal compounds. The applica-

tion of these concepts plus structural data leads to den-

sity of states information via the following logic: (a)

Bond distances are used to indicate the number of elec-

trons involved in a given bond; (b) A modified valence

bond formulation is developed for the new bidirectional

orbitals that permits the association of particular sets

of bonds into bands which are orthogonal in both real

and momentum p space; (c) The relative filling of the

bands is estimated from the bonding model and the

number of electrons in the associated bonds. Examples

are given for several compounds and some differences

in the treatment of these compounds by the chemists

and physicists are discussed.

In the second part of the paper the density of states

is approached from the point of view of the distribution

of the bonding electron in momentum p space: Succes-

sive portions of the paper deal with: (a) The effect of

bond formation and orbital hybridization on the mo-

mentum distribution function; (b) The qualitative

similarity between the shapes of the Fermi surface and

the total momentum distribution function for the outer

electrons; (c) The appHcation of a simple model predict-

ing the Fermi surface for several examples; and (d)

Generalization of these considerations to density of

states information.

The desired starting point for the applications of

chemical concepts is a reasonably accurate structure

determination of the compound of interest. The in-

teratomic distances accurate to —0.002 A provides one

with an estimate of the number of electrons of each

atom involved in bond formation. In addition, the angu-

lar aspects of each atom's coordination suggests possi-

ble hybridizations (i.e., LCAO) of the bonding orbitals

which could give a fair amount of overlap with its near

neighbors. While other types of data, such as estimates

of interatomic force constants, magnetic data, conduc-

tivity type, etc., are useful for refining the bonding

model or choosing between models, the structural infor-

mation is essential.

The derivation of density of states information is best

demonstrated in cases where relatively unique

schemes of bond formation can be devised. This is

possible in many intermetallic compounds having high

coordination by the use of orthogonal sets of

bidirectional orbitals. Since this approach, which we

might term the bidirectional orbital approximation

(BOA), makes use of 5, p, and d orbital hybridization,

we will generally confine our attention to transition

metal compounds of high coordination. Prior to the con-

sideration of particular compounds it will be useful to

define some terms as well as to indicate what is in-

volved in the BOA scheme of bond formation.

1.1. Definition of Terms

Although the^ "valence" of an atom initially referred

to as the "degree of its combining power," the term

"valence electrons" has widely different meanings for

the physicist, the modern chemist, and those scientists

preferring the purely ionic representation. To avoid

confusion we will adopt the term, "valence electrons,"

to indicate the number of electrons of an atom outside

its largest complete rare gas shell and coin the term

"covalency" or "covalent electrons" to indicate the

number of electrons used by an atom in the formation

of covalent bonds (i.e., shared electron bonds). The
"bond order," n/j, of a bond (covalent) between atom i

and atom j indicates the number of electrons con-

tributed to that bond by each atom. Thus, the car-

bon—carbon single bond C — C has a bond order of iHj

= 1.0 indicating each carbon atom contributed one elec-

tron to the bond. Similarly, the carbon — carbon double

bond C=C has a bond order = 2.0, in which each

atom contributed two electrons. In the overwhelming

majority of transition metal compounds the bond orders

of all bonds are n/j = 0.5 or less (exception Nb— Nb
bonds in NbsSn). In general the bond order is inversely

related to the interatomic distances. When the atomic

distances are such as to give a bond orderly < 0.05 the

atoms are not considered to be bonding; in many transi-

tion metal compounds this distance is about 3.8 A. All

the electrons involved in covalent bonds are considered

to be paired even though the bond order is less than 0.5.
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The covalency F,-, of the atom i is just the sum of the

bond orders Uij over all the bonding neighboring atoms

y, thus:

Vi = ^nu (1)

J

Pauling [1] has developed a semi-empirical equation

for the calculation of riij from the known interatomic

distance dij. It is as follows:

0.600 log nij = R^{i)+R^ (j) - d,j (2)

where R\(i) and R\(i) are single bond radii for atoms i

and y, respectively. These metallic radii, may be cal-

culated from equations given by Pauling knowing the

average bond hybridization and number of valence

electrons, z. For example, for the iron transition ele-

ments

/^,(sp^S)= 2.001 -0.0432- (1.627-0.100z)8 (3)

where 8 is the average d character and the s to p
hybridization ratio is 1 to 3. On the plus side of this em-

pirical approach we note that eq (3) is suitable for calcu-

lating the single bond metallic radii for =16 elements

with other very similar equations for most of the

remaining elements of the periodic table.

The average d character, 8, for the covalent electrons

is taken by Pauhng to be a smooth function of position

in the periodic table and attains a value as high as 50%
(8 = 0.5) for some of the transition elements (e.g., Ru,

Rh, Os) [2]. Although a table of Ri has been given for

the elements [1, p. 403], in their application to various

compounds the author has found it necessary to use

such values as a starting point in a reiterative calcula-

tion where a measure of self-consistency is sought

among (i) the equations, (ii) the assumed and calculated

values of the covalency F,, and (iii) in the amount of

charge transferred between atoms. To the potential

user it is further suggested that this approach is most

suitable in discussing trends in series of related com-

pounds (i.e., differences of covalencies, etc., between

similar compounds is to be taken as more meaningful

than the values themselves for any isolated compound).

By using Pauling's metallic radii, as above, one can

obtain estimates of (1) the number of electrons involved

in bond formation, (2) the number of unshared electrons

or localized electrons per atom, and (3) the relative oc-

cupancy or hybridization of atomic orbitals for each

type of electron. In order to estimate from chemical

considerations the distribution of the covalent electrons

among bands, a model of bond formation between

atoms is required.

2. The Bidirectional Orbital Approximation

In the usual valence bond treatment the angular

parts of 5, p, and d orbitals are superimposed to make
a hybrid orbital which concentrates electron density in

one major lobe toward a single neighbor. Such hybrid

orbitals are of proven utility for elements of the first two

rows (especially) but can give difficulties in their appli-

cation to the transition elements. In those cases the

bidirectional orbitals appear useful, where bidirectional

orbitals are hybrid orbitals in which electron density is

concentrated in two major directions. Equations

between the coefficients of the nine atomic orbitals are

obtained from the following restrictions: (1) All near

neighbors are simultaneously bound; (2) lobes of

equivalent orbitals are directed toward equivalent

neighbors; and (3) all bidirectional orbitals are mutually

orthogonal and orthogonal to the remaining orbitals. In

structures with high coordination this approach has two

advantages with respect to the usual valence bond

treatment: (1) The high formal charges associated with

either the ionic or single lobe valence bond treatment

are avoided; and (2) the method usually results in a

finite number of bonding descriptions that can be use-

ful for either simple considerations or could be readily

subjected to formal and extensive calculations. In con-

trast, full valence bond calculations for a sohd, with or

without ionic contributions, are extremely difficult and

have not recently been attempted to the author's

knowledge.

Rundle [3] used the simplest of bidirectional orbitals

(the carbon p orbital) in his discussion of the transition

metal carbides, and Ganzhorn [4] obtained orthogonal

bidirectional orbitals of the general form as

+ V(a2-1) d,.

for the octahedral and body-centered coordinations. By

generalizing these orbitals into a C-type of py plus dxy

character and a G-type having 5, d^2 , and Px character,

it is possible to discuss the bonding in a wide variety of

metalhc and semiconducting transition metal com-

pounds (e.g., those having the Th3P4, CCP, HCP, NiAs,

WC, and Laves phase structures [5-8]).

In figure 1 the general shapes of the C and G orbitals

and phase relationships between their lobes are in-

dicated. In the process of maximizing the angular part

of the two main lobes of a bidirectional orbital in the

direction of two near neighbors one obtains, in general,

three categories of orbitals. These are: (i) the bonding

bidirectional orbitals of C- and G-type, suitable for the

shared covalent electrons; (ii) local orbitals whose an-
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a C orbital b G orbital

Fl(;URE 1. The concentration of electron density into two major
lobes is illustrated by the angular portions of the bidirectional

orbitals.

The included angle between the atoms to be bonded is much larger for the G-type (b) than

for the C-type (a) to the left.

gular lobes are either small or not du'ected toward near-

by atoms, suitable for unshared electrons (paired or un-

paired); and (iii) an orbital of primarily s character,

suitable for a simple band treatment. Later we will as-

sociate respectively with these orbital types; (i) a bond-

ing or covalent band, (ii) a band of localized electrons,

and (iii) a free-electron like band. Finally we point out

that in structures of high symmetry the use of the

bidirectional orbitals usually does not result in the atom

of interest having the full symmetry of its atomic posi-

tion in the structure. This is to be achieved at a later

stage, in terms of multi-electron wave functions, by

forming linear combinations which include the necessa-

ry other sets of bidirectional orbitals. These sets, (^^,

are related to the original set (|), by the missing sym-

metry elements corresponding to the operators Sv by

the eq (4).

<^;' = S,.(/); (4)

Bond formation between two adjacent atoms can

result if the overlap integral between their orbitals is

positive. This can usually be achieved by matching the

phases (or signs) of the angular parts of their bonding

orbitals. With bidirectional orbitals this leads very

naturally to the formation of cycles which, for one elec-

tron per orbital, are closely related to the cycles of early

valence bond treatments. Cycles then consist of linear

arrays of bidirectional orbitals on adjacent atoms, form-

ing either rings or infinite chains. Figure 2 (top) sug-

gests an infinite periodic cycle of C- and G-type orbitals

in the cubic Laves phase of composition AB2. In figure

3 are seen cycles of four C-type orbitals in the (100)

plane of a CCP structure.

By a phase structure (H) we refer to that set of cycles

in a crystal such that all bonding orbitals are linked in

cycles involving more than one orbital. A phase struc-

ture may be considered "good" if overlap between or-

bitals is high in terms of both phase matching and the

directional properties of the orbital lobes. In MO terms

the "good" criterion merely says that if a molecular or-

bital configuration contributes significantly to the

ground state, the lowest electron level, at least, should

be bonding.

Cycles within a phase structure are mutually

orthogonal (approximately). This results from the mu-

FlGURE 2. Top—A linear periodic cycle is shown for the A-B band in the Laves phase AB2. The phases of the G orbitals (A atom) andC
orbitals (B atoms) are all matched to give good overlap. Bottom — In this cycle for the A-A band the use of C orbitals is symbolically illus-

trated. The arrows to the right denote an anti-bonding overlap which would become increasingly prevalent with high k values in the
Block ivavefunctions.
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orthogonal. For these crystals, partial phase structures

can be written in terms of bands' such that the total

wave function for electrons can be equated to a

product of the phase structures for the bands y.

^(r.v)=nyn(r,. y) (7)

where

N^lny (8)

and bands of local orbitals- are included. Alternately

^(r.v) can be considered as a Slater-like determinant of

band phase structures fi(r„,y) for diagonal blocks and

zero off-diagonal blocks. The band phase structures,

however, are linear combinations of phase structures

Cli,y associated with the band y, and symmetry opera-

tions

ay(r„)=^a(j, P,y)n,,y{rn) (9)

Figure 3. The relative orientation of the C orbitals in a good phase
structure for a ((101) plane of a cubic close packed structure is

shown.
The C orbital with a dotted outhne is urthu^dnal to the C orbital with a solid outline

based at the same atom (black dot). Around the B position is a cy<-le of four C orbitals. This

cycle is approximately orthogonal to all the other cycles of the phase structure. To restore

the full symmetry to the lattice an equal amount of a phase structure correspondinfi to a

reversal of A and B must be included in the n electron wave function.

tual orthogonality of bidirectional orbitals located on

the same atom and the fact that the nodal planes of the

bidirectional orbitals usually pass near or through

neighboring atoms which are not being bonded by its

lobes. A phase structure fi(r„) of n electrons with coor-

dinates r,i can then be expressed as a product function

of its cycles F,

(5)

where F; is a Slater determinant of n,- electrons involv-

ing the appropriate C- and G-type spin orbitals 4>j

F/ =
c/),{l).

C^2(l).

4>\{n,)

4>ll:ini)

(6)

The full symmetry of the structure may be restored by

forming a wave function from a linear combination of

phase structures which include the different symmetry
related bidirectional orbital sets, (f)^, as obtained by eq

(4).

It is of considerable interest that for many structures

the (f)i of different v and i (but the same atom) are

where the individual phase structures fl,,y of the same
band are not necessarily orthogonal. Various sym-

metries about the site are possible by a suitable com-

bination of the coefficients a(i, v, y).

\{ X\{p) is the Fourier inversion of the orbital (i>i{r)

according to eq (10)

XXp) =
1

(i>,{r)e-'P''dT, (10)

with p as the conjugate momentum of r then it may be

shown [9] that the Fourier transform of a Slater deter-

minant of i//,- results in a Slater determinant of in mo-

mentum space and is obtained by simply replacing (/)i(rj)

with Xi(pj). It follows that the Fourier transform of a

sum of Slater determinants in real space results in a

sum of Slater determinants in coordinate momentum
space with the same coefficients. Accordingly we may
associate with the phase structure, Hy, of the y band, a

Zny conjugate p space.

In a valence bond treatment of a solid there is no ob-

vious need for the phase structures, fly to be periodic,

except for reasons for organization. However, for the

later discussions relating bonding to the density of

' The term "bands" used in this somewhat different sense refers to group-symmetry

restricted n electron functions which may be associated with several of the usual one elec-

tron bands of band theory as below

n-,(r„. y)=^.4„,(A-. y)C,„

Here G,„ is a Slater delerminant of n (or less) eleclrons involving the customary band wave

functions 4>A (r,a) with various combinations of the a bands.

- For some bands of local orbitals and for a band of "free" electrons of primarily 5

character it is probably adequate to take Q.i,-{r,y) the same as the customary band wave func-

tions. ^iM-ol), withy = a.
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states and llie Fermi surface, we remark that for a

Bloch representation for n electrons of the form eq (11)

i/i(r,, . ., r„) =e't'^''UiAr ,
r„) (11)

the phase structures fi-y, may be identified with the

periodic part UaCti, ... r,,) oft//. For A = 0 and one elec-

tron the phase structure is one associated with good

bonding hke figure 2 (top), while for k 0 antibonding

states as in figure 2 (bottom) may play an important

role. For the one-electron case a clear distinction must

be made between A' space and the momentum (p) space.

The former space is a space of good quantum num-

bers which can be considered to have the dimensions of

momentum, whereas the momentum p is not a good

quantum number for any nonconstant crystal potential.

3. Bonding in Some Transition Metals

At this stage it is appropriate to assess our position

and to indicate the forthcoming directions. Having

equipped ourselves with some chemical nomenclature

and concepts and a bonding model appropriate to

transition metal compounds we will now apply these to

some close packed metal structures, the Laves phases

of composition AB^, and the NiAs structure. In doing so

we will obtain coarse grain density of states information

such as the number of bands (at least those partly

filled), their rough shape, relative position, and percent

tilling. Important differences between the chemical and

physical viewpoints will be discussed and a possible ap-

proach to the resolution of some of these differences

will be suggested. In following sections the influence of

bond formation in momentum p space will be indicated

and the relation between the momentum distribution

function and surfaces of constant energy will be sug-

gested with examples referencing the Fermi surface.

In the following simple applications of the BOA pic-

ture we hope to clarify some of the BOA formaHsm
above. Among transition metal compounds the coor-

dination number of 12 is one of the most common, in-

cluding the icosahedral coordination and the close

packed structures. Even the sixteen coordination of the

A atom in the Laves phases can be separated into one

of 12 B atoms and 4 A atoms. A coordination of 12 can

be sought through the use of bidirectional orbitals by

generating a set of orbitals (/>, from one of the form eq

(12)

(/), = //s + Bp, + Cp,j + Dp, + Ed,.y + Fd,.,

+ Gdyz + HD,.2-^y2 + Id,2 (12)

by the use of a twofold axis in the z direction and

threefold axis in the [111] direction. The six orthonor-

mality conditions are:

ll2 = A-' + D' + E-' + H-' + P = B-' +a + F'' + G' (13)

2A-' = H' + r' (14)

0 = BC + GF = CD + EF = BD + EG (15)

The requirement that equivalent atoms be bonded in

an equivalent manner suggests that with respect to a

180° rotation about the x axis (/>, should be either sym-

metrical or antisymmetrical.

The antisymmetrical case leads to two different sets

of six C-type orbitals. Each set would give good bonding

for an icosahedral coordination of 12. The two different

icosahedra are related by a diagonal minor plane, Sd.

The two C-type orbitals, eqs (16a, 16b),

(l>,
= C,i^={p,- + d,-y)lV2 (16a)

(t)\'=Cyj,= {py + dry)lV2 (16b)

are representatives of the two different sets and 4>f,

which are related by the mirror plane operator Sd as in

eq(17).

5,0, = (i>f
(17)

In the formation of the six C-type orbitals (of each set)'^

the three p and the dxy, djrz. and dyz atomic orbitals are

completely used. For each set ((/>; and </>,'') the s,dx-z-y2,

and dz2 orbitals are mutually orthogonal and orthogonal
^

to the bonding C orbitals.

The coordination of the twelve near neighbors in the

CCP structures can be readily taken as the average of

the two icosahedra just discussed, so the rehybridiza-

tion of the atomic orbitals to form bonding hybrids is

the same as for the icosahedron. By alternating the

hybridization of the atoms in the (001) plane between

the (/)/ and 4>i'^ sets it is possible to form good phase

structures. In figure 3, showing the xy plane of a CCP
structure, it is clear that such an alternation results in

a phase structure, flc^, of the C band (covalent) in

which cycles, F,, are rings of four C-type orbitals, two

of the set and two of the
(f),'^

set. If the phase struc-

ture, He-, represents the exchange of the (pi sets with

the (^i^ sets, then the sum of these two-phase structures

restores the full symmetry of the lattice. Other phase

structures, flfj'^-, composed of various arrangements

among the atoms of the (pi and sets may be expected
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to contribute to the phase structure. Or, for the

covalent band although the orbital overlap will not be

as good on the average as in flr^ and flc^.

Two additional bands, Cli. and Cls, can be constructed

from the remaining atomic orbitals of the sets and

(l>i'^. The phase structures fl/., of the L band (L for local)

is clearly constructed of atomic clx2-y2 and dz2 orbitals.

These orbitals have lobes which are not directed

towards any near neighbors and are accordingly suita-

ble for unshared electrons, up to four electrons per

atom. The phase structure, Us, is clearly associated

with the atomic 5 orbital and for our current purpose we
will identify it with a free-electron type band. In ac-

cordance with our earher discussion (see eq (7)) we note

that all the j are orthogonal to both CIl and Cls-

A very similar distribution of hybrid orbitals obtains

if the BOA method is employed in the HCP structures

[6]. If the c/a ratio for the structure is —1.63 six C-type

orbitals of =50% d character are employed to bond the

twelve near neighbors, leaving two local d orbitals and

an 5 orbital to form the fli. and Cls phase structures and

bands. Changes in the c/a ratio result in dzz character

in the s-type orbitals as well as changes in the d lo p
ratio in the C-type orbitals.

Now let us distribute valence electrons among the

various bands starting with copper and working our

way to manganese through the 12 coordination struc-

tures, including only CCP, HCP, and icosahedral coor-

dinations. Correlating the high melting point of these

elements and their compounds with a high valence, let

us, in an attitude of willing disregard of prior commit-

ments, associate with each C orbital one electron for

bonding purposes. Of the eleven valence electrons of

copper, five electrons remain; four of these can be

placed in the two local d orbitals, leaving one electron

per atom for the S band. If one electron per

bidirectional orbital (the half-bond mentioned earher)

gives rise to a filled band, then we see that this naive

picture results in a diamagnetic copper having a half-

filled S band and good electron mobility. The latter is

related to the nondirectional character of the 5 orbital'*

plus poor interband electron scattering associated with

the existence of an energy gap in the C band at the

Fermi level. This gap is between a bonding C band and

a C band with appreciable antibonding character.

Questions concerning the band gap, the high covalency

(6 + 1), and the high percentage participation of d

^ Due U) llie nnn-directiuiiality of the s orbital the S band of a CCP metal is not assuciated

with strongly directional bonds. As indicated in the latter part of the paper the S band is then

expected to have a low density of states; accordingly, the associated curvature is small and

the mobility high.

Table 1. Idealized distribution of electrons of some

metals having HCP and CCP structures

Idealized distribution Unpaired

State
of electrons elect *ons

Ref

C band S band L band Ideal Obs

Cu element 6 1 4 0 0 10

7VT; „1 .

6 1 3 1 0.5.5 10

6 1 2 2 1.60 10

Fe: *

Element, y-phase

h'liih temp 6 1 1 1 0..57 11

Element precipitated

from Cu, pseutjo

single crystal** 6 1 1 1 0.78 12

All 17*
Alloy, re m Cu 6 1 1 1 1 13

Mn:*

In element and

alloys (icosahedral

position in

phases) 6 1 0 0 «0 14

*\Vc note lhal the ma{inelic behavior i f the solute atoms in the dilute alloys of Mn in

Cu [12] and Fe in Pd [15) are well known to be of a different type than Fe in Cu [12] and do

not fit in this table.

**Neutron diflraction determination.

character in the C orbitals will be considered after the

discussion of the NiAs structure.

Applying this naive approach to the series Cu, Ni,

Co, Fe, and Mn with these elements in the close packed

or icosahedral coordinations leads to fair agreement (ta-

ble 1) as regards to their observed magnetic properties.

Excellent agreement can be obtained for Ni and Co
with regard to both the number of conduction electrons

in the S band and the magnetic moment by shifting

=0.4 electrons from the S bands to the local d orbitals

(or the fi/,-type bands). Good agreement is obtained for

iron in its CCP forms and for Mn in the icosahedral

coordinations in the cr phases. Unfortunately in the cr

phases disorder is common among the sites and bond

distances are only poorly known so that the effective

covalency is uncertain.

The density of states picture is then composed of

three bands. A medium broad C band with a capacity

of about six electrons. This covalent band is generally

filled and responsible for the cohesiveness and high

melting point of the element. In the case of an incom-
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plete filling, hole character associated with low mo-

bility is expected for this band. The L band has a high

narrow density of states and is responsible for the mag-

netic character of the metals. Finally we have the broad

half-filled (or less)S band associated with high mobility

and low cohesiveness. Accordingly, for these struc-

tures, we see the splitting of the d orbitals into a broad

hybrid band associated with bond formation and a nar-

row band; the latter fills up as copper is approached.

4. The Laves Phases

-Y

2
3

a 1 7^

3^

4^
Y

3'<

In the transition metal Laves phase compounds, ABj,

one finds four orthogonal phase structures correspond-

ing to different bands, two of which are interpenetrat-

ing covalent phase structures. The B atom has a slightly

distorted icosahedral coordination consisting of six A
neighbors and six B neighbors. The bidirectional C
orbitals as discussed above will be used for the B atom.

The larger A atom has a coordination of 12 B
neighbors in a reduced Friauf configuration (see fig. 4)

and four A neighbors tetrahedrally distributed along

the threefold axes. (For a more complete discussion of

these interesting structures see [8] as well as standard

texts.) Whereas the antisymmetric solution (C orbital)

was sought to the eqs (13,14,15) which link the hy-

bridization coefficients for the icosahedron, the sym-

metric alternative is required for the Friauf polyhedron.

By rotating a G-type orbital of the form eq (18)

G = as-\- bp.r + idz2 (18)

clockwise about the :»;-axis, solution of eqs (13,14,15)

may be obtained as a function of the angle of rotation,

a [8]. When a = 18° the lobes of the G orbital (fig. lb)

are then well directed to form bonds with B atoms at

position 1 and 1' of figure 4. A 180° rotation of this or-

bital about the z-axis will permit it to bond atoms at the

2 and 2' positions while a 120° rotation about the [111]

direction will give it good position with respect to the 3

and 3' atoms.

Accordingly, six orbitals (G;) can be obtained which
are suitable for bond formation with the 12 B atoms of

the reduced Friauf polyhedron. An ahernate set G/** can

be obtained by reflecting them through the diagonal

mirror plane [Sd) at x = y. The sum of the square of the

angular parts of these 12 orbitals is seen in figure 5 to

reproduce the full symmetry of the site.

Of the nine original atomic orbitals three remain to

form the four A— A bonds. These three orbitals, of p
and d character only, can be hybridized to give two C-

type orbitals whose lobes project through the faces of

Future 4. The coordination of the 12 B atoms about the A atom is

illustratedfor a reduced Friaufpolyhedron.
Four more atoms (A) are coordinated lliroufih tlie centers of the four hexagons. Six G

type orbitals are used by the central A atom to bond pairs of B atoms at positions like

1 and r.

Fl(;URE 5. This computer draiving illustrates the symmetry of total

bondinfifor the G-type orbitals of the Friaufpolyhedron.
The viewer is lookinfz down the threefold axis at a hexafional face.

the hexagons of B atoms toward the four tetrahedrally

distributed A atoms. The remaining orbital has no large

lobes. It is important to note that three orthogonal or-

bitals (two C-type and one local) can be formed in three

ways; in each case mutual orthogonality exists between

them and the G-type orbitals (as well as their mirror

images). That these C orbitals can give good bonding is

suggested in figure 6. We note that in both figures 5 and

6 the direction of view is down the threefold axis of

figure 4 and that the angular projections are exag-

gerated somewhat to resemble the orbital distortion

due to bond formation.
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Fk.LRE 6. In this fifiure the tetnihcdnil liundinii oj the ('--type

orbitals is shown.

These have the same anfile a (22.5°) and relative i>rienlaliiin as the (' orbitals in figure 5.

A number of transition Laves phase compounds have

such short A — A distances that they are considered

[16] to be in a state of compression (up to 11%) when

compared to the A— B distances (which appear nor-

mal). In terms of an average single bond metallic radius

these contacts can be so short that the covalency of La

in LaNio is an impossible sixteen [17] compared to a

maximum possible of four (for lanthanum with a formal

charge of — 1).

A solution to this dilemma may be sought in terms of

the above bidirectional orbital discussion. While the G-

type orbitals used in the A — B bonds have a normal d

character that varies with the angle a from 42% to

about 48%, the C-type orbital d character is much
higher (about 75%). In terms of Pauling's metaUic radii.

the effect of increasing the d character of an orbital

from 45% to 75% would result in a decrease of 0.32 A in

the single bond radius of a trivalent Pt transition ele-

ment (as in eq (3)). This dramatic decrease, however,

would be partially nullified by an increase of 0.11 A due

to the absence of 5 character in the C-type orbital. The
net change for an A— A bond, 0.44 A would reduce a

ridiculous bond order of 7.2 to reasonable 0.5 or a bond

order of 0.5 to one of 0.11. In other words, due to the dif-

ference in hybridization of the G- and C-type orbitals,

there is a good reason for not expecting the hard sphere

model or an average single bond radius to be applicable

for elements with the Friauf coordination. In a later sec-

tion we note that the correctness of this approach can

be tested by Fermiology or density of states studies.

Cycles of the two orthogonal covalent phase struc-

tures flA-H and n.i-M are illustrated symboHcally in

figure 2, top and botton, respectively. These are shown

as periodic except for an anti-bond phase relation to the

left in figure 2 (bottom). The phase structure 0,a-h

corresponds to the important A— B bonds as well as

B — B bonds in the ratio suggested in figure 2 (top). Here

the G-type orbital is used by the A atom. However, in

the A— A bond only C orbitals of the A atom are em-

ployed (fig. 2, bottom). The two remaining bands, L and

S, are like those in the close packed structures and may

be expressed as Slater determinants involving the

dx2-y2 and dz2 orbitals (L band) and the 5 orbital (S band)

of the B atoms only. The A atom contributes nothing to

the S band because its s orbital is completely used in

forming six orthogonal G orbitals. Further, its only "lo-

cal" orbital a (p-d hybrid) is deeply involved in the

"resonating" C orbitals of the A— A bond, and hence is

not suitable for unshared electrons.

MEy)

A,

Li

1
I 1

X-"— 1

I 1

\ 1

A A \^

V S_

(AS)' -

(A A)'

Fl(;URE 7. Density ofstate curves are illustratedfor the various bands ofa hypothetical cubic rare earth Laves phase, AB^.
The solid lines indicate bands at least partly occupied, the unfilled (AB)' and ( AA)' bands contain appreciable antibondins character. The separation and location of the filled (F) and

unfilled (K ) / orbitals of the A atoms are considered to be very sensitive to the number of occupied states. The band volumes per AB . are; AB, (AB)' bands - 18 states; AA,(AA) bands -4
states. I.(B) band -8 states, L(F+ F' ) band - 14 states, S band — 8 states.
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Applying the above description to the rare earth com-

pounds having the cubic Laves phase we obtain a den-

sity of states curve associated with five bands (fig. 7).

The first, previously unmentioned, would be a very

sharp band associated with the highly localized /
electrons of the rare earth A atom. The less sharp L

band is associated with the two local d orbitals on the

B atom with much the same properties as the same

band in the close packed structures. The number of

electrons in these orbitals (and hence the magnetic mo-

ment) is dependent on the number of its valence elec-

trons minus its covalence, V, and minus the electrons

(up to about 1) transferred from it to the hypo-elec-

tronic A atoms [1, see p. 431]. Polarization of the A —

B

bonds towards the more electronegative A atom may be

expected to largely neutralize the resultant formal

charge. In these compounds an S band is not likely to

be of major importance for three reasons: (1) The s

character in the A atoms will not contribute since they

are totally used (A^ = 1/6) in the formation of the six G-

type orbitals. (2) The next nearest neighbors of the B
atoms are much more distant than those, say, of the

close packed structures and accordingly will not help

to stabilize the S band. (3) If electron transfer takes

place from the hyper-electronic element (the B atoms),

then the likely source will be the B atom 5 electron

(i.e., the S band). Correspondingly the S band should

have only a fraction of an electron per B atom and

should be associated with a poor mobility (compared to

copper) of n type. A calculation of bond orders for the

A — B and B — B bonds (n i/; = 1/3) suggests that the

A — B band is generally more than half filled (compared

to one electron per bidirectional orbital) and so may be

considered as p-type conductivity of low mobility.

The fifth band (A — A) — associated with just the A
atoms and their tetrahedral C orbitals — is probably

unoccupied for the Laves phases of the lightest rare

earths but becomes increasingly important as the d

character of the A atom increases with atomic number.

The high d character of these orbitals is taken to be

energetically unfavorable for the hghter elements

which presumably use their available d character in the

formation of the A— B bonds. The radius contraction

for the A — A bond due to the high d character of these

C-type orbitals also suggests low bond orders (hence,

occupation) for this band (n-type). Finally, we note that

these same considerations carry over to the hexagonal

Laves phases, with due allowance for unit cell changes.

5. The NiAs Structure

Among the compounds having the NiAs structure

one finds semiconducting as well as semi-metallic

members. Although this difference is often discussed

[18] in terms of the internuclear distance between the

Ni-type atoms along the co axis, the use of the BOA
method suggests that the c/a ratio for these compounds

can have an important effect independent of the inter-

nuclear distance. In addition we will note that semicon-

ductivity can be associated with the half-bond (i.e.,

where n;j = 0.5) between the Ni- and As-type atoms.

In the NiAs structure both components have six near

neighbors arranged in a trigonal prism (As site) or

trigonal antiprism (Ni site) coordination. In addition the

metal atom has two metal neighbors in the antiprism

directly above and below. Both G- and C-type

bidirectional orbitals can be used in a description of

bond formation in these coordinations. Using the C
orbitals one can obtain three orthogonal orbitals suita-

ble for the formation of six half-bonds in the general

twisted trigonal prismatic coordination. The first is ob-

tained by rotating the C orbital about the x axis by an

angle y; the other two by rotating the resultant orbital

by angles of 120 and 240 degrees, respectively, about

the z axis. Orthogonality relations [5] result in eq (19)

2>a'&m'y=\ (19)

where d^ is the p character of the orbital. This represen-

tation includes the pure p-state octahedral coordina-

tion, the 50% p octahedral coordination and trigonal

prismatic coordinations at y = 90° and y = 37°. About

8% d character is associated with this latter value of y.

For the As-site element in the prismatic position, this

orbital with its high p character and low d character is

probably suitable. On the basis of symmetry alone it is

not possible to select a unique set of bidirectional or-

bitals which are appropriate for the transition metal in

its distorted octahedral site (assuming c/a = 1.63). As

indicated earlier, octahedral symmetry can be achieved

by C orbitals of pure /» character and 50% p character

as well as by G orbitals oi sd- hybridization. Let us as-

sume for the moment that the latter hybridization is

most nearly correct for a particular transition metal.

Since this assumption is equivalent to assuming that

the p orbitals are too high in energy for consideration

we must look to a pure G-type orbital in thez direction

to account for bonding between the metal atoms along

the c axis. When the c/a ratio is 1.63 then theCz orbital

is pure dzi, however as the c/a ratio is decreased the

orthonormality conditions require that s character is in-

creased in such a way that overlap with the metal atoms

along the z axis is increased. In figure 8 we see such an

orbital with 25% s character corresponding to c/a =
1.22. (The four G orbitals are then also appropriate for
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Fk.URE 8. For a hypothetical bonding scheme in the NiAs structure

the angular parts of the bonding orbital are shown for 25 per-

cent s character with a c/a ratio of 1 .22.

\s the rja increases tn 1.6.'i and bey<nid tlies character first jioes t« zero and then is added
with a nejiative sijiti to -rive a local nrhital of 2.S jiercent 5 character. The effect in nmmen-
luni IJ si»ace is aisn illustrated.

bonding in a body centered cubic site with the body

diagonal along the c-axis). Similarly, as the c/a ratio is

increased beyond 1.63 an orbital (local) not suitable for

bonding develops. Such an orbital is labeled G in figure

8 and is appropriate for unshared electrons. It is not

surprising then that for prediction of metallic character

in NiAs-type compounds, attention must be directed

not only to interatomic distances but also to c/a ratios,

as has been mentioned [ 18]

.

For an example relating the half-bond to semiconduc-

tivity we will briefly consider CrSe which has the NiAs

structure. By transferring one electron from Se to Cr,

Se"*" can form six half-bonds and still satisfy the octet

rule. The negative chromium ion can use three of its

seven electrons in half-bond formation with Se+ using

the octahedral C-type orbitals. The remaining four elec-

trons can be localized in hybrid orbitals which consist

primarily of dxytype orbitals plus a localized s-dz2

hybrid. This is in agreement with the use of Pauling's

metalHc radii which suggests that metal-metal bonding

is not appreciable. Accordingly, CrSe is expected to be

semiconducting (observed) with a high effective mo-

ment (4.9 compared with 4.7/x. obs.). From elec-

tronegativity considerations we may expect the half-

bonds to be polarized in such a way that the formal

charges are essentially neutralized. Under compression

in the c direction one predicts the appearance of electri-

cal conductivity and a reduction in the effective

moment.

For the typical NiAs structure, in the bidirectional or-

bital approximation, the density of states curve would

be a composite of four bands. Of least interest would be

a narrow band filled with the two 5 valence electrons of

the As-type atom. The second is a filled band cor-

responding to three electrons per atom per unit cell (or

to one electron for each of three bidirectional orbitals

per atom). This band is responsible primarily for the

cohesive properties of the solid and would correspond

to largely p but some d character of the As-type atom

and a poorly definable hybridization for the unspecified

metal atom. The third band, an L band, is composed of

the localized orbitals on the metal atom and in general

will be partly unfilled and narrow. The size of this band,

as well as its filling, will be dependent on the fourth

band which corresponds to the metal-metal bonds along

the c axis. If the fourth band is of high energy and un-

filled the third band (L) will contain the G locaUzed

states of the fourth band. On the other hand, occupa-

tion of the fourth band suggests the G states are of high

energy and unoccupied. Perhaps the more correct ap-

proach is to consider that the third band (L) contains

only three orbitals per metal atom (filled at six electrons

per atom) and that the nature of the fourth band

changes dramatically from a localized state to a bond-

ing state depending upon a cooperative phenomena

governed by the number of electrons involved, the c/a

ratio and the intermetalHc distance. In the bonding

state the fourth band is generally unfilled and conduct-

ing of n type.

6. On Some Significant Differences Between
the Chemists' and Physicists' Approach to

Solids

The differences in approach between the chemists

and the physicists are more than just semantic. One of

the most important of these is the restraint shown by

the physicist in hybridization of orbitals compared to

the apparent wild abandon of the chemists, as exem-,

phfied by this article. In band calculations of "hybrid-

ization" by physicists the primary energy values
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are tliose ot tlie iree atom (used as an approximation)

and the primary mechanisms are those from spin-orbit

(•ouphng, relativistic effects, and continuity restrictions

on the wave function at special points, Hnes, and sur-

faces. However for atoms at sites of hijrh symmetry this

latter mechanism often gives no hybridization in the

chemists' sense. The calculation scheme used is

generally a first order independent particle, molecular

orbital approach which yields the properties of the elec-

tron near the Fermi surface in fair agreement with ex-

periment.

In partial contrast the chemist, in small molecule cal-

culations, employs outer electron orbitals which are

"quenched" of angular momentum and which contain

scale parameters for total energy minimization. The in-

teraction mechanism is bond formation leading to the

best ground state. Although simple MO treatments give

good energies for a one electron bond, the addition of a

second electron to the same orbital almost totally

destroys the formation of the bond, even with shifts in

parameter values. This effect is due to failure of the

simple MO treatments to properly account for the cor-

relation of the bonding electrons and has been known

for more than 35 years, since the work of James and

Coolidge [19].

Of critical importance in the thinking of the chemists

is the tetravalency and tetrahedral character of carbon

in the millions of its organic compounds. Free carbon

has a 2s^2p- ground state while tetravalent carbon has

a 2s2p^ valence state. The associated promotion energy

as calculated by Slater is 9.05 eV. On the other hand

the promotion energy for iron from a free atom state

(SdHs^) to a covalency of six {Sd^sp'^) with a hybridiza-

tion oidhp^ is4eV [20].

Accordingly, the chemists' query for the physicist is

"If carbon employs an sp^ valence state with a promo-

tion energy of 9 eV to an appreciable extent in the

coumpounds of carbon, one of the best understood ele-

ments, is it improper to form hexacovalent iron orbitals

using 5, p, and d orbitals having a promotion energy of

only 4 eV?" One thing is certain: for accurate ground

state energies (and hence bond energies) it is extremely

important to take proper account of electron correlation

and nature's result is still only very poorly approxi-

mated, with or without the super-computing systems of

IBM and CDC.
In the simple application of BOA to copper, as in

table 1, it would appear that the covalency is seven, cor-

responding to one electron in the S band and six in the

C band. The corresponding atomic (bonding) configura-

tion we will denote as sC^. This valence is even higher

than that used by Pauling (5.56) in his metaUic radii

table [1, p. 403] and differs considerably from that sug-

gested by Brewer (2 to 3) on the basis of bond energies

[21]. If the requirement that all near neighbors are

simultaneously bonded is adhered to, then one must

suggest that the C orbitals are not very good for simul-

taneously forming twelve half-bonds in copper due to

the small radial extent of the t/,, ,;-type orbitals. The cor-

rect explanation is probably that the configuration

d'*sC'^ is as wrong as d^^s and that phase structures in-

volving symmetric combinations of d'^sC'^ and d'^sC*

should be included as main contributing terms in the

wave functions. However, if the argument (BOA) must ^

be modified for copper, the bidirectional orbital approx-

imation would appear to be a reasonable starting point

for the other transition elements of Groups Illb to VIII.

An oversimplified treatment of binding might lead

one to expect spherical electron distributions for both

carbon with its sp'^ hybridization and for the copper d
shell with the full occupancy of its d orbitals by shared

and unshared electron pairs. However, the sphericity

required by Unsold's theory for atomic carbon with sp^

hybridization is destroyed in the tetravalent bonding

state because some of the electron density shifts into

the bonding regions between atoms. If d character is

employed in bond formation in copper, as in the C band

of the BOA picture, then some dxy, dj^z, and dyz

character is involved in the unoccupied antibonding or-

bitals of the C band. This then will also disturb the

sphericity of the 10 d orbitals since the' d^z-y^ and dz2

orbitals are occupied by unshared electron pairs.

Now we would like to adduce a few arguments sup-

porting the assumption that one may associate a filled

band with the concentration of one electron per

bidirectional orbital (half-bond). In MO theory, the

band associated with a chain of linear atoms has its

greatest density of states at an electron concentration

of one electron per orbital. However, in the BOA ap-

proach one generally is concerned with the interaction

of chains (cycles) which involve two or three dimen-

sional arrays of atoms. Accordingly, while a single par-

tial phase structure fly,,- associated with a band y may
not have a density of states depression at one electron

per bidirectional orbital, it is anticipated that the in-

teraction of different partial phase structures of the

same band will give such a depression. This is because

cycles from different phase structures are not

orthogonal. If this is correct then, when the metal-metal

bond in an NiAs compound can be ascribed to a single

phase structure with one infinite cycle of G orbitals (as

in the above example), one would not expect a band

depression at one electron per orbital.
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Considerable precedence in chemistry exists for as-

sociating special stability with one electron per orbital.

Depending on the number of neighbors this electron

" concentration can lead to fractional bond orders. Paul-

ing has called attention to this [1, p. 420] and, using his

metallic radii, has noted the abundance of such cases

among transition metal compounds while Rundle [22]

has emphasized the importance of half-bonds. We
would like to point out here, that since PauHng used the

elemental bond distances as reference points, a

"proof" that the number of covalent electrons used by

copper is 5.56 by means of his metallic radii would be

highly circular. Nevertheless, his formulae, such as eq

(3), are firmly related to bond distances and covalencies

about which no controversy exists. Accordingly his ob-

servations of fractional bond orders merit more than

just passing attention.

In organic chemistry, the aromatic compounds play

a special role because of their unusual stability. These

are planar compounds consisting of fused benzene-hke

rings (hexagonal) to give what looks like sections of hex-

agonal bathroom tile. The pz carbon orbitals are per-

pendicular to the plane containing the cr-bond structure

and are occupied by one electron each. In valence bond

theory the special stabiHty of these compounds is at-

tributed to the resonance (interaction) of the two

Kekule structures (phase structures). These com-

pounds form a continuous series starting with benzene

having one ring and six p, electrons through a long

sequence of compounds involving many rings (e.g., 8

rings and 30 electrons) to a graphite sheet. In graphite

we will see later that the bond order associated with the

Pz electron is 1/3 and that the related band is described

, as filled with a zero band gap [23, 24]. Currently this

represents the strongest argument that semiconductivi-

ty can be related to the half-bond [rnj = 1/2). However in

practice, semiconductivity can be readily predicted, as

in the C2S3 — CiSa series and FeSo, etc. [5,7], by as-

sociating a band gap with the half-bond.

In returning to the primary difference between the

chemists' and physicists' approach to transition metal

compounds, i.e., the amount of character involvement

in bonding electrons, we will recall the suggestion that

this may critically depend on the correctness with

which electron correlation is handled. However, even

within the band scheme a partial resolution of the dif-

ference in d character use may be sought by the use of

scale factors in the radial part of the wave function. It

would be of particular interest to associate a different

scale factor with different symmetry related d orbitals,

for example, one scale factor for the dxy type orbitals in

CCP copper and another scale factor for the dx2-y2 and

dzi orbitals. In such a case the scale factors are parame-

ters which could be adjusted for energy minimization

for each value of A-. If the execution of this suggestion

is exceedingly difficult (as the author is aware) the task

posed below for the soHd state chemist is no less possi-

ble.

Two methods of treating the correlation of bonding

electrons are currently being tested on small

molecules. The first of these, the alternate molecular

orbital (AMO) approach, is being actively pursued by

Pauncz [25] and involves the alternation of electrons

of different spin on a linear chain or ring of orbitals.

Energy is minimized as a function of the A.,, which are

related to the relative separations or phases between

electrons of different spin. The second method is

primarily due to Linnett [26, 27] and is termed the non-

paired spatial orbital (N.P.S.O.) treatment. For a cycle

of four orbitals, C\, Ci, C3, and C4 as in figure 3, new or-

bitals would be formed as below:

C,+KC>. C> + KC,, C, + KC4, +

Symmetry must be restored to the wave function in

both cases and in the N.P.S.O. method would involve

inclusion of orbitals of the form KCi + Ci, etc. By em-

ploying either the AMO or the N.P.S.O. method in con-

junction with bidirectional orbitals one has an approach

which contains relatively few adjustable parameters

with the inclusion of electron correlation. By varying

these parameters (plus scale factors) as a function of A-

space it may be possible to achieve a partial resolution

of the differences relating to d hybridization.

7. The Chemical Bond in Momentum Space

In this section we would Hke to consider three effects

in momentum p space. The first is the effect of forma-

tion of the simple chemical bond, as between Is

electrons in molecular hydrogen. The second to be con-

sidered is the effect of bond hybridization. In the case

of strong bond formation these two effects reinforce

one another although they appear to be largely indepen-

dent. Finally, we note that the effects of different bonds

are essentially additive in momentum p space in terms

of probabihty density just as they are in real space.

Ahhough Podolsky and Pauling [28] had obtained

the hydrogenic momentum distribution functions in

1929 and Hicks [29] had considered the effect of the

momentum distribution of molecular hydrogen on

Compton scattering, it remained for Coulson in 1940 to

initiate a series of papers [30-34] specifically consider-

ing the effect of chemical bond formation in p space.

His results for the homopolar and heteropolar bond
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were essentially the same whether he used the molecu-

lar orbital (one electron) or valence bond method (two

electrons). Coulson showed that contours of constant

momentum density were very appreciably extended in

the directions perpendicular to the internuclear axis of

the bonding atoms. For the one electron momentum
function he obtained eq (20)

X{p)X'Hp) = ^- '""'P '^'"'"'^ A{p)AHp) (20)

where r and p are vector coordinates in real and mo-

mentum space, respectively, r„-Oj is the internuclear

distance vector, and A(p) is the Fourier transform of the

atomic orbital '^„(r) on atom a. In the bonding case (+

signs) with (and A„(p)) spherically symmetric we
see that the momentum distribution function is a max-

imum when the vector momentum p is perpendicular

to the internuclear direction (r„-r/;). In the case of the

antibonding state (
— signs, eq (20)) for molecular

hydrogen the signs of the I5 orbitals are different on

atom a and atom b; this gives a nodal plane between the

two atoms and corresponds to the exclusion of con-

siderable electron density from the volume between the

atoms. This phase reversal between atoms a and b now
results in a maximum density when p is parallel to the

internuclear axis. The situation is the same for the two

electron bond.

The hybridization effect is readily seen from the

hydrogenic wave functions in momentum p space ob-

tained by Pauling and Podolsky [28]. In the traditional

valence bond method, we noted earUer that in the

process of maximization of overlap, primary attention

was paid to the angular parts of the orbitals. In follow-

ing the same procedure we recall [28] that the Fourier

transform of an atomic orbital '^„im has the same angu-

lar functions in terms of spherical coordinates in mo-

mentum p space* as ^nim has in real space, except for

a( — i)' factor.

The angular part of a hybrid orbital, ^,u)(i., based on

atom a, can be maximized in the direction of atom b by

varying the coefficients C, in the following equation (as-

suming normahzation).

^anfi. = + CpP + Cld

The corresponding momentum hybrid is given below,

^anu. ~ C.s-5 — iCp-p — Crd

' Aociirdingly, for a;), i-lerlron we see thai it is extended in the same direction (z axis) in

both rmI and inonienmni space, in apparent violation ol' the naive ap|)[ication of tlie Heisen-

hcT<: nnceilaint\ pi inciplc.

Here 5, p, and d refer to the angular parts of the orbitals

in real space and 5 . p , and d refer to the angular parts in

momentum space. The results are most graphic for a

bonding C-type orbital. If s character is added to a dz-i

orbital to obtain extension in real space along the+ and

— z axes (fig. 8, left) then the effect in momentum
space is a contraction along the + and — pz axes and

extension in the PxPu plane. The effect on a localized G-

type orbital is just the opposite (fig. 8, right). For bond-

ing electrons and orbitals the effect of hybridization is

clearly in addition to the effect of bond formation as

between I5 orbitals in H2.

If the eigenfunction, ^, for an n electron problem is

expressed as a Slater determinant of c^,, where 4>\

represent the orthogonal one electron solutions, then

the one electron density function, p(r), is obtained by

integrating ^"vp* over n — \ electron configuration

space.

p(/-)=^ (/),(/)(/)*(/) (21)
/-I

We see that the result is simply the sum of the electron

density probabihty functions of the individual occupied

states (/),. Since the corresponding expression for ^ in

momentum space is also a Slater determinant, we see

that the total bonding electron density in momentum p
space is simply the sum of the individual bonding

covalent electron momentum densities.

8. That the Fermi Surface Mimics the
Momentum Distribution Function of the

Bonding Electrons

In this section we intend to show by a simple and

heuristic argument that the Fermi surface in a sense co-

pies the momentum distribution function associated

with the outer electrons. Although the above title

emphasizes the bonding electrons, there is no reason to

exclude localized electrons if these energies are near

the Fermi surface. While the subsequent discussions

and applications will assume the Fermi surface to be in

the unreduced form this will cause no distress to those

familiar with such reductions to a single Brillouin zone.

Finally no special attention is paid to energy gaps at

Brillouin zone faces at such gaps are more closely re-

lated to crystal symmetry elements than to the effects

of bond formation.

The argument to be given below involves the applica-

tion of the Virial theorem which states that the average

kinetic energy T is related to the average potential ener-

gy, V, of a stationary state according to eq (22),

f=\V (22)

398



where the potential F is a homogeneous function of

degree 5 of the coordinates.

Neglecting magnetic forces, the potential V for an

electron is just the sum of all the coulombic potentials

due to the nuclei and the other electrons; accordingly

5 = — 1 and V = — 2T. Inserting this relation into eq

(23) for the average particle energy E, we obtain E=
-f.

E=-f+V=-T (23)

The derivation of the Virial theorm may be found in

most standard quantum mechanics texts; its derivation

as indicated above is due to a method of Foch and is

given with applications to small molecules by Kauz-

mann [19]. The validity of eq (23), relating the average

energy of a particle to the negative of its kinetic energy,

will be illustrated for the hydrogenic atom. From the

corresponding momentum eigenfunctions Podolsky

and Pauling obtained eq (24)

ZTTine-z

nh
(24)

for the average momentum squared of an electron of

mass m having a principle quantum number n. Insert-

ing this in eq (23) we obtain

f=, ^ ^ pI —'Zn'-z'-e'^m^-
- (25)

2m n-h-

which, of course, is the familiar atomic formula. Here

the lowest, most stable energy state is associated with

the highest average momentum squared, a typical

molecular result.

For the free electron-hke model, where the electron

momentum is identified with the k-vector the Virial

theorem as in eq (22) must be modified to include con-

stant volume effects (i.e., the Virial associated with

restraint of atomic nuclei); the net result for the energy

Ek-y of the y band may be written as in eq (26).

2m
r £'(iy
Im

(26)

Here we see that the sign associated with the momen-

tum term is just reversed.

The above considerations are now extended to the

more general independent particle band picture. To

satisfy the Bloch conditions we write eq (27) for the y
band

^ky{r) =e'''";//,y(r) (27)

where Ui^y(r) is that real coordinate part of the eigen-

function which has a periodicity identical to that of the

lattice. If Uky(p) is the Fourier transform of the u^y for

a single cell^ in real space then the momentum eigen-

function Xi,y(p) corresponding to "^i^ylr) is simply eq

(28).

Xky{p) = U;,y{p — k) (28)

The average value of momentum squared of the elec-

tron associated with the crystal momentum k of the y
band is

Uky{p-k)p-pUty{p-k)dr^ (29)

Substituting u> for p — k we obtain

^1= j t/,y (O)) ( A + W) • (/. + CO ) V^y (oj)d(O

= A- + 2A-aj/,y + w|y (30)

where we identify (o'ly as the average squared-momen-

tum of the electron {k, y) in a single unit cell. Thus a;|y

has a "molecular" character. Similarly oji^y is identified

with the single cell average momentum corresponding

to Ui,y( r), which for k — 0 and for a centrosymmetric cell,

must be zero but may be expected to be non-zero other-

wise. We now assert that the energy Ei,y increases for

A and decreases with fa>|y according to eq (31) below,

essentially as suggested by a combination of eqs (25)

and (26) above.

Ety —
k' COA-y

2m 2m
Vi,y + neglected terms + constant (31)

The potential energy term, F^-y, is given by eq (32),

^ [ "Ay«
^ 7
k-y^ "I

km
(It (32)

where Xk is the coordinate of the k electron separated

from nuclei of charge Z,„ by the distance r/,»,. For a

centrosymmetric structure both o)\.y and V^y are posi-

tive and change in a parallel fashion. Accordingly, only

the variation of Eky witha>|-^ is considered. Further,

since the derivation of eqs (31) and (32) are indicated in

appendix A, here we add only that m is the real mass of

the electron and that the neglected terms of possible in-

terest involve derivatives of a»Ay and (o'ly with respect

to the lattice parameters.

The shape of Fermi surface is contained in eq (31).

For the y band it is clear that for constant energy (i.e..

A siiif;lc cell used I" achievi- atial"j;y "I w uilli / ul I lie atiimic iir nicili'i uUir case. Xfi'l

is usually expressed as the F'lurier series liavin^: coefticieuts VkY sampled al reciprocal lat-

lice [mints.
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Ei;y= Ei,-'y) . the absolute value of /c will be greater than

k' when

Accordingly, a Fermi surface for the y band closely fol-

lows the variations in aj|y . Prior to discussing the ex-

pected variations of(y2^ for the bonding electrons we
will first consider the cases for deep core electrons and

highly excited states.

For A^-shell electrons of a heavy metal we would ex-

pect that the depth of the y band below the energy zero

is determined essentially by eq (33), that is, eq (25) with

the sum taken over equivalent atoms in the unit cell

and with n referencing the principle quantum number.

We may expect that

ojf.y is practically independent of A even though p'~ is

very large. In the highly excited electron_case

should be quite small, with variations of (o'^y with k

even smaller. Accordingly, in both of these cases the

simpler band arguments should apply; for example, the

free electron approximation for the excited electron

should be reasonably correct.

Expectations of the variations of (oj.y for bonding

electrons are most simply argued from a highly

anisotropic example. Consider the case of a crystal

composed of linear chains of atoms bonded along the

[001] direction with distances between chains cor-

responding to van der Waals' contacts. In terms of

bidirectional orbitals U)\y would correspond to the

"phase structure" of a single cell in which all the

phases match so that overlap of the orbitals on adjacent

atoms in the chain is high (e.g., see fig. 2, top). Now as

k increases in the [001] direction, the value of is

expected to decrease corresponding to the increasmg

frequency of antibonding contributions (i.e., nodal

planes between atoms as in fig. 2, bottom). However, as

k increases in the [kx ky 0] direction the value of w|y

should be much less dependent on k because antibond-

ing phase relations between non-bonded adjacent

chains are of negligible importance. The result for a

surface of constant Ey is that the surface extends

further from the origin in the plane perpendicular to the

bond direction than along the bond direction, i.e.,

[001]. This, however, is similar to the shape of the mo-

mentum distribution, X(p) X*(p), for the bond forma-

tion in the [001] direction and supports the suggestion

that the Fermi surface mimics the momentum distribu-

tion function for the bonding electrons. The generaliza-

tion to include several bands of comparable energy is

obvious.

It remains to point out that as more and more elec-

trons are added to the system there is a reversal in the

trend in variations of with direction such that the

Fermi surface becomes less spherically distorted. For

example, as more electrons go into antibonding or-

bitals, in the [001] direction can sustain only

small variations (further decreases) because it already

is small. However, in the [A., A,, 0] directions much
larger variations will occur; with the result that the

Fermi surface in the [001] direction will "catch up"

with the Fermi surface in the kx ky plane as more elec-

trons occupy the antibonding, higher energy, levels.

In the next section a simple physical model will be

described that is useful for estimating the distortion of

the Fermi surface from a knowledge of the structure in

real space. After a few examples the approach is

generalized for a discussion of density of states func-

tions.

9. Application with Examples

By extending the above considerations to all the

bands of similar energies it is possible to make qualita-

tive estimates of the unreduced shapes of the Fermi

surface, or other surfaces of constant energy, from a

simple knowledge of the structure in real space. In

making the application the primary considerations are

(1) number of bonds in a given direction; (2) their bond

orders, n/j, and (3) the hybridizations of bonds, if

known. The latter point is relevant in that the presence

of nodal planes mX(p) can give reduced sensitivity of

o)ly with k in those planes and a similar effect on the

Fermi surface of the y band.

A simple and qualitative method of estimating the

distortion of the Fermi surface from sphericity is to

mark (e.g., with narrow tape) those great circles of a

sphere^ which are perpendicular to the bond directions.

The effectiveness of a given circle in distorting the

Fermi surface radially outward is taken to be propor-

tional to the sum of the bond orders, n^, of those bonds

perpendicular to the given circle. The directions of

maximum distortion are taken to be at the intersections

of the great circles, weighted by the number of circles

involved and their associated bond orders. Of course

the volume enclosed by the distorted surface must

remain a constant.

As the first example we will consider the BOA pic-

ture of Cu in the CCP structure. Using C-type orbitals

one obtains good Cu— Cu bonds in the (110)

^ True to his profession the author recommends a round bottom distillation flask as a trans-

parent sphere.
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Fl(;URE 9. The solid line gives the hypothetical elipsoidat Fermi
surface of a tetragonal crystal of Hj ions with unit cell edges of

ao=2.4. co=3.46A.
The dashed contour lines are for constant momentum density and were calculated by

Coulson [30] for the H.; ion. The dotted rectangle represents the boundaries of the first

Brillouin zone.

directions. The above rule of thumb gives rise to the in-

tersections of three circles in the (111) directions

(toward the L point) and intersections of two circles in

the (100) directions (toward the^ point). However, the

effect of the latter two circles should be less than 2/3

the former due to the presence of nodal planes (contain-

ing the [100] direction) in the C-type orbitals as-

sociated with those circles. The result is in good agree-

ment with the current picture of copper [35] in which

the Fermi surface is strongly attracted to the large hex-

agonal Brillouin zone faces and less strongly attracted

the smaller square faces.

By way of contrast we have shown in figure 9 that the

hypothetical oblate spheroidal Fermi surface for an

imaginary crystal of H2+ ions mimics the contours of

constant momentum and appears primarily attracted to

the smaller [100] zone face. The molecules are as-

sumed to be packed with their bond directions parallel

to the c axis with a van der Waals' separation of 2.4 A
between nuclei of different molecules.

For the alkali metals with the BCC structure it is

doubtful that bonding effects would be the major cause

of distortions in the Fermi surface since the bond order

is no larger than 1/8. However, with the VB and VIB
groups of the periodic table, distortions of Fermi sur-

face can be estimated even though a unique bonding

picture cannot be given at this time. For these transi-

tion elements (e.g., V, Cr) the most important bonds (8

nearest neighbors in the (111) directions) probably

have a bond order of about 0.5. Using the above method

one finds that the corresponding circles cross at the

twelve (110) directions. This distortion is in agreement

with the opinion that the Fermi surface is attracted to

the centers of the rhombic faces of the BCC Brillouin

zone. However, the effect of bond formation of an atom

with its six next-nearest neighbors is to distort the

Fermi surface toward the furthest point, H, from the

center of the zone, that is, in the (100) directions. In

going from V to Cr this distortion should show a slight

increase as the additional electron is expected to par-

ticipate most strongly in the next nearest neighbor

bonding. To suggest this in another way. assume the

bond order of the bond with the nearest neighbors

remains constant at —0.5. Using Pauling's metallic sin-

gle bond radius the nearest neighbor distance, d, is

then

V3c?=— a„= 2/?, + 0.18 (34)

where ao is the cubic cell edge. However, ao is also the

next neighbor distance so that eq (35) holds,

ao-2/?, =-0.60 log n (35)

where n is the corresponding bond order. Eliminating

2 R \ from the equations we obtain

rt„ (^1-^^ + 0.18 = -0.60 log n (36)

eq (36) which suggests that the observed decrease in

lattice parameters with atomic number leads to an in-

crease in the bonding order of the next-nearest

neighbors and a corresponding greater distortion

(small) in the (100) directions.

An extreme example among the non-cubic structures

is to be found in graphite. In this hexagonal layer struc-

ture all the strong bonds are within the layers in the

(1010) directions, whereas bonding between layers is

very weak, i.e., van der Waals' contacts. The bond

order between carbons is 1 1/3 corresponding to whole

cr bonds (sp^) and 1/3 of a tt bond (using pz orbitals). All

of these bonds correspond to an unusually strong

distortion of the Fermi surface in the [0001] direction.

This distortion is shown very clearly in the surfaces of

constant energy calculated by Wallace [23]. In the un-

filled zone (corresponding to the tt electrons) beyond

the filled cr-electron zone, the above model suggests

that the Fermi surface should be distorted in the (112/)

directions where / is not necessarily integer.
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In the NiAs structures the onset of electrical conduc-

tion due to bond formation along the c axis should be

accompanied (using the BOA picture, fig. 8) by the out-

ward movement of the Fermi surface in the basal plane

to give the greatest projection of the Fermi surface in

the (2130) directions. Appreciably weaker distortions

occur in the (213/) and (112/') directions where / and
/' are non-integers dependent on the Co/ao ratio.

In some of the cubic Laves phases we indicated earli-

er that simple bond distance considerations suggested

that the A — A distances corresponded to an unusual

state of compression and a large bond order {ua-a > 1) •

However, the BOA picture suggested that the C-type

orbitals had an unusually large d character. This would

make the effective single bond radius, /?i(A — A), so

small that the A atoms were practically non-bonded.

The decision between these choices could be made on

the basis of Fermiological studies principally involving

the projection of the Fermi surface in the (110)

directions. The simple model relating bond formation

to Fermi surface projection is employed.

The B atoms form interconnected Hnear arrays of

bonds in the (110) directions among themselves. As in

the simpler CCP transition metals this should give a

pronounced projection of the Fermi surface in the

(111) directions. The A— B bonds, however, are in the

(113) directions and are not expected to result in

pronounced distortions due to the diffusion of the inter-

sections of their great circles.

The A — A bonds are in the (111) directions and

would contribute to a projection in the (110) directions,

where weak projections exist due to the intersection of

a B — B circle with two A— B circles. A study of the ex-

tent of the (110) projections as a function of the "com-
pression" of the A — A bond for different compounds
would make a valuable contribution to the chemical un-

derstanding of these compounds.

1 0. Density of States, General Remarks

The preceding discussion concerning the Fermi sur-

face is, of course, generally applicable to any surface of

constant energy in k space. On this basis a few conclud-

ing remarks can be made relating the density of states

function, N(Ey), to the few chemical concepts of which
use has been made in this article. If |S£'7/6A-„| is the

length of the normal derivative of the constant energy

surface, 5, for a single band then the related density of

states may be calculated from eq (37)

where Vol is the volume of the crystal [36]. The
manner in which the length \8Eyl8k„\ varies may be

estimated from eq (38), which is for a spherical surface

in polar coordinates, where m* is an effective mass.

8Ey

8/.»

k_

m
1 8ajy2/,-

2m S/,„ m (38)

The density of states is essentially then the integral of

the surface area weighted by m*lk. Therefore it is ap-

parent that the distortion of the surface S(Ey) from

sphericity gives rise to a high density of states, N(Ey).

Furthermore the bottom of the band, Euy, is largely

determined by according to eq (31). In the exam-

ples using the BOA treatment, we also saw that particu-

lar sets of chemical bonds could be associated with a

particular band (or set of symmetry related bands).

The use of chemical concepts would then suggest

that for a high total density of states N(E), v/hh a con-

stant number of bands, one should have chemical

bonds of high bond order, rnj, (or strength) with relative-

ly few important bond directions. It appears reasonable

that the relative positions of peaks in the density of

states might be correlated with bonding and hybridiza-

tion through the use of the different tugy . For example,

in the isostructural metal acetylides CaC2, SrC), BaC2,

LaC2, etc. a strong peak may be related to the carbon

triple bond in (C = C)~- radical, while the bottom (and

the shape) of the partly filled conduction band may vary

in a predictable manner with the metal atom. By way of

contrast one would expect a comparatively flat band,

neglecting local states, for a material with numerous

weak bonds in a great variety of directions. Such a com-

pound which was crystalline but whose unit cell con-

tents had an amorphous-like structure (but repeated,

periodically) could be expected to have a spherical

Fermi surface, not because the free electron approxi-

mation was realistic but because
2
A-y

A^(^y)=(Vol/87r-') 8EISk„ (37)

was not a strong function of the spheri'?al coordinate

angles 4>k, ^a- in k space.

1 1 . Summary

By way of conclusion it will be useful to both sum-

marize the current results and to attempt to forecast

the benefits of further interaction between chemical

concepts and those of sohd state physics. For the appli-

cation of the chemical approach an accurate structure

determination is the essential input. If a reasonable

bonding description for the compound can be devised

then we have seen that in a variety of transition metal

compounds the number, character, and relative filling
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of bands can be readily estimated. Further, the distor-

tion of Fermi surface from sphericity can be quahtative-

ly estimated. Such information is of obvious importance

in guiding the experimentalist studying the extended

zone Fermi surface topology of a new structure. On the

other hand we have pointed out, that in the Laves

phases the aid of the physicist would be useful in refin-

ing the chemical concepts.

The value of the chemical approach may also be felt

in the area of compounds of large unit cell size. For ex-

ample, the cubic Laves phase of 24 atoms per unit cell

is probably near the limit which can be accurately

treated in band calculations with the larger computers.

However, reasonably accurate structure determina-

tions involving several hundreds of atoms are now
possible. If the coordinations of the elements in such

structures permit unique bonding descriptions then it

may be feasible using BOA, coupled with group theory

and standard ^-space arguments, to develop useful

band models for comparison with experimental density

of states data. As an example, it may be possible to

treat some of the metallurgically important sigma- and

chi-phases of the iron transition metals. Band calcula-

tions are not feasible for such materials, nor are they

likely to be in the near future.

The apphcation of valence bond theory with the

bidirectional orbital approximation to the Group IV and

III-IV type compounds is less certain because cycles in

the BOA sense lose some definition so that the distinc-

tion between "good" or "bad" (poor overlap) phase

structures diminishes. The net result is a severe

orthogonality problem which is likely to be a major ob-

stacle in the treatment of related amorphous materials.

It is interesting to note, however, that for such elements

bidirectional orbitals of the G- and C-type can be em-

ployed to give tetrahedral coordination (see fig. 6).

Concerning the relationship between the Fermi sur-

face and momentum distribution function it is also

desirable not to paint too cheering a picture. The above

interpretation of wf.y and its variation with k is barely

in its infancy and requires considerable refinement be-

fore it can be applied with confidence. For example, the

simple model given in this article using the sphere and

marking tape to indicate distortions of the Fermi sur-

face suggests that the Fermi surface of two compounds
would be identical if only the unit cell sizes were the

same and if the same number of bonds ( X ny) were in

the same directions. Since such hmited information is

insufficient to define a unique structure it is unlikely

that the Fermi surface is as unique as the simple model

suggests.

Nevertheless, it would appear that the use of these

chemical concepts, as well as others, should play an in-

creasingly important role in providing information to

experimentahsts and theorists, not only about the den-

sity of states, but about the Fermi surface topology and

the spectral density as well.
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Appendix A

The intent of appendix A is to show the correctness

of eq (31), that is, that the energy of the k state in

the y band can be expressed as below,

£./,y = z ; FAy+ neglected terms (31)
Zm 2 in

where m is the electron mass, Vt.y is a potential term,

and aj|y is defined by eq (30). While use will be made
of eq (lA), the generalized Hellmann-Feynman

Theorem [37] , the kinetic energy terms for the elec-

trons of the y band will be brought outside the integral

by use of eq (30)

/;^y = A- + 2A • a)/,y + ojjiy (30)

In eq (lA) we note that H is an explicit function of the

variable k, which in our case will prove to be the unit

cell edges.

The Hamiltonian H is taken as a sum of the Hamil-

tonians for the electrons in the y band, Hy, plus the in-

terband electronic and internuclear repulsive poten-

tials, Vyy and Vr, respectively.

H = Hy+Vyr + V, (2A)

^-^^+EE7-+i i^ (3A)
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In eq (3A) only the filled k states are included; here n-k'

represents the interelectronic distance between elec-

trons of different bands and Ri,„ in the Vn term cor-

responds to the distance between the /th nucleus of

charge zi and mtli nucleus of charge z,,,- For the y band

we have eq (4A)

(4A)

where ri,-,,, is the separation between the Ath electron

and the mth nucleus and T/.y is the kinetic energy term

for the electron. Using eq (30) one obtains eq (5A) for

n.

1 kJ ——— k - k OJA-y

2m 2m
+

m m
(5A)

For the nuclei constrained by external forces to

remain at fixed positions, the Virial theorem for the k

electron can be written as eq (6A), where

Eky—— Tk-)
^ dEk

(6A)

the a; refer to the unit cell edges of the crystal. It is

clear from the preceding equations (eqs (2A) through

(5A)) that the "external forces" at constant volume for

the ky electron are primarily those due to electronic and

nuclear interactions within the crystal rather than just

forces external to the crystal.

Of particular interest is the evaluation of the sum

^ a; {dk/dai) where k is expressed as eq (7A)

k = 2rr^ Hi

N,
(7A)

with A'^, indicating the number of unit cells of the crystal

in the a, direction and with m and A^, integers. For a

trichnic unit cell [38] the reciprocal cell edges a,* may
be expressed in terms of the unit cell angles, a,, and
edges as eq (8A) where S is given by eq (9A).

sin a\

a> S

S = 1 + 2 ]^ cos a, —^ cos- a,

1/2

(8A)

(9A)

accordingly k can be written simply as

A- =2 Kildi (lOA)

where

Ki = 2tt
ri j sin a;

NiS
(llA)

The sum of interest is then eq (12A).

da; ^ ar ^ a,

If we accept for the moment the potential energy term
in 2 aiidEky/dai) as — Vky, then eq (6A) may be written

Eky —
k' k (Oky k-y,

k'- k (Oky

2m m 2m m m
kar dcoky 1 aido}f.-

m da\ 2m dai

_k^
~ 2m'

-V,ky

2m
kar dcok-y 1 aido)ky

m dui 2m dai
V,ky (13A)

as eq (13A) by making use of eq (12A). By neglecting the

term involving (^w^^y/^a,) and (doxj^yldai) we obtain eq

(31), the desired result. While (dco^yldai) may be

negligible for a centrosymmetric structure the variation

of co'iy with the unit cell lengths requires more careful

consideration than we will give it here. We do note how-

ever that its variation in the direction of strong bonds

may be appreciable and sensitive to k when k is parallel

to the bond directions.

In considering the variation of the potential energy

with respect to the a, we note that these must be zero

for the intraband and interband electronic terms since

the llrij do not explicitly contain the a,. However, the

electron-nuclear terms contain a, in the form eq (14A),

rkm = Xk + Xm = Xa- + 2 O/L; (14A)

where x refers to position of the Ath electron and the

mth nucleus and the L, are integers only if the nuclei

are exclusively at the lattice points. The variation of the

potential terms for the y band then gives

k-y- S f
^kyu*yz,„

III *'

1 Xk'

''k in-

ch (15A)

Under equihbrium conditions the total potential is at a

minimum with respect to the variations of a,. This per-
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mits the sum over all the bands to be equated to the in-

ternuclear repulsive potential. The constant term in en

(31) is then some appropriate fraction of this sum.
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Electroreflectance Observation of Band
Population Effects in InSb

R. Glosser,* B. O. Seraphin,** and J. E. Fischer

Michelson Laboratory, China Lake, California 93555

It is found that bias changes applied to n-InSb produce shifts in portions of the electroreflectance

spectra. We attribute this to changes in the conduction band population produced as the separation

between the Fermi level and the bottom of the conduction band is varied. Spectra which displays red,

blue, or no shift correlates to electronic transitions starting from, ending at, or bridging the Fermi level.

These observations permit a band structure identification of the shifting spectra and optical monitoring

of the surface potential.

Key words: Band population effects; electroreflectance; Fermi level shifts; indium antimonide

(InSb); optical transitions; surface potential.

It has long been known that the Fermi level in n-type

InSb can easily be moved into and up the conduction

band by increasing the bulk concentration of donors.

This rise of the Fermi level is responsible for the blue

shift of the absorption edge as was first explained by

Burstein [1] and Moss [2]. In contrast to shifts

produced by changing the bulk doping of n-type InSb,

we have found that the position of the Fermi level can

similarly be changed in the surface with respect to the

conduction band by varying the surface potential with

bias. Such effects have been postulated earher [3].

This observation is made by monitoring the direction of

shift of certain parts of the electroreflectance spectra

which permits the classification of the observed struc-

ture into three categories: spectra displaying red, blue,

or no shift which correlate to transitions starting from,

ending at, or bridging the Fermi level. This aids in their

band structure identification. The results establish

band population effects as an additional modulation

mechanism in electroreflectance. It also permits opti-

cal monitoring of the surface potential and possible

determination of the effective mass of otherwise inac-

cessible bands near/C= 0.

The manner in which this effect comes about is

shown in figure 1. Consider a degenerate n-type crystal

with a p-type surface. As it is biased positively, the

bands move downward and the conduction band drops

*Present address; Physics Department, I niversity of California. Santa Barbara. Califor-

nia 93106.

**Present address: Pfiysics Institute I, Teclinical University of Denmarli. Lyngby/Denmark.

further below the Fermi level. According to this model,

for transitions ending at the Fermi level, the threshold

AE'

Ev(xJ

-K
—I—
0 K

Fl(;URE 1. Schematic showing the shift of the threshold energy AE
at absolute zero for an optical transition as the bands ofdegenerate

n-type InSb are shifted with respect to the Fermi level Ep by an

applied bias.

A valence band £, and a conduction band are shown as a function of depth X from the

surface (left) and as a function of momentum K for an arbitrary depth X„ about V point

(rij;htl. Modulation around a given bias is represented by the band edge wobble. The
symbols — and + represent the bias direction for a /)- and n-type surface, respectively.
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Figure 2. Spectral shift ivith bias of structure associated with a
transition ending at the Fermi level {lower half), as compared to

reference structure associated with a transition bridging the Fermi
level [upper half).

Circles represent positive and squares negative extrema of the response. Arrows point in

the direction of increasing peaic magnitude. AH data are taken in the MIS configuration.

Modulation is ±300 mV.

energy is shifted towards the blue. Transitions starting

from the Fermi level should show a red shift for these

same conditions. Those transitions not involving the

Fermi level should yield electroreflectance signals

which show little shift with bias and change sign upon

changing the polarity of the surface potential [4]

.

We have observed all three of these effects in the

electroreflectance spectra of InSb. The geometry and
apparatus have been described earher [5], Samples
were prepared in both the MIS [6] (metal-insulator-

semiconductor) and electrolyte configurations [7].

Figure 2 brings out the contrast between a transition

ending at the Fermi level and one which bridges it. The
structure at 1.1 eV has previously been identified as

originating from the spin-orbit spHt valence to conduc-

tion band (Ft,, to Fee) [8]. A blue shift with bulk doping

has been seen in the corresponding transition in GaAs
[9] . Here we see a blue shift of about 95 MeV with ap-

plied bias which should be compared to the structure

at 1.9 eV where over the same range of bias practically

no shift is observed. This latter spectra is well

identified as originating from the A4 + A5 to Ae
transition and consequently bridges the Fermi level.

The blue shift at 1.1 compares very well with transmis-

sion measurements where the bulk doping is varied

3.55-

3.50-

3.45-

3.20

3.15

3.10

1.90

1.85

1.80

InSb, 2xlo'^cm^ N, 300 K

• •• •

-1 +1

Figure 3. Spectral shift with bias of structure associated with

transitions starting from the Fermi level (upper two plots), as com-
pared to reference structure associated with a transition bridging

the Fermi level {lower plot).

Circles represent positive and squares negative extrema of the response. Arrows point

in the direction of increasing peak magnitude. All data are taken by the electrolyte tech-

nique. Modulation is ±60 mV.

[10] if one equates a strongly p-type surface with in-

trinsic InSb (conduction band depopulated) and

equates the flat band position (-f0.25 V as observed by

the polarity reversal of the 1.9 eV structure) with the

bulk doping of 6 X lO'*^ cm"^.

A complementary red shift with bias application is

found at 3.1 and 3.5 eV which we label A-A'. This is

shown in figure 3. We again use the A4 + A5 to As

transition as a comparison. In the MIS configuration,

internal photoemission [11] , above 2.8 eV at room tem-

perature, tends to keep the surface p-type by populat-

ing trapping states. In order to overcome this problem,

the data was taken using the electrolyte technique [7].

Over the bias range used, we see that the A
cahbration structure shifts at most 20 MeV which is in

marked contrast to the 80 MeV shift of the A-A'

doublet. At room temperature, no other structure was

seen in the 3 to 4 eV range with the electrolyte

technique. Each member of the doublet exhibits only

one peak at 300 K.

At liquid nitrogen temperatures in the MIS structure,

the A-A' doublet is now complemented by weaker

structures at 3.4 and 3.8 eV, labeled B-B'. The spectra
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Fk.URE 4. Electroreflectance spectrum of an InSb MlS-sample at

liquid-nitrofien temperature.
Tile doublets A-A and B-B are dist'ussed in tlie text.

are shown in figure 4. Because of the internal

photoemission problem, no meaningful bias effects

could be made in this temperature and energy range.

With our observation of the bias produced red shift

of A-A' and the weak structure at 3.4 and 3.8 eV and

comparing this with recent band structure calculations

for InSb we draw the following conclusions.

The A-A' pair on the one hand and B-B' on the other

are mated pairs in the sense of components of a spin-

orbit split doublet. The peaks A and A' correlated to

transitions starting from the Fermi level in the lowest

conduction band and ending in higher conduction

bands [12] (V^ic to 1^ and \\c to I k,)- The B-B' doublet

probably ends in the same set of conduction bands but

starts from the top of the valence band.

Further support for the interpretation of the A-A'

structure is obtained by comparing our results and the

electroreflectance spectra of Shaklee et al. [13] and

Cardona et al. [9] with the thermoreflectance spectra

reported by Matatagui and co-workers [ 14]

.

Electroreflectance spectra for «-type InSb always

shows structure at 3.1 and 3.5 eV but weak or no struc-

ture at 3.4 and 3.8 eV. Thermoreflectance in contrast,

shows no structure at the former doublet but response

for the latter. The spectra yielded elsewhere by the two

types of modulated reflectance spectra are entirely

comparable, in particular, the structural features near

2 and 4 eV. This is in line with our assignment of A-A'

structure to transitions starting from the lowest conduc-

tion band. Thermal modulation should only weakly af-

fect a transition that starts above the band minimum at

the Fermi level, in contrast to electric field modulation

operating at such a transition through band population

effects.

As a further test of our interpretation of these results,

we observed the electroreflectance spectra of a p-type

sample carrying a p-type surface. As expected, the A-

A' structure is practically absent except for a very

small residual structure probably caused by the in-

cident light and/or the electric field in the surface. Bias-

ing towards the flat-band condition causes the structure

to grow in agreement with the idea that conduction

band population is being increased.

These results and their interpretation can be com-

pared with the results of Bloom and Bergstresser [15].

The observed separation of the A-A' doublet is in excel-

lent agreement with their prediction of a splitting of Ftc

and I hc by 0.38 eV. The separation of A and B on the

one hand and A' and B' on the other is 0.21 eV which is

close to the fundamental gap of InSb at liquid nitrogen

temperature as required by our assignment.

Aspnes [16] has pointed out that either of the A-A'

structure represents the first hope of observing an M3
critical point. The structure observed evidently stems

from a superposition of the singularity at the Fermi

level with that at the bottom of the conduction band. An
experiment at liquid He temperature with a more highly

doped sample (and an n-type surface) would be neces-

sary to clearly separate the spectra due to the two sin-

gularities.

As for the assignment of the weak B-B' doublet, two

possibilities are available. They most probably

represent transitions at the 1 point from the top of the

valence band to the higher conduction bands, but they

can represent transition from the split valence band

near F in the A direction to the second lowest conduc-

tion band. The splitting predicted by Bloom and Berg-

stresser is 0.42 eV which is sufficiently close to our ob-

served value that this possibility must also be con-

sidered. Further work is necessary to conclusively de-

cide the assignment of B-B'.

Regardless of which of the possibilities explains the

exact origin of the weak doublet, we determine the

separation of the conduction band at F7C. from the top of

the valence to be 3.4 eV as compared to the calculated

value of3.6eV [15].

In addition to the usefulness of band population ef-

fects for band structure identification, it appears that

the spectral shifts could be used to determine the effec-

tive mass of the higher conduction and the split off

valence band. A straightforward derivation using the
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optical gap relation given in reference 1 yields, for ex-

ample, the effective mass of the spin orbit split valence

band

m,,{S0)=C-r7i„iFE) -mniFE) •

[m,.{FE){\-C) + m„{FE)]-'

where C = 8^E(FE)I8AE(S0) is the ratio of the ob-

served spectral shifts for a given change in surface

potential and m„(FE) and mp(FE) are the known effec-

tive masses at the fundamental edge. Because the fun-

damental edge was not accessible with our equipment,

we could not determine mp(SO).
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Spin-Orbit Effects in the Electroreflectance

Spectra of Semiconductors

B. J. Parsons and H. Filler*

Michelson Laboratory, China Lake, California 93555

Measurements have been made of the electroreflectance spectra of germanium, gallium arsenide

and gallium antimonide in the range of photon energies from 0.6 to 6.7 eV. Special attention has been

paid to the resolution of multiplicity within the En' and Ei' structures. The identification of these struc-

tures in terms of critical point interband transitions involving the second conduction band has an impor-

tant bearing on the band structure of these materials. The data is discussed in terms of the possible

identification, within these higher energy multiplets, of spin-orbit splittings associated with the valence

band states at F and L.

Key words: Critical points; diamond semiconductors; electroreflectance; gallium antimonide

(GaSb);
i

gallium arsenide I (GaAs);
i
germanium; semiconductors, diamond; semicon-

ductors, zinc blende; spin-orbit splittings.

1 . Introduction

The interpretation of electroreflectance spectra in

terms of critical point interband transitions relies heavi-

ly on direct comparison between experimental data and

calculated band structure. The high resolution of elec-

troreflectance, however, permits the direct observa-

tion, in many cases of interest of spin-orbit effects,

which, at low energies, are interpretable with little am-

biguity. In diamond and zinc blende semiconductors,

for example, the spin-orbit splitting at T and along A (Ao

and Ai, [1] respectively) are easily identified within the

Eo and Ei structures [2] and a wealth of information is

available to substantiate these assignments. At higher

energies the number of critical points increases and

even tentative assignments become difficult in those

not infrequent cases where the complexity of the ob-

served structure suggests the near degeneracy of

several critical points.

Transitions from the valence band to the second con-

duction band are expected to exhibit a multiplet struc-

ture since each band has two spin-prbit components.

The degree of multiplicity observed experimentally will

depend on the absolute and relative magnitudes of the

spin-orbit splittings and on the selection rules. Some
guidance in the assignment of certain of these higher

*Presenl address: Department of Physics and Astronomy, Louisiana State University,

Baton Rouge, Louisiana.

energy structures is, in principle therefore, to be ex-

pected from the recurrence within this multiplet struc-

ture, of splittings characteristic of the initial valence

band states. The Ao and Ai splittings, for example,

might be expected to recur within the Eo' and Ei'

structures, respectively, these structures having been

associated in the past with transitions at F and L [2].

These expectations depend crucially on the assumption

that the transitions involved occur at the same point in

k-space. Thus, the Ao splitting will recur exactly within

the Eo' structure only if both the Eo and Eo' transitions

occur at T. In the case of the E^ and £'/ transitions

these almost certainly do not occur at the same point

along the A direction. There is evidence to suggest,

however, that the Ai splitting of the A4,5„ and A^v bands

is relatively constant over an extended region of k-

space which includes the A and L critical points. This

is a controversial point, but for the present we take the

observed doublet nature of the Ei structure [3] as

justification for this assumption.

The range of photon energies beyond 4.5 eV has been

investigated less extensively than the lower energy re-

gion and, because of the lack of a convenient and in-

tense light source in this region of the spectrum, the

available data is generally inferior to that obtained at

lower energies. The £'/ structure observed in this re-

gion in a number of semiconductors has thus received

only cursory attention in the past. We have used experi-
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mental techniques which have permitted a more

detailed study of this region and have resolved the mul-

lil)li( ity in the£'i' structure in a number of semiconduc-

tors. The purpose of this paper is to report data for ger-

manium, gallium arsenide and gallium antimonide

which extends to 6.7 eV and to discuss the results in

terms of the possible identification of recurrent valence

band spin-orbit effects.

2. Experimental Details

Two reflectometers were used to obtain the present

data. The first, based on a single pass prism monochro-

mator (Perkin-Elmer model 98) has been described el-

sewhere [4]. The second is based on a 0.3 meter grat-

ing monochromator (McPherson model 218) and utilizes

a modular electronic signal processing system (PAR).

The light source used in the 4.5-6.7 eV range was a deu-

terium discharge lamp fitted with a suprasil window.

The sample geometry used was the so-called dry

sandwich configuration [5]. Polished and etched sam-

pies were coated with a thin, 200 A, film of aluminum

oxide, and a thin semitransparent conducting film of

nickel completed the thin film capacitor arrangement.

Electric fields well in excess ofW V/cm are readily at-

tained using this technique. This sample geometry has

a number of advantages over other more popular con-

figurations, not the least of which for the present work

is the ability to cover a wide range of photon energies

using cooled samples.

3. Results and Discussion

3.1. Germanium

Germanium has been widely investigated and data on

the electroreflectance spectrum for this diamond group

semiconductor is well documented in the literature

[2,6-8]. For reasons not fully understood at the present,

the recurrence of the 300 mV Ao spin-orbit splitting

within the Eq structure has not been established. Since

the£'o' structure is relatively narrow and well separated

from adjacent structures this is somewhat surprising.

There is evidence, however, for the near degeneracy in

this region of the spectrum of several critical point con-

tributions to the optical properties, some of which may
well be associated with off-center critical points.

The E\' structure for germanium appears as a

shoulder in the reflectance spectrum [9] and weak
structure in the electroreflectance spectrum has been

observed [2,8] at corresponding energies. This struc-

ture has generally been associated with the L;/— L3

quadruplet. In germanium the spHtting of the L^^. and

Lt,.-,,- levels of the second conduction band is expected

to be smaller than the valence band splitting at L (Ai =
200 mV) and we expect to be able to identify the recur-

rence of this 200 mV effect. The spectrum obtained at

300 K in this region of the spectrum for a 0.3 ohm-cm p-

type sample is shown in figure 1. The single peak at

5.75 eV has a half-width of only 100 mV suggesting that

this peak is not associated with the L multiplet. Weak
structure on the low energy side of this peak is barely

resolved into a doublet with close to the correct

splitting. No significant improvement is gained over

this spectrum on cooling the sample to liquid nitrogen

temperatures (80 K). It is noteworthy that we find no

structure in the 4.65-5.1 eV region where structure has

been observed in photoemission [10]. We conclude

that the associated peak in the density of states is not

a critical point effect.

3.2. Gallium Arsenide

The lack of inversion symmetry in the III-V com-

pounds causes degeneracies in the valence and conduc-

tion bands at X to be lifted. The resulting multiplicity of

the X transitions complicates the E2 structure for these

materials and makes the identification of structure in

this region more difficult. The spectrum for R-type galli-

um arsenide between 3.6 and 6.7 eV is shown in figure

2. The peaks at 4.45 and 5.02 eV (300 K data) are well

established [2] and have previously been labeled Eq

and £"2, respectively. It is clear that considerable over-

lap exists between satellites and components of these

two structures. An edge between the two main peaks is

resolved at 80 K. The observation of a small peak at

3.95 eV, which we interpret as an interconduction band

Ge

0.3Q-cm p-type

300° K

2 PHOTON ENERGY

(eV)

Figure 1. Electroreflectance spectrum for p-type germanium at

300 K in the region of the E\ structure.
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Figure 2. Electroreflectance spectrum for n-type gallium arsenide

in the region of the £„ E2, and EJ structures at 300 and 80 K.

transition [11,12] is close to small structure which has

been reported in the reflectance [13]. This suggests

that the peak at 5.50 eV is a component of the Eo'

structure.

At high energies, peaks are observed at 5.70 and 6.55

eV (300 K data). The 6.55 eV peak corresponds to a

shoulder in the reflectance [14] at the same energy

which has been associated with the L3' — L3

transitions. The observed structure is clearly in-

complete in our data and confirmation of this assign-

ment will await an extension of the electroreflectance

spectrum to higher energies. The two peaks at 5.50 and

5.70 eV do have the correct 200 mV separation to be as-

sociated with the recurring sphtting, but in view of the

expected multiplicity and overlap of the Eo' and E2

structures in this region this is probably accidental.

3.3. Gallium Antimonide

The electroreflectance spectrum of n-type galhum

antimonide at 300 K is shown in figure 3. The Ao and Ai

splittings (730 mV and 440 mV, respectively) are larger

than in germanium or gallium arsenide and the £'0' and

El' structures are correspondingly broader and more

detailed. The band structure of gaUium antimonide, ac-

cording to a recent calculation by Zhang and Callaway

[15], yields values for the important energy level

separations given in table 1 which also lists the ob-

served electroreflectance peak energies. Data at the

fundamental edge shows a pronounced dependence on

bulk doping and the quoted energies for the Tgv — ^6c

and F-iv — Fee doublet are probably high. The spectrum

for p-type material suggests that light and heavy hole

transitions play an important role at low temperatures.

We find no evidence for more than two peaks in the re-

gion of the El structure. The single peak at 1.50 eV is al-

most certainly associated with the Tjv — Fee transitions.

GaSb 300°K
17 -3

n =4.10 cm ^

E,+A,

PHOTON ENERGY eV

I 2 3 4 5 6

Figure 3. Electroreflectance for n-type gallium antimonide at

300 K.

Table 1. Calculated energies of important interband

transitions in gallium antimonide according to

Zhang and Callaway [15] and the experimental peak
energies observed in electroreflectance. Note that the

Ftv— Fvc transition is not allowed in the unperturbed

crystal.

Structure Transition

Calculated

energy

(eV)

Experi-

mental peak

energy (eV)

300 K 80 K

Eo 0.81 0.78 0.89

1 7r— Fee 1.59 1.50 1.60

El Ea, 50— Ef,c 1.98 2.04 2.13

A4, 5!)~ Afic 2.10

Lei)— iec 2.42 2.48 2.59

Asc— Aec 2.60

Eo and E> Fee— Ftc 3.01 2.94

Fee" Tsr 3.45 3.11 3.20

FgD— F7C 3.82 3.31 3.34

Xtij—X^C 4.26 3.38 3.41

Fsii — Fgc 4.26 3.68 3.75

X^D—Xsc 4.29 4.03 4.13

Xti<—Xlc 4.64 4.16 4.34

Xsf—Xjc 4.67 4.62 4.57

F?!:— Far 5.04 4.72

E'l E4, 5b— Esc 5.48
4.95 5.11

Li, 5V — L4, 5c 5.71
5.48 5.62

Lev— Lec 5.92
5.94 5.98

Lrd— L4, 5c 6.15
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Figure 4. Detailed behavior of the electroreflectance of gallium

antimonide in the region of the Ej structure: (a) for an n-type

sample at 300 K, {b) for the same n-type sample at 80 K, (c) for a
second n-type sample at 80 K, and (d) for a p-type sample at 80 K.

The very detailed spectrum between 2.8 and 4.2 eV

is shown in figure 4 (a) for an re-type sample at 300 K, (b)

for the same sample at 80 K, (c) for a second n-type

sample at 80 K, and (d) for a p-type sample at 80 K. The

behavior in this region is considerably more complex

than previously reported [2,16,17]. Peaks at 3.2 and

4.13 eV are present in all the 80 K spectra, other peaks

at 2.94, 3.34, 3.41 eV and the broad peak at 3.75 eV are

all dependent in some way on the bulk doping and/or

the surface preparation. Further studies of the behavior

of these peaks will be necessary before a satisfactory

interpretation of this data can be proposed. The clear

doping dependence of the lower energy members of

this group indicates, however, that interconduction

band transitions are important in this region. Similar

behavior has been reported in indium antimonide

[11,12]. Other structure in the same energy range is

probably associated with critical points close to F along

the A direction and correlated to the behavior of the

A^c' band. On this basis the valence band to conduc-

tion band transitions at F should occur at energies close

to the E-z multiplet and considerable unresolved overlap

is thus expected in this region. The small peaks at 4.57

and 4.72 eV are also probable members of one or other

of these two groups of structure (see fig. 5).

The spectrum between 4.0 and 6.7 eV is shown for an

n-type sample in figure 5. At 80 K the Ei ' structure is

Figure 5. Electroreflectance of gallium antimonide in the region

of the E[ structure.

resolved into a triplet at 5.11, 5.62, and 5.98 eV. Since

it might not be possible, if the L4,5i. — L(if and L4,5f —

Lee spin-orbit spUttings are of the same magnitude, to

resolve the L4m- - L4,5r and Lei- - Lec transitions, the

association of this triplet with the W — L3 quadruplet

is not unreasonable. According to this assignment the

5.11 eV peak is attributable to L4,5r - Lbc, and the 5.98

eV peak to Lei, — L4,5c transitions. The 510 mV separa-

tion of the 5.11 and 5.62 eV peaks is not, in view of the

unresolved doublet nature of the 5.62 eV peak, incon-

sistent with the measured 460 mV separation of the Ei

peaks.

4. Summary

We have measured the electroreflectance spectra for

germanium, gaUium arsenide and gallium antimonide

over a wide range of photon energies and concentrated

our attention on those regions of the spectrum where

the Ao and Ai spin-orbit effects are expected to recur.

The Eo' and E2 structures are found to overlap con-

siderably in the two IILV compounds investigated and

a dependence on bulk doping of certain peaks compris-

ing the £'0' structure, particularly in gallium antimo-

nide, suggests that interconduction band transitions are

of importance. The spectrum for galHum antimonide is

considerably more detailed than earlier reported data

indicated. Much of the data in the region of the Ei'

structure for all three materials has not been reported

previously. This structure has been resolved and

evidence found in the spectra for germanium and galh-

um antimonide for the recurrence of the valence band

spin-orbit splitting. As expected, the electroreflectance

spectra in this region is considerably more detailed

than reflectance data and there is evidence in the spec-
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trum for germanium for contributions to the optical pro-

perties in addition to those associated with the L transi-

tions.
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Experimental Verification of the Predictions

of the Franz-Keldysh Theory as Shown by
the Interference of Light and Heavy

Hole Contributions to the Electroreflectance

Spectrum of Germanium*

p. Handler, S. Jasperson, and S. Koeppen

Physics Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61 801

By the use of improved experimental techniques and samples of particular impurity concentration,

we have been able to observe as many as eleven half oscillations in electroreflectance spectra of ger-

manium at the direct edge (Fs* —* F?^) at room temperature. In addition, near the experimental sixth

half oscillation where the light and heavy hole contributions are of opposite signs, we observe destruc-

tive interference which greatly modifies the signal lineshape in that region. The unique characteristics

of the resultant lineshape allow the determination of the relative magnitudes of the dipole matrix ele-

ments and reduced masses for the two bands in a region of k-space somewhat removed from the F-

point. The experimental results also demonstrate that neither thermal broadening nor field in-

homogeneity need be a problem in electroreflectance measurements.

Key words: Electro-absorption techniques; electroreflectance; Franz-Keldysh theory; germanium;

oscillatory dielectric function.

The predictions of the effect of an electric field on

the band structure of solids show that the dielectric

function becomes oscillatory as a function of the energy

in the vicinity of critical points in the joint density of

states of the valence-conduction bands. Therefore both

the electro-absorption (EA) and the electroreflectance

(ER) techniques should show a large number of oscilla-

tions with a very slowly decreasing envelope [1]. Un-

fortunately, in both EA and ER only four or five half

oscillations have been observed for most materials stu-

died [2-5]. In addition, the lineshapes that were ob-

served were not in good agreement with the one-elec-

tron theory for a number of reasons.

In EA the discrepancy between theory and experi-

ment arose because the Coulomb interaction had not

been taken into account. In ER a number of serious

problems were present in addition to the neglect of the

Coulomb interaction. For example, in many experi-

ments no effort was made to modulate from the flat

band condition, although the theory was presented in

those terms. Thermal broadening was incorporated in

•Supported by the Advanced Projects Agency under Contract No. SD-131 and the U.S.

Army Research Office (Durham) under Contract No. DA-HC04-67 C.0025.

the theory at an early date and produced lineshapes

which were in better qualitative agreement with experi-

ment; however, it is now evident that broadening was

being forced to account for other additional factors, and

hence the broadening parameters so obtained were ex-

cessively large.

The problem of electric field variation over the

penetration depth of the Ught was anticipated at an

equally early date [5] but was not adequately treated

until recently by Aspnes and Frova [6] , who found that

a significant field variation within one reciprocal wave

vector of the surface would mix the real and imaginary

parts of the dielectric function, giving rise to peculiar

lineshapes. Both Frova and Aspnes [7] and Seraphin

and Bottka [8] have shown good experimental verifica-

tion of this point at the direct edge in Ge. The publica-

tion of these results seemed to indicate that it would be

very difficult to obtain easily interpretable lineshapes

except at very small fields in intrinsic material. Since

then, however, Koeppen and Handler [9] have shown

that, although intrinsic material is best for small fields,

doped material is much superior for higher fields.

Figure 1 (taken from ref. 9) shows graphs of /?,, the
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Fl(;URE 1. Ri versus magnitude of surface electric field e fur four
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Except for ihe itt, = 6 curve, only the depletion region is shown. The curves can be used
for n- or /J-type niateriai. The points A, B. and C indicate the fields above which it is better

to use a sample with the next hifiher doping level shown.

logarithmic derivative of the surface electric field with

respect to distance, plotted versus the magnitude of the

surface electric field under equilibrium conditions for

several different impurity concentrations. The smaller

Ri is at any given field, the less important the problem

of field nonuniformity w^ill be. The smallest value o( Ri

for each value of the field corresponds to a different Uh.

Thus, for a peak surface field of 2-lCH V/cm, a sample

of Uh — 6 will be optimum. Furthermore, the results so

obtained should exhibit no more mixing than results ob-

tained at e = 3-103 V/cm with intrinsic Ge. In com-

parison, Frova and Aspnes found measurable mixing ef-

fects in intrinsic Ge lineshapes for e > 10* V/cm.

Using Ge samples doped in accordance with figure 1.

we have obtained results in the high field limit which

are in excellent agreement with simple one-electron

theory. The data include both the direct edge (rs+

r--) and spin orbit split (r7+ Ft") structures and

show a number of effects not previously observed.

These new results further suggest that it may become
possible to determine the source in k-space of other ER
signals.

The standard electrolyte electroreflectance

technique was used in obtaining the present data. Ex-

cept for the following two modifications, the experimen-

tal system was the same in most respects as that

described by Hamakawa et al. [10]. First, the optical

method for determining flat band described in that

reference has since been improved so that it is now
possible to monitor the proximity of the bands to the

flat band condition every alternate half cycle while the

experiment is in progress. Details o^ this will be

presented in another paper published elsewhere.

Secondly, potentiostatic control of the modulaticm and
bias voltages is now employed for greater stability of

conditions in the sample cell, and voltages quoted
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below were measured via a salt bridge located adjacent

to the surface of the grounded Ge sample. The surface

potential was square wave modulated at 310 Hz
between flat band and arbitrary band bendings. The
energy bands were always modulated in the depletion

direction for greater field uniformity in the space

charge region as suggested above. Under certain

dynamic conditions it was even possible to reduce R\

below the equiHbrium values shown in figure 1.

The sample was a 0.13 Cl cm n-type wafer of Ge at

room temperature (u/(=6.2) with a (110) reflecting face.

A Polaroid Corporation type HR sheet polarizer was

used to polarize the light either along the [110] or

[001] axis of the reflecting surface.

Several graphs of A/?//? are plotted in figure 2 versus

a common energy scale which extends from 0.7 to 1.2

eV. Experimental hneshapes are drawn as sohd curves,

and all were obtained with a peak-to-peak modulation

voltage of 0.7 V from the flat band condition. Because

the values of A/?//? range over three decades, the data

for the [110] and [001] polarizations are displayed

semi-logarithmically in figures 2b and 2c, respectively.

For comparison, the [110] data are also plotted versus

the more customary linear scale (with one scale change)

in figure 2a. Of immediate interest is the large number

of half oscillations present in the Fh''" T-' structure:

the oscillations extend nearly 0.2 eV above the gap

energy where they finally disappear in the rising ex-

ponential tail of the spin orbit split structure. A com-

parable number of half oscillations has only been ob-

served in the EA spectrum of the indirect edge of Si

[11], shown in figure 3. This graph serves to demon-
.004

.002

0

-.002

-.004

AR
R

10

10"'

\
a:(IIO) / \

1x20

riO-' P
-\<j

y

-10-= 1

?y b:(IIO)

T~iA/~V ^\(\\
+ v

U + \ -

u + \

-I0-'

\

1

c:(OOI)

\ /
~

y + 1/ u

l" / ,1

- I' -f V/

1

1 V

1

.7 .8 .9 LO I.I 1.

Energy (eV

)

Fn.l RE 2. Electrorejiectduce spertni heliceen 0.7 tind 1.2 eV for
li^ht ptilarized as iiulicdted {note fhal the Vz I f structure

exhibits no f)olariz(ition dependence).
(iurvr (a) is plotli-il linearly willi one s< alc cliinijii': curves (bl aiiH (e) are plotleH semi-

lii^iaritliniieally. Solid curves arc experinu-nlal: llie dashed line in (el is a least-squares

c<>ni|Miler fit nsin-i one-elcclnin ilieiM\. Tin- rrns noise ina^niliide dnriii;: this work was
appnixinial<-l\ 2- Id 'v



+.02 +.04 +.06

"hcu - Eg (ev

Figure 3. Electro-absorption data of Frova et al., Phys. Rev. 145,
575 (1966).

This curve, obtained witli an electric field of 1.4-10^ V/cm, shows ten half oscillations.

strate that junction EA measurements did not suffer

from the severe field inhomogeneities encountered in

ER.

Returning to figure 2, two conclusions can be

reached on the basis of the large number of oscillations.

First, the effect of electric field nonuniformity in the

space charge region is small, since significant field

variation over a distance equal to one reciprocal v^ave

vector would cause oscillations above the gap to be

smeared out [6,7]. This is further substantiated by the

fact that the first positive peak is six times smaller than

the second positive peak, in approximate agreement

with simple Franz-Keldysh theory [1]. Frova, Aspnes

[6,7], Seraphin and Bottka [8], have demonstrated

that the magnitude of the positive peak below the gap

becomes comparable or larger than that of the second

positive peak when the nonuniformity becomes impor-

tant. Secondly, the amount of thermal broadening can-

not be as great as 30 MeV as previously thought [2,3],

since that amount of broadening would similarly wash

out the oscillations farthest from the gap and would

require that the first negative peak be relatively much
wider and more symmetric than is observed in figure 2.

It will be demonstrated shortly that the broadening

parameter compatible with the above data is 3 (0.11 kT)

and 9 meV (0.35 kT) for the Fh + ^Ft- and Fr +^Fy"
structures, respectively. Our experience with thermal

broadening precludes the possibility of values signifi-

cantly greater than these for this energy range at room

temperature.

Another striking feature of the lower energy struc-

ture is the collapse of the oscillation envelope and a

brief irregularity in the oscillatory nature of the

lineshapes just after the 5th (3rd positive) experimental
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Figure 4. Energy band diagram of the bands contributing to the

structures shown in figure I.

Arrows 1 and 2 represent equal energy transitions of 0,91 eV. the central energy of the

region of destructive interference. This figure is only schematic, since it neglects changes

in curvature and anisotropy of the bands, as discussed in the text.

peak at approximately 0.9 eV. This effect is caused by

the mutual cancellation of the light and heavy hole con-

tributions to the resultant lineshapes. The period of

oscillation of the electro-optic function is inversely pro-

portional to the cube root of the reduced mass of the

bands involved, and thus the difference in effective

masses of the degenerate valence bands (see fig. 4)

causes a periodic beating of contributions from equal-

energy transitions, such as those indicated by arrows 1

and 2, centered at different points in k-space for the

Hght and heavy hole bands. Since the contributions

from the two bands are comparable in ampHtude but

opposite in sign, the resultant lineshape is a sensitive

function of both the precise ratio of signal amphtudes

and the ratio of reduced masses. The ratio of the

reduced masses parallel to the electric field determines

how far above the gap the cancellation will occur, and

the ratio of oscillator strengths determines the exact

lineshape in the beat region.

Blossey [12] has defined a parameter F (electric

field strength in units of effective Rydbetgs per Bohr

radius) which is a measure of the electric field strength

relative to that of the Coulomb interaction. He shows

that for F > 20, the electroreflectance spectra at the

direct edge energy will not be greatly altered by the

presence of the Coulomb interaction. For the data

shown in figure 2, F = 174 and F = 61 for the hght and

heavy holes, respectively. In addition, since the region

of destructive interference occurs —0.1 eV (57 to 96 ef-
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fective mass Rydbergs) above the gap, the electron-hole

pairs can certainly be thought of as nearly free parti-

cles. We shall compare the observed spectra with sim-

ple one-electron theory using Lorentzian-broadened

electro-optic functions G(r],y) defined by Aspnes [13].

Furthermore, we shall assume that the complex

T^~ structure can be represented by the algebraic sum
of two G-functions, although in the immediate vicinity

of the direct gap the degeneracy at k = 0 and the Cou-

lomb interaction should make the fit less exact.

The dashed curves in figure 2c are the result of a

least-squares computer fit of the following functions to

the low and high energy structures, respectively:

R

R

<>»-' I',")

•1-:)

A'

(1)

(2)

In the above, A and A ' are amphtude factors, is the

photon energy, B is the ratio of light to heavy hole con-

tributions, y and y' are the broadening parameters, and

the Tj's are defined as

Ei-h (X)

1/3
(3)

where e is the peak effective electric field at the Ge sur-

face, and Ei, hO, and /U; are respectively, the effective

energy gap, the electro-optic energy, and reduced mass
associated with transitions from the ixh hole band, i

—
/ (light), h (heavy), or 50 (spin orbit split) to the conduc-

tion band. Figure 5 shows an expanded view of the beat

region for both polarizations, the solid curves

representing the experimental data, the dashed lines

the computer fit of eq (1).

The fit between theory and experiment for both

polarizations is remarkably good; the only serious dis-

crepancy is the too-rapid diminution of the envelope of

the experimental structure with increasing energy. We
expect that even this difference would disappear if the

Coulomb interaction and a slight amount of electric

field inhomogeneity were taken into account. These
results of simple superposition of the light and heavy

hole bands are also in agreement with the calculations

of Enderlein et al. [16].

Table 1 lists the values of the various parameters ob-

tained from the computer fit: only fXso was assumed
given; all other quantities were derived relative to it. To
elaborate, the electron and hole masses for the

T^' structure were taken to be .036 lUo [14] and .077 nio

[15], respectively. The fit of eq (2) then uniquely
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Figure 5. Expanded view of the heat region of the Y^^T~
structurefor both polarizations.

Solid curves are experimental: dashed lines are the theoretical predictions of eq (1),

specified hdso, y'
, Eso, and the electric field e. The

parameters pertaining to the r«+ Tj- structure were

subsequently derived by using the value of the field e

obtained above.

The reduced masses measured by this technique are

average values since the effect of the electric field is to

mix states in k-space, especially those within one unit

of 7) (25-30 meV) of the point under consideration.

Nonetheless, two points can be made on the basis of

these data. First, /x/, has a magnitude greater than the

electron mass at the F-point, indicating the probability

that both the electron and heavy hole band have un-

dergone a significant change in curvature within .025

atomic units of k = 0 (see fig. 4). Secondly, the

Table 1. Summary of experimental parameters

r+—> r-
' 7 ' 7

/tx.,„= 0.0245 mj'*'
'5

e= 4.2-10-'V/cm

fte,o= 30.3meV

y' = 9 meV
£.,0= 1.08 eV

p.,= 0.022 m„ (.0195 moat k = 0)

/j.;,= .038 mo (.033 Too at k= 0)

e= 4.2-lO^V/cm

h0, = M.5 meV
he,, = 26.1 meV
7 = 3 meV

£,,„= .79 eV

Buo= .71 (110 polarization)

Siioi = 1.16 (001 polarization)

420



anisotropy of the heavy hole band is clearly indicated

by the polarization dependence of the lineshape in the

beat region. Since B depends only on the ratio of the

dipole matrix elements for the two transitions, which in

turn can be shown to be functions of the effective

masses evaluated along the polarization direction [17],

the difference between B\^(t and Bmn is an indication of

the difference between corresponding components of

the heavy hole mass tensor in these two directions. In

fitting the data many small effects have been neglected

such as the mass dependence upon the direction and

magnitude of k, the energy dependence of the broaden-

ing parameter and the Coulomb interaction. In fact it is

quite surprising that the fit is as good as it is.

In conclusion we have shown that reliable ER data

can be obtained when the energy bands are modulated

from flat band and the sample is doped so that the

variation of the electric field with distance is not impor-

tant. We anticipate that it will now be possible to

separate exciton effects from one-electron behavior at

the direct edge in Ge since mixing can be made negligi-

ble in both high and low field regions where the respec-

tive effects dominate. Furthermore, by use of these

techniques at higher photon energies, it should be

possible to obtain lineshapes which are sufficiently

good so as to permit the unambiguous identification of

critical points which gave rise to those structures.
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Variations of Infrared Cyclotron Resonance and
the Density of States

Near the Conduction Band Edge of InSb"^

E. J. Johnson and D. H. Dickey

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 021 39

The electronic density of states near the conduction band edge of InSb with and without a magnetic

field is obtained from dispersion relations based upon A' • p interactions with nearby bands and parame-

ters determined and confirmed by several intraband experiments including fundamental cyclotron

resonance, spin resonance, spin-flip cyclotron resonance, phonon assisted cyclotron resonance and har-

monics of cyclotron resonance. The density of states displays effects due to nearby band interactions

and due to electron-phonon interaction.

Key words: Cyclotron resonance; electronic density of states; electron-phonon interaction; InSb;

interband transitions; Landau levels.

1. Introduction

The electronic density of states can be obtained in a

straightforward manner, once one has an electron ener-

gy dispersion relation in which one has some con-

fidence, and if one has neghgible broadening of the

energy levels. We have determined the experimental

parameters for such a dispersion relation for states

near the bottom of the conduction band of InSb [1] by

obtaining experimental data that is more precise and

covers a wider range of conduction band energies than

previous data. Our analysis takes into account interac-

tions not previously recognized and reconciles various

interband optical experiments for the first time. In this

paper we summarize this work and apply it in determin-

ing the density of states both with and without a mag-

netic field. A variety of experiments involving in-

traband optical transitions confirm the dispersion rela-

tion for energies to —80 meV above the band edge.

The density of states near the bottom of the conduc-

tion band of InSb can be expected to depart from sim-

ple parabolic band behavior, principally due to interac-

tions between the conduction band and other nearby

bands. These interactions for InSb have been treated

theoretically by Kane [2]. The effects on the magnetic

energy levels have been treated by Lax et al. [3] and by

*This work was sponsored by the Department of the Air Force.

Bowers and Yafet [4]. When the cyclotron energy is

comparable to an LO phonon energy an additional ef-

fect on the density of states occurs due to a polaron

self-energy effect [5]. In InSb this effect occurs in a

narrow energy range and can be easily accounted for in

fitting the nonparaboUc band theory to the experimen-

tal results [6]

.

The experimental results were obtained by observing

the infrared transmission of InSb samples versus mag-

netic field for fixed photon energies from 4.5 to 50 meV.

Absorption peaks were observed which can be

identified with a variety of intraband transitions involv-

ing Landau levels. The fundamental cyclotron

resonance absorption occurs as a triplet, and is used to

determine the band edge effective mass. A combination

resonance transition is observed which involves a spin

flip, in addition to a fundamental cyclotron resonance

transition, and is used together with spin resonance

results of Isaacson [7] to deterinine the band edge ef-

fective g-factor. Using these band edge parameters

energies for transitions involving cyclotron resonance

harmonics, phonon assisted cyclotron resonance, and

the variation of spin resonance energy with carrier con-

centration are calculated and are found to agree well

with observed transition energies. The consistency

among the various intraband transitions provides con-
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fidence in the nonpaiabolic band theory and the values

of the band parameters determined from the earUer ex-

periments. The density of states is calculated from the

corresponding dispersion relations.

2. Dispersion Relations

The wave functions for the energy levels near the

bottom of the conduction band of InSb have 5-like sym-

metry near A = 0 and the energy surfaces are nearly

spherical. The energy levels are given in Wigner-Bril-

louin perturbation theory by

Erik)
2m'

(1)

where m* is an energy dependent effective mass given

by

1 „m
m

1 + \Pcl\

E,{0)
(2)

where the summation is taken over all energy levels /

with energy at A- = 0 of Ei(0), and where pci" is the rj

component of the momentum matrix element between

bands c and / at A = 0. To a good approximation we can

neglect the energy dependence involving energy bands

more remote than the three (six) valence bands and can

write (2) in the form

2 „m
m

1 +
m \P?,\'

nirb
,

Erik) — EliO)
valence '

v /

hands

(3)

This gives a cubic equation for the energy, ^cfA The
solution relevant to the conduction band can be written

Ecik)=-
h-k-

2 m

2
1 + 4

h'k- J\iEr)

2mr Efi

where rric is defined at A" = 0 and is given by

1/2

m
JTlc

=— |(5|/;.,|z)|
E,r

m E,,iE,,+ A)

where A is the spin-orbit splitting of the valence band.

The function f\(Er) is equal to unity at Ar = 0 and is

weakly energy dependent

E,| + ^ Erik)+E,, + IA

£,, + fA Erik)+E, + A (6)

The density of states is obtained from (4) in the usual

way for spherical energy surfaces

AM(£, k)dk (7)

where A(E,k) gives the distribution in energy of the

level of wave vector A'. If the energy levels have negligi-

ble broadening, EfA^ is single valued: A(E,k) = 8(E-E(k))

and (7) becomes

piE) = ^k''
TT-

ilE

(Ik
(8)

To obtain the energy levels in a magnetic field we
have to solve the effective mass equation

P+-A
c

2m*
1 + I3^*S H -Er jl

/I.
= 0 (9)

where A= (1/2)H X r and /3 is the Bohr magneton.

The effective g^-factor, g*\ is energy dependent and

given by

'iErj)^2 + grU-
mi Er.j-E,iO)

(10)

valence
bands

where the contribution due to interactions with remote

bands is concentrated in the constant term gro and the

last term involves interactions with the three valence

bands. The solution relevant to the conduction band is

given by

E„^ = -

2

1+
Ê„ L

m
(2n+l) —7/3//

(4) where

(5)

1 1

mi
2m:.

1/2

(11)

m. m m rb m.

r' = 2 + firb-
2 m

mr 3E„+ 2A

Ea+U
E„:

(12)

(13)

(14)

Equation (11) provides a dispersion relation from

which one can calculate the density of states with ap-

plied magnetic field. The singularities which occur in

the density of states at A = 0 provides for well defined

optical absorption lines. Using such experiments one

can determine the parameters precisely.
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3. Determination of Parameters

In figure 1 we show experimental traces of sample

transmission versus magnetic field at certain fixed

photon energies below and above the reststrahl energy.

These samples are ~20/>i in thickness and reveal only

the strong absorption near hoic. Near the region huyro <
hv < hoji.o the sample is opaque due to high reststrahl

reflection. We see that the absorption in general in-

volves three peaks whose relative strengths depend

upon temperature. Simple arguments [1] show that the

high energy peak is associated with impurity transi-

tions, which we shall not discuss further here. The two

lower energy peaks are associated with fundamental

cyclotron resonance which is spin split due to non-

parabolic band effects. For hv > hojuj large broadening

occurs and the three peaks are not resolved. The ob-

served cyclotron resonance energies are plotted versus

magnetic field in figure 2. The solid hues are our best

fit of the nonparabolic band theory to the experimental

points. We found that we could obtain a good fit to the

lower energy part of the data if we ignored the points

above hv ~ 18 meV. A further indication of anomalous

behavior in this region is shown by the discontinuity in

the data on either side of the reststrahl region. This

anomalous behavior is due to polaron self energy ef-

fects and have been discussed in detail previously [6].

The behavior has been shown in more detail in experi-

ments involving interband transitions [8] and combina-

tion resonance [9]

.

In attempting a best fit to the data we found that the

splitting between the cyclotron resonance lines is in-

sensitive to the precise choice of the magnitude of g'

between values of 40-70. This uncertainty in the value

oi g' results in only a sUght uncertainty in the value of

m'f. obtained from the fit. We obtain a value m'f.=

0.0139m ± .0001m for the band edge effective mass in

InSb.

J3

O

CO

<

hf = 5.34 meV

\nu = 24.4 meV

hi/ = 15.25 meV

16 24

MAGNETIC FIELD (kG)

32 40

8 12 16 20 24 28 32

MAGNETIC FIELD (kG)

36 40

Figure 1. Cyclotron resonance spectra observed in thin samples
(t = 20/x) at temperatures near liquid helium such that T2 > Ti.

Fl(;i'RE 2. Variation of cyclotron resonance absorption peaks with

magnetic field.

The solid lines ;:ive the theoretical predictions using m_'=0.139 and ^'= — 51.3.

Spin resonance experiments of Isaacson [7] for a

sample with n = 3.6 X 10'^ cm"-^ and H ~ 0.5 kG yield

an experimental ^-factor of± 51.3 ±0.1. Such a sample

would have a Fermi level I, ~ 0.3 meV above the band

edge and should yield a value of ^-factor very close to

the band edge value. To check this value of band edge

i-'-factor and to check the variation of spin energy with

magnetic field, we have observed and analyzed com-

bination resonance transitions which involve the transi-

tion Eu+ to £"]- (i.e., a cyclotron resonance transition

plus a spin flip). The shift of the resonance peaks with

magnetic field is shown in figure 3 and compared to cal-

culations of the energy £")_ — Eo+ according to eq (11).

Excellent agreement between experiment and theory

is obtained for magnetic fields less than —27 kG. We
conclude that the value of —51.3 for the band edge fac-

tor is a good one and that eq (11) faithfully predicts the

spin ene^-gy for fields up to 27 kG. The discrepancy

above 27 kG is easily attributed to polaron self-energy

effects.

4. Further Tests

Having determined the parameters m^, andg' we are

in a position to calculate the density of states. However,
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35

H (kG)

Figure 3. Variation of combination resonance peaks with magnetic

field.

The solid line gives the theoretical prediction.

70

10 20 30 40

H(kG)

Figure 4. Shift with magnetic field of the absorption peaks in-

volving cyclotron resonance harmonics and phonon assisted

transitions.

The desifinations describe the excited stales (Landau quantum number, number of
photons). The solid lines {live the theoretical jiredictions.

we first apply some further checks on the values ob-

tained.

Experimental results using a thick sample t ~ 2mm
and n ~ 1.4 X 10''' cm have also been obtained. This

sample thickness permits the observation of weak ab-

sorption on the h\^h energy side of the fundamental

cyclotron resonance. Forhv=^ 18.75 meV the observed

absorjition peaks are si)aced ap|»roximately equal in

1///. In tiij.ure 4 we see that the |)eaks observed at 18.75

meV conver<ie \o hi> = 0 ntH = 0. These i)eaks involved

transitions from the same "rround state to hij^her and

hiirher Landau levels (i.e.. cyclotron resonance har-

monics). Additional peaks are seen which converjie at

// = 0 to an enerfiy about 24 meV, which is close to the

known value of the LO phonon energy. These transi-

tions ajjparently involve the emission of an optical

phonon. The transition energies for several of the

cyclotron resonance harmonics have been calculated

using eq (11) and the band parameters determined in

section 3. These results are shown as the solid lines in

figure 4. Also shown are the calculated cyclotron

resonance harmonics shifted by 24.4 meV. A good

agreement between experiment and theory is obtained.

The identification of the transitions involved is con-

firmed and the fit to the data gives a value of 24.4 ±0.3

meV for the longitudinal optical phonon energy. The
agreement between the experimental cyclotron

resonance harmonic transition energies and the calcu-

lated values supports the use of eq (11). and the

parameters previously obtained to calculate the mag-

netic energy levels to energies —80 meV above the

band edge.

n (cm"')

<3 15 15 15 16 16 16
10 10 2 X10 5 X10 10 1.5 X10 2xi0
n I I I

\ 1 1

1

52

50

48

a.
H
V

46

44

42

40

0 2 4 6 8 10 12 14 16 18 20

C (meV)

Figure 5. Comparison of experiment and theory for variation of
spin resonance with Fermi level for InSb.

The experimental points are the data of Isaacson [7| for H — 12.5 and ^ 500 ti. The solid

line is a composite for the theoretical predictions at 0.125. 0.500. 3 and 20 k( '>.
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According to eq (11) the spin energy depends upon

Landau quantum number. In a spin resonance experi-

ment one can select the Landau levels whose splitting

is observed by doping the sample and moving the Fermi

level through the Landau levels. Such a spin resonance

experiment has been performed by Isaacson [7]. His

data are reproduced in figure 6 where the Fermi energy

has been calculated from the carrier concentration with

the help of eq (11). The spin energies are expressed in

terms ofgexp which is defined at resonance as

where hvsR is the photon energy used in the experi-

ment. The sohd hne in figure 5 is our prediction of the

variation of gexp with Fermi level. Excellent agreement

is obtained for ^ $ 8.5 meV, which confirms the ability

of (11) to predicts the spin energy. A discrepancy of

~ 5% occurs at ^ ~ 14 meV, but this may be an impur-

ity effect.

5. Density of States

The dispersion relation for the conduction band

deduced from these experiments is shown in figure 6.

The dashed curve is the result for a parabolic band with

180

160

140

I 100

UJ

60

40

20

K (cm-^)

1.5 2 2.5 3 3.5 X 10®II 1 / 1 y
/

/

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
//

- //
//

_ //
1J

' 1 1 1 1 1 1 1

10 12 xlO,12

(cm"^)

Figure 6. The conduction band dispersion relation deduced from
these experiments.

The dashed hne gives the parabohc band resuU using band edge value of effective mass.

an effective mass equal to the InSb band edge mass.

The corresponding density of states curve is given in

figure 7, where again the dashed curve is the result for

a parabolic band. The InSb density of states increases

more rapidly than for a parabolic band and shows a

marked departure for energies greater than ~3 meV
above the band edge. In figure 8 we show the density of

states for InSb in a magnetic field of 20 kG. The dashed

curve gives the results for a simple parabolic band. At

higher energies the peaks in the density of states crowd

together and increase in magnitude due to the increase

in effective mass and decrease in effective g-factor.

For a parabolic band the cyclotron resonance joint

density of states has a singularity at the cyclotron ener-

gy h(i)c, and is zero elsewhere. For a nonparabohc band

this behavior is modified as can be demonstrated

qualitatively using eq (11). For these purposes we sim-

plify (11) by setting /i =/t = 1 and neglect spin by

setting g' = 0. The cyclotron resonance energy [hv) is

then given by

2hv f 4
1 +— m r-ki

2m [. _,

1/2

1 +
m

2m ^

(15)

E ( meV)

18X10 -

VilmeV^)

Figure 7. Density ofstates versus energy.

The dashed hne gives the parabolic band result.
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Figure 8. Density of states in a magnetic field of 20 kG for InSb.

The density of states is also shown for a parabolic band and for H = 0.

100

From (15) one obtains the cyclotron resonance joint

density of states as given by

No { dhv
Pjihv) =

477-' \dk
(16)

where Np is the Landau level degeneracy, which is in-

dependent of energy.

"'^
K^k\ En m
Im^ 4 m^.

eq (15) can be approximated by

hv{k,)^hv{{))

2

E
mi

'.I 2m

c

Ell
1 +

m
m

(17)

The derivative is given by

dk.

hv{Q) 7
E„

1/2

[hv{Q)-hv{k,)'^ 12
(18)

The variation in the joint density of states with energy

is given principally by the factor [hv{0)= hv(kz)yi^. The

derivative goes to zero at hv{kz) = hviO) giving a singu-

larity in the joint density of states. Therefore, the peak

observed in cyclotron resonance absorption cor-

responds to the Landau level separation at kz= 0. In ad-

dition, the joint density of states is nonzero for energies

less than hv{0), in contrast to the case with a parabolic

band.

In figure 9 we show a computer calculation of the

joint density of states for InSb, at // — 20 kG. This cal-

culation is based upon eq (11) without simplification

using the experimentally determined parameters. The

calculation displays the expected qualitative behavior.

A singularity occurs at hv = hv{0) and the density at

states is nonzero for lower energies. A second singulari-

ty occurs corresponding to = 0 for the higher energy

spin state as seen in the experiments. Indeed, addi-

tional singularities corresponding to higher Landau

quantum numbers for the ground state occur at lower

energies than these shown.

The infrared absorption is proportional to the density

of states multiplied by a factor involving the population

of the energy levels as given in the lower part of figure

9. In the computer calculation, the Fermi level is ad-

justed to give the correct carrier concentration for the

given magnetic field and temperature.
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Figure 9. InSb cyclotron resonance joint density at states com-
puted using eg (11) and the experimental parameters.

It is to be noted in figure 1 that the experimental ab-

sorption at 20 kG is asymmetric being sharper on the

low magnetic field side which is consistent with the

nonparabolic density of states. From figure 9 we ob-

tain a half width for the absorption at 25 K of about 0.1

meV. This corresponds to an experimental half width

of ~0.3 meV deduced from figures 1 and 2. Therefore,

it is apparent that additional broadening mechanisms

are present. The techniques for taking the broadening

mechanisms into account is discussed in the accom-

panying paper by B. Sacks and B. Lax. The broadening

mechanisms remove the singularity in the joint density

of states, but a peak still should occur at = 0, as in-

dicated by the behavior of the single particle density of

states calculated by Kubo [ 13]

.

6. Discussion

The density of states near the conduction band edge

of InSb, both with and without a magnetic field, have

been obtained from dispersion relations. These disper-

sion relations are based on a nonparabolic band theory

and the values of band parameters and g'

determined by several intraband experiments. These

dispersion relations are found to hold to within 5% for

conduction band energies to —80 meV above the band

edge. Presumably, the corresponding density of states

are also good to this accuracy.

It is interesting to inquire whether the remote band

terms llnirb and grb in eqs (12) and (13) are necessary to

explain the experimental data. An examination of the

equations shows that the andg' are not independent

parameters in the absence of the remote band terms.

We have, however, experimentally determined m'^ and

g. essentially independent of each other. We find that

equations (12) and (13) can be reconciled with the ex-

perimental results only if we assume ^,6 ~ O.lg' and

{mrb)''^ — 0 or (nirfi)"^ = — .l(mp)"' and grs = 0, or some

combination of nonzero values of these. Therefore, the

remote band interactions are significant.

We have shown that the various intraband

experiments are consistent with one another. The

transition energies calculated from a single dispersion

relation agree well with experiments. This consistency

does not appear to apply to intraband versus interband

transitions. Pidgeon and Brown [10] type of analysis of

interband absorption [11] gives a value of m'^ that is

7% higher than the intraband value. The source of this

discrepancy is currently under investigation.

A simple theory of the intraband absorption in a mag-

netic field would predict a single absorption line at the

cyclotron resonance frequency. Most of the additional

transitions we observe can be explained in terms of

various band interactions. However, there is currently

no explanation which is consistent with experiment for

the cyclotron resonance harmonics.

In calculating the density of states from the disper-

sion relation we neglect energy level broadening. For//

= 0 the effect of energy level broadening on the density

of states would be most serious at the band edge where

a tail on the density of states can be expected that ex-

tends into the energy gap. The nature of this tail has

been the subject of much theoretical work, but defini-

tive experiments are very difficult [12].

34 35

E (meV)

Figure 10. Magnetic density of states for'iui}^ = hwi^o.

The dashed curve gives the unperturbed result. The solid curve shows the modification

in the density of states by electron-phonon interaction predicted by Nakayama [5].

429



In the presence of a magnetic field, collision

broadening can be expected to smooth out the sharp

structure in the magnetic density of states shown in

figure 10. The problem of energy level broadening of

Landau levels has been treated theoretically by Kubo

et al. [13] who find significant departures from a

theory based upon a simple Lorentzian broadening of

each level associated with a value of kz. Collision

broadening of Landau levels is also discussed in the ac-

companying paper by Sacks and Lax.

The experiments indicate the presence of an anoma-

ly in the density of states when huic ~ hcoto- In figure 10

we show how the density of states obtained from the

dispersion relation is expected to be modified by the

electron-phonon interaction. The dashed curve is the

result of the same calculation used in figure 8 for lower

magnetic field. The solid curve gives the modification

of the density of states predicted by the theory of

Nakayama [5]. The n = 1 Landau level is split and a

zero occurs in the density of states at an energy cor-

responding to ho}iM above the lowest Landau level. The
splitting in the density of states has been seen in inter-

band absorption [8] and combination resonance [9]

and is consistent with the fundamental cyclotron

resonance results. However, it remains a challenge to

experimentally observe the detailed structure in the

density of states shown in figure 10.
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Cyclotron Resonances of Holes in Ge at Noncentral
Magnetic Critical Points

J. C. Hensel and K. Suzuki

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974

The anomalous, "quantum" cyclotron resonance spectrum of holes in the degenerate valence

bands of Ge is analyzed utilizing the concept of a critical point in the magnetic joint density of states.

Contrary to previous work done for kn = 0 (where kn is the hole wave vector along the magnetic field) our

results indicate that cyclotron resonance lines originating at critical points away from /c/y = 0 are respon-

sible for most of the prominent features of the observed quantum spectrum in Ge.

Key words: Cyclotron resonances; germanium; joint density of states; Landau levels; magnetic;

magnetic critical points.

1. Introduction

At low temperatures and high magnetic fields (i.e.,

hoijkT > 1 where w = eHnlmc) cyclotron resonances of

holes in the degenerate valence bands of Ge exhibit a

complex "quantum" spectrum, observed first by

Fletcher [1]. According to Luttinger and Kohn [2,3]

this anomalous behavior results from the deviations in

spacing between the valence band Landau levels bear-

ing low quantum numbers from the uniform intervals

characteristic of the higher "classical" levels. The ex-

ceptional complexity of the resultant spectra observed

presents a formidable challenge in their interpretation.

Earlier attempts [4,5] to analyze the hole quantum
spectra in Ge have achieved only limited success.

In the present work we have made a detailed analysis

of the quantum spectra in Ge utilizing the concept of a

critical point in the magnetic joint density of states.

This may be understood as follows.

A cyclotron resonance absorption Hne due to transi-

tions between two Landau states n and n' can be in-

terpreted in terms of a critical point in the one-dimen-

sional joint density of states ideim-ldkH)^^ where €„„' is

the energy between Landau states and kn is the wave
vector along the direction of the magnetic field. This

quantity plays, by analogy, the role of the three-dimen-

sional joint density of states of the interband optical

transitions but with two (transverse) degrees of freedom

quantized by the magnetic field. This analogy for mag-

netic transitions has no particular utihty for simple

bands; however, in more complex situations such as the

degenerate valence bands where the Landau states de-

pend upon kn in a complicated way, the concept of a

critical point becomes a highly useful one. Here the ex-

istence of a critical point and, hence, a peak in the

spectrum at points away from kH = 0 becomes possible.

An investigation of the behavior of €nn' as a function of

kh locates the critical points as well as predicts the

cyclotron resonance hne shape from the nature of the

critical point. Contrary to previous analyses [4] done

for kn = 0, our results show that cyclotron resonance

lines originating away from kn = 0 are responsible for

most of the prominent features of the observed quan-

tum spectra in Ge.

We illustrate these concepts by way of an example

using the quantum spectrum in Ge for Ho|| [111] •

2. Energy Levels

The Landau states for a hole in the degenerate

valence band of Ge are given by the Luttinger effective

mass Hamiltonian [3],

k — '

m

-2y,({JJy} {k,ky} + cp)

+ •Ho + ^g(J^^//ox + cp)
I

(1)

where
1 €

k = - V+- A.
I c

(2)
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Here,7j, and J, are the components of the angular

momentum operator }(J = 3/2) referred to the cubic

axes; "cp" denotes cycUc permutation; the quantities

{JxJy}, etc. represent the symmetrized products, i.e.,

{JjJy} = ll2(JxJy + JyJx); and A is the vector potential

of the external magnetic field Ho.

For simplicity we represent the hole Landau levels

by a conventional energy level diagram at kn = 0; this

is shown in figure 1 for the low-lying Landau states ob-

tained by diagonahzing eq (1) for Ho|| [111]. (It should

be emphasized that in the analysis of the experimental

spectra the assumption A:w = 0 is not made.) The

values of the parameters used are: yi = 13.38, y>

= 4.24, 73 = 5.69, k = 3.41, and q = 0.06. The in-

verse mass parameters y'l, y>, and 7.3 have been ob-

tained from precision cyclotron resonance experiments

[6] in uniaxially stressed Ge; and the parameters k and

q, which are related to the hole ^-factor, are derived

from combined resonance experiments [7]. Through-

out the present work these values will be taken as

"fixed"; therefore, the theoretical analysis in section

4 will involve no adjustable parameters.

In figure 1 we classify the Landau levels (at kn = 0) by

the scheme [8] (A'^,,, K"). Two quantum numbers are

60

50 -

^ 3 ^^0

20

2*

9s^
0-

97

8e^

2,^ 5,21

,
<^ 3^

42

0 .21 0-
°0 3, —

2 -21

Fl(;URE 1. Valence band Landau levels in Ge of = 0 for llo\\[lll]

calculatedfrom the Hamiltonian in Eq. (1).

As cuslomary. the sign i)f the energy is inverted so that the levels are plotted in an
"electron" sense. The energy levels are labeled by the scheme (N„, K") discussed in the
text.

necessary to uniq_ely identify each eigenstate: A', the

Landau quantum number for the envelope function,

and its subscript n, which is required to differentiate

among the four states of the same N. The quantum

number K {K = 0, . . . p — I) embodies the i^-fold rota-

tional symmetry of the crystal about the direction of Ho
(z^=3 for Ho

II
[111]). TT is the parity of the envelope

function.

Using the quantum numbers {Nn, K'") it is possible to

express the cyclotron resonance selection rules [9] for

Ci _L Ho, where €i is the microwave electric field. If we

symbolically categorize the successive symmetry

breaking interactions

where Sfn is the axial Hamiltonian; ^\ represents the

kn terms; ^2 contains "warping" terms proportional to

72 — 73 (or q); and Jf's combines warping and kn

interaction — we get a hierarchy of selection rules for a

linear polarization of Ci as follows:

t/C 0

l/C 2

^n, 3

AA^=± 1, A7r= yes, AA:= ± 1

A7v=±i aa:=±i

A7r= yes, AA."=± 1

A/(:-±i

In general the selection rule A/C = ± 1 [understood to

mean A/^= ±l (mod v)\ is the only strictly rigorous

selection rule; the extent of the violation of the other

selection rules depends upon the magnitudes of the

symmetry breaking terms in the Hamiltonian, i.e., the

magnitudes of 72 — 73 and ku-

3. Experimental Details and Results

The cyclotron resonance experiments were done

under "quantum" conditions at 54,000 Mc/s and at both

4.2 and 1.2 K on ultrapure samples of Ge. The above

temperatures were strictly maintained by immersing

the samples directly in the liquid He bath. The cavity

spectrometer (TEioi rectangular mode) which employs

a superheterodyne detection scheme was operated at

very low power levels, 10~^ to 10~^ watts, to avoid

cyclotron resonance line saturation. Also, for this same

reason the samples were mounted in the cavity in a re-

gion of low microwave electric field. Carriers, both

holes and electrons, were generated in the Ge sample

by illumination with white fight. To minimize fine

broadening from high carrier densities the fight intensi-

ty was deliberately reduced by neutral density filters.

The magnetic field was measured using field markers

from proton NMR signals.
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The complexity of the hole quantum spectrum is

evident from the top two traces (a) of figure 2. These '-

cyclotron resonance spectra were taken for Ho||[lll]

with linear microwave electric field polarization

ei ± Ho. The positions of the hole lines are indicated

by their effective mass values. (In taking the spectra

in figure 2(a) an integration time constant of 0.1

sec was employed; at higher gain and with longer time

constants many of the weaker lines can be more clearly

discerned.) At 1.2 K only a vestige of the classical hole

hnes at m*lm = 0.0421 and 0.374 remains; instead the

cyclotron resonance intensity is redistributed among

the twenty or more quantum transitions shown. As ex-

pected, the hole spectrum displays a marked depen-

dence on temperature. The increase in intensity of

some lines upon going to 1.2 K identifies them as

originating from the lowest-lying Landau states.

In contrast to the electron lines, which have a simple

Lorentzian shape characteristic of broadening by a

relaxation time process, the hole lines are frequently

asymmetric and of varied widths as expected for kn-

broadening. In a few cases the shapes of the hole hnes,

in particular the fine at m*lm = 0.250, display strain

broadening and therefore, depend to some degree on

the choice of sample. For certain samples a line at

m*/m = 0.264 appears as a partially resolved shoulder.

4. Comparison of Experimentaf Results and
Theory

The analysis of the experimental spectra was accom-

plished by computer diagonalization of the effective

mass Hamiltonian in eq (1) using the values of the

parameters given in section 2. The infinite secular

determinants generated by the Luttinger Hamiltonian

with "warping" (terms proportional to y-z — 7,3) and kn

terms simultaneously present were truncated at a total

dimension of 69 X 69 (i.e., 3 dets. of 23 X 23), the smal-

lest size which gave satisfactory convergence of the

eigenvalues for all relevant eigenstates. The intensities

of all possible transitions were calculated by computer

and integrated over kn to yield synthesized quantum

spectra. The /rw-broadened resonances were assumed

to be composed of Lorentzian component lines having

a width defined by the scattering time t= 2.7 X 10"'"

sec [10]. The results calculated for r=4.0 K and Ho||

[111] are shown in figure 2(b).

The salient features of these spectra can be in-

terpreted by using the aforementioned principle that

maximum stationary contributions to the integration

occur at critical points in the magnetic joint density of

states. This may be seen by referring to figure 2(c)

which shows m*lm for each transition plotted versus

= kh l\^eHolhc, a dimensionless form for kn- (The

transitions in figure 2(c) are labelled with reference to

the energy levels at kn — O given in fig. 1.) The "mag-

netic" critical points for the transition curves in figure

2(c) are the points of zero slope

d{m*lm) _

We can categorize critical points as being either

"strong" or "weak" depending upon the curvature of

m*{i,)jm at the critical point. Nearly singular critical

points of sharp curvature have a low density of states

and contribute little to the integrated intensity. Conver-

sely, more or less "flat" critical points, which have a

high density of states, give strong resonances (all other

factors being equal). In passing we note that for an iso-

lated resonance the sign of the curvature dictates on

which side of the asymmetric A^-line the tail will fall.

Critical points must necessarily occur by symmetry

at ^ = 0 for every allowed transition; but many such

transitions in Ge exhibit "cusp-like" behavior at ^ = 0

and do not give lines in the integrated spectra even

though their "differential" intensity at ^ = 0 may be ap-

preciable. We note in figure 2(c) several clear-cut exam-

ples of isolated transitions having cusp-like ^ = 0 criti-

cal points—~lo 2i, 32 2i, and Ob 2i — none of

which show up as resonances in figure 2(b) [nor in the

experimental spectra in figure 2(a)]. Transitions 2o

3i, 3i
—^ 4), 43 —* 64, 84 65, and On 43 are of a similar

kind and, hkewise, give insignificant contributions to

the integrated spectra. It would seem then that a sub-

stantial fraction of the lowest "quantum" transitions

anticipated at ^= 0 do not materialize in the spectra.

On the other hand, numerous critical points off ^= 0,

the noncentral critical points, give strong peaks in the

line shape. In particular we note the secondary critical

point for 32 43, as well as critical points for many
transitions forbidden by parity at ^= 0, 2o Oo, 2i

—» 65,

64 ^ 64, 2i
—* 43, 42 ^ 64, and Oo 49, all of which con-

tribute strongly to the spectrum in the heavy mass re-

gion (m*lm > 0.2). In the intermediate mass region (0.1

< m*lm < 0.2) in figure 2(b) nearly all features result

from noncentral critical points. We should point out

that the line at m*lm = 0.125, the most prominent ex-

perimental feature in this region at 1.2 K, comes from

the noncentral transition lo 5^ (forbidden at ^ = 0).

Numerous other critical points for II, 9^ 0 contribute

many weak hnes in this region. [The "background" ab-

sorption beginning at m*lm > 0.15 stems from contribu-

tions from the two series of transitions labelled 0^1,
O'-^l', etc. throughout the range ^=2 to 5 (the upper

417-156 0 - 71 - 29



Figure 2. Critical point analysis ofthe quantum cyclotron resonance absorption spectrum ofholes in Gefor Ho\\[l 1 1 \-

Figure 2(a) shows the experimental traces for 1.2 K and 4.2 K taken at 54,496 Mc/s. In figure 2(b) we show the inte<:raled intensity of the synthesized quantum spectrum calculated for

4.0 K. Figure 2(c) gives the position of each quantum transition as a function of C,. a dimensionless form for i„. The transitions are labeled with reference to the energy levels at A-„ - 0 given

in figure 1. .^t large J the labeling shifts to the simple scheme / and /' as the bands decouple and the levels of the two heavy hole Landau ladders approach equal spacing.
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Figure 3. The k„ 0 ''differential" cyclotron resonance spectrum
computedfor 4.0 K.

limit of integration). As a point of interest, we estimate

that at 4.2 K, contributions from transition 0-^1 ap-

pear in the spectrum up to ^ = 6 which corresponds to

a value of A-// ~ 1.5 percent of the distance of the [111]

zone boundary.] From the foregoing we conclude that

the overall character of the spectrum is to a great ex-

tent dominated by the A'H-hnes.

This point is further emphasized if we look at the

"differential" spectrum calculated for ^ = 0 which is

shown in figure 3. Aside from the unrealistic Lorentzian

line shapes, this spectrum (with the possible exception

of the "light" holes) does not bear even qualitative

resemblance to the experimental spectrum in figure

2(a). The observed structure of the absorption in the in-

termediate mass region is almost totally missing in

figure 3; on the other hand the two strong peaks in the

differential spectrum at m*lm — 0.130 and 0.140 are

either absent or extremely weak in both the integrated

and observed spectra. In the same way, the differential

Hnes at m*lm = 0.33, 0.35 and 0.57 are "washed" out by

integration. Their near coincidence with experimental

lines is quite fortuitous as the noncentral critical points

actually turn out to be responsible for the observed

resonances. Finally, in the differential spectrum there

is no hint of the prominent experimental lines at m*lm
= 0.307, 0.408, and 0.445 which are clearly portrayed in

the integrated spectrum.

Some of the line assignments proposed here may be

convincingly verified by experiments [6] utilizing small

uniaxial stresses (along [111]) which gently decouple

the valence band and shift the quantum lines in a meas-

ured fashion. We briefly mention two results. First,

the resonance at m*lm — 0.250 (whose sensitivity to

strain broadening has been previously noted) is split

into a resolved triplet of lines by uniaxial stress in ac-

cordance with the structure suggested in figure 2(b).

Second, by observing the behavior of the lines m*lm =
0.125 and 0.133 in figure 2(a) under uniaxial stress we
confirm their assignments lo 54 and lo ^ 2i, respec-

tively. Careful comparison of the experimental and cal-

culated spectra, furthermore, strongly suggests that the

third member lo 5.3 of the "fundamental" triplet is

the weak line observed at m*lm — 0.117.

In conclusion, we add that analyses similar to that

above have been completed for Ho along the [001] and

[110] crystal axes [11]. In both of these cases, just as

we have seen for Ho|| [111], the synthesized spectra

faithfully reproduce nearly all significant features of

the experimental spectra in regard to position, inten-

sity, and line shape and further corroborate that the

dominant contributions to the cyclotron resonance

quantum structure stem from the noncentral critical

points.
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In this paper we derive a convolution integral expression of the optical density of states for k-con-

serving transitions between broadened Landau levels in crystalline solids. The convolution is between

single Landau level densities of states expressed in a form derived by Kubo. The expression includes as

parameters the reduced mass, magnetic field strength, and the strength of the broadening mechanism.

We present the results of numerical evaluation of this expression for various values of the parameters.

Our consideration is directed to dipolar transitions between the n = 0 Landau levels of the valence

and conduction bands, and we assume that the dominant broadening effects are intraband scattering

processes. This assumption is reasonable in view of the comparative intraband and interband lifetimes.

The resulting optical density of states function has an appearance identical to that of the single

band function, but with the frequency measured from the gap energy replacing the energy measured

from the band edge, the reduced mass replacing the single band mass, and a reduced broadening

parameter replacing the single band parameter. Our expression for this last parameter is shown to be a

consequence of a mutual consistency requirement between the single band and optical densities of

states, and this same requirement also leads to the reduced lifetime expression encountered in the more

conventional Lorentzian formulation.

Key words: Delta-function formulation of density of states; Green effect; k-conserving transitions;

Landau levels; laser semiconductor; magneto-optical density of states; optical densi-

ty of states; semiconductor laser.

1. Introduction

In this paper we derive a convolution integral expres-

sion of the optical density of states for k-conserving

transitions between broadened Landau levels in

crystalline solids. The expression includes as parame-

ters the reduced mass, magnetic field strength, and the

strength of the broadening mechanism. We present the

results of numerical evaluation of this expression for

various values of the parameters.

Our consideration is directed to dipolar transitions

between the n = 0 Landau levels of the valence and

•Research supported by the Air Force Office of Scientific Research to the Francis Bitter

National Magnet Laboratory. M.l.T. and the Joint Services Electronics Program, grant

AFOSR-68-1488 to the University of Cahfornia, Berkeley 94720.

**Formally with the Francis Bitter National Magnet Laboratory, M.LT., Cambridge, Mas-

sachusetts.

conduction bands, and we assume that the dominant

broadening effects are intraband scattering processes.

This assumption is reasonable in view of the relative in-

traband and interband lifetimes.

2. Single Landau Level Density of States

2.1 . Density of States in Delta-Function Formulation

We begin by observing that in general terms a densi-

ty of energy states for a quantum-mechanical system

can be expressed by the operator relation

p{E)=tT 8i^-E) (1)

where ^ is the appropriate Hamiltonian. This notation,

of course, implies a complete set of states between

437



whic li tile operator on the right side is sandwiched, and

the trace "sweeps" over this set. Equation (1)

represents a "counting" process.

The simplest demonstration of this formulation can

be carried out when the set of states used is the collec-

tion of eigenstates of the Hamihonian in the operator.

In the case of simple parabolic energy bands, the elec-

tronic eigenstates in the presence of a magnetic field

are the familiar Landau functions.

(//,, -/v"-p"'yV'''' (x-;ro (/.-.,) )//u(r)

where K"- is a normalizing constant whose magnitude

depends upon the magnetic field strength, (j),, is the nth

harmonic oscillator wave function, and Uo(r) is the cell-

periodic part of the Bloch wave function associated

with the band edge. (This form is not unique, but rather

is the result of the choice of the unsymmetrical Landau

gauge A = (0,Hx,0) to express the vector potential of

the magnetic field. We will use this gauge and its result-

ing wave functions throughout this work. All physical

results, of course, turn out to be gauge independent.)

The energies associated with these Landau levels are

given by

Zm,-

hV4

2m r

(n= 0,l,2,. . .)

(3.b)

for levels originating in the conduction and valence

bands, respectively, with the zero of energy taken at the

zero-field conduction band edge.

For the n —0 Landau level of the conduction band,

the eigenvalues are expressed in terms of A-j, and the

traces are readily converted to integrals over /, „ and k,,

leading to the well-known result

(2)

p{E) =tr b{^-E)

//., dk, (fi-kl 1

6 I

-—r+ - h(jL)r — E
,,,^

= „J-^ {2jTlLy) (27r/L,) \2m* 2

V /2m*\'/-

477-/- \ h V£-l/2^aj,.
(4)

where l'^ — (e///^c)"' is the square of the cyclotron orbit

radius.

It should be remarked that if the delta functions in

energy are replaced by Lorentzian distributions of con-

stant width hiT

1 hiT

^^^~^^~"rr[^-E)^ + h-^lr^

which, we note, can also be written as

(3.a) i 1

Im
1

TT -EY' + hVr- TT {^-E)-ihlT

(5)

(6)

then the density of states at any given energy is given

by the expression

piE) = R

'.nr

1^
E)-ihlT ^ttH-' VE-{ll2)fL0Jr-ihlT

(7)

The trace sums over the quantum numbers ky and k^ of

the Landau states. Thus the term "Lorentzian broaden-

ing" indicates that the density of states is the sum of

contributions at a given energy from the tails of

Lorentzians whose centers are distributed over the

whole energy range.

To give this result a physical interpretation, we can

consider that the perfect periodicity of the lattice is

slightly perturbed by the broadening mechanism, and
hence kz is no longer a good quantum number for states

at a single energy. In other words, eqs (3a,b) no longer

hold, and states with any given value of kz are spread

over the entire energy range in a Lorentzian distribu-

tion centered at the original value. Equivalently, we can

say that an approximation to the wave function at any

given energy is a linear combination of states of all

values of kz, with coefficients deduced from the

Lorentzian formula. For the density of states at the

energy of interest, we then count all the states that

enter the linear combination, weighted by their

Lorentzian coefficients. Summations of a related sort

will appear in subsequent sections of this paper. In ap-

pendix A the optical density of states is derived for

transitions between such Lorentzian-broadened sets of

initial and final states.

2.2. Expressions in Terms of the Resolvent Operator

In order to treat the effects of scattering processes

more rigorously, we must include in the Hamiltonian

the scattering potential, written in general as V. How-
ever, since the trace is invariant under the similarity

transformation that takes the eigenstates of the unper-

turbed Hamiltonian into those of the complete Hamil-
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tonian, we will continue to use the complete set of un-

perturbed Landau state functions in the calculations

that follow.

With the notation just introduced, the density of

states is written

piE)=tr 8{^o+V-E) (8)

We now wish to take advantage of the well-known

identity

1 P
lim ——-=—\- indix)

x+ i€ X (9)

as a means of expressing the 6-function in eq (8). Hence

I/tt
p{E) =tr Im lim

c"o ^o + V-E+ie
(10)

This in turn bears a close resemblance to an operator

called the Resolvent, used by Hugenholtz [1] and by

van Hove [2] in connection with nuclear many-body

theory, and introduced into semiconductor gal-

vanomagnetic theory by Kubo [3]. The resolvent of a

complex number, 5, is defined by

1
(11)

so that our density of states function can be written

p{E) =tTlm lim I, R{E+ie) (12)

The properties of the resolvent have been studied in

detail and are discussed in several places in the litera-

ture [4,5], so we will merely present the results rele-

vant to our needs and omit their rather complicated

derivation. Because we calculate the trace, we are con-

cerned only with the diagonal elements of the resolvent.

Specifically, the diagonal part of the operator R(s> is

designated by D(s) and is given by

1
D(s) = (13)

in the representation of which is diagonal. The ef-

fect of the perturbation is contained in the diagonal

operator G(s), given by a series expansion in powers of

the perturbation:

6 (5) ^ {V}^— {VD(s) V},I + higher order terms (14)

where {}rf indicates the diagonal part of the operator in

brackets in the same representation in which ifu and

D(s) are diagonal. Following Kubo, we make the ap-

proximation of discarding the higher order terms, and

we then relocate the zero of energy so that {V}fi — 0.

Then eq (13) is inserted into the right hand side of eq

(14) to yield an imphcit equation for G in terms only of

the unperturbed Hamiltonian and the perturbation V:

G{E+ i€)=-V
1

' + G-{E + i€)
V (15)

The solutions of this equation, i.e., the diagonal matrix

elements of G in terms ofE and the quantum numbers

of the states involved, can be inserted back into eq (13)

to yield the matrix elements of D(E + ie), also in terms

of E and the quantum numbers of the same set of

states. The fact that D(s) is diagonal removes one of the

two summations over intermediate states involved in

taking matrix elements of eq (15), and we are left with

(n. A-,,. k,\G{E+ie)\n, ky. A,) = ^
ii',Xn.k

lin.ky.k. V n\ ky. a: )|2

E,{n\ a;, A;) + («', a;, k',\G(E + ie) n'ky, a;) - {E+ie)
(16)

A simple solution of eq (16) for G(E + ie) can be ob-

tained in cases where the perturbations Fare of the fol-

lowing three types: the first and simplest one is the

delta function potential, which corresponds physically

to a highly localized or short range force acting to

scatter the carriers. We will assume their distribution

to be random throughout the sample. The second per-

turbation is the deformation potential as related in par-

ticular to the acoustic phonon density— it is an impor-

tant source of scattering at moderate and higher tem-

peratures. The final type of perturbation to be treated

is an example of a long range force, namely the attrac-

tive screened Coulomb potential. This is an approxi-

mate representation of the effect of a charged or

polarized impurity site on an electron in the conduction

band or hole in the valence band. We hmit ourselves at

this point to describing the method of solution and

proceeding with the results — the actual calculations for

the three cases are carried out in appendix B.

The squared matrix element for each of the three

potentials mentioned above is shown in the appendix to

be independent of kz and kz' and to depend upon Ay and

ky' only in the combination (Ay' — Ay). The energy of the

unperturbed Landau levels, £"0, depends only on n' and
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A;', but not on A',/'; and because of the (A,y' — Ay) depen- which is independent of A,/. Therefore, eq (16) can be

dence in the numerator, eq (16) lias a sohition for G rewritten as

{n\(;{f:+ i€)\n)
47T- E, ( a: ./;') + 6' [E + i€) ~ {E + le)

17)

where the A,/ integral contains the specific information

about the potential responsible for the scattering. From
the results given in the appendix, we see that the Ay

integral can be expressed as

1

27r/
(18)

where JF is a scattering constant with dimensions of

(energy)- X (volume) and / is the cyclotron orbit radius.

Using eq (3a) or eq (3b) to express E{{kz'. n), the kz'

integral is elementary and yields the result

C„is)
W

[(n'+i)/ia)c+6'„'(5) -s]'/2

m ' 1/2

(19)

A final simplification, based on the assumption that

the dominant scattering processes occur between

states within a single Landau level, allows us to sup-

press the summation over n' . We focus our attention on

the 7? = 0 level; and to complete the solution for G and

for the density of states, we adopt the following nota-

tion:

conduction band (20.a)

valence band (20.b)

^{s — ll'2 hojr

U-(-^;;-i/2 hojr

/3»
2m^\'/2

fJi = C, V (21)

In each case the quantity e denotes the energy of in-

terest as measured from the appropriate Landau level

edge. With this notation, the equation for G, (19),

reduces to

G = -aC-e]-'l-' (22)

from which follows that

G''-€G'-C'^0. (23)

Solution of this cubic equation is straightforward, and

G has the following three possible values:

c,(.,«=|+{/g+f+i;V'lf+f+i/l?+f-«v/|^-^f

27 2 W27 4

(24)

(25)

In order to choose the correct solution, we impose

the following two conditions: G must approach zero as

^ approaches zero, since the density of states must ap-

proach the unperturbed form under that condition; G-

must be a solution of (22), the equation from which the

cubic equation was obtained. The first condition

eliminates Gi(e,^). The second condition, which can be

re-expressed as the requirement of a positive density of

states, ehminates G3, the complex solution with nega-

tive imaginary part.

Finally, in order to obtain the expression for the den-

sity of states function, we return to our original form,

eqs(12) and (13):

p(£)=Im tr Urn - R{E + ie)
e -0 jj-

(12)

I/tt

11^ E ^,+ G{E+ie)-{E + ,e)
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As long as the summations can be carried out under or A^, the result is directly obtained from two elementa-

the condition that G(s) does not depend upon either A y ry integrals as

p(e)=Im lim--^(|f
V-e+r;

- Im lim — /3 ^
(26)

On the other hand, the equation for G itself, eq (22), is

1

Hence

C;(e)=-Hm/3r rr.V6-e

P(e) =---^ Im r;(e)
77 >f

(22)

(27)

The interesting form of the result is a direct con-

sequence of the approximations made in neglecting the

higher order terms in the original equation for G and of

keeping only the scattering terms within a single Lan-

dau level. The function p(e) is graphed in figure 1. Also,

we call attention to the summation process indicated in

eq (17); in form it is very much like the one in eq (7), ex-

cept that instead of summing over tails of Lorentzian

functions of energy, this summation takes place over

the tails of more complicated functions of energy deter-

mined by the imaginary part of G(E). These functions,

shown in figure 2, indicate the manner in which states

of a given value are distributed in energy by the scat-

tering process. This is an important consideration when

kz conservation is required in the transitions, and it is

discussed in the next section, where our method of cal-

culating the optical density of states is presented.

We would like to restate the results of this section in

terms of two functions whose definitions will be useful

in the subsequent section. The first one, a density of

states in e and A^, is given by

1

L^o(A,)+6'-e
(28)

so that

(e, k,)dk,^p(€). (29)

And the second function, a density of states in e, kz, and

ky, is given by

1 1

477 £o(A,)+G-e (30)
p(e, k,, ky) =

so that

p(e. A,,, ky)dy=p(e. /..). (31)

Figure 1. Density ofStates functions.
The dotted line indicates the unbroadened case; the thin line indicates the l.orentzian

broadened case, and the thick line indicates the case considered in this paper. The enerjiy

scale is in units of

11 11 /V3

Figure 2. Energy-Dependent Distributions ofk^ states.

The numbers atop the peaks stand for normalized values of A-^ The arrows represent

photon energies.

Before going on to develop the optical density of

states integral, we would like to examine briefly some

of the properties of this single Landau level density of

states.

2.3. The Density of States Function: Characteristics and

Approximation

To begin with, we write out the function explicitly,

using the result given in eq (25),

(32)
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It is shown as a CuiKtion of the iiormahzed variahle,

e/^-''', in fijiure 1. The dependence of the value of this

function on niajinetic field, contained in the parameter

^, is quite complicated; and unlike the l.orentzian-

broadened case, it varies over the range of e. We will

show the explicit dependence on H in three regions

shortly— here we remark only that the dependence is

weaker on the low energy side and grows stronger with

increasing energy.

Unlike the Lorentzian-broadened density of states,

whose peak is shifted, this function peaks at exactly the

value of the energy variable e at which the unbroadened

functions become singular, i.e., at e = 0. This can be

readily established by differentiation. The value of the

function on resonance can immediately be calculated

from the above equation, by letting e = 0, and the result

is

/•I

P
\ 1 Vs Vs B-

(33)

We call attention to the dependence of the peak height

on magnetic field. In this region of e, the height goes as

H'^l^^ since jS is linearly proportional to//.

We next examine the high energy side of the func-

tion, in the region where e ^ It is convenient to

rewrite eq (32) as follows, in terms of e and the small

dimensionless quantity ^/e^'^:

p(e)
1 1 V3 6

77 r 2 3

^V27 1 / i

-:m-2.
(34)

If only the terms under the radical sign up to first equation is simplified to

order in this dimensionless quantity are retained, the

, , 11 V3e
(35)

and the cube roots can be expanded to yield the final expression

^^^^
77 r 2 3

^V27
3e-'/-

p/27
3e--'/^

1 1 V3e '2^V27"
3^3/2 77

/3
rl/2

(36)

where we have used the relation I, = fiW to obtain the

final line. This result is exactly the same as eq (4) for

the unbroadened density of states. Thus, in the limits

of very high energy or of vanishingly small broadening

parameter, the broadening density of states equation

we have presented in this chapter approaches the un-

broadened result, as does the Lorentzian-broadened

case we have also considered. At these values of e, the

function is linearly proportional to H.

However, it is on the low energy side of the peak that

the distinguishing features of this form appear. First, as

shown in the figure, the function vanishes for values of

energy less than or equal to e= (— 3/"^ ^2/3) show
this from the equation, we note first that the terms of

G-zie) (eq (25)) not multiplied by i must be real for all

positive and negative real values of e. This is true since

whenever the square root under the cube root sign in-

troduces an imaginary part, the complex terms are the

sum of a number and its complex conjugate. Then, in

the terms multiplied by (iV3/2), as soon as e becomes

equal to or less than (
— 3/"^^^^^'^), these terms become

the difference between a number and its complex conju-

gate, hence imaginary. And, multiplied by (tV'3/2), they

also give a real result so

Im 6(e) =0
for

Let us now examine the function in the vicinity of e

= €(). It turns out to be convenient, again for purposes of

expansion, to rewrite the density of states equation in

somewhat different form. By recognizing that the ex-

pressions under the cube root signs are perfect
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squares, we can rewrite pie) as

pie)
V3 1 1 /A-

2 TT ff' \2
1+, 27^' 1 + 4- m"" (38)

When e ~ e^, the quantity in the square root is small and inserting the resulting expression for e into the

compared to unity and the above equation can be ap- previous equation, we obtain the result

proximated by

pie)
V3

j_ J_r^
2 77 r 2^/-'

4 Me-
3 V 27^-^

1 (39)

This equation is to be expanded around €= €(». Defining

Ae = e-il^^ (40)

pie)
/ V3 J_ 4 / 4

V 2^ W 2^/ 3 V 27^

-27^-
+ 1;

(41)

and if we cube the quantity in square brackets and

keep only the lowest order term in the small quantity

Ae, the final result for the approximate density of states

in the vicinity of eo is

(V3 J_ ^\ 4

3 V ^2
^^^^ \2tt W 3\ r'l^ ^~TrV3W

1 22/-^
13

1/3

Ae. (42)

Thus the density of states at the bottom of the

Landau level has exactly the same energy dependence

as an ordinary paraboUc band in the absence of a

magnetic field, but with a coefficient that is many
times larger and depends not only on the effective

mass but also on the magnetic field and the broadening

parameter. In this region the magnetic field depend-

ence is weaker than in either the peak region or the

higher energy region, being proportional here to H^^^.

However, a numerical computation shows that with

typical values of W and /3, this parabolic form is a

very good approximation to the complete expression

all the way from the bottom of the Landau level at

e = eo to the peak at e = 0. This interesting result

enables one to use many of the available computa-

tional techniques for dealing with carriers in parabolic

bands.

3. The Optical Density of States

3.1. Formulation of the Convolution Integral

An optical (or "joint") density of states can be defined

as the number of pairs of quantum states separated by

a given energy difference hw and joined by a given

selection rule. A count of these pairs is obtained as the

product of the density of initial states times the density

of final states to which transitions are allowed by the

selection rules. For the Landau states expressed by eq

(2), the appropriate quantum numbers are ky, k^, and e.

It is important to reiterate here that, because of the

broadening, there is no longer a one-to-one correspon-

dence between kz values and energy values. In counting

pairs of states we must therefore sum over energy and

momentum variables. Nonetheless, we can consider in-

terband transitions that conserve momentum and ener-

gy simultaneously, and the optical density of states for

these transitions is expressed in the following manner:

pifio}] p,i{E„, k;:ii, k,iii)pi{Ei, kzi, kyi)

X8{Eii — Ei — ficD)8{ kyu — kyi)8( k,„ — k^i ) X d€„d€/dkyudkyidkz„dk.zl (43)

where the subscripts u and / stand for "upper" and

"lower," respectively.! The delta functions assure ener-

gy conservation and momentum conservation; the

' The subscripts u and / can be considered interchanjjeable with c and for "conduction"

and "valence," respectively.

latter arise from the dipole matrix element between the

Landau wave functions.

We can begin to simphfy this expression by perform-

ing the integrations over kyu and kyu which removes one

delta function and then yields a coefficient proportional

to magnetic field in front of the remaining integrals.
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Further simplification is then affected by integrations

over A-/ and to remove the remaining two deha func-

tions. The resuh of these operations is the expression

{E„ - ficoJ.;)(IE„(lf:, (44)

The form of eq (44) can be recognized as that of a

convolution. And indeed an optical density of states sig-

l^(e„)

nifies precisely that, namely, the convolution of a final

density of states with an initial density of states, for a

given value of separation hio between the two energy ar-

guments.

We are now ready to insert the actual expressions

derived in section 2 for the initial and final density func-

tions into eq (44) and carry out the remaining integra-

tions. Expressing the complex function 6'(e) as A(e) +
iT{€), and expUcitly taking the imaginary part indicated

in eq (28), we write

r(e,)

2m I,

\(e„) -e„] + P(e„)
2mi

+ A(e,) -e, + r^e,)

(45)

where e/ and e» must be measured from the respective

unbroadened band edges in order to correctly evaluate

the factors in the integral.

Before going further in the mathematical develop-

ment, we would like to consider the physical meaning

of this integration. This is best done by reference to

figure 2. There it can be seen how the kz states of both

the conduction and valence bands are spread into dis-

tributions over energy. Unlike the Lorentzian case, the

distribution function itself varies with energy, and two

important features are clearly evident. First, since the

numerator of the function, Im G(e) = r(e), goes to zero

at e = €(), all the distributions vanish at Co; this affects

low energy distributions quite strongly. The second fea-

ture is that for high energies, where G(e) is rather

slowly varying, the distributions again appear Lorentzi-

an, but the peak heights are proportional to [r(e)]~\ so

they gradually increase with increasing e, at a rate of

(e)+'/^.

We have drawn several arrows of equal length to in-

dicate direct transitions absorbing or emitting photons

of equal energy, but having different initial and final

energies from one another. The double integral

represents the summation for a given "arrow length" of

all values of kz at a particular upper energy and then the

sum over all allowed upper energies. The range of al-

lowed upper energies is determined at the low end of

the scale by the cutoff energy &)„, and at the high end

by the cutoff occurring in the other band. In other

words, for a given value offuo imagine the arrow to slide

on the energy diagram from where one arrowhead

touches one cutoff energy to where the other head

touches the other cutoff energy. In this manner, the

upper and lower Umits on the Eu integral are deter-

mined. The limits on the A-integral are taken as — to

+00.

3.2. Evaluation of the Integral and Relation to Single-

Band Density of States

For generality and convenience of application, we
have chosen to evaluate the integral in terms of the

dimensionless quantity obtained by normalizing all

energies to the upper cutoff energy eo«. Thus p{h(xi) is

rewritten

where:

1

47r/^ V h-

2m, I 1
dydEu

r(E,.) r{E,)

{y-^ + A{E„) -EuV + THE„) ME,)
a a

rHE,)

a'

(46)

Re

Eu

E,

m,,

mi

a"
h(t)

a = R.M

-Eg— eu

a"

Re

R,

(47)
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and where the gap energy. Eg, has the magnetically ex-

panded value Eg^^^ + h(Dc+ hoji-.

The integration over k can be carried out analytically

and is most easily affected by contour integration. The

pole pattern in the complex plane exhibits quadrantial

symmetry, with the poles occurring at

A. = ± VA(£„) +E„ + iViE,,)

A2 = ± VA(£„) +E„-ir(E„)

ks-

ki

'

A(E,) +E,+ ir(E,)

a

ME,) +Ei-ir(E,)
a

(48)

Our computer program began by reading in values of

Rm, Re, and ho) and evaluating the residues at the four

poles in the upper half plane. It then integrated the

residues over E,, between the appropriate Hmits, as

discussed above. In terms of our normahzed energies,

the limits on Eu run from — 3/^ up to 3/^ • Re-'+
(hoj — Eg)li^^l^. The result, as a function of ho), is in

each case a curve having the form shown in figure 1.

The general characteristics are the following: (1) The

function vanishes at a value oihot) given by

h(x) — Eg = — eo„
^

1 + (49)

(2) The function reaches a peak at hw — Eg — 0. Thus,

unlike the Lorentzian case, this peak occurs at exactly

the value of energy where the singularity occurs for the

unbroadened optical density of states. The height at the

peak is discussed below; (3) On the high energy side of

the peak, the curve diminishes and approaches the un-

broadened form proportional to {ho) — Eg)^^l^.

Since the appearance of the optical density of states

function is identical to that of the single band function,

we are led to ask if we can define an appropriate

reduced broadening parameter analogous to the

reduced lifetime for the Lorentzian case discussed in

appendix A. This is indeed possible, and in fact turns

out to be a direct consequence of the mutual consisten-

cy among the single band densities of states and the op-

tical density of states. Essentially the condition for con-

sistency can be stated as the requirement that the zero

of the optical density of states, which defines the ab-

sorption or emission edge, occur at an energy equal to

the separation of the individual band edges, and

similarly, that the peak of the optical density of states

occur at an energy equal to the separation of the in-

dividual peaks. We will show that a certain relationship

must exist among the density of states parameters, the

)8's and Ws, in order to fulfill these requirements.

The consistency condition is expressed as follows:

(50)6(1,

where the subscripts r, c, and v refer respectively to

reduced, conduction, and valence. Equation (37) allows

us to write this directly as

(i8,r,)
2/3 = (A.r.)^'/3+ (A-^r 2/3

(51)

Also, we recall from eq (33) that at the peak the den-

sity of states is given by

p^ipeak)
V3 fi^'

•Ztt Wji^
iix = c, V, or /) (52)

On the other hand, in terms of the familiar

phenomenological parameter t, the peak height of a

Lorentzian-broadened density of states is given by the

expression

PM(Lor)(peak) (53)

Experimental observation shows that the magnitude of

T is somewhat magnetic field dependent, decreasing

with increasing field. If we now equate the two expres-

sions for the peak height, we obtain the equation

'^^ ^ 2 3
(54)

and squaring it yields the very interesting result that

2 h

V3 T^"
^2/3^2/3 (55)

In other words, eo^ oc /i/T^, and substituting this result

into eq (51), we obtain the condition

1 11
Tr

+ (56)

This result, which holds at any value of magnetic

field, restates our condition for mutual consistency

among the set of broadened densities as the usual ex-

pression for the interband (reduced) phenomenological

collision time in terms of the single band times. In addi-

tion, eq (55) above would predict, at least qualitatively,

the kind of variation in the value of with variation in

magnetic field that has been observed experimentally.

A reduced broadening parameter, Wr, can now be

defined directly from the consistency condition, as fol-

lows: Inserting

1 /2m*\'/2
)Sr-

47r/2 V
(57)
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into eq (51) and doing some algebraic manipulation, we

find

WjP = (1 + K.u)'iWfP + 1 +
/?.,/

Wf' (58)

p(peak)
V3 /3f _ V3
271 WjP 2tt

2m,

I

Hence Wr depends only upon the individual Ws and

tlie mass ratio, and is independent of magnetic field.

And when W,- and W,- are replaced by their expres-

sions in terms of ySr, Co,. and eoo and the entire right

hand side inserted into eq (52) for the peak value of

p(fio}), we obtain

1/2

(1 + a:,,) '/•-(] + R, 1/2
(59)

Note that the factor in square brackets is the same as

that in eq (46). To confirm the hypothesis that the opti-

cal density of states is formally identical to the single

band function, we should be able to equate eq (59)

above to eq (46) with the integral evaluated for hu) — Eg,

for any chosen pair of values of Rm and Re- This has

been verified by our numerical integration, using values

of Rm and Re ranging from 1 to 20. Therefore, the pro-

perties of the function, as developed in section 2, apply

equally well to the optical function considered in this

section.

4. Conclusions

From the single Landau level densities of states in

the presence of energy dependent broadening, we have

developed a convolution integral to express the optical

density of states for transitions between Landau levels

across the energy gap. The form is identical to that of

the single band function; but with the frequency mea-

sured from the gap energy replacing the energy mea-

sured from the band edge, the reduced mass replacing

the single band mass, and a reduced broadening

parameter replacing the single band parameter. This

last parameter was shown to be a consequence of a mu-

tual consistency requirement, and this same require-

ment also leads to the reduced lifetime expression en-

countered in the more conventional Lorentzian formu-

lation.

The most striking contrast of these results with the

Lorentzian expressions lies in the vanishing of the func-

tions near the band edges. In this region, a paraboHc

approximation turns out to be valid, and this behavior

enables us to explain the functioning of the semicon-

ductor laser in the presence of a magnetic field. Further

apphcations of this formulation to other electron transi-

tion processes are currently being studied, notably the

Gunn effect.
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Appendix A

In this appendix we outline the calculation of the op-

tical density of states for transitions between Lorentzi-

an broadened sets of initial and final states. Inserting

Lorentzian functions centered around the energies

given by eqs (3a,b) into the integral expression (44), we
can write

.(-.^J//J//((^)%P,)((„..,%.n)
X b{Eu -El- ho))8iky„ - kyi)8{k,„ - kzi) X dkyudkyidk.udhidEudE, (A.l)

where F,, and F; are constants. order to remove the three delta functions and to yield

As in section 3, this expression is greatly simplified a coefficient proportional to magnetic field. Thus

by carrying out the integrals over Ei, kyi, k^i, and Ay,, in

L *L ((£„-||)>n) ' ((/r.-*. + £?+ff)%n)
<^-2'
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This double integral is most easily accomplished by

contour integration. Defining new variables

y = E„--
'-"III

e = ^; n + tg
Zm,

(A.3)

(A.4)

where m,- is the reduced mass, we find poles in the

upper half plane at

y=ir,i and y = — e + if/, (A.5)

so the remaining integral becomes

(r„ + r,)

y ... (r» + r,)

2m r

V 2m,-
Re

-fioj + Eg] + (r„+ T/)-

(A.6)
Eg

It is interesting to note that the sum over Lorentzians

in eq (A.6) is formally identical to the sum encountered

in the single Landau level density of states, eq (7). Also,

the resulting optical density of states is formally identi-

cal to the single level density, but with the energy mea-

sured from the band edge replaced by the photon ener-

gy measured from the band gap, the single band mass

replaced by the reduced mass, and the single band

broadening parameter F replaced by the joint broaden-

ing parameter V,, + T/. This last replacement is

equivalent to the replacement of the lifetime t by a

reduced lifetime r, given by

Tr Til Tl

Appendix B

(A.7)

In this appendix we will evaluate the matrix element
in the numerator of the right hand side of eq (16) for

each of the three scattering potential functions men-
tioned.

B. 1
. Scattering by Low Energy Acoustic Phonons

In examining the effect of lattice vibrations as the

source of perturbation, we take advantage of the mu-

tual independence of the various normal modes of the

lattice. We assume that the electrons couple to the vari-

ous modes separately and do not serve as a source of

mode mixing. Hence, we will treat the interaction

between the electrons and a particular phonon mode of

wave vector q and then sum over all the q's to obtain

the final resuh. Following Ziman [6] we indicate the

matrix element of the perturbation by

{\v\) = , ^\H,.,\n\,,^'} (B.l)

where ^pp, the electron-phonon interaction operator,

is given by

9^ —
(71 CI,

—
I/--'

(B.2)

where aq+ and aq are creation and annihilation opera-

tors, respectively, of phonons with wave vector q, and

V,i is the deformation potential operator on the elec-

tronic wave functions, Uq is the phonon density, i^q their

frequency and p is the mass density of the crystal lat-

tice.

It is clear that Uq must be equal to (^9+ 1) or [uq — 1)

for this operator to have nonvanishing matrix elements;

to be specific, let us carry out the calculation for uq =
nq — I, and then add the obvious extension to the other

case. Letting the phonon operators act on the phonon
density part of the state, we obtain

I
fin \'/- f-—^ e'" (B.3)

2.pVcVq) J

and then invoking the slow variation of the envelope

functions F and F' and the factor e'^
' compared to that

of the cell-periodic part of the Bloch function, we effect

the usual separation of the integral into a product of two

integrals. One is treated by deformation potential

theory [6] and leads to q times a constant, usually

called the deformation potential parameter and
denoted by £",/. The other integral is separable into

product of factors along the three cartestian coor-

dinates, with the two in the y and z directions resulting

in 8-functions that insure momentum conservation.

Hence

{\v\}--
hllr

2pV,Vq
qE,i8ik'y — ky — Qy) 6 {k'^ — k^ — qz)Jnn' {ky, qx,ky ) (B.4)
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where we have used the notation./,,,,' {k i„q,,-,k f/ ) in- [8.9] to indicate the intejzral alonji the AJ-coordinate:

troduced by Argyres [7] and now used by otlier authors

(/•//. y.--. /.;) -
I

dxx\>„{x-l-k,,)e"i.r-^\>,Ax-l-k\,). (B.5I

The matrix element corresponding to an initial state n,,'

= [Uq 4- 1) would then have (n,, + 1) in the coefficient

where the one just calculated has n,,.

We will make the further assumption of restricting

our attention to the case of low energy acoustical

phonon scattering. (This is of particular interest, and is

certainly justified, for the moderate temperatures and

narrow range of kinetic energies of the quasi-equilibri-

um carriers involved in the lasing process.)

Because these are low energy phonons, they are nu-

merous enough so that ~
n,i-\- \, which is consistent

with rewriting n.,, a Bose-Einstein factor, as follows:

1 kT kTkT

hvn hvi,q
(B.6)

1

where Vs is the sound velocity in the semiconductor.

Thus the form of the matrix element for a single

phonon mode to be used in eq (14) is

{\v\) " 8(k'-k, — qz)8{k'^—k^ — q^)Jnn'iky,qjc,ky) (B.7)

and the equation itself is written

II', k-lj, k'2 q

kTE-f, § ( a; - - g, ) 5( - - ) U „„ ( A ,, g.. . /.-;)

X
El,,;+G-s

(B.8)

where the coefficient has been multiplied by 2 to ac-

count for both the processes of absorption and emission

of phonons. The summation over q brings in the effects

of all the phonon modes. As discussed by Callaway

[10], no difficulty is introduced by squaring a matrix

element containing momentum-conserving delta func-

tions.

We now proceed with the summation in order to ob-

tain the expression for G: first the two delta functions

are eHminated by integration over and ky' ,
leaving

ii'.k'z 9,

f^TEfi \J„„'{ky, qjr-, ky + qy)\-
(B.9)

Since |y„„' 1 2 depends upon Ay only in the combination right hand side is independent of ky = ky + qy, and the

X — X{)(ky>, it is possible to have a solution for G which summation over qy need only involve the numerator. A
is independent of Ay; hence G in the denominator of the theorem due to Argyres [7]

,

dqxdqyj nn'J'tnm'if-^ll- Qx, ^'y+Qy)
(B.IO)

allows the result to be written immediately as section 2. The factor in parentheses is a specific ex-

pression for the factor we called Wjlirl'^.

_ / AT£f,\ 1 1

Pv';Lz)2ttI'^EI, ,.-\-G{s)—s B.2. A Random Distribution of Scattering Potentials

To insert a random distribution of scatterers into the

and a simple linear transformation of variable will now formalism we have been using, it proves most con-

lead directly to the form of the Ay integral mentioned in venient to deal with the Fourier transform of the poten-
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tial in computing its matrix element. Thus, at any point

r, the potential V(r) due to the A'^.v scatterers distributed

throughout the crystal at locations Rj is

V(r)=^ v(r-Rj) (B.12)

and its Fourier transform is given by

F(q) = V{r)d-h- (B.13)

from which an elementary transformation of variable

leads to

^(q) = ^^-^^^

J= 1

where V,- is the crystal volume and v(q) is the Fourier

transform of the single scatterer's potential. The matrix

element which appears in the numerator of the right

hand side of eq (14) has the following form:

X e
/(/; z (;c - kyV') Xe'^^^iPl {x - /,

;/-

)

(P

.1 ml ' { k y^ 1 ky) (B.15)

Before putting the specific expression for V(q) and us square eq (16) and average over the spatial distribu-

proceeding to evaluate the right hand side of eq (16), let tion of scatterers

q. q'

X6 k'^ , k y+Q'y8i.'^. J „„,(k y. qj.. k'y)J*„. ( ^ . g;.. k'y) (B.l6)

It is evident that only the product of Vfqfs has explicit that indicate spatial average. Using eq (B.14) and taking

dependence upon the distribution of scattering centers; account of the random distribution of the R/s. it im-

hence that is the only part included in the brackets { )« mediately follows that

(^~(q)^*(q')).v=^S^,^,|^5(q)l' (B.17)
c

and the average of the squared matrix element simphfies to

(|(f^('-))|').S=2 k y+,y8,'^, k ,„Aky, q,., ky)\-' (BjS)
q ^

which we proceed to insert into eq (14):

^Ns \v{il)nin.Aky,q,.,k'y)\'
^K^)- 2. Zj V2 FO, ,, +Qs)-s ?>k[,,ky+UyOk^.k, + ,, (B.19)

The two delta functions are then eliminated by summa- independent of ky. The result is the following expres-

tions over q^ and ky' , where the latter is carried out as sion:

in the two previous cases, under the condition that G is

/w \
\^{fl)\-\Jin,'{ky, qjc-, ky+qy)\- ,

6(5)=- ^ 2. 772 (l^- 20)

Before continuing, we would like to remark that up centers have been invoked. The result has only

to this point no properties of the particular scattering required that the distribution be random to allow the
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averagiiifi to yield the Sq.q.in (B.17). If'tlie scattering

centers were delta-function potentials ot amplitude

fi-iT^I-jiTm, the Fourier translorni I f</^ would be a con-

stant, and eq (B.2()) above would be identical to eq (B.9),

but with WI'IttI- given by {jiJ'IitI- h^a/m-). The delta

function can be considered a good approximation wher-

ever the force range of the potential is considerably

smaller than the cyclotron orbit radius of the electrons

being scattered.

On the other hand, the scattering source to be con-

sidered is that of the attractive screened Coulomb

potential; we write:

v(r)
Ae-""

(B.21)

where A is the amplitude and (g.s)"' the screening

length. The screening length determines the force

range of the potential, and unlike that of the delta-func-

tioM potential just treated, the validity of our approxi-

mation in this case depends upon this force range being

lar^e compared to the cyclotron orbit radius. The Fouri-

er transform of this potential is given by

A
v(ci)

Q- + Q-s

where, because of the 8 function involving g^.

(B.22)

(B.23)

and since we are restricting our attention to elastic col-

lisions with attractive potentials only, kz = +k,.

Furthermore, we retain the assumption that only scat-

tering within the n = 0 Landau level is important so we
can write \Ji.m\^ explicitly in simple form. Thus

Ahu
I- 1

"2 ''/.; + «)
A-iis 1

f:\ + (;-s

2
(B.24)

A change of variable, t = q/+ q^l2q^^ enables the above Performing the sum over kz and also recognizing the

equation to be rewritten as

Ahu
('{s)

exponential integral leads to the following expression

for G:

G(s)
Ahu (2m*yi-'

1 (2m*

477-/- V fl-

y\mXOr-\-C{s) -S

"^ A-ns In qjl-

\/\l2hajr + C(s) -s

(y + ln q;l--qtl'

(B.26)

where y, the Euler-Mascheroni constant, is approxi-

mately equal to 1/2, and our assumption that q/l'~ < 1

allows us to replace the exponential by unity and to

ignore y and the higher powers of g.s-/^.

Again we arrive at an equation for G whose form is

identical to eq (19) and (B.ll), and therefore the same

procedure would be used in finding the density of

states, with A'~njnqs~l- as the factor we labelled W. We
point out in passing that this form of W, unhke the

previous two forms, has an explicit dependence on

magnetic field.
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The problem of calculating the electronic density of states in an alloy is considered from first prin-
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experiment.

Key words: Density of states; disordered alloys; one-electron propagator: perturbation expansion;

sum rule.

1 . Introduction

It has long been appreciated that the information ob-

tainable from experiments on alloys provides a useful

supplement to one's knowledge of the pure materials.

Much of this information, such as the Hume-Rothery

rules, was obtained using binary alloys with similar

non-transition-metal constituents. In such an alloy the

electron mean free path is long and the alloy can often

be regarded as homogeneous. The problem which will

be discussed in this paper concerns how to calculate

the properties of an alloy in which the constituents are

very different. For such an alloy there arises, besides

the routine difficulty of choosing an appropriate poten-

tial, a major problem involving the order. Perfectly or-

dered alloys can be handled just as for pure materials,

but disordered alloys with strong scattering potentials

have needed the development of new theoretical

techniques. These methods will be discussed below via

a diagrammatic expansion which appears to give im-

proved insight into the whole problem of disorder. No
attempt will be made to formally review the literature

and no claim is made to completeness. Rather, it is

hoped, readers will be better able to judge for them-

selves the contents of papers in the field.

The paper will begin with a derivation of the alloy

potential. The intention here is to clarify, for those not

already familiar with the field, what disorder is and how
the theorist can describe it by an averaging process.

*An invited paper presented at the 3d Materials Research Symposium, Electronic Density

of States, November 3-6, 1969, Caithersburg, Md.

While concepts of this type are already common, as in

statistical mechanics for example, it is clear from the

current literature that many authors still misun-

derstand them in the alloy context. The derivation of

the potential is then completed by briefly listing the as-

sumptions required with a few comments on their

validity. The potential used is of muffin-tin type with in-

variant potentials for each constituent. The brevity of

this section should not be regarded as indicative of the

trivial nature of obtaining the potential, which in itself

forms a most interesting and difficult task. The heart of

the paper is contained in sections 4-6 where the density

of states is obtained by considering the imaginary part

of the T-matrix for the alloy. The T-matrix can be ex-

panded in a series involving the individual scattering

centers (the muffin tins) in the usual way. The
procedure adopted in section 5 concerns the way in

which the series is to be averaged term by term. Each

term requires the knowledge of a probability function

and it is these probability functions which must be ap-

proximated if the series is to be resumed. A diagram-

matic expansion is given which, it is argued, formally

converges like where Z is the number of nearest

neighbors. In practice, however, it is the degree of fluc-

tuation which determines the convergence which is

anyhow at best asymptotic. Section 6 illustrates these

remarks by looking at numerical solutions for different

approximations. In the final sections a few examples

will be cited of the interrelation between this work and

experiment. These are mainly concerned with the

transition metals to which the formalism is most ap-

propriate.
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2. The Meaning of Disorder

When an alloy sample is made there is much infor-

mation which is available in principle yet is not availa-

ble in practice. It is normally possible to determine the

content of each constituent, the structure and certain

ordering parameters. But it is plainly absurd to expect

to know the actual positions of all the atoms in a disor-

dered sample. Thus while an experiment is performed

on a particular sample whose atomic positions may be

regarded as fixed during the experiment, a theoretical

calculation for this sample must proceed in ignorance

of the actual position*. The formal device used to offset

this ignorance consists of an averaging procedure about

which one might make the following comments.

(i) It is expected that all macroscopicaUy

identically produced samples will have

(within experimental error) identical properties.

Systems with large fluctuations in their proper-

ties due to unavoidable variations in production

need a different approach. Such fluctuations are

usually due to variations in some macroscopic

parameter not yet controlled in the production

process.

(ii) The detailed microscopic order is therefore

only important to the extent that certain macro-

scopic properties {e.g., order parameters) are

satisfied.

(iii) Naturally the theoretician is, in these circum-

stances, at liberty to choose any one microscopic

distribution which satisfies the macroscopic

restraints. However, since all such distributions

are equivalent, it is easier to average over them

with a probability function specifying the chance

that they occur.

(iv) Such an approach is well known in Statistical

Mechanics and works for the same reason: the

number of particles involved in the average is

very large.

It is most important that any such averaging is made

only over observable properties of the sample. As an ex-

ample consider the density of states which for a given

sample might be written n(E, qi, q2, . . . qn) depending on

certain parameters of the sample. If these parameters

have a probability of occurence P(qi . . . qn) within the

constraints of the sample production then the average
density of states is / n(E, qi . . . q„) P (qi . . . q„) dqi . . .

dqn. If the job has been done properly this average

value should differ from a typical single alloy value only

to the order (1/N) where N is the number of atoms.

Averaging in this way makes things a little simpler al-

gebraically because, like the experimenter, the theorist

can ignore all except the macroscopic features of the

sample. There are some conceptual difficulties, how-

ever, which are worth briefly illustrating. Take first a

perfect lattice of one type of atom. Figure la shows for

a finite number of atoms the energy levels of the system

and the singularities which will occur in the complex E-

plane for a single particle Green function. A pole will

correspond to each energy level. When N becomes in-

finite the energy levels pack together and can be

described by a density of states n(E) as in figure lb. At

PLANE

q) n finite

^ E

E - PLANE

»n (E)

b) N INFINITE

Figure 1. The energy levels and complex plane singularities for (a)

afinite, (b) an infinite ordered system.

the same time the poles merge together to form a

branch cut along a portion of the real axis. For an im-

perfect arrangement the finite system again has poles

on the real axis which will turn into branch cuts upon

averaging. When approximations are made in the

averaging these branch cuts may have been replaced

by poles off the real axis; the importance of remember-

ing that this is a consequence of the approximations has

been particularly stressed by S. F. Edwards. A related

point concerns the limit oo. In the perfect lattice

case periodic boundary conditions can be used and no

difficulty arises. In the disordered case the limit can

only be taken after the averaging procedure. To see

this consider a group of N atoms which is infinitely ex-

tended by repetition. The resultant crystal then has N
atoms/unit cell and this is well known to yield a band

structure with N-1 band gaps in general. As N is in-

creased the band gaps become more numerous and nar-

rower, showing that this is not a sensible treatment.
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3. The Alloy Potential

A correct procedure for obtaining an alloy potential

would be as follows.

(i) The positions of the nuclei and core electrons

are considered known. (But will in practice be

supposed to lie on a perfect lattice).

(ii) The potential throughout the entire lattice is

guessed.

(iii) The density of electrons in the system is then

obtained.

(iv) A new estimate of the potential is made.

Such an "in principle" self-consistent calculation must

be made for a single unaveraged alloy and is plainly an

impossible task. Some part of this self-consistency can

be achieved in special cases, e.g., where the Friedel

sum rule can be used in dilute alloys. Step (iii) to (iv) is,

of course, similar to the same step in the perfect lattice

except for the lack of order, but even in the perfect lat-

tice case is far from easy to carry out properly. The

novelty of alloy theory lies in steps (ii) to (iii), describing

the electron density once the potential is known. Since

this step is the primary interest of this paper the discus-

sion can be greatly clarified by choosing a suitably sim-

ple form for the potential. Only the one-electron ap-

proximation will be considered.

For a dilute alloy the best potential to use is the per-

fect lattice (host) potential with an additional potential

at each impurity site representing the difference

between the impurity and host potentials. This poten-

tial can then be used in perturbation theory or even in

more sophisticated schemes. A modified version of this

approach will also work quite well for concentrated

nearly-free-electron alloys.

For the case where at least one constituent of the

alloy has a strong scattering potential with just-bound

or nearly-bound states the muffin-tin approximation is

best. The muffin-tin assumption is worse in an alloy

than in a pure material because the local interstitial

energy may vary from place to place through the alloy.

It is hard to see how one can readily estimate the ef-

fects of such variation. It is customary to make the ad-

ditional assumption that the muffin-tin potentials for

each constituent are independent of the environment.

This is not generally correct; there is a spiU over of the

impurity potential onto neighboring sites. Unfortunate-

ly neglecting this change is inevitable at this stage in

the development of the theory and, it will be noticed,

resembles neglect of positional relaxation about the im-

purity site in defect calculations. It should be borne in

mind, however, that the level of the theory at which

such effects would enter is well beyond anything that

will be discussed in this paper. Since it is clear that par-

ticular features of the band structure may depend criti-

cally upon such local effects, the most obvious example
being bound states locaHzed near an impurity atom, the

defect type theories plainly have important applications

here.

The virtue of the nonoverlapping muffin-tin form of

the potential is that in the potential free region between
the spheres electrons move as in free space. The mo-

tion of an electron can thus be seen as a series of scat-

terings from individual sites with free electron propaga-

tion in between. It is this separation of the scattering

events which is so important to what follows.

If the alloy constituents are at sites /?,, i = 1, . . . N
then the potential just discussed may be written for a

particular alloy

where /i; is the type of atom at site Ri and v^{r) is the

potential of the /x'th atom type. The nonoverlapping

restriction is that

i'M(r) = 0 r>ro

where Xo is half the near neighbor distance. There is ac-

tually no restriction that v{r) be spherically symmetric
though this is often quoted as necessary. With this

greatly simpHfied form for the potential it is possible to

proceed with the formal theory of disordered alloys.

4. The T-Matrix

In the discussion of the density of states in an alloy

it is necessary to appeal to the concept of a T-matrix

and it is therefore worthwhile to demonstrate that it is

actually a simple concept. Indeed, while much of the al-

gebra is rather involved, the use of the T-matrix allows

almost classical mental pictures to be used and the al-

gebra very largely suppressed.

Consider then a single scattering center of potential

V(r) with particles incident upon it. It is well known
that this problem can be solved in integral equation

form as

i//(r) = (/,(r)
477 J |r— r'l

V{v')y\i{v')dr'

where (/)(r) is the incident beam and the second term
gives the wave scattered from the potential. Note that

the complete wave function t//(r') appears in this latter

term; if <^r) were inserted here the scattering would be
given in Born approximation. The T-matrix is formally

defined by
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but is best understood in terms of the physical descrip-

tion. The point is that it is very convenient to describe

a potential by the scattering it induces among a set of

states defined outside the potential and this is what the

T-matrix describes. In the crystal these states will be

spherical harmonics centered on the atomic position in

question. The T-matrix for the potential describes the

scattering from one (ingoing) spherical state to another

(outgoing) such state.

The infinite crystal potential leads to a T-matrix of

different interest. The feature dominant here is that the

scattering cross section is infinite for electrons incident

on a potential well at an energy at which that well has

a bound state. Using this in reverse one may look for

the energy levels of the crystal by seeking the poles (or

branch cuts) of the T-matrix. Actually the density of

states is directly proportional to the imaginary part of

the T-matrix and this is the link which will be adopted

below. One can now utilize the fact that the total alloy

potential is made up of individual scattering sites with

their own T-matrices t,. All scattering processes from

the alloy can be described in terms of the sequence of

scatterings from these sites. Thus

T=^U + J^uGijtj+. . . (1)

where the nth term describes those scatterings from

the alloy in which n individual site scatterings occur. Gy

describes formally the way in which the electron moves

between the scatterings at i and j and it is to be noted

that two consecutive scatterings cannot be from the

same site.

5. The Alloy Formalism

The aim of this section is to introduce a diagram-

matic technique which carries considerable insight into

the nature of the disorder problem. The algebra

required to set up the diagrams is given mainly because

of its intrinsic interest. This algebra may otherwise

largely be skipped since the meaning of the diagrams

is fairly readily understood.

For a single alloy the series (1) can be cast in an en-

tirely real form and the imaginary part corresponding

to the density of states (n(E)~2S(E-Ei) for this alloy) will

only emerge after the infinite series has been summed.
In other words the bound states occur at the points

where the series diverges. Since the averaging plainly

cannot be carried out on the summed T-matrix it is

necessary to resort to a term by term averaging fol-

lowed by the infinite summation. To be specific con-

sider a binary alloy specified by writing at the site i

tj t,/C^

where ta, are the t-matrices for potential wells of type

A and B respectively. Also the C; are defined by

cf= 1 if the atom at site i is of type A
= 0 otherwise

cf=l—c" = l if the atom at site i is of type B
= 0 otherwise

In the average system these c^ are given by certain dis-

tribution functions appropriate to the alloy composition

in question. It is convenient to introduce dummy varia-

bles =0, 1 SO that cf' = ^c''8,, , Then the T-

matrix becomes

T=^t.c^'8c'.c: + J^ t^c>^G;jt.c''8^^,^^d^^ ^^ + . . . (2)

V. M

and the averaging which must be performed has been

entirely concentrated into the Kronecker-delta func-

tions.

Consider these averages. What one requires to know

are probability distributions such as

/c', c', c^,

For example, take a completely disordered binary

system in which the concentration of the constituent A
is c. Then the probability distribution of the c^ 's is

n {c8,„.,„ + (l-c)8^„,,4 (4)
all ' ' '

'

sites

Since the probability of finding atom A is indepen-

dently c on every site. When this probability function

is used to evaluate the average on the right-hand side of

(3) the factor in braces in (4) only occurs once for each

independent site in (3). This means there is not neces-

sarily one such factor for each Kronecker delta in (3)

but rather only one for each independent site. Thus one

obtains

P/c\c\c\c'\= 2 n'{c8,„,^+(l-c)8..,^}

8c.,cr • • • Sc.c; (5)

where the prime on the product denotes the restriction

that only independent sites among the i, j, k, 1 are

included. It is this restriction which is at the heart of

the disordered alloy problem. It states that when the

same atom appears more than once in a term of the se-

ries (2) the average cannot be taken as though each ap-

pearance is independent of the others. It is to be



emphasized that this restriction is geometrical; it is a

sort of counting problem. Obviously the magnitude of

any counting error will depend on the relative size of

the various terms and the precise determination of the

physical parameters determining these sizes is the es-

sential problem to be faced. The partial progress in this

direction will later be illustrated by example but much
remains to be done.

A common first step in dealing with a restriction is to

first ignore it and then make successively more accu-

rate corrections. This procedure is readily adopted

here. Consider the product over independent sites of

some factor f;

:

n /,= n /, n +
indeii.

sites

indeii.

sites

= n /,{!+ 2

other
sites

0 -f,)

all

sites
other

sites

two other
sites

(i-y;-)

fi fj
} (6)

where the last line is obtained by expanding the second

product. Clearly the correct result will only be regained

after all the terms in the sum have been included. This

formula allows a simple diagrammatic representation

in which all the sites appearing in a term are given as

dots on a Hne as in figure 2a. The dots themselves

represent the t-matrices and the hnes between the dots

represent the propagators G,j. In this series of scat-

terings the repetition of a given scattering center can

be treated by the device of eq (6). The first term in

the sum in (6) corresponds to ignoring the restriction in

which case the probability distribution will be given by

i, j, k,

where

This gives at once

(7)

The independent averaging of a point can be denoted

by a cross as in figure 2b. The next term in the sum (6)

connects each repeat site with the previous occasion

on which the site appeared and can be represented by

a dotted Hne as in figure 2c. The third term contains

Figure 2. The diagrammatic expansion for the T-matrix showing (a)

an unaveraged line, (b) the lowest order approximation, (c) a typical

lowest order correction term, (d) a second order correction term,

and (e) aforbidden graph.

two repeats i.e. two dashed lines and so on. Indeed, the

entire series (2) may be given by the diagrammatic ex-

pansion satisfying four simple rules. For each value of

n, n = 1, 2, 3, . . . draw all possible diagrams having the

following properties

(i) There are n points on a straight line.

(ii) Pairs of these points (but not a consecutive

pair) are joined by dashed lines.

(iii) No two dashed lines leave a point in the same

direction.

(iv) All points not touched by a dashed line have

crosses on them.

The meaning of these diagrams can be readily put

into words. For example figure 2c corresponds to a term

in which the electron first scatters from 6 different sites

then scatters again at the fourth one and finally scatters

at two more different sites. Figure 2d represents the

electron returning to the first and second sites for its

third and fifth scatterings. All such scattering topologies

must be drawn and included in the series though it is

important to note that diagrams of the type of figure 2e

are forbidden by rule (iii). Finally, the dashed line does

not represent the actual value of the process it
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describes but the correction to the related process in

which the restriction is ignored and the two ends of the

dashed line replaced by crosses. This is illustrated in

the example below.

The evaluation of the contribution of a diagram is

complicated by the two separate features involved.

First there is the t-average which is given by the

procedure outlined between eqs (3) and (6). Secondly

the propagator sum must be evaluated for each dia-

gram; it is this which is the limiting difficuhy as the dia-

gram becomes more and more complicated. Consider

any diagram of the type 2c i.e. with only one dashed

line. The average corresponding to the dashed line may
be written

c*^, c''

X [8,J - {C8e;, + ( 1 - C) } ] = Cff+ ( 1 "C) ?^-7^

6y is written here as a reminder that j is exactly the

same as i and was only introduced as a dummy varia-

ble. This is plainly of the form of the exact term less the

zeroth approximation to it. Each cross on the line is

replaced by t as in eq (7). Propagator lines which do not

appear inside the dashed curve occur in the combina-

tion ^ G,j = G. (In practice the sum is k-dependent;

^-{k)= 2 G ( R, - Rj)e

Between the ends of the dashed line the propagator

must trace a scattering path beginning and ending at

the same point so that the sum involved is

5— 2 GijGjk
W^tj) etc.

G III III'

There is an additional restriction that no intermediate

site can be that of the end point, otherwise rule (iii) will

be violated and the correction terms overcounted. This

sum is readily completed by Fourier transformation giv-

ing

S = II{l + tI)

where

I=T j dh.GHk)t[l-TtG{k)]-\ (9)

Here the appropriate number of t factors has been in-

troduced and the integral in (9) is over the Brillouin

zone of volume t.

The formal derivation above yields a diagrammatic

expansion of a very familiar sort on which the usual

tricks can be pulled. These will be discussed in the next

section but it is appropriate that some feehng for the

meaning of the diagrams be obtained. It will readily be

seen that the expansion is not necessarily in powers of

any small parameter of a physical nature (it might be

e.g. if t were very small) but is more precisely viewed

as an expansion in the disorder of the system. One way

of looking at this is to consider the sequence of

neighboring sites, i,j,k. Of the possible values of k, one

will be i and therefore (1/number of values of k) of the

terms will require corrections as discussed above. If Gy

is short ranged, as is the tight-binding case, this means

that the proportion of correction terms is 1/Z (where Z

is the number of near-neighbors) for each dashed line.

An alternative is to regard the series as an expansion in

the fluctuations of the system. While 1/Z appears to be

small the number of terms with n dashed lines in-

ceases something like n! as n becomes large so that

the series is at least asymptotically convergent. This is

well known to occur in certain statistical mechanical

expansions to which the above procedure is naturally

related.

6. The Simplest Approximations

It is now possible to classify most of the theories of

disordered alloys according to which diagrams they

retain. This is useful in two ways. It gives information

about the nature of the various approximations and it

helps one to understand some of the physical parame-

ters determining the convergence of the resummations.

Begin with the simplest possible terms.

6.1. The average t-matrix approximation [1]

Ignoring all the diagrams with dashed curves gives at

once the result

(r(k)) =
m

l-tG(k)

N
r'-G(k)

in which the alloy is represented by a perfect lattice

with identical scatterers having the average scattering

of the alloy constituents. The density of states given by

this approximation for a binary tight-binding alloy is

shown in figure 3. The tightly bound energy levels are

E.^ and Eb and the various cases are found by compar-

ing
I

Ea-Eb
I

with the bandwidth. While the gap between
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E E

I > n (E)

> n (E)

a) b)

Figure 3. The density of states in the average t-matrix approxima-

tion, (a) when |E.i-Eb|>> bandwidth, (b) when |E,4-Eb|<<

bandwidth.

the band halves is reasonable when the bandwidth is

much less than the energy splitting (fig. 3a), this ap-

proximation incorrectly predicts the gap even when the

bandwidth is very large (fig. 3b). At the same time the

rest of the band is moderately well described showing

that the accuracy of the approximation for a given ener-

gy depends on the position of that energy within the

band.

possible numbers of intermediate states and can be

evaluated from eqs (8) and (9). The inclusion of this

term is an improvement over the average t-matrix ap-

proximation but does not resolve all the difficulties.

6.2. First order approximation

Under the assumption that the 1/Z series converges

one might next evaluate the contribution of the terms

of the type shown in figure 2c. This contribution must

include all possible numbers of intermediate scat-

terings both inside and outside the dashed loop. But +

now consider the diagrams in figure 4a. These each

have an intermediate denominator which we expect to
^

be nearly singular and all this sequence must be in-

cluded too. This is simply the usual manipulation to

give a self-energy rather than a t-matrix which is ab-

solutely necessary in this context. Now

N
(f+2)-'-G

1 / \

/

Figure 4. (a) the diagrams summed to give the self energyform, (b)

where 2 is given by the diagram of figure 4b, with all the definition of 1.
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6.3. Self-consistency

\

L L ^ i

+ '- ^

/ / ' \ \ \

/ ' / \ \ \

Figure 5. The diagrams summed to give the self-consistent propa-

gator inside the dashed line.

E

>n (E)

It has long been known that using the unperturbed

propagator in the expression for the self-energy is not

the best that can be done. The same is true here, where

the motion of the electron between successive scat-

terings can readily be included as if it were being scat-

tered by scatterers. This corresponds to includ-

ing the infinite series of diagrams seen in figure 5. This

step is necessary because one really wants to allow

scattering of the electron into the true, not the unper-

turbed, density of states. Once this has been done the

self-consistent equations obtained can be solved when

the unperturbed density of states is given by the ex-

pression [2]

= 0 otherwise.

This self-consistency calculation is an immediate im-

provement in the sense that the band gap now closes as

the splitting lE.rE/jl becomes smaller than the band-

width. Figures 6 and 7 show the alloy density of states in

A E

1.2

0.8

->n(E)

Figure 6. Some density of states curves showing approximations FIGURE 7. The density of states curvesfor c=0.5 and \Ea-Eh\ = ^10.7.

(Hi) dashed lines and [iv)fall linesfore = 0.5 and |E,^-EB| = A/3.9. The scale here is such that E.^ =+ 1, Efl = — 1.0.
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7. Dimensions and Fluctuations

+ L i

+

Figure 8. T/ie self-energy graphs required to renormalize the scatter-

ing energy levels.

the approximation as a' dashed line. One major error of

such a density of states is that it does not satisfy the

sum rule on the density of states, a difficulty that can

be overcome by a further resummation.

6.4. The renormalized energy levels

The work of Hubbard [2] and later workers [3,4]

overcomes the sum rule problem by extending the scat-

tering from any single site to include all possible

processes involving only that site. These are the dia-

grams of figure 8. This has the effect of renormalizing

the energy levels and gives the full line density of states

in figures 6 and 7. It will also be noticed that the bump
in n(E) near E.4 and Eb has flattened out. Thus overall

this more sophisticated summation gives a smoother

density of states. It is interesting to observe that neither

the value of the gap width nor the critical ratio
^

A
at which the gap closes is affected by this last improve-

ment. Within the numerical error approximations (6.3)

and (6.4) are identical in this respect.

This last approximation has allowed several alloy

density of states calculations to be carried through

[3,4] and is probably the best that can be done at the

moment. It is rather difficult to see what to do next.

There is no general rule for selecting sets of diagrams

obeying the density of states sum rule and one has no

insight into which of the higher order terms are the

most important. Indeed different sets will probably be

important in different regions of the energy spectrum.

This section is intended to draw attention to a few of

the difficulties associated with the alloy theories just

outlined. Rather than dealing directly with the alloy

case it is preferable to simplify to the vacancy problem.

Here the second alloy species is replaced by vacancies

so that only a proportion c of the perfect lattice sites are

occupied by type A atoms. In the formalism of the

preceding sections it is only necessary to put t^ = 0.

The illustrative value of the number of dimensions in

this argument arises because the formed procedure just

outlined is independent of the dimensionality for fixed

unperturbed n(E). The physical nature of the problem,

however, depends extremely strongly on the dimension

principally through the importance of fluctuations. Ob-

viously the fluctuations in one dimension are very large

compared to those in three dimensions since the

number of neighbors is so much less. This is reflected

in the fact that in one dimension the density of states

for the alloy problem has a strongly peaked structure,

the peaks being identifiable as local groupings of a few

atoms as was first remarked upon by Borland [5]. In

particular, for the vacancy tight binding cases, the

probability of finding a line of n occupied sites with a

vacancy on either end is c"(l-c)^ and the density of

states for such a group is ^ 8(E-E,). The total density
!= 1

of states is then effectively a weighted sum over 8-

functions and is not continuous. Obviously in two and

ihree dimensions the same is true for sufficiently small

concentrations but not in general. Plainly when
fluctuations are this important there is no chance that

the theory described previously can hold.

Another point which can be readily demonstrated is

that in such a vacancy case there exist states outside

the bands calculated by any of the models just

discussed. Consider a simple square lattice in two

dimensions. This has coordination 4. A square of side

n fully occupied by atoms will have a mean coordina-

tion number

4n--4n ^ 1

4^2 ~ n

since atoms at the sides only have coordination 3. In a

tight binding model the mean coordination number is

a least estimate for the bandwidth of a group of atoms

compared to that for the full lattice. This can be readily

seen by a variational calculation with trial function ^
= ^^i/n. Now the theories described above give a

i= 1

bandwidth oc (approx. (6.1)) or Vc (approx. (6.4)) so for
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the latter case there is a probability c"^ — c<'~^'~'~- of

groups of atoms with energy levels outside the calcu-

lated band. Such states of course tail off rapidly but

nevertheless exist with positive density of states right

out to the full perfect lattice bandwidth. The same ap-

plies in three dimensions where the tail is smaller but

still there. Figure 9 illustrates this point. Obviously

such states are very difficult to spot in the type of

theory discussed earUer. They certainly exist at the out-

side edges of the alloy bands but whether or not they

exist inside the band gap is a more difficult question

which will undoubtedly be the object of more study.

9. The Experimental Comparison

It is natural enough that when developing a theory of

alloys one begins with the simpler, one-body quantities

such as the density of states. Other properties, such as

conductivity. Hall effect, etc. really require more so-

phisticated theoretical treatments. The relevant experi-

ments are well dealt with elsewhere in the symposium

and so will not be discussed in detail here, but it would

be wrong to completely omit commentary on them.

Calculations of the density of states yield a function

of energy and a proper experimental comparison would

require that function to be observed. Only in the optical

type measurements, particularly photoemission and

soft x-ray work, is this possible even in principle. In

practice there is a good deal of ambiguity in separating

out the n(E) curves from other energy dependent varia-

tions typically in the matrix elements and many-elec-

tron effects. It is clear that for a general comparison

with experiment the theoretical work must be pushed

to the point of predicting directly the observed data.

This is a step which at the moment looks to be just

about possible though complicated by the need to take

into account local effects through the matrix elements.

Those experiments which measure densities of states

at the Fermi surface are complicated by many-body fea-

tures which, for example, can cause the density of

states to be enhanced by quite large factors (
~ 1.5 or

more). There is the additional difficulty that the pure

transition metal band structures lead to density of

states curves with a good deal of structure on them so

that detailed comparison with experiment requires

precise knowledge of potentials and the Fermi energy.

Beck and coworkers [6] have overcome some of these

objections by using transition metal alloys which seem

to conform very closely to the rigid band model and in

which the parameters vary only with electron concen-

tration. It is still questionable whether theory can yet

-Ea+A/2

\

\

\

/

/

/

!-Ea-A/2

I >n (E)

Figure 9. Density of states in the vacancy case showing the limits of

the perfect band and the tails extending to those limits.

predict those cases where Beck's attack will work and

in particular where and why it breaks down in the

transition metal alloys.

The need for an indirect step in all these experimen-

tal analyses has hitherto prevented a satisfactory com-

parison between the calculated and the measured den-

sity of states. It now seems possible that since so-

phisticated yet fast band structure calculations have

been developed and better theoretical understanding

of the alloy problem is being rapidly gained the time

should soon come when the comparison will become

direct.

Finally one might expect some rewards by looking for

the gap predicted by the theories when the energy

levels are well split as in figure 3a. However, this par-

ticular gap is strongly reminiscent of those predicted in

the more general disordered system theories and still

argued about at length. It is very difficult to observe the

difference between a gap and a very low flat minimum
even though the distinction is theoretically very impor-

tant. Perhaps the tunnelling experiments can help here.

10. Conclusions

The theory of disordered alloys is at last coming to

the point where it can truly be regarded as a theory

rather than being a collection of ad hoc methods. The
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problem of a disordered alloy can thus be treated in a

parallel fashion to many-body theories and in con-

sequence considerable experience taken over from the

many-body theorists. At the same time there remains

a real difficulty in producing a satisfactory dialogue

with the relevant experiment work. Overall, however,

the picture is one holding promise of good develop-

ments in the near future which may have a catalyzing

effect on the theoretical understanding of disordered

systems.
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Local Theory of Disordered Systems

W. H. ButleH and W. Kohn

Department of Physics, University of California, San Diego, La Jolla, California

The most striking characteristic of crystalline solids is their periodicity. As a result of this feature,

theoretical descriptions of physical phenomena in such systems are usually given in wave number or

momentum space. The reciprocal lattice of a crystal and the Fermi surface of a metal are examples. In

a disordered system, on the other hand, there is no such periodicity and momentum space descriptions

are much less natural. However, in such systems, physical conditions near a point r, in coordinate

space, become independent of the conditions at a distant point r', provided that |r'-r| is large compared

to either a characteristic mean free path or some other appropriate length. This suggests that one can

analyze a macroscopic disordered system by averaging over the properties of microscopic neighbor-

hoods.

In the present paper we report some details of such a program. Although the point of view is of

quite general applicability we have, for the sake of definiteness, studied so far only one type of system:

Noninteracting electrons moving in the field of interacting, disordered scattering centers. We have

focused especially on the electronic density of states. The macroscopic system is represented by an

average over small neighborhoods. If one did not take special precautions, one would encounter one

class of errors of the order of d/L where L is a characteristic dimension of the neighborhood, and c? is a

characteristic atomic dimension; and another class of errors of the order of where A' is the number

of ions. Both are too large to be tolerable for practical purposes. However, by an appropriate treatment

of the statistical mechanics of the scatterers and by periodic repetition of the small neighborhoods,

these errors can be avoided. The remaining errors are exponentially small in the ratio y(LIR} where y is

of order unity and R is the smaller of the electronic mean free path or the deBroglie wavelength of the

electrons. This exponential convergence of the small neighborhood theory promises to make it a useful

practical method for the study of disordered systems, especially very highly disordered ones.

Numerical examples are presented and discussed.

Key words: Binary alloys; density of states; disordered systems; periodically continued neighbor-

hood.

1. Introduction

The physical properties of strongly interacting disor-

dered systems are in general difficult to calculate since

simplifying symmetries, present in crystalline materi-

als, are not present. In this paper we present and

develop to some sinall extent a viewpoint which ap-

pears to provide a useful line of attack on the theory of

disordered systems.

We shall demonstrate and utilize the rather plausible

fact that in a disordered system the physical charac-

" An invited paper presented at the 3d Materials Research Synipusium, Electronic Density

ofStales, November 3-6, 1969, (laithersbur^. Md.

' Supported in part by the Office of Naval Research and the National Science Foundation.

2 Present address: Department of Physics, Auburn University, Auburn, Alabama.

teristics at a point r depend significantly only on condi-

tions inside a rather small neighborhood |r'-r|</?,

where R is of the order of a mean free path / or a

characteristic thermal deBroglie wavelength. At. The

effects of the more distant environment fall off ex-

ponentially with distance. This suggests that the pro-

perties of an infinite disordered system could be accu-

rately calculated by suitable averaging over an ensem-

ble of small neighborhoods. This scheme, furthermore,

should be most successful for strongly disordered

systems in which the mean free path is short.

In the following sections we sketch an application of

these ideas to the much-studied problem of the density
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of states of noninteracting electrons moving in the

static potential of disordered scattering centers.^

2. Demonstration of the Locality Principle

In this section we shall sketch the demonstration that

the physical properties near a point r of a system of

noninteracting electrons moving in a disordered exter-

nal potential are nearly independent of the circum-

stances outside a characteristic range R. More specifi-

cally, the effect of a perturbation at a distant point r' on

physical properties at r falls off exponentially, on a

scale given by a range of influence, R, which is of the

order of either the mean free path or, at high tempera-

tures, the thermal wavelength of the electrons,

whichever is the smaller.

We consider a very large system of volume fi

described by the Hamiltonian

(2.1)

here Ho is a periodic Hamiltonian, which for simpUcity

we take to be the kinetic energy

(2.2)

F is a potential produced by disordered scattering cen-

ters, located at the points r,,.

(2.3)

and V is an additional small perturbation localized at a

point r'. We shall study the effect of v on physical con-

ditions at the point r.

First, we shall consider the one particle Green's func-

tion

1
G(r, r'; E) = { r E-H (2.4)

In terms of the eigenfunctions i//„ of H, and the eigen-

values En,

G(r, r'; E) =^
E-En

(2.5)

Of special interest is the contracted function Gfr, r; E)

which determines the density of states by means of the

following relation.

n{E)
TT
Im rfrG(r, r; £+iO). (2.6)

= Among fairly recent papers we mention the following: H. Schmidt, Phys. Rev. 1 05, 425

(1957): S. F. Edwards. fAi/. Mag. 3, 1020 (1958): ihid. 6, 617 (1961); Proc. Roy. Soc. A267,

518 (1962); J. L. Beeby, Proc. Roy. Soc. A2 79, 82 (1964); P/irs. Rev. 135A, 130 (1966): P.

Soven. Phys. Rev. 1 5 1 , 539 ( 1966): ibid. . 1 56, 809 (1967).

We see that we may regard the unintegrated quantity

n{r, E) =-- lmG{r, r; E + iO) (2.7)

as the local density of states density.

We would like to estimate the effect of introducing

the weak additional potential v, at the point r', on n(r,

E) at the point r. The quantity of physical interest is

then

^^G(r, r;E+iO)

= (G(r, r'; E + iO)G{r', r;E+iO)),=o (2.8)

where the brackets {) denote configuration average.

The equation (2.9) follows directly from the equation of

motion of G.

Now it is well known that, for weak random poten-

tials Va,

{G(r,r';£+iO))
1

477 r— r
— giVE\r-r'\g -\t-t\I21{E),

(2.9)

where 1(E) is the mean free path of an electron of ener-

gy E. Similarly, one can show from (2.8) that for large

|r-r'|

8v(r' )

G(r, r; E+iO) r'\IHE)
(2.10)

Thus we see that when |r'-r| > 1(E), a change of poten-

tial at r' has a negligible effect on the quantity nfr, E).

Next we show a similar locality effect, this time not

due to a finite mean free path but due to elevated tem-

perature. We consider a system of independent elec-

trons and use Boltzmann statistics for simplicity. We
take as Hamiltonian

(2.11)

where, in comparison with (2.1), we have eliminated the

disordered scattering potentials. We write the partition

function as

Z = JdrZir), (2.12)

where

Z(r) = (rle-^^^lr). (2.13)

Our interest now is in the influence of a small perturba-

tion V at r' on Z(r). By standard perturbation theory one

can show that, for large
|
r' — r

|

,

77 5/28Z{r)

8v{r') 16/33/2|r-r'|
I
-/A;

(2.14)
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where At is the thermal wavelength

A,^ P^l^{=hl{2mkTyi^). (2.15)

Of course at high temperature and with disorder, the

characteristic "range of influence" R will be either a

representative mean free path /, or A?, whichever is the

smaller.

3. The Periodically Continued Neighborhood

We shall now develop a concrete method of calcula-

tion, based on the locality principle of the previous sec-

tion. We shall concentrate on the density of states n(E).

The most straightforward way would be as follows.

We imagine the large disordered system as given. We
choose at random a large number of points and sur-

round them by spheres of radius p considerably larger

than the "range of influence" /?, but not too large. Each

sphere is surrounded by an infinite wall (see fig. 1). The

electronic Hamiltonian for each sphere is given by

states for the macroscopic system is given by

n(E) = nnfR,^j, (3.3)

where the bar denotes an average over many R;.^

The practical drawbacks, for finite p//?o, are two: (1)

The replacement, in the outside region, of the actual

potential, X Va, by an infinite repulsive barrier is a quite

drastic change and unless pIR is very large, will cause

sizeable errors. (2) This method does of course not lead

to the exact results in the special case of a vanishing or

periodic potential.

These drawbacks can be largely overcome by using,

instead of a finite and bounded neighborhood, as in

figure 1, a periodically continued finite neighborhood

as indicated in figure 2. We choose a fundamental cell,

say the cube, of volume VIl = U,

L>2R (3.4)

H= Ho+V

where

Xr„(r-r„)
I

r-R,
I

« p

(3.1)

(3.2)

We then calculate for each sphere the density of

states density at its center, nfR/,£'j. Because of the rela-

tively small size of the neighborhood this is a much
more manageable problem than n(E) for the macro-

scopic disordered system. In view of the locality princi-

ple, n(^i,E) is only insignificantly affected by the

presence of the infinite wall. Hence, the density of

and construct the space-lattice generated by it. Let us

call t'"* the lattice translation vectors. Then we place

any number of scatterers in some definite configuration

c in the fundamental cell and populate the other cells in

the identical way (see fig. 2). The electrons now move
in a periodic cubic lattice. Their energy eigenvalues

L

O
a
o
a

Figure 1. Spherical neighborhood centered at R/.

Figure 2. Periodically continued neighborhood.

* If we would use the total densities of states of the spherical neighborhoods, rather than

the quantities n(^i,E) computed at their centers, we would incur large errors behaving as

L~^, due to the presence of the infinite wall boundaries.
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are, because of the relatively small size of the unit

cell, much more amenable to calculation than the

eigenvalues of the macroscopic disordered system. Let

us call the density of states, corresponding to the con-

figuration c and total volume O, ndE). Then our approx-

imation for the density of states of the actual macro-

scopic system will be

n{E) ~ 2 WcndE). (3.5)

where Wc are weights, which we shall presently discuss,

and the approximate equality, =, will signify accuracy

to within terms exponentially small in Lj2R.^

We shall now describe a suitable choice of Wc and

later demonstrate that it leads to the claimed accuracy.

Let us suppose that in the actual, macroscopic system

under consideration there are given two-body forces

between the scatterers.

(3.6)

which vanish beyond a range a which is much smaller

than L. Let us suppose further than the scatterers obey

classical statistics. Thus, in the macroscopic system

the probability of a given configuration c = fri, ro, . . .)

is given by the grand canonical weight function.

j(;(.x)= ^(=c) gxp ]
—

/3

1

2 ^ap-J^ fijNj (3.7)

where is the normalization constant, fjij is the

chemical potential of scatterer of type j, and Nj is the

total number of scatterers of this type.^

A suitable choice oi Wc, for the periodically continued

neighborhood, is obtained as follows. We take the unit

cell and associate with each original position vector r,

the infinite set of vectors

(3.8)

This corresponds to the topology of a three dimensional

torus and is illustrated in figure 3 in one dimension.

The weight Wc is then determined by the equation

Wc= A exp ]
— /3 -2l.^a,{ra,)-^t^jNX\ (3.9)

^ Provided the forces between the scatterers are sufficiently short range.

•^For the macroscopic system, one could of course equally well use a canonical distribu-

tion. However, in our local neighborhood theory, this would lead to unacceptable errors of

order l/A', where A' is a mean number of scatterers in Cli .

Figure 3. Schematic representation oj the toroidal topology. The

circumference is L.

where Vap is the shortest vector contained in the set

ra**^* — r/j''^'. For example, ri2 is shown schematically

in figure 3. The normalization constant A is chosen so

that

2 Wc=l, (3.10)

where the sum goes over all configurations, including

all possible numbers of the scatterers.

It can be shown that, with the choice (3.10), the cor-

relation functions, 77,s.(ri .... rs\L), in the finite toroidal

system, differ negligibly from those of the infinite

system, ns(ri, .... rs
|

oo), for values of |ra— r;3|^L/2

and s up to s^L/a. The error of a given correlation func-

tion behaves as exp [—a,s^/a], where is of order unity.

This fact assures that, if L > a, the statistical distribu-

tions of the ions in any neighborhood of size < LI2 are

practically identical in the ensemble of periodically

continued neighborhoods and in the macroscopic

system. Hence, in view of the locality principle demon-

strated in section 2, the density of states n(E) of the in-

finite system may be determined, via eq (3.5), from the

density of states in the periodically continued neighbor-

hoods. The error will be exponentially small in the

quantity L/R or L/a, whichever is the smaller. Typically

both a and R are of the order of 1 A, so that one must

work with neighborhoods of dimensions of several in

order to obtain quantitatively useful results.

It is evident that this method will give exact results

for perfectly periodic systems. Since it is also very ac-

curate for highly disordered systems (small R), it should

give good answers for most intermediate situations.

The ensemble of systems defined by eq (3.9) is a

grand canonical ensemble in which the volume Clii=U)

is fixed while the numbers of particles Nj assumes all

possible values. For a single species of atoms it has

been found practically preferable to work with a

periodically continued isothermal-isobaric ensemble,

in which is fixed but the volume CIl is variable. Here
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a unit cell of volume Ot, with the A'^ atoms in a configu-

ration c must be given the weight

M'ni.,c=-^ exp
|
— /3

I ^ (Pal3iral3)—R(^L |(3.11)

where P is the pressure. The density of states of the ac-

tual macroscopic system is approximated by

n{E)
J c

ME; n,.; c) (3.12)

where n(E; c) is the density of states, per unit cell

CLl, in the periodically continued neighborhoods. The

normalization A of ioa[^,c

[ dn,, ^
J f.

(3.13)

where Ntot is the total number of scatterers in the

macroscopic system. Again the convergence of (3.13) to

the exact result is exponential, as for the case of the

grand canonical ensemble.

4. Numerical Illustration

To illustrate the theory of the previous sections we

have numerically studied the following model of a one-

dimensional alloy:

d
//= —^— ka8{x — ad) (4.1)

where the distance between potentials, d, was taken as

1, and \a was taken, with equal probability, as —2 and

—4. (This corresponds to a high temperature limit for the

two different kinds of scatterers, an idealized model for

crystalline Cu Au well above the ordering temperature.)

Here the grand canonical method was appropriate. Two
calculations were performed, with L — 6 and L = 10. Let

us take the case L — 6. A typical, periodically continued

neighborhood is shown schematically in figure 4. Each

configuration of potentials in the fundamental interval

0 < X ^ 6 has the same weight, 2"^.

In this simple example all correlation functions are

evidently exact, as long as the crystal sites considered

are all contained in a single unit cell.

\=-2

X = -4

P'iGURE 4. A typical periodically continued neighborhood of the

illustrative model.

The density of states curves was calculated for each

of the 2^ configurations and then averaged. For L= 10

a sampling procedure was used. The results are shown

in figure 5, together with the exact result obtained for

the infinite system using the Schmidt method.^ Our ap-

proximation reproduces quite accurately all the details

of the density of states structure, even for L = 6. To ob-

tain similar accuracy from a single randomly populated

chain would require a length of the order of L ~ 10^.

0,70

0.50

0,50

0.40
<3

in

0.30 -

0.20

0.10 -

FlGl'RE 5. Integrated density ofstates for binary alloy. The solid line

is the exact result.

5. Concluding Remarks

It is commonplace to emphasize the theoretieal dif-

ficulties caused by disorder. In the present paper we
draw attention to a favorable feature: For a highly disor-

dered system the physical properties near a given point

depend only on circumstances in a small neighborhood,

whose dimension is of the order a mean free path. Con-

sequently, a macro-system may be treated, so to speak,

neighborhood by neighborhood and the macro-problem

can be reduced to an ensemble of micro-problems. We
have shown that the errors of such a procedure can be

made to vanish exponentially with the size of the

neighborhood. A numerical model calculation bears out

these considerations.

A more complete account of this program will be

published elsewhere.
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Discussion on "Local Theory of Disordered Systems" by W, H. Butler and W. Kohn
(University of California)

D. Redfield (RCA Labs.): In a system with local varia-

tions in densities of states, it would seem there should

be local variations in the mean free path. Does this

treatment imply that the assumed smallness of this

path makes these variations unimportant?

W, Kohn (Univ. of California): Qualitatively speaking

yes. Having estabUshed this general locality principle

in which a representative mean free path appears just

guides one in one's further thinking. One does not ac-

tually introduce a mean free path into the calculation.

I am not sure we are in communication.

J. Tauc (Bell Telephone Labs.): It seems to me that

this locality principle, if it is applied in the sense that

you first mentioned, is different from what you were

speaking about later. If you say that it is only the en-

vironment of an atom which is important, then, of

course, considering only a few atoms, you get a discrete

energy spectrum: the energy spectrum for the whole

body would be continuous by averaging. But an elec-

tron at a certain place would have a discrete spectrum,

and this would have very important consequences for

the conductivity and optical properties. Do you think

that an electron at a certain place sees a discrete spec-

trum, or rather a continuous density of states?

W. Kohn (Univ. of Calif): The locality principle holds

only for the statistical average. Your question is an in-

teresting one because it brings out this point. Let me
answer this in two ways. First of all, in terms of the first

rudimentary model, which actually we are not follow-

ing, but I think it is perhaps best for answering your

question. That is the model where we simply surround

the four or five scattering centers by an infinite wall.

And now we put the electrons in there. Obviously the

energy levels are discrete. Now imagine that this

sphere is rather large so that the spacing between the

discrete states becomes small. Now average over all

positions of the scatterers. Then for each configuration

you get a discrete spectrum. When you average over all

you get a very large number of discrete spectra which

in fact results in a continuous spectrum. And it is that

average continuous spectrum whose density relates to

the density of the infinite system. I think I did forget a

point in discussing my viewgraph. You notice that there

are these brackets here; I apologize, I did not speak

about them — these are configuration averages. And the

locality principle holds for the average quantities. Now
what you are interested in finally for the alloy is the

density of states of an infinite system that is equivalent

to averaging within the individual small cells over all

possible configurations. In this way you do in fact end

up with a continuous spectrum. In the second method

that we use, and which is much better from a quantita-

tive standpoint, namely extending the individual cell

periodically, then obviously we get a continuous spec-

trum even for an individual configuration.

A. WilHams (IBM): It seems to me, if I understand cor-

rectly what is being suggested, that the proposed

method holds a great deal in the way of computational

promise. It seems to me that you are suggesting that we

can do several band calculations for a lattice with a ba-

sis. The question then becomes how many members

shall we have in the basis and over what statistical en-

semble of bases must we average, but nontheless the

fundamental calculation is something we have learned

to do quite well for a very realistic system.

W. Kohn (Univ. of Calif): Yes, I agree fuUy with that,

and just to go out on a Hmb I would say there wiU be

quite a few systems where you could expect an accura-

cy of 2% by working with a basis in three dimensions

with as few as-2, 3, or 4 scatterers.
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Density of Electron Levels for Small Particles

L N. Cooper and S. Hu**

Physics Department, Brown University, Providence, Rhode Island 02912

The density of electronic levels for small particles is calculated. This differs from the usual expres-

sion which is valid as the volume of the sample becomes very large. The leading term of the correction

is proportional to the surface/volume of the sample. Depending on the environment the density of elec-

tronic levels may be increased or decreased.

Key words: Diffusion equation; electronic density of states; "muffin-tin" potential; small particles;

two dimensional classical membrane.

1. Introduction

The commonly employed formula for the number of

levels of a quantum system in the momentum range d^p

comes from an expression derived by H. Weyl which is

valid asymptotically (as the volume of the sample

becomes very large). For small samples this is

modified. The leading additional term can be expressed

as a surface/volume correction.

Recently Kac [1] has written down the first few

terms for the density of levels for a two dimensional

classical membrane, asking "Can One Hear the Shape

of a Drum?" We have generalized Kac's result for the

leading correction term to three dimensional specimens

for two boundary conditions: for the first the wavefunc-

tion is zero at the boundary while for the second the

derivative of the wavefunction is zero at the boundary.

In the latter case the density of electron levels is in-

creased.

2. Development

In this section we outline, very briefly, a method for

obtaining the density of states developed by Kac. The
expression

gives the number of eigenfunctions in some range of A.

-Kllll

Mk)e-^'dK
(2]

where N(X) is number of levels per unit interval of k.

This is related to the usual expression by

(3)

where k — mElh'.

Kac observes that

is a solution of the classical diffusion equation

dt 2
'

with the initial condition

[/(/. ? = 0) =§(/-/«)

(4)

(5)

(6)

-Kmt
if

1

J)

*Supported in part by ARPA and the National Science Foundation.

**Pre5enl address: Northeastern University, Boston. Massachusetts.

But the solution for the classical diffusion equation far

from any boundary should be the same as the solution
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in an infinite volume; this can be obtained by assuming

periodic l)()undary conditions and in two dimensions

has the lonowini!; weh known form:

1

2jTt
exp

ro -

2;

Evaluated at r= r„ this gives

f e-^""\xl,,„{v)\^ = :^

which when integrated over the area yields

area

27rt

(8)

(9)

10)

This argument is obviously equally valid for any

number of dimensions. In particular for a three dimen-

sional sample one obtains:

a
-^1)11 —

.

(11)

where H is the volume of the sample. This using (2)

yields

or

477-0
(12)

which is the usual expression.

To take account of a boundary Kac rederives the

solution of the classical diffusion equation, approxi-

mately, in the following way. If one is close enough to

the boundary, to the first approximation the boundary

will appear as a line. As he says "for small t, the parti-

cle has not had time to feel the curvature of the bounda-

ry." He then writes down what is the solution of the

classical diffusion equation with the initial condition

(6) and with the boundary condition that the solution

go to zero at the boundary and obtains for r=ro

t^(r=r,„ f)
1

-28 2//

27rt
(13)

where S is the distance of the point r from the

boundary.

This result can easily be generalized to any number
of dimensions and for the opposed boundary condition,

that in which the derivative of the solution is zero at the

boundary. One then obtains for a three dimensional

specimen

r',(r=r„. t)
1

-282/,

(2TTt
(14)

where the =P signs correspond to the wavefunction or

its derivative going to zero at the boundary.

When (14) is integrated over the volume of the sam-

ple, one obtains for a three dimensional particle

-Kiiil
n V2 TTt

(27rO''''- (27rO-'/- 4

(15)

where O and S are respectively the volume and surface

of sample.

3. Conclusions

Using (2) the above expression yields the following

density of electronic levels for a three dimensional sam-

ple:

_ S 77^ 1

where No(E) is the usual density of levels as given by

the Weyl asymptotic formula and S/H is the ratio of the

surface area to the volume of the sample. The two signs

correspond to the boundary conditions:

(// =0 at boundary <

—

> minus

t//' = 0 at boundary <—* plus

[The next term in the expansion which is related to

the curvature of the surface bounding the sample has

been evaluated by Kac for various special two dimen-

sional closed curves but has not been generahzed to

higher dimensions. For a two dimensional circular sam-

ple of radius R evaluated near the Fermi level, one ob-

tains for 0 at the boundary:

/V(£,)=/Vo(£,)(l-(A>/?)-'+f (A>/?)-^+. . . ).

Thus it is reasonable to expect that for most samples

this next term would be much smaller than the

second.]

Near the modified Fermi surface (16) becomes

/v(£,)=yvo(£,o)(i+|^+. . .) (17)

Referring the ratio of surface to volume to that for a

sphere we have

/V(£,- )=/V„(E,.o)(l+ 377/8 (Avo/?)-' 7^—^+. . . )

(2/n) sphere

(18)

For an irregular metallic sample we might guess that

S/n could be an order of magnitude larger than that for

a sphere so that one could expect the second term to be
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as large as 10% of the first for particles of the order of

10"'' cm in radius. For a smaller sample or for a material

like a semiconductor with smaller A/ the effect would

of course be larger.

Such an aheration in the density of electronic levels

would be expected to produce dramatic effects in the

various density dependent physical quantities. Unfortu-

nately under ordinary conditions it will very likely be

obscured because the physical boundary condition will

fall between the two extremes above (i//= 0 and i|/'=0

at the boundary) diminishing the effect of the second

term. In a properly arranged environment, how-

ever—for example, one might consider a metal-vacuum

boundary to simulate ijj — 0 at boundary, or a metal-

other material boundary to simulate (|/' = 0 at the bound-

ary—the effect might become visible and possibly

important.

4. References

[1] Kac, M., American Math. Monthly 73, No. 1, Part II. p. 1 (1966).
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Discussion on "Density of Electron Levels for Small Particles" by L. N. Cooper and S. Hu
(Brown University)

A. Yelon (Yale Univ.): For a linear combination boun-

dary condition, does the effect tend to disappear?

L. N. Cooper (Brown Univ.): Yes, it may well be that

one does not see the effect normally. It may add to con-

fusion in work with small particles if one is comparing

results in one environment with results in another en-

vironment and having changes in the density of states

due to that.

H. H. Soonpaa (Univ. of North Dakota): The effect

described in this paper has been observed. We have

measured an increase (by 2.3 eV) in the contact poten-

tial of 40 A thick semimetal film as compared to the

bulk material. A similar effect was observed by Batt

and Mee [1]. They observed a decrease in the work

function by about 0.2 eV when an Al film used in their
o

photoemission work was made thinner than about 50 A.

These changes are related to the Fermi energy, which

increases with decreasing thickness, as predicted by

the equations derived for size effect quantization.

[1] Batt and Mee, Journal of Vacuum Science and Technology 6,

737(1969).
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One-Dimensional Relativistic Theory of

Impurity States'^

M. St^slicka,** S. G. Davison, and A. G. Brown***

Quantum Theory Group, Departments of Applied Mathematics and Physics, University of Waterloo, Ontario, Canada

The one-dimensional Dirac equation is solved for the Kronig-Penney model containing a 8-potential

impurity. Depending on certain existence conditions, the impurity states can be classified into two types

called relativistic and Dirac impurity states. In the nonrelativistic limit, the Dirac states disappear and

the relativistic ones become the ordinary impurity states. A detailed discussion is given of the complete

energy spectrum.

Key words; Impurity states: Kronig-Penney model: one-dimensional Dirac equation.

1. Introduction

An important problem in the electronic theory of

semiconductors is that of impurity doping. Up to now.

only nonrelativistic (NR) investigations [1-4] have been

carried out on the effect of substitutional impurities on

the electronic properties of crystals. During the last few

years, however, a relativistic theory of heavy atomic

solids has been developed. Most of the calculations

have involved the solution of the Dirac equation for the

"muffin-tin" potential [5]. In order to study localized

states, within the framework of the relativistic theory,

the simpler Kronig-Penney (KP) potential [6] has been

employed [7-10]. In this paper, the behavior of

relativistic electrons in the region of an impurity is ex-

amined, by means of the Seitz model [11]. Com-
parisons are made with the NR results in the final sec-

tion.

2. Plane Wave Solution of the Dirac Equation

For the ^-region of constant potential li-, the 2-com-

ponent form of the Dirac equation is [12]

ihc (T.i^ = — {e—Vk)^\. e = E — mi)c'', (1)

ihc o-j-Vj-c^i = — (e — Vh + 2m»c'^) <t>2, (2)

*OTC article: S-156

**Permanent address: Department of Experimental Physics. University of Wroclaw, Po-

land

***Work supported by the National Research Council of Canada and the Llniversily of

Waterloo Research Committee

where

*-(::) "HVo} «)

Decoupling these equations yields

Vl<ttj = -pl(})i: j=lor2, (4)

in which

pl = {€-V,}{e~VK- + 2moc')lh-'c'. (5)

The general solution of (4) is

<f>j
= Aje'Pk-'- + Bj-e (6)

Aj and Bj being 2X1 matrices. From (1) and (6), it fol-

lows that

A I
= yp-.,.A-j , B, = — yo-.,.B2, (7)

with

y= (€-V,)lhcp,. (8)

Thus, the 4-component plane wave solution to the Dirac

equation can be written as

</>U) = (
= A.e-A-+ B,e--.-

(9)

where I is the 2X2 unit matrix.
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3. Relativistic Crystals States

The simplest relativistic theory of solids is based on

the KP model in a 8-function limit. Initially, the volume

[7] and surface [8] states of such heavy atomic

systems were analyzed by adopting a continuity condi-

tion in which only the 2-component spinors were

matciied across potential discontinuities. However, the

choice of this continuity condition means that there is

a nonmatching of the component slopes. Furthermore,

the resulting mathematics are somewhat comphcated.

Since electron velocities in sohds are not extremely

high, the contribution of the small component is not

as significant as that of the large component
(f>>. Thus,

another set of suitable continuity conditions is the

equating of the large component and its derivative

across the potential discontinuities. This, of course, im-

plies a nonmatching of the small component and its

derivative. The problem of boundary conditions has

been discussed at length in a recent paper [9]

.

The latter type of continuity condition is adopted

here, because it not only leads to a simplification of the

subsequent mathematical analysis but also is a very

good approximation, as was shown in [9]. In this ap-

proach, the relativistic Kronig-Penney (RKP) relation

in 8-function limit takes the form [9]

sin p >(i

cos /Ltf/ = cos p > a + />»/, —
, (10)

where

p.7 = e(e + 2moc-)/^^c- (11)

and

— pit = lim h p'\ (lb, (12)

(b is the width of the potential wall), while the bulk large

component wave function in the unit cell a/2 ^ x ^
3a/2 is given by [9]

4>-2 = Oil [e'P2<-'-"/-^' + \,fe-'>-i'''-"/-' ] , (13)

where

\w= (1 — e-'('^-P2)")/(e-'(^+''2'"-l). (14)

The subscripts 2 and 3 refer to the two regions II and

111 of different constant potential in the KP model.

4. Relativistic Seitz Model

4.1. Impurity Energy Expression

The potential field in the vicinity of an impurity atom

in a linear crystal is represented schematically in figure

^V(x)

I

II

1

1

1

I

1

1

1

1

n

-a 1

1

a

-w

I

Figure 1. 8 — Barrier re/iresentation of the i>ntenti(il field in ii linear

crystal (U]rontaininfi an impurity atom (/).

The difference between the crystal und im()urity p<tleritia! strentitlis is — W

.

1 [2,11]. The procedure for analyzing the problem of

impurity states is to match the wave function in the un-

perturbed periodic part of the crystal to that in the per-

urbed region near the impurity atom. With the system

being symmetrical about ;c = 0, it is sufficient to per-

form the matching process at the potential discontinui-

ty at x = a/2 only. In region I, the solution to the Dirac

equation is even or odd, i.e.,

(/)f
= af (e'>i-' ±e-'Pi-^), (15)

Pi being defined in (5), where V\ is the strength of the

impurity potential.

Matching the wave functions (13) and (15), and their

derivatives, at x = a/2, leads to a determinantal equa-

tion in Q!|- and a>. Setting the determinant equal to zero

gives

(1 + \«)/(l -\,,.) --p,T^//p2. (16)

where

T"" = — tan i p,a, (17)

T" = cot i pia. (18)

After some simple rearranging, (14) and (16) give

e'M" = cos p>(i+ {p\T-lp2) sin p2a. (19)

For localized states to occur, p, has to be complex

[1,11], that is, of the form

p = mrla + C, real > 0. (20)

With the aid of (20), combining (10) and (19) yields

cot p2f; = pi;a[14- (j-pja — 2p/fTpi )/p.]a ]/2p/,. (21)
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where, for convenience the superscript ± has been

omitted from t. Equation (21) gives the relativistic im-

purity state energy (via p>) in terms of the impurity

strength (pi) and the crystal potential [pa). It should be

noted that forr^ or t" eq (21) has solutions in alternant

bands only, thus, to obtain the complete energy spec-

trum it is necessary to include both the even and odd

solutions.

4.2. Existence Condition

Subtracting (19) from (10) using (20) gives

(-l)"sinh [,<'=[il>ii-Tpia) sin pi(i]lpi<i. (22)

For the (n+ \)th forbidden energy gap (FEG), which lies

in the range nTr < (n + l)7r, the RKP relation (10) shows

that

/ sin p >a \
sign = -!)"•

V Pic ) ' (23)

Thus, since ^ > 0, it follows from (22) that

PK>Tpia, (24)

which is a necessary condition for the impurity states to

exist (i.e., existence condition). This inequality imposes

a restriction on the values of the parameters for which

the solutions of (21) correspond to the impurity state

energies.

5. Analysis of Relativistic Effects

5.1. Energy Correction

The NR analog of (21) is obtained by taking c oo to

give

cot p^a= [p^/ + T"p','(^"p'i«-2p")/p-^]/2p", (25)

Future 2. Variation of relativistic energy correction (Ap) with band
number (n) for ph= p°=l).25, a = 6(= 3A) a/?(f V, = ± p72.

5.2. Classification of Impurity States

The NR counterpart of (24) is

//' > T"py«. (26)

It is convenient to introduce the relations

PH = r)p\ t = vt\ px = Kp'l, (27)

where 7], v and k are positive and equal to unity in the

NR hmit. Inserting (27) in (24) leads to

//' + /? >t"pi'« (28)

where the relativistic correction term

(1-i^k/t})7"p'i'« (29)

can be positive or negative, depending on the particular

band being considered, and the values of the parame-

ters V, K, r\. If (28) is always valid, then

where the zero superscript denotes the NR limiting

value of the corresponding parameters. Solving (21) and

(25) numerically, enables the impurity state energies p-i

and Pi" to be determined, respectively. The effect of the

relativistic corrections on the energy is shown graphi-

cally in figure 2, where Ap (=p2° — P2) is plotted against

n, the band number. At low energies, the relativistic

shift in the impurity level is sufficiently small to be

ignored. However, for high energies, the shift becomes

of the order of the FEG and, therefore, cannot be

neglected.

p"^t"p','" (30)

depending on the sign and magnitude oiR.

Comparing (30) with (26), shows that the upper

(lower) inequahty is identical (opposite) to the NR situa-

tion. Thus, the impurity states satisfying the upper in-

equality are called relativistic impurity states (RIS),

since they become the usual impurity states in the NR
limit. However, the states for which the lower inequah-

ty holds violate the NR existence condition (i.e., disap-

pear altogether in the NR Umit). Hence, these states
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arise solely because of the Dirac lonmilalioii and. for

this reason, are known as Dirac im/uirity states (DIS).

It is worth noting that, near a band edge, \{ R > 0 (R <
0) in the existence condition (28), then the presence of

this relativistic correction term enhances (hinders) the

possibility of an impurity state occurring compared

with the NR case.

6. Conclusions

A relativistic investigation of the impurity states of

heavy atomic crystals has been made, using a simple

model, which was proposed initially by Seitz [11]. In

deriving the expression relating the impurity energy

and strength, only the so-called large component was

taken to represent the relativistic wave function in the

crystal lattice. The form of the energy relation is identi-

cal to that of the Schroedinger approach. The sub-

sequent analysis showed that both the existence and lo-

cation of the impurity states in the energy spectrum are

sensitive to the relativistic correction terms, especially

at high energies. The impurity states appear in two

categories, namely, relativistic and Dirac states. In the

NR limit, the former become the ordinary impurity

states, while the latter have no analog.
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Discussion on "One-Dimensional Relativistic Theory of Impurity States" by M. Stfslicka,

S. G. Davison, and A. G. Brown (University of Waterloo)

L. Roth (General Electric): (1) How does the

relativistic impurity energy shift compare with the shift

of the edge of the forbidden energy gap? (2) How many

bound states are there in the forbidden gap?

M. St^slicka (Univ. of Waterloo): (1) We have cal-

culated only the difference between the relativistic as

compared with the non-relativistic effect. We did not

calculate how it is related to band edges. (2) In one gap

at most one level (zero or one).

417-156 0 - 71 - 32
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The Influence of Generalized Order-Disorder

on the Electron States in Five Classes of

Compound-Forming Binary Alloy Systems

E. W. Coilings, J. E. Enderby,^ and J. C. Ho

Metal Science Group, Physics Department, Battelle Memorial Institute, Columbus Laboratories

Columbus, Ohio 43201

The influence of generalized order-disorder (including solid-state order-disorder, and melting) on

electronic structures will be discussed for various types of binary interinetallic compounds which, for

the purposes of discussion, will be arbitrarily subdivided into five classes. Classes A and B exhibit soUd-

state order-disorder (0-D) reactions. In the first of these the atomic potentials are sufficiently similar

that the use of low-order perturbation theory at all concentrations is valid. The effect of 0-D on such al-

loys will be described in relationship to the density-of-states. as measured by low-temperature specific

heat and magnetic susceptibility, and to the electrical transport properties, particularly the conductivity

and Hall coefficient. We then consider from the same standpoint a second type of system in which the

potentials are sufficiently different as to produce bound states which appear in the ordered form. The

disappearance of these bound states when the alloy disorders gives rise to characteristic electronic

behavior.

The effect of 0-D on the experimental parameters referred to above will be compared for the two

types of systems. In particular, published data for Cu-Au, as a representative example of the first type

of system, will be contrasted with new electronic property data for Ti-Al, and compared with recent ex-

perimental results for Pt-Cu, which occupies an intermediate position. In class C, which is metallic in

the solid, and in classes D and E which are semiconducting in the solid, structural order persists up to

the melting point. For D the liquid is metallic, and data are presented for Bi^Te.i, a typical system of this

class. The conditions for the existence of intermetallics of class E are extreme, and give rise to non-

metallic behavior in the liquid.

These various systems will be discussed in terms of differences in atomic potentials. The major

problems involved in giving precise estimates of the required differences will be outlined and a critical

account of the use of concepts like the electronegativity parameter will be presented.

Key words: Binary alloys; BisTe.i: CdSb; copper-gold (Cu-Au); Cu.iAu; CuPt; Cu.-iPt: ductility; elec-

trical resistivity; Hall effect; magnesium bismide (Mg-sBii); mechanical behavior;

melting; model potential of Heine and Abarenkov; nickel aluminide; order-disorder;

Peierls barriers; Pt-Cu; silver^ tellurium (Ag2Te); Ti-Al; TiCo; TiFe; TiNi; TLTe.

1. Introduction

It is reasonably well established that when one ele-

ment is dissolved in another of sufficiently similar

atomic potential, relatively minor perturbation of the

electronic states occurs, even at high concentrations

[1,2]. In terms of a screening model, the ions are

screened independently or linearly. Provided that the

atomic potential differences and the atomic size dif-

ferences are favorable, pairs of elements will exhibit

*On leave friim the University of Sheffield. Present address: Physics Department. The

University. Leicester. England.

unlimited mutual disordered solid solubility, and the

electronic structures of the alloys will tend to follow the

rigid-band prescription. Examples are consecutive

pairs of transition elements near the middle of the 4o?

and 5fi? series, respectively.

Within the low-perturbation region, increasing devia-

tions from ideality will manifest themselves near the

stoichiometric compositions, by the occurrence first of

all of short-range order, and eventually of long-range

order. However, in the linear screening model, changes

of structure brought about by order-disorder (O-D) or

even melting will produce only small electronic effects.
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Table 1. Five distinct classes of intermetallic compounds

Class

Represent-

ative

C(>ni|ii)U ml

Solid state

order-

disoi'der

Major
changes in

electronic

properties

with order-

disorder

Type oi electrical conductivity Major
changes in

electronic

properties

with melting

Solid Liquid

A Cu:|Au Yes No

B Ti:,AI Yes Yes

C NiAl No Metallic Metallic Yes*

Ti.iSn

D Bi.Te, No Semiconducting Metallic Yes

E Mg:,Bio No Semiconducting Semiconducting No

TUTe
Ag,Tc

*Measurements through the melting point have not been made on these systems, but it is expected that these compounds will be more

nearly free-electron-like in the liquid than in the solid.

On the other hand, as the atomic potentials of the two

species become increasingly different, the electronic

properties become increasingly structure sensitive as

the linear screening approximation breaks down.

This effect is discussed with respect to long-range or-

dering systems, commencing with CusAu as the

representative member of our first class of compound

(class A. table 1). In Cu:iAu the atomic potentials of Cu
and Au are sufficiently similar that Cuj^Au undergoes

0-D with practically no change of density-of-states.

In contrast to this are compounds of elements of suf-

ficiently different atomic potentials that significant

changes of electronic structure take place during solid

state 0-D. For example in Ti-Al, near the composition

TisAl, experiments in which the degrees of order were

controlled by suitable heat treatments, demonstrated

that for TisAl, niEr)disor<i.ln(EF)ord. ~ 2. Frequently,

however, it is observed that intermetallic compounds,

which may be either metallic or semiconducting in the

solid, are structurally stable up to the melting point and

therefore do not undergo 0-D prior to melting. To

discuss the effect of structure on electronic properties

of this type of material we must therefore consider the

solid-liquid transition. Metallic intermetallic com-

pounds invariably behave when molten like conven-

tional Uquid metals. In semiconducting intermetallics,

on the other hand, two types of melting behavior can be

distinguished. In most cases a metallic description of

the electron states in the liquid is appropriate; but a

few intermetalHc semiconductors are characterized by

nonmetallic behavior when in the liquid phase.

We will set out to show that the wide variety of

behaviors exhibited by intermetallic compounds can be

correlated through an appropriate electronic screening

model.

2. Experimental Results

Described below are a representative selection of ex-

perimental results based on measurements which we

and other authors have carried out on the five classes

of intermetallic compounds, the properties of which are

summarized in table 1.

2.1. Class A Intermetallic Compounds

The low temperature specific heat of CuiAu, the

representative class A compound, has been measured

for both the ordered and disordered states by Rayne

[3] and Martin [4] who agree that the change in elec-

tronic specific heat coefficient (y) accompanying 0-D

is extremely small. According to Martin jdisord.iyord.—

1.04.' The results of measurements of total magnetic

susceptibility [5], taken in conjunction with the

density-of-states data outhned above, indicate a small

change of electronic diamagnetism with 0-D. Recogniz-

ing that the interband diamagnetism [6,7] usually

makes a significant contribution to the susceptibility of

a nontransitional metal or alloy, the magnetic results

suggest again that relatively small changes in the elec-

• y is proportional to ttie density-of-states at the Fermi level. n(Et- K accordinj: to the rela-

tion niEr) °^'y[l + ^n(^F)]"': where V niEf). a correction term for electron-phurion effec-

tive mass enhancement, is small for a nonsuperconduclnr. This results in an approximately

second-order correction to the density-of-states ratio.
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tronic states accompany 0-D in CuijAu. The Hall coeffi-

cient changes from /^^(disorcl.) ^ - 0.64 X IQ-'^ ft-

cm/oe to/?Mord.) =+ 0.17 X lO"'- fi-cm/oe: both values

being well within the range normally associated with

good metals.- (This change in Hall coefficient is small

compared to that encountered in class B compounds

(fig. 5)). In contrast to the behavior of y and /?//, the

residual resistivity of Cu:iAu is extremely sensitive to

0-D. responding to the change in structure-factor

which controls the scattering [9].

Cu-Pt may be regarded as transitional between class

A systems typified by CusAu above and the subsequent

classification. The low temperature specific heats of or-

dered and disordered CuPt have been measured by

Roessler and Rayne [10]. At the time, the possibility of

a magnetic transition seemed to obscure the interpreta-

tion. However, recent magnetic measurements in this

laboratory have confirmed the absence of a transition

to a cooperative magnetic state on ordering, permitting

the results of the above authors, viz ydisord.ljord. = I-Sh,

to be interpreted as indicating simply a density-of-

states change of that ratio. We have also measured the

low temperature specific heat of the 0-D compound

Cu.jPt and studied the electrical resistivities and Hall

coefficients of a series of Cu-Pt alloys. The calorimetric

results are summarized here for the first time. For

CuijPt, ydisord.ljord. — l-ls- The rcsults of measurements

of the room temperature resistivities of disordered^ Cu-

Pt alloys as a function of composition were in satisfac-

tory agreement with those of Schneider and Esch [11]

after extrapolation from the high-temperature disor-

dered region. As expected the resistivities of the or-

dered compounds CuijPt and CuPt were found to have

dropped to relatively low values. The results of the elec-

trical resistivity and Rh measurements are summarized

in figure 1. The measured Hall coefficient corresponds

to an effective change in carrier concentration of 0.5 —
1.0 X 10^3 electron/cc; although it is expected that at

least a two-band model would be required to describe

this system. The ordering reactions of both CujjPt and

CuPt are accompanied by small positive-going incre-

ments in Rh- It is clear that this system exhibits no wide

departures from good metaUic behavior. These results

will be discussed later in the context of class A and

class B intermetallic compounds.

2.2. Class B Intermetallic Compounds

Systems of this type, in which major changes in elec-

tronic properties accompany sohd-state 0-D, although

2 For example. R» (Cu, experimental) = - 0.55 X IQ-'^ n-cm/oe; andfi« iCu, free electron

model) = - 0.74 X 10"i2 fi-cm/oe.

^ Rolled strips from arc-melted buttons were measured in tile unannealed condition to

avoid the possibility of short-range ordering, as discussed by Kim and Flanagan [12].

Atomic percent Pt

Figure 1. Resistivity and Hall coefficient for Cu-Pt alloys.

Filled points — room temperature; open points — 4.2 K. 0# — "disordered" (cold-rolled

from arc-melted tiuttons). AA — after a lonfz tirderinj: heat treatment ((Ju:, I't — step-cooled
from 500 °C over a period of 2 weeks; CuPt — step-cooled from 850 diirinfi 18 days).

Analyzed compositions of the compounds were respectively. 25.7 at-'^r and 50.5 at.% Pt.

Broken line refers to the room-temperature "ordered" alloy resistivity data of reference

(11|. .'\rrows indicate the response to ordering heat treatment which, as the resistivity data
shows, is still not complete.

not common, are of considerable importance both prac-

tically and from the standpoint of this discussion. Ti.jAI

is taken as an example, and some new experimental

results are presented below. Figure 2 shows the results

of room-temperature magnetic susceptibility measure-

ments. Using Blackburn's [13] equilibrium phase dia-

gram as a guide (see inset to fig. 2) the degrees of long-

range order present in the small (
— 150 mg) suscepti-

bility specimens were controlled over wide ranges'* by

suitable heat treatments followed by rapid quenching

into iced brine. The chief components of susceptibiHty

in a transition-metal alloy are Xswn, the spin paramag-

netism which is approximately proportional to n(Ei.'),

and XoWm the orbital paramagnetism [14]. Clearly figure

2 demonstrates that major changes in electronic struc-

ture accompany 0-D in the Ti-Al system and particu-

larly in TisAl itself. The electronic specific heat results

are shown in figure 3. Because of their bulk (30-40 g) the

specific heat specimens were not able to be quenched

as rapidly as were those used for magnetic susceptibili-

ty measurements. For example, the Ti-Al (28 at. %)
specific heat specimen could not be retained in the dis-

ordered form. However, the results of figure 2 help to

validate the extrapolation procedures used in figure 3

for estimating jdisord. For Ti.sAl it follows that

n(Ei.')diiiord.lTi(Ef)„rd. — 2.1. Some of the results of elec-

An exception is Ti:iAl itself, in which the ordering reaction is so rapid that it proceeds al-

most to saturation, with respect to density-of-states properties, during ice-brine quenching.
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Figure 2. Average mom-temperature magnetic susceptibility

(Xav.) o/Ti-Al alloys.

Xiiv.
~

'/'^'Xj- + Xw+ X;)- Insel is (lie equilibrium phase diagram (0-25 at.% Al) due to

Blackburn [l-i]- The arrows indicate tile effect of iniprovinj; the degree of long-range order.
— annealed a( 50 °C below al(a + fi) and quenched. e\cep( for Ti-AI (HO) which was hea(

treated as for Ti-Al (20). O — quenclied into iced brine fnmi bcc field. O to© — quenclied
from 1260, 1.000. 800. and 700 =C, respectively. =0-.|uenched from 1100 °C. A-as cast.

# ~ long step-cooling anneal to promote maximal long-range ordering.

trical resistivity measurements on Ti-Al are shown in

figure 4. This type of measurement, and particularly

residual resistance ratio, is well known^ to be much
more responsive to the degree of long-range order than

are Ajff'/^sensitive measurements such as specific heat

and magnetic susceptibility. Although TiaAl in the as-

cast condition may from the point of view of n(Ei.), and

for most practical purposes, be regarded as fully or-

dered, the antiphase domain size is still sufficiently

small [13] that grain boundaries make a significant

contribution to the electron scattering. As a con-

sequence, the resistivity-concentration curve for as-

cast Ti-Al shows only a dip at 25 at.% Al characteristic

of partial ordering (fig. 4 cf., also [15]) instead of the

otherwise expected sharp drop to the baseline. The

results of the present Hall coefficient study are sum-

marized in figure 5 (cf., [16]). Considerable scatter of

the data was encountered for alloys of compositions

close to 25 at. % Al. This was attributable to

microcracking, which always occurred even when spe-

cial preparation procedures were followed.''

Of crucial importance for an interpretation of the

electronic property data presented above are the

^ For example, relatively large changes of residual resistance ratio brought about by cold

work or very dilute alloying are frequently accompanied by negligible changes in y or x-

" The end of a suspended "finger-ingot" of Ti.|.M was remelted by r.f. induction heating in

a geltered argon atmosphere, and cooled to room temperature in about 8 hours.

0 5 10 (5 20 25 30

Atomtc Percent Aluminum

Fk;i RE 3. Low-temperature specific heat of disordered and ordered
Ti-Al.

Filled symbols rei)resent single-phase {a ora^) material, while open symbtds re[)resenl

alloys which are known or suspected to be two-phase (tt-t-a-j) (see inset to fig. 2). (!ircles;

as cast; Triangles: (juenched from 50 °C below alia^fi) transus; Squares: prolonged

lo\v-tcmpera(ure anneal; Diamonds: quenched from jS field.

results of x-ray structural measurements by Gehlen

[17] of a maximally-ordered single crystal of Ti-Al (26.7

at. %). The results^ of that work, whose physical sig-

nificance has been the subject of a preUminary note

[18] are best described with reference to figure 6.

Gehlen's work has demonstrated that TiaAl possesses

a hexagonal DOih structure, but with the Ti atoms

slightly displaced "inwardly," within the basal planes,

toward a hexad axis passing through the Al atoms. This

results in the formation of the chains of— Al-

Tiii — tetrahedra delineated in figure 6.

The spatial arrangement of ordered Ti.jAl, in con-

junction with the electronic property evidence as a

function of 0-D, suggests (a) that part of the bonding in

ordered Ti-^Al is covalent in type with some fraction of

the total number of otherwise-available conduction

electrons removed from conducting states; and (b) that

such an electronic arrangement, favored by the struc-

tural long-range order, becomes smeared out in the dis-

ordered lattice. In terms of our model we would say that

the ordered state is characterized by nonlinear screen-

ing, which requires a self-consistent readjustment in

response to a change of structure.

2.3. Class C Intermetallic Compounds

This is a large class of compounds. Members of this

category (table 1) may exist within a finite composi-

tional range about stoichiometry and are generally suf-
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Atomic percent Al

Fl(;URE 4. Electrical resistivity of Ti-Al at 4.2 K: 0 — cast;

O— annealedfor 14 days at 900 °C and furnace-cooled.

A comparisdti ni' the mafinelic susceptibility and specific heat data for Ti^iAi with the

resistivity data presented here shows that, while the density-of-states is practically un-

affected by annealing (fi;:s. 2 and 3). the improvement in the de^iree of lon;:-ranpe-order

has a profound effect on the electron scattering.

Atomic percent Al

Fl(;URE S. Hall coefficient of Ti-Al at room temperature (-•-) and
7H K (-C-).

The istilated |niiijts refer In s|»ecimens which were irmre or less imperfect thr^u^h

crackiii'i: Q-Ti-Al (22.3 at.'Tt) (RT)i O. C^-Ti:,.M specimens 1. 2. and 3 resp. [RT):

4^' — Ti:i\i specimen 3 (78 K). Microcrackinii in Ti:{AI was unavoidable. The data forTi-Al

(22.3 at.^) inrlicates that the presence of cracks drastically lowers Rn- This fad. ti>;:etlier

with the hehavior nl the surrounding data. suj:jj:ests that Hn (Ti;[AI) sh<iuld. in a jierfecl

s|iecimen. be much lii;:her than the measured values. The data compares favorably with

that of reference
[
161.

ficiently stable to resist disorder prior to melting. In re-

gard to both electronic and mechanical properties they

are metallic solids; and of course are metallic when

\ 1

\ 1

\ 1

\ 1

\ 1,

/^
/

1

/ 1

/ 1

/ 1

/

/ N, \

Fit. L RE 6. Refiulur hexational DOn] structure.

In Ti:( Al the Ti atoms (•) are dis|»laced. in the directions indicated by the arrows, towards

an axis [lassinj: through the Al (O) atoms. The resulting chains of tetrahedra are indicated

by I he heavy lines.

liquid (disordered). The ductility of class C intermetal-

lic compounds is poor at temperatures low compared to

the Debye temperature, but improves at higher tem-

peratures. An example is /3-NiAl for which a considera-

ble amount of pubHshed data are available.'' Figures 7

and 8 summarize the results of recent measurements

by Yamaguchi et al. [19,20] and Jacobi et al. [21] of

the electrical resistivities and Hall coefficients of Ni-Al

and related systems.

The resistivity curves exhibit sharp minima at the

stoichiometric composition, characteristic of metallic

^ Paraphrasing [21], /J-NiAI has a homogeneity range of approximately 40-55 at. % Al al

room temperature, and on the basis of x-ray measurements it probably remains ordered up

to the melting point. The aluminum-rich compound is a (Ni) vacancy structure.
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Fk.URE 7. Electrical resistivity of Ni-A\ |.'/ 1 and Co-Al [I9\.

(0# — Tdoni temperature; ---77 K).

conduction in a long-range ordered structure. The
depth of a residual resistivity minimum is a measure of

the degree of ordering, which is controlled mainly by

the precision with which exact stoichiometry can be

achieved. The Hall coefficient rises sharply to a posi-

tive value at the composition NiAl, the effective charge-

carrier concentration still appearing to remain well

within the metallic regime. Recent measurements in

this laboratory have shown the Rh versus composition

curve for Ti-Sn to be comparable to that of Ti-Al (fig. 5)

but of the opposite sign in the vicinity of the first inter-

metallic compound.

The electrical and magnetic properties of TiFe, TiCo,

and TiNi have been discussed by AUgaier [22] and Bu-

tler et al. [23] , but because of their complicated and

uncertain metallurgical properties, these compounds

cannot be unequivocally placed in the simplified clas-

sification scheme described here.

2.4. Class 0 Intermetallic Compounds

This is a relatively populous class. Here we refer to

intermetallic compounds, semiconducting in the

crystalline state, which revert to metallic behavior

when molten. Some of the many semiconducting com-

pounds which exhibit this behavior (e.g., CdSb, ZnSb,

BiiTcs, and Sb^Tes) have been discussed elsewhere

[24,25].

We offer here, as an example of class D, the com-

pound Bi2Te3 and the results of some new measure-

ments of Rh through the melting point (fig. 9), which

demonstrate the transition from the semiconducting to

the metallic state on melting.

-5

E

I

50 55

Atomic percent Ni

Fl(;URE 8. Hall coefficients o/Ni-Al.
Data points are from references [20] and [21] (excepting that data from [21] has been

shifted slightly in composition, bringing the peak lo 50 at. % Ni).

240

420 460 500 540 580 620 660 700
Tempera fure,''C

Fl(;URE 9. Hall coeffi-cient of Bi^Te.) showing the transition to the
metallic state on melting.
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Fl(,URE 10. Hall coefficient as a function of composition for liquid

Te-Tl showing a singularity at theicomposition of the liquid semi-

conductor TloTe.

The dotted portion of the curve for Te-Tl refers to the two-phase region. The Hall co-

efficient of liquid Te-Bi, which is metallic at all compositions, is shown for comparison (after

reference [25]).
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Figure 11. Transport properties, Rh and a, of the liquid semicon-
ductor AgTe 05 functions of temperature (after reference [25] ).

2.5. Class E Intermetallic Compounds

Compounds in this class are not common. They pos-

sess an extreme type of behavior in which their non-

metaUic character in the crystaUine state persists into

the hquid. We cite as examples TlaTe and Ag^Te which

have been discussed in the recent paper of Enderby
and Simmons [25]. Again the Hall coefficient is quoted

as a useful measure of the degree to which a given

material can be characterized as nonmetaUic. Figure 10

shows Rh for Hquid Tl-Te rising to a singularity at the

composition Tl2Te. Figure 11 reproduces the results of

transport property measurements on AgTe. Both Rh
and cr are out of the range of values usually associated

with metallic conduction. As a final example we quote

Figure 12. Electrical conductivity of liquid Bi-Mg near the com-
position of the liquid semiconductor MgiBi^.

Open circles are data from reference [27], Filled circle represents the minimal conduc-
Uvity obtained in the present experiment [26] after enriching the alloy Bi-Mg (63 at.%) with

Bi (through evaporation of Mg, and by direct addition of Bi).

o

E

MgsBi^ currently under investigation in this laboratory

[26]. Figure 12, most of the data for which are due to

Ilschner and Wagner [27], shows the conductivity of

the hquid alloy dropping to less than 60 (fi-cm)"' near

what must be assumed to be the stoichiometric com-

position.

3. Discussion

In the data presented above an overall pattern can be

discerned in the properties of intermetallic compounds.

The chief features of this pattern have been sum-

marized in table 1. In proceeding further it is of con-

siderable heuristic value to focus attention on the

cohesive energy and note how this quantity varies as we
proceed from A to E. We introduce the partial cohesive

energies [28] such that ^coh = ^^^i- For weak pseu-

dopotential metals only (the structure-independent

term) and ^2 (the term depending on pair potentials) are

important. Under this condition rearrangement of the

atoms at constant volume will not significantly change

^coh- If the pseudopotential is weak the ions may be

screened separately. Movement of such ions, with self-

consistent adjustment of the screening results effec-
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lively in a screening charge that accompanies the ions

(or neutral pseudo-atoms as they may tlien be called

[29]). That is, in the linear screening regime of weak

pseudopotentials, the electron states are approximately

independent of structural order. This situation obtains

for (a) pure metals with weak local pseudopotentials,

and (b) alloys of metals whose differences in atomic

potentials (to be defined) are small (cf.. Stern [1,2]). As

the differences in pseudopotentials become larger, a

new aspect enters the problem. There are many

equivalent mathematical descriptions of this. For exam-

ple, the concept of nonlinear screening on one hand, as

discussed by Phillips [30], or the breakdown of pertur-

bation theory on the other (cf., Stern [1], Beeby [31]).

In terms of our basic approach it means that i',- (i > 3)

become of increasing importance, i.e., the ionic screen-

ing becomes increasingly nonlinear.^ Although no sin-

gle piece of evidence is conclusive, the trends in the

data discussed above are unmistakable and are out-

lined as follows:

3.1. Mechanical Behavior

A loss of ductility occurs as we proceed from class A
to class E intermetallic compounds. This is associated

with a high resistance to shear (i.e., high Peierls bar-

riers) brought about by noncentral forces. For example,

CuiiAu is ductile but, as expected, is easily work-

hardenable [4]: whereas the class C compound /3-NiAl

is already extremely brittle [21].

3.2. Hall Effect

It is not possible to calculate from first principles the

Hall coefficient of solid-solution alloys. Conversely it is

usually difficult to make a satisfactory detailed physical

interpretation of an experimentally-measured value of

Rii. If, however, during alloying charge carriers became

immobilized, as bound states begin to form, a signifi-

cant increase in \Rh\ may occur. We see this just

beginning to take effect in class B compounds (fig. 5);

whereas class E compounds are characterized by singu-

larities in \Rh\ at stoichiometry indicative of a non-

metallic state (fig. 10).

However, in multiband conduction, the possibihty of

which must be considered in any intermetallic com-

pound, positive and negative components of Rh may
partially cancel. Poor metallic characteristics in a sohd

intermetallic compound are therefore necessary, but

not sufficient, conditions for appearance of a large

' In an alloy it is useful to regard this as a description of incipient bound state formation.
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value of \Rh\- Such measurements in the solid must

therefore be reinforced by other electronic property

measurements when studying the bonding behavior of

alloys. With liquids (in which only negative Hall coeffi-

cients have been observed experimentally) the in-

terpretation seems more straightforward.

3.3. Electrical Resistivity for Low Solute Concentrations

A marked increase is observed in the resistivities of

dilute alloys (per atomic percent solute concentration)

as the atomic potential difference between solute and

solvent increases.' This is illustrated in figure 13 in

which the resistivities of dilute Ti-Zr and Ti-Al alloys

are compared. Ti-Zr may be regarded as an "ideal"

solid solution alloy while Ti-Al leads eventually to a

class B intermetallic compound.

3.4. Electrical Resistivity near Stoichiometry

In classes A and B compounds, disordering can be

achieved either by heat treatment or by varying the

stoichiometry; while in classes C through E com-

pounds, only the latter technique is available in the

sohd state. Bearing this in mind we make the general

observation that in classes A, B, and C the resistivity

decreases on ordering through structural considera-
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tions in spite of a lowering electron density (brought

about by the bound state formation which may produce

an increase in |/?h|). On the other hand in classes D and

E the bound state effect dominates, and both the re-

sistivities and Hall coefficients have maximal values at

the stoichiometric compositions.

3.5. X-Ray Studies

Direct crystallographic evidence also reinforces the

above picture. As has been pointed out in detail in sec-

tion 2.2 the results of x-ray structural studies on Ti:iAl

attest to the existence of noncentral bonding forces.

Similarly electronic density contours, such as those

derived from CoAl and NiAl by Cooper [32] demon-

strate graphically the existence of directional charge

distributions in class C intermetalHc compounds.

4. Conclusions

Given a binary alloy how can we determine ab initio

which of these categories represents an appropriate

description? Clearly the gross features can be deter-

mined simply by looking at the periodic table. The
further apart the elements are, the more the alloys or

compounds tend to E-type behavior. The next degree of

sophistication is to use the concept of electronegativity

in either its traditional [33] or its modern [34] form.

The estimates that these give of the differences in

potentials sometimes fail in detail; for example, they

would predict that the class D compound Au^Te falls in

class E. The reason for this is that such methods do not

take into account the self-consistency of the conduction

electron screening. However, the Pauling elec-

tronegativity approach to bonding [33] and the theories

of structural stability propounded by Brewer and his

collaborators [35] are linked by considerations relating

to the gaseous atomic energy levels. However, these

levels form the basic input data for calculations of pseu-

dopotentials of the type described by Heine and co-wor-

kers. Such potentials are known to be useful for a

variety of applications. In our view the successes of

both the electronegativity concept and the approaches

used by Brewer, which at first sight seem highly empiri-

cal, can be fully understood from this point of view.

The pseudopotential in its k-space form is not well

suited to this present discussion since it relates to the

first few lattice vectors in reciprocal space, whereas to

discuss bound state formation and the localization of

electrons we need to consider the first few atomic

spacings in real space. The pseudopotential in k-space

deals with the long range part of this potential (i.e.,

screening) in a satisfactory way, but the influence of the

core is distributed through k-space and is not accessi-

ble. The Engel-Brewer theory emphasizes the im-

portance of the core but does not take sufficient ac-

count of screening and the requirement of self-con-

sistency that the screening imposes on the problem.

What we seek is a synthesis of these two points of view,

and our starting point is the model potential of Heine

and Abarenkov [36]. This potential in real space has

the correct asymptotic behavior, and though ill-defined

near Rm, the core radius, is fixed inside the core by

terms from the spectroscopic data.

Table 2 lists the energy parameters of the Heine-

Abarenkov model potential. It is apparent that large dif-

Table 2. Selected parameters for the screened

model potential of Heine and Abarenkov [36]*

A ** ^ 1

Li+ 0.336 0.504 0.455

Na+ .305 .339 .402

K+ .240 .256 .368

Rb+ .224 .226 .384

Cs+ .205 .207 .366

Be'+ 1.01 1.22 1.48

0.78 0.88 0.99

Ca^+ ..54 .50 1.49

Ba^+ .45 .34 1.07

Zn-+ .99 1.14 0.98

.88 0.98 1.78

w^- .97 1.11 0.85

Al-'- 1.38 1.64 1.92

Ga-'+ 1.44 1..58 1.41

In''* 1.32 1.46 1.10

TP+ 1.44 1.51 0.98

Si-'+ 2.08 2.39 2.44

2.10 2.34 2.09

Sn'* 1.84 2.04 1.62

Pb^+ 1.92 ***(2.00) 0.90

As"" 2.71 (3.08) (2.0)

Sb"'+ 2.42 2.66 (1.8)

Bi"'+ 2.38 2.58 0.25

56"+ 3.42 (3.77) (3.0)

Te'-* 3.04 3.32 (2.80)

*After A.O.E. Animalu and V. Heine. Phil.

Ma?. 12, 1249 (1965).

**The A; (which are defined in the above-

mentioned references) are in atomic-energy

units; 1 atomic unit=2 Ry.

***The numbers in parentheses are ob-

tained by "extrapolation" from one point.
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Icrences can exist between the Ao energy parameters

for pairs of metals. For example .4i)(Sb)-A()(Mg) is fairly

extreme on the scale of atomic potential differences.

Accordingly Mg;!Sb2 is a class E compound. On the

other hand CdSb is in class D. This example demon-

strates that, contrary to some previous suggestions,

valence difference alone is insufficient to describe the

effect but that the type of bonding depends in detail on

the core energy levels. When comparisons between the

data of table 2 and experiment are possible the correct

trends are observed.

One outstanding problem is the proper way of

describing the core states in transition metals. The
evidence that we have from this work (see also [28]) is

that they can be treated on roughly the same footing as

normal metals. But we know that a simple model hke

that of Heine and Abarenkov would be completely inap-

propriate. For transition metals even the published

electronegativity values are of little help since they do

not show sufficient variation. The recent theoretical

work by Harrison [37] might form the basis of an at-

tempt to resolve this difficulty. On the experimental

side, in view of the results already obtained for liquids

of class E, it is clear that useful information on the rela-

tive potentials of metals can be obtained from suitably

designed experiments on molten alloys and that this

type of work should be extended to include transition

metals.
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Localized States in Narrow Band and Amorphous
Semiconductors

D. Adier* and J. Feinleib**

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 021 39

The electronic density-of-states is discussed in situations where some of the states near the Fermi

energy are localized, due to either intraionic Coulomb repulsion or disorder. When localized states are

present, the Franck-Condon principle necessitates separate electrical and optical densities-of-states. In

the case of ionic Mott insulators, it is shown that doping or nonstoichiometry drastically affects the ener-

gy-band structure. For the particular example of NiO, introduction of Li+ impurities or excess oxygen

leads to a large upward displacement of the 2p band associated with the oxygen ions, moving it suffi-

ciently near the Fermi level that hole conduction in the 2p band predominates above 200 K. in agree-

ment with the available experimental data. In the case of amorphous semiconductors, it is shown that

introduction of electron-electron and electron-phonon interactions results in a shift of the relative posi-

tion of the locahzed parts of the valence and conduction bands, as well as shifts of the localized states

relative to the itinerant states. However, the qualitative features of the model of Cohen et al. are

preserved.

Key words: Amorphous semiconductors; Anderson transition: augmented plane wave method

(APW); chalcogenide glasses; electronic density of states; Franck-Condon prin-

ciple; localized states; Mott insulator; NiO; optical density-of-states; photocon-

ductivity; photoemission; polaron.

1. Introduction

The existence of localized electronic states in a

crystalline solid has been recognized for many years,

and methods have been developed for representing

these states on an effective one-electron density-of-

states diagram. In particular, donor, acceptor, and ex-

citon states in ordinary semiconductors are familiar.

These states are represented in such a way that the

energy to excite an electron, a hole, or an electron-hole

pair, either optically or thermally, is the correct value.

Since the states are localized, certain additional rules

must be borne in mind, in order to use the resulting

density-of-states diagrams. In particular, these states

generally do not contribute to electrical conductivity,

and the simultaneous presence of both a spin-up and a

spin-down electron in such a state results in a large

Coulomb repulsion, and this possibility must be ex-

cluded from consideration. These rules significantly af-

*Dept. ot Electrical Engineering and Center for Materials Science and Engineering.
M.I.T., Cambridge, Mass. 01239. Research sponsored by the Advanced Research Projects

Agency.

**Research sponsored by the Department of the Air Force.

feet the statistics, and consequently modify the tem-

perature dependence of the conductivity.

It is also clear that many other locahzed electronic

states exist in crystalline materials. The core electrons

are much more reasonably treated in a Heitler-London

approximation, as always moving with their cor-

responding nucleus, than as itinerant Bloch electrons

moving in the periodic potential of all the nuclei. How-
ever, it can be shown, for closed-shell configurations,

the two opposing treatments give identical results [1].

The fact that this is not the case for partially-filled

shells was first emphasized by Mott [2,3] , who showed
that electronic interactions in narrow energy bands

could lead to the localization of outer electrons. It is

now recognized that many transition-metal and rare-

earth compounds are Mott insulators, nonconducting

because electronic correlations localize their outer

electrons. A quantitative version of Mott's model has

been presented by Hubbard [5-7]. Hubbard introduced

the effects of correlations into ordinary band theory by

adding a term to the Bloch Hamiltonian which in-

creased the energy of the system by a constant, U,

whenever two electrons were simultaneously present
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on a particular ion core. U represents the intraionic

Coulomb repulsion between two electrons, and can be

estimated in the atomic limit, or limit of inf inite lattice

parameter, as the difference between the ionization

potential and the electron affinity of the atom. In a real

solid, the value of U is much smaller than in the atomic

limit, due to the effects of screening. However, in many

crystals, such as NiO, this screening does not appear to

be very large [8]. The result found by Hubbard [7], for

the case of a half filled 5 band, is that the solid will be a

Mott insulator provided

f/>0.87A, (1)

where A is the electronic bandwidth. If the condition (1)

is not fulfilled, the material is metalhc. For degenerate

bands, A must be replaced in (1) by 127, where J is the

relevant overlap integral.

Mott [9,10] has recently called attention to the lo-

calizing effects of lattice disorder. A quantitative treat-

ment of an analogous problem was performed by An-

derson [11], who considered the diffusion of a single

electron out of a state in one of a series of equally-

spaced potential wells of random strengths distributed

over an energy range V. Anderson found that if

F > 5 A (2)

the electron would not diffuse away. This result in-

dicates the occurrence of an "Anderson transition" in

which locahzation of an electron can be brought about

by sufficient disorder. Mott [10] has suggested that a

disordered lattice has energy bands whose states are

itinerant if the density-of-states, g(E), is greater than a

critical value, but are localized if g(E) is smaller than

this value. This proposal has obtained some quantita-

tive confirmation from the calculations of Ziman [12],

Edwards [13] , and Neustadter and Coopersmith [14].

The sharp edge between itinerant and localized states

has been termed a "mobility edge" by Cohen et al. [15].

It seems clear that in situations in which both the

energy spread due to disorder, V, and the intraionic

Coulomb repulsion, U, are important, a condition

analogous to (1) and (2), such as

[C/2 + 0.03 ]'/-'> 0.87 A (3)

will result in localization. This combination of correla-

tion energy and disorder are most likely responsible for

the suppression of metalhc conductivity in the high

temperature phase of Cr-doped YoO-^ found by MacMil-

lan [16] and by McWhan et al. [17]

.

These effects are comphcated in ionic materials by

the strong coupling between the electrons and the lon-

gitudinal optical phonons, which leads to polaron for-

mation. It is a reasonable assumption that in the

itinerant states the overlap integral is sufficiently large

that large polarons will form. However, in the localized

states the overlap is sharply reduced by the localiza-

tion, leading to the likelihood of small-polaron forma-

tion. In nonpolar substances, the possibility of a Jahn-

Teller stabilization of degenerate localized states must

not be overlooked.

Finally, the Franck-Condon principle suggests that

ionic rearrangements do not occur at optical frequen-

cies. This does not affect the effective density-of-states

to be used in analyzing the results of transport experi-

ments, but has important consequences as far as the

optical density-of-states is concerned.

In this paper, we shall be concerned with locahzed

states in crystaUine Mott insulators, such as NiO, and

in amorphous semiconductors, such as chalcogenide

glasses. In section 2, we discuss the optical density-of-

states of pure and doped Mott insulators. In section 3,

we analyze the electrical density-of-states of the same

materials, pointing out the drastic effects that doping

or nonstoichiometry can have on the mechanisms for

electrical conductivity in transition-metal compounds.

In section 4, we discuss the electrical and optical densi-

ty-of-states in amorphous semiconductors in terms of

the theory developed in the previous two sections. The

conclusions are summarized in section 5.

2. Optical Density-of-States of Crystalline Mott
insulators

For simplicity, we begin with a discussion of the opti-

cal properties of pure, stoichiometric single crystals.

We assume that the Franck-Condon principle applies,

and that no ionic motion accompanies an optical transi-

tion. We restrict ourselves to photon energies of 20 eV
or less.

It is convenient to illustrate our major points by a

concrete discussion of a single material. We shall use

NiO as the prototype Mott insulator, primarily because

more experimental data exist for NiO than for any other

transition-metal or rare-earth compounds. However, all

our conclusions and techniques can be appHed equally

well to any other Mott insulator. Restricting ourselves

to energies within 20 eV of the Fermi energy, we need

consider only the 2p band associated with the oxygen

ions, and the 3d and 45 bands associated with the nickel

ions. Since the covalency parameters of NiO have been

shown to be less than 4% [18] , a good starting point for

determination of the band structure is the energy levels

of the fully-ionized atoms, Ni^+ and O^", in the limit of

infinite separation. We then must take into account the
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stabilizations and destabilizations due to the Madelung

potential, the crystalline field potential, iarge-polaron

formation, and various many-body effects such as elec-

tronic screening of the electrostatic Coulomb interac-

tion and induced ionic polarization.

The evidence is now quite convincing [4,19] that the

2p and 45 bands in NiO are made up of itinerant states,

and thus A/U > 1. On the other hand there is much
evidence that the 3d band is very near the atomic limit,

in which A/U <^ 1 [19.]. Thus the 3c? states are very lo-

cai.zed, and NiO, with 8 3d electrons per Ni^+ ion, is a

Mott insulator.

The possible transitions which we must treat in detail

are:

3d''-^3d>'* (4)

3f/« + 3rf«^3^/' + 3(/'' (5a)

3f/« + 3(/«^3f/' + 3f/"* (5b)

3d>' + 3d''^3d'* + 3d-> (5c)

3(/« + 3rf«^3J'* + 3(f»* (5d)

3^/*^ 3d'' + (electron in 4s band) (6a)

3^/*^ 3d''* + (electron in 45 band) (6b)

3f/« + (electron in 2p band) 3d'' (7a)

3(/« + (electron in 2p band) ^ 3(/-'* (7b)

(electron in 2p band) (electron in 45 band) (8)

Reaction (4) is just a locahzed excitation on a particular

Ni^+ ion, the notation 3d^* indicating an excited crystal-

line-field or multiplet spHt 3c?* configuration. Reactions

(5a-d) represent transitions between localized states,

with two Ni2+ ions being excited into a Ni+ — Ni^+ pair

in their ground or excited states. Reactions (6a, b)

represent the excitation of a localized electron on a Ni-+

ion into the 45 band, leaving behind a ground-state or

excited Ni^+ ion. Reactions (7a, b) indicate the possibiU-

ty of exciting an itinerant electron in the 2p band into a

localized state on a nickel ion, leading to the formation

of a Ni+ ion in its ground state or an excited state, and

leaving a hole in the 2p band. Finally, reaction (8)

represents the usual interband excitations between

itinerant one-electron states.

The crystaUine-field and multiplet splittings of Ni^^

states in NiO can be determined either experimentally

[20] or theoretically [21], and are in good agreement.

They lead to a series of optical absorption peaks in the

1-4 eV range.

The energy range of reaction (5a) can be estimated

from the difference between the ionization potential

and the electron affinity of Ni2+ as requiring 18.6 eV
[22]. This figure, however, takes no account of any

screening of the intraionic Coulomb repulsion. This

screening could result from either polarization of the

surrounding 0-~ ions and covalency effects, or it could

be caused by the presence of other 3c? and core elec-

trons on the Ni-+ ions themselves. The latter effect is

one which must occur in free Ni^^ ions, and can be esti-

mated from the fact that the experimental Slater-Con-

don parameters are about 15% smaller than those cal-

culated from Hartree-Fock wave functions [23]. The
effects of polarization and covalency can be estimated

from the reduction in the multiplet spHttings of Ni2+ in

MgO compared to those in free Ni-+ ions, an effect

which amounts to approximately 20% [24]. Finally, we
should also expect some screening from overlap

between 3c? electrons on nearest-neighbor Ni2+ ions.

This can be estimated from the experiments of Reinen

[20] , who found that the Racah parameter, B, which is

a measure of intraionic electronic repulsion, decreases

7% from dilute solutions of Ni2+ in MgO to pure NiO.

Taking into account all of these screening effects, we
find that the intraionic Coulomb repulsion for the 3c?

electrons in NiO is reduced from 18.6 eV to approxi-

mately 12 eV.

We still must take into account the differences in

crystalhne-field stabihzations of 2 Ni2+ ions as com-

pared to one Ni+ and one Ni3+ ion. It is likely that Ni^+

is in a high-spin state in NiO [19]. Assuming this to be

the case, and using the estimated values [25] of the

crystaUine-field parameter, Dq, we can conclude that

reaction (5a) requires approximately 13 eV. This is the

effective value of U which should be used in condition

(1) to determine whether or not the 3c? electrons in NiO
are localized. Since the 3c? bandwidth in NiO can be

estimated as being of the order of 0.3 eV [26] or con-

siderably less [19], there is little question that condi-

tion (1) is fulfilled, and the 3d' electrons are extremely

localized.

Assuming the same values oiDq for Ni2+ and Ni+ as

used in estimating the crystalline-field stabilizations,

we find that the d' excited states extend over a 5 eV

range, while the c?^ configuration is 1 eV wide. Thus,

reactions (5a-d) should contribute to optical absorption

in the 13-20 eV range.

In order to estimate the energies of reactions (6-8),

we must take into account the finite bandwidths of the

2p and 45 bands. We expect both bands to be in the

Bloch limit, with effective values of U small compared

to the bandwidths. It is a reasonable approximation that
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the APW calculations should be quite good in deter-

mining the bandwidths and relative separations of

these bands. Despite the differences in assumed poten-

tial, both the APW results of Switendick [27] and Wil-

son [28] are in agreement that the 2p band of NiO is 4

eV wide, while the 4s band is 6 eV wide. Furthermore

the bottom of the 4s band is about 5.5 eV above the top

of the 2/1 band. There is a small band measuring due to

large-polaron formation [19]. Assuming that these

values are good approximations, the 2p-4-s transitions,

reaction (8), should contribute interband optical absorp-

tion between 5.5 and 16 eV.

We can estimate the energy range for reaction (6) by

noting that the free-ion process. ZcP 4s, takes 7

eV in Ni^+ [29]. Assuming that the effective value of U
is neghgible in the 4s band, we can conclude that in the

NiO crystal, the 6 eV wide band spreads symmetrically

around the free-ion 4s level. This reaction (6a) should

contribute to the optical absorption in the 4-10 eV
range. Since the d>(P configuration is 6 eV wide, reac-

tion (6b) extends the energy range of this d—*s
absorption up to 16 eV.

Finally, the energy range of reaction (7) involves elec-

tron transfer from the oxygen to the nickel ions. The

free-ion process, Ni-+ + 0-" ^ Ni+ + O", is ex-

tremely exothermic, since Nr-+ has an electron affini-

ty of 17.5 eV and 0~ has a negative electron affinity of

9 eV [22] . Thus, as free ions, the process would release

26.5 eV of energy. However, in an NiO crystal, the

Madelung potential, which is 24.0 eV [22], stabihzes

both the Ni2+ and the O^" ions relative to Ni+ and 0~.

Thus the net stabilization of the free Ni^* and 0^~ ions

in NiO is 22 eV. Assuming the same screening and

crystalline-field stabilizations as used previously, we
can estimate the average energy of the process which

creates a Ni+ — O" pair as 16 eV. Since the 2p or-

bitals can be assumed to spread into a band 4 eV
wide, with an effective value of U small compared to

the bandwidth, reaction (7a) should contribute to opti-

cal absorption in the 14-18 eV range. Reaction (7b)

should give a further contribution between 15 and 19

eV.

We have not yet considered the excitonic contribu-

tions to the optical absorption. The most significant of

these should be the Mott-type excitons representing

Ni+ — Ni^+ bounded pairs, or the excitons in which a

hole in the 2p band is bound to a Ni+ ion. Estimates of

the excitonic binding energies give maximum values of

0.8 eV in the former case and 1.1 eV in the latter case

[19]. Thus, we might expect one exciton peak in the

vicinity of 12 eV and another near 13 eV.

Reactions (4) and (5) are d-d transitions which should

be somewhat suppressed by the parity selection rules.

However, the crystalline-field splittings, (4), represent

the only contributions to absorption on the 1-4 eV
range, and thus should be quite observable. Reaction

(6) requires a change of 2 in the orbital angular momen-
tum quantum number, and also would be strongly sup-

pressed, were it not for hybridization between 2p and

3d orbitals, which is very significant in NiO [27]. Reac-

tion (7) represents an itinerant-locaHzed allowed transi-

tion, and should give an important contribution to ab-

sorption. Finally, reaction (8) is an allowed interband

transition and should produce the most effective

photon absorption of all. A sketch of the expected opti-

cal absorption as a function of photon energy is shown
in figure 1. The antiferromagnetic peak at 0.24 eV
which appears below the Neel temperature [30] is in-

dicated in the sketch. The experimental absorption

below 4 eV [30] is shown in figure 2, and the absorption

above 4 eV, as determined from reflectivity measure-

ments [25], is shown in figure 3. Our interpretation is

that the edge at 4 eV is the onset of reaction (6a), and

the strong absorption above 12 eV represents the com-

bined effects of (5), (7), and (8). The large peak at 17.6

eV thus represents the maximum contribution of the al-

lowed absorptions, reaction (7), estimated as in the 14-

19 eV range. The peak at 13.8 eV is most easily in-

terpreted as due to Ni+ — (2p hole) bound excitons. The

shoulder at 13.0 eV can be associated with the Ni+ —
Ni''+ bound exciton. Our interpretation of the optical

results is also consistent with the observed photocon-

ductivity [31], since the lowest energy excitation to a

conducting state is the 4 eV edge of reaction (6a).

Figure 1 represents the possible optical transitions in

pure stoichiometric NiO. However, it is not an effective

single particle density-of-states diagram in the usual

manner. We have previously suggested a method for

such a representation when localized states are present

[19,32]. The basic idea is to employ a split density-of-

states plot, with itinerant states drawn to the left and lo-

calized states drawn to the right. The left-hand side can

thus be treated as ordinary one-electron band states,

and free carriers on the left contribute to conductivity

in the normal manner. However, states on the right-

hand side are not one-electron states and can be treated

as such only if certain rules are borne in mind. The

positions and number of states on the right must vary

with the occupation numbers, and partially-filled bands

contribute to conduction only by means of thermally-ac-

tivated hopping. Furthermore, it is necessary to set the

energy of one of the states on the right relative to that

of one of the ones on the left. Exactly how this is done

should depend on the experiment being interpreted.
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Fl(;URE 1. Sketch of the predicted optical absorption of pure, stoi-

chiometric NiO 05 a function of photon enerfiy.
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For photoemission experiments, the work function of

the material is a convenient reference point for all

states. Electrical conductivity is most easily analyzed

if the Fermi energy is fixed on both sides. In this sec-

tion we are concerned with optical absorption measure-

ments. The most convenient choice would appear to be

one which sets correctly the energy of the lowest-ener-

gy optical transition between a localized and an

itinerant state. This is just the technique used in han-

dling donor, acceptor, and exciton states in a conven-

tional semiconductor.

Such an effective density-of-states diagram is given

for pure, stoichiometric NiO in figure 4. The zero of

energy has been taken to be the energy for the upper-

most state which is occupied at T=Q, a localized

3<i** state of the Ni2+ ion. States on the right and left are

connected by setting the minimum energy of reaction

(6a), 3c?" ^ Sff^ + (electron in the 4s band), cor-

rectly. All other transitions across the center line are

then approximations. However, in the case of NiO, the

only other low-energy set of transitions between local-

ized and itinerant states, reaction (7), is correct to

within 0.5 eV.

As figure 4 is presented, only one special rule need

be introduced. We must require that states drawn with

a dotted line be available for transitions only from filled

states on the right. Thus the crystalline-field split

states, 3(/***, can only be excited from the So?^ ground

states. The excited transitions given by reaction (6b)

can then be easily handled by introducing a multiplicity

of dotted 45 bands, labeled 45* in the diagram. This is

to be interpreted as the excitations of electrons from

the 3(i** ground state to the 45 band which leave excited

3^/''* states of the nickel ion. With this rule in mind,

figure 4 can be used to obtain an excellent approxima-

tion of the optical absorption spectrum of pure,

stoichiometric NiO, figure 1.

Extension of this discussion of the optical properties

to impure or nonstoichiometric NiO is straightforward.

In fact, the optical absorption spectrum above 1 eV
need not be modified at all, since the strong absorption

continuously present in the 1-20 eV range will mask any

effects of doping and vacancy concentrates up to a few

percent.

The most common dopants in NiO are monovalent

ions, such as Li+. Li+ enters the NiO lattice substitu-

tionally for Ni2+, and in order to preserve charge

neutraUty in the crystal, a Ni3+ ion is formed for each

Li+ ion in the material. The lowest-energy state of the

doped material clearly is that in which all Li+ ions have

a nearest-neighbor Ni3+ ion, forming an effective "elec-

tron-hole" bound state, similar to an exciton. The max-

imum binding energy of this pair can be estimated as

0.4 eV [19]. A series of optical transitions are possible

in the doped material which were not present in pure

crystals. These represent excitation of an electron from

any of the Ni2+ ions to the bound Ni^+ ion. The domi-

nant optical transitions of this type are from Ni^^ ions

far removed from the Li+ center, and can be looked as

a photon-assisted freeing of the hole (Ni^+ ion) which

was bound to the Li+ center. This transition should thus

require about 0.4 eV. The other transitions, to more

weakly-bound Li+ —- Ni-^+ states, where the Ni'^"^ is

located farther from the Li+ center than the nearest-

neighbor Ni2+ sites should give weak absorption in the

0.2-0.4 eV range. Clear evidence for such Li+-induced

optical absorption has been found with a peak at 0.43

eV [33].

Another possible absorption in Li+-doped, but not in

pure, NiO can be represented by the reactions

3(/^ + (electron in 2p band) 3c/"

"id' + (electron in 2p band) 3(7"'*

(9a)

(9b)

This additional absorption can occur because of the

presence of bound Ni^+ (3c?'') ions in the doped material.

Assuming that the vast majority of Ni^+ ions are bound

to Li+ centers, reaction (9) can be shown to lead to ab-

sorption between 0.7 and 4.7 eV [19]. There is

evidence for a Li+ -induced background absorption

which increases from 0.2 eV through at least 2 eV, with
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a peak at about 1.0 eV [34,35], which may well be a

combination of excitations from both bound and free

NP+ ions of type (9). The peak at 1.0 eV, if real, alterna-

tively could represent the lowest crystalline-field peak

of the Ni^+ ion.

3. Electrical Density-of-States of Crystalline

Mott Insulators

As pointed out in the Introduction, when localized

states are present, we cannot use the same density-of-

states diagram for analyzing the electrical properties as

we did for the optical absorption. This is because trans-

port of electrons through the lattice occurs at times suf-

ficiently long for the ions to relax around the new

charge distribution, and thus ionic motion can no longer

be neglected. We must thus take into account small-

polaron formation and perhaps Jahn-Teller distortions

in the localized states.

We can, however, use the optical density-of-states as

a starting point for the analysis of electrical transport.

As in section 2, we shall confine our remarks to NiO,

whose optical density-of-states is shown in figure 4. The

lowest energy excitations are the 3d^^ M^* tran-

sitions, which are completely localized and do not

contribute to conduction. The lowest energy excitations

which do produce intrinsic conductivity are those given

by reaction (6), which creates an itinerant electron in

the 45 band and leaves a localized hole in the 3d^ band.

Optically, this transition requires about 4 eV. The cor-

responding electronic transition will require somewhat

smaller energy, since a lattice distortion will be induced

around the 3o?^ (Ni^+) ion, lowering the energy of the

final state.

As discussed in section 2, the 3c? electrons in NiO are

very near the atomic limit, and the corresponding elec-

tronic bandwidth. A, is expected to be negligibly

smaD [19]. It is thus clear that the effects of the

electron-photon interaction on the 3c? electrons must

be analyzed by nonadiabatic small-polaron theory

[36]. Using the value for the strength of the elec-

tron-phonon interaction which gives a formal equiv-

alence with large-polaron theory [37] , and the

parameters appropriate to NiO, we can show
that the small-polaron binding energy is then of the

order of 0.01 eV [19]. In this case, the transition tem-

perature above which conduction by thermally ac-

tivated hopping of small polarons dominates polaronic

band conductions is small compared to the Debye tem-

perature [19]. It is clear that the band hke conductivity

of the electron excited into the itinerant 45 band

dominates the phonon-assisted hopping of the 3d hole

at all temperatures. Using large-polaron theory [38] for

the 45 band, we can estimate the polaron binding ener-

gy as 0.2 eV. Thus the intrinsic thermal energy gap

should be about 0.2 eV lower than the intrinsic optical

gap. The intrinsic conductivity must be n-type, and

requires an activation energy near 2 eV. Thus intrinsic

conduction should be observable only at extremely high

temperatures and only in either extremely pure or

highly compensated samples. There is some experi-

mental evidence for this intrinsic process. In one rela-

tively pure crystal of NiO, an activation energy of 1.9

eV was found between 700 and 1200 K at atmospheric

pressure [31]. In a number of highly compensated

polycrystalline samples, activation energies equal to

approximately 1.8 eV have been measured [39].

In section 2, we showed that neither doping nor non-

stoichiometry results in a major modification of the op-

tical absorption spectrum of NiO. On the other hand,

neither has a profound influence on the electrical pro-

perties.

Once again, let us first consider the effects of doping

with Li+ impurities. As discussed in section 2, this will

lead to the formation of ions. A Ni^^ site is much
like a hole on a Ni^+ ion, and this hole can move through

the lattice by hopping to adjacent Ni^+ sites. The nar-

row bandwidth of these hole states allows for a local-

ized deformation of the lattice around the hole, and

thus the formation of a small polaron. The polaron ini-

tially will be electrostatically bound to the Li+ centers.

Theoretically and experimentally, this binding energy

can be estimated as 0.4 eV. Once thermally freed from

the Li+ center, the small polaron will conduct by means

of thermally activated hopping, but because of the

small value of the polaron binding energy, the mobility

will be only weakly dependent on temperature. Thus

this process should contribute a term to the conductivi-

ty equal to

o= A^.^eyLtoe-"•2^'>/^^ (10)

where Na is the density of Li+ centers and /jlo is the mo-

bility of the hopping process.

In the view of normal band theory, the holes just

described would be simply empty states in the 3d^ band

of figure 4. But in the present context of locaHzed

states, we must take into account the fact that the

separation between the 2p band and the 3c?** states is

determinded by the energy to add an electron to the 3c?^

states. This results in it being much easier to excite a

2p hole in the Li+-doped material than in the pure

material. The reason for this is that doping with Li+

automatically results in the presence of Ni^ ions. Since

the electron affinity of Ni^* is 18.6 eV greater than that
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respectively.

of Ni-+, reaction (9a) takes much less energy than the

analogous intrinsic process, reaction (7a). The sig-

nificance of this point with respect to the density of

states is that Li+ doping raises the 2p band up to the

vicinity of the Fermi energy. Because of this, conduc-

tion by means of free holes in the 2p band cannot be

neglected. This process, which can be represented by

reaction (9), was shown to require a minimum photon

energy of 0.7 eV. However, thermally, this minimum
energy is significantly reduced by large polaron forma-

tion about the 2p hole. This reduction in energy can be

estimated as 0.25 eV [19], leaving a thermal activation

energy of the order of 0.45 eV. This value depends criti-

cally on differences between large numbers, such as

the Madelung potential and the ionic energies, and

should not be expected to be very accurate. However,

the important point is that it is comparable in mag-

nitude to the activation energy for conduction by

hopping in the Zd^ band.

Since the Fermi energy is of major importance in

determining transport properties, an electrical density-

of-states diagram should refer all states, both locahzed

and itinerant, to Ej.-. Such a diagram is constructed for

primarily Li+ doped NiO in figure 5. The acceptor

levels corresponding to singly and doubly ionized nickel

and oxygen vacancies are also shown. There is much
evidence for partial self-compensation in Li+ doped

NiO [4,40,41], and this is indicated in the diagram by

tile presence of the Fermi energy in the Li+ acceptor

band. The compensating donors appear to be oxygen

vacancies [19]. At low temperatures, when the free

hole concentration is small compared to the donor con-

centration Nn. 2p hole transport will contribute a term

to the conductivity equal to [19]

where A^,= 2(m*AT/27rA^:

(11)

:i/2
^to = 0.3 cm^lV-sec,

and m* is the large polaron effective mass, which can

be estimated as 6 free electron masses for the 2p band

of NiO. It was assumed that optical phonon scattering

dominates the mobiHty in this temperature range. The
activation energy is affected by interactions between

the Li impurities. At temperatures sufficiently high that

the free hole concentration is large compared to Nd, the

contribution of 2p hole conduction becomes

o- = yV,.iA'.,ie/x„e-<"-'''^''/''-'''. (12)

It can be shown that the observed conductivity of Li+

doped NiO is given by eq (11) from 200 to 500 K. and by

eq (12) from 500 to 1000 K in well characterized sam-

ples [19]. We can conclude that conduction in Li+

doped NiO is dominated by the transport of free holes

in the 2p band above 200 K.

It might be expected that small-polaron hopping con-

duction will dominate at sufficiently low temperatures,

because of the somewhat smaller energy necessary to

create a free 3d^ hole than a free 2p hole. However,

there is much evidence for the predominance of impuri-

ty conduction in the Li+ acceptor band below 150 K
[33,40,41]. Thus, it appears that small-polaron hopping

is unobservable in NiO in dc measurements. Bound
small-polaron hopping has been observed in ac conduc-

tivity experiments [42,43], and is in agreement with the

calculation presented here [19].

4. Density-of-States of Amorphous
Semiconductors

Mott [2,3] and Cohen et al. [15] have presented

qualitative band models which have had great success

in accounting for experimental data on covalent

amorphous semiconductors, such as the chalcogenide

glasses. At first, this appears to be surprising, since

electron-electron interactions and electron-phonon in-

teractions, which should be of the utmost importance

in these systems, are completely neglected. An essen-

tial feature of the model of Cohen et al. [15] is a broad

tailing of localized states up from the valence band and

down from the conduction band into the energy gap. In
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Fk.I'RE 6. Density of states, ii(E), disorder potential, V, and intra-

atomii Coulomb repulsion, I . as functions of energyfor a covalent

amorphous semiconductor.

the chalcogenide glasses, it is assumed that the com-

bination of positional and compositional disorder

creates such a large density of these localized states

that the valence and conduction band tails cross

somewhere in the middle of the original gap. Thus there

is no gap in the density-of-states of these materials.

However, as discussed in the Introduction, a "mobihty

gap" exists between the itinerant states in the two

bands.

Since this model is based on a one-electron approxi-

mation, electronic correlations are ignored completely.

However, they can be introduced into the model in the

same approximation used by Hubbard [5-7], and

discussed in the Introduction. We consider only cor-

relations between electrons located on the same atom,

and introduce the intra-atomic Coulomb repulsion, U.

Since it is known that the crystalline phases of most

elemental and covalent amorphous semiconductors are

wide-band materials, U is not expected to be an impor-

tant quantity in the itinerant states. Let us consider the

valence and conduction band densities-of-states shown

in the left third of figure 6. As we move out in energy

from the main part of each band into the tail, the as-

sociated disorder, V, defined in the Introduction, in-

creases. This is shown in the center of figure 6. When
V becomes sufficiently large that the Anderson condi-

tion, (2), is satisfied, all states further out in the tail

become localized. At this point, the mobility edge, the

effective difference in ionization potential and electron

affinity suddenly becomes significant. Thus U must

behave qualitatively as in the right third of figure 6. It

is V and not U which is responsible for the localization,

but once this Anderson transition takes place, U
stabilizes this localization considerably. This is a

reasonable explanation for the sharpness of the mobili-

ty drop at the edge.

If the valence and conduction band tails overlap,

some states in the unoccupied conduction band have

lower energy than states in the occupied valence band.

It has consequently been suggested [15] that the

material will reduce its ground state energy by undergo-

ing a redistribution of electrons in these states, creating

equal numbers of positively and negatively charged lo-

cahzed states deep in the gap. However, this suggestion

fails to take into account the strong dependence of lo-

cahzed states on occupation numbers, due to the finite

value of U. The redistribution of electrons can be

represented by the process

X+Y^X^ + Y-, (13)

in .which an electron is transferred from a state local-

ized on atom Z to one on atom Y. If there is a large dif-

ference in the ionization potential of atom X and the

electron affinity of atom F, reaction (13) can be highly

endothermic, even if the one-electron state correspond-

ing to an electron on X is much higher than that cor-

responding to a hole on Y. The effective difference

between the ionization potential ofX and the electron

affinity of Y is just equal to U. If the difference in one-

electron energies were smaller than C/, the redistribu-

tion would increase rather than decrease the total ener-

gy of the system, and thus would not occur spontane-

ously.

However, we have still ignored the electron-phonon

interaction. Reaction (13) can be thought of as the crea-

tion of a localized electron-hole pair. The redistribution

of electronic charge density which accompanies this

process couples strongly to the longitudinal optical

phonons, and can lead to lattice distortions in the vicini-

ties of both atoms X and Y. Since the states under

discussion are localized, the effective overlap integral

is small, and we would expect small polarons to form.
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11 the biiuliii^ eiit'i>iy ot tliese small [jolarons is sulTi-

fiently large, reaclion (13) could well be stabilized,

despite a lar<ie LI. Anotlier jxissible stabilizing force

could be tlie reduction in energy aroLuid ,Y+ and Y~

brought about by a .lahn- IVller distortion ol the sur-

roundings of the ions. The condition for the spontane-

ous occurrence of the redistribution is thus

A> U-2Ejr-2Esr. (14)

where A is the difference in one-electron energies ofX
and F~, E./r is the Jahn-Teller stabilization energy. £'.s7'

is the small polaron binding energy, and U is the effec-

tive value of the difference between ionization potential

and electron affinity, in which the effects of electronic

screening are taken into account.

In elemental and simple compound amorphous

semiconductors, such as Ge. Si. and AsoSe;), there does

not appear to be qualitative differences between the

band structures of the amorphous materials and the

corresponding crystalline materials, except for a smear-

ing out of the bands brought about by the positional dis-

order [44]. For these materials, the right-hand side of

(14) can be approximated from the experimentally

known differences in the first and second ionization

energies of multivalent donors in the corresponding

crystal. This is a reasonable estimate because the same

effects enter when a donor is doubly ionized as when a

redistribution such as (13) takes place. The difference

between ionization potential and electron affinity of the

singly-ionized donor atom is analogous to f/, and small-

polaron formation (important only if the crystal is par-

tially ionic) and Jahn-Teller distortions can stabilize the

doubly-ionized donor in the same way that it can stabil-

ize the redistribution, (13). For example, the difference

in the first and second donor ionization energies of Au
in Ge is 0.2 eV [45]. Using this as an estimate for U—
EjT— Esi'. we can conclude from (14) that a redis-

tribution such as

Ceil) + (;e{2) ^ CeHl) + Ge- {2) (15)

will take place spontaneously at r=0 only if the

one-electron energy of the filled state localized on Ge(l)

exceeds the one-electron energy of the empty state lo-

calized on Ge(2) by at least 0.2 eV. For a material such

as amorphous Ge, in which only positional disorder is

present, it is extremely doubtful that the valence and

conduction band tails overlap by 0.2 eV. Thus, we
should not expect any charged traps to be present at

T—0 in an equilibrium. On the other hand, the posi-

tional and compositional disorder present in the chal-

cogenide glasses makes an overlap of this magnitude

quite possible. Thus, the major features of the model

E

CONDUCTION BAND

VALENCE BAND

Fk.URE 7. EU'ctricdl (lensily of-states for ti rovaleiU niiKir/ihoiis

semiconductor.
IliiicTJiit sU^tt^ arf drawn I<i llir Irlt. incatizcd statrs l<i ihr ri^:lll. Es|. is the siiin nf llir

smail )ni!ar<iii himlin.i: energy ami tin- Jalin-'lcller sluliilizatiim cinTtiN.

of Cohen et al. [15] are preserved when electronic

correlations and electron-phonon interactions are

included in this manner.

The question remains whether or not this modified

model can be represented by an effective one-electron

density-of-states diagram. This can be done, in much
the same way as was discussed for the case of NiO in

sections 2 and 3. Once again, the Franck-Condon prin-

ciple forces us to draw separate diagrams for interpret-

ing the optical properties and the electrical properties.

Figure 7 shows a plot of the electrical density-of-states

for a glass with positional and compositional disorder.

As in figure 5, itinerant states are drawn to the left and

localized states to the right. The possibility of large-

polaron formation in the itinerant states is taken into

account by a downward shift of these states relative to

the Fermi energy. The small-polaron binding energies

and Jahn-Teller stabilization energies result in

downward displacements of the localized states. The
finite value of the correlation energy, U, in the localized

states must be represented by a relative separation of

the localized parts of the valence and conduction

bands.

5. Conclusions

We wish to emphasize the following conclusions: (1)

When localized states are present and the electron-

phonon interaction is important, the Franck-Condon

principle forces us to use different density-of-states dia-

grams for interpreting electrical and optical properties;
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(2) When localized states are present, the intra-atomic

Coulomb repulsion. U , cannot be neglected. This

makes it convenient to separate localized from itinerant

states on a density-of-states plot: (3) In the case of ionic

transition-metal or rare-earth compounds, doping with

an ion of different valency or preparation of non-

stoichiometric material leads to the formation of

minority valence states of the transition metal or rare-

earth ion. If these materials are Mott insulators, the

vastly different ionization potentials of the majority and

minority valence states can drastically change the rela-

tive positions of the energy bands. In particular, in NiO,

creation of a significant density of Ni^+ ions, either by

Li+ doping or introduction of excess oxygen, results in

a large upward displacement of the oxygen 2p band

relative to the localized levels. The 2p band moves suf-

ficiently close to the Fermi energy so that 2p hole con-

duction dominates the dc conductivity from 200 to 1000

K; (4) The different relative positions of the bands in

pure, stoichiometric crystals and in doped or non-

stoichiometric material necessitates the use of at least

four density-of-states diagrams, rather than the two in-

dicated by the Franck-Condon principle; and (5) In

amorphous semiconductors, electronic correlations and

electron-phonon coupling lead to changes in the rela-

tive positions of the localized and itinerant parts of the

valence and conduction bands. However, provided the

overlap of the band tails is sufficiently large, the essen-

tial features of the model of Cohen et al. [15] for the

chalcogenide glasses are preserved.
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Discussion on "Localized States in Narrow Band and Amorphous Semiconductors" by D. Adier
and J. Feinleib(MIT)

H. P. R. Frederikse (NBS): You left out the anti-fer-

romagnetism of NiO. Is that not important? Switendick

had to invoke the anti-ferromagnetism in order to ob-

tain an insulator rather than a metal.

D. Adler (MIT): In our model, NiO is an insulator

rather than a metal because of the intraionic Coulomb
repulsion, independent of the anti-ferromagnetic order-

ing. Anti-ferromagnetism should modify the densities

of states presented here by energies of the order of AT.v,

or 0.04 eV for NiO. There is an optical absorption in the

i.r., at 0.24 eV, apparently due to the magnetic order-

ing, which can be included on our optical density of

states diagram above the 3d^ ground-state band. Since

it refers to a localized excitation, it does not contribute

to the electrical conductivity.

D. F. Barbe ( Westinghouse Aerospace Div.): What
would you expect to happen to the energy bands in say

NiO as positional disorder is introduced?

D. Adler (MIT): Positional disorder always introduces

a tailing of the itinerant energy bands, and an Anderson

localization of some of the state in the tails. Con-

sequently, in amorphous NiO, the 2p and 45 bands

would tail into the energy gap, and some of these states

would be localized. On the other hand, the 3c? electrons

are already localized because of correlation effects, and

positional disorder is largely irrelevant. The crystalline-

field and multiplet 2>d levels are insensitive to positional

disorder, since they are near the ionic limit. A slight

broadening of these narrow 3c? bands should take place,

but since no significant mobihty changes are induced

by positional disorder, this broadening could not be ex-

pected to be observable experimentally. The major

measurable effect should be the broadening of the opti-

cal 2p 45 absorptions.
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A Cluster Theory of the Electronic Structure

of Disordered Systems ^

K. F. Freed** and M. H. Cohen

James Franck Institute, University of Chicago, Chicago, Illinois 60637

The equation of motion for the averaged Green's function in an alloy couples the latter to the

Green's function for which the average is restricted so that the composition of one atom is held fixed.

The average Green's function may be regarded as the Green's function for a zero-atom cluster, and it is

coupled to the Green's function for a one-atom cluster. There is thus an infinite hierarchy of equations of

motion in which the n-atom functions are coupled to the in + l)-atom functions. The coherent potential

approximation of Soven corresponds to truncation in the equation of motion of the one-atom functif)n.

We have generalized the coherent potential theory to a theory the n-atom functions with truncation in

the equation of motion of the (n + l)-atom function. The formalism is developed and a few of the results

obtained thus far are presented in this paper.

Key words: Amorphous semiconductors; band tail of localized states; cluster theory; coherent

potential approximation; disorder systems; electronic structure: Neel temperature.

Apart from strongly ionic or molecular materials or

from simple metals, our present knowledge of the elec-

tronic structures of condensed materials is rudimentary

except for crystals. There, structural periodicity leads

to the remarkable simplicity of the electronic wave func-

tions expressed in the Bloch-Floquet theorem and to

the existence of energy bands. Our present concern is

with the corresponding universal features of the elec-

tronic structures of disordered materials. Soven and

others [1] have developed the coherent potential ap-

proximation (CPA) into a quantitative tool for the study

of the electronic structures of simple alloys. It yields,

however, only bands of extended states with sharp

edges and shows signs of inaccuracy at the band edges.

In amorphous semiconductors, the band edges must

play a central role in determining the electronic proper-

ties. Moreover, on both theoretical and empirical

grounds it seems highly plausible that the electronic

structure of disordered materials consists of bands of

extended states with tails of localized states which may,

in fact, overlap [2]. The character of the wave func-

tions changes from extended to localized at an energy

Ec near each band edge, where the carrier mobility

drops abruptly. One of the central tasks of the electron

theory of disordered materials is to substantiate or cor-

*Sup|K)rted by ARO(D). NASA, and ARPA.
**Alfred P. SIcjan Foundalii)n Fellow.

rect these models. Accordingly, we have addressed our-

selves to improving the CPA to the point where it can

conceivably contain such features as tails of localized

states and mobility edges [3].

The localized states appear to be associated with

fluctuations (in composition, local order, etc.), whereas

the CPA averages over all such configurations. It is

necessary to solve for the electronic structure before

carrying out the averaging over the configurations im-

portant to the formation of localized states. The equa-

tion of motion for the one-electron Green's function is

{E-H,-VW{E) = 1, (1)

where Ho is a simple reference Hamiltonian, free-parti-

cle for a liquid or amorphous material, or crystal for an

alloy, and F is a random potential. We suppose V can

be decomposed into a sum of contributions from each

site a, Va, in a crystalline alloy or from each atom a in

a liquid or amorphous material,

F=X ^« (2)

a

The CPA concerns itself only with the average Green's

function

Go{E)^{^iE)) (3)

where the brackets indicate an average over the ran-

dom potential V. We examine here Green's functions in
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which the avera<iin<i is incomplete, a cluster of n of

atoms being fixed either in composition and/or in posi-

tion.

Tlie potential V can be decomposed into a contribu-

tion from the cluster V and one from the remaining

atoms f iv-n

'

(4)

Let (
)"' imply an average only over the set of atoms m

and ( )| one over all atoms excluding the cluster i so

that

(),= ()
N-l

The cluster Green's function is then defined as

N-n

(5)

(6)

Q ^ now appears as the lowest member of a hierarchy

of cluster Green's functions. By averaging eq (1) we ob-

tain the corresponding hierarchy of equations of mo-

tion.

(7)

Here na is that cluster n -f 1 composed of the cluster

n and the atom a. It is convenient to rewrite (7) in terms

of the proper self energy CTn (E),

and to define the T-matrix for the scattering of an

electron by the specified atom a in the presence of a

specified cluster n by

From (7), (8), and (9) it follows that

Truncation of the hierarchy can be affected by a rela-

tionship between (Tn„ and leading to 7^ being a

functional of cr^ via (12) and (13) and hence to closure

via (10) and (11). Equivalently, we may observe that

Gn= { Gna) "
(14)

which, from (9), re(|uires that

( 7'^; ) " = 0. all n and a^ifn. (15)

The coherent potential approximation follows from (15)

for n = 0 together with the truncation condition

o-'f' = o-<„^^', all^ + a, (16)

i.e., cr„ for n = 1 is related to cr„ for n = 0. We can im-

mediately generalize the CPA so that the truncation oc-

curs for an nth instead of for a zero order cluster.

o-(W = o-</^), all (3ina,

and consequently
(a)

(17)

(18)

Inserting (18) into (12) and (12) into (15) gives us an

equation which can be solved selfconsistently together

with (8) for (t„ and G„
The CPn approximation has a number of important

properties, among which are:

(1) Consistency for clusters of lower order.

( T^J = 0, 0^/«^/;, all m^ifn.

(2) LocaHty of o-<,"* and T^.

If I'a is local in the sense that it is site diagonal,

{fi\Va\y) =Va80a8ay,

(19)

(20)

(8) j
then so are cr*^'' and T^.

(3) Asymptotic limits of 6„ and cr'^'.

If we assume that all of the eigenstates of Hi) + V are

either extended with a short phase coherence length or

localized, as in the simple models, then Gm, (/n ^ n+ 1)

must have a finite range R in the sense that
(9)

(10)

(11)

(12)

(13) land

0. \ra-r/s\ > R. (21)(«K'J)3)

This imphes that

(y|^n,|8) ^ (y|C„|§) (22)

for \ry — r/j]) R or jrg — r^^l) /?, where ^em. Similarly,

we have

</3|Gna|y) - (/3|r;„|y )

k/3, y — rsl)/?. Sen,

crL"^^ cr^"* independent of (a)

Sen.

(23)

(24)

ka — rs| )R,

(4) Bound states occur in Gn provided C7n (E) is real

outside a finite arc of the real E axis and the

statistical fluctuations in Va are large enough.
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For sufficiently disordered systems, conver-

gence in Go obtained by averaging down from

successively higher Gn may occur at values of

n which are tractable for numerical calcula-

tions. Even for G obtained by averaging down

Gi derived from the CPl approximation, the

proper self energy is nonlocal and in that sense

a significant improvement over the CPA.
Our final approximation to {'^) would then be

obtained by averaging down a Gn from the CPn
is

G = ^P„G„ (25)

where the sum on n is over all possible clusters n, each

having the probabihty of occurrence Pn.
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Discussion on "A Cluster Theory of the Electronic Structure of Disordered Systems" by K. F. Freed

and M. H. Cohen (University of Chicago)

J. L. Seehy (Atomic Energy Res. Establishment): Can
it he proved tliat the density of states sum rule is

satisfied in your procedure?

M. H. Cohen (Univ. of Chicago ): It is satisfied auto-

matically at each stage in the approximation.

R. M. More (Univ. of Pittsburgh): If V is not site

diagonal, can {Ta.a') = 0 be satisfied even off-shell?

M. H. Cohen (Univ. of Chicago): You just have an ad-

ditional series of equations to take care of the addi-

tional set of variables in the proper self energy. It is

possible in principle. One can say the following: if one

does not have a site diagonal potential but a potential of

finite range, then the T-matrix will have a range which

is some compromise between the range of the potential

and the range of the Green's function itself. It is in-

fluenced by both. So the T-matrix itself has finite range

and all the asymptotic theorems still go through. The
overall structure remains the same; the difficulty then

is in satisfying the condition of the average T-matrix

which must be 0. You have both the diagonal elements

of that equation then the off-diagonal elements of that

equation and this gives you an additional set of condi-

tions which are satisfied by varying instead of just the

diagonal elements of the proper self energy now vary-

ing the off-diagonal elements as well.
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T Matrix Theory of Density of States in Disordered

Alloys — Application to Beta Brass

M. M. Pant and S. K. Joshi

Physics Department, University of Roorkee, Roorkee, India

The T matrix theory of electronic states in disordered systems, has been used to determine the

spectral density for states of various symmetries, for binary alloys. Soven s averaged t matrix procedure

is improved by retaining the distinction between the t matrices of the constituents, and introducing par-

tial Greenians of the Pant-Joshi theory. Information about the pair-correlation function obtained by criti-

cal neutron scattering method is used to evaluate the partial Greenians, as well as the crystalline poten-

tials for the constituents. In order to facilitate computation of the t matrices, these potentials have been

replaced by energy-dependent model potentials. The parameters of the model potentials are determined

by the requirement that they yield logarithmic derivatives (of the radial wave function at the muffin-tin

spheres) identical with those generated by the real potentials. The scheme has been applied to disor-

dered beta-brass. The separation in energy of the peaks of the spectral density of states at the high sym-

metry points of the Brillouin zone, are compared with experimental results, and with the results ob-

tained by the virtual crystal approximation.

Key words: Alloys; brass: delta-function potential; disordered systems: Green's functions; Korrin-

ga-Kohn Rostoker (KKR); "muffin-tin" potential; short-range-order parameters;

spectral density of states; J-matrices.

1. Introduction

The object of this paper is to outline a t matrix ap-

proach to determine the spectral density for states

p(£',k) in disordered alloys, and apply it to the disor-

dered substitutional binary alloy /^-brass. For the case

of a perfect lattice, p{EM) plotted against E, has 8-func-

tion peaks at the band energies. The presence of dis-

order results in the broadening of these peaks and their

widths give an indication of the departure of the alloy

wave function from Bloch-like character. An investiga-

tion which bears on this aspect is that of Soven [1],

who determined the spectral density for some states in

a-brass, by employing the averaged t matrix approxima-

tion. This approximation consists in placing at every

site of the alloy lattice, a scatterer whose t matrix is the

average of the t tnatrices of the constituents. The
averaged t matrix method yields spurious band gaps in

the case of one-dimensional alloys [2]. The approach

presented in this paper retains the distinction between

the constituents of the alloy. The method relies heavily

on the work of Beeby [3], and the calculation utilizes

the model S-function potentials of Soven [1] and the in-

complete (/reen's functions of Pant and Joshi [4]. Any

short-range order present in the alloy is accounted for,

by the occurrence of the short-range-order parameters

in the expressions for the potentials as well as the in-

complete Green's functions. There are two basic ap-

proximations in the theory. The first is the approxima-

tion of the actual potential around a lattice site, by a

potential of the muffin-tin form. The other is the

geometric approximation introduced by Beeby [3] to

enable a summation of the infinite series expressing the

T matrix of the system in terms of the t matrices for the

individual scatterers. For an ordered alloy, this approxi-

mation gives the exact result.

The method has been applied to the disordered ^-

brass to determine the spectral density for states of

various symmetries. The results of the experimental

measurements of the short-range-order diffuse scatter-

ing are available for this alloy [5]. The band structures

of the constituents are well understood and an attempt

at studying the electronic structure of ^-brass has been

inade within the framework of the virtual crystal ap-

proximation [6]. These considerations prompted us to

study the spectral density of states for disordered ^-

brass at a few symmetry points.
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2. Formalism

Tlie s|)ecti al density of states for noninteractinji elec-

trons in tile presence of a system of |)otentials f/„ is

jiiven by

exp [— ik • (x — x' ) ]rfxr/x' )

,

wliicli we write as

111 these expressions, fl is the volume of the assembly,

the anjiular brackets denote an average over the disor-

dered system of potentials and Im indicates the imagi-

nary {lart of the expression that follows it. The T
function for the assembly is given by the series

'""^ S ^v^o?/i+ 2 t.,(^utfi<futy+ ... (2)

where ta is the t function corresponding to the potential

I'a at the ath site and is defined by

«<,(x, y) = 6'„(x)6(x-y)

+ j t/„(x)^,i(x — z)?„(z, y)(/z.

'^(i(x — z) is the free particle propagator. In order to

obtain a matrix representation, we make angular mo-

mentum expansions of the t functions. It is convenient

to use the real spherical harmonics K/ (x) of the angles

of x. where L is a compound subscript denoting both /

and /«, so that

?(x, y)= ^ tiix, y)y,,(i)y, (y). (3)

/.

In the case of a disordered binary alloy, any site may

be occupied by either of the two types of atoms. We use

the superscripts 1 and 2 to denote the two types of

atoms. The T matrix series may then be split into four

parts, such that

T= 2 r-'. -,4)

.s-= 1 , 2
*•'= 1 , 2

We have

l3+y

(( + /S u^H

fi+y

T-' = J^ fi+ ^ ti^.ti+ ^ fi<:^.t^c^oti+ ....

Here ta" is the t function corresponding to the potential

U" at a. T""' corresponds to that part of the total T
function in which the electron scatters firstly off an

atom of the sth type and lastly off one of the s'th type.

The intermediate scatterers may be of either type and

are represented by f's without any superscript in the

above series.

The Fourier transformation T{]<) implied in eq (1)

may now be carried out separately for each term of the

series (5). The first term of or T-'- gives

J
exp [-ik (x-y)] 2 ^^.(x, y)rfxJy= (477)-/V, j ji{kx)j,{kY)t^{x, y)x-dx y2rfy y,(k)F/.(k)

, (6)

where A's is the number of potentials of the type 5. The calculation of a general term involves angular integra-

tions of the type

{S%)u.' = V'-' ^ y;.(y)^„(y-z + R„-R^) exp [- ik {K,.-Rn)]Y,.{i')dCi,ida,, (7)

besides the radial integrals involved in ti and a summa- where the superscripts on S take the values 1 and 2 de-

tion over L. Ra, Ris, etc. denote the positions of the a, /3, pending on the type of atoms at locations specified by

and other sites. A typical term in series of eq (5) there- the subscripts. The problem is to sum an infinite series

fore contains products of the form with terms of this nature, and then to average such

sums over all configurations. The simplest way to

0 + a 74-0 oj+l//

manipulate this is to replaceS.f' = ^ Sj^,'. bysomeS*'
LI.' ,

(C+ Jl
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wliicli does not depend on i//. This is the "jieometric approximation'" and may be seen to be exactly true for a

perfectly ordered alloy. We then have

[5-"-]/,/.' = T^ 2 X f
''-'>' (y).^o(y-z + R„-R/^) exp [-/k- (R„-R/i)]>/'(zk/ft,//a..

(8)

We can now identify ^ i^o(y — z + R„ — Rys ) This may therefore be expanded in terms ofthespheri-

^
cal Bessel functions ji as done in eq (16) of reference 4.

exp [— ik • (Ru — R/i) ] as the incomplete Green's

function of reference 4, with the a = /3 term omitted.

2 ^o(y-z+R„-R„) exp [-ik- {R„-R„)] = ^i''~'q^;j,{Ky)jr{Kz)Y,iy)y,A:
+ " /,/,'

Therefore, G""'. The radial y and z integrals now involve only

Bessel functions and the radial // functions. Their

[S",i, ]i.i.' = Gf',\ji{Ky)jr{Kz) , (9) most general form is

where k = V7- if ^ > 0 and , v^T- if £ < 0. and r;-
= y)j, i,y)x-^dxf dy, <10)

are related to the Bf/, of reference 4. The C/f, are in- with p and q taking values of/, or k. We use to denote

dependent of > and z and will be collectively denoted by tj"' (k.k). In this notation, we have for the series of eq (5)

r"= (47t)-/v, ^ y,.(k)}, (k) ^;(A-, k)dn- +

(47r)-yv, 2 ^/ (k)y;,.(k) k) ^ 6''-v^G'^-^

/,//

X' = l, 2

s= 1 , 2

.v'=l, 2

(11)

with similar expressions for 7'-' and T- -. On performing the summations, we arrive at

r"=(4^)2yv, ^ y;,(k)F,,(k) {t] (A, A)8,,.+

r':;=(47r)^yv, 2 y,,(k)yv.(k) /'(A, K)Mf'{C--

X {6'^' + (l-6'-V)(G'-T-)-'6'"}i'(K. A)

+ (l-6"--T-)(G'-T-)-'6''-}f-(K, A-)

},

(12)

T-- and 7"-' are obtained by interchanging the super- The above set of eqs (10), (12), and (13) enable us to

scripts 1 and 2 in the above expressions. Ml and are determine the spectral density of states. The only

defined by the following expressions

M,= (1-G^-V)(G'V)-'(1-G"t') -G^'t'.

(l-G"T')(G-'r')-'(l-G-^^T-) -G'-T-.

problems we face at this stage are the calculations of

the matrix elements of G^*' and of the evaluation of the

t matrices. It is clear that the calculations of G*'**'

(13) require a detailed knowledge regarding the relative
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positions of the atoms. In tlie case of a disordered alloy,

the short-ran^e-order parameters may be used to esti-

mate an average distribution pattern of the con-

stituents, thus enabling us to calculate the G"'''. A
complete discussion of the use of the short-range-order

parameters to determine the matrix elements of G'*'^' has

been given in reference 4. The approximation in-

troduced in order to calculate these, is that the short-

range-order extends only up to a certain neighborhood.

Df = m,'Di.+-^ TJis'di.L' + Ki-' ^ exp (ik-Rv) X
^4^7T y<o-

In this expression, nig' is the atomic concentration of

atoms of s'th type and the Di. without superscripts are

the familiar structure constants of the ordered crystal

which occur in the Kohn-Rostoker method, ni is the

spherical Neumann function. P*'*'(Ry) denotes the

probability of finding an atom of the s'th type at a posi-

tion Ry with respect to an atom of the sth type. This

probability can be expressed in terms of the short-

range-order parameters as discussed in reference 4.

The summation in eq (15) runs through a neighborhood

in the direct space, and the prime on the summation in-

dicates that the term with 7 = 0 is to be omitted. The

8ll' term is introduced to compensate for the fact

that the calculation oiDt for the perfect lattice does not

exclude this term. The matrix elements of G^^' are then

directly obtained from eqs (14) and (15). We discuss the

calculation of the t matrix in the following section.

beyond which the occupation probabilities are those of

a randomly occupied lattice. If cr is the order ofsignifi-

cant neighborhood we have for the matrix elements of

f;.s-,s-

Here Ci.i.'i." are related to the Clebsch-Gordon coeffi-

cients and

[n, (KRy)- iji (KRy)] Y, ( fty) [P^^' ( Ry )
- m.,-] • (15

)

3. Potentials and Evaluation of the t Matrix

The type of crystal potential which has been found to

be most successful in describing the band structures of

noble and transition metals is obtained from a super-

position of atomic potentials on neighboring sites [7].

This is the Mattheiss prescription [8]. It seems

reasonable therefore to construct the muffin-tin poten-

tials for the constituents of the alloy, along the lines of

the Mattheiss prescription. The difference from the

procedure for pure metals is that the overlap contribu-

tion from the yth neighboring Cu (or Zn) atom has to be

multiplied by the probability of its occurrence. This

probability may be determined from a knowledge of the

short-range-order parameters [9].

In order to facilitate the calculation of the t matrix,

Soven [1] suggested the replacement of the muffin-tin

potentials by S-function potentials of the form

^Hx,x')= X Ydi^)
d(x — rmt)

rjat

where r,nt is the radius of the muffin-tin-sphere and

vf{E) are energy-dependent potential amplitudes. The

vf(E) are chosen to yield the same logarithmic deriva-

tive of the radial wave function as generated by the ac-

tual potential. We then have

vi{E) = r-i,[y^{E) - (k/-,„,)/;,(k/-,„,) ] , (17)

where
j'l

is the derivative of Bessel function andyf(£')

is the logarithmic derivative of the radial wave function

(for angular momentum / and energy E) at the sphere

radius r,,,;. With this form of the potential, the angular

momentum components of the t matrix can then be

written as

8{x — rmt) 8(x' — r„„

)

ti{x, x') ^ ti

so that

ti = y/[l — vigi] \

(18)

(19)

vHE)
b{x' — rmt)

(16)

where gi = Gi{rmi. r„„) is the, /th component
|
ini the an-

gular momentum representation oi G{x — x). We then

arrive at the following simple expression for the

matrix elements in eq (10) oit

ti{p, q) ^ tiji( pr„ii )ji ( qr,,,! ) . (20)

The eqs (17-20) completely define P*'(k) in terms of G^^'

and the logarithmic derivatives of the radial functions

at the muffin-tin radius. The spectral density of states

is then obtained from

piE, k) =
1

(E-kn-TTfL
Im 2 (21)

s = 1

s'=l.

Soven [1] has shown that the use of energy-dependent

model potentials necessitates the use of the correction

dv^iE)
factor 1

S= 1 , 2
dE

with eq (12). Our calcula-
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tions showed no significant difference in the peak posi-

tions due to this term. However, all the results pre-

sented or discussed in the following are for p(£', k) cal-

culated with the correction term included in eq (12).

4. Application to /8-Brass

Walker and Keating [5] found that it was not possi-

ble to assign unique values to the short-range-order

parameters in ;S-brass, because of the long-range nature

of the short-range order. But the short-range-order

parameters could be fitted to a Zernike type expression

|a(r) 1=0.540 exp (-0.400r')/r', where r' = 2rla and

a is the lattice constant. We have used this expres-

sion to calculate the short-range-order parameters

employed in the calculation of the muffin-tin potentials

and G**'. Although the disordered /3-phase is found for

a range of zinc concentrations in the vicinity of 50-50

stoichiometry, we have chosen the concentrations of

the Cu and Zn atoms to be equal. The relevant parame-

ters regarding the calculation are shown in table 1.

Table 1. Parameters for ^-brass calculation

Lattice parameter, a = 5.6521 a.u.

Radius of inscribed sphere = 2.4472 a.u.

Radius of muffin-tin sphere for both

copper and zinc, r„„ = 2.4148 a.u.

Constant part of muffin-tin poten-

tial Ue = -0.9152 Ry,

Order of significant neighborhood, cr= 10

We have carried out numerical calculations for the

points r, H, P and to determine what Soven calls the

reduced spectral density

p{E, k) =Xp(^' J^ + K),

Where K is a reciprocal-lattice vector and k is confined

to the first Brillouin zone. The curves for the reduced

spectral density p{E, k) plotted against E for some of

the states are displayed in figures 1 to 3 and the peak

positions in p(E, k) for all states at the symmetry points

r, H, P and are tabulated in table 2.

5. Discussion

In this section we compare our results with experi-

mental data for /3-brass. In the case of disordered al-

loys, electronic states are probed rather indirectly,

through analysis of the optical measurements, positron

E
o

a.

m
ai

in

co

d

—

uJ

0.115 0.140 0.165

E/1.236 (Ry)

O.BO

Fk.URE 1. The spectral density of states for F^'j and (d-like)

states in fi-brass, plotted as a function of energy.

Table 2. Positions of peaks in p(E, k) versus E
curves for states of various symmetries in (i-brass.

All energies are in Ry and relative to the muffin-

tin zero, Uc = - 0.9152 Ry.

State Energy State Energy

r, 0.018 P4 0.158

Viy .160 P., .162

r,2 .180 P4 .896

H,2 .124 Pi .985

H.5' .198 N, .120

H,5 1.051 N2 .141

H,2 1.333 N, .165

H, 1.693 N4 .183

^/•(Cohen-Heine 0.511 N:, .204

method)

N,. .404

N, .571

annihilation and short-range-order diffuse scattering.

Moss [10] has conjectured that nonspherical pieces of

the Fermi surface may give rise to a detectable singu-
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0.95 1.05 1.15 1.25

E/1.236 (Ry)

Figure 2. The spectral density of states for H12 (d-like) state in

P-brass, plotted as a function ofenergy.

5 -

1C?1 1 1 1 I

1.15 1.25 1.35 1.45

E/1.236 ( Ry)

Fl(;URE 3. The spectral density of states for Pi (s-like) state in

fi-brass, plotted as a function of energy.

larity in the intensity of diffusely scattered x rays, elec-

trons or neutrons. He applied the idea to the neutron-

scattering curves for ^-brass, measured by Walker and

Keating, and concluded that along (111), A/r = 0.74

of the Y — P distance. The free-electron value for

this ratio is 0.82, and our calculations (using the Cohen-

Heine [11] approach) give 0.75 compared to Amar and

Johnson's virtual crystal approximaiion [6] result of

0.78. The flatness calculated by us compares well with

Moss's speculative analysis of the neutron scattering

data. If we compare the separation in peak positions for

the spectral density for A^i and A^i- states we find the

Ni' — Ni gap to be 2.2 eV whereas Amar and Johnson's

value for this gap is 1.5 eV. Both these results imply

that the Fermi surface for /3-brass shows greater depar-

ture from sphericity than that given by the virtual

crystal approximation.
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On the Terms Excluded in the Multiple-Scattering Series

R. M. More
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We have evaluated certain of the excluded terms in the multiple-scattering series tor a simple s<^lu-

ble potential. We discuss three aspects of the result: first, the reduction to "'on-shell" quantities;

second, the numerical contribution of the excluded terms: and third, the analytic properties of these

terms.

Key words: Delta-function potential: excluded terms; Green's functions; multiple-scatterin<: series;

rigid-band approximation; scattering phase-shifts; (-matrices.

We have been interested in the muhiple-scattering

series for an electron in the presence of several poten-

tials, i.e., "impurities" [1-4]. There exist many
methods for processing the terms of this series, in order

to obtain approximate formulas for the change in densi-

ty of states caused by the impurities. One common
procedure is a relaxation of the strict exclusion of terms

in the series in which two f-matrices for the same impu-

rity appear adjacent. In the present note we examine

such "excluded" terms in an effort to assess the seri-

ousness of the errors introduced when they are in-

cluded. We have chosen the simplest sensible example

for our evaluations, the case of a zero-range (delta-func-

tion) potential in a band of finite width [4]. However,

because of the simple form of the results, we were led

to a quite general formula appropriate to a general

potential in an arbitrary band. We only quote that result

in this note, and supply the proof elsewhere.

We have deferred the usual average over impurity

positions, in the interests of effecting a reduction to

"on-shell" quantities, i.e., to scattering phase-shifts.

This is possible for all the "included" terms for well-

separated impurities. We feel that it is also desirable,

; because there is a powerful parameterization of the en-

ergy dependence of the phase-shifts in the effective-

t range theory [5]. However, as we shall show, the ex-

cluded terms cannot (strictly speaking) be reduced to

"on-shell" quantities for the potential in question. Thus

I

theories which include the excluded terms have a spa-

cious dependence on the off-shell amplitudes. This is

a first important point about the inclusion of excluded

I *This work was supported in part by the Air Force Office of Scientific Research under
Contract AFOSR-69- 1678.

terms. A second logical question is that of their numeri-

cal size: Do they yield contributions to the density of

states which are comparable to those of the various in-

cluded terms? And finally, a more subtle question is

whether their inclusion alters the analytic properties of

the density of states.

In the multiple-scattering theory, one computes the

change of the density of states of a noninteracting elec-

tron gas due to the presence of impurities through a for-

mula

8p(E) = --ImTr [C{E + it]) - G„{E + i-n)] (1)

where G(z) and Go(z) are the exact and unperturbed

Green's functions, respectively. They are defined by

the formal equations

Giz) Go(z) (2)
z — tl z — Ho

For each impurity potential V„ we may define a scatter-

ing amplitude T,i(z) by a Lippmann-Schwinger equa-

tion:

n

Tn{z)^Vn + V„G,{z)Tn (3)

and then the exact Green's function if formally given by

the expansion

G = Go + ^ GoTiiGii + 2 2 ('nTn('uT„i(n) + . . .
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It would be a counting error to include in the series

(4) such terms as

and we refer to any term with T's for the same impurity

adjacent as an "exchided" term. We are going to con-

sider terms associated with one (particular) impurity

only, and therefore we drop the impurity subscript on

Tn. The simplest class of excluded terms would lead to

the following contribution to the density of states, were

they included:

1

Sp(/.)(£) = _ _ im Tr [(6or)'Y;o] (5)

In order to determine the general trace of this form we
consider a generating function

(6)

A-= 1

and direct our attention to its evaluation.

By formal manipulations of the Lippmann-Schwinger

equation, one can establish the general result:

2 (2/+l)^6,(l + ^:£) (7)

where 6/(A.; E) is the /th partial-wave phase shift as-

sociated with the potential XV(r), where X is a dimen-

sionless numerical multiplier. In formula (7) we have

shown how the excluded terms may be reduced to

quantities (phase-shifts) related to the on-shell scatter-

ing amplitude for a different potential (kV) from the ac-

tual one. There is not, in general, any reduction to the

strictly on-shell values for the actual potential.

For the specific model which we discuss below, for-

mulas for Sp"-' may easily be obtained by direct A-space

evaluation of the traces. The results are in agreement

with the general formal evaluation (7).

The simple model which we consider is defined by

the Green's function

8/., k'
(A-|Go(z)|A-') ^

and the factorable potential

z — Ca-

(8)

(9)

If the states |A) are thought of as plane-wave states,

then (9) is produced by a zero-range potential (a delta-

function in position space). This scheme is pathological

for the usual free-electron case eic = k'^, but it is entirely

sensible for a band of finite width. We consider a spe-

cial band-shape defined by the density of states [4]

piE) = VI - (10)

for which the required integrals are easily evaluated.

There is no mathematical difference (only slight in-

terpretive differences) between this model and the

Slater-Koster model [6]. The required integral is the

function we shall call Ffzj;

F(Z) -TrGo(z)=J ^^^}f
=7TZ-i7Tp{z) a\)

The T-matrix for the potential (9) is simply

Tkk'iz)
l-voF(z)

(12)

Because of the A-independence of this, there is no dif-

ficulty carrying out the A-space evaluation of the traces

indicated in eq (5). In addition, we are able to compare

the exact evaluation with what seems to be an errone-

ous procedure advanced by Edwards and Beeby [2].

This latter method is discussed in the appendix. The

simplest of the traces (5) is the actual one-impurity con-

tribution to the density of states; it is of course an "in-

cluded" term. It is

Sp'"(£)
Vo E — TTVq

p{E) l + TT-vl — 2TrvoE
(13)

This term has the form derived by Friedel [1]

,

l_d_

77 dE
8o{E)

where the 5-wave phase-shift 8o(E) is determined by

tan 8o{E)
1 — TTVoE

The first excluded term is

6p<->(£) Im Tr [GoTGoTGo]
77

performing the trace we obtain

Sp'2'(^)
77i;^ 1 -772^5 + 277Z;o£- 2£-

p{E) 1 + 7t'-vI — 27tvoE

and the general result is easily found

_ $Vo E— (l + g)77t;o

(14)

P{^; E)
PiE) l + 7r-'vl(l + 0--2TTVo{l + OE (15)
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To estimate the numerical importance of these terms,

we evaluate them at the midpoint of the band (i.e., at

E = 0).

8p<"(0)

(16)

1 + TT-Vl

6p<-»(0) = (l-7r-i;5)6p<i'(0)

k=2 "

From these results we conclude that inclusion of "ex-

cluded" terms will produce an appreciable numerical

error whenever the Born approximation is not justified,

i.e., whenever ttvo is not much smaller than unity. This

conclusion is scarcely surprising, because it is precise-

ly an erroneous counting of the high powers of V that is

made when an excluded term is included.

Perhaps the most dramatic analytic property of the

density of states change Sp*^' is its singularity at the

threshold, indicated in the proportionality to llp(E) for

each term of (15). This feature appears in all straightfor-

ward evaluations of (1). For example, in the case of the

scattering of free electrons with the free-space disper-

sion relation ca = k'^, the Friedel formula

8p(i)(jF)=i-^So(£) +
7T at,

leads to a 1/A: singularity at A- = 0 because of the univer-

sally true scattering length approximation [5]

:

k cot 8o(^)=-— + 0(A;-) +
Co

We think that any mathematically correct processing

of the multiple-scattering series must exhibit this singu-

larity, but of course a physically correct discussion will

not predict an infinite density of states. A very com-

mon, but perhaps not altogether satisfactory resolution

of this singularity is that it is to be associated with a

"rigid band theorem" shift in the location of the

threshold. We note that the Edwards-Beeby evaluation

described in the appendix erroneously omits the quanti-

ty which gives rise to this singularity.

The formulas given above in (15), or more generally

in (7) show that the excluded terms have the same

threshold singularity as the one-impurity terms (13).

Thus we may conclude that approximations which in-

clude the excluded terms make serious numerical er-

rors but no analytic error, in general.

From (13), (14), and (15) we may extract the coeffi-

cients of the singular terms at the lower threshold:

Limp(^)Sp<^'(£)
Vo

1 + TTVo

Lim p(£')Sp' -'(£') = TTvl (17)

One final comment may be interesting. One often

likes to contemplate the possibility that, while V is so

large that the Born approximation is unjustified, T may
be still quite small. This is a rather generalized expres-

sion of the "pseudopotential" idea. Even if this were

true, we would expect such fortuitous cancellation of

large terms to occur only for a limited range of values

of V. Therefore, reasoning from formula (7), inclusion

of "excluded" terms appears to be especially dan-

gerous in such a situation.

Appendix

Edwards and Beeby [2] evaluate Sp'^' by first com-

puting the quantity

8p(/c; E) =--Im GUk; E)T,k{E)
7T

They uTge that, except on a set of measure zero, one

has

8p{k: E)=-- Glik; E) Im T„,{E)
77

However, the contribution from the set of measure zero

is proportional to a delta function, and their procedure

leads to an erroneous result. From formula (12) we see

1
T T <V\

vlpjE)— Im y kk [E ) = 7-

—

——
^

which is independent of k. Interpreting the square of Go

as real, we have

Glik; E)d'k= p

and therefore

SpBeeby(£') "

d'k

{E-e,r

TTvlpiE)

— 77

1 + tt-vI — 2ttvqE

This disagrees with the result (13) above. In particular,

it has the wrong analytic behavior; it misses the
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threshold sinjiularity. It is unhappy to have to complain

that a nondiverf>;ent answer is wron^, however! We
think that this error is actually related to a famous error

in the application of the multiple scatterinji series to

nuclear many-body theory [5,7]. The result we have

labelled dpHrchu is not compatible with the f'riedel sum
rule, whereas (13) above is.
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Discussion on "On the Terms Excluded in the Multiple-Scattering Series" by R. M. More
(University of Pittsburgh)

J. L. 3eeby (Atomic Energy Res. Establishment): The

expression for the density of states derived by Beeby

and Edwards is specifically for a dense array of scat-

terers in which the band structure is not markedly

shifted from free electron form. The remarks of More
in his appendix concern a single scatterer problem and

hence the criticism of the Beeby and Edwards' paper is

incorrect.
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On Non-Localization at the Centre of a
Disordered Bound Band

F. Brouers"^

H. H. Wills Physics Laboratory, Royal Fort, Bristol

It is shown for a three dimensional model of tightly bound electrons with cellular disorder that the

electronic states at the middle of a continuous band cannot be strictly localized. This conclusion is just

the opposite of what has often been suggested.

Nevertheless, an approximate calculation of the electron localization "life-time" suggests that with

increasing disorder the localized character of the electron states become more and more pronounced.

It is argued that in such a system there is no sharp transition between localized and non-localized

regions of the energy spectrum.

Key words: Cellular disorder: disordered systems; electronic density of states: localization life-

time; quasi-localized state; tight-binding.

1. Introduction

In a number of papers (for references see the review

papers of Mott [1] 1967 and Halperin [2] 1967), it has

been suggested that under certain circumstances the

solutions of the Schroedinger equation are localized for

an electron moving in a non-periodic field. If the Fermi

level lies in a region of the density of states where the

states are localized, the dc conductivity is supposed to

vanish at T= 0. This result has application in the theory

of liquids, amorphous semiconductors, impurity bands,

alloys, etc.

This assumption is generally discussed in terms of

the wavefunction of the "disordered electron," a con-

cept which is questionable when one is concerned with

macroscopic quantities such as the density of states,

the electrical conductivity or the optical properties

which have to be averaged over all possible values of a

random field.

If in doped and compensated semiconductors, one

can admit intuitively that the electrons can be localized

at low impurity concentrations, in the case of liquid

metals, amorphous and liquid semiconductors and dis-

ordered alloys, the statement that some regions of the

continuous density of states correspond to localized

states is much less obvious.

Several authors (Taylor [3] 1965, Bonch-Bruevitch

[4] 1968) have questioned the validity of the various ar-

*Royal Society E. P. Research Fellow 1968-1969. Permanent address; The Institute of

Physics of the University of Liege (Belgium).

guments and concepts used in the theory of electronic

states in disordered systems. This paper is a contribu-

tion to this discussion.

Ten years ago, Anderson [5] (1958) applied to the

discussion of impurity conduction a formalism set up to

investigate the absence of diffusion when the atomic

potentials vary randomly. So far this model is the only

one which can be treated qualitatively in three dimen-

sions. Anderson's theorem is that at sufficiently low

densities transport does not take place and that the

exact wavefunctions are localized in a small region of

space.

These conclusions have been extended to the case

where there is a random potential on each site of a regu-

lar lattice (cellular disorder). This model is supposed to

yield some insight into the behaviour of electrons in a

tightly bound band of an amorphous system or a liquid.

In that case the generalization of Anderson's theorem

leads to the following statement: If we consider a

uniform distribution with width W , the whole spectrum

becomes localized when the energy of the individual

atomic states varies randomly over a range which is

somewhat greater than the width of the band that would

be produced by their overlap.

Ziman [6] (1969) has written a clear and simplified

version of Anderson's arguments and formalism ap-

plied to this problem in a critical review of various ap-

proaches used in this field. We refer to this paper and

to the references quoted in it for a discussion of the

physical interest and limitation of this model.



On the other hand, very recently Lloyd [7] (1969) has

shown that if we choose for the random electrostatic

potential a Lorentzian distribution, this model can be

solved exactly and a theorem is derived proving that lo-

calization is never possible.

Lloyd was chiefly concerned with the discussion of

localization in the tail of the density of states. In this

paper, attention is concentrated upon the situation con-

sidered in the paper of Ziman, states at the centre of

the band and a bounded flat random distribution.

Our conclusion is that the Anderson theorem which

must be valid at sufficiently low concentration of impu-

rities cannot be generalized to the continuous disor-

dered tightly bound band of an amorphous or liquid

semiconductor. It is shown, however, that when the

width of the distribution increases, the electron gets

more and more localized but no sharp transition

between localized and non-localized states appears in

the theory.

2. The Model

We use the model of cellular disorder in a tightly

bound band. It is assumed that in a three dimensional

regular lattice, each site / is occupied by an atom with

a single tightly bound state |/). The energy eigenvalue

^ is supposed to be a stochastic variable with a proba-

biUty distribution P(e) characterized by a width W. The

atomic states interact through a potential V^^, . This in-

teraction may itself be a statistical variable but here is

supposed constant and equal to V when / and /' are

nearest neighbors and zero otherwise. Coulomb and

statistical correlations, though probably important in

disordered systems, are ignored.

The Hamiltonian can be written in the base of the set

of localized atomic orbitals |/) (single site representa-

tion)

H= H^+H^=y € a a +y V a a (1)

where and are respectively the annihilation and

creation operator for an electron localized at site / and

obey the usual anticommutation rules.

In the ordered system, all energies can be put

equal to zero and the first term drops out, the Hamil-

tonian Ho is then a quadratic form and can be diagonal-

ized in the reciprocal space:

H, = J^V^AlA^. (2)

with

=2 exp (ik>) a} (3)

^

' Note thai ai(t) is not the probability amplitude for the physical diffusion process; for this

quantity one must take account of the Pauli exclusion principle.

The eigenvalues of //o give rise to a band

Fu = ZF5(k) (4)

where Z is the number of next nearest neighbors. The

function 5(k) is defined in the first Brillouin zone. It de-

pends on the symmetry of the crystal and for cubic lat-

tices is such that max.5(k)= 1 and min.5(k)= —1 (Mott

and Jones [8] 1936). The width of the ordered band is

thusfi = 2ZF.

In the disordered system described by H, because of

the lack of translation invariance, there is no dispersion

relation similar to (4). If we are interested in the energy

spectrum and more precisely in the density of states,

the averages over Green functions are made (Matsub-

ara and Kaneyoshi [9] 1966, and Ziman 1969).

3. Conditions for Localization

Now following Anderson, we ask how fast, if at all,

does an electron put onto a site / diffuse away from this

site?

The probability amplitude j/^(<) is simply defined by

{t) = i{0\a,{t)a\{Q)\0) = iG^ (t) for t > 0 (5)

The state |0) is the true vacuum and we are concerned

with non-interacting electrons.' The time dependent

Green function Gf{t) is the Fourier transform of:

G^(t)=r^G;{E)e-'^'dE (6)
J - 00

where Gf{t) is the diagonal part of the Green function in

the single site representation. It satisfies the equation

G,,. {E) = + 2 (-rr 0)
t—ei tL—€ip^^

The retarded form G+(E) means that we have to add to

E a small imaginary part id in order to fulfill causahty

requirement.

Equation (7) can be solved by successive iterations

for the diagonal part G^(E) and one obtains:

where E = Ei + iE-i is a complex variable and the self-

energy is given by a Brillouin-Wigner expansion:

The terms in the series represent all possible succes-

sive virtual transitions which start out from the site /
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and propagate throughout the disordered system until

the electron returns to the initial state.

The condition for the amplitude to be finite when t

oc (see condition for non-transport in Van Hove [10]

1957) is that Gi(E) should have a pole on the real axis.

Thus the conditions for having a localized state with

energy J?! are simply:

and

Im A,{Ei) = 0

-e, + Er-Re ^,(E^)=0

(10)

(11)

If Im A;(£'i) is different from zero, its value gives the

decay rate of the state and we can define a hfetime for

the electron state.

In the case of an ordered lattice:

E'
(12)

is equal to

^^^[E)=E- {GnE}) (13)

where GP(E) is the Green function of the ordered band.

This function can be expanded along the same lines as

t^P(E). In the k representation it can be written in the

form:

Gf(«)=|2£^. (14)

For a tightly bound band, this function is well described

by a model function (Hubbard [11] 1964):

G°(£)=2[£- VF^] (15)

if is the energy unit.

In the disordered case, the quantity t^i(E) has to be

averaged over all the random configurations of the dis-

ordered system. The difficulty arises from the

stochastic nature of the function A/fj. In eq (9) we
have to average products of site locators

with

(S ,s^..s^... ... )

?>AE) E-e^

The averaged Green function

GAE) = E-e,-{AJE)) (16)

must be considered as a conditional averaged since the

energy of state |1) is fixed and equal to e^. The function

G,(E) is different from the ensemble averaged Green

function:

{('AE})
1

E ^,{E)
(17)

which must be used to calculate the density of states,

for instance.

It has been shown by Lloyd (1969), that the condi-

tional average Green function Gf(Ej can be calculated

directly without involving any series expansion if the

distribution is a Lorentzian one:

/'(e) (18)

This is due to the fact that for such a distribution, the

averaged product (S^_S^, . . . S^^ ) is exactly equal to

1

E+iY, (19)

One can see that all the cumulants (Kubo [12] 1962) ex-

cept the first are zero and the average can be per-

formed for each independently. Physically this

means that there is no correlation between different

site locators. For the particular distribution (18), the

self-energy is given by:

^ VwVin ^ VwVvv'Vv'i

the density of states

. . = Ao,(£+ir)

(20)

P^(^) -Im6"(^+iT)
TV

=--r+ ^Im ^{E + iVy-l
77 77

(21)

and

Gf(£) =
1

E-e(-A%E+ir) (22)

which must be used to calculate (6). This expression is

equivalent to eq (39) of Lloyd's paper, if use is made of

relation (13).

We can see immediately from (13) and (15) that Im
Ap(E +ir) 9^ 0. This gives the theorem proved in a more
comphcated way by Lloyd (1969). For any value of E
and r no localized state can occur.
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In particular, if we are interested in states at the mid-

dle of the band, one has

tors, a situation described in Ziman's paper (1969), no

state can be strictly localized in Anderson's sense.

ImZi"(zT) = A"(iT) =#0 (23)

4. Non-Localization at the Centre of the Band

We turn now to the case considered by Anderson

(1958): a rectangular distribution with width W. Ziman

(1969) reproducing Anderson's arguments and conclu-

sions has assumed in the discussion of the convergence

of (9) that:

<5, 5,,, . . . S,}

= exp[log<S,, . . . S,„)]=exp [n<logS,)] (24)

This approximation means that all the cumulants ex-

cept the first are zero or that the site locators are uncor-

related. It is equivalent to assume that:

(S (25)

The full argument of Anderson's paper is more com-

plicated. Correlations are included in the theory by

replacing e/ in the locators by a renormalized energy

but qualitatively Anderson's conclusion on localization

at the centre of the band is not very dependent on this

refinement. For a uniform distribution of width W , one

has

E-WI2
w log E+WI2

ITT

w
w , ,— — F
2

(26)

where t](x) is the usual step function.

Though in this approximation, the ensemble

averaged (G"(£')) is simply G"(1/(S^)), it does not

seem possible to find a simple expression for the con-

ditionally averaged G^{E) in terms of (5/ ) because of

the restricted summation in (9). But for E= 0, i.e., in

the middle of the band, the result is simply:

G^(0)=-
1

(27)

and one necessary condition for localization is that

A"(iJF/77) should be equal to zero.

It is the same condition as for a Lorentzian distribu-

tion (eq 22) except that we replace T by JV/tt. This

result is physically meaningful. If we neglect correla-

tions, the electronic states at the center of the band are

not very dependent on the form of the random distribu-

tion of individual site potentials.

We conclude that for states at the middle of the band
and in the case of statistically independent site loca-

5. Localization Life-Time

We can now, using (13) and (15) evaluate the value of

the imaginary part of the self-energy at the centre of the

band:

Im <A(0)) = A"(tT)=r-

and the localization "life-time":

r{r)=-hly

1

2(Vr2+i-r)

with

A„(iT)

c) Re ^^E + i^)

dE £ = ()

(28)

(29)

(30)

and

1- d Re A°(£+ zT)

dE E = 0 2 Vi+r2[Vn-r2-r]

(31)

In the limit F = 0, i.e., in the case of the ordered

band, the life-time is two times the inverse of the or-

dered band width. If F or {WItt) is increased, the func-

tion (28) decreases and tends to zero as F^ oo. But for

any finite F, no state can be strictly localized. This

result is in agreement with Lloyd's theorem.

In figure 1, we have plotted the localization life-time

defined by (29) with respect to (or WItt). For every

value, we can give a measure of the electron localiza-

tion at the middle of the band. For instance for F= 5 (in

Bl'2 units), the localization corresponds to that of an

electron in an ordered band of width fi/20.

It is also possible to obtain directly a closed formula

for the self-energy (9) by using the Matsubara and

Kaneyoshi (1966) technique, if we neglect the restric-

tion (/',/",... 7^ 0 in the summation. In this case, one

has:

1
<Am(£))=^2 A,(F)

with

A,(£) = n(C,J^))

(32)

(33)

where and Gkk' are the Fourier transform of the over-

lap integral V^^- , and the disordered Green function.
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If we discard correlations between site locators, it

can be shown easily that

<4u(£))
1

I

1 / 1

(34)

The expressions corresponding to (28) and (31) are then

written as

im(A.„(0))=-r(i + 2r2) + 2r2 VniTT (35)

dReA(E)
dE

= 2 + 2r^
VT+n-r
Vi +n

+4r[r- VnTi

(36)

It is interesting to note that this expression almost

coincides with (28) for Y > 0.5. But for T < 0.5, the

lifetime increases and is infinite for F = 0. In the vicini-

ty of F = 0, the present discussion is not quite valid

because the decay in the ordered band is an algebraic

decay due to a cut in the ordered Green function.

6. Discussion

There is a discrepancy between these conclusions

and the statement on localization in disordered tightly

bound band reproduced in review papers by Mott (1967)

and Ziman (1969).

In the discussion of the self-energy expansion con-

vergence, Anderson eliminated singular factors in

averaging the terms of the series for {A^(E)). In this

case, to have a localized state Re{A.i(E)) must converge

and this convergence is a criterion for localization.

The same procedure would give a non-continuous

disordered density of states and can be justified when

the concentration of impurity is so low that there is no

banding effect (Miller and Abrahams 1960 [13] ). But in

the model of a disordered tightly bound band when the

distribution of random potentials is continuous, the

consideration of the singularities in the expansion of

{A(E)} when the average is performed is essential to

rediscover the exact result of Lloyd in the case of a

Lorentzian distribution and to find a continuous density

of states (eq 21). It turns out that when the terms of the

series are summed, the small imaginary part of the

locators gives rise to a finite imaginary contribution for

(A). We have shown that the condition Im (A) (0)) =0
is never fulfilled in the model considered in this paper.

Moreover it is possible to define a closed form for

/?e(Af£')) at the centre of the band.

The conclusion of this paper is that it is impossible

with conditions (10) and (11) to define regions in a

continuous disordered tightly bound band where elec-

tronic states are strictly localized. This conclusion is

thus in agreement with a general theorem of Bonch-

FlGURE 1. Localization "life-time" {eq 29) as a function of the width

of the random distribution ofrandom atomic potentials.

The units are B/2 for I" and (2/B) t> for t.
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Bruevitch (1968) on conductivity stating that the electri-

cal conductivity of the macroscopically homogeneous

system at zero temperature is non-zero if and only if the

Fermi level lies in the region where the density of states

is non-zero and continuous.

This conclusion is also consistent with the results of

Nakai and Flawiter (1968) [14]. These authors show

using a quite different approach in a model where the

randomness is included in the hopping distances that

localization for an impurity band appears when the

spectrum becomes discrete and dispersed in a wide

region.

Nevertheless, as was suggested by a rough calcula-

tion of the localized electron lifetime in section 5, when
the width W of the random distribution increases, the

localized character of the electron state becomes more

and more pronounced.

This discussion suggests, however, that if in a con-

tinuous band some states are more localized than

others, it is hard to imagine a sharp transition between

them.

A relevant theoretical problem would be to try to

define this concept of "quasi-localized state" on a more

rigorous basis. The Ufetime of this quasi-particle should

be calculated for all the energy spectrum and compared

with other characteristic Ufetimes of the system.

Without this knowledge, it seems difficult to reach

definite conclusions concerning the behavior of the

electrical conductivity when the Fermi level varies

across the density of states distribution.
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The Half-Filled Narrow Energy Band

L. G. Caron**and G. Kemeny***

Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39

The antiferromagnetic and paramagnetic states of a half-filled narrow energy band are investigated

using a i-matrix approach. This method is justified despite the high particle density in the system. A
phase diagram including the Mott state is given. Employing the gap of the antiferromagnetic insulator as

a variational parameter, it is shown that the increase of the band width potential energy ratio leads to a

first order phase transition into the paramagnetic metal state, nearly where Mott has estimated it to

occur.

Key words: Antiferromagnetic insulator; first order phase transition; half-filled narrow energy

band; Mott state; paramagnetic metal; f-matrix.

1. Introduction

The Mott insulator [1] on the Hubbard model [2]

has been the subject of investigation in two papers by

the authors [3,4] . In the paper presented at the first In-

ternational Conference on the Metal-Nonmetal Transi-

tion [4] some of this research was reviewed. Parts of

this paper and the discussion that followed were

devoted to the paramagnetic and antiferromagnetic

ranges of the half-filled narrow band, and to the com-

petition of the long range antiferromagnetic order with

the short range Mott order. We have outlined the physi-

cal motivation and mathematical methods we felt were

necessary to treat these problems. In this paper we
present the solutions of these problems. The results in-

dicate that the problem is not as complex as we have

anticipated and the self-consistent pair correlation

method is unnecessary except in the Mott insulator

range. Other than that our physical expectations seem

to be justified by the results.

Apart from the Mott insulator we consider two possi-

ble physical states of the half-filled narrow energy

band, with the Hubbard Hamiltonian [3]

// = ^ TijCi„Cj,j + i 2 n,^n,-. (1.1)

These are the paramagnetic and the antiferromagnetic

states. In the paramagnetic state the electrons scatter

*Supported in part by the Office of Naval Research, Contract No. 78721 and by the

Canadian National Research Council.

**Permanent address; Department of Physics, University of Sherbrooke, Quebec,

***Permanenl address: Department of Metallurgy, Mechanics and Materials Science,

Michigan State University, East Lansing, Michigan 48823.

on each other. This will be handled by a ^-matrix ap-

proximation. As we have argued in [4] an expansion in

powers of the f-matrix could handle the scattering

problems. Our results indicate that already the first

term should be a good approximation. If the interaction

is strong enough the antiferromagnetic state becomes

stable. Part of the effect of the interaction is the

estabhshment of the long range order. The rest of the

effect is taken care of by the same ^-matrix calculation

but now the zero order wave functions are antifer-

romagnetic rather than paramagnetic.

The stability of the paramagnetic versus antifer-

romagnetic states is decided by the minimization of the

total energy in the ^-matrix approximation with the an-

tiferromagnetic gap as a variational parameter. When
the gap so determined turns out to be zero the paramag-

netic state is stable. A semiquantitative argument is

used for the competition of the antiferromagnetic and

Mott insulator states near the atomic limit. We shall

use Martin-Schwinger [5] Green's functions in a

manner similar to Reynolds and Puff [6]. The general

formulas are evaluated for a simple cubic lattice in the

tight-binding approximation.

2. Paramagnetic State: Hartree
Approximation

In the limit of small intra-atomic interaction, J 0,

one would expect the correlation effects to be small.

One might even be tempted to neglect them complete-

ly. The energy would then be approximated by first-

order stationary perturbation theory on the noninteract-
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ing electron system. This is the Hartree approximation.

It is best worked out by first Fourier transforming the

Hubbard Hamiltonian in the reciprocal space of the

crystal structure. This diagonaUzes the motional part of

the Hamiltonian eq (1.1). With

^ 8(k, + k, -k:i
kik.k.kj

•^^)CkX.^k^,-^k„^k.. (2.2)

k

one finds

H =

where e(k) = ^ Toi^''' (2.3)

I

The unperturbed ground state of the half-filled band is

obtained by filhng all k states for which €(k) < 0. This

makes up the Fermi sea whose surface is defined by

e(k) = 0. The Hartree energy is then simply

k<k, k,k;<kf

= 2 2 e(k) +A^y/4. (2.4)

k<k,

3. Paramagnetic State: Reaction Matrix
Approximation

We wish to study the behavior of the Hubbard model

as a function of the strength of the interaction. It is ob-

vious that correlation effects will be of importance for

larger values of J. One might try adding a few more

terms in the perturbation series expansion of the ener-

gy. The danger is that this series diverges over a

paramagnetic ground state as J becomes large. So, a

priori it seems to be necessary to get rid of this pending

divergence by summing up judiciously chosen terms to

all orders. It is known from the Breuckner-Goldstone

work [7j that those terms which involve only two elec-

trons—the reaction matrix expansion — are easily

summed. This means the binary collision problem is

solved exactly and this in turn leads to a well behaved

treatment of the short-range intra-atomic interaction.

Fl(;URE 1. Reaction matrix correction to the noninteracting energy
in the paramagnetic system.

Figure 2. Reaction matrix correction to the Hartree energy in the

paramagnetic system and to the Matsubara energy in the anti-

ferromagnetic system.

Using time dependent perturbation theory and the

adiabatic approximation it is possible to deduce a dia-

gram representation equipotent to the perturbation se-

ries expansion [7]. In this diagram representation, the

reaction matrix correction to the noninteracting elec-

tron energy is given in figure 1. In these processes, any

two opposite-spin electrons of the Fermi sea ki,k2

undergo all possible scatterings on one another. The ex-

clusion principle is partly taken into account by

restricting the scattered electrons above the Fermi sea.

If we wish to compare the final energy to the Hartree

energy we are left with figure 2 where the first term is

missing because it is already included in the Hartree

energy.

Following Day [7] , we write down the wavevector for

two such electrons in momentum space as:

|^(k,k,) |0(k,)(^)(k.>) >-(?/ei;|^(k,k2) >= |(A(k,)<^(k2)

>- S
k;k;>kF

|(/)(k;)(A(k.;)><(/)(k;)(^(k.',)|H^(kik,)> . (s.i)

e(k;) +e(k.;) -e(k,) -e(k,)
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where |(/)(k)) is the one-electron wavevector, t; is the The correction to the Hartree energy is then

inter-electron interaction, Q restricts the scattered = ^ [<^(kik.) |i^|(/>(ki )(/>(!*')

states above the Fermi level, and e is the energy dif- k,k,<k,

ference between the final and the initial states.
, , . , . n

> - <(/)(k,)<Mk,)|i;|0(k,)c/)(k,)>]. (3.2)

Translating this into configuration space

C/),,(R,)C^>,,(/?,)

^,JR,R.) = ^,(R,)C(R.)
-J^^ [.(u;)+e(k:)-e(k.)-.(k.)]

X 2 (/.*(R;)c/,*(R,')i^(R;R0^k,k.,(R;R2) (3.3)

r;r:

and

^E= ^ 2 t'^'k,kjf^'i^-^)^(i^>i^-)^,(f^')'^k.(i^^) ^ ^^J^'J^-^ (3.4)

k,k,<k, R.Rj

Since e(k)= — e(77±k), we can transform the summa- v (R.R.^) = JSr r,
(3.5)

tion above the Fermi sea to one below, by changing the .^pd

sign of the corresponding energies. Substituting <^k(R) = A'^"^''^''' (3.6)

into eq (3.3) we find

]\I-\pi(K Ri + k.', R-,)

^k,k.(K.K^) yv e 2 ^ [e(k;)+6(k:) + e(k,)+6(k,)]
k;k;<k,

X 2 g-,(k; + k;) R;x ^I^^,^ (R;r;) (3.7)

r;

from which

^ [e(k;)+e(k;) +e(k,) +£(ki)]
ki'ki < k,

is obtained. The reaction matrix energy correction is

then

k,k2<k,

k;k;<k,

J I
6(ki + k2 - k; - k.;) ] 4

[e(k;) +e(k.;) +e(k,) +e(k,)]
(3.9)

4. Antiferromagnetic State: Hartree

Approximation

As the interaction becomes very large one would ex-

pect the electrons to avoid one another very effectively.

The band being half filled this can be best achieved

either by a parallel alignment of the electron spins or by

an antiferromagnetic one. In both cases there is a

spreading out of the electrons throughout all states in

the Brillouin zone. In this limit the paramagnetic state

is a bad trial state on which to build the perturbation ex-

pansion since it confines the electrons below the Fermi

level. A ferromagnetic or antiferromagnetic trial state

would be better suited to a perturbation treatment. It is

known the half-filled band in the Hubbard model can-

not be ferromagnetic [8,9]. We then look at the antifer-

romagnetic state in the large J hmit. A band theory of

antiferromagnetism was discussed by Matsubara and
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Yokota [10]. They reduced the inter-electron interac-

tion to a single particle spin symmetry breaking poten-

tial

i IT

in which A„r is self-consistently defined as the Hartree

potential seen by an electron

1 and 2 for the lower and higher energy solutions,

respectively.

The eigenfunctions and eigenvalues are:

0ik± (R)=/V->/V''''Uk + fike'"«)

J
Erik] VA2 + e(k)2 + =

(4.1)

This potential has one value on one sublattice and

another one on the other. The Hubbard Hamiltonian in

the Matsubara approximation is then

<^2k^ (R) =/V-'/2e'''^fiu±Ae'" ^

£2(k) = VA2 + e(k)2+^.

(4.7)

(4.8)

(4.9)

(4.10)

ij a i a

Transforming into momentum coordinates

L /T ^ / k cr

(4.2) I" '^he half filled band case, the lower energy band is

filled and the higher energy one empty.

The self-consistency condition is then

±A+|= 7 2 |<^.,k^(0) (4.11)

k< k.

(4.3)

where
A=yA X

k<k;, VA2 + e(k)2
(4.12)

J = + A for up spins

J
A for down spins

(4.4)

There are two possible solutions to this self-consistency

equation. The first one is trivial:

A = 0. (4.13)

1

This is the paramagnetic Hartree solution already stu-

each k state is seen to be coupled to a k+ tt state. The died. The second one is the Matsubara condition for an

eigenstates of this Hamiltonian are going to be linear antlferromagnet:

superpositions of states below and above the Fermi

level of the noninteracting system. The electrons will

then be spread out throughout the Brillouin zone as

wished.

The Matsubara Hamiltonian is diagonalized by the

following canonical transformation:

The energy of the Matsubara state is

1. (4.14)

Ck+ircr= -•- 5k 6] ko- + ^k^kcr
(4.5)

{H)= 2 22r;,(/>,*u.(R,)0,k.(R,)

k < k, <^ ij

the upper sign being for up spins and the lower for

down spins, and where

k < kf /

(4.15)

5.=

e(k)

VA2 + e(k)2,

In the tight binding approximation this becomes

1
e(k)

VA2 + e(k)2

12

12.

(4.6)

{H)=2 ^ iA^-Bl)e{k)+J 2 (l-4^cfik^).

(4.16)
k< k,

Since there are two solutions for each spin cr, we
labeled them with the same value of k chosen in the

noninteracting Fermi sea, differentiating them with a

5. Antiferromagnetic State: Reaction Matrix
Approximation

The Matsubara approximation is surely very decent

second quantum number taking on two possible values in the J limit. For not so large y's one could again
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attempt a perturbation series expansion, this time using

the Matsubara states as single electron eigenstates.

This series would not diverge since opposite spin elec-

trons already undergo minimal interaction in the Mat-

subara approximation. But in order to treat the antifer-

romagnetic solution on equal footing with the paramag-

netic one, we will again perform a reaction matrix anal-

ysis. We add an extra degree of freedom to the approxi-

mation by leaving the degree of polarization of the

wavefunctions as a parameter with which to minimize

the total energy.

The logic behind such an expansion on long-range or-

dered wavefunctions can be understood using ther-

modynamic Green's function theory. This requires the

addition of a chemical potential term

/ IT

to the Hamiltonian in order to be consistent with the

grand canonical ensemble involved in Green's func-

tions. Let us also add and subtract a Matsubara poten-

tial. We can then subdivide the Hamiltonian into a one-

electron part and an interacting part:

./

i cr

(5.1)

(5.2)

(5.3)

The one-electron propagator's time evolution is then

controlled by H\ in which the Matsubara part of the in-

teraction is already included. Its equation of motion is:

(i|^-/;,.)c|"(U;i;)=S(l-l') (5.4)

where

/i,.Gi"(lc.; i;) = (a,.-^) G'nu K}+^T,jG'>'{l+j^; i;). (5.5)

Following Martin and Schwinger [5] we define

/--/2,^) = 6'',"(la)

The equation of motion for the two particle Green's

(5.6) function is then

GiMU)-'Gin2-)^UG2(U2-;i;2:)-6r(U;i;)G(n2;2:)}-G-(U;i;)[A2-G,(2_;2i)+jiG,(2_2,; 2:2:)]

-G;"(2-;2:) X [A,+G,(l+;i;) + ,7G,(Ul-; i;i!)]}= A,^A._G.>(l+2^; i;2:) +tA,+JG3(U2_2^; i;2:2:)

+ /A.-JG;,(l^l_2_;i;it2:)-J^G,(Ul_2_2+; i;it2:2:) + jiG2(l+2_;|i;2:)8(l -2). (5.7)

If a Hartree approximation is made

i7G,(2_2 + ; 2:2i)--A,_G,(2_: 2:) (5.8)

iJG->{l^l-; i;i;)=-A, + G,(U; U) (5.9)

;7G:,(U2_2 + ; 1 ^212:) =- A^.G., (U2_; U2:)

(5.10)

t7G3(ui_2_; i;ii2:)=-A,+G,(U2_; i;2:)

(5.11)

./^G4(ui_2_2+; i;i;2i2:)=y2G,(U2_; i;2:) X G,(i_2+; 1+2:)

= -G.(U2_; i;2:)A, + A2- (5.13)

we get

Gr(U)->Gi"(2_)-'[G,(U2_; U2:)-Gi"(U: U)Gr(2-; 21)] - ;7G,(U2_; i;2;)6(l-2).
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Fl<;i RE 3. l*ower series expansion in J.

I he liiNl linlc-liiilc siMllcriiit: <!ia;;rain is n{ third nnlcr in ./

This is similar to the fi approximation on a long-range

ordered state. A;,r now serves as a variational parameter

with which to minimize the energy. The reaction matrix

is that part of the fl matrix which includes only

electron-electron interaction. Since it involves lower

order terms to the energy correction than any hole-hole

scattering— as shown in figure 3 — this equation also

serves as justification for the reaction matrix approxi-

mation. It is interesting to note that neglecting the right

hand side of this equation one gets back the Matsubara

result since it is for Ai,r = Jni-,r that the energy is

minimized.

In the diagram representation, the reaction matrix

correction to the Matsubara energy would be as given

in figure 2. The first diagram of figure 1 is here again

missing since it is already included in the Matsubara

energy. This is in analogy with the paramagnetic case.

The difference is in the electron propagators which can

here be adjusted variationally to yield the minimum
energy.

As in the paramagnetic case, we write down a

wavefunction for any two opposite-spin electrons:

c/),,, (R, (R,)

k;k.; < k,
)-^,(k.)]

R

The energy correction to the Matsubara energy as given in eq (4.16) with A/,r as a variational parameter is:

(5.15)

AE^J 2 2 [^*,^(RR)(/)„,.(/?)0„^JR)-(^*,.(R)c/,*^JR) Xc/,,^ (R)c^„, (R)]. (5.16)

k,k,<k, R

Since the wavefunction amplitude must be antiferromagnetically modulated, we can write

M^,,xR.R2)=^ik,k.(Ri-R-^) + ^"-«'^2k,k..(Ri-R2) (5.17)

Substituting into eq (5.15) the expressions for the wavefunctions in eqs (4.7) and (4.9) it can be deduced that

with

^,k,k.(0)
=

^2k,k.(0)-

[l+/'k,k.o+C>k,k..+

[A^B^-B^AJ
[i + Ck,k,. + /'k,k..+ ^k,k.-.]

k,k,<k,

Ck,k.k.=A'-'./ 2
k,k, < k,

The energy correction will then become:

§ ( k I + k, + k:, - k ;
- k.: ) [gk, ^.k,

- 4 ^A^ ]

[£,(k,)+£,(k,)-£,(ki)-£,)ko)]

§(k, + k, + k:,-k;-k;) [A^B^ -B^A^^]-

[£2(k;) + £,(k:)-£,(k,)-£,(k,)]

(5.18)

(5.19)

(5.20)

(5.21)

^E = J X {^,,.JO)[A,A,-B,BJ+^^,^JO)[A^B^-B,Aj-[A^A^-B,BJ^-[A^B^-B^^
k,k. <k,

(5.22)
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6. Density of States 1^^ of interest to calculate this quantity for the Hubbard

model within our reaction matrix approximation. The

The electron transport properties are governed by electron density of states can be related to the spectral

the density of states at the Fermi level. It would surely representation of the single-electron Green's function

p{E) = TT'' lim Im + ; \ -\v)]^,ir = E ~ ie (6.1)

where the zero of energy is at the chemical potential. trate on the paramagnetic case. The equation of motion

Because of the energy gap occurring in the antifer- for the one-particle Green's function in the paramag-

romagnetic state, its density of states at the chemical netic state using the Hamiltonian in eqs (5.1), (5.2), and

potential will surely be zero. We then need only concen- (5.3) with A, +=A2-= J/2 is:

6'';(U)-'<'m(U; i;)-6(l-l')-i7r;2(U]-; i;il)-J/26',(U; i;) (6.2)

from which we deduce

];) = r;';(i+; U) -/.//^/Tr;';(i+; U)[r;,(uT_: i;T_)-r;,(U; i;)^;,(T_; T:)]. (6.3)

The knowledge of the two-particle Green's function is the density of states requires a better approximation

required. This we get from the ft approximation. Since than the energy we use the more accurate form [5]

:

r;,(U2_; i;2:) = G,(U; 1;)G,(2_; 2'_) + z7jt/K;\'(U; U)C<;(2_; 1_)6-2(U1-; i;2:). (6.4)

We define the fl matrix by the following equation:

i6,(Ul_; i;21) = /(im(l;T)G,(U; i;)G,(T-; 2:) (6.5)

which with eq (6.4) leads to

n(i; i')=i§(i-i') + /,//f7K;;'(U; i + )r;i'(i_; T_)ft(T; i') (6.6)

If we now Fourier transform the space and time variables into the momentum and frequency domain, with

odd

G,(U; i;) = l/A^r^ ^ e''' (R.-H;)e-'('^''/^'('-'''C,(ki^) (6.7)

k V

and

G?(M=— ^

(6.8)
tti'/t

— e(k)

and also

n(l; l') = l/A^T ^ ^ e/k (R,-R,) e-/(7rWrHr-r)(|(kj.). (6.9)

I' k

we get the following equation for the Q, matrix

odd fiCk — It, — k.>)

a(k.)=y+^(y/yvT) X 2 1—^
,, ,,, ,

^^-'^^

i-, k,k, [7Tl'i/T-e(ki)] LTT(l'-I/i)/T-e(k2)J
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But then, from the Poisson sum rule, the summation over U} yields

n{ki')=J-JN'^ y -
^

k,k, [ttvIt

xn(kz^)

8(k-k,-k,)

€(k,)-e(k,)]

1 1
(6.11)

At zero temperature, /3
oo, and the term in brackets

is either +1 or — 1 depending on whether ki and k-i both

are below or above the Fermi surface, respectively.

Since we are restrictine ourselves to the reaction

matrix approximation where only electrons interact,

this imphes we must restrict the scattered electrons

above the Fermi sea. This brings us to a reaction or t-

matrix whose equation is

k,k;> ky

that is

T{\^v)^J+JN-^ X r^^^^\^^r^T{Vv) (6.12)
k,k'3i. L7rWT-e(ki)-e(k2)Ji

T{'kv)=- j
— r (6.13)

\l-JIN y §(k-ki-k.)—

I

1 kk>; [WT-6(k:)-e(k,)] J

We can now substitute this value for the f-matrix into eq (6.3) for d and get:

odd

G,(ki')= G'[(}iv)-ilNr 2 ^ e''-'^»"+G';(kj/)6',(ki^)

v' k'

X r(k+!k', v+v')G,{\i'v')- (7/2)G,(ki^)G';(ki'). (6.14)

In order to perform the summation over v' , we must transform the i-matrix into its spectral representation:

7'(ki')=So(k)+ du)

where

S,(ka;)

(ttvIt — co)

So(k)=J

Si (ki') = 1/77 Hm Im [r(kt')] 7rWT=

(6.15)

(6.16)

(6.17)

y^TV-' ^ 8(k-k,-k2)6(o;-e(ki)-e(k2))
k,k, > k,

i_//V-iP V §(k-k:,-k4)

U.k^>U. (^-^(k:.)-6(k,)) ^ 8(k-k:,-k4)S(co-e(k3)-e(k,))
kikj > k,

(6.18)
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It is seen from eq (6.18) the Mnatrix has a branch cut If we now perform the summation over v' using the

in the positive real axis of the complex frequency plane, spectral representation and approximating Gi(k' ,
p'

) by

G,"(k',i.'):

odd

k I'

t"' I Jo [Tr{v+v )It-o)] [ttv /T-e(k )]

odd S,(k+k',w)
(6.19)

k^uJ" LWT-a>+e(k )J
(6.20)

iJI2 + ilN [r(k + k', i^")].„7.= 7rWr+e(k')

we then get
k < k.

f;,(ki.) = G';(ki')+ ;^

i6'';(ki^)6-,(ki/)

8(k + k' -ki-k.)
^

"^k.kSk, [WT + e(k')-e(k.)-e(k2)]

-J6',(ki')r;','(ki^)

(6.?1)

(6.22)

Before pursuing the calculation further, one notices

the energy spectrum for G\ is not symmetric with

respect to electrons and holes, i.e. G\{k,v) — G\{7t —
k, — I'). This was to be expected since only electron-

electron pair scattering has been considered. One
would have to include hole-hole scattering to restore

electron-hole symmetry. Since the hole-hole contribu-

tion to the energy occurs only in higher order terms as

shown in figure 3, and since convergence of the per-

turbation expansion is rather rapid in the paramagnetic

domain, we can safely restore electron-hole sym-

metry without upsetting the reactiai-matrix approxi-

mation. We then define a hole reaction matrix which

is the result of all possible sequential hole-hole

scattering within the Fermi sea. From eq (6.11) its

Fourier transform is:

n(ki')=j-j/v-> ^
kikj < k,

g(k-ki-k,)
[WT-e(k,)-e(k.>)]

(6.23)

Going through a similar analysis as with the electron reaction matrix we would arrive at the final expression

for G,:

G,(ki/) =
TTf/r — e(k)

k < kf i_A/Vi V 5(k+k'-ki-k,)

k.k^k. (vrWT + e(k')-e(k,)-e(k,))

]

k >k. g(k+k'-ki-k,)
k,k.<k. (7rWT+e(k')-e(k,)-e(k2)

(6.24)
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From eqs (6.1) and (6.24) the density of states at the Fermi level can be shown to be:

k, k,

Where

k,k,>k,

5(k, + k2 - k, - k4)

(6(k,) -e(k:0 -e(k,))^

, Y 6(ki + ki; — k5 — ki;)

'
.
Z. (e(k,) -e(k,) -e(k,0)

k,,k„>k,

(S(k,) + k, k4

+ k.k?k„. iMh) -e{k,) -e(k,)y

ki<k,

k,k,

5(ki±k2 -k5-k.O
(e(k,) -e(k,) -e(k«))

1 (6.25)

J

k,<k, . ^ 8(ki + k2-k, -kg)
' Z (£,- + e(k2) -elk, ) -e(k4))J

k.,kj>k,

l+J X

J

S(ki + k. - k:, - k4)

(£; + e(k,) -e(k:0 -6(li4))J

0 (6.26)

7. Results

In this section we present the results of the above

quantitative analysis together with some semiquantita-

tive and qualitative arguments to round out our con-

siderations. Figure 4 shows the energy of the four states

in question as a function of c which is defined by

c = 4r/J (7.1)

In these units the width of the tight binding band for a

simple cubic lattice is 127". We see that the ^-matrix

energy is always lower than the corresponding Hartree

and Matsubara energies. The calculations of previous

0
I

—I—I—I—I—I
-1.1 p-i—I—I—

r

authors [10-12] generate only the two latter curves

which never intersect. The antiferromagnetic state al-

ways has lower energy than the paramagnetic one in

this approximation. The ?-matrix approximation gives

a different result. The corresponding energy curves in-

tersect at about c= 1.4. For lesser c, i.e. nearer the

atomic Hmit, the antiferromagnetic state has lower

energy. For larger c, i.e. nearer the band Hmit, the

paramagnetic state has lower energy. We see then

that the short range correlations introduced by the

^-matrix not only lower the energies of the respective

zero order states but also change the predictions for

the ground state of the system. Figure 5 exhibits

the energy gap in the Matsubara and the variational

Figure 4. Energy per electron in units of T in the . . para-
magnetic Hartree - - - - puruniagnetic X-matrix anti-

ferromagnetic Matsubara and antiferromagnetic variation t-

matri.x states.

Fk.L RE 5. Energy gap 2A in units of } in the — • — antiferro-

magnetic Matsubara antiferromagnetic variational t-

matrix and . . . . Mott insulator states.

536



^-matrix approximations for the antiferromagnetic

states. The variational ^-matrix gap is smaller than

the Matsubara gap. Apparently it is energetically

worthwhile to exchange some long range correlations

for short range correlations. We see that at c= 1.4 the

antiferromagnetic f-matrix gap and the sublattice mag-

netization, which are related by

A/./ - /i - 1/2 (7.2)

and where A is half the gap energy, collapse into the

paramagnetic i-matrix state. Since the order changes

discontinuously, this is a first order phase transition.

Thus the density of states in the gap is suddenly raised

to a finite value, which is shown in figure 6. This con-

clusion agrees with that of Edwards [11], who found

that the density of states across an energy gap lifts at

once if the long range order fails. The phase diagram is

shown in figure 7. We have now two solutions in the

range c < 0.42. They are the Mott insulator and the long

range antiferromagnetic solutions. The question is

which one is more stable or does one possibly have to

consider some combination of these two states. For the

latter case the system would possess both short and

long range order. Our considerations are only qual-

itative because we do not produce the combined

state, neither do we know how to calculate the Mott in-

sulator at elevated temperatures. It is known that the

long range antiferromagnetic order and the energy gap

decrease with increasing temperature and they both

disappear at a second order phase transition into the

paramagnetic state [10]. But this can happen only if

the paramagnetic state is stable. For c < 0.42 probably

the Mott insulator is stable as we shall see below. Thus

in this range one expects the gap to decrease from its

value at zero temperature to the Mott value at the Neel

temperature, while the long range order diminishes and

the short range order increases. At the Neel tempera-

ture the long range order completely disappears. The

P(E,)

Ph(E,)

1.5

c

FiCLiRE 6. Electronic density of states at the Fermi level for the

.... paramagnetic Hartree - - - - paramagnetic l-matrix and
antiferromagnetic variational l-matrix states.

system is an insulator both below and above the Neel

temperature and the phase transition manifests itself

only in the disappearance of long range order. Thus one

expects a second order phase transition from the mixed

insulator state to the Mott insulator state. If the tem-

perature decreases to zero in the mixed insulating state

the long range order will not become perfect except at

the atomic limit c=0. Thus the short range order shall

have room to operate and lower the energy. Therefore

we expect the phase transition line between the mixed

and antiferromagnetic insulators not to cut the c axis

somewhere at c < 0.42. It is possible that the axis

should be cut at 0.42 < c < 1.4 because we cannot ex-

clude the possibility that the antiferromagnetic insula-

tor retains some short range order for a range of c

values at which the bound states of the Mott insulator

do not exist. We have to realize that the short range

order in the mixed insulator does not necessarily exist

in the form of bound states. Above the Neel tempera-

ture the paramagnetic state provides the correct nonin-

teracting one particle Green's functions. If c < 0.42 and

the temperature is zero the Mott insulator is stable with

respect to the paramagnetic metal. The question is, will

the elevated temperature disrupt the Mott state and

cause transition to a metal? We do not believe this will

happen near the Neel temperature. Since the Mott

state requires only short range order the increasing

temperature will not affect it as drastically as it affects

the antiferromagnetic state. If a given atom is prin-

cipally occupied by an up spin electron and down spin

hole, the nearest neighbor atoms are most likely occu-

pied by pairs of opposite spin. Thus some short range

antiferromagnetic order prevails. Increasing tempera-

ture can take its toll on this short range order. Note,

however, that this is not just a local effect, since each

pair is spread over the entire crystal. Thus probably the

average binding energy per pair would decrease with

(D

ZJ
+>
05
£_

<D

Q.

E
(D

I-

Mott
insulator

paramagnetic
metal

mixed

insulator

antiferromagnetic

insulator

1.5

c

Figure 7. Phase diagram.

Solid lines.: firsil order phase transitions. Broken lines: second order phase transitions.
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increasing temperature. In addition to this, free pairs

will also be created at elevated temperatures. Ex-

perience with the density of states at the antiferromag-

net-paramagnet transition indicates that the Mott insu-

lator paramagnetic-paramagnet transition will also be

first order as a function of c. Mott's original discussions

of this subject matter did include both the bound-pair

insulator free-pair and antiferromagnetic insulator-

paramagnetic metal transitions, although it was not

made clear that these are two different transitions.

Mott estimated [ 1] that in a hydrogen lattice the transi-

tion from antiferromagnet to paramagnet occurs at an

interatomic distance of 4.5 Bohr radii. The other transi-

tion was not calculated. On the basis of Slater's [12]

solution of the hydrogen Is integrals, we can evaluate

the intra-atomic interaction strength as

y - 1.25 Rydbergs

and the hopping integral, as a function of the in-

teratomic distance/?, as

T
I

a{r){-Vi-2lr,a-2lr,t>)b{r)dr

= - e-^O -f 3/? + /?V3) Rydbergs

(7.3)

where a(r), b(r) are Is hydrogen orbitals centered on

nearest neighbor atoms, and where electron-electron

interaction two center integrals in the Hartree-Fock ap-

proximation have been neglected as by Mott. Our esti-

mate of the interaction is then

R = 3.8 Bohr radii

which is close to the estimate of Mott.

8. Discussion

One may object to using a f-matrix approach in a high

density system without going to higher orders in the ex-

pansion. The results indicate that the higher order

terms are not necessary. Starting with the paramag-

netic state as the ground state near 7 = 0, a phase

transition into the antiferromagnetic state occurs be-

fore the interaction could have drastic effects within

the paramagnetic state. When the interaction could

have drastic effects in the antiferromagnetic state the

system is so close to the atomic limit that additional

correlations have no room left to operate in. Thus it

seems likely that once the correct zero order paramag-

netic or antiferromagnetic wavefunctions have been

chosen, the additional correlation effects could be han-

dled by a power series expansion in 7, i.e., by ordinary

perturbation theory. Since we have not anticipated

such simple results we did not use this approach. There

is one more merit to the ^-matrix method. It is necessa-

ry in the low density system where even with strong in-

teractions phase transtitions are hard to achieve. This

is due to the fact that in a low density system particles

can keep out of each other's way most of the time and

a collective state does not easily form. Thus the zero

order wavefunctions are not so sensitive so the

strength of the interaction has to be handled with the t-

matrix. Thus our present results will join better with

the low density calculations we plan to perform if the

same method is used.
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11. Appendix A: Numerical Technique

The various expressions for the energy we have

derived for the Hubbard model all have in common the

following typical summation in momentum space:

X = N-' ^ 8(k-k: -k2)/(e(k,); e(k2)) (A.l)

kik,<kf
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To evaluate such a summation we went over to the con- further smooth out fluctuations in the density of states

tinuum representation and calculated a density of the spread of the energies around each value of k was

states Pj^{£'i£'2) such that: estimated using the first derivative of these energies.

The paramagnetic Hartree energy then becomes:
0

/V-' y 6(k-k, -k,)^ dE,dE-,p^,{E,E-,)

k,k1^k. {H) = 2N\ dE^dE->po{E,E-,}E,+ (A.4)

(A.2)

Thus while the f-matrix correction to this is:

X =
j

dEidE>PKiE,E-,)fiEr,E-,) (A.3) A£ =

The two energy variables in this density of states were '

J-^c { _ j f" dE^dE'.,p^^ {E\E'.,)

subdivided into 50 intervals each. There were 64000 1 ' J-^ [Ei + E-i + E[ -\- E'^)

values chosen for the relative momentum in the Bril-

louin zone and 75 values of the total momentum k
chosen in the S.C. symmetry element. In order to On the other hand, the Matsubara energy is:

/ V
I

dE,dE,p,(E,E,)

(A.5)

<//) = 2yv|" ^/£,r/£,£,[,4(£,)--5fE,)^] +.//v|" J£,c/£.po(£,£2) X [1 -44(£,)-5(£,)-] (A.6)

where

The correction to this energy from the i-matrix is:

t^E^JJ^ [" dE,dE;p^{E,E,){^,^{E,E2){A{E,)A{E-^-B{E,)B{E;)]

+ ^,^,{E,E.)[A{E,)B{E.>) -B{E,)AiE.>)]- [A{E,)A{E-,) -B{E,)B{E2)y

with

and

[A{E,)B{E;) - B (E, )A {E (A.9)

^ ^ A{E,)A{E,)-B(Er)B{E,)
^ ' 1 + I'^iErE,) + Q.^JE^E,) + Q,.JErE,)

^^'^^^

^ (F F ^- A{E,)B{E,)-B(E,)A(E,)
^2kl^i^2)

i + Q^^E,E,)+P^,JE,E,)^P^_^E,E.^

P , , r dE[dE',p^{E[E',)[A{E\)A(E:^-B{E[)B{E',)y
f\^{tit2) — J —

, , , , A.12)
J-x

( Va- + e\ + Va- +EI+ Va-^ +e;'+ Va- + e:^')

Q {E,E.>)=J f"
dE[dE',p^{E[E',){A{E\)B{E:^-B{E[)A{E:^y

' ' J-x
( Va--^ + E\ + Va- + Ei + Va- +E','+ Va- +e:;)
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The overall accuracy of this scheme was estimated at

three sijiiiificant digits for the Hartree and Matsubara

energies and two significant digits for their ^-matrix cor-

rections. The resulting accuracy on the position of the

energy crossover is somewhat poor because of the

small energy differences involved. The critical value of

c could possible by off by as much as 20%. But

knowledge of the exact value of c at the crossover from

the antiterromagnetic state to the paramagnetic state

is not too critical, its existence being of primary im-

portance.

12. Appendix B: c^ 3c Limit

We will show that in the limit of very large c's, i.e., J
0, the paramagnetic state has lower energy than the

antiferromagnetic state.

In this limit, the self-consistent value of the gap

should be very small. As a matter of fact, in the Matsub-

ara state
Hm A=0 and Hm A/./ = 0 (B.l)

This parameter A could then serve as an expansion

parameter for the energy. The expression for the ener-

gy of the antiferromagnetic ^-matrix approximation as

a function of A is:

{l-l-l€,€-> + EiE-,lei€2) (l-A-/e,e2-£,£2/e,e2)

12(1 + F^,(E^E,}+Q^,.„(E,E,)+Q^^_„{E,E>)) 2{l + Q^{E,E.) + F^,^^{E,E>) + P^^{E,E-,)

)

witli

(B.2)

dE\dE',p^{E\E',)

(e, + 62 + e; + e:)

A^ E\E'.,

! t If (6.3)

Qy.{E,E,) =7/2
" dE[dE:p^(E[E:j

-X {ei + €>+ €[ + €>)

A2 e:e:,

e,e., e,e,
(6.4)

and

e= VA2 + £2

As /^ 0 we can approximate

1

1 + n (£,£2) + Q^^ (E,E,) + Q^^ {E,E,)
- 1 - {E,E,) - (£,£2) - {E,E.^

(B.5)

Taking the derivative of the energy with respect to A we get to first order in A' with {Eje ~ 1):

Hm^^- A Y f" dE,dE,p,{Em f2/e,-^ +^x [PHE^E-^ + P^_^ {E,E,) + P^_„{E,E-^]11111 , ,

dA

+ J{\le{+m)[P^:^{E,E,) - Pl^iE^E,) - Pl_^{E,E,)] - JP'AE^E,) (B.6)

where

Pl{E,E,)=J
j

" dE\dE'.,p^{E\E'.^

(e, + €2 + e; + e:) (B.7)

p:{e,e,)=-j
•> dE[dE:,p^^(E[E:,)

(e, + 62+ €[ + e:)2
[l/e,' + l/e^+l/e, + 1/62) (B.8)
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Since it is those integrals containing the factor l/er or 1/er v/hich will dominate as A^ 0, we conclude:

11m

But since

lim 4= I'm T7T-E^= (B.IO)

we finally get:

hm^^-7ry^ r dE,p^iO,E,)X [P^iO, E,) -Pl^JO, E,) - PH^ {0, E,)] (B.ll)

This integral was evaluated numerically and it is found The energy then increases for A > 0 which imphes any

that: ^ / A \ r\ r\A antiferromagnetic state has larger energy than the
ae(Zi) U.U477 r. , • a r>

lim 7— =
;— > U. paramagnetic one A = U.

^-,00 oA c-
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Electronic Structure of Gold and Its Changes on
Alloying

E. Erlbach"^

City College of CUNY, New York, New York 1 0032
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We have measured the changes in reflectivity upon alloying small amounts of Ag, Cu and Fe into

Au. By means of a Kramers-Kronig analysis, we have deduced the changes in e-t produced by this alloy-

ing. We relate these changes to shifts in the position and character of the electron energy bands in gold.

Key words: Electronic constant; electronic density of states; gold (Au); gold-copper alloys (Au-Cu);

gold-iron alloys (Au-Fe); gold-silver alloys (Au-Ag); optical constants; reflectivity.

The optical constants of gold have been measured by

several methods [1,2] and feature an edge at 2.5 eV fol-

lowed by a second peak which starts at 3.5 eV (fig. 1).

The first edge has been identified as being due to

transitions from the top of the <i-bands to the Fermi sur-

face. The second edge has recently [3,4] been as-

sociated with transitions from the Fermi surface to the

upper conduction band (Li'^Lj). This identification

4.0

3.0

2.0

10 ?,0 ^0 4.0 5.0 6.0 r.O 8,0 9 0 10 II

ENERGY (EV)

Figure 1. The real part of the dielectric constant, e>.for pure gold.

*Work performed while on a Sabbatical at the University of Maryland.

is supported by its similarity to the second edge in

copper, where this identification has been verified by

piezoreflectance measurements [5]. Additional struc-

ture is seen at 4.5 eV which has been assigned [2] to

transitions from the rf-band to the Fermi surface at X(X5

X4') and another peak in e-z is seen around 7.5 eV.

Upon alloying Ag, Cu and Fe into Au, we see struc-

ture at all the above energies, and also at some addi-

tional energies (figs. 2-4). The experimental method has

Figure 2. The normalized changes in e> for two Au-Ag alloys.

The concentration of .Afi are as indicated.
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ENERGY (eV)

3 4

-0.1
Au - Fe

C
° 0.45ot%
Q 0.9

-O.Zf- ^ 2.1

' 4.3 •

-0.3

Fi(;URE 3. The normalized changes in e> for four Au-Fe alloys.

This data is taken from Phys. Rev. Letters 22, 13.3 (1969). The concentrations of Fe are
as indicated.

Fi(;L'RE 4. The normalized changes in €> for four Au-Cu alloys.

The concentrations of Cu are as indicated.

been partly published already [3,4], and a more

detailed account will be published in the future. Briefly,

we evaporate, simultaneously two films, one of pure

gold and one containing the desired impurity, and then

we measure the difference in reflectivity of the two

films. A Kramers-Kronig analysis is used to convert

these reflectivity differences into changes in €> which

are then normalized to 1 at. % concentration by divid-

ing by the impurity concentration and plotted as a func-

tion of incident photon energy. Structure referred to in

the following refers to these Aei/c curves.

If alloying causes a shift of a band edge to higher

energy, then the curves of Aeii/c will be proportional to

—de-ildE of the pure material, and a peak will be found

at the point of maximum slope of e>. If alloying causes

a broadening of a peak, then Aea/c will exhibit a disper-

sive-resonance-like shape, going through zero at the

peak oide-ildE.

Referring to our experimental curves in figures 2, 3

and 4, we find peaks in Aez/c at 2.5 eV, which we have

associated with a shift of the band edge upon alloying.

The edge moves to higher energies for Ag [4,6] or Fe

[3] alloys and to lower energies for the Cu [4] alloys.

In the Ag and Cu alloys, the shifts have been explained

as due to smooth changes in the relative energies of the

c?-bands and Fermi surface as one moves from Au to the

other noble metals. These shifts are determined by two

effects, perturbations in the average potential caused

by the impurity atoms, and by changes in lattice con-

stants [4].

We have found an additional sharp structure in Ae2

for Au-Cu alloys at an energy of 2.9 eV (fig. 4); the peak

at about 2.9 eV is evident in the curves for all four con-

centrations of copper. When one subtracts the

background, one finds that the amplitude of the peak of

Ae2/c, when plotted vs. the concentration, c, decreases

roughly linearly with c, being approximately given by

Ae2/c = 0.039 — 0.009c (c in atomic percent)
(j)

A larger concentration is relatively less effective in in-

creasing e-i in this region than a smaller concentration.

A possible explanation for this will be given later.

If the curves for Ae^/c for Au-Ag and Au-Fe alloys

(figs. 2 and 3) are examined closely near 2.9 eV, one

notices a change in slope occurring at this energy.

Furthermore, this change of slope can be seen in the

curve of the derivative of €> with energy. It is likely that

both this change in slope and the peak in the Au-Cu
curves have the same origin. Thus we believe the

evidence indicates that the peak in gold at 2.5 eV ac-

tually consists of two peaks, which are not resolved in

the 62 curve for pure gold nor in the Ae2 curves for Au-

Fe and Au-Ag. The fact that the edge in gold is not as

sharp as the equivalent edge in copper would tend to

corroborate this interpretation. The addition of copper

to gold enhances the peak near 2.9 eV more than the

peak at 2.5 eV, thus allowing it to be resolved from the

main peak.

The reason for the particular effectiveness of copper

in enhancing this peak may be the following. One can
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plot the bands of the noble metals schematically as in

figure 5. The Fermi levels have been placed at their

free electron values, and the top of the c?-bands at an

energy below, where Ei is the energy of the first ab-

sorption edge for the pure metals. The widths of the d-

bands have been taken as 2.8 eV for copper (from

piezoreflectance measurements [5] ), as 4 eV for gold

(from our results) and 3.7 eV for silver (estimated by

Lewis and Lee [7]). If one alloys copper into gold, one

expects a mixing of the c?-levels since they overlap, and

the greatest perturbation is expected initially in the re-

gion of overlap. Since the bottom of the d-hand of

copper fails at an energy of 0.4 eV below the top of the

gold (/-band, one would initially expect the greatest per-

turbation near this energy. This is just the energy

needed to affect the level responsible for €> at 2.9 eV in

gold since this is 0.4 eV below the absorption edge of

2.5 eV in gold. Thus, the addition of copper would be

expected to greatly affect the 2.9 eV level and we see

that this is indeed the case. As one increases the con-

centration of copper, one expects the perturbation to

spread more evenly through the cZ-bands of gold and the

enhancement per unit concentration of the 2.9 eV level

should decrease with c. This may be the reason for the

linear decrease in the peak mentioned previously. The
addition of silver to gold would not be expected to sin-

gle out the level at 2.9 eV more than the 2.5 eV level

since the overlap is mainly with the lower part of the

gold c?-band. This would explain the absence of a large

effect in Au-Ag at 2.9 eV.

While the existence of the double edge seems to be

established, the nature of the splitting is not deter-

mined. Since gold is expected to have a spin-orbit

splitting at the edge of the zone, and the order of mag-

nitude of this splitting would not be inconsistent with a

value of 0.4 eV the doubling of the edge may well be

due to this splitting. Recently, Jacobs [8] has calcu-

lated the band structure of gold and suggests that the

first edge of gold is shifted by 0.5 eV if spin-orbit

coupling is included. This is close to our measured

value. Other experiments and calculations are needed

to confirm this identification.

We now turn our attention to the structure at 3.5 eV.

We see that for the Au-Cu alloys, for the two lowest

concentrations there exists a peak in Ae2 at 3.5 eV.

Since de-ijdE has a peak at this same energy, we as-

sociate the structure in the alloy data with a shift of the

edge to lower energies. This shift seems to be Hnear at

these low concentrations, but changes drastically when

c is greater than 1.0 at. %. Above this concentration,

there is still a small peak which has moved to a slightly

lower energy but since the peak in de>ldE occurs on the

descending edge of the structure, it is probably now
better to consider it as a dispersive resonance. This

suggests that at higher concentrations the edge is

broadened by alloying rather than shifted. The rate of

shift at low concentrations is about —0.03 eV/at. %.

If one now examines the data for Au-Ag alloys one

notices a pronounced peak at 3.5 eV and a dip at 3.65

eV in the low concentration sample, both becoming

smaller for the higher concentration sample. One notes

that the structure in de-ildE peaks at 3.5 eV thus in-

dicating that the addition of Ag to Au causes a shift of

the edge to lower energies. The rate of shift is approxi-

mately — .023 eV/at. % for the lower concentration

sample and —.007 eV/at. % for the higher concentra-

tion samples. The presence of the dip at 3.65 eV, how-

ever, makes it difficult to be certain that this interpreta-

tion is correct, and further study is required.

As outlined above, we also found nonlinearity of the

3.5 eV structure for the Au-Cu system, and the previ-

ously reported data [3] for Au-Fe is also nonlinear in

this region (fig. 3). In the Au-Fe alloy system a sharp

peak is clearly seen at 3.5 eV for the lowest concentra-

tions, and this peak decreases in size for higher concen-

trations. Thus, all three alloy systems exhibit this

characteristic behavior, i.e., a reduction or even disap-

pearance in the shift of the edge per unit concentration

as the concentration increases.

The interpretation of this variation is not clear. The

3.5 eV edge has been attributed to transitions at L from

the region of the Fermi surface to the higher lying L,

state. The equivalent edge occurs at 4.3 eV in Cu and

at 4.1 eV in Ag. Thus, the simplest guess one would

make for the motion of this edge is that it moves to

higher energy for both Au-Ag and Au-Cu alloys. The

average shift would be expected to be .006 eV/at. % for

Ag and .008 eV/at. % for Cu. In both silver and copper.
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however, the experimental shift is in the opposite

direction. Furthermore, effect of a lattice constant

change which explained the anomalous variation of the

2.5 eV edge in Au-Cu is also in the wrong direction.

This can be estimated as follows. Since piezoreflect-

ance measurements have not been made on single

crystals of gold, we must use the piezoreflectance

measurements on unoriented films [9]. The results

for gold and copper are very similar, except that

the magnitude of Ae> is about a factor of two lower

in Cu compared with Au. We thus assume that we

can use the single crystal results for copper, with a

reduction by a factor of two for gold. This predicts a

shift of +.01 eV/at. % of Cu for the 3.5 eV edge of Au
using the published lattice constant parameters [10].

The experimental shift to lower energies is thus incon-

sistent both with the stress produced shifts and with

the expected smooth shift of the same edge from its

position in gold to its position in copper.

When one notes that (1) all the alloys exhibit the

same type of nonlinearity for low concentrations, and

that (2) the edge at 3.5 eV seems to be most affected,

one concludes that the energy levels associated with

this transition are particularly sensitive to small

amounts of impurities. Since these effects do not occur

for the level at 2.5 eV, which also involves the Fermi

surface, it is likely that the L," conduction band level is

the one which is being perturbed nonhnearly. This level

is the one which is spht from the L2' level primarily by

s-d interaction with the W level at the bottom of the d-

band (see fig. 2 of ref. 13, p. 662) [5,11-13]. One might

expect that this sphtting, which can be affected by

changes in any of the other levels via changes in matrix

elements or by changes in hybridization through

orthogonalization, could be nonlinear with impurity

concentration. One would then also expect that an edge

caused by transitions from the lower L,' level to the

Fermi surface would also be nonhnear with concentra-

tion. This edge should occur around 6.5 eV if the d-

band is 4 eV wide. Examining the data near this energy,

one sees in the Au-Cu alloys that one does indeed have

nonhnear structure near 6.1 eV. This structure is strong

for the low concentrations and much weaker for the

higher concentration. It thus appears that the L/^F.
S. edge occurs at 6.1 eV. The Li' — L3" separation -the

width of thec?-band at L— is thus 3.6 eV.

Our conclusion is thus that the nonlinearities in the

edges at 3.5 and 6.1 eV are due to changes in the

splitting of the two Li levels which are very sensitive to

changes in potentials. A detailed calculation of the ef-

fect of impurities on the L," — L,' splitting would be

most interesting.

The structure around 4.5 eV is more difficult to

analyze. The data for e:^ ior |)ure gold shows only a

slight shoulder at this energy; de-ijdE showing an asym-

metric dip. The added absorption in this region has

been attributed to X->
—* X^' transitions [2] but the peak

expected from this is obviously somewhat obscured by

the background absorption from other points in the

zone. The most prominent feature of the curves for

Ae^/c for all gold alloys is a sharp rise beginning at 4.5

eV. This rise is also seen in de>ldE and indicates that

Ae-j caused by alloying is roughly proportional to de>jdE

in this region. The data thus indicate a shift to lower

energies for the states responsible for this transition.

Since it is difficult to separate out the part of de-y/dE

contributed by this edge alone, we have not estimated

the rate of shift of this edge. In pure copper the X5 —
X4' edge is at 3.9 eV [5] , while in pure silver, the edge

is at 5.4 eV [7]. Thus adding copper to gold shifts the

X5 — X4' edge toward the copper value, while adding

silver to gold shifts it away from the silver value. Once

again, hybridization effects must subtly determine

the way these energy levels vary.

Additional structure is seen in the form of a large dip

in Ae2 for the Au-Cu alloys at 8 eV. The curve of €2 for

pure gold also has structure near this energy, resulting

in a small negative dip in de-JdE around this energy.

The alloys data is not as reliable in this region as it is

below 6 eV, because of experimental difficulties in the

vacuum ultraviolet and because of uncertainties in the

Kramers-Kronig analysis near the limit of the available

data. But, within experimental error, we do not find any

nonUnearities in the dip in this region. Further, the dip

is a relatively large one, and it is not found in the Au-Ag

alloys. The structure is thus particularly strongly per-

turbed by copper impurities, which move the edge to

lower energies at a fairly high rate.

If one examines the band structure calculations for

copper and gold, the only critical points which seem

^Table 1

Levels Separation in eV

FS -M' 3.5 eV

K--F.S. 6.1 eV

^-- 1

" 9.6 eV

L:l' -F.S. 2.5 eV

L'r 3.6 eV

(c?-band width at L)

X5 -x^ 4.5 eV

X, -X4 8 eV

X, -X. 3.5 eV

(d-haxiA width at X)



capable of producing an edge near 8 eV are Xi ^ X4'.

(We are grateful to J. C. Phillips for this suggestion.) If

this identification is correct then we can calculate the

width of the c?-band at X, i.e., Xi — Z5. using the previ-

ously established value of 4.5 eV for X-, ^ X4' . We thus

get Xi — Xo as 3.5 eV, nearly the same width as we

found at L. These energy levels are summarized in

table 1.
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Discussion on "Electronic Structure of Gold and Its Changes on Alloying" by E. Eribach

(City College of CUNY) and D. Beaglehole (University of Maryland)

W. E. Spicer (Stanford Univ.): We have a measure-

ment of the rf-band width from photoemission data and

it appears fairly definitely to be 5 to 5 1/2 volts wide,

which I think is in fair agreement with the calculations.

E. Eribach (City College ofCUNY): Well it is unlikely

that I'd get 5 electron volts even when one understands

that the energy of the maximum at L and the maximum
at X don't have to be the same. And therefore it's en-

tirely possible you would get 4.6 possibly 5. You would

be unlikely to get the 5 1/2 that you apparently get from

your photoemission measurements, but it's possible

also that the minimum does not occur at X or L. It could

occur somewhere else. I do not know. It does seem that

the widths at the X and L are smaller than the total

widths of the f/-bands in any case. I don't know if our

results are inconsistent with yours although they don't

seem consistent automatically.

W. E. Spicer (Stanford Univ.): But the widths you give

there can be so much smaller than the density of states

widths.

E. Eribach (City College ofCUNY): That's also right.
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Density of States of AgAu, AgPd, and Agin Alloys

Studied by Means
of the Photoemission Technique

p. O. Nilsson

Chalmers University of Technology, Gbteborg, Sweden

The density of states of AgAu, AgPd, and Agin alloys have been studied by means of the

photoemission technique. General trends of the results are compared with the predictions from simple

models of alloys. The rigid-band or virtual-crystal approximation cannot explain the results, while model

calculations in the coherent potential approximation reproduces the observed density of states. The

Friedel screening theory explains the shift of the Fermi level on alloying.

Key words: Coherent potential approximation; electronic density of states; Friedel screening

theory; photoemission; silver-gold alloys (AgAu); silver-indium alloys (Agin);

silver-palladium alloys (AgPd); virtual crystal approximation.

1. Introduction

One of the earliest theories of the electronic proper-

ties of disordered alloys was the rigid-band approxima-

tion, which was introduced by Mott and Jones [1]. This

first order perturbation theory predicts that the shape

of the density of state curve does not change on alloying

but is only rigidly shifted. Similar results are obtained

in the so called virtual-crystal approximation in which

the crystal has a periodic, concentration weighted

mean potential. Although these theories have been

widely used to interpret experimental results they do

not in general describe the properties of disordered al-

loys correctly. For large band separations the theories

are of course not valid at all: separated bands are

formed which may be treated individually. More
refined theories have to be used to describe inter-

mediate cases. Korringa [2] and Beeby [3] used a mul-

tiple scattering description [4] to derive a ^-matrix ap-

proximation. This theory was an important contribution

but gave even for small band separations a spurious

band gap. This is not present in the coherent potential

approximation (CPA) introduced by Soven [5]. The
free electron Green's function is here modified to con-

tain an energy dependent self energy, which is self-con-

sistently chosen so that the perturbation potentials do

not contribute further to the scattering on the average.

Velicky et al. [6] showed that the CPA properly inter-

polates between the extreme hmits of small and large

band separations. Model calculations in three dimen-

sions were also performed, to which we will return

below.

We have studied by means of the photoemission

technique three silver based alloys: AgAu, AgPd, and

Agin. These alloys have overlapping, slightly over-

lapping, and separated o?-bands, respectively, and con-

stitute suitable testing cases for alloy theories. A more

extensive report on these measurements will appear

elsewhere [8,9].

2. Results and Discussion

When one substance is dissolved in another the new

density of states can be said to depend on three factors,

namely the atomic potentials, the atom valence, and the

lattice spacing. Both Ag and Au have almost the same
o o

lattice constant, 4.07 A and 4.08 A respectively, and the

same valency, +1, so we have the largest contribution

from potential effects. Figure 1 shows a summary of the

photoemission results for this alloy system. Here the

electron energy distribution curves are shown for the

highest available photon energies, approximately 10

eV. Except for the cut-off at low electron energies, due

to the so called escape function, the spectra are sup-

posed to be a picture of the optical density of states

below the Fermi level. We shall not discuss for the time
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FlciURE 1. Electron distributions obtained from photoemission
experiments on AgAu alloys.

being the relative importance of nondirect versus direct

optical transitions [10]. It suffices to say that because

of the low dispersion of the tf-bands this question is not

of importance when studying the main behavior of the

bands on alloying. We observe in figure 1 that when Au
is dissolved in Ag (the Ag,-jAu-alloy) the Ag c?-band is lar-

gely unaffected while the gold electrons seem to set up

a band which extends above the Ag band. This is in

contradiction to the rigid-band and virtual-crystal ap-

proximations. To study the predictions of the CPA we

use the equations derived by VeUcky et al. in their

<u
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o

m

20
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10

T r

Ag Au
J = 0.75 S +025?

-8 -7 -6 -5 -A -3 -2

Electron energy relative the Fermi Level (eV)

Figure 2. Model calculation of the density of states in a 75-25
percent alloy.

The equations derived in CPA by \ elioky et al. [6] were used (6—0.70). p^'^ and p^" is

the component density of states and S the self-energy.

model calculations [6] and calculate the alloy com-

ponent density of states with appropriate parameters.

Of course such a comparison is very crude (a single

band Hamiltonian is used, in which all elements are in-

dependent of alloy composition. Thus we cannot take

the real band structure into account). In the com-

parison we also disregard interference from conduction

electrons. However, the results, presented in figure 2

tell us that in fact a Au band is expected at the top of

the Ag band, where it was observed experimentally. In

the decomposition of the electron densities we observe

that the Au states in reality extend down to the bottom

of the Ag band and vice versa. The electrons at the bot-

tom of the Ag band can still be described by quasiparti-

cles. At the top of the Ag band and in the impurity band

the spectral density, however, will have a certain non-

negligible width. The imaginary part of the self energy

in figure 2 tells us that we have a damping of up to 0.6

eV halfwidth. The spectral density is found to be large

over a range of A;-values which means that the Au-state

is "half-localized." On increasing the Au content (in the

AgAu alloy), the Au band increases further in strength

and width, again in agreement with CPA. As regards

the Ag Au:j alloy, the pure Au-spectrum is observed at

the high energy part of the J-band. This is the same

behavior as for the Ag.3Au alloy but with the con-
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stituents exchanged. Influence of the Ag-atoms at the

bottom of the band is not observed in our experiment

because of masking by the escape function.

Turning to the AgPd alloys, we expect, according to

the CPA, a gap in the density of states for low Pd-con-

tent because of the relative large band separation. In

figure 3 is shown the photoemission spectra for pure Ag
and for Ago.sslno.is [11]. As seen, the qualitative predic-

tion is borne out. By choosing appropriate parameters

in the model calculation it is also possible even for this

alloy system to obtain quantitative agreement. The
decomposition of the density of states shows that even

for split bands we have a contribution from one kind of

atom in the band of the other kind of atom. This can be

viewed in the following way. Electrons scattered from,

for instance the Pd atoms, will propagate through the

lattice and resonate strongly with other Pd atoms.

Because of the fact that the Ag atoms have a potential

not differing too much from that of the Pd atoms they

also contribute to the scattering in the Pd band but not,

however, with the same strength. (A ratio 1:6 is ob-

tained for p^<':p^^ in the Pd band). We also know that

the band gap introduces strong fluctuations in the real

part of the self energy, ReS. (In fact, a pole is present

if the band gap is large but we cannot with certainty say

if this is the case here.) Because of this, ImS will have

appreciable strength at Pd energies (2.5 eV at the bot-

tom and 0.5 eV at the middle of the band), causing

strong damping and a deviation of the spectral density

from Lorentzian form. The energy versus k curve is flat

and extends over all A values showing the strong lo-

calization of the d electrons. For a more complete

description of the Pd states the interaction with the

conduction electrons must be considered. The electron

states are then said to be virtual bound [12]. Increasing

the Pd content the band gap disappears at about 30 at.

% Pd again at least qualitatively in agreement with the

CPA.
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Finally we consider the Agin alloys. The rf-band of In

is about 10 eV below that of Ag and the interaction is

expected to be small. As seen in figure 4 the main effect

on alloying is a smearing out of the fine structure. We
assume that the upper part of the <i-band does not shift

very much. This is a reasonable assumption because

the effect of decreasing bandwidth and the repulsion ef-

fect between the two c?-bands is small and of opposite

sign. We then note a shift of the Fermi level of about 0.3

eV. A pure filling of the conduction band gives a shift

of the Fermi level of 1.6 eV if we assume a density of

states at the Fermi level of 0.275 eV"' atom"' [13]. How-

ever, taking the effect of screening of the In atoms into

account [14] gives a shift of 0.27 eV in good agreement

with the present experimental result. For the

Ago.8.5Pd().i5 alloy a downward shift of the Fermi level of

0.14 eV is calculated while no change is observed in

separation between the <i-band and the Fermi level.

This may be due to the fact that the decreased band-

width and the downward repulsion effect of the Ag d-

band now sum up and contribute just as much as the

Fermi level is shifted.

3. Conclusions

The theories for the electronic structure of disor-

dered alloys give different predictions about the

general shape of the alloy density of states. Among the

theories the CPA seems to be the most general and ap-

plicable one. It gives the right predictions about the

general shape of the density of states for the three alloy

systems we have studied, while other theories fail. By
using model calculations in the CPA even finer details

in the density of states can be studied and interpreted.

We have found that for the AgAu alloys contributions

from the two kinds of atoms can be followed through

the alloy compositions although the density of states is

strongly overlapping. For the Ago.x.^Pdo.io alloy the two

constituents form two split bands with a contribution

one in the other of about 15%. The Ago.n.Jno.is alloy has

small interaction between the c?-bands and it is possible

to determine the shift of the Fermi level approximately.

The observed value of 0.3 eV is in agreement with the

screening theory by Friedel.
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Discussion on "Density of States of AgAu, AgPd, and Agin Alloys Studied by means of the

Photoemission Technique" by P. O. Nilsson (Chalmers University, Goteborg, Sweden)

H. Ehrenreich (Harvard Univ.): I would like to point

out that largely as result of the work by Kirkpatrick and

Velicky that we've been able to extend the coherent

potential approximation calculations to systems having

degenerate bands and s-d hybridization effects such as

in those described in the last two papers. We have ap-

plied this only to copper-nickel so far, but it's quite

clear that the rigid band model does break down. These

kinds of calculations are actually done fairly easily and

I would hope that more people will undertake them.

There is just one other point I wanted to make. The d-

band width in the various noble metals can be quite dif-

ferent. For example, the gold c?-band may be as much
as 2-3 volts wider than that of Cu. Accordingly, the

models involving overlapping or non-overlapping d-

bands discussed in the preceding paper may be

somewhat over-simplified until one knows more about

what the widths really are.

A. Williams (IBM): Can the data be analyzed with

comparable success by simply averaging the EDC's for

the pure materials?

P. O. Nilsson (Chalmers Univ.): The experimental

results cannot be obtained by taking the concentration

weighted sum of the density of states of the con-

stituents. Consider, e.g, the Ag-Au alloys. In pure Ag
and Au the cZ-bands begin at about 4 and 2 eV, respec-

tively, below the Fermi level In, e.g., the AgsAu alloy,

however, the o?-band begins at 3 eV; that is, 1 eV lower

than the value one would expect for an averaged densi-

ty of states.

H. Ehrenreich (Harvard Univ.): Our calculations also

indicate the failure of simple averaging.

W. E. Spicer (Stanford Univ.): I would just like to

reinforce that. Seib has just completed a very detailed

photoemission study where he looked in detail at this

type of analysis. You just cannot add copper and nickel

data of pure materials and get the photoemission

results actually obtained from the alloys. It's a very in-

teresting thing because there is a paper in the hterature

on soft x-ray emission where the authors stated that

they were able to use successfully such an analy-

sis—add copper and nickel and get the soft x-ray result

of the alloy. That would indicate that there is a basic

difference between the sort of information you get out

of the two measurements.
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Density of States Information from
Low Temperature Specific Heat Measurements

p. A. Beck and H. Claus

University of Illinois, Urbana

The calculation of one-electron density of state values from the coefficient y of the term of the low

temperature specific heat linear in temperature is complicated by many-body effects. In particular, the

electron-phonon interaction may enhance the measured y as much as twofold. The enhancement factor

can be evaluated in the case of superconducting metals and alloys. In the presence of magnetic mo-

ments, additional complications arise. A magnetic contribution to the measured y was identified in the

case of dilute alloys and also of concentrated alloys where parasitic antiferromagnetism is superim-

posed on an over-all ferromagnetic order. No method has as yet been devised to evaluate this magnetic

part of y. The separation of the temperature-linear term of the specific heat may itself be complicated

by the appearance of a specific heat anomaly due to magnetic clusters in superparamagnetic or weakly

ferromagnetic alloys.

Key words: Alloys; density of states; low temperature specific heat; magnetic specific heat; many-

body effects; superconductivity.

1 . Introduction

In the Sommerfeld-Bethe theory of metals the elec-

tronic specific heat at low temperatures is linear in tem-

perature in first order approximation. The lattice

specific heat in the low temperature approximation is

proportional to so that, in the absence of other con-

tributions, the total specific heat

C^yT+ fST^ (1)

If C is known as a function of T, the two terms can be

separated by making use of the Hnear variation of CjT

with and by extrapolating to T=0. The intercept of

the extrapolated line with the ordinate axis gives the

temperature coefficient of the electronic specific heat

y. In the simplest case, y is proportional to the elec-

tronic density of states at the Fermi surface, A^ff'^j;

y = {ll3)Tr^ak'm(Er) (2)

where k is the Boltzman constant and a is a numerical

*An invited paper presented at the 3rd Materials Research Symposium, Electronic Density

of States, Nipvemlier .i-6, IW*), ( iaithersburj;, Md.

factor determined by the units used for y, N(Ep) and k.

Unfortunately, in a very large majority of cases, the

simple procedure just described cannot be used, or at

least it does not give reliable results. Many-body effects

and, in some alloys, magnetic effects may make the

determination of N(Ef) from low temperature specific

heat data more complicated than implied by eqs (1) and

(2), or even impossible at the present state of the art.

2. Many-body Effects

In recent years it has become known that many-body

effects, in particular the electron-phonon interaction,

require renormalization of the effective mass of the

electrons at the Fermi surface. This increases the meas-

ured electronic specific heat coefficient over the one-

electron "band structure" value by the enhancement

factor (1 +~A). For Na, Al and Pb, it was possible to

determine the value of this factor [ 1] , by comparing the

"band structure electronic specific heat," calculated

from the known band structure and the topography of

the Fermi surface, with the measured electronic

specific heat. These values: 1.25, 1.45 and 2.00, respec-

tively, were found to agree quite well with the enhance-
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ment factors calculated from band structure, Fermi

surface topography and phonon dispersion curves, on

the basis of the electron-phonon interaction [1]. Unfor-

tunately, for most other metals calculations of this sort

cannot be made at present since at least some of the

required data are not yet available. For superconduct-

ing metals the electron-phonon coupling constant X has

been recently calculated by McMillan [2], using the

following equation which he derived from the strong

coupling theory:

Tc=
6

1.45
exp

1.04(1 + A)

\-)U.*(l + 0.62\)
(3)

where Tc is the superconducting transition temperature

and d is the Debye temperature. The electron-electron

interaction constant /x* was assumed to have a value of

0.13 for all transition metals. The values of k calculated

by McMillan [2] for superconducting metals are given

in table I.

Table I. The Electron-Phonon Interaction Coefficient k and

"Band Structure" Density of States N(Ep) for Superconducting

Metals.'-

Element
°K

e
°K

A.

N(Ef)
eV"'atom~'

Be .026 1390 .23 .032

Al 1.16 428 .38 .208

Zn .85 309 .38 .098

Ga 1.08 325 .40 .091

Cd .52 209 .38 .106

In 3.40 112 .69 .212

Sn 3.72 200 .60 .238

Hg 4.16 72 1.00 .146

Tl 2.38 79 .71 .182

Pb 7.19 105 1.12 .276

Ti .39 425 .38 .51

V 5.30 399 .60 1.31

Zr .55 290 .41 .42

Nb 9.22 277 .82 .91

Mo .92 460 .41 .28

Ru .49 550 .38 .46

Hf .09 252 .34 .34

Ta 4.48 258 .65 .77

W .012 390. .28 .15

Re 1.69 415 .46 .33

Os .65 500 .39 .35

Ir .14 420 .34 .51

It is now clear that the enhancement factor (1 + A.) of

the electronic specific heat due to the electron-phonon

interaction can be as high as 2, or more. This interac-

tion affects only the electrons whose kinetic energy is

close to the Fermi energy. The density of states at lower

levels, that is for most of the electrons in the metallic

band, may be assumed to correspond to the one-elec-

tron "band structure" situation. Hence, the lower,

"band structure density of states" values must be used

in determining the band width, for instance, rather than

the density of states enhanced by electron-phonon in-

teraction, as obtained from low temperature specific

heat measurements. Using the electron-phonon

coupling constant A, for instance the values given in

table 1, the "band structure density of states" at the

Fermi level N(Ei.-) can be calculated from the experi-

mentally determined value of the low temperature

specific heat coefficient y' as follows:

N{Er)-- y (4)

For most of the nonsuperconducting metals and alloys

the value of k is at present unknown and, as a result,

the "band structure density of states" cannot be calcu-

lated from the low temperature specific heat.

As seen in figure 1, the experimental electronic

specific heat coefficient y' for the b.c.c. 3(f-transition

metals and their alloys as a function of electron concen-

tration [3] shows prominent maxima and minima in the

range of ela from 4 to 9. Since in the region of the

minima and of the second maximum the alloys are not

superconducting, the "band structure density of

states" cannot be calculated at present. Thus, the in-

teresting question whether the prominent features of

these curves are due to changes in the electron-phonon

enhancement factor upon alloying, or indeed these fea-

tures are characteristic of the electronic band structure

of the transition metals concerned, cannot be answered
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alloys of3d transition metals [3] . Points marked byfilled squares

represent datafor close-packed structures.

558



with certainty. However, the work of McMillan [2] al-

lows the conclusion that the electron-phonon coupling

constant (and, thus, the enhancement factor) depends

primarily on the phonon frequencies, rather than on the

electronic properties. Since the elastic constants and,

therefore, the phonon frequencies are not known to

undergo drastic changes with the composition in such

solid solution alloys composed of metals near one

another in the same row of the periodic table, it may be

concluded with a reasonable degree of probability that

the prominent features mentioned of the y' versus e\a

curve of figure 1 are in fact resulting from correspond-

ing variations in the "band structure density of states,"

even though the relative magnitude of the various

minima and maxima may be appreciably altered by the

gradual changes in the coupling constant with composi-

tion.

3. Magnetic Effects

Considerable difficulties are often encountered in

determining the value of y' for solid solution alloys of

ferromagnetic with antiferromagnetic or nonmagnetic

metals. For instance, it was found [4] for the random

solid solution alloys Mn-Ni that, in addition to the elec-

tronic specific heat coefficient y', the measured coeffi-

cient y" of the term of the low temperature specific heat

linear in temperature includes also a magnetic con-

tribution y,,,:

y"= y' + ym. (5)

The alloy MnNig can be ordered by thermal treat-

ment and, in the well-ordered condition, the coefficient

of the linear term of the low temperature specific heat

is approximately half that for the disordered alloy of the

same composition. This lower value is substantially

free of the magnetic contribution ym and it may be con-

sidered as approximately equal to the real experimental

electronic specific heat y' of the alloy. On the other

hand, the larger y" value for the disordered alloy in-

cludes ym- Similar magnetic contributions to y" were

identified in a number of other f.c.c. solid solution alloy

systems [4] and in b.c.c. Fe-Al alloys [5]. It is signifi-

cant that in the same alloy systems, and at similar com-

positions, magnetic measurements by Kouvel [6,7] de-

tected the appearance of an asymmetrical hysteresis

loop after cooling in a magnetic field through the Curie

temperature ("exchange anisotropy"). In addition to this

effect of field cooling on the magnetic properties, in

several instances an effect of field coohng on ym was

also detected [4,8] , figure 2.

Figure 2. (C-A)/T vs {where C-A is low temperature specific heat

less magnetic cluster contribution, see eg (5))for alloy NioAs Cuo.52

cooled tvithout a magneticfield (top graph), cooled in 14 kOe field

from 300 to 4.2 K with thefield turned offduring the measurements

(graph m) andfield-cooled with thefield on during measurements

(graph m — mj [8]

.

The occurrence in the same alloys of "exchange

anisotropy" and of a magnetic contribution to the low

temperature specific heat term hnear in temperature

suggests that these two phenomena may be associated

with the same structural condition. This expectation is

further supported by the fact that y,,, is normally also af-

fected by field cooling. According to Kouvel's highly

successful model [7] , the structural condition responsi-

ble for "exchange anisotropy" is a spatially in-

homogeneous magnetic state, e.g., the superposition of

local "parasitic antiferromagnetism" on net overall fer-

romagnetism. Overhauser [9] and Marshall [10] con-

nected the magnetic contribution to the linear term of

the low temperature specific heat with the location of

a sufficient number of spins in a near-zero field. In

Overhauser's theory this condition arises at the nodes

of the static spin density waves of an antiferromagnet.

Marshall pointed out that the required condition may
arise in dilute spin systems, where the average distance

between neighboring spins is sufficiently large, so as to

make the interactions weak, as in dilute Cu-Mn alloys.

The alloys considered above are neither antiferromag-

netic nor dilute. However, because of the peculiar,

complicated spin arrangement, resulting from the su-

perposition of local parasitic antiferromagnetism on net

overall ferromagnetism, it may be expected that many
spins are located in small regions where ferromagnetic

and antiferromagnetic exchange interactions nearly

cancel each other locally, so that the average field in

such regions is near zero [4]. In accordance with this

"local field-cancellation" model, the effect of field cool-

ing on ym may come about if the application of an exter-

nal magnetic field during cooling through the Curie

temperature increases or decreases the number of

spins located in near-zero field. Both increase and

decrease [(MnNis [4], Nio.48Cuo.52 [8])] were in fact

observed. It is easy to visualize that the change in ym as

a result of field cooling may also happen to be negUgibly
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small, even though the value of the magnetic contribu-

tion 7m itself is large. Thus, while the occurrence of a

measurable effect of field cooling on the temperature-

linear term of the low temperature specific heat may be

considered as a proof for the existence of a magnetic

contribution to this term, the absence of such an effect

does not prove that ym is zero, or that it arises through

a mechanism different from the "local field cancella-

tion."

If the experimentally determined coefficient of the

temperature-linear term of the low temperature

specific heat includes a magnetic contribution, it is at

present not possible to derive from such a y" value the

"experimental electronic specific heat coefficient" y'

,

which is free from -y,,,. This is well illustrated by the Ni-

Cu alloys, for which the coefficient of the linear term

has a maximum around the composition Nio.48Cuo.52

[8]. A detailed study of the properties of these f.c.c.

solid solutions at compositions in the vicinity of the

maximum [11] shows that the experimental values of

the coefficient do in fact include a magnetic contribu-

tion. It is, therefore, not possible to tell whether the

maximum is entirely due to ym, or whether y' itself has

a maximum, which is merely increased by the addition

of y,,,. A maximum in y' has been expected on theoreti-

cal grounds [12] because of enhancement due to the

electron-paramagnon interaction [13,14]. The theory
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would require the maximum of y' to occur at the critical

composition, where ferromagnetism just begins to set

in at 0 K. Detailed study of the magnetic properties

showed [11] that the critical composition is at approxi-

mately 57 percent Cu, where y" already decreased to a

value far below its maximum. Figure 3 gives y" for the

Ni-Cu solid solutions, together with Curie temperature

data, which define the critical composition. One may
conclude that the maximum in y" is largely, or entirely,

due to ym. rather than to y'. That the maximum in ym

should occur in the weakly ferromagnetic region is en-

tirely consistent with the "local field cancellation"

model discussed above. It is quite likely that the max-

imum in the coefficient of the linear term for the f.c.c.

Rh-Ni solid solutions, which apparently also occurs off

the critical composition on the ferromagnetic side

[15,16], is also due to a magnetic contribution ym- In

fact, several solid solution alloy systems are now known

to exhibit similar conditions. Figure 3 shows this for a

series of Ni-Cu-Al ternary alloys with a constant Al-con-

tent of 10 percent. It is seen that the Al addition shifts

the critical composition to a higher Ni/Cu ratio, that the

maximum in y" (which is here even higher than for the

binary alloys) is also shifted, and that it again appears

away from the critical composition, on the ferromag-

netic side. Further examples are given in figure 4,

which shows similar data for b.c.c. V-Fe binary and V-

Fe-Al ternary solid solutions with a constant Al-content

of 10 percent.
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As yet there appears to be no experimental evidence

for the theoretically predicted [ 14] peak in y' in alloys

at the critical composition, resulting from the electron-

paramagnon interaction.

Figures 3 and 4 illustrate also a complication, which

arises quite frequently in extracting the coefficient of

the temperature-linear term from low temperature

specific heat data for weakly ferromagnetic and almost

ferromagnetic alloys. In many alloy systems in a certain

region around the critical composition an anomaly in

the measured low temperature specific heat is ob-

served, so that C is no longer given by eq (1). This

anomaly is conspicuously evident in the usual C/T

versus graph. Instead of being a straight Hne, this

graph becomes a curve, extending upward at low tem-

peratures. It was shown by Schroeder [16] that, in

such cases, eq (1) can be usually replaced by

C = A + yT+l3T3 (6)

Schroeder found that the addition of a temperature-in-

dependent term A to the low temperature specific heat

results from the thermal excitation of magnetic clusters

present in many nearly ferromagnetic and weakly fer-

romagnetic alloys. The presence of magnetic clusters

in Ni-Cu alloys in the composition range 50-56 percent

Cu has been recently beautifully documented by Hicks,

Rainford, Kouvel, Low and Comley [17] by means of

neutron magnetic diffuse scattering. In Schroeder's

theory the magnetic clusters, which interact with a

weak crystal field, are thermally excited and they con-

tribute an Einstein specific heat, which is temperature-

independent above the Einstein temperature. The tem-

perature range of 1.4 to 4.2 K, frequently used in low

temperature specific heat measurements, appears to be

above the Einstein temperature in most such systems.

Investigations by Scurlock [ 18] show a decrease at

lower temperatures of the anomalous specific heat from

its constant value above 1.4 K, suggesting that the Ein-

stein temperature is near 1.4 K. Since A includes an

equal contribution of k for each cluster, regardless of

the cluster moment [16] , the low temperature specific

heat data, from which the value of A can be extracted

by least squares fitting to eq (6), give reliable informa-

tion as to the number of thermally excited magnetic

clusters. The correlation of the number of clusters for

Ni-Cu alloys by specific heat measurements [11] with

the number of clusters derived from neutron scattering

[ 17] is given in figure 5. It is seen that the low tempera-

ture specific heat data for the superparamagnetic alloys

(Cu-content larger than 57%) are quite consistent with

the neutron scattering data. For the weakly ferromag-
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netic alloys the number of thermally excitable clusters

rapidly decreases with increasing Curie temperature

(decreasing Cu-content). In this composition range

most of the magnetic clusters interact with one another

and become part of the ferromagnetic system. As seen

in figures 3 and 4 the maximum of A corresponds well

with the critical composition for all four alloy systems

considered. Figures 3 and 4 also show the anomalous

behavior of the parameter (3, obtained by least squares

fitting to eq (6). The anomalous variation of ^ with com-

position occurs in all four alloy systems in the vicinity

of the critical composition, and it is clearly magnetic in

origin [5]

.

4. Nuclear Specific Heat Effects

It was shown by Marshall [19] that the hyperfine in-

teraction between the dipole moments associated with

certain nuclides and the effective field Hp// at these

nuclei, resulting from electronic spin moments, gives

rise to a contribution to the low temperature specific

heat. This contribution decreases rapidly with increas-

ing temperature; in the 1.4 to 4.2 K range it is propor-

tional to T"- ("high temperature" approximation). Con-

sequently, the nuclear magnetic specific heat term can
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be separated easily from the electronic specific heat

term yT in that temperature range. The nuclear

quadrupole specific heat recently reported by Phillips

[20] and by Martin [21] is also proportional to T"'^ and,

thus, poses no problem in determining the electronic

specific heat.
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Discussion on "Density of States Information from Low Temperature Specific Heat Measurements
by P. A. Beck and H. Claus (University of Illinois)

M. Dresselhaus (MIT): 1 would like to ask a question

about electron-phonon enhancement not necessarily of

the speaker, but perhaps of a many-body theorist in the

audience. It has been found experimentally in the

group V semimetals that the cyclotron effective mass

m.c* is the same whether measured statically or at

frequencies high compared with the Debye frequency

Ml). Because of the electron-phonon interaction, it

would seem that nic* should be different if measured at

low frequencies a» < (Od (as by the temperature depen-

dence of the de Haas-van Alphen effect or by a

microwave cyclotron resonance experiment) or at high

frequencies a» > (Od (as by interband Landau level

transitions). In both types of experiments, nic* can be

measured accurately. No electron-phonon enhance-

ment has been observed in nic* for certain carriers in

bismuth and arsenic.

A. Raratoff (Brown Univ.): Well, I would expect that

in bismuth, which is a semimetal, where there are com-

paratively few electrons, the electron-phonon enhance-

ment would be rather small and maybe you would not

notice it at all.

J. Schooiey (NBS): The same sort of thing occurs also

in aluminum.

J. Callaway (Louisiana State Univ.): When you

analyze the specific heat of a ferromagnetic metal, do

you make allowance for the contribution of the spin

waves to the specific heat?

P. Beck (Univ. of Illinois): In these measurements, no

such analysis has been made. For iron this was done by

Rayne and Chandrasekhar [1] by using their own

elastic constant measurements and our specific heat

data. They found very little effect on the electronic

specific heat. Most of the spin wave contribution ap-

pears in the "lattice specific heat."

F. J. Biatt (Michigan State Univ.): I should Hke to ask

if, possibly, you had extended your measurements to

sufficiently low temperatures so that you could esti-

mate the Einstein temperature for what obviously can-

not really be a constant contribution to the specific

heat?

P. Beck (Univ. of Illinois): Yes, magnetic cluster con-

tribution is indeed not constant. It is only nearly con-

stant in the temperature range from 1.4 to 4.2 K. We
did not make measurements at lower temperatures, but

Scurlock [2] did and he found a decrease starting just

below the^range at which we are measuring. He made
measurements down to about 0.3 K, and he found

values quite compatible with an Einstein function. The

Einstein temperature appears to be somewhere usually

around 1 K.

N. M. Wolcott (NBS): With regard to the comment of

Prof. Blatt, we have measured the specific heat of a Cu-

Ni 60-40 at. % alloy down to He^ temperatures and have

observed the decline in the constant term in the

specific heat. Fitting our results to an Einstein function

gives a value of On ~ 1.5 K.

[1] Rayne, J. A., and Chandrasekhar, B. S., Phys. Rev. 122, 1714

(1961).

[2] Scurlock, R. G., and Wray, E. M., Phys. Letters 6, 28 (1963); and

Proctor, W., and Scurlock, R. G., Proc. Uth Conf. Low Temp.

Phys. (St. Andrews) 1969, p. 1320.
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Electronic Density of States Determined by Electronic

Specific Heat Measurements

T. Mamiya and Y. Masuda

Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Japan

The superconducting transition temperatures, electronic specific heats, and Debye temperatures

have been recently measured by us for 5(/ transition-metal alloy series Ta-Re. By making use of these

data and the theoretical predictions by McMillan, we have deduced the electron-phonon coupling con-

stant and bare electronic density of states. The density of states is compared with the theoretical one

derived from band-structure calculations of Ta using the augmented-plane-wave (APW) method by

Mattheiss.

Key words: Augmented plane wave method (APW); Debye temperatures: electronic density of

states: electron-phonon coupling constant: electronic specific heat: superconducting

transition temperatures; tantalum (Ta); tantalum-rhenium (Ta-Re) alloys; Ta-Re

alloys.

1. Introduction

McMillan has recently calculated the superconduct-

ing transition temperature, using the strong-couphng

theory assuming the appropriate phonon spectrum of

density of states, as a function of the coupling constants

for the electron-phonon and Coulomb interaction [1].

Our recent experiments provide detailed information

about the superconducting transition temperature T, ,

the Debye temperature 0. and the electronic heat

capacity coefficient y for the bcc 5d transition metal al-

loys of Ta-Re [2]. By making use of McMillan's

theoretical predictions and our experimental data, we
can find empirical values of electron-phonon couphng

constant and the band-structure density of states in the

5d band. The theoretical density of states of Ta was cal-

culated by Mattheiss using the augmented plane wave

(APW) method [3], Our empirical values of the band-

structure density of states of Ta-Re alloys were com-

pared with the theoretical ones.

2. Experimental Procedures and Results

The detailed descriptions of the experimental equip-

ments and procedures will appear elsewhere [2]. Our

new data for the alloy series Ta-Re are reproduced in

table 1 and figure 1, in which the superconducting

transition temperature Tc, Debye temperature 0, and

electronic heat capacity coefficient y are hsted as a

function of the number of electrons per atom n. The

detailed measurements on the superconducting proper-

ties of Ta-Re alloys, especially the temperature depen-

dences of the critical field show that they are the weak

or intermediate-coupled superconductors, depending

on Re concentration.

In the light of McMillan's theoretical model, we cal-

culate the electron-phonon coupling constant X and the

bare density of states A'o(O), from experimental values

of 7",., 0, and y in the alloy series Ta-Re. The method of

obtaining the values of Coulomb couphng constant (jl*

will be mentioned below.

Table 1. Superconducting transition temperature

Tf., Debye temperature 0, and electronic specific heat

y of bcc 5d transition metal a lloys o/Ta-Re series.

% Second n Tr 0 7
Sample metal /electrons \ (K) (K) (mj/mole

\ atom /
K^)

Ta 5.0 4.463 250 6.15

TaRe 2..S 5.05 3.458 261 5.70

5.0 5.1 2.77 277 5.12

7.5 5.15 2.08 285 5.05

10 5.2 1.49 296 4.10

15 5.3 0.75 307 3.75

20 5.4 .21 317 3.00

25 5.5 <.06 330 2.42

30 5.6 <.06 345 1.90

40 5.8 <.06 361 1.0
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Fk.Iire 1. The superconducting transition temperature Tc, the

Debye temperature &, and the electronic specific heat coefficient

y, versus the number oj valence electrons per atom n. for Ta-Re
alloy series.

According to McMillan [ 1 ] , was given as functions

of the electron-phonon coupling constant A. and Cou-

lomb coupling constant fx*:

To--
1.45

exp
1.04(1 + A)

(1)

This equation holds well not only for strong-coupled su-

perconductors but for the intermediate coupling ones

in question. It is well known that the electronic specific

heat y is enhanced by electron-phonon interactions, y
is therefore written in terms of the bare density of

states A^o(O):

y-
27r-A-

/Vo(0)(l+\). (2)

If we want to find M)(0). it is necessary to know the

values of k and y. The empirical values of fM* can be

found from the superconducting isotope effect. McMil-

lan has determined empirically the average value of ja*

= 0.13 for the transition metals. However, the isotope

shift can be measured in only a few metals. In the case

of superconductors for which the isotope effect was

not determined, we can derive /x* from the measured

electronic specific heat by making use of the expression

of Morel and Anderson [4],

At

1 + 1/ In (EhIojo)
(3)

where En is the electronic band width and ojq is the

maximum phonon frequency. Using a Fermi-Thomas

model, fx was given by

(i~ Jn +

cr
^e-h'y

(4)

where £/ is the Fermi energy and m* is the effective

mass of the electron which is given by m* = (1 -I- X)mo.

For Ta-Re alloy series, E/.- ranges from 6.8 to 7.4 eV,

which were derived from the theoretical band structure

for W obtained by Mattheiss [3]. In order to obtain fx*

for Ta-Re alloys, we must determine fx* first, using k

which was obtained from McMillan's value ix* = 0. 13 as

a first approximation. Substituting this m*, the mea-

sured value of y, and Er into eqs (2), (3), and (4), the new
value of IX* for Ta was determined to be 0.111. As the

Re concentration increases, the value of jx* decreases

very slightly and becomes to 0.107 for Tan.KRe().2. Ac-

cordingly, /x* was taken to be 0.11 through the whole

Ta-Re alloy series. Substituting the value of ^t* = 0.11,

the experimental value of Tc, and the Debye tempera-

ture 0 into eq (1), one can obtain the phonon coupling

constant k. Using eq (2) together with the values y and

k, the bare density of states N^iO) thus can de derived.

The values of k and A^o(O) determined are summarized

in table 2 and plotted as a function of the electrons per

atom ratio in figures 2 and 3, together with the other

data on bcc 5d transition alloys [5]

.

To determine the values of k for alloys which do not

show any superconducting behavior in the temperature

range examined, we assumed the Unear relation

between k and A'^o(O) and calculated the values of X from

Table 2. Electron phonon coupling constant k and

bare density of states at the Fermi energy No(0)

of bcc 5d transition metal alloys of Ta-Re series.

Coulomb interaction parameter fx* was assumed

to be 0.11.

Seimple % Second
metal

n

IJi*=O.U

k '^"'^^
( eV • atom)

Ta 5.0 0.62 0.80

TaRe 2.5 5.05 ..56 .77

5.0 5.1 .52 .72

7.5 5.15 .48 .72

10 5.2 .45 .60

15 5.3 .39 ..57

20 5.4 .34 .48

25 5.5 (.29) (.40)

30 5.6 (.23) (.32)

40 5.8 (.13) (.19)
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Figure 2. The electron-phonon coupling constant \ versus the

number of electrons per atom n,for a Ta-Re alloy series.

Open circles sliown by dotted line show the estimated values for which the interpolated
value of r,- was used.

the measured values of y. This relation holds well in al-

loys in the concentration between pure Ta and

Tao.8Reo.2, for which we can easily measure Tc. These

values of \ and A'^o(O) are shown by the dotted circles in

figures 2 and 3. The corresponding values of Tc which

are obtained using these procedures are extremely low

compared with the transition temperatures for 4d series

Nb-Mo alloys [6]. The reason for the extremely low

transition temperature may be that at small X values,

A'^o(O) is not always proportional to X and also Coulomb
interaction parameter /jl* can not be taken to be 0.11.

3. Discussion

Mattheiss [3] has calculated the band structures of

Ta and W using the augmented plane wave (APW)
method. Relativistic effects have been included in Ta
but not W calculation. The potentials he used were

derived from superposed atomic charge densities

which were determined from self-consistent calcula-

tions involving a {5d)H6sf atomic configuration for Ta
and {5df(6sy for W, respectively. The energy bands

were determined at a total of 1024 uniformly distributed

points in the bcc Brillouin zones. These results were

converted to the density of states by a method of

weighted average of the APW eigenvalues or an inter-

polation scheme. The theoretical density of states for

electrons has been compared by McMillan [1] with the

experimental density of states for bcc 5d transition

metal alloys. However, the experimental density of

states he used is not complete enough but includes the

Figure 3. The bare density of states No (0) versus the number of
electrons per atom n,/or a Ta-Ke alloy series.

The dotted circles have the same meaning as in figure 2.

interpolated plots for several alloys of bcc transition

metals (Ta-W and W-Re), whose superconductivity was

not detected.

The theoretical densities of states for Ta and W
which were calculated by Mattheiss and the experimen-

tal result of Ta-Re alloys are shown in figures 4 and 5

together with other data of Hf-Ta, Ta-W, and W-Re al-

loys. The agreement of the theoretical density of states

for Ta metal and experimental one for Ta-Re alloys (Ta

rich side) is spectacular, but those for W and W-Re
alloy (W-rich side) are less exact. On the other hand,

the experimental density of states for Ta-Re alloys is 10

to 20% larger than the theoretical one calculated for W,
but the experimental data for W and W-Re alloys are in

good agreement. It is therefore concluded that the ex-

perimental data for Ta rich alloys agree well with the

band calculation for Ta, and data for W rich alloys show

good agreement with the theoretical prediction for W.
As described by Mattheiss, the interpolation scheme

yields crude density of states because the number of

points in the Brillouin zone are limited and therefore

some of the peaks in the density of states may be over-

looked. Meanwhile, more accurate values of the Fermi

energy and the density at the Fermi energy can be ob-

tained in such a way that the square of the wave vector

is expanded in lattice harmonics. As Mattheiss also

points out, the accurate density of states for Ta, 0.65

states/eV-atom does not agree well with the experimen-

tal data of 0.77, but the crude estimate of about 0.80

states/eV-atom agrees much better. It is interesting to

note that the experimental data for not only Ta but also
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Fl(;URE 4. The theoretical bare density of states for W by Mattheiss

and the experimental data for a Ta-Re alloy series.

Ta-Re alloy series are in good agreement with the crude

density of states.
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Low-Temperature Specific Heats of Hexagonal Close-

Packed Erbium-Thulium Alloys

A. V. S. Satya* and C. T. Wei

Michigan State University, East Lansing, Michigan 48823

The specific heats of hexgonal close-packed erbium and thulium metals, and three of their isostruc-

tural alloys were measured in the liquid-helium temperature range between 1.3 and 4.2 K for examining

the validity of the localized 4/-band model, on which the current theories of the rare-earth metals are

based. Barring possible uncertainties in the magnetic properties of the samples and their impurity con-

tents, the coefficients of the specific-heat component linear in temperature calculated from the present

data range in values approximately two to twenty times the constant electronic specific-heat coefficient

predicted by the above model for all the hexagonal close-packed rare-earth lanthanides. Possible ex-

planations for such discrepancies are discussed. An itinerant 4/-band model based on the one-electron-

band model suggested by Mott is proposed for the lanthanides as an alternative to the localized 4/-band

model.

Key words: Anti-ferromagnet; anti-phase domain; augmented plane wave method (APW); Curie

temperature; electronic density of states; enhancement factors; erbium; erbium-thu-

lium alloys; ferro-magnetic spiral structure; gadolinium; itinerant 4/-band model;

lanthanides; low-temperature specific heat; rare-earth lanthanides; specific heats;

spin-wave theory; thulium.

1. Introduction

The rare-earth lanthanides, characterized by their in-

complete 4/ shells in the atomic state, have been tradi-

tionally viewed as consisting of trivalent atomic cores

including the partially-filled and localized 4/ shells,

with three - 6s'^ electrons per atom forming nearly-

free-electron type conduction bands [1-5]. Recent

band calculations [6-10] show, however, that the Fermi

surfaces of the rare earths are considerably different

from those predicted by the nearly-free-electron model.

Dimmock and Freeman [6] calculated the band

structure of gadolinium using the nonrelativistic aug-

mented-plane-wave (APW) approximation, and ob-

tained a very narrow (0.05 eV wide) 4/ band about 10.9

eV below the bottom of the 5d-6s conduction bands.

Their results also indicate that the 5d band has a width

of about 6.8 eV, and that it resembles the d band in the

transition metals. Extending the APW calculations.

Freeman et al. [7] computed the Fermi surface for thu-

lium as being largely determined by the 5d electrons.

The position of the 4/ band was found to be strongly de-

*Presenl address: IBM Components Division, East Fishkill. N.Y.

pendent on the crystal potential assumed. Herring [11]

has some doubts about the reliability of the values of

the widths and positions of the 4/ bands predicted by

the one-electron calculations. He believes that there is

a narrow group of 4/-hke bands in the lanthanides ap-

preciably hybridized with the s-p-d bands.

Based on the Hall-coefficient data and a room-tem-

perature specific-heat analysis, Gschneidner [12] con-

cluded that the 4/ electrons occupy either discrete

energy levels, or very narrow one-electron bands as

proposed by Mott [13]. Where the overlap between

atomic orbitals is small, as is probably the case for the

4/ inner-shells in the lanthanides, Mott [13] suggested

that an inner band would split into sub-bands of energy

levels containing only one electron per each atom.

Lounasmaa [14-20] measured the low-temperature

specific heats of all the lanthanides except Pm and Er.

Parks [21] determined the specific heats of Dy and Er.

In evaluating the various contributions to the specific

heats, they both used a more or less constant electronic

specific-heat coefficient based on the localized 4/-band

model for all the hexagonal close-packed lanthanides.

Similar measurements were reported by Dreyfus et al.

[22] in a summary form for Pr, Sm, Tb, Ho, and Er, but
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without using the above model in their analysis. While

the seven localized 4/ electrons per atom in Gd appear

to account for the major part of the 7.5 ^t/j saturation

magnetic moment observed in this metal, [23] the elec-

tronic specific heat predicted by Dimmock et al. [6] for

Gd is only 40% of the value measured by Lounasmaa

[15]. This discrepancy has been attributed to an elec-

tron-phonon enhancement in the metal.

The concept that the 4/ shells are partially filled in

the lanthanides and yet the 4/ electrons contribute

neither to the conduction band nor to the low-tempera-

ture specific heats, referred to above as the localized 4/-

band model, is similar to that proposed by Mott and

Stevens [24] for the transition metals in which the d

electrons would be localized. Based primarily on the

results of the low-temperature specific-heat work of

Beck and co-workers [25], this localized c^-electron

model was corrected by Mott [26]. If the locaHzed /-

electron model for the rare earths is vindicated, it

would be a unique case in all metals.

If the 4/ electrons are indeed locaHzed, and hence do

not contribute to the Fermi surface, then isostructural

alloys of the Er-Tm, Tm-Yb, and Tm-Lu systems (for

example) should have similar Fermi surfaces as it was

assumed by Dimmock et al. [6,7] and Lounasmaa [14-

20]. All such alloys should show a constant electronic

specific-heat coefficient. On the other hand, if the 4/

electrons do form a band in the usual sense, and hence

do contribute to the Fermi surface, then alloying thuh-

um with erbium, which have complete solid-solubility

in each other, should gradually increase the number of

/ electrons in the conduction band. The alloys should

then show variations in the electronic specific-heat

coefficients. The only alloy system of the lanthanides

that has been investigated with the low-temperature

specific-heat method is the Gd-Pr system by Dreyfus et

al. [27]. They did not try to establish the localized 4/-

band model, but used such a model to evaluate the

hyperfine coupling constants for the alloys. The pur-

pose of this work is to test the validity of the locaHzed

4/-electron model for the lanthanides by measuring the

specific heats of hexagonal close-packed Er-Tm alloys

at Hquid heHum temperatures.

2. Experimental Details

Erbium and thuHum metals of 99.9% purity were ob-

tained from Messrs. Gallard Schlesinger Chemical

Manufacturing Corporation. Pure erbium metal of ap-

proximately one-fifth of a mole was arc melted under a

heHum atmosphere in a water-cooled copper crucible.

Due to the high vapor pressure of thulium at elevated

Table 1. Some impurity analyses of the samples in

ppm by weight

Element Er Efii 7-.Tmii >-. Etii -Xnin - Krn •fXlTlM --
' * 1 p . J .) -1 "til, ( ,} Tm

Ca 18 550 93 260 170

Fe 400 19 30 43 31

Na 13 3800 10 29 510

Nd 110 390 580 940 2000

Ni 3 35 46 98 600

W 140 700 500 620 750

Y 1100 520 400 150 20

c 86 200

F 6300 8600 4500 3800 320

N 1300 54 21 7 1100

0 120 470 240 490 1400

temperatures, the Er-Tm alloys and the thuHum metal

were induction melted in tungsten crucibles under a

purified argon atmosphere. The analyses of these sam-

ples are listed in table 1 as measured by Messrs.

Atomergic Chemetals Inc. using the mass-spectro-

graphic method. The heat capacities of the samples

were measured in the liquid-helium''' temperature

range in an experimental set-up only slightly modified

from that described by one of the authors [28]. The

temperature of the specimen was monitored by means

of a carbon resistor embedded in the specimen as-

sembly. The carbon thermometer was caHbrated

against the Hquid-helium vapor pressure prior to each

heat-capacity measurement. The resistance R of the

thermometer and the corresponding temperature of the

specimen T were found to satisfy the Keesom-Pearlman

relation [29]

(log/?/r)'/-^=|; C„,, (log/?)"
(1)

)) = 0

with A^= 1, with a scatter of less than 10 miUi-degrees

in all the experiments. Figures 1 through 3 show the

specific-heat data plotted against temperature for the

Er and Tm metals and three of their alloys with 25, 50,

and 75 wt. % Tm. The accuracy of the present set-up

was discussed by Tsang [30] ; and an overall accuracy

of ± 2% can be expected in the specific-heat measure-

ment.

3. Analysis of Results

The specific heat of the rare-earth metals and their

aUoys can be expressed as

C, = C, + Cd = C; + Cl + Cm + C.v + Ca (2)

572



200

150

S
o
E

"i 100

III

X
u

a.
V) 50

E''0 75''''"0.25

0 12 3 4

TEMPERATURE CK)
Fk.URE 1. Specific heat versus temperature curves for Er and

Ero.75T1no.25.

200

UJ

150

e 100

50

0.25""0.75

2 3

TEMPERATURE ("K)

Fl(>URE 3. Specific heat versus temperature curves for Ero.25Tmo.75

TEMPERATURE CK)

Figure 2. Specific heat versus temperature curve for Ero.5Tmo.5.

where C,, and C,, are the specific heats at constant pres-

sure and volume, respectively, separated by the dilata-

tion term Ca (neghgible at low temperatures), CE = yT
is the electronic specific heat, Ci.— aP, the lattice

specific heat, C.u, the magnetic specific heat, and C.v=
vT-'^, the hyperfine contribution to the specific heat. A
proper analysis of the specific-heat data for the sepa-

ration of the various specific-heat contributions de-

pends on the magnetic specific-heat contributions as

dictated by the magnetic properties of the samples.

Koehler and co-workers [31-33] found that erbium

transforms into a ferromagnetic spiral structure below

its Curie temperature of 19.6 K and that thuUum adopts

an anti-phase domain-type structure below 40 K. Lou-

nasmaa [19,20] reported that the magnetic specific

heats of thulium are 1.5 T'--^ and 1.98 T'--^ millicals/

mole/K in the 0.4 to 4.0 and 3.0 to 25.0 K tempera-

ture ranges, respectively, in contrast to the T'-^

dependence predicted by the spin-wave theory [34,35]

for the ferri- and ferro-magnetic materials, and theT^

dependence for the antiferromagnets. It may be noted

that the experimentally determined magnetic specific-

heat values are close to that predicted by the spin-wave

theory for the antiferromagnetic materials. In the case

of holmium metal,' which has a ferromagnetic spiral

type of structure similar to erbium below 20 K, Lou-

nasmaa [14,20] obtained Cv/= 0.3 T^-^ millicals/mole/K

in the 3.0 to 25.0 K range and a dependence for Cm in

the 0.4 to 4.2 K range. Kaplan [36] suggested a hnear

dispersion relation between cu(q) and q for small values

of the wave vector q in the ferromagnetic spiral case,

and treated it as being similar to that of an anti-fer-

romagnet. Bozorth and Gambino [37] found that the

Curie temperature decreased in the Er-Tm system up

to 12% Tm, and after a discontinuous rise, the thuHum-

type Curie temperature followed a slowly declining
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trend again with increasing Tm content. One may,

therefore, expect a dependence of the magnetic

specific heat for all the present samples.

The specific-heat data obtained with Er, Tm and

their three alloy samples were analyzed by a least-

squares fit to

C,./r=y+ (a + )Lt)P + i.r-\ (3)

where y, a, fJL, and v are respectively the electronic, lat-

tice, magnetic and the nuclear specific-heat coeffi-

cients, with no assumption made on the nature of the 4/

band. The analysis was straightforward for Er,

Ero.75Tmo.25, and the Tm samples as shown in figures 4,

5, and 8.

The CilT versus T'^ curves for the Ero.5Tmo.5 and

Ero.25Tmo.75 samples, shown in figures 6 and 7, appear
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Table 2. Specific-heat contributions of the present

samples in milli-callmolelK 25

Sample Electronic Lattice* Magnetic Nuclear

Er

Ero.7.-,Tmi).25

Ero.r,Tnio.5

Er,i.2.-.Tm».7.-,

Tm

4.ir

2.57'

8.7±5.37'

23.3 ±7.97
13.37'

0.063r'

0.0615r'

0.060P

0.059P

0.058P

1.23P

2.4±0.8r'

11.737'--

23.97--

9.297'--

0.42P 1.767'-^

*Computed from the Debye temperatures taken ft m Lounasmaa's work (14, 20).

to concave downward in the middle, similar to that ob-

served in Gdo.23Pr().77 by Dreyfus et al. [27]. None of the

known theories seem to be able to account for such a

feature. In order to obtain an upper and a lower limit of

the electronic specific-heat coefficient, the C^jT data of

the Ero.sTmo.s sample was analyzed by first fitting the

values below 2.5 K to evaluate the nuclear contribution,

which was then subtracted from the CvIT values for the

entire temperature range. The remainder, consisting of

only the linear and the terms in Cy, was then

analyzed by treating separately the data below and

above 2.8 K for obtaining ymin and jmax, respectively.

The true electronic specific-heat coefficient would

probably lie between these two values. For the

Ero.2.'5lmo.75 sample, ymin and jmax were obtained by ex-

trapolating the two branches of the CvIT curve to 0 K.

The various specific-heat contributions thus obtained

are listed in table 2. The electronic specific-heat coeffi-

cients are plotted against the composition as shown in

figure 9.

4. Discussion

The results indicate that the y values of the samples

range from 2.5 to 23 ± 8 milhcals/mole/K'^. The constant

values of 1.0 and 2.5 millicals/mole/K^ respectively pre-

dicted by the APW calculations [6] , and assumed by

Lounasmaa [14-20] based on the locahzed 4/-band

model, are also shown in figure 9 for comparison. Dif-

ferences between theoretically predicted and experi-

mentally determined values of the electronic specific

heat have long been observed in the rare-earth metals

[14-20,22], but the magnitude of the discrepancies ob-

served in the present alloys is astonishing. The discre-

pancies have been so far attributed to the electron-elec-

tron enhancement [9], the electron-phonon and elec-

tron-magnon enhancements [5], and the impurity con-

tents of the samples the different workers [10] used.
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Fk.URE 9. Electronic specific-heat coefficient versus wei^iht percent

thulium.

Kasuya [5] estimated that for Gd the electron-phonon

enhancement may amount to 30%, and the electron-

magnon enhancement, 20% of its y value. Such

enhancements can account for at most a factor of two

in the electronic specific heats.

Lounasmaa [19] pointed out that the discrepancies

in the low-temperature specific-heat data of the dif-

ferent workers are not uncommon for the rare-earth

metals below 4.0 K, possibly due to the differences in

the impurity contents in the samples. Crane [38] re-

ported an increase in the specific heats of Gd by as

much as a factor of two due to the presence of 0.1% ox-

ygen by weight. If similar impurity effects are present

in the Er-Tm system, a factor as great as four can be in-

cluded in all the corrections. This is still insufficient to

bring down the y values of the Tm, Ero.5Tmo..5 and

Ero.25Tmo.75 samples to the 1 millical/mole/K^ range

predicted by the localized 4/-band model.

If the localized 4/-band model were valid, the 5o?-

band should be the major contributor to the Fermi sur-

faces in the rare earths, and to their electronic specific

heats. The 5c? band, having a width of 6.8 eV [6], is

comparable to the "id band of a width of 5 eV, as calcu-

lated by Belding [39] for bcc paramagnetic Cr using the

tight-binding approximation. A close resemblance can

be noted between Belding's result and the experimen-

tally determined 2>d energy band of Beck and co-work-

ers [25] . On the other hand, all the experimental

evidence from the present work as well as the results of

Lounasmaa [14-20] and Dreyfus et al. [22] indicate

much larger y values than what might be predicted by

the localized 4/-band model.

A localized 4/-band model is not necessarily needed

to explain the low-temperature magnetic structures in
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Figure 10. A schematic itinerant M-band model.

the rare-earth metals any more than a locahzed 3c/-band

model is required to explain the magnetic properties of

the transition metals. Instead, it is possible that a nar-

row 4f band could split into an up-spin and a down-spin

half-bands, which may or may not overlap. The relative

positions of the two half-bands with respect to the

Fermi surface may vary from one rare-earth metal to

another depending upon such factors as the crystal

structure, the number of 4/ electrons per atom, and the

exchange interaction between the electrons. One may
modify Mott's one-electron band model [13] so that

each half-band, not necessarily localized, is built of

seven overlapping one-electron bands. The density of

states of each of these half bands may contain peaks

and valleys. When there is an integral number of 4/

electrons as in a metal, the Fermi surface is most likely

to be near a valley. Such a model would explain the

nearly uniform electronic specific-heat coefficients of

the pure rare-earth metals as well as the large varia-

tions in the y values of the alloys observed in the

present work. A schematic diagram of such an itinerant

4/-band model is shown in figure 10.

Further work such as the room-temperature specific-

heat measurements of the isostructural rare-earth al-

loys may help to confirm the proposed model. Should

this itinerant 4/-band model be established, then it

would not be necessary to resort to using the electron-

phonon type enhancements in explaining the discre-

pancies between the theoretically predicted and the ex-

perimentally obtained electronic specific heats of the

rare-earth lanthanides.
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Low-Temperature Specific Heats of Face-Centered Cubic
Ru-Rh and Rh-Pd Alloys*

p. J. M. Tsang **and C. T. Wei

Department of Metallurgy, Mechanics and Materials Science, Michigan State University, East Lansing, Michigan

48823

The specific heals of Rh, Pd, and a number of face-centered cubic Ru-Rh and Rh-Pd alloys were

determined between approximately 1.4 and 4.2 K. Whereas the CjT vs. T- plots for the Ru-Rh alloys

show a straight-line behavior, a low temperature anomaly is observed in similar plots for Pd and the Rh-

Pd alloys below 2.2 K. This low temperature anomaly appears to be most pronounced in the alloy

Rho.7«Pd(i.22, and diminishes with increasing Rh or Pd. The electronic specific heats of these alloys are

generally high with a minimum occurring at Rud .•i()Rhii.-(]. A portion of the total density-of-states curve for

the outer electronics in face-centered cubic transition metals is derived numerically from the present

results and those available in the literature as a first approximation. Such a curve shows qualitative

agreement with the first peak below Fermi level of the theoretical total s-d energy band of Pd calculated

by Janak et al.

Key words: Electronic density of states: electronic specific heat: palladium (Pd); Rh; Rh-Pd alloys;

Ru-Rh alloys; specific heat; tight-binding approximation.

1 . Introduction

The electronic structure of a metal is of importance

in understanding the physical properties of the metal

and its alloying behavior. Significant progress has been

made in recent years in both the theoretical calculation

of the electron energy bands and the experimental in-

vestigation of the Fermi surfaces in metals. However,

an accurate experimental method for determining the

detailed structure of the electron energy bands in a

metal is still lacking, and low-temperature specific heat

measurement remains to be a useful method by which

some knowledge of the electron energy bands in metals

can be obtained.

The low-temperature specific heat of a metal has two

main contributions: the electronic contribution which

is linear in T, and the lattice contribution which is pro-

portional to T^.

C = yr+^P (1)

The coefficient y of the electronic specific heat is, ac-

cording to Sommerfeld's theory [1] , proportional to the

density of states N(Er) at the Fermi surface.

*Thi5. paper is from part of a thesis presented by P. J. M, Tsang to the graduate scliool of

Michigan State University, East Lansing. Michigan, in partial fuifillment of the requirements

for the degree of Doctor of Philosophy in Metallurgy.

*'Now at IBM, Hopewell Junction, New York 12533.

7= 1 TT^PNiEi.) (2)

The coefficient /3 of the lattice specific heat is related

to the Debye characteristic temperature 0 [2].

fi^—TT^m--' (3)

By measuring the specific heats of a number of iso-

structural alloys of neighboring elements in the periodic

table it is in principle that a plot of y vs. the number of

outer electrons per atom would reveal the qualitative

nature of the electron energy bands in the metals. Such

a plot can be converted to an N(E} vs E curve numeri-

cally by using a rigid-band model as a first approxima-

tion, and compared with the results of band calcula-

tions for any agreement, or the lack of it.

Keesom and Kurrelmeyer [3] first made a syste-

matic investigation of the specific heats of a number of

face-centered cubic Fe-Ni and Ni-Cu alloys of the 2>d

transition series. Further work has been carried out

since with fee Pd-Ag alloys by Hoare and Yates [4]

,

and by Montgomery [5]. Their results are in agreement

with one another. The specific heats of fee Rh-Pd alloys

were determined from pure Pd to Rho.sPdo .i by Bud-

worth et al. [6]. Perhaps the most extensive investiga-

tion has been that of Beck and co-workers [7] carried
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Figure 1. Density ofstates of the id bands in the transition metals for the body-centered cubic structure.

out with alloys of the transition elements of various

combinations and crystal structures. Figure 1 shows

the total density-of-states curve derived from the

specific heat data of Beck et al. [7] for the 3rf bands in

the body-centered cubic structure as compared with

Koster's calculation [8] using the tight-binding approx-

imation (inset). Belding [9] modified Koster's calcula-

tion by taking into consideration the second nearest

neighbors, and obtained the stepped curve. A smooth

curve drawn through Belding's curve is in qualitative

agreement with the experimentally derived one as it is

clearly indicated.

Pessall et al. [10] repeated the measurements with

bcc alloys of the 2>d transition elements except with the

addition of 10% Al. Their results confirmed those ob-

tained originally by Cheng et al. [7]. The investigation

has since been extended to alloys of the 4c? and 5c?

series and reviewed by Bucher et al. [11]. The parallel--

ism in the y vs. the number-of-outer-electrons curves

for the three transition series suggests that the 4c? and

5<i bands are similar to the 3c? bands in the transition

metals for the bcc structure, and a somewhat rigid-

band behavior in these metals.

For the fee structure, the results of Hoare and Yates

[4] with Pd-Ag alloys and that of Budworth et al. [6]

with Rh-Pd alloys show characteristic variations in the

y vs electron concentration plot that a high peak occurs

at Rho.()5Pdo.95, and the y value decreases sharply on

both sides of this peak when more Rh or Agis added to

Pd. These features have been confirmed by Mont-

gomery [5] , and are believed to be characteristic of the

tail portion of the 4c? bands in the fee structure. The

results of Keesom and Kurrelmeyer [3] obtained with

fee Fe-Ni alloys and those obtained by Walling and

Bunn [12], and by Gupta et al. with fee Co-Ni alloys

show variations parallel to each other and to the results

of Budworth et al. [6] between the outer-electron-con-

centration range from 9 to 10 per atom. However,

between the electron-concentration range from 8 to 9

the results of Gupta et al. obtained with fee alloys of Fe-

Ni, Mn-Fe, and Mn-Ni show disparities which are at-

tributed by these authors to a possible ordering and

complications of a magnetic nature.

The purpose of this work is to extend the measure-

ment of the low-temperature specific heats of fee alloys

of the second long period transition elements to the ex-

tent of the electron concentration range in which such

alloys exist for furthering the understanding of the na-

ture of the d bands in the transition metals.

2. Experimental Procedure

The specimens used in this work were melted in an

inert mixture of argon and nitrogen using Ru, Rh, and
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Table 1. Spectroscopical analyses of the Ru, Rh,
and Pd metals used for making the alloy specimens
and that of a typical specimen with the nominal
composition Rho.rPdo.s {weight percent)

Element Ru Rh Pd Rh„.7Pd„.,

Ag... 0.001 0.001 0.02 0.0005

Al 0.001 .001 .003 .0005

Au .001

B .001

Cu .005 .001 .01 .0002

Fe .01 .01 .05 .02

Ir .02 .005

Mg... .001 .0002 .001 .0005

Mn .001 .001 .001

Mo .001

Ni .005

Pd .005 .005 balance 28.0

Pt .001 .02 0.03

Rh .003 balance .003 71.9

Ru balance

Si 0.001 .1 0.005

W .04

Pd metals of 99.8-|-% purity obtained from Gallard-

Schlesinger Chemical Manufacturing Corporation.

Each specimen was made into two halves with each

half melted at least three times to insure the

homogeneity of the alloy. The total weight of each

specimen was approximately one fourth of a gram-

mole. The compositions of the alloys were controlled by

their weights before and after the melting. It was found

that the maximum loss in the weight of a specimen due

to evaporation and sputtering during the melting opera-

tion was less than 2%, with a more or less even evapora-

tion rate for all three metals. Thus the uncertainty in

the composition of each alloy was less than 2%. The al-

loys were sealed in vacuum in quartz tubes, and each

was annealed at 1,080 °C for at least 24 hours and then

water quenched. The results of spectroscopical

analyses of the metals as received and a typical alloy

sample are shown in table 1.

The complete equilibrium diagram of neither Ru-Rh

nor Rh-Pd system has been reported. Rh and Pd are

both fee and completely intersoluble at high tempera-

tures [13]. Below 845 °C a concentrated alloy may
separate into a phase mixture of Rh and Pd rich solid

solutions. This transition is very sluggish, and can be

suppressed by quenching from the single-phase region

[14]. Five Rh rich Rh-Pd specimens together with one

for each of pure Rh and Pd were prepared. The alloys

were examined metallographically and with x rays after

heat treating and found to be single-phase fee alloys.

Ru has a hexagonal close-packed structure. Its solubili-

ty in fee Rh has not been estabhshed exactly. It was
found that the alloys Ruo.4oRho.6() was a single fee phase,

and the alloy Ruo.j^Rho 58 was a mixture of two phases.

Thus, seven Rh-rich fee Ru-Rh specimens were made
with Ru less than 40 at. %.

The specific heats of the fourteen specimens were

determined at Hquid helium temperatures between ap-

proximately 1.4 and 4.2 K using a calorimetric method
described by Corak et al. [15]. A heater-thermometer

assembly, consisted of a carbon resistor embedded in

a copper disk to serve as the thermometer and a heat-

ing coil of approximately 300 ohms, was sandwiched

between the two halves of a specimen. The carbon ther-

mometer was calibrated against the vapor pressure of

the hquid helium bath during the coohng cycle of each

experiment. The heat input was determined by measur-

ing the heating current, the resistant of the heating coil

at the particular temperature, and the heating time.

The corresponding temperature change was recorded

in terms of the resistance change of the thermometer.

The resistance R of the thermometer as a function of

temperature was found to agree well with the equation

Vlog RIT=\ + B log/? (4)

suggested by Keesom and Pearlman [16]. The parame-

ters A and B in the equation were determined by a

least-squares fit of eq (4) to the experimental data. The
overall design of the cryostat and the instrumentation

were similar to those used before by one of the authors

[7]. The detailed experimental procedure and a discus-

sion of the experimental accuracy were described in

reference 7. The probable error in the measured elec-

tronic specific heat coefficient is estimated to be ap-

proximately± 2%.

3. Results

Figures 2 to 5 show the CjT vs. T- plots for the four-

teen specimens measured. The curves for the Ru-Rh al-

loys and the pure Rh specimen show a normal straight-

line behavior with well defined y and f3 values accord-

ing to eq (1). The y and 0 values are listed in table 2. All

the Rh-Pd alloys and the pure Pd specimen show a low-

temperature anamoly below approximately 2.2 K.

Several of these Rh-Pd alloys were measured more

than once, and the results were found to be reproduci-

ble within the experimental accuracy. It appears than

an additional low-temperature contribution to the

specific heat other than those described by eq (1) is

present. This anamoly is most pronounced in the alloy

Rho.78Pdo.22, and diminishes toward Rh and Pd.
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Figure 3. Low-temperature specific heats offace-centered cubic

Ru-Rh alloys.

4. Discussion

The presence of the low-temperature anomaly in the

Rh-Pd alloys would cause some uncertainty in the

evaluation of the electronic specific-heat coefficient

and the lattice specific heat, unless the nature of the

extra contribution to the total specific heat is deter-

mined. Some of the solid-state phenomena that may
happen at such low temperatures and affect the mea-

sured specific heats are associated either with super-

conductivity, ferro- or antiferro-magnetic transitions,

hyperfine interaction, magnetic clustering, or marten-

sitic transformation. Both Rh and Pd are known to be

a 10 12 14 16 18 20

(DEG*)

Figure 5. Low-temperature specific heats of face-centered cubic
Rh-Pd alloYs.

nonsuperconducting at the lowest temperature ever

tested. It is unHkely that the Rh-Pd alloys would be su-

perconducting above 1.3 K. A martensitic transforma-

tion usually gives rise to a surface rehef which was not

observed in any of the specimens.

Pd is often considered as super-paramagnetic. The

presence of a few parts per milUon of ferromagnetic im-

purities such as Fe in Pd is known to cause Pd to

become ferromagnetic. The chemical analyses show

that the Pd metal used in making the specimens con-

tained 0.05% Fe. It is thus possible that the low-tem-

perature anomaly is mainly caused by the Fe impurity

in the specimens.
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Table 2. Results of least-squares jit oj the low-

temperature specific heat data offace-centered cubic

Ru-Rh and Rh-Pd alloys to:

y X W Debye tem-

Alloy composition (cal/mol-det;-) perature 0
(K)

RUo.4Rho.(i 11.00 .527.9

Ruo.isRho.Bs 10.40 444.3

Ruo.25Rho.75 10.48 396.9

Ruo.aRho.s 10.97 4.54.7

Ruo.15Rho.85 10.89 427.5

Ruo.iRho.9 11.29 429.8

Ruo.05Rho.95 11.6.5 456.6

Rh (Present work) 12.03 .528.6

(Budworth et al.) 11..56±0.07 512.0±17.0

rvno.!i:)r ao.07 Iz.Ul /I c: 1 0

Rho.85Pdo.15 12.81 4.53.1

Rho.78Pdo.22 13.99 498.4

Rho.7Pdo3 14.17 447.5

Rho.6Pdo.4 14.94 397.5

Pd (Present work) 23.01 278.3

(Budworth et al.) 25.6 ±1.3 274.0 + 3.0

(2) CJT=aT--' + y + l3T^

aX lO-* yXlO" Debye tem-

Alloy composition (cal-deg/mol) (cal/mol-deg-) perature 0
(K)

Rho.!i;iPdo.o7 3.61 11.86 406.8

Rho.85Pdo.15 2.69 12..53 413.5

Rho.78Pdo.22 6.75 13.44 412.8

Rho.7Pdo.3 5.62 13.76 401.5

Rho.6Pdo.4 4.35 14..56 366.2

(3) C,IT=^AIT+y + l3r-

AxiO^ yXlO^ Debye tem-

Alloy composition (cal/mol-deg) (cal/mol-deg^) perature 6
(K)

Rho.93Pdo.07 3.63 10.22 349.6

Rh„.85Pdo.,5 2.59 11.51 370.0

Rho.-8Pdo.22 6.47 10.91 328.7

Rho.7Pdo..i 4.84 11.95 343.4

Rho.4Pdo.6 4.09 12.96 324.6

Schroeder and Cheng [17] suggest that the fer-

romagnetic impurities may form clusters which would

contribute a constant term in the total specific heat.

C^A + yT+fir (5)

The similar anomaly observed in Pd-Ag alloys by Mont-

gomery et al. [15] is attributed to such a ferromagnetic

clustering effect.

Another possible cause of the anomaly is perhaps the

hyperfine interaction. Pd^°'', whose relative abundance

is 22.2% of the total, has a nuclear magnetic moment of

— 0.57 Bohr magneton. Natural Rh is almost entirely

Rh'"'' which has a small nuclear moment of —0.0885

Bohr magneton. Should an effective magnetic field

exist at any of these nuclei there would be a hyperfine

contribution to the specific heat proportional to T~'~ as

suggested by Marshall [18].

C^aT-' + yT+l3T' (6)

To evaluate the electronic specific heat coefficients

of the Rh-Pd alloys each set of the experimental data

was analyzed iri three different ways: (1) Assuming the

anomaly to be only a low-temperature effect which ex-

ists below 2.2 K, the hnear portion of each of the C/T vs.

T'^ curves above 2.2 K was fittbd with eq (1) for the best

y and (5 values. This would probably give the higher

limit of 7. (2) Assuming there was a hyperfine contribu-

tion, each set of data was fitted with eq (6) for evaluat-

ing a, y, and ;S. (3) Assuming that there were magnetic

clusters, each set of data was fitted with eq (5) for

evaluating A, y and (3. This would probably give the

lower limit of y. The results of these analyses are listed

in table 2. Listed in table 2 are also the y and 0 values

for Rh and Pd determined by Budworth et al. [6] for

comparison. The present y value for Rh is 4% higher

than that determined by Budworth et al., but the rest of

the quantities agree with one another well. Figure 5

shows a plot of the y values obtained in this work

together with those available in the literature [4-6] as

a function of alloy composition. The portion of the

curve corresponding to the Rh-Pd alloys is drawn

between the y values obtained by analyses (1) and (2) to

join smoothly with the rest of the curve. The results of

analysis (3) show irregular variations in y which may
not be reahstic. A general feature, which seems to be

true regardless of the methods of fitting, is that the

electronic specific heat coefficient y decreases with

decreasing number of outer electrons per atom in the

present alloys, reaches a minimum at approximately

Ruo,.ioRh(i.7(), and then increases again.

The Debye temperatures of these alloys show irregu-

lar variations in all the three analyses as can be seen in

table 2. This type of nonsystematic variations was also

observed in bcc alloy of the first-long-period transition

metals by Cheng et al. [7]. Stoner [19] studied the

electronic specific heat of a metal with an arbitrarily

shaped energy band and found that a term proportional

to 7^ of a power series in T depending upon both the

slope and the curvature of the density-of-states curve

at the Fermi surface might arise. Such a term will not
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be separable from the lattice specific heat since both

are dependent. The electronic specific heats of the

alloys of the transition elements vary much more drasti-

cally with composition as compared with alloys of the

noble metals. Stoner's theory may explain the irregu-

larity observed in the apparent Debye temperatures of

the alloys of the transition metals. Although this com-

plication will affect the accuracy in the evaluation of

the Debye temperature, it would not affect the evalua-

tion of the density of states from the coefficient y of the

term which is linear in T.

The abscissa in figure 6 is proportional to the number

of outer electrons per atom, and the ordinate, the densi-

ty of states at the Fermi surface of the corresponding al-

loy. If a small increment Ac is taken near a particular

composition, the corresponding increment in energy

A£' can be found by dividing Ac with the density of

states N(E) at that composition. Thus the curve can be

converted to an N{E) vs. E curve numerically. Figure 7

shows the results of such a numerical calculation. To a

first approximation this curve can be taken as the com-

bined total density-of-states curve for the 4c? and 55

bands in fee transition metals. In doing so a rigid band

model is implied, although the appHcabihty of which

has often been questioned. Such is one of the draw-

backs of the specific-heat method for investigating the

energy bands in metals.

-0.2 0.0=Ef 0.2

E (eV)

Fk.LIRE 7. Density of states of the d bands in the transition metals

for theface-centered cubic structure.

Tight-binding approximation (TBA) is generally used

to calculate d bands. Using TBA methods, 3c? bands of

paramagnetic Ni was calculated by Koster [8] and 4a?

bands of Pd by Lenglart et al. [21]. Recently, a

hybridized s-d band was thought to be more truthful

describing the energy bands of transition metals [25].

In these calculations, [20,22-24] , the TBA was used as

a base to treat d electrons whereas APW or OPW
method was used to treat 5 electrons and the s-d

hybridization was achieved by certain interpolation

scheme. The effect ois-d hybridization on 3c? bands was

that the location of the lower peaks (in reference to Ef)

of the band were altered and their magnitudes reduced,

as in the case of Ni calculated by Hodges et al. [20] and

by Mueller [22]. On the other hand, as shown in the

total s-d band of palladium calculated by Janak et al.

[23], 5-c? hybridization strongly enhanced the middle

peak of the 4c?-bands. However, there is a common fea-

ture of the 3c? and 4c? bands that was not altered too

much by s-d hybridization, namely, the strong peak in

the vicinity of Fermi level which spans about 1.0 to 1.5

eV and can accommodate about two electrons per

atom. And, due to the solubility limit of Ru in Rh or of

Ru in Pd, this is the portion of 4o? bands that can be in-

vestigated by electronic-specific measurements. In

figure 7, the total energy band of Pd calculated by

Janak et al. [23] was inserted for comparison. As can

be seen, very good qualitative agreement was indeed

found between present experimental A^ff'^ vs. E curve
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and the first peak of the theoretical 4-d bands. Good

agreement was also found between present experimen-

tal N(E) vs. E curve and the 4rf bands of Pd calculated

by Mueller [24]. The energy band calculations in the

present stage of sophistication are a close approxima-

tion to a true description of the electron energy states

in the transition metals. We observed that the low-tem-

perature-specific-heat method for investigating the

energy bands in the transition metals may have some

validity when suitable alloys are available.

5. Conclusions

(1) The specific heats of Rh, Pd and twelve face-cen-

tered cubic Ru-Rh and Rd-Pd alloys were determined

between 1.4 and 4.2 K. The C/T vs. curves show a

straight-line behavior for all Ru-Rh alloys, but show a

low temperature anomaly for Pd and Pd alloys below

2.2 K.

(2) Aside from some uncertainty in the evaluation of

the electronic specific heat coefficients of the Rd-Pd al-

loys due to this anomaly, a plot of y vs. alloy concentra-

tion together with the data available in the literature

can be converted numerically to a density-of-state

curve as a first approximation. The resulting curve is in

agreement with recent band calculations using the

tight-binding approximation for treating the d electrons

in the transition metals.

(3) The present results and those reviewed in this

paper seem to indicate that for the fee crystal structure,

a strong peak in the vicinity of Fermi level exists in both

3d and 4o? bands and that the tight-binding approxima-

tion is essentially the correct approach in treating the

d electrons in the transition metals.
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Density of States of Transition Metal Binary Alloys in the

Electron-to-Atom Ratio Range 4.0 to 6.0

E. W. CollingsandJ. C. Ho

Battelle Memorial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Using Ti-Mo as a prototype of binary bcc transition metal alloys for 4 < e/a < 6, densities-of-states

at the Fermi level, n(Eh), have been studied using low-temperature specific heat augmented by mag-

netic susceptibility (x) measurements. A survey of the literature has revealed that the principal descrip-

tors of density of states, y (the electronic specific heat coefficient), and Tr (the superconducting critical

temperature), generally decrease as e/a decreases below about eja ~ 4.3 to 4.5. The maxima in y and Tc

so induced have usually been interpreted as indicating the existence of maxima in n(Ey) near e/a = 4.5

for bcc alloys. But since the region e/a < 4.5 also corresponds to that in which a submicroscopic hex-

agonal-structured precipitate (oj-phase) always appears in quenched alloys, a detailed study of micros-

tructure was undertaken in conjunction with the electronic property measurements. It was concluded

that a steadily increasing abundance of an cu-phase precipitate was responsible for the observed drops

in y, Tc, and x below e/a = 4.5. Because of the fineness of the precipitate (70-330 A) the physical pro-

perty results themselves are indistinguishable from those usually associated with single-phase materi-

als. Using magnetic susceptibility at elevated temperatures, where th& prototype Ti-Mo alloy is known

to be single phase bcc, it has been shown that n(Ei-)i,cr increases monotonically as e/a is reduced from 6

to 4, in agreement with deductions based on the results of recent band-structure calculations on bcc 3c?

transition metals.

Key words: Alloys; bcc transition metal alloys: charging effect; electronic density of states; G. P.

zone: Ginzburg-Landau coherence length: Hf-Ta: low-temperature specific heat;

magnetic susceptibihty; omega phase; rigid-band approximation; superconducting

transition temperatures; tantalum-tungsten (Ta-W); Ti-Mo; titanium-molybdenum

(Ti-Mo) alloy; tungsten (W); W-Re.

1 . Introduction

Important theoretical contributions to our un-

derstanding of the conditions for vahdity of, and the

i

limitations of, the rigid-band approximation have been

made by Beeby [1] and Stern [2,3]. According to the

, latter [3] perturbation theory is appropriate when the

;
difference between the atomic potentials of the par-

' ticipating atoms is sufficiently small, regardless of

: solute concentration. Conversely, large differences in

atomic potentials result in what is effectively a transfer

I

of screening charge from one kind of atom to the other,

accompanied by a breakdown of perturbation theory.

The so-called charging effect can be parameterized by

means of the quantity {\Vri\) av.l^ , where Vxz is a mea-

sure of the difference between the atomic potentials of

the two types of atom, and A is the zero-order energy

band-width. Stern's theory of charging thus provides a

unifying interpretation of alloy behavior in terms of dif-

ferences in atomic potentials. Accordingly "similar"

atoms tend to form solid-solution alloys over a wide

composition range, while the binary phase diagrams for

pairs of atoms widely separated in the periodic table

usually exhibit a pluraUty of intermetallic compounds.

A survey of the physical and electronic properties of

pure transition metals and their binary alloys leads to

the conclusion that pairs of transition metal atoms

chosen from adjacent columns in the periodic table

probably provide optimal conditions for the validity of

the rigid-band model. It follows that it should be possi-

ble to transcribe the curve of y vs. e/a,' in the range

' y is the luw-lemperature electronic specific heat coefficient, and (eia) is the ratio of the

total number of valence (s -I- d) electrons to the number of atoms. For a free electron gas y"

(2/3) TT-k-n(EF). where n(£', ) refers to the density of slates at the Fermi level £, for a single

spin direction (i.e., one-half of the total density of slates). If the units of y are mj/mole-deg-',

and those of n(£, ) are slates/eV-atom. then y°=n(£', )/0.212.
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(i — 1 to i+ 1), into a reasonable experimental represen-

tation of the density-of-states curve, for a transition

metal of the ith group of the periodic table, over a

small energy interval about the Fermi energy. Near the

middle of a transition series, where the greatest num-

ber of electrons are available for screening we expect

to see the closest conformity to the rigid-band model

[4]. Indeed, as McMillan has shown [5], there is re-

markable agreement between the experimental rigid-

band "density-of-states curve" derived from specific

heat data for bcc binary Hf-Ta-W-Re alloys, and the

results of band structure calculations for W by Mat-

thies [6] . Implicit throughout this discussion is that

some degree of similarity should exist between the

density-of-states curves for transition metals of adja-

cent groups. The recent work of Snow and Waber [7]

has enabled, for the first time, such a comparison to be

made. Their calculated n(£')- curves for the bcc phases

of the 3d transition series exhibit a gradual change of

profile on proceeding from Ti to Fe. Some similarity be-

tween the hep n{E) curves for Sc and Ti has also been

noted by Altmann and Bradley [8].

The extensive literature relating to calorimetric mea-

surements on cubic phase (bcc and fee) transition metal

binary alloys has been reviewed by Heiniger, Bucher,

and Muller [9]. Low temperature specific heat has not

succeeded in extending the bcc y curve to e/a = 4 since

the bcc phases of Ti, Zr, and Hf (and the dilute alloys of

slightly higher ela) are not stable except at elevated

temperatures. However, the limited amount of

calorimetric work that has been carried out on alloys in

the range e/a < 5 has always suggested the existence of

a maximum in niEf ) near e/a = 4.5 (or a maximum in

n(E) near the appropriate value of E, if rigid-band con-

ditions are fulfilled). Low temperature specific heat

data in the range 4 < e/a < 6 are reviewed in figure L
In agreement with these are the results of earlier stu-

dies of the superconducting transition temperatures

(Tc) of transition-metal binary alloys. Maxima in Tc have

frequently been noted in Ti-base alloys near eja = 4.5

[10]; and for Ti-Mo in particular, Blaugher et al. [11]

have suggested that the turning point observed in Tc

might be connected with a corresponding maximum in

n(Et. ) for that alloy system. In addition the nuclear spin

relaxation data of Masuda et al. [12] in the form

(TiT)~^l- vs. e/a exhibited a rather flat maximum,

located near e/a —4.5, which was correlated with a

- n{Eil is the density of stales at energy £j. Many authors, including Snow and Waber [7]

consider both electron spin directions when calculating niEi- ). Others consider only a single

spin direction resulting in an ''n.(Ef) for one spin directi n" which is one-half of the other

value. We are arbitrarily following the latter convention, cf., our figure 12 with the figure 6 of

reference [7].

4.0 4.5 5.0 5.5 6.0

Electron -to -Atom Ratio ,e/a

Fl(;URE 1. Plot of electronic specific heat coefficient y versus

valence electron (s-Hd) to atom ratio, e/a for pure transition

metals and binary alloys of the 3d and 4d series.

Sources of data for the (3d-3d)4 series are: (i) Ti-V [20-85 al.% (e/a=4.20-4.85)]-ref.

(a); (ii) V-Cr [10-35 at.% (c/h = 5. 10-5.35) ]-refs. lb) and (c); (iii) V-Cr [50-95 al.% (e/« = 5.50-

5.y5)]-ref. (d); (iv) V-Cr [95-99 at.% (e/" = 5.95-5.99) ]-ref. (e).

Sources of data for the (4(/-4(/) series are: (i) Zr-Rh [4-8 at.% (e/« = 4.20-4.40) ]-ref. (f):

(ii) Zr-Nb [.50-75 at.%' ((/« = 4. .50-4. 75) ]-ref. (e); (iii) Nb-Mo [10-25 at.% (e/« = 5.10-5. 25)]-

ref. (g): (iv) Nb-Mo [40-90 at.% (e/a = 5.40-5.90)]-ref. (h)

(a) Cheng, C. H.,et al.,Phys. Rev. 126,2030(1962).
(b) Gupta. K. P..et al..J. I'hys. Radium 23, 721 (1962).

(c) Srinivasan. T. \\.. and Be< k. F. \.. Ann. .\cad. Sci. Fennicae .\ VI 2 1 0, 163 (1965).

(diCheng. C. H.,et al.. Phys. Rev. 120,426(1960).
(e) Heiniger. G., Phys. kondens. Materie 5,243 (1966).

If) Dummer. (;., Z. Phys. 186, 249 (1965).

(g) Morin. F. J., and Maita, J. P.. Phys. Rev. 129, 1115 (1963).

(h) Veal, B. W., et al., Ann. Acad. Sci. Fennicae A VI 2 1 0, 108 (1965).

maximum in niEf) based on calorimetric evidence such

as that of figure 1.

One of the aims of the present research was to deter-

mine experimentally whether the inferred density of

states maximum at e/a ~ 4.5 was in fact a property of

single-phase bcc alloys (i.e., a property of the rigid-band

bcc density of states curve). The alloy system chosen

for this study was Ti-Mo, which exhibits continuous

uninterrupted solid solubility in the bcc field from pure

Ti to pure Mo.

2. Experimental

Ti-Mo alloys of nominal composition 1, 2, 3, 3.5, 4,

4.5, 5, 7, 8.5, 10, 15, 20, 25, 40, and 70 at. % Mo were

prepared by arc-melting high-purity ingredients, the ac-

tual compositions subsequently being accurately

established by chemical analysis. The ingots were an-
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(a) 4 at. % (b) 4 - ^ at. % (c) Set. % (d) 7 at. %
Figure 2. Representative optical microstructiires of quenched

{from 1300 °C)Ti-Mo alloys.
A dense martensitic structure is apparent in (al and (b). with (c) representing the end of

the field. Some twinning is visible in (d) but no second phase appears to be present at this
magnification. Magnification of the original photographs -.50X.

nealed for eight hours at 1300 °C in a titanium-gettered

argon environment and rapidly quenched into iced

brine. Specimens of 4 through 7 at. % Mo were ex-

amined by conventional optical metallography (fig. 2).

The quenched alloys of up to and including 4.5 at. %
Mo were apparently almost completely martensitic in

structure. The martensitic field seems to terminate at

approximately 5 at. % Mo; and the micrograph of the 7

at. % alloy is clear except for some slight twinning. Ti-

Mo alloys in the composition range above 6 or 7 at. %
used in previously-reported physical property studies

have generally been assumed to be single-phase bcc. In

a search for the presence of an expected second-phase

precipitate in the "clear," apparently single-phase, re-

gions (cf., fig. 2) of the present alloys, specimens of 5,

7, and 10 at. % Mo were examined by electron diffrac-

tion and electron microscopy. The results of these ob-

servations will be discussed later.

The principal technique used in this investigation

was conventional low temperature calorimetry (1.5-6 K)

which in general yields the electronic specific heat

coefficient y and the Debye temperature, Oo. In addi-

tion for Ti-Mo a superconducting transition was ob-

servable for Mo concentrations greater than 5 at. %.
Low temperature calorimetry also shows clearly the

degree of sharpness of a superconducting transition,

and through the relative height of the specific heat

jump, the approximate abundance of the superconduct-

ing component in a mixture. As a result of the metallur-

gical studies we were able to show that of the quenched
alloys only those of concentrations greater than about

20 at. % Mo could be regarded as completely single

phase bcc. In the low concentrated alloys, in which the

bcc phase is stable only at elevated temperatures, den-

sity-of-states was gauged by magnetic susceptibility (up

to 1140 °C), after having estabhshed that for this alloy

system at least magnetic susceptibility was, under the
circumstances, a reasonably reliable substitute.

3. Results and Discussion

3. 1 . Low-Temperature Specific Heat

The low-temperature specific heat data are sum-
marized in figure 3 where they are compared with the

resuhs of previously-pubhshed calorimetric measure-

Electron -to -Atom Ratio ,e/a

4 2 4.4 4.6

— 400

— 350

err
— 300

250

10 20

Atomic Percent , Mo

40

Figure 3. Low-temperature specific heat data for bcc- and (bcc

+ oi) -phase Ti-Mo alloys.

• -this work: A-ref. [13|; V-ref. [14); x-ref. [15|. The open squares refer to pure
hep Ti. the data being obtained in the present experiments excepting for 7",-. which is due
to R. H. Batt|Hh.D. Thesis. University of California. Berkeley (1964)|.
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Ti-Mo

Figure 4. Low temperature specific heat data for Ti-Mo alloys

plotted in the usualformat, C/T versus T-.

A sharp superconducting transitidn was found in all the alloys of concentrations greater

than 7 at.% Mo. This is exempHfied in the figure for Ti-Mo (7-15 at.%).

0 0,5 1.0 1.5

1/(0 212 y ],eV-atom

Figure 5. Plot of log (Tc/^d) versus {0.212 y)~' the slope of which
according to eq (2) yields Vop,,. , an apparent electron-pairing

potential; which is directly usable in the electron-phonon enhance-
ment factor {I -f 0.212 y \upp.)of eq(7).

ments [13-15]. There is fortunately no serious numeri-

cal disagreement between the present results and those

of previous authors. Figure 3 shows that the behaviors

of the three properties Tp, y, and do are, in the absence

of further evidence to the contrary, entirely consistent

with a bee density of states which rises to a rather flat

maximum at about e/a ~ 4.5. Tc and y are seen to

have their characteristically similar trends, a property

which follows from the BCS-Morel [16] relationship:

TcIOd^ exp {-llniEpW}, (1)

where V is the electron pairing potential. In addition y
and 01) have their frequently-observed [9] inverse rela-

tionship, as do Tc and do-'^ Another property usually as-

sociated with homogeneous alloys is a sharp supercon-

ducting transition. Figure 4 shows Tc to remain sharp

^ In other words, as pointed out by McMillan [5] there is a variation of coupling constant

with n(Ey} through a relationship between density-of-states and elastic stiffness.

throughout the entire concentration range 7-15 at. %
Mo.

In the presence of electron-phonon interactions the

measured y is enhanced, beyond what would be ex-

pected for a free electron gas of density n(Er), by a fac-

tor (1 + A) in which it is usual to assume k = n(Ei.) V.

Equation (1) may therefore be re-written:

rc/6iz,°c exp {-1/0.212 yapp.}, (2)

where Vapp. = Vj{\-\- k). It follows that a plot of log

(Tel do) vs. (0.212 y)"' should be Hnear for any alloy

system in which Vapp. is constant. As figure 5 shows

such a linearity is exhibited by the entire alloy series

from hep Ti through Ti-Mo (40 at. %) with an apparent

electron interaction potential, Vapp., equal to 0.26 eV-

atom.

To summarize, on the basis of all the low-tempera-

ture physical properties described above it would ap-

pear that the structures of quenched Ti-Mo (> 7 at. %)
are not disturbed by the presence of a second phase.

590



and that the rigid-band bcc density of states curve does

in fact possess a maximum at e/a ~ 4.5.

3.2. Microstructure Studies

By now a considerable bulk of metallurgical evidence

points to the conclusion that submicroscopic

precipitation does occur within the bcc regions of

quenched Ti-M and Zr-M alloys (where M represents a

transition element from groups V to VIII) in the com-

position range corresponding to e/a < 4.5. The occur-

rence of this so-called w-phase precipitate in Ti-base al-

loys has been discussed and reviewed in recent papers

by Blackburn and Wilhams [17] and Hickman [18].

Although the detailed mechanism of its formation from

the bcc matrix is not yet clear, it has been pointed out

by Boyd [19] that the transformation kinetics are

analogous to G. P. zone formation; i.e., below some

sharp solvus temperature the second phase forms

rapidly as a high density of precipitates. The w-phase

has a complex hexagonal structure which exhibits par-

tial coherency with the parent bcc lattice. According to

Hickman [18] it is possible for the oj-phase to be of the

same composition as the matrix, in which case its rate

of formation is too rapid to be suppressed even by

quenching from the bcc field.

In quenched alloys the precipitated particles should

increase in abundance as the solute concentration is

reduced below the formation threshold, which for Ti-

Mo alloys seems to be in the vicinity of 15 at. % of Mo.

A correlation therefore exists between the drop in den-

sity of states (as gauged by Tc and y) and the expected

fraction of precipitated oj-phase. To substantiate the

correlation, it remains to demonstrate the presence of

co-phase in the specific heat specimens themselves.

Electron microscope observations were made on

samples taken from quenched specific heat ingots of

compositions 4.5, 5, 7, and 10 at. % Mo. Typical

results, those for Ti-Mo (5 and 10 at. %) are presented

in figures 6, 7, and 8. Figure 6 is an electron diffraction

photograph from Ti-Mo (5 at. %). Two bright spot pat-

terns are superimposed: a rectangular arrangement of

round spots from the bcc matrix; and groups of elon-

gated spots'* originating from the a> precipitate. The

precipitate itself'' may be selectively photographed

against a dark background by forming an image from

one of the w-phase diffraction spots. Dense precipita-

tion is seen in both the 5 at. % (fig. 7) and 10 at. % (fig.

8) alloys, the particles becoming smaller in size but

According to Blackburn and Williams [17] the spot elongation is evidence of a hexagonal

atomic structure and an ellipsoidal precipitate morphology.

^ Actually only one-quarter of the precipitate can be visualized, at one lime, by this

technique.

more densely packed as the Mo concentration is

reduced. Measurements taken from figures 7 and 8

showed the particle diameters to vary from 70-130 A (5

at. % Mo) to 170-330 A (10 at. % Mo).

The structural studies have demonstrated that as ela

decreases below about 4.5 the decreases in the quan-

tities Tc and y correlate with an increasing proportion

of oj-phase observed to be present in the same specific

heat specimens.

3.3. Magnetic Susceptibility

Magnetic susceptibility measurements on pure Ti

have shown that the transformation from hep to bcc at

883 °C is accompanied by a relatively large increase in

total magnetic susceptibility [20] and presumably

n(Er)- It was, therefore, postulated that n(Ei.') for Ti-Mo

alloys lay on an extrapolation of the data for the region

e/a > 4.5; and that the observed maximum near e/a

~ 4.5 was induced by the presence of co-phase in the

lower concentration alloys. If this were so, removal of

the oj-phase should restore niEp) to its expected ex-

trapolated value. Since the formation of the precipitate

cannot be suppressed by quenching, the experiments

on single-phase bcc alloys would need to be performed

at elevated temperatures, which eliminates low-

temperature calorimetry as a technique. However, this

region can be explored using magnetic susceptibility.

But in order to be able to employ this technique as a

valid substitute for calorimetry, it is first of all neces-

sary to estabhsh a suitable relationship between sus-

ceptibility and specific heat for a series of the quenched

alloys.

3.4. Magnetic Susceptibility and Specific Heat

For free electrons it is well known that

Xs„in=^ 2/x|n(£f), (3)

where is the magnetic moment per spin (Bohr mag-

neton); n(Er) is Qur conventional Fermi density-of-

states referring to a single spin direction; and the con-

stant of proportionality depends on the units employed.

We have already shown that for free electrons:

n(£f) = 0.212y'. (4)

It follows that

Xspin=13.71y», (5)

in which, if y is expressed as mj/mol-deg'^, Xsptn

appears as /u, emu/mole, y*^ may be derived from the ex-

perimentally-obtained y, by allowing for electron-



FuiURE 6. Electron diffraction ijattern from Ti-Mo (.5 at.%).

Two principai types of spot patterns are superimposed: a rectanjiular arranjiement of

(twelve) bright round spots; and groupings of elongated spots originating from the w-phase

precipitate. The rectangular pattern of faint round spots is due to a different orientation of

the tu-phase.

Future 7. Dork field electron micrograph shoicin^ oj-phase in Ti-Mo
(.5 at.%).

Inset is the preliminary electron diffraction pattern (shown enlarged in fig. 6). with the

originating w-spot indicated by the arrow. By this technique the bright patches of the

photograph are specific to w-phase; however, only one-quarter of the precipitate is visualized

at one tiine.

phonon enhancement (1 + A.) present in a real crystal,

in the following way:

y' = y/(l + A),

wnere

(6)

A = n{EF) V.

Using (4) and re-applying (6),

\ s 0.212 y Vlil^k)

= 0.212 y Fa„„. [c.f., (2)].

The required experimental 7** is therefore

y' = y/ (1 + 0.212 y Fa,,,,),

with (7)

Fa„„ = 0.26 eV— atom.

The density-of-states may then be obtained by using eq

(4).

The chief components of the measured total mag-

netic susceptibihty are given by x«>tai = Xmin-^ Xorb.,

where Xorb.-, the orbital paramagnetism, has been

discussed by Clogston et al. [21], and others. In the

present work, Xowi. was derived experimentally by com-

paring Xtoini (room temperature) with Xs,^,,, [calculated

from the measured y using eqs (5) and (7)] for single-

phase bcc alloys (100-20 at. % Mo) and then extrapolat-

ing into the two phase region.^ Figure 9 compares y
with x^pin for quenched Ti-Mo alloys. Agreement

between the curves has of course been forced in the

single-phase bcc field between 100 and 20 at. % Mo as

described above. But below 20 at. % Mo there is a

simultaneous drop in both y" and Xmn-- which in this

range is taken to be given by x<ot<ii (measured)-Xor/A. The

continued agreement in this latter region is sufficiently

convincing to suggest that x.s-pi" may be used, with a

reasonable degree of confidence, as a substitute for

in the high temperature measurements to be described.

Magnetic susceptibility measurements were made at

temperatures of up to 1140 °C. After reaching struc-

^ This extrapolation was practicaliy horizontal yielding for bcc Ti-Mo (0-20 at. %) Xt/-.
=

132 /I emu/mole. This compares favorably with Xoro. = 150/x emu/mole for bcc Ti-V alloys

containing less than 70 at. % \ (and including, we assume, bcc Ti) according to N. Mori

[J. Phys. Soc. Japan 20, 1383 (1965)].
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Figure 8. Dark-field electron micrograph showing u>-phase in

Ti-Mo (lOat.%).
Inset is the preliminary electron diffraction pattern, with the ori^inatinfi w-spot indicated

by the arrow.

tural equilibrium in the bcc region the alloys exhibited

almost temperature independent susceptibility as

shown in figure 10. Figure 11 compares the extrapo-

lated room temperature total susceptibilities of single-

phase bcc Ti-Mo alloys with those in which w-phase

precipitation has occurred. Clearly, as eja decreases

below about 4.5, X'otai (bcc) continues to increase

monotonically on an extrapolation of the curve for 4.5

< eja < 6; whereas the curve for Xtmai (bcc + o)) turns

over and proceeds downwards as the proportion of a»-

phase increases.

It is concluded as a direct result of the susceptibility

work that the turning points at eja = 4.5 which ap-

pear in the x-> ^id Tc curves for quenched alloys are

induced by the formation of an co-phase precipitate.

3.5. Analysis of the Experimental Data

The essential semi-quantitative features of the ex-

perimental results are immediately obvious from an in-

spection of figure 11 followed by a visual extrapolation

of the y curve of figure 9. However, in order to make
the best possible quantitative comparisons between the

experimental x and y results and theoretical predic-

tions, our data has been analyzed in a manner which is

Electron -to-Atom Ratio, e/a

4^0 4^ 4^8 5.2 5.6 6.0

Atomic Percent Mo

Figure 9. Reduced magnetic susceptibility and specific heat data

for bcc and (bcc + o)) Ti-Mo alloys.

O — reduced experimental data y"=yi{\ + \)\ • — Xspin- calculated from y" in the ran^ie

100-20 at.% Mo; (inset)-x„ri,. calculated from (Xi„u,|-Xsi.in) in the rant;e 100-20 at.% Mo.
and extrapolated; — (Xioiai

~
Xnrh. ) for (bcc + w) alloys (note the un-forced ajireement of the

and O data below 20 at.% Mo); A. A — Xsi-in and -y" for single-phase bcc, respectively.

best described with reference to the appropriate row

numbers of table 1.

From the low-temperature specific heat results, y
may first be calculated using eq (7). This is plotted (0-

100 at. % Mo) as the lower curve in figure 9 and is listed

(bcc only, 20-100% Mo) in row 8. From y", Xspin n^^t

be calculated [eq (5)] and is hsted (20-100% Mo) in row

9. Using the measured Xtomi for this concentration

range, a Xoru. may be derived (row 10) and extrapolated

to lower concentrations (row 11). From the results

presented in figure 10 a set of values of Xtotai (bcc: 0-20

at. % Mo; 300 K) may be obtained by extrapolation.

Using these values (row 5), and the extrapolated Xori>-

(row 11), the corresponding x.vp/H is derived (row 12).

These values are plotted to form the upper susceptibili-

ty branch in figure 9 and appear to fall more or less on

a continuation of the curve for Xmi> (20-100 at. % Mo),

y (0-20 at. % Mo) is next calculated from eq (5) and is

listed in row 13. These values are also plotted in figure

9. Referring to the single-phase bcc data, the x.s-pi" and

y" curves of figure 9 must of course follow each other

over the entire concentration range since they are con-

nected throughout by eq (5). By this technique we now
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Figure 10. Temperature dependences of susceptibility of single-

phase bcc Ti-Mo alloys.

Whereas the quenched 40. 25. and 20 at.% alloys are bcc at room temperature, the lower
temperature limit for bcc Ti, for example, is 1156 K. Susceptibilities have been extrapolated

back to 300 K by guessing that the temperature dependences are always similar to that
'
for Ti-Mo (20 at.%).

have a complete set of y° data with which to compute

niEp) for single-phase bcc alloys using eq (4). The final

results are listed in row 14 and plotted in figure 12.

4. Theoretical and Experimental n(Ei.') Values

4.1 . n(Ei. } for bcc and hep Pure Titanium

An immediate result of the above analysis is an ex-

perimental value for the Fermi density-of-states for bcc

Ti, viz 1.54 (eV-atom)"'. Again, applying eqs (7) and (4)

respectively to the results of specific heat measure-

ments on pure hep, Ti yields y/K/;?;" = 2.84 mj/mole-

deg2; and n(E/.)hcpTi = 0.60 (eV-atom)-i. It follows that

[n(E i.)i,rcl ri(Ei.)iici)]exp. = 2.5.V

Band structure calculations have been carried out for

both the hep and the bcc phases of Ti by Altmann and

Bradley [8] and Snow and Waber [7], respectively.

The resulting density-of-states curves are juxtaposed in

figure 13. A comparison of values at the Fermi level

yields [n(E,.},,rclniEi.)hrp}iiieo. = 2.1.

4.2. Theoretical and Experimental Rigid-Band

Density-of-States Curves

An experimentally-derived curve of n(Ei.) vs. e/a (4 <
e/a<6) obtained from the single-phase bcc Ti-Mo

©Ox (300 "K)
total

Y (300 °K, extrapolated
total

from high -temp,

bcc field).

200 —

o
E

_ 160 —

X
T3

Ol
<U
TD

I

0)

o
E

E

40 60

Atomic Percent Mo

Figure 11. fJsing the extrapolated data from figure 10, it is seen

that Xtotni (siTtgle-phase, bcc, < 20 at.% Mo)— fall on a mono-
tonically-increasing continuation of the curve for Xiotm (bcc,

100-20 at.% A/o)— O; whereas the presence of oj-phase (in Ti-Mo
< 75 at.% Mo) depresses the susceptibility— Q.
Note the remarkable agreement between the total measured molar susceptibilily (OO)

and the measured (molar) electronic specific heat coefficient (A).

data is presented in figure 12, for comparison with

Snow and Waber's [7] "calculated" curve deduced

from the calculated n{Ef ) values for Ti, V, Cr (and Mn).

There is clearly a qualitative similarity between these

"rigid-band density of states" curves. It may be possi-

ble at least to reduce the quantitative discrepancy be-

tween the experimental and calculated «(£'f) curves by

attacking some of the more obvious sources of error.

For example on the experimental side, n{E^ ) for pure

Mo (and possibly the Mo-rich alloys) may be too large

through a possible underestimate of A., which was de-

rived by assuming F„pp. = constant= 0.26 eV-atom for

the entire Ti-Mo series. If instead we use for X the value

quoted by McMillan [5] , the experimental value of

niEp) for pure Mo is reduced from 0.367 to 0.278 (eV-

atom)~', which draws the curves closer together in the

range 70-100 at. % Mo. On the other hand, in the Ti-
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TABLE 1. ANALYSIS OF THE EXPERIMENTAL DATA FOR SINGLE-PHASE bcc Tl-Mo ALLOYS

1 Nominal At.%-Mo 100 70 40 25 20 15 10 8.5 7 5 3 2 1 0

(bcc)

0

(hep)

Comments

2 Actual At %-Mo 100 71.02 39.81 25.36 19.38 14.92 10.30 8.86 V.I D 2.87 1.91 0.99 0 0

3 Molar wt. (g) 95.95 82.03 67.03 60.09 57.22 55.05 52.85 52.16 51.24 50.38 49.28 48.82 48.37 47.90 47.90

4
300°K , ,

, ,

Total
84.4! 132.2 190.4 199.7 202.8 Measured (300°K)

5
300l< , ,

, ,V \\k efnu/mo Gi
TotsI

"iw'c^ 210 9 216.7 218.0 219.8 221.8 223.7 227.0 226.9 231.4
Extrapolated values (rom

Figure 10

6 y (m j/molG"deg^) 1.85 2.65 6.1 7.0 7 \ 3 36 Measured (1.5-5'^K)

7 0.102 0.146 0.336 0.386 0.391 0 185
A= 0.212 y V

V.„„= 0.25eV-alom
app

8 1.68 ? ^1L. J 1 H.uD 5.05 5 10 2 84 v°-v/n < Ai

9
spin

23.0 31.7 63.9 69.2 69-9 V -=13 71v°
'^spin

'

10
ofb

61.4 100.5 126.5 I3I.I 132.9
'^orb~^Total •^spin

11
SOO'^K,

, , ,V (11 emu/fTio ei
Ofb

mwi»-/ 132 132 132 132 132 132 132 132 132
Extrapolated values from

Figure 9 (inset)

12 V . (u emu/mole) 78.9 84.7 86.0 87.8 89.8 91.7 95.0 94.9 99.4
'^spin '^Tolal ''orb

13 y^frnj/mole-deg^) 5.75 6.18 6.27 6.40 6.55 6.69 5.93 6.92 7.25 y° = Y . /13.71
' '^sprn

14 n (Ep)(l/ev-atom) 0.36 0.49 0.99 1.07 1.08 1.22 1.31 1.33 1.36 1.39 1.42 1.47 1.47 1.54 0.60 n(Ep)=. 0.212 y°

rich region, the calculated n{Ei. ) may be too small; for

as Snow and Waber [7] have implied, excessively wide

energy-intervals in a calculated energy histogram will

reduce the apparent height of any sharp energy peak.

Thus n{Ei.') for fee Ti which does seem to be situated

at such a peak, may be underestimated in the

calculations.

5. Summary

In quenched single-phase bcc Ti-Mo alloys, as Ti is

added to Mo, the various quantities that parameterize

the density-of-states viz X- 7^ and Tc increase as eja

decreased from 6 to about 4.5. But, for e/a < 4.5 a.

second phase precipitate (a»-phase) inevitably appears

in the quenched alloys. In this range n(Ei. ) decreases as

the proportion of w-phase increases. That there is in-

deed a causative relationship between these effects has

been verified experimentally with the aid of magnetic

susceptibility measurements at temperatures suffi-

ciently high to dissolve the precipitate. For the (bcc +
a») alloys the observed reduced values of y would nor-

mally be interpreted as the weighted averages of jbcc

for the matrix, and joi for some macroscopic precipi-

tate. But this does not satisfy the requirements im-

posed by the observed superconducting behavior. In

the (bcc+ w) material the height and sharpness of each

specific heat jump indicate that the superconducting

transition is experienced uniformly by the entire speci-

men. Were it not for the fact that thecu-phase precipi-

tate can be visualized and measured by means of

electron diffraction and electron microscopy, macro-

scopic physical properties observations alone would

lead to the conclusion that the (bcc+oj) material was

single phase. This apparent paradox is undoubtedly

related to the smallness of the precipitate size. Varying
o

within the range of about 70-330 A, the precipitate

diameter is commensurate with a Ginzburg-Landau

coherence length for Ti-Mo [14]. It is postulated that

detailed microstructural investigations of other Ti-M

and Zr-M alloys, which have been found to exhibit ap-

parent n{Er) maxima near e/a ~ 4.5 would also reveal

the presence of w-phase below this composition. The

curve of «(£/. ) vs. eja for single-phase bcc Ti-Mo alloys
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Figure 12. Calculated density-of-states curves for bcc (broken line)

and hep [full line) Ti with enerfty referred to the Fermi level.

The lice curve is due to .Sni)w and W al)er [7| and the Itcp curve lo .Mttnariii and Bradley

|8|. Nnte that /j{AV ) in this paper arbitrarily releres to one spin direction ((71 and [8] nse bo[/i

s|tin directions).

increases monotonically as e/a proceeds from 6 to 4, as

does a "calculated" curve based on niEf) values for

Cr, V, and bcc Ti. Comparing the experimentally-

derived density-of-states values for the bcc and hep

allotropes of Ti we find that [n{Ei.')i)ccln{Ei. )i,cp]exp

= 2.5,5, compared to a theoretical value of 2.1 based on

the published results of band-structure calculations.
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The specific heat has been measured at low tempera-

tures (
~ 1 to 20 K) for four large crystals of VCj, with

results that indicate the presence of maxima near x =
0.85 in both the Debye characteristic temperature, ^o,

and the electronic density of states at the Fermi level

ny{^). The behavior of suggests that the maximum
melting temperature of VCj- occurs at a composition

close to that of the ordered compound VkVo, rather

than at the composition VCo.ts proposed recently by

Rudy. The variation of A^y(^) with x has been used to

obtain an estimate for the density-of-states curve in

the vicinity of the Fermi level. The result is discussed

in terms of the behavior expected from elementary

considerations of the electronic structure. Prelim-

inary measurements show that the superconducting

transition temperature of these crystals is lower than

50 mK. This work has been published in Phil. Mag. 21,

245(1970).
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Discussion on "Specific Heat of Vanadium Carbide, 1 -20 K" by D. H. Lowndes, Jr., L. Finegold,

D.W. Bloom (University of Colorado), and R. G. Lye (RIAS, Martin-Marietta Corporation)

N. M. Wolcott (NBS): I would like to address a

(]uesli()ii to all the speakers of the group of papers deal-

in<2; with low temperature specific heats and to the rap-

porteur (John Rayne). One usually makes comparisons

of the electronic density of states in terms of the

number of levels per atom per eV. And in many of these

comparisons, particularly where the same electron-to-

atom ratio is used. I wonder if it niight not he more ap-

propriate to use levels per unit volume (per cc),

because, at least in the free electron model, it's the

number of carriers per unit volume which determines

the electronic specific heat. In many of these cases, the

curve might look quite different if one included the

volume change on alloying, particularly when there is

a phase change in the alloy system.

A. Narath iSandia Labs.): Would anyone care to

respond to that comment? (No response).

J. E. Holliday (U.S. Steel): I would like to ask two

questions. The first concerns the rigid band model. Our
soft x-ray band spectra, the photoemission spectra

presented at this conference, and the theoretical band

calculations of Altman on Sc, Ti, Y and Zr show that

the rigid band model is a very poor approximation.

However, there has been a number of references to the

rigid band model at this conference especially in the

session on electronic specific heats. In light of these re-

marks I would like someone to comment on the rigid

band model.

The second question concerns the APW calculations

on TiC by Ern and Switendick and the LCAO band cal-

culations on TiC by Lye and Logothetis. The APW cal-

culations of Ern and Switendick show nearly complete

admixture of the C-2p and the Ti-3d bands (possibly

their C-2p band is at the bottom of the T\-3d band),

while the LCAO band calculations of Lye and

Logothetis put the 2p band of carbon above the Ti-3d

band which would result in a transfer of electrons from

Ti to carbon. This direction of transfer was rather star-

tling since it is opposite to the predictions of elec-

tronegativity and has been quite disturbing to chemists.

The rapporteur implied that the discrepancy results

from differences in the APW and LCAO methods of

calculations. However, is it possible that the difference

is due to the original assumptions. In other words,

couldn't the APW method show a separation in the C-

2p and Ti-3c? bands with the proper assumptions. I be-

lieve that both Lye and Switendick are in the audience

and possibly they would like to comment on this

question.

Our soft x-ray band spectra, and the electron spec-

troscopy results at Uppsala, on TiC show a separation

of the C-2p and Ti-3c? bands with the C-2p band below

the Ti-d band. This will result in a transfer of electrons

from Ti to carbon which is opposite to that predicted by

Lye and Logothetis.

J. T. Waber (Northwestern Univ.): I would like to

respond to the question just raised about the validity of

the rigid band model. Recently Snow and I [1]

published a paper giving the band structures for the

bcc and fee forms of the 3d transition metals from

titanium to copper. The trends in these N(E) curves

were compared with the trend of the energy eigen-

values of the 3d and 4s electrons in the isolated atoms.

One of the unexpected results of band calculations

was that the Fermi level did not steadily increase with

group number but was to the first approximation con-

stant when it was compared with the vacuum level

(namely, compared with the zero corresponding to

separation of an electron from an isolated atom).

Although, of course, the Fermi level did rise con-

sistently with respect to Xi (for fee) or Hi > (for bcc) the

bottom of the d band. Note that this zero (vacuum level)

can be retained when one superimposes the free atoms

to form a solid. The set of fee and bcc series of N(E)

curves are illustrated in figures 5 and 6 of reference 1.

The two peak structure is discernible for the bcc

metals — the structure of N(E) for the fee phases is

harder to describe in a few words. However, it is clear

that the bands are not rigid when such a series of ele-

ments is considered.

Because of the way that the Fermi level samples the

N(E) curve, one will find N(Er), i.e., the density of

states at the Fermi level, does display the familiar 2-

peak shape which we come to expect for 3c? bcc alloys

following the very significant deduction that Slater

made thirty years ago. However, the deduction that the
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N(E) curve is therefore fixed or universal is not correct.

The distinction is that currently we believe the t/-bands

change both their position and shape as a function of

atomic number, whereas in 1939 Slater had only one or

two density-of-states curves available to him and could

not be sure of a specific trend. He advanced this idea as

a working hypothesis. The newer deduction has

resulted from the advice and generosity of Prof. Slater,

John Wood and A. C. Switendick who made their com-

puter codes available to various research workers.

In a discussion 1 made yesterday, the N(E) curves of

bcc titanium, vanadium, and chromium were compared

with those for the bcc forms of zirconium, niobium and

molybdenum. In that figure, a two peak structure can

be seen for the three 3(i-metals whereas the NiE)

curves for the three equivalent 4f/-transition metals

show 3 peaks. Such results reinforce the opinion that

the rigid band model is not appropriate for transition

metals in general.

R. G. Lye (RIAS, Martin Marietta Corp.): I have two

comments: (1) The rigid band model has severe limita-

tions, which suggest the need for caution in its applica-

tion to alloy systems in which the composition is varied

over a wide range with resultant large changes in the

position of the Fermi level. This hmitation also poses

problems in our study of VC. However, if the electronic

structure near the Fermi level of VC is dominated by

energy bands derived largely from c?-states of the metal

atom, as we believe, then our results suggest that

changing the carbon concentration from VCo.tb to

VC(),H7 moves the Fermi level by only 0.1 eV relative to

a prominent critical point in the band structure. Thus,

we believe that the method we have used gives an ap-

proximate description of the electronic density-of-

states curve near this critical point, but we do not speci-

fy how the energy of this critical point changes, nor how
the band structure remote from the Fermi level

changes as the carbon content is varied. These aspects

of the electronic structure require separate considera-

tion. (2) As Holliday mentioned, Ramqvist [2] has mea-

sured the binding energies of the carbon I5 levels in

various materials and has determined that they are

reduced in the carbides relative to carbon. Ramqvist in-

fers from his studies that there is a net negative charge

associated with the carbon atoms, and concludes that

this contradicts our proposed band structure for TiC

[3]. I beheve, to the contrary, that his results provide

additional support for certain features of our band

structure. In particular, we found it necessary to raise

the Herman and Skillman one-electron-energies of the

carbon atom by 2.77 eV for the 2p state and by 4.15 eV

for the 25-state in order to make the empirical band

structure agree with experimental data. This displace-

ment is in the same direction and has approximately

the same magnitude as that observed experimentally

for the I5 state by Ramqvist (
— 3.3 eV), so we agree to

this extent. The magnitude of the displacement can be

related to the charge on the atoms if the spatial dis-

tribution of the charge is known. Various assumptions

regarding this distribution lead to a negative charge of

approximately 0.2e to0.4e on the carbon atoms.

It is important to distinguish this charge transfer

from the transfer of electrons between states of dif-

ferent symmetry, even though the two are interdepen-

dent. In particular, because the 2p-states are elevated,

electrons are transferred from them into lower-lying

bands derived from the 3c?-states of the metal atom.

This transfer compensates for some of the negative

charge that otherwise may have been associated with

the carbon atoms. At equilibrium, a net negative charge

(0.2e to 0.4e) remains on the carbon atoms, and some 2p

electrons ( — 1 1/4) have been transferred to 3f/-states.

This question will be discussed in more detail el-

sewhere.

A. Narath (Sandia Labs.): Would Dr. Switendick care

to make a very brief comment?

A. C. Switendick (Sandia Labs.): I really wish we

could straighten this out, because we both seem to find,

no matter what the experiment is, that our results agree

with them. Yet the models are vastly different in the

physical interpretation of what is going on in these

materials. I thought that the soft x-ray results, in which

the non-metal p band seems to be well below the Fermi

energy and moved down as a function to say carbon to

nitrogen to oxygen in these transition metal com-

pounds, showed that our results were a better model,

but Bob Lye says he thinks he can get the same thing

out of his model.

[1] Snow.E. Cand WaberJ.T.,ActaMet. 17,623(1969).

[2] Ramqvist, L., Jernkont. Ann., 153 (1969).

[3] Lye. R. G., and Logothelis, E. M., Phys. Rev. 147, 622 (1966).
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Relevance of Knight Shift Measurements to the

Electronic Density of States*

L H. Bennett
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R. E. Watson'
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G. C. Carter
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The Knight shift, measures the magnetic hyperfine field at the nucleus produced by the conduc-

tion electrons which are polarized in a magnetic field. Knight shifts are often dominated by the Pauli

term and, in its most simple form, can be written as 3'{= {a}xii. Here Xii is the conduction electron Pauli

spin susceptibility which depends on the density of states at the Fermi level, N(Ef), and (a) is an

average magnetic hyperfine couphng constant associated with the wave function character at the

nucleus, |i//f (0)|-, for conduction electrons at the Fermi surface.

The Knight shift therefore provides, through (a), insight into the wave-function character as-

sociated with N(Ef ) . Calculations of (a) involving an averaging over A-space have been attempted for a

few simple metals up to the present time. For alloys and intermetaUic compounds, rather different (a)'s

are experimentally observed for different local environments, indicating that samples the variation in

local wave-function character, or a variation in local density of states. There is no unique way of

separating the local variation of N{Ef ) from |i/»aK0)|2.

In this article the methods developed for relating ^ to the electronic properties for most of the

types of cases encountered in the literature are reviewed. We discuss "simple" metals including

problems of orbital magnetism and changes in ^ caused by electronic transitions such as melting.

Knight shifts and their temperature dependence in metals and intermetaUic compounds involving un-

filled d shells, are discussed. We give estimates of atomic hyperfine fields due to single electrons, ap-

propriate to those cases where problems due to electronic configurations do not make deductions from

experiment too ambiguous. A density of states curve calculated for Cu is given, showing the relative im-

portance of s-p. and d character for that metal. In a qualitative sense this Cu curve implies such infor-

mation for other transition metals. We discuss alloy solid solutions for the cases where a "rigid" band

model might be used to explain the results, and for cases where local effects have to be taken into ac-

count. The charge oscillation and RKKY approaches and their limitations are reviewed for cases of

dilute nonmagnetic and d- or /-type impurities.

Key words: Electronic density of states; hyperfine fields; Knight shift; nuclear magnetic

resonance; susceptibility; wave functions.

Twenty years ago W. D. Knight [1]^ discovered that

the nuclear magnetic resonance (NMR) of ^^Cu oc-

1 . Introduction curs at about a quarter percent higher frequency in

metalUc copper than in a sak, CuCl. Since then, there

have been over 500 papers reported on the theory and

observation of this effect, the "Knight shift," in a wide

*An invited paper presented at the 3d Materials Research Sym
posium. Electronic Density of States, November 3-6. 1969. Gaithers

burg, Md.
' Also Consultant, National Bureau of Standards.

- Work supported by the U.S. Atomic Energy Commission.

Figures in brackets indicate the literature references at the end

of this paper.
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variety of metals and alloys. The first observation of the

Knight shift is shown in figure 1. This paramagnetic

shift of the resonance between the diamagnetic salt,

CuCl. and the diamagnetic metal, Cu, was attributed

NUCLEAR MAGNETIC RESONANCE SHIFT IN COPPER

Figure 1. The ^^Cu resonance in CuCl (upper resonance) and

metallic copper (lower resonance), illustrating the Knight shift [1 ].

[2] to the Pauli paramagnetism of the conduction elec-

trons. The shift is much larger than could be explained

by the average susceptibility of the conduction elec-

trons. It was proposed [2] that the nuclei sampled a

concentrated local susceptibility, arising from the fact

that the conduction electrons in a metal have a very

large probability density at the nucleus. In its simplest

form, the Knight shift (^) may be written

y^={a}Xp, (1)

where (a) is an appropriate sampling of the hyperfine

interaction of the conduction electrons at the Fermi

surface.

For noninteracting electrons, Xp is proportional to

N{Ef), the electronic density of states at the Fermi

level,

Xp = fJ^B'N{Er) (2)

where /Xb is the Bohr magneton. Thus in this simple ap-

proximation, the Knight shift samples, via (a), local

behavior of the density of states (at the Fermi level) at

a particular atomic site.

In this article we will inspect in detail this relation-

ship of with the density of states, thereby omitting

several important topics on other aspects of NMR in

metals. Good review articles have appeared earlier on

this broader topic [3-5]

.

Unfortunately, as with most of the methods for study-

ing the electronic density of states discussed at this

symposium, untangling the factors folded in with the

density of states is not an easy task. Very often, the ex-

perimental Knight shift is used to measure the factor

(a), Xp having been obtained from other experiments

such as electronic specific heat or bulk magnetic

susceptibility. The Knight shift provides a particularly

complicated weighted sampling of electronic character

but with these complications comes the possibility of

obtaining unique information which is otherwise experi-

mentally inaccessible.

A more complete expression for the Knight shift

would include other terms,

J/f= JTpauii + >^dia + -^orb + higher order terms. (3)

•^pauii ' given by eq (1), includes isotropic and anisotropic

effects, directly by contact and spin dipolar interac-

tions, and indirectly via core polarization and polariza-

tion of conduction band electrons below the Fermi

level. The orbital paramagnetic and diamagnetic terms,

y^oTb and y/^dia, are important at times. We will review

in this paper the various contributions to as sum-

marized in eq (3), in the Ught of experimental observa-

tions, together with theoretical methods for relating

these results to the electronic structure of metals.

2. General Observations

In NMR one looks at transitions of a nucleus (with

spin states m = /,/— 1, / — 2, . . .
1 —/,—/) from spin

state m to m± 1, by measuring the frequency, v, of the

photons involved in these transitions. The energy dif-

ference between the two states, AEm-^m-i^hv, is

directly proportional to the applied magnetic field,

//appi. However, even for a given isotope, the propor-

tionality constant is different for different solids

because the electrons in the solid respond differently

to //appi (paramagnetically or diamagnetically) causing

an additional (positive or negative) field at the resonat-

ing nucleus. This magnetization field, as seen by the

nucleus, is often referred to as the "internal field," Hint-
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The Knight shift, 3'{ ^ measures the internal field at the

nucleus produced by those electrons in metals which

respond linearly (with one exception, noted in sec. 6) to

an applied field. Thus = //int/^appi- Specifically, this

definition excludes materials with spontaneous mag-

netization.

For simple metals, the conduction electrons cover a

broad band of energy states. Those electrons at the

Fermi surface are aligned paramagnetically by an ex-

ternal applied magnetic field. The resulting polarization

of these electrons causes large internal fields, via the

Fermi contact interaction hamiltonian,<^/.•,

1677
\XHyh\ • S(r)6(r), (4)

where y is the nuclear gyromagnetic ratio, and S(r) is

the electron spin as a function of its position vector r

from the nucleus. The contact (or 8-function) interac-

tion samples the probability density |i// )(0)p = Pa at the

nucleus, for an electron in the atom. It is related to the

atomic hyperfine coupling constant, af'sy, by

a{s)
167r

yhiXttPA

.

(5)

The S(r) thus restricts this effect to 5-electrons and to

the minor components of relativistic p-electrons. The
s-effects are large, while the p-terms are almost in-

variably small and will henceforth be neglected. This

large hyperfine term is generally absent in nonmetallic

materials, because for each s-electron of spin-up, there

is an 5-electron of spin-down, and these are not decou-

pled by the usual applied magnetic fields.

For monovalent metals, a{s) is obtained with high ac-

curacy from atomic beam experiments. Values ai a(s)

for the alkali metals are shown in table 1. The quantity

more important to Knight shift considerations. Pa-, is

also shown. Note that Pa increases monotonically with

atomic number for a given group, whereas a(s} is

dominated by the nuclear moment and appears ran-

Table 1. Comparison of different ways of expressing the hyper-

fine coupling of a single s-electron, for the alkali metals.

a(s) (cm ') WjiP (kOe)

'Li
^

0.0134 15.7 X 10" 122

"Na J .0296 50.2 X 10" 390

.00770 74.6 X 10" 580
s^b .114 154 X 10" 1200
iMCs .0766 257 X 10" 2000

The data for a(s) were derived from data given by P. Kusch and

H. Taub. Phys. Rev. 75, 1477 (1949); the other columns were cal-

culated from these using eqs (5) and (12).

dom. Except for a possible small hyperfine structure

anomaly, P4 is the same for all isotopes of a given ele-

ment, whereas a(s) depends on the given isotope.

In a metal the appropriate probability density Py is

obtained by taking a suitable average over the Fermi

surface, P/. = (i//(0)-)t The Knight shift, eq (1), has

shown [2] to be

(6)

where X/> 's the Pauli spin susceptibility per atom.

Sometimes an explicit volume or mass factor appears

in the expression for but this depends on the ap-

propriate normalization of {ipHO))^:^. and on whether
a mass, volume, atomic or molar susceptibility is used.

If we define

(7)

then we obtain eq (1).

Alternately it is convenient to introduce the effective

hyperfine field //pff . which is the field measured directly

in ferromagnetic materials by, for example, ferromag-

netic NMR or by Mossbauer spectroscopy. Then

^eff = t^B{a)=^ IXhPf.

Hence

At/}
eff •

(8)

(9)

It has been found useful to define a factor ^, some-

times called Knight's ^ factor [3] , as

p i/metal

£ = iZ = "eff
? p //atom

• (10)

eff

In the simplest cases, ^ has been said to express the

fraction of s-character at the nucleus in the metal axEy,

but as we shall see, f is more complex in its meaning for

less simple cases. The Knight shift then becomes

'eff

where

//atom = 55
1^1

(11)

(12)

Here a{s) is in cm"'' H^J^^ in Oe, and ixi is in nuclear

magnetons. Values of //^^ff" are listed in table 1 for the

alkali metals and in table 2 for some fi-subgroup

metals. The values for the monovalent metals are

derived from atomic beam measurements. For

polyvalent metals, Knight [3] has used measurements
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on excited ionic states and then corrected for the

degree of ionization. Knight estimated his resuhing

values of a(sj to be accurate to perhaps 50 percent.

Rowland and Borsa [6] avoided the problem of cor-

rections by using measurements on excited neutral

atom states. The values for the polyvalent metals in

table 2 do not depend on excited state measurements,

but instead were determined by scaling, based on

atomic calculations, from the known monovalent values

[7].

Table 2. H^jf" values obtained by scaling from monovalent

values [7].

Group Atom (kOe)

T1 Til z,ouu

o,uuu

All 9n Ann

II Cd 7,000

Hg 25,800

III B 1.000

Al 1,900

Ga 6,200

In 10,100

Tl J 34,000

IV Sn 12,800

Pb 41,400

V N 3,300

P 4,700

As 8,900

Sb 14,500

Bi 49,000

VI Te 17,200

X Pt 20,000

The ^ factor accounts for any deviation in hyperfine

coupling from free atom behavior. It may deviate from

a value of one for a variety of reasons. For example, the

average conduction electron density in a metal is

greater than that in the free atom (i.e., is normalized

to a Wigner-Seitz cell in the metal whereas the free

atom extends over a significantly larger volume). If

no other factors were present, ^ would then be greater

than unity. A Fermi surface orbital, ijjp, has only partial

s-character and this causes a reduction in ^. In a "free

electron metal," ijiF is a plane wave </)f (suitably

orthogonaUzed to atomic core states) or a Unear com-

bination of plane waves. With increasing number of

electrons in the bands the 5-character of decreases

[8]. In a metal such as Tl, Pb, or liquid Bi, this reduc-

tion is quite substantial. In metals with one "free" con-

duction electron (e.g., the alkali and noble metals), kf
is relatively small, and the reduction could be expected

to be sHght. Here, other orthogonaUzed plane waves,

</>k, +0 (where Q is a reciprocal lattice vector) are mixed

into (/)/. and the normal sign of the mixing is such that

interference causes |(/;f(0)P to be less than that pre-

dicted by |(^f'(0)p alone. This, as well as d-hand

hybridization and core-polarization factors which will

be considered shortly, tend to predominate over the

normalization effect reducing ^ to values typically

between 0.1 and 0.8 in "simple" metals.

Experimental values for ^ are given in figures 2a

and 2b. Using these measured values of and obtain-

ing Xp as explained in the next section, the systematic

trends for ^ seen in figure 3 are obtained.^ In each

period the largest ^ values are found for the monovalent

metals, with ^ falling smoothly to lower values as the

group valence increases, as would be expected from the

wave function behavior just discussed. It is interesting

that these results are obtained despite the changing

crystal structures. About one-half the observed drop in

^ is expected from simple estimates [8] of the reduc-

tion in 5-character with increasing k^; the increasing

atomic volumes of the polyvalent over the monovalent

metals further enhances the trend.

The induced conduction electron Pauli spin density

may also contribute to the hyperfine coupling constant,

(a) , via the spin dipolar interaction

S 3r(ST)
(13)

where r is the vector from the nucleus to the electron.

This interaction is anisotropic and contributes an orien-

tation dependent Knight shift term, 3^an\s-> for nuclei at

noncubic sites, and occasionally at cubic sites if spin-

orbit coupling is present. In powders, this term results

in structure and broadening of the NMR line.

The induced Pauh spin density interacts directly

with the nucleus only via the contact and spin dipolar

interactions but it may act indirectly as well. The spin

density has a spin dependent exchange interaction as-

sociated with it, which arises from the PauU exclusion

principle. This may polarize the closed shells of an ion

core and the paired electrons in the conduction bands

below Ef, producing spin densities which wiU then in-

teract with the nucleus via the contact (and for noncu-

'' From figure 3, a f value for Zn between that of Cd and Hg can be

extrapolated. From this .W for Zn is predicted to be 0.20 percent.

This is in complete agreement with a prediction [9] obtained from

quite different considerations.
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Figure 2a. Knight shifts in metals as compiled at the Alloy Data Center (NBS). Note: Literature references available on request, (a) Knight

shifts in the solid and liquid state at the melting point.
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Figure 2b. Knight shifts in metals as compiled at the Alloy Data Center (NBS). Note: Literature references available on request, (b) Isotropic
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Figure 3. Behavior of Knight's ^ values for metallic elements as a function of their position in the periodic table. The points for each row

in the table are connected using the sumbols for lines as shown outside the left lower corner of the plot. Those points shown as circles

are for the metals in the solid state and those shown as squares were calculated for the metals in the liquid phase. For the former points

Xp was calculated using yei values [37]; for the liquid metals Xp taken to be 3/2(Xejp(—XdiS*)'"^"^ Xexptfrom the Landolt-Bbrnstein

Tables and Xdm^from Hurd and Coodin [33]. The absolute values of ^ are affected by uncertainties in the estimates of Xp did He// but the

relative behavior (from element to element) along each row is probably realistic. Points for solid Ga and liquid As are omittedfor lack of

accurate values for ^is„ and Xp(liq), respectively. The plot provides an estimate for the Knight shift ofZn which has yet to be observed.

bic sites, spin dipolar) interaction(s). These interactions

arise from differences induced in the spatial behavior of

spin up and spin down pairs of electrons with zero net

spin induced in the electron pairs. Their existence has

been established experimentally by the fact that half

filled shell (p^, d^, and/'') S-state atoms have nonzero

hyperfine fields. While the exchange interaction is be-

lieved to be the origin of this spin polarization, correla-

tion effects should, in principle, be important to its

quantitative behavior. These interactions have been

discussed extensively elsewhere [ 10]

.

For the moment we will limit our considerations to

intra-atomic contributions to the contact interaction.

This necessarily involves the spin polarization of closed

5-shells of the core and of thes-character in the conduc-

tion bands below Ef, since only these will interact

directly with the nucleus. Estimates of these core

polarization effects from valence electrons in the vari-

ous shells are summarized in table 3. These are based

on experimental data and on exchange polarization cal-

culations (i.e., no correlation effects). Listed are the

sign and magnitude characteristic of the core polariza-

tion response to a single unpaired s-, p-, d-, or/-valence

electron characteristic of various rows of the periodic

table. (In the case of the open p-sheU atoms, the listed

response includes that associated with the closed

valence 5-shell.) For comparison, the direct contact in-

teraction appropriate to an unpaired atomic 5-valence

electron is shown in table 4, for the d- and/-shell atoms.

The core polarization is negative fore?- and/-shells, and

for rap-shells, where n, the principal quantum number,

is 4 or greater. The negative sign implies a core spin

density at the nucleus, whose orientation is

antiparallel to the unpaired spin responsible for the
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Table 3. Rounded value for hyperfine fields due to the core polari-

zation response to a single unpaired open valence shell electron.

Open
valence

sheU

Core polarization

hyperfine field,, Heff,

per unpaired valence

electron, kOe

Comments on source(s) of core

polarization values. (For fur-

ther comments and details of

most of the data see Ref. 10).

2n + 30 Experiment, appropriate to

neutral N alone.

3n + 15 Experiment, appropriate to

neutral P alone.

4d -50 Experiment, {neutral As

5iD - 150 Experiment (neutral Sb

6d — 300 Experiment (neutra.1 Bi

M — 125 Calcula-tion End experiment for

3if"45** ions.

4(f -350 Calculation and limited experi-

ment for 46?" 55^ ions.

5d — 750 Calculation (J. V. Mallow,

A. J. Freeman and P.S.

Bagus, J. AppL Phys., to be

published).

— 600 Inferred from hyperfine

anomaly, [G. J. Perlow,

W. Henning, D. Olson and

G. L, Goodman, Phys. Rev.

Letters 23, 680 (1969)].

it 0 to — 50 Calculation dnd limited ex-

perimental data.

ns >0 Estimated by calculation to

make a 10-50% enhance-

ment of a ns shell's

direct contact inter-

action.

Table 4. Direct plus associated core polarization contact hyperfine

fields due to a single unpaired valence ^-electron for various rows

in the periodic table.

polarization. The core polarization response to an un-

paired s-valence electron is positive and simply serves

to enhance the contact interaction associated with the

valence electron. [When using experimental atomic

hyperfine data to evaluate Pa, this effect is already

included.] The M, and 4d (little is known yet for the 5d)

core polarization values appear to be quite stable for

their respective rows in the periodic table. The quoted

values hold to within twenty percent for any member of

a row and it is believed that these values are ap-

propriate to the core polarization response to a d-

moment in a metal.

The situation is less certain and more complicated

for the p-shell elements. Experimental data for which
there are no competing orbital and spin dipolar terms

exist only for the 5-state atoms. It should be noted

that these experimental values include the contribution

coming from the polarization of the closed valence s-

shells. In a metal this term is associated with the con-

s shell Atoms s-contact hyperfine
field H „ kOp

Zp Zp elements 1 nnn— a. nnn

3p^ Sp*^ elements 9 nnrv_ ^ nnn-6,UUU^ o,uuu

4.t 3<f transition metals z,uuu^ o,UUU

is 4p'-4p3 elements 4,000-10,000

55 4c? transition metals 4,000- 5,000

55 5p'-5p^ elements 7,000-15,000

6s rare earths 9,000-15,000

6s 5c? transition metals 15,000-20,000

6s 6p'-6p^ elements 25,000-50,000

duction band and not the core states. There is some un-

certainity as to the sign and magnitude of this core plus

valence 5 polarization term as one goes across the 2p
and 3p rows. Recent spin polarized Hartree-Fock calcu-

lations of Bagus et al. [11] for these rows suggest that

both the core and valence contributions are significant

with the total becoming less positive (or more negative)

as one goes to the hghter elements in the row. As with

earlier efforts [10], these calculations do not satisfac-

torily reproduce the experimental data and must be

used with caution, {e.g., the wrong sign is predicted for

atomic P). Bagus et al. also obtained results for the 4p

row. Again the total becomes more negative by a factor

of, say, two for the lighter elements but now the valence

term dominates. This latter fact suggests that such

atomic hyperfine constants will be of httle quantitative

utihty when inspecting p-electron metals until one un-

derstands the polarization response of 5-electron

character deep in a conduction band. An example in

the literature of the use of a p-core polarization term

larger than that shown in table 3, is Ga in AuGa2 [12]

,

where a p-term of an order of magnitude larger than

that of As (table 3) was used to explain the observed

negative Knight shift.

One comphcation associated with extracting wave

function and density of states information from Knight

shift measurements is suggested by the numbers in

table 3. Consider the ?>d- and 4<^-transition metals. As

discussed in section 7, the Pauh Knight shift term al-

most invariably has the opposite sign of temperature

dependence as the Pauh susceptibility [13]. This is

consistent with having c?-ba)ids at Ep, with negative

hyperfine constants of the sort seen in the table. Now,

the s-contact densities are an order of magnitude larger

than the corresponding rf-core polarization hyperfine

constants. Thus a few percent admixture of 5-character

into the Fermi surface <i-states can violently affect {a).
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While complicating matters, such interband hybridiza-

tion is of considerable interest in itself and one can at-

tempt to use Knight shift data to ascertain its nature

and extent [14,15].

Relatively little is known of the intra-atomic hyper-

fine contribution arising from the exchange polarization

of conduction band states below Ep, except that it

probably makes a positive contribution to (a) for

transition metals. Some measure of the effect can be

obtained for the 3c? metals by inspection of the spin

polarization of the 4s^ shell in the neutral 3c?"4s^ atoms.

Experiment and exchange polarized calculations in-

dicate [10,16] a 4s^ hyperfine field of ^—hlOO kOe per

unpaired (i-electron, a contribution which almost can-

cels the l5^ + 2s^ + 3s^ core polarization. One expects a

smaller effect in a metal since there are typically one,

not two, electrons worth of "s" character below Ef- One
might expect a further reduction, in view of the fact

that ^ values defined for Fermi level states always lie

below 1. Paired Block states near the bottom and

throughout an occupied "conduction" band contribute

to the exchange polarization. These states have

stronger hyperfine coupling than those at Ef which con-

tribute to the Knight shift, as is evidenced by internal

conversion experiments [17]. It is probable that there

is little or no reduction in this polarization term due to

band effects.

There may be inter-atomic as well as inira-atomic

contributions to (a), since an applied magnetic field in-

duces spin moments on the neighboring atoms as well

as the atom in question. The two contributions are in-

distinguishable for the pure monatomic metals, but

there is indirect evidence, from alloying, that the in-

teratomic term is quantitatively important in some

transition metals. Inter-atomic contributions will be

seen to be important in transition metal alloys and

intermetallics. As with the concept of a local density

of states, there will frequently be ambiguity when at-

tempting to divide into inter- and intra-atomic terms.

In addition to these contributions to the Knight shift

coming from the PauH paramagnetism of the conduc-

tion electrons, there is an important contribution, espe-

cially in transition metals, from the orbital magnetic

moment of the conduction electrons induced by the ap-

plied magnetic field. We can write, in analogy with eq

(1)

^orb=<fe)Xorb (14)

where (b) is an appropriate orbital hyperfine coupling

constant. In contrast to the Pauli contribution to the

Knight shift, the orbital Knight shift is not proportional

to N{Ef).

The orbital Knight shift [18-20] involves the orbital

moment induced in occupied conduction electron

states by an applied magnetic field, H. It is a second

order term of the form

^orb ~ IH
EKEfEiEp

2/-1
i)8{kf-ki)

Ei-Ef

- (b)xoTb = 2Xorb<r-3). (15)

Here the matrix elements are evaluated over a Wigner-

Seitz cell. The occupied and unoccupied Bloch states,

i and/, are admixed by the application of the field. The

resulting admixture produces a moment which in-

teracts with the nucleus. Except for pathological cases,

where there are a substantial number of strongly ad-

mixed states within kT or Ep, there is little or no tem-

perature dependence in this term, as is the case in the

analogous Van Vleck temperature-independent para-

magnetism in ionic salts. A rough estimate of the

strength of the orbital Knight shift is given by [17].

Uinj

orb (16)

where n, and n/ are the numbers of occupied and unoc-

cupied Bloch states respectively and A is the conduc-

tion electron bandwidth. This equation suggests that

particularly strong orbital effects are expected in

roughly half-filled c?-band transition metals. In half-

filled bands the product nin/ is a maximum, and in

transition metals, A is small. Strong effects have indeed

been found in W [21] , Nb [20] , V [19,20,22] , Cr [23]

and CrV aUoys [24].

Although we have treated the PauU and orbital

hyperfine parameters, a and 6, as multiplicative factors

of the appropriate susceptibilities, it should be

emphasized that (a) and (b) are not the simple

averages customarily employed, but are more correctly

the weighted averages

Xp

and, as is clear from eqs (14) and (15),

_ <^Xorb)

(17)

(b)
Xorb

(18)

The ( ) denote an average over all bands. For the Pauli

term, the average is over segments of Fermi surface

where the contribution of a segment to Xp is multiplied

608



by the hyperfine constant, a, appropriate to that seg-

ment (i.e., to its electron character). Equation 15

defines the average for the orbital term, where the in-

duced orbital moments associated with initial and final

states, I and /, are weighted by their hyperfine coupling

constants. With this, the general expression for the

Knight shift, eq (3), becomes

^= (oXp) + -^(1)3+ (bXorb) + higher order terms. (19)

The Knight shift provides samplings of wave function

and, in some senses, density of states character dif-

ferent from that obtainable in other experiments. The
Pauli term can in principle, and does occasionally in

practice, yield considerable insight into the Fermi sur-

face states contribution to N(Ef). A particular case is

that of alloys and intermetallic compounds with dif-

ferent (a)'s at different atomic sites. This involves the

variation in wave function character from site to site

and, if you will, the variation in a local density of states.

There is some arbitrariness as to whether one wishes to

describe this in terms of (a) or a local Xp-

A particularly clear example of this local nature is

that of ct-Mn. For this structure there are four crystallo-

graphically inequivalent sites. Above the Neel tempera-

ture of 95 K, four distinct resonances were observed

[25,26]. Two of these had large negative shifts of —5.2

and —2.6 percent at room temperature [26], and were

temperature dependent [25] , with the former value in-

creasing to —5.85 percent at 120 K, where x shows a

maximum. The nuclei at the other two crystallographi-

cally inequivalent sites showed much smaller, and tem-

perature independent. Knight shifts (—0.45 and

-0.15%).

A number of complications have been indicated in

this section. There is more than one term in the Knight

shift; also the hyperfine constants (a) and (6) are sig-

nificantly affected by band character and hybridization.

There will in general be inter- and infra-site contribu-

tions to (a). As will be seen, two important "tools" are

available to aid in the identification of the different con-

tributions to the Korringa relation [27] relating

Knight shifts to nuclear spin-lattice relaxation times,

and the temperature dependence of both andx [13].

Finally one can sample Knight shift behavior at sites in-

volving different atoms in an alloy or intermetallic com-

pound. Matters such as these, while complicating

Knight shift interpretations in terms of density of states,

can supply insight into the electronic structure and

local wave function character which cannot generally

be obtained from other experiments.

3. Pauli Spin Susceptibility

The Knight shift samples the density of states via the

Pauh spin susceptibility, Xp- However, in pure metals,

the density of states has usually been obtained in other

ways and the Knight shift then used to explore the as-

sociated wave-function character. In this section, we
will review some of these methods of obtaining Xp, and

their implications to our understanding of Knight shift

behavior.

First let us note that the expression relating the Pauli

susceptibility to the density of states given in eq (2)

neglects correlation and exchange effects between con-

duction electrons. Electron gas estimates are

frequently applied to "free" electron metals [28,29],

and exchange enhancement theories to transition

metals [30-32]. With a conduction-electron conduction-

electron exchange interaction parameter J'^u defined

in reciprocal space and taken to be constant, the ran-

dom phase approximation yields [30-32] an exchange

enhanced susceptibiUty

Xp (20)

where Xp" is the unenhanced susceptibility of eq (2).

The induced spin sets up an exchange field encourag-

ing further polarization hence an enhanced Xp- Similar

looking expressions, with A^f^^j appearing in numerator

and denominator are obtained from correlated electron

gas theory. These as well as interband effects obviously

complicate the averages taken in eq (17). In general one

is forced to neglect them in (a) and assume their

presence in Xp alone. Even with this simplification,

there is no simple linear relation between an observed

Knight shift and the density of states at the Fermi sur-

face. As remarked earlier, this shortcoming is shared

with the experimental data obtained by many of the

other techniques reviewed in this symposium.

It might appear that an adequate value of Xp could be

obtained from direct measurements of magnetic

susceptibilities, Xexp^ especially since these would al-

ready have the exchange enhancement included. We
will return to the case of transition metals later, but in

simple metals it turns out that bulk susceptibility

results usually do not give reliable values of Xp- Con-

sider, for instance, the noble metals. The bulk suscepti-

bilities (Xexp) are each negative, i.e., the metals are

diamagnetic. The ion core diamagnetism (Xdi£f) plus

conduction electron diamagnetism (Xd^S**) is larger than

Xp. Hartree-Fock [7] and Hartree-Fock-Slater [33] cal-

culations for Xd'ia''
agree to within two percent. However

these calculations are for singly ionized valence states
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which is not a totally satisfactory description in the

metal. This, and interband mixing effects, raise the

probable error in Xdla*^ considerably. By the same token.

Xdia.'^ poorly known due to electron-electron interac-

tions. The net result is that x,, obtained from Xexp 's

probably good to no better than twenty percent for the

noble metals. Various ^ values for the noble metals ob-

tained by use of various schemes are shown in table 5.

It can be seen that ^ values employing the traditionally

quoted values for Xd?^ ^'"^ "^t consistent with those

using more modern Hartree-Fock or Hartree-Fock-

Slater estimates. The situation in the case of the alkali

metals is not as bad for two reasons. First the theoreti-

cal evaluation of both the core- and conduction-electron

diamagnetism is on firmer ground, especially for the

free electron-like metal. Na. Secondly. Xp has been ob-

tained directly (i.e.. without the need for the

troublesome diamagnetic corrections) using conduction

electron spin resonance (CESR) for the alkali metals

and for Be. Combined CESR-NMR has also been used

in Na and Li [34-36] to obtain Xp-

For many metals it has been customary to use elec-

tronic specific heat. y. measurements for information

about Xp° using the one-electron relationship

(21)

where A' is the Boltzmann constant. There are two dif-

ficulties here. One is that there may be many-body con-

tributions to y (such as electron-phonon or paramagnon

enhancement). The other is that the exchange enhance-

ment part of Xp missing here [see eq (20)]. The ^
values derived from y. given in table 5. were obtained

from eq (21) and experimental y values [37] , and there-

fore neglect these corrections for enhancement effects.

It may be that in some cases these two factors approxi-

mately cancel one another. The f values plotted for the

elements in figure 3 were obtained by use of uncor-

TaBLE 5. ^ values for Cu, Ag and Au using various available data

for Xp (see text for details).

From 3/2(Xexp ~Xd°D Hartree-Fock core....

From Xexp-Xmr-Xd^a** Hartree-Fock core.

From 3/2(xexp-Xd?r) Hartree-Fock-Slater

From 3/2 (Xexp^xSiT' traditional core

Frortj. uncorrected electronic specific heat, y

.

From band calculations presented at thi;

Symposium, [38]

Cu

.37

.45

.38

.45

.53

.57

Ag

.50

.45

.52

.16

.69

.68

Au

.32

.36

.36

.08

.42

.56

rected y values [37]. The final set of ^ values in table

5 utilizes a set [38] of band theory predictions for Xp-

Cancellations of various enhancement factors do not

occur. The resultant ^ values are therefore larger.

It is instructive [39] to compare the value of Xp

(obtained from y) to the value of ^Xp obtained by divid-

ing ^ by atomic //pff values (tables 1 and 2). This is

done in figure 4. The trend in our plot differs from that

of Ziman [39] primarily due to our choice of atomic,

rather than mass, units. The lightest alkali. Li. displays

significantly less 5-character than the other alkali

metals [40-47]. The ^ values for the5-subgroup metals

are aU considerably lower, especially for the polyvalent

elements; this might be expected, since the Fermi level

lies higher in conduction bands, implying less s-

character at Ef and hence a smaller contact term. The

associated increase in p- and (/-character will generally

make a negative (core-polarization) contribution to

also lowering^.

40 -

o
E
\
ID

e
0}

10^ « K/H„. , % /kOe

Figure 4. Xp versus ^IHejj for pure metals in customary units. Lines

ofconstant f (dashed) are shown. Due to the small ^ valuesfor the

heavier metals most ofthe data points are bunched at the left hand
side ofthe plot. The \p values itere obtainedfrom electronic specific

heat data [37]. In the case ofpotassium a large uncertainty in the

specific heat gives rise to an error ofnearly halfthe size of the vertical

dimension. The point shown for potassium represents the listed [37]

y value. Direct measurements [239, 240] yield f( Li 1=0.44 and

f(Na)=0.64, rather than the values, BU)=0.49 and aSa)=0.89.

used in thisfigurefor the sake of consistency.

We note an interesting correlation in figure 4 in that

the alkali metals, except for Li. fall on a straight line

near ^ = 0.9. That is to say. the 5-density of states ap-

parently increases proportionately to the total density

of states at the Fermi level for Na. K. Kb and Cs. The
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increase in Xp from Na to Cs is attributable primarily to

the large volume increase in this series. The constancy

of ^ might seem to be surprising, since simple volume

renormahzation should effect ^ as well as Xp- It is to be

recalled, that volume renormahzation of ^ depends on

the atomic volume in the metal relative to that of the

free ion. It would thus appear that the alkali metal lat-

tice constants faithfully reflect the sizes of the free

ions, and hence ^ is roughly constant implying that the

amount of 5-character is essentially constant for the al-

kah metals Na to Cs. This constancy was already noted

by Pauhng [47] . His calculations of 5-p hybridization of

bond orbitals indicated fractional 5-characters of 0.72

to 0.74 for Na to Cs and a lower value (0.59) for Li,

similar to the trend of figure 4.

Knight shift experiments on the pressure depen-

dence, as well as alloying, show that the contact density

in metals is not simply an inverse function of volume

[7]. This is also illustrated by recent pressure depen-

dence calculations [48] on monovalent metals. The

wave function effects which depress ^ values below 1,

suppress the dependence of ^ on volume.

In this section, we have seen the difficulty in obtain-

ing a rehable value of Xp for use in obtaining^ values for

simple metals. Nonetheless, even in these cases, the

Knight shift provides a rather unique measure of the s-

contribution to the density of states in "simple" metals.

4. "Simple" Metals

It is an interesting challenge to obtain the absolute

value of the Knight shift, or its change with tempera-

ture or pressure, from band-theoretical calculations. A
number of near a priori calculations have been made
with varying degrees of semiquantitative success. For

example. Das and coworkers, using the orthogonaUzed

plane wave (OPW) method, have calculated wave func-

tions and densities-of-state at various points on the

Fermi surface for Al [49] , Be [50-53] and In [54]. A
few of these papers are of particular interest in that

they represent efforts to use the weighted average form

of (a) as given in eq (17). In the case of the divalent

metals Be, Mg and Cd, the spin susceptibihty has been

extracted from Knight shift measurements by use of

such estimates of (a) [55]. Comparison with theoreti-

cal values of their bare Xp [i-e., eq (2)] permitted esti-

mates of the exchange enhancement to be made. This

process resulted in a reduction in Xp for Be; the authors

concluded that this arose from inadequacies in the

energy band estimate of Xp" and (a).

The alkah metals, particularly Li and Na, have tradi-

tionally attracted theoretical attention, often giving

relatively close agreement with experiment [40-42].

Even in these simplest "free electron" metals, cor-

rections to the hyperfine couphng constant due to non-

free electron-hke band structure effects, can amount to

25 percent or more [45,56,57].

It should be stressed that for the heavier simple

metals (i.e., potassium and above) c?-hybridization as-

sociated with <^-bands above or below the conduction

band affects the Knight shift and other properties at

(and off) the Fermi level (see, for example, Kmetko

[46] ). In the case of Cu and Au these <i-hybridization

effects are large. Such effects do not arise in the Li row,

but there may be abnormal "2p" effects due to the near

degeneracy of atomic 2s- and 2p-levels [58-61] . In these

"simple" metals, the change in Knight shift at the melt-

ing point [62] (fig. 2a) is usually not large, and its tem-

perature dependence in the solid, slight (fig. 2b). As an

example, consider Al. At the melting point, ^ has the

same value for both hquid and sohd. The temperature

dependence in the solid is illustrated by the data of

Feldman [63] (fig. 5). The change in Knight shift of Al

is less than 2 percent of over a temperature range

from 4 to 300 K. The solid hne in figure 5 represents a

simple volume renormahzation theory based on the

thermal lattice expansion, which fits quite well at tem-

peratures above the Debye temperature. No satisfac-

tory explanation has been given for the deviation from

this theory at low temperatures. Similar effects were

observed in Na and Pb [63]

.
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Figure 5. Change in the aluminum Knight shift with temperature,

as takenfrom Feldman [63]. The solid line is theoretical.

A more unusual case is that of cadmium [64-70]. In

the solid the Knight shift varies considerably. ^
increases ten times more rapidly in Cd than in Al, over

the same temperature range (4-300 K). At 600 K,^ in
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Cd is about 70 percent larger than its value at 4 K. This

change is seen in figure 6. An additional increase in ^
(—33% of 3^f ) is observed upon melting (see sec. 5).

The anisotropic Knight shift, J^anis. [see eq (13)j also in-

creases with temperature. Cd exhibits a large change
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Figure 6. Change in the cadmium Knight shift with temperature, as

takenfrom Kasowski and Falicov [68].

in the shape [cja ratio) and volume of the unit cell with

temperature and it had been suspected that the

changes with temperature of ^iso and .^anLs could

somehow be correlated with these cell dimensions.

Kasowski and Falicov [68] have explained the behavior

with a different scheme: in the solid the lattice vibra-

tions cause an increase in both Xp and in thes-character

as the temperature is raised, thereby increasing ^iso-

On the other hand, ^anis arises from the non-s part of

the wave-function, which of course is decreasing as the

5-part is increasing. However, again invoking eq (17).

we require not the average hyperfine coupling as-

sociated with the non-5 part, but the appropriate

average over the Fermi surface. Cancellation occurs in

this average at low temperatures. The reduction in the

cancellation at higher temperatures more than compen-

sates for the increase in 5-character, thereby providing

an increase in JTanis- On the other hand, pressure de-

pendence measurements of Sf^ms for Sn [71] was in-

terpreted as due to charge redistribution rather than a

change in thes-p character of the wave-function.

Other data further indicate the complexity of the

behavior of the Knight shift in solid Cd. Borsa and

Barnes [65] note that alloying Mg (in quantities of ~ 1%)

with Cd will cause substantial changes in cell size and

shape without affecting the Knight shift. Kushida and

Rimai [72] have separated the implicit and explicit

contributions to the temperature dependence of^ by

their measurements of the pressure dependence in Cd.

Volume renormalization was found inadequate to ex-

plain the observed pressure dependence [72].''

5. Sudden Changes in

The abrupt change in Jif of Cd upon melting was

presumed by Ziman [39] to indicate an abrupt change

in N{Ef) associated with solid and liquid Cd. This con-

clusion was examined in two different calculations,

each employing nonlocal pseudopotentials [68,70]

,

resulting in opposite conclusions. Shaw's calculated

[70] values for A^(£') per unit volume for solid and liquid

Cd are shown in figure 7. N{Ef) is found to be 0.7 per-

cent lower in the liquid than in the solid. Shaw con-

cludes that "Ziman's assertion that the strong change

in the Knight shift of cadmium is a density-of-states ef-

fect is not borne out by our detailed calculations." In

contrast Kasowski and Falicov [68] assume that Cd is

free-electron-like in the liquid and finds that most of the

change in ^(Cd) upon melting is due to an increase in

N(Ef). They note that "this agrees with Ziman's

hypothesis and confirms it quantitatively." Although

these two calculations [68.70] resulted in opposite con-

clusions, in part due to choice of different model-poten-

tials, there is an abrupt increase mN(Ei-) in Shaw's cal-

culations if solid Cd is compared with the free electron

value, as indicated in figure 7.

An interesting example of an even more abrupt in-

crease in upon melting is found in the behavior of the

III-V compound InSb [73] . In the semiconducting solid

the Knight shift of either the In or Sb in InSb is zero,

but in the metallic liquid state, the Knight shifts have

normal metallic magnitudes. Another example is Bi

[62] , in which ^ has the opposite sign in the liquid

from the soHd.

There are various cases besides melting where a sud-

den change in occurs. In an alloy system, usually

changes smoothly with composition within a particular

phase, but shows a jump across a phase boundary. An
example of this is shown for the AgCd system in figure

8, taken from Drain [74]. By correlating and y
across a phase boundary. Drain showed that in this

case the abrupt change is associated in part with

changes in densities of states.

There are other examples of an observation concerning the vol-

ume dependence of X'. As noted earlier, in our discussion of figure

4. simple volume renormalization is not often useful in explaining

Knight shift results. See also [7] for a discussion of this point.
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Figure 7. Calculated values of N(E)for Cd, as takenfrom Shaw and

Smith [70].

The semiconductor-(or insulator-) to-metal transition,

whether or not a Mott transition, offers a number of ex-

amples in which the Knight shift changes more or less

suddenly. For example, when tin changes from its

metallic to its semiconducting phase, changes from

0.75 percent to near zero (see fig. 2b). Also consider

VO2 which is metallic above and semiconducting below

a crystal structure change occurring at Tc — 68 °C

[75,76]. The Knight shift is ~ -0.4 percent at 100 °C

and 1-0.2 percent below. The negative shift above Tc

is attributed to a metallic <f-band.

A case where there is an electronic transition without

further structural changes is that of phosphorous-doped

silicon [77-79]. At donor concentrations (na) greater

than 2 X lO''* cm^, the material appears to be a metal,

the Knight shift is proportional to na^l^, and the Korrin-

ga relation holds. Below this critical concentration,

drops sharply. In the transition range, 3 X 10^^ < na <
2 X 10"*, there is a measurable but the Korringa rela-

tion no longer holds. The electrons are "delocalized" in

some type of impurity "band."

Other systems exhibiting nonmetal-to-metal transi-

tions are the alkali-ammonia solutions. As the metal to

ammonia ratio is increased, the liquid becomes

gradually metallic, and the conductivity as well as the

Knight shift increases substantially [80-83]
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Figure 8. Knight shifts in AgCdfor (a) the Ag resonance and(b) the

Cd resonance, as takenfrom Drain [74]. In the two phase regions, Cd
resonancesfor both phases are simultaneously seen, due to the rather

different STs for the different phases. For ranges ofsolid solubility 3^

changes smoothly.

6. Orbital Magnetism in Simple Metals

The Bardeen, Cooper and Schrieffer theory of super-

conductivity [84] predicts that, as a result of spin pair-

ing, Xp vanishes at T = 0. Hence it was expected [85]

that ^ —* 0 as 0 for superconductors. This expec-

tation often is not borne out. It seems certain that the

residual Knight shift is predominantly of orbital origin

for transition metals such as V and Nb [22]. Ferrell

[86] and Anderson [87] proposed that spin-reversal

scattering due to spin-orbit couphngis another possible

mechanism for obtaining a residual Knight shift. This

mechanism requires that he a function of mean free

path, i.e., particle size and impurity scattering. This
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spin-orbit term has been shown by Wright [88] to be

important in Sn. Wright also reviews earlier experi-

ments on other metals. He concludes that although

spin-orbit coupling is dominant in some cases, two

types of orbital magnetism cannot be ruled out in sim-

ple metals. These are the Van Vleck orbital paramag-

netism [18-22] and a higher order mechanism in-

troduced by Appel [89]. Similar higher order

mechanisms were discussed earher by Clogston et al.

[20]. We have already discussed the Van Vleck term

and will note its importance in the transition metals and

alloys to be discussed later. The Appel mechanism in-

volves spin-orbit and /• H couphng to an intermediate

excited conduction electron state, which contributes to

the Knight shift through the contact interaction. It is of

the order of A/AE times the contact Knight shift, where

A. is the spin-orbit interaction energy, and is the

energy between states connected by X. The sign of the

Appel contribution to the Knight shift may be either

positive or negative.

Another important orbital effect is the Landau-

Peierls diamagnetism [90]. The magnitude of this term

is not easy to predict. In the simplest (and greatly over-

simplified) free electron approximation the Knight

shift, 3^dia arising from Landau-Peierls diamagnetism,

is

Q/- _ Stt / 1 \ / m
(22)

where m* is an appropriate electron effective mass.

This term has been proposed to explain a number of

negative, or near zero. Knight shifts in nontransition

metals. In transition metals, fl?-core polarization (see

table 3) gives an important negative contribution to ,

through the Pauh paramagnetism of the af-band. In non-

transition elements p-core polarization has often been

proposed as an alternate to^dia as a negative contribu-

tion to ^ (see table 3). For example Das and Sond-

heimer [90] first suggested the importance of the Lan-

dau term to the negative Knight shift in Be. In later

papers. Das and coworkers [50-52] performed detailed

calculations for the contact and the p-core polarization

terms in this metal. A reluctance to beHeve that the

diamagnetic shift is as large as was originally suggested

[90] is evident from these papers [50-52]. Although

they do not give further quantitative estimates for Jfaia

in this later work, in each case they are forced [52] to

the same conclusion that the remaining negative shift

is of diamagnetic origin. Using eq (22). available

values can, in fact, give a Jfa\a of — 0.003% [52,53].

Yafet [91] considered the importance of ^dia for Bi,

but Williams and Hewitt [92] proposed p-core polariza-

tion as the origin of the quite substantial negative

Knight shift in Bi of — 1.25%. It is interesting to note

that if Xi> estimated from the electronic specific

heat [37] , using eq (21), and if there is no 5 contact con-

tribution to 3^^ , the p-core polarization necessary to ex-

plain a shift of — 1.25% is 800 times larger than the

experimental value [93] for atomic Bi (table 3). The
presence of an s term will increase this estimate of 800.

Note that the experimental atomic "core" polarization

term includes the polarization of the ds-valence

electrons which are part of the conduction bands in the

metal. This atomic value therefore provides an estimate

of the 5 polarization in the core and throughout the oc-

cupied conduction band: the applicabiUty of this value

to the metal depends on the distribution of 5-character

in the occupied bands (as compared with the free

atom). Granted the uncertainty in Xp and the question

of relevance of the atomic hyperfine constant to this

metal it would still appear that p-core polarization is at

least one hundred times too small to account for the ex-

perimental Knight shift. On the other hand, Bi has

mim* ratios which, using eq (22), are large enough to

suggest a Landau diamagnetic shift that can approach

magnitudes of the order of the observed JT value.

Other examples of negative shifts in diamagnetic,

non-d materials are Tl in NaTl [9,94-96] and In in Biln

at 77 K [97]. For these cases the situation is much less

clear due to the lack of data for Xp, ni*, and y. In addi-

tion we do not have free atom experimental values for

p-core polarization for Tl and In. Using some upper esti-

mates for the unknown quantities, it is evident that

either p-core polarization or Landau diamagnetism is

hard pressed to reproduce the observed shifts. A
discussion of diamagnetic Knight shifts and p-core

polarization effects in these materials will be given

elsewhere [98].

Das and Sondheimer [90] also indicated that oscilla-

tions would be present in the diamagnetic term. These

would be periodic in IjH, similar to de Haas-van

Alphen oscillations. However, when this effect was first

observed by Reynolds et al. [99,100] , the amplitude of

the oscillations was considerably larger than that ex-

pected from the diamagnetic term [101-106]. Glasser

[107] explained this by proposing that the Fermi sur-

face wave functions also change with 1///. and that this

introduces oscillations into the Pauli term which

dominate over the diamagnetic oscillations. Goodrich

et al. also observed Knight shift oscillations in Cd
[108] . Their data are shown in figure 9.

The importance of observing oscillations in is that

it is possible to obtain the Knight shift over a segment

of the Fermi surface. Thus the Knight shift has become
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Figure 9. Knight shift in Cd, illustrating oscillations in S'f with

1/H, as takenfrom Goodrich, Khan and Reynolds [708].

a potentially important tool for examining the wave-

function character associated with N not only in

the average sense of eq (19), but also in finer detail

over Fermi surface segments.

7. Transition Metals

The simple metals considered in the preceding sec-

tions display, in the main, only weak orbital Knight

shifts and temperature independent, usually positive.

Pauli terms. Transition and noble metals with their d-

bands tend to have a negative Pauli term arising from

c?-core polarization (see table 3). Narrow o?-bands, with

many states close in energy to Ep, often have substan-

tial orbital effects [see eq (15)]. Structure and curva-

ture in N{Ei.) contribute a temperature dependence to

the Pauli term. Given the presence of d- and non-d, or

"conduction" band character, it has been normal to

describe the paramagnetic transition metals in terms of

a "two band" model involving discrete "5" and "0?"

bands. We follow common nomenclature in designating

the conduction band as an s-band. (The c?-bands, of

course, also contribute to conduction.) The orbital

Knight shift is associated with the c^-band; the average

taken in the Pauli term is rewritten

(23)

the c?-bands, a negative temperature dependent term.

The latter dominates since N(Ei.^)'', hence Xp, is much
larger than its 5-band counterpart. It is assumed in eq

(23) that the temperature dependence of^ is entirely

associated with the susceptibility and not with any

variation in the hyperfine coupling constants [13]. The
fact that the slope, dJfjdx, is a constant for these

metals offers some experimental justification for this

assumption. An example of this is seen [109] in figure

10, where ^ is plotted versus Xtot'. with temperature the

implicit variable, for Pd. In this case xiT) goes through

an extremum with increasing T, but is faithfully tracked

by Jf(T). Pd displays the largest temperature variation

in X among the paramagnetic metallic elements. As is

discussed in Mott and Jones [110] , such a temperature

dependence arises from sampling by the Fermi func-

tion of structure and curvature in the density of states

in the vicinity oiEp-

While the two band model has proven most useful

when discussing Knight shifts and other experimental

data, there is, in fact, strong hybridization of s- and d-

band character and a transition metal is not constituted

of discrete d and "5" bands. Some measure of this is

given in figure 11, which displays the density of states

obtained^ for fee Cu.

The results can be taken as characteristic of all

transition metals. The density of states behavior is

similar to that reported by Mueller for Fe [ 1 15] , and to

that obtained by Goodings and Harris [116], and by

Cuthillef al. [117] in their estimates of soft x-ray spec-

tra for Cu. The density of states has been plotted

separately for the first, second and sixth bands while

that for the third, fourth and fifth has been added

together for the sake of legibility. In figure 11, the Cu
Fermi energy is designated by Ef and that appropriate

to Ni by ^(Ni). The high density of states peak, inter-

sected by £'(Ni), is due to the fifth band. Details of this

band and of its Fermi surface are essential to the differ-

where the "s" or conduction band is assumed to con-

tribute a positive, temperature independent term, and
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''These results [111] involve a sampling of ~ 1.5X10^ points in

l/48th of the Brillouin zone. The sampling employed a quadratic

fit to a set of pseudopotential bands by Ehrenreich et al. [112, 113]

involving a mesh of 28 intervals from F-X in the zone. The pseudo-

potential bands were obtained from an adjusted analytic fit of some

new APW calculations for Cu [114]. Spin-orbit coupling effects,

though slight, have been included. The Fermi surface is in better

agreement with experiment than is usual for calculations. Details

of the density of states and grosser features of the wavefunction

analysis are, of course, dependent on the use of a pseudopotential

band description (which assumes tight binding c?-bands and a set

of four orthogonalized plane waves for the non-d part). These results

can be considered analogous to the OPW results, obtained by Das

and coworkers [49-52, 55] for the Knight shift in various "simple"

metals.
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Figure 10. J^(T) versus x(T) plotfor Pd, as takenfrom Seitchik,

Gossard and Jaccarino [109].

ing magnetic behavior of Ni. Pd, and Pt. The Cu Fermi

level intersects the sixth band, often named the "free

electron" band, which lies above the five "<i" bands.

The density of states associated with non-c? electron

character; N{E) non-<i^ is also shown in figure 11. It must

be emphasized that details of these results depend on

the scheme used to describe the bands (in this case a

pseudopotential description [111] with tight binding <i-

functions). Hybridization effects cause a build up of

non-c? character at the bottom and a depletion in the

middle and just above the bulk of the c?-bands (i.e., in

the range — 0.35 ^ £" ^ — 0. 15 Ry). The peak seen at ~
— 0.4 Ry can be important to optical and soft x-ray pro-

perties. The sixth band is predominantly of rf-character

at the bottom and remains almost thirty percent d at the

Fermi level. This particular set of results [111] yields

9.8 electrons worth of c?-character out of a total of

eleven electrons, in the bands below Ef- [A free elec-

tron parabola, holding the remaining 1.2 electrons, and

with an effective mass chosen so that its Fermi level

matches Ey, has been drawn for comparison with the

actual non-d density of states.] The lowest band is

strongly free-electron Uke up to £ ~ —0.45 Ry and 0.61

of the two electrons residing in the band are of non-<i

character. Roughly 0.35 of the remaining 0.6 non-d-

E (RELATIVE TO Ep), RY

Figure 11. (a) Total density of states and non-d density of states for the 1st, 2nd

and 6th bands of Cu separately, and for the 3rd, 4th and 5th summed. The smooth,

flat band is the free electron parabola containing 1.21 "conduction" electrons, as

discussed in the text. This is shown for comparison with the Nnon-d(E) results, (b)

Ratio of band to atomic hyperfine constants as defined by eqs (24a) and (24b).
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electron character is associated with the one electron

in the sixth band.

The 3c?-electron character can be expected to in-

teract with the nucleus via a core polarization term of

125 kOe per /xb throughout the bands. The non-<i

character is expected to interact predominantly via the

direct contact term. Its behavior is shown at the bottom

of figure 11 in the form of the ratio

a,{E) _ {a{E)Nror{E))

O-aNnon-d

(24a)
aA

with respect to the non-d electron density of states at E,

i.e., the contact interaction normalized with respect to

the non-c? electron density at E, and to an atomic 4s

hyperfine constant.'' Omitting all core polarization con-

tributions to , this ratio is then related to ^ by

as{E)_,,^, NjoriE)

ttA

(24b)

A ratio of 2 to 2.5 occurs at the bottom of the bands

reflecting the volume normalization enhancement of ^

discussed previously in connection with figure 4.

Values closer to one are appropriate to the non-d

character hybridized into the second, third, fourth and

top of the first bands. This suggests that an a^iE) set

equal to ua can be used as a first approximation when

estimating the effect of hybridization on reducing a d-

band aa from a pure d-core polarization value. The ratio

is higher in the fifth band but here hybridization is al-

most zero. The ratio tends to fall with increasing as

is seen in the lower part of the first and in the sixth

bands. This is associated with the decrease in s-

character in OPW's of increasing k. The ratio has

dropped to a value of 0.78 at the Cu Fermi level. Here

^{Ef),- defined in the manner of eq (24b), has the value

of 0.57. If one adds the negative core-polarization con-

tribution which can be attributed to the twenty-eight

percent c^-character in the bands axEf, ^{Er) becomes

0.55.

The above ^(Ef) values agree with the upper end of

the range estimated as the experimental ^ for Cu in

table 5. Davis [118] has obtained** ^(Ef) = 0-67 employ-

^An OA of 1600 kOe//a«. omitting core polarization contributions,

was used, since core polarization effects were omitted in the evalua-

tion of {a(E)Nroj<E)). With core polarization, correlation and

relativistic effects present, the (experimental) cu is ~ 2600 kOe//x/i.

For discussion of this see [7].

Actually Davis [118] chose to quote a ^-ratio by dividing his

computed hyperfine term without core polarization by an atomic

Oa with core polarization. This yields a smaller numerical value

than we quote here.

ing the method of Korringa-Kohn-Rostoker. Com-

parison with the experimental data may not be

meaningful because core polarization terms, arising

from "conduction band" spin character, have been

omitted in the ^(Ef) estimates while being present in

the quantities of tables 2 and 5. It is thus proper to

make the comparison only if core polarization affects

the numerator and denominator so as to leave the ratio

constant. This seems unlikely since s and p character

terms will contribute to the conduction electron core

polarization.

These two band calculations yield N(Ef) values

which are in good numerical agreement with the elec-

tronic specific heat for Cu. Both calculations suggest

that c?- hybridization is a significant factor in reducing

^. This is one reason for the tendency noted earlier for

Ag to have a larger ^ than Cu or Au. The d bands are

twice as far below Ef in Ag, and weaker d hybridiza-

tion (
~ 10%) occurs at the Fermi level of Ag.

Noting that the atomic s-contact interaction is typi-

cally ten times larger than, and opposite in sign to, en-

core polarization, figure 11 suggests that hybridization

is important throughout the transition metals. Consider

the case of Ni. The Fermi level intersects the high peak

of the fifth band. This band has almost no hybridiza-

tion, as is shown in figure 11, which was obtained with

Cu bands. The sixth band has an N(Ef) value which is

better than an order of magnitude smaller than the fifth

band at ^(Ni) . However the sixth band has twenty per-

cent 5-admixture at ^(Ni) causing a large, positive Od,

which compensates for this. Neglecting exchange

enhancement of the susceptibility, the sixth band con-

tribution can then cancel approximately one third of the

Knight shift term, aa, associated with the fifth band

alone. Exchange enhancement is important and an esti-

mate of the exact role of the sixth band requires

opinions of interband exchange effects. Scanning the

lower energy parts of the plot, it appears that hybridiza-

tion may affect the aa values for the lighter transition

metals more severely. This hybridization trend should

hold although changes occur in the crystal structures.

Despite the complexities just discussed, the two

band inodel of the Knight shift has frequently proven

fruitful, with hybridization absorbed in the term. The

various Knight shift contributions are normally disen-

tangled in two ways. First, comparisons can be made

between the relaxation time, Ti , and Knight shift results

which weight the various terms differently. The Korrin-

ga relation [27] provides a test for the 5-contact con-

tribution. Secondly, one can employ the graphical

technique of figure 10. This scheme, applied to Pt [20]
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appears in figure 12. The experimental data are plotted

iox versus Xtot with temperature the implicit parame-

ter and, following eq (23), it is assumed that

and
Xtot = Xdia + Xorb + X^+ X^ (25a)

^^= (6)Xorb+ (a.)Xi5+ («./)x/(n. (25b)

The slope of the experimental data yields an empiri-

cal value for The diamagnetic susceptibility is

estimated and subtracted out, shifting the origin of the

plot to point A. An estimate is then made of X// (usually

with the free electron approximation) and of and the

5-band contributions are subtracted out shifting the

origin, with respect to orbital and c?-band Pauli terms,

to point B. Finally, (6) is estimated, defining the slope

o{ JfoTb versus the Xorb line, which is drawn until it inter-

cepts the experimental^ versus Xtot curve (at point C).

The intercept defines the relative roles of orbital andc?-

band Pauli terms. In this case, the of-band Pauli term

dominates.

A value for the unenhanced Xp"' estimated from

specific heat data is shown in figure 12. The larger

•value, deduced from the Knight shift, provides a mea-

sure of the effect of exchange enhancement. While
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^(T) versus x(T|/or Pt, as takenfrom Clogston,

Jaccarino and Yafet [20].

quantitative results depend on the detailed choice of

Xdia, Xp"' (^s) ^i^^ (^)' •^he qualitative conclusion does

not. Changing the hyperfine constants by reasonable

amounts or omitting the 5 band term altogether does not

change the basic result. Analyses which compare Ti

and J'f data also rely on estimates of hyperfine con-

stants. Results indicate that the a?-band term also

dominates in Pd (see fig. 10) and Rh [119]. Note that

figures 10 and 12 indicate a greater exchange enhance-

ment in Pd (5 to 6) than in Pt (~ 2). The enhancement

in Pt is as expected, whereas the factor of 5 to 6 for Pd
is somewhat smaller than is currently fashionable to be-

lieve. The orbital term dominates in V [19,20,22], Cr-

rich Cr-V aUoys [24], W [21] and Nb [22]. This is not

surprising since these metals have roughly half-filled c?-

bands, encouraging orbital effects, whereas Pt, Pd, and

Rh have almost filled c?-bands. Equation (16) predicts

the difference in magnitude of ortibal effects for these

two groups of metals to within the uncertainty in the ap-

propriate band occupation (nj factors appearing in that

equation.

The slopes of the ^ versus x plots for Pd, Rh and Pt

yield ad values of —345, —162 and —1180 kOe//i-B

respectively. The Pd result is in good agreement with

the 4flf-core polarization value quoted in table 3 while

that for Rh is half that value. It is believed [10] that

core polarization is almost constant across the 4c?-row,

implying that the variation in aa arises from other

sources. Two suggest themselves. First, different

amounts of s character may be hybridized into the d
bands at the Fermi surface: increased hybridization

in Rh would produce a less negative ad. Figure 11 sug-

gests that there is a distinct probability that this occurs.

Secondly, there may be different intersite contributions

to ad. The Pauli term spin density induced on neighbor-

ing sites will, after all, make some contribution to the

hyperfine coupling constants. These two contributions

are expected to be present in Pt as well, and may con-

tribute to the fact that the experimental ad is not in

numerical agreement with table 3. (Some uncertainty

must be attached to the theoretical estimate quoted

there.)

Intersite effects, s- hybridization and c?-core polariza-

tion cannot be separated by inspection of ad for a pure

metal alone, but some insight can be gained by studying

alloys. NMR results have been obtained for Cu in the

Cu-Pd system [120] and Ag in AgPd [121]. The data

for dilute Cu or Ag in Pd suggest that these atoms go in

the lattice with filled d shells and with relatively little

perturbation on the surrounding Pd matrix. Negative

solute Knight shifts are obtained, in contrast with the

positive ones appropriate to pure Cu and Ag. Using Ag
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site Ti data to estimate an asXp^ term. Narath obtained

[121] an intersite hyperfine field of — 140 kOej/XB for

dilute Ag in Pd. (The susceptibility is essentially that of

the host, measured in (Xb units.) He noted that this term

is approximately twice the value obtained for dilute Cu
in Pd, i.e., that

Q/-solute cc \,^ost (nf.\
intersite Ap "solute \^^)

where ajoiute is the atomic valence 5-electron hyperfine

coupling constant appropriate to the solute (see table

4). Now the intersite term sampled by Pd in Pd can be

quite different from that sampled by either Ag or Cu
which are charge impurities but the above results sug-

gest that approximately one third of the Od value in Pd
arises from intersite effects and that the numerical

agreement with the 4<i core polarization value was for-

tuitous. The presence of an intersite contribution of

between — 100 and — 150 kOe/^tg then implies an equal

but positive contribution from 5 hybridization, or from

polarization of the paired 5 character in the occupied

conduction bands {e.g., see sec. 2). A two or three per-

cent admixture of 5 character in the d bands at Ef
would produce such an effect (see table 4). The varia-

tion in ad between Pd and Rh is within the realm of

reasonable change in hybridization, though intersite ef-

fects can be expected to vary.

Negative shifts of the Cu resonance are also ob-

served [122] for dilute Cu in Pt. Inspection of the

results is again troubled by the question of perturba-

tions on the host lattice (which are thought to be slight)

and second order quadrupole shifts (which are esti-

mated). The result is [122] an intersite term of

somewhat less than —100 kOe/^tB in agreement with

Cu-Pd. There also exist results for the Pt Knight shift

in Cu-Pt[122] and Au-Pt[123] alloys. A similar tendency,

of negative shifts in pure Pt and positive shifts in the

noble metal-rich alloys, arises. This is in qualitative

agreement with the above observations concerning a

negative intersite term in Pt. Questions concerning the

perturbation on the solvent's local susceptibility, due to

the presence of an atom such as Pt (or Pd) in a noble

metal, makes quantitative estimates of an intersite

hyperfine constant from the dilute Pt data less

plausible.

Experience with solute hyperfine fields [124,125] for

impurities in Fe, Co and Ni, and the above observations

for noble metal alloys, suggest that substantial intersite

effects arise in the heavy 3c?, ^d and 5rf metals. These

are expected to be of the order of —100 kOel/XB (the

moment being that characteristic of the solvent suscep-

tibility). There is some suggestion of weaker intersite

effects in the lighter elements of the various transition

metal rows. The changes in crystal structure from fee

to bcc, and the associated decrease in the number of

nearest neighbors to any one site may be a factor con-

tributing to this.

8. Alloys and Local Effects

The introduction of a foreign atom in a pure metal

has several effects. First, if the atom has a different

number of valence electrons than the host, its insertion

will change the number of conduction electrons per

atom (the e/a ratio) in the metal. Neglecting other ef-

fects of the insertion, this acts to shift the Fermi level

in the bands. The bands will, of course, be perturbed by

the addition of impurities. If the perturbation is

gradual, and relatively weak, it is often useful to scan

alloy data as if the Fermi level shifts (as a function of

ela) over a set of "rigid" bands. This is a rigid band pic-

ture which may (or may not) bear some resemblance to

the host metal conduction bands off their Fermi energy

[126], but this picture properly describes the alloy

system at Ef. Such a rigid band scheme has little or no

relevance to some alloy systems {e.g., Cu-Pd) while dis-

playing striking trends between alloys of common e/a

(e.g., Cri-j Vj- versus TiFeyCoi-y) elsewhere. Some ex-

amples will be considered in the next section.

Any impurity in a metal will produce a charge

disturbance. Atomic size and electronegativity effects

cause this to be true, to a limited extent, even in the

case when the valence of the host and that of the impu-

rity is identical. The conduction electrons act to screen

the charge difference associated with the impurity as

is indicated schematically in figure 13. There will be a

build up (as in fig. 13) or dilation in the total conduction

electron charge in the vicinity of the impurity, depend-

ing on the sign of the difference". There is a highly local

"main peak" with the familiar Friedel oscillations to

the outside. These arise from the presence of a conduc-

tion electron Fermi surface and have a period which is

inversely proportional to 2kF, i.e., the extremal caliper

of the Fermi surface in the direction in question [127].

" The conduction electron distribution is distorted by the Coulomb

perturbation in a very similar manner to the core polarization effects

discussed earlier, the latter case being an exchange polarization

and the spin difference resulting from it, the present case involving

the sum of charge terms. Both may be viewed as involving the admix-

ture of excited orbital character into the originally unperturbed

occupied one-electron states.
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Figure 13. Schematic illustration ofconduction electron charge

screening induced in a metal host by a single impurity at R=0. The

half-period of the Friedel oscillations, which is proportional to 1/k/.-,

is indicated.

Solvent atoms can make various differently weighted

samplings of this charge distribution, for example, by

quadrupole interactions [128-133] and by isomer shifts.

The presence of an impurity also affects the solvent

Knight shift. Only the perturbation of the Fermi surface

electrons is important here, as it is these electrons

which are involved in the Pauli term. The Fermi sur-

face electrons undergo a redistribution [127,134]

which is similar to the total charge screening in

character and which can be sampled as a distribution

through their (a) values appropriate to the different

solvent sites in the lattice. This, and the bulk charge

disturbance, are usually described in terms of free elec-

tron or simple OPW bands employing pseudopotential

or phase shift scattering analyses of the perturbation.

Due to the complex nature of the problem, neither

scheme usually supplied quantitatively satisfying a

priori predictions of experiment and, in the few cases

where they have, there arise questions of the unique-

ness of the result. In terms of the phase shift analysis,

the change in Knight shift at a nucleus some distance

R from the impurity is given [134] by

1 ^J^{R) ^ ,

-Jf-^ = S {«.(^) \ + ^/^) sin 2 r,^,},(27)

where

a^{R) - (2/+1) ^{n-^^{k,R) - fHk,R)}X2^)
H

and

- - (2/ + 1) 2 > {k,R)n^ {k,R). (29)

The /"^ term in the sum is associated with the /"^ par-
tial wave, 7]^ is the phase shift of the component,
and 7; and n, are spherical Bessel and Neumann func-
tions respectively. To obtain the effect on a solvent
metal Knight shift, the a, and ft, must be suitably
averaged over R. For "simple" solvent metals and
"simple" solutes the effect is presumed to be
dominated by s- and p-wave scattering. Changes in the
relative roles of 5- and p-wave scattering are important
in rationalizing the variation in AJT/^ with varying
valence of the solvent, or varying valence of a solute,

relative to the solvent.

There is traditionally some question of how large an
effect can be associated with pure 5-screening. From a

strictly atomic viewpoint, one might expect it to be
limited to two electrons worth of charge. The recent in-

vestigations of Slichter et al. [135,136] conclude that

higher / scattering is very important to the screening
when solute-solvent valence differences exceed two.

A local spin moment will produce a spin disturbance
similar to that seen in figure 13. Such a spin
disturbance is obviously important to magnetically or-

dered metals'" but it also produces the dominant
Knight shift term at some sites in certain paramagnetic
alloys (see sec. 12). Consider the Knight shift of a non-
magnetic site in a paramagnetic rare-earth alloy. The
principal term in the Pauh susceptibility, i.e., in the
spin induced by the magnetic field, is that of the open
4/-shells, and this spin will contribute to the nonmag-
netic site (a) behavior via conduction electron polariza-

tion. The susceptibility associated with the moment
would obey a Curie-Weiss law. Examples of this are the
above mentioned rare earths with their open 4/-shells,

and 3d alloys, such as Fe in Cu. Sometimes the moment
may arise from band-paramagnetism involving local-

ized d levels which are too weakly coupled by intra-

atomic exchange to produce a true local paramagnetic
moment. Curie-Weiss behavior is then not followed.

The 3d elements as impurities in Ag, or dilute Ni in Cu
are examples of such band paramagnetism.

Given an induced local spin monent of either of the

above types, there will inevitably be a spin disturbance
in 4he solvent conduction bands producing, in turn, a

Knight shift term. There will be a variety of contribu-

tions to this. First, and most obviously, the exchange
field due to the local moment wiU produce a spin depen-
dent scattering of conduction electrons. As described

We should note that in a magnetically aligned metal, cross

terms will cause a magnetic imputiry to contribute a charge dis-

turbance, and a charge impurity to contribute a magnetic disturbance

(the charge impurity Knight shift contribution can be considered a

special example of this).
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by Ruderman, Kittel, Kasuya and Yosida (RKKY) [137-

141] , the Pauli response of the conduction electrons to

the diagonal exchange term, f(kF-.kF), contributes a net

spin density which is then piled up in a screening dis-

tribution of the sort plotted in figure 13. Formally the

theory is almost identical to the charge screening case.

Exchange, rather than electrostatic Coulomb, terms are

responsible for the disturbance, and details of the shape

of the main peak and of the behavior of the phase and

amplitude (relative to the main peak) of the Friedel

oscillations should differ from the charge scattering dis-

tribution. The / = 0 and 1 partial waves will again tend

to predominate. Details [141] of the intra-atomic term

in the electrostatic exchange, ^ei, are such that if the

local moment is of odd (or even) / character, partial

wave scattering of odd (or even) /' is enhanced [i.e., s-

wave scattering is of increased importance with d-

moments present while p-wave effects are amplified in

4/"-moment scattering). Only s-wave spin density is non-

zero at the solute's nucleus. In the scattering picture,

it describes the intra-atomic conduction electron

exchange polarization term discussed in section 2.

If the value of electrostatic exchange were somehow
zero, the presence _.of a local spin moment would still

cause a spin disturbance in the conduction bands [142-

144]. Resonant scattering of spin-up and spin-down

conduction electrons will occur at different energies as

the result of the splitting of the local virtual (or real)

bound state to form the local magnetic moment. One
reason the scattering differs is the different occupation

of spin up and spin down orbitals on the local moment
site. Consider some partial wave component, with

quantum members / and of a scattered conduction

electron at the local moment site. If the local moment
had an occupied component of the same /, and

spin, the conduction electron component would be

unaffected (except for any nonorthogonality effects

which might arise); if there were a hole in that local mo-

ment orbital component, the orbital could be admixed

into the conduction electron function to the extent it is

energetically favorable. The existence of a net spin

residing in the local moment implies a difference in

hybridization (and orthogonaHzation) effects in conduc-

tion electron states of the same k and differing spin.

This results in a spin density distribution similar to the

core polarization effects discussed earlier. There is no

net spin in the disturbance; instead there are regions of

spin parallel and antiparallel to the local moment. In

their original inspection of such hybridization effects,

Anderson and Clogston concluded [142] that this

disturbance would fall off as l/r"*; subsequent numeri-

cal estimates of their model [145] are consistent with

this observation. It would seem that the effect is largely

concentrated at the local moment site. An effective

exchange interaction arises when the next order in

hybridization effects is taken [142,143]. Consider the

energy shift of a Fermi surface electron. The mixing of

local moment hole components into the wave function

will lower the state's energy whereas orthogonality with

occupied components can only raise its energy.

Hybridization thus stabilizes the energy of Bloch states

with spin moment antiparallel to the local moment
whereas those with spin moment parallel are less

favored since they undergo orthogonalization and

decreased hybridization. This produces [142-144] a

negative interband exchange constant ^ii,(kF,kFj in con-

trast with J'eikF,kF) which is always positive.'^ A nega-

tive value implies a conduction electron Pauh spin den-

sity term of spin moment antiparallel to the local mo-

ment. Such situations occur experimentally, implying

that "interband" hybridization (and higher order ef-

fects) do, on occasion, predominate over electrostatic

exchange, which can only produce a net spin moment
parallel to the local moments. (These effects are obvi-

ously intimately related to the Kondo effect.) The earli-

est evidence for negative exchange constants was ob-

tained by nuclear magnetic resonance and electron

paramagnetic resonance measurements for rare earths

in several host metals [146-149] such as Pd. This has

subsequently been borne out by magnetization and

neutron diffraction studies.

Interband hybridization exchange also differs from

electrostatic exchange in that hybridization will only be

strong between band and local moment components of

common f. The summing over individual Bloch state

contributions to the spin disturbance yields partial

wave scattering only from those same / components

directly involved in the mixing. Thus, unlike electro-

static exchange, hybridization effects with their

predominant d- or /-scattering, will not contribute an

/ = 0 contact spin density term to the hyperfine field at

the scattering site, unless higher order (i.e., double, tri-

ple, efc.) scattering processes are significant.

A disturbance of the type plotted in figure 13

produces a distribution in solvent site (a)'s causing a

broadening of the solvent Knight shift line. The dis-

tribution in (a), will not necessarily provide a detailed,

accurate mapping of the bulk conduction electron

disturbance. This is due to interference effects arising

from orthogonalization of the conduction electron wave

functions with the solvent site ion cores which are

" Schrieffer and Wolff [143] have explored the circumstances

for which J'ib can be properly defined.
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penetrated. This interference is important in that it af-

fects the apparent shape of the disturbance at sites

near the impurity, while providing little more than scal-

ing to the result for sites at asymptotically large R.

The sampling of the disturbance will inevitably cause

the average solvent site (a) to increase or decrease

with respect to the pure solvent value, thus causing a

shift 8J^, of the resonance line. Some sites will have

values of (a) so different from the average that they

will not contribute to the main resonance line, but satel-

lites outside instead. This will cause a decrease in line

intensity, i.e., wipe-out, upon alloying. Blandin and

Daniel's estimate [134] of one such distribution in (a)

is seen in figure 14. The theoretical estimate is drawn

to the same scale as an experimertal [150] NMR
derivative in Ag containing a small quantity of Sn. The

109
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2^'^ Neighbors

-I 0 I

Figure 14. (Above). Rowland's experimental [150] NMR absorption

derivative curve in an alloy with 1 percent Sn in Ag. (Below). Blandin

and Daniel's calculated [134] positions and relative contributions to

silver Knight shifts at silver sites in near neighbor, next near neighbor,

etc. . . positions with repsect to an Sn impurity in Ag. This is plotted

on the same horizontal scale as the experimental curve.

near and next near neighbor (a)'s in Ag(Sn) may well

be responsible for the partially resolved satellites.

Another experimental example [151] of satellite struc-

ture is shown in figure 15 for Pt containing small quan-

tities of Mo. Here three satellites are clearly resolved.

Details of the effect of alloying will depend on such

Figure 15. Experimental NMR absorption derivative curve in Pt-Mo

alloys as takenfrom Weisman and Knight [151]. The resonance in (a)

shows several distinct satellites and that in (b) shows satellites in the

same positions but those near the central resonance begin to merge

with the central line, thus causing resonance broadeningfor increased

alloy concentrations.

factors as whether or not the main peak of the dis-

turbance extends out and encompasses any neighbor-

ing nuclear sites. Little is known experimentally,

and less from accurate calculation, concerning

main peak behavior. {Most theoretical work makes the

doubtful, but computationally necessary, use of asymp-

totic estimates for the entire disturbance.) It is

generally thought that the main peak of the Coulomb

screening is largely localized at the impurity site while

the spin density peak is of longer range. For Fe in Pd
the latter is known to cover many lattice sites. This is

due to a large l/2kf value (which affects the main peak

as well as the Friedel oscillations) and to the substantial

conduction-electron conduction-electron enhancement

of Xp [152-154].

It has been seen that solvent data are largely limited

to shifts of the main resonance line and this does not

provide a unique test for any given detailed model of
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alloy effects. Although such experiments are difficult,

further observations of solvent satellite resonances in

very dilute alloys v\fould be invaluable for this purpose.

Satellite lines would arise from near neighbor region

(a)'s and, providing they can be disentangled, would

provide a severe test for any theory.

The interpretation of the alloy Knight shift data de-

pends somewhat on the nature of the material in

question. The change of !?{ , AJT, upon introducing a

second component into a metal, will cause a change in

(a)xp. Whether one interprets AJ^ as a change in Xp or

in (a) [recall the latter is an average involving the

product of a's and x's, over all points of the Fermi sur-

face; see eq (17)] depends upon one's preference for

the particular case at hand.

In a simple form one may write, in analogy with

eq(l),

alloy ~ (<i)alloyXp"°^- (30)

Permitting both (a) and Xp to vary, as in eq (30), is not as

practical a viewpoint for scanning alloy data, as is hold-

ing one of the two quantities constant and attributing

the trend in to a variation in the other. For instance,

in the case of the transition metal alloys such as the Ti-

V-Cr series, the vanadium Knight shift change may be

most conveniently discussed in terms of a change in

density of states [i.e., \p). We will discuss this case in

more detail later and see that for this case such a

description is a useful one. On the other hand, in dilute

alloys, where the Friedel oscillation description may be

used, the change in S'f is better described by consider-

ing the different (a) values as appropriate to the dif-

ferent environmental conditions of the host atoms,

keeping Xp constant.

A general version of eq (30), sampling the Knight

shift behavior of the two types of atoms {A,B) in a bi-

nary alloy is

Xp=(1-c)

= (l-c)

(QX)aHov

W) A in alloy (a) B in alloy

'^'^ alloy
r 7/'B
'-•^^ alloy

{a) A in alloy {a)B in

(31)

(32)
alloy

where and (a).4, are the shift and averaged hyper-

fine constant of atom^ in the alloy. Xp is defined as the

susceptibility per atom and c the concentration of B
type atoms. Making the nontrivial assumptions that

(«) alloy is equal to its value in the pure metal or B),

and that there is no significant exchange enhancement

of X, this equation may be rewritten (using eq 17) in the

form given by Drain [74]

,

A^(^F)alloy= {l~c)NAiEF)
metal

Uoi.

metal

(33)

Thus

A^(£F)alloy - ( 1 - c)Na (Ef) + cNb (Ef)

(34)

which defines local densities of states Na(Ef)^^^"^' and

Nb(Ef)^^^°^. The assumption of setting (a) in the alloy

equal to (a) in the metal forces the whole effect of al-

loying to be described in terms of these local densities

of states. At times this proves useful. Drain [74] has

used eq (33) and the data of figure 8 to scan the AgCd
alloy system. The results are in agreement with general

trends seen within and between phases obtained in a

"rigid band" scan of electronic specific heat data. How-
ever, using eq (33), such a scan should not rigorously

reflect the variation in the density of states of Ag at and

above Ep for a number of reasons. These include charge

screening (for discussion see ref. 8) and the fact that the

hyperfine constants are held fixed.

Local effects in covalent compounds, such as chal-

cogenides and SiC can also be examined using eq (31).

Consideration of these materials is aided by the fact

that the energy bands are often more well-known in

these than in intermetallic compounds. An example is

n-doped silicon carbide [78,155]. The ^^Si Knight shift

is near zero whereas a substantial Knight shift is

measured for ^^C. This information, together with Ti

data for both sites, permitted Alexander and Holcomb

[78,155] to infer important wave function symmetries.

It was concluded that a zero Knight shift implied a

zero wave function density at Si but that symmetry

allowed a substantial shift at the carbon site.

Lead telluride is another case where local effects are

important and where a significant amount of experi-

mental and theoretical information is available on the

energy band structure. Although the results are af-

fected by sample preparation, for the better samples

the '"^Pb Knight shift in Ai-type PbTe was found

[156] to be temperature independent, and relatively

small and positive with respect to undoped PbTe. On
the other hand in p-type, PbTe ^(Pb) was found to be

large, negative and temperature dependent. This was

interpreted [156] in terms of a band structure model in

which the valence band possesses substantial 5-
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character with respect to the Pb atoms, whereas the

conduction band lacks 5-character at Pb. The small

positive shifts in r!-type material were assumed to be of

orbital origin. The negative contact interaction is as-

cribed to a negative ^--value for the L-point valence

band states. The same band model was used to explain

the '-•''Te Knight shift results in these materials.

9. Correlations of ^{ , x and y with Electron

Concentration in Transition Metal Alloys

There are many cases in the literature where the

Knight shift has been observed to vary smoothly with

composition in alloy systems. Where y values are

available from specific heat data, or other N(Ef)

information is known, a direct correlation between

these quantities and 3'{ can sometimes be found.

Usually the complex nature of Jr(eq 19) causes the cor-

relation to be somewhat obscured, and the fact that

does not follow the N(Ef) curve is not necessarily an in-

dication of nonrigid band behavior. Examples are

shown in figure 16a. Looking first at the 3rf-alloys, there

is a gradual increase in with e/a, with a peak at about

5.6 electrons per atom. Between eja = 5.6 to 6, there is

a gradual decrease in ^f. This decrease is steepest for

V-Fe alloys. The vanadium hydride results follow those

of V-Cr extremely closely, as if the electron of the

hydrogen is absorbed in the common conduction band,

filling the band in the same manner that Cr does.

Recent data by Rohy and Cotts [169,170] on V-Cr

hydrides (not shown) fall on the same line. The other

data, including those for the 4(/ alloys, all are similar

to the V-Cr curve in that they show a peak in at

about ela = 5.6. The Nb-Tc alloy data shown in figure

16a deviate from the general trend. The reason for

discrepancy in the case of ^if measurements may be

a result of a difference in N{Ef), but again may be

due to local effects so that no direct conclusion can

be drawn from the .yT versus eja results alone.

To give a further picture of the shape of the density

of states curves for these alloys we show the total

susceptibility data in figure 16b. Both for the 3d and 4d

series, there is a possible cusp at e/a = 5. Both x curves

have quite similar behavior. The \-Tc{3d-4d) alloy

system also follows this trend. From this picture we get

a different impression of the density of states curve

than from the curves obtained from y data as shown in

figure 16c. Here there is no cusp at e/a = 5 and a major

peak occurs between eja = 4 and 5. Thus there is a dis-

crepancy between the y curves on one hand, and the x
curves on the other. Depending on which curves are

used, the Knight shift data may be interpreted in a
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Figure 16. Variation of(a) Knight shift, (b) susceptibility and(c)

density of states as measured by electronic specific heat, with el a ratio

for the b.c.c. transition metals of the 3d. and 4d rows. Whilefor 3f and

X there are substantial ranges where x and 9^ track one another, the

N(E;. )y curves show less similarity. The data were taken from the

following sources: (a) Ti-V [157], V-Cr [157,158], V-Tc [157], V-Fe

[159],V-Ru [160], V-H [161],Nb-H [162], Nb-Tc [163],Zr-Nb and

Nb-Mo [164]. (b) Ti-V [165]. V-Cr [157,165]. V-Tc [l57],Zr-Nb

[lM],Nb-Mo [163,164], Nb-Re and Nb-Tc [163]. (c) Ti-V and V-Cr

[164,1 66,1 67], V-Fe [164] , Zr-Nb andNb-Mo [168]
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quite different manner. In either case there is no direct

correlation between !?{ and the other data, and there

must be an interplay of several terms as a function of

e\a. A number of attempts have been made using y,

as well as T\ data and the Korringa relation [27] , to

derive the various contributions to^. For example, the

results of figure 16 have been rationalized [24,163,164]

by using a two-band model for the Pauh term, as in eq

(23), and estimates of the Van Vleck orbital effects.

Although these do explain the results, the description is

not unique. An alternative explanation in terms of vary-

ing 5-c? admixture in a single band has been offered [171,

172] to explain the maximum in !?{ at e\a ~ 5.6. In the

region above 5.6 both y and x are decreasing. Within

this model, the decrease in arises from a Pauli con-

tribution which becomes less negative, and, in fact,

positive with increasing e/a. Only 10 to 15 percent 5-

character in the fi-band is required to balance or over-

take the negative d-core polarization term. Changes in

s-character of only a few percent can produce the ob-

served variations in As noted earlier for Cu (see fig.

10), admixture and variations of admixture of this mag-

nitude are not unreasonable. This model is more obvi-

ously appropriate to the TiFci-j-Cox alloys, with eja

from 6 to 6.5 [172] , where the slope of the Jfi^^Co) ver-

sus X plot reverses sign across the alloy sequence. If

the hybridization model is proven vaUd, the Knight shift

can provide a useful probe of the variation of the densi-

ty of s-states in "f/"-bands.

An example of a different type of application of a

rigid band model is the proposed band structure in the

lanthanum-hydrogen system by Bos and Gutowsky

[173]. Lanthanum is a metal and upon adding

hydrogen up to 67 percent (LaH2) the material remains

metalhc. At LaHs, however, the material becomes an

insulator. This, together with and x information, was

then used [173] to propose the density of states shown

in figure 17. These measurements lead to the conclu-

sion that adding hydrogen means lowering the ela ratio,

which can be considered equivalent to the hydrogen ab-

sorbing an electron. This is in contrast to the other

model in which hydrogen in the alloy gives up an elec-

tron to the conduction band and remains in the lattice

as a proton. This latter model has been used, for exam-

ple, to describe the V-H and Nb-H results shown in

figure 16a, and for the compounds ScH2 and YH2 [174].

An interstitial proton is expected to be a larger perturba-

tion in the La matrix and it may bind two I5 electron

states to it (as in fig. 17) whereas such electrons might

not be bound in the other systems where the per-

turbation is weaker. Such behavior can be anticipated

from 5-wave impurity scattering theory.

N(E)

Figure 17. Proposed band structure for lanthanum dihydride

[173]. For each hydrogen atom entering the metallic lattice, two

electrons are assumed to be transferred to localized hydrogen 1 s

orbitals. Formation ofLaHs would correspond to complete emptying

of the conduction band.

1 0. Solvent Knight Shifts

Confidence that the Friedel oscillations (fig. 13) can

be observed was given by Rowland's quadrupole wipe-

out data in Cu alloys [129], and reinforced by his sol-

vent Knight shift results [150]. Rowland measured the

change of the Knight shift upon alloying, Aff, for a

large number of fi-subgroup solutes in Ag. From these,

he obtained values for F (F = ^~^A,^/Ac, where c is

the fractional impurity concentration). These F data are

plotted in figure 18. While there is a general tendency

T

- 1.0

r
-0.5

- -o-
- Cu Zn Go Ge As

...Q.... Ag Cd In Sn Sb

Au Hg Tl Pb Bi

Figure 18. r= 1/.^ AX/Ac valuesfor impurities in a Aghast

versus position of the impurity in the periodic table. The dashed,

dotted and solid lines connect points for impurities occurring in the

Cu, Ag and Au rows, respectively. These data are takenfrom Rowland

[150], from his table 1. As pointed out by Rowland, the F values are

dependent on the range ofdata employed.
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for r to increase with solute valence, there is a slight

turn back (i.e., decrease in magnitude) of F from Ag-Ge

to Ag-As. For the silver row (namely Cd, In, Sn, and

Sb), there is no such turn back. In figure 19a we have

chosen two sets of Rowland's AJ^ data, for pairs of im-

purities of common valence, which clearly display the

valence effect seen in figure 18. Rowland [150] noted

that curved lines could be drawn to fit the datum

points, as we have done for some of the data in figure

19b. Rowland points out that due to lineshape effects

(for example, see fig. 14), the uncertainty of the in-

dividual points is such that his representation by a

straight line is all that is quantitatively reasonable.

Granted this uncertainty, the possibility of nonlinearity

in these plots of !?{ versus c may be real, as was noted

by Rowland. Using Rowland's raw data, a F defined for

low concentrations is smaller than that defined by

fitting out to larger concentrations. This fact was used

by Alfred and Van Ostenburg [175] in their version of

the F plot which differs from figure 18, for the Sb in Ag
point. By using low concentration data, this F point was

reduced from the value given by Rowland, bringing it

into line with their [175] predicted turn back. If the

same treatment over the same concentration range is

used for all of Rowland's datum points, then all the F

points in figure 18 will tend to be somewhat lower but

the general picture will remain as shown in our figure

18. Alfred and Van Ostenburg neither used Rowland's

choice for F, nor treated the data for all the alloys

equivalently. If all of the F values are obtained con-

sistently, their phase shift analysis yields neither

better, nor worse, agreement with experiment than the

earlier phase shift estimates of Kohn and Vosko [176],

and ofBlatt [177].

Similar valence effects have been seen for B-
subgroup solutes in liquid copper alloys [178] and, as

seen in figure 20a, in solid lead alloys [179]. The liquid

copper results of Odle and Flynn [178] also display the

high valence turn back. This result is more evident than

in the solid Ag case, the ^ versus c plots being more

linear and the turn back in F being larger, although er-

rors for the points of most interest are somewhat large.

Odle and Flynn [178], utilized the phase shifts of Blatt

[176] and Kohn and Vosko [177] to discuss their

results.

In the solid Pb case, the F values are largest for the

smallest valence (Hg), but a reduced effect of valence

difference (i.e., the beginning of a turn back) is also

evident. The raw data in figure 20a also reveal curva-

ture in ^(Pb) versus concentration for solid PbTl

[179], similar to the Ag data in figure 19b. This curva-

ture is not evident for the other Pb alloys. In liquid lead

alloys, as seen in figure 20b. taken from Heighway and
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Figure 19. {a) Silver solvent Knight shift datum points with straight

lines, as chosen byRowland [150]. (b) Silver solvent Knight shift

datum points [150], indicating smooth curves through these points,

without the assumption of linearity.

Seymour [180], there are some cases of Unearity and

others of nonlinearity. A very interesting fact here is

that, in the solid, F has the opposite sign to F in the

liquid for many of these alloys. This result was verified

[180] by following the resonance in Pb-Bi from the

Uquid to the solid state.

In figure 21a and c, .7^ versus c plots for solid InPb

and InSn alloys [123] are shown. These are examples

where there is a tremendous dip in versus c, before

a more linear behavior is achieved. This dip falls within

a 1% impurity concentration in one case, and 2% in

the other. The magnitude of these dips is up to

10% of the total Knight shift. For comparison, data

for these alloys in the liquid state [181] are shown in

figure 21b and d on the same vertical scale as the

solid data [182]. Dips may also exist in the hquid state,

but, if so, were missed due to the coarse grain scans

over the dilute range of alloying. On the other hand the

dip may be peculiar to these alloys in the solid state

only.

The linearity of ^f, bearing in mind the coarse com-

position mesh studied, is striking for the liquid alloys

displayed in figure 21 b and d. This Hnearity is charac-

teristic of many, though by no means all alloy systems.
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Figure 20. {a) Pb solvent Knight shifts upon alloying in solid alloys, as taken

from Snodgrass and Bennett [179]. (b) Pb solvent Knight shifts upon alloying in

liquid alloys, as taken from Heighway and Seymour [180],

Several other examples of linear behavior have been

observed [183-188] . In these papers some cases of non-

linear behavior are also encountered. The linearity,

even at higher concentrations, may be relevant to some

suitable, phase shift description. However, it should be

recalled that in its formulation the traditional phase

shift analysis was developed for infinite dilution only.

A dip in ^ versus c is also suggested by the solid Cd-

In data [189] shown in figure 22. In this case we have

drawn a straight line through the higher concentration

data points merely to show a very general trend for the

alloys. Although the scatter is large, it is again clear

that the data are not best represented by a single

straight line from the origin.

The complexity of the various terms contributing to

JT, and the local nature of is such that the observa-

tion of nonlinearities should not be surprising. These

nonlinearities are not amenable to simple phase shift

analyses, although the turn back in F is.

For the liquid alkali alloys a form of the single scat-

tering model was employed by van Hemmen et al.

[190]. Agreement with experiment was obtained by in-

cluding volume renormalization, without considering

the details of the charge oscillations. The phase shift

description used by Odle and Flynn [178] for liquid Cu
alloys, and similar attempts by Rigney and Flynn [191]

using newly derived phase shifts, as well as pseu-

dopotential methods as employed by Moulson and

Seymour [192] have been partially successful in

describing. versus c behavior in liquid alloys.

The observed behavior of^ upon alloying should be

described by a "nondilute" scattering model coupled
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Figure 21. Solvent Knight shifts for two alloy systems in the solid and the liquid state. The indium shift is shown for InPb alloys in (a)

and (b), and for InSn alloys, in (c) and (d). In the left hand picture, (a) and (c), data are shown for solid alloys of up to ten percent

impurity taken from Anderson, Thatcher and Hewitt [182]. On the right, (h) and (dj, data for these same alloys in the liquid state by

Seymour and Styles [181] are shown on the same vertical scale over the full range of alloy composition. All the reported alloy datum points

are shown. (Note that there is no overlap of the data in the dilute region. We have merely transferred the solid data as dashed lines, onto

the liquid curves for ease of comparison.) Lacking data there may or may not be strong structure in these liquid alloys in the dilute region.

with some accounting of "rigid band" effects [8] , in

addition to other possible mechanics. Such a combined

theory is not yet available.

{Note added in proof: An interesting proposal to

explain the low composition dip was given by R. A.

Craig. (We thank the author for sending us a preprint

of his manuscript, to be published in the Journal of

Physics and Chemistry of Sohds.) Anisotropic many-

body effects were found to give a contribution to ^ in

a pure metal. According to Craig, the contribution
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Figure 22 Change of the cadmium Knight shift in Cdin alloys, as taken from

Slocum [189]. The indicated straight line through these points has been drawn to

demonstrate that these points are clearly nonlinear with respect to the origin.

is expected to become unimportant upon introducing

impurities and at high temperatures (e.g. absent in the

liquid), because impurity scattering of the quasi-

particles will cause a loss of memory of the angular

correlations between the quasiparticle-quasiparticle

collisions.}

11. Solute Knight Shifts

When a foreign atom is substituted in a lattice, it

causes a certain amount of screening about it, and long

range charge oscillations, as discussed in previous

paragraphs. Let us now look at what this impurity atom

sees as situated in a foreign host. The Knight shift will

respond to such a situation in the same way noted

above, namely by an (a) of the impurity (be it altered

somewhat by its environment) and a Xp of the host,

which may also be changed by the introduced impurity.

Again it is a matter of how Knight's ^ factor is used as

to whether we use Xp to mean the measured average

derived from Xexpt, or whether to ascribe a local x

nature to the immediate environment as the impurity

sees it. To make this situation more clear we rewrite eq

(11) for the Knight shift of an impurity, B, in a given

host,/4, as

B in A
J_

Xp^^Hi„. (35)

This definition then uses f to absorb solute site changes

in both (a) and Xp from the free atom and pure solvent

behavior, respectively.

It is useful to explore eq (35) for a sequence of alloys,

varying either impurity or host. One might follow the

quantity JTg ^i, or J^b in aIxp'^^ for a specific impurity

through a series of host metals. For example, we have

done this for charge impurities in the sequence Cu, Ag,

Au. A similar type of scan is often done for Mossbauer

hyperfine data across rows in the periodic table.

Alternatively, one can dissolve a series of impurities

in a particular host. The observed trends are less dif-

ficult to interpret as we have the advantage of remain-

ing within one crystal structure. Such solute studies

have been done for example for Cu and Ag [6] , for lead

[193], and for Au [7,194] based alloys. Taking these

data, we have plotted the quantity j^f b in A/Heff^ in

figures 23 and 24. We have connected points of impuri-

ties belonging in the same row of the periodic table, and

dissolved in the same host metal. We see a general

downward trend as we go to higher valence for three of

the four host materials, but for gold there is a definite

reversal of trend. If we now assume an experimental

Xp'^ of the pure host material. A, then this behavior

reflects directly the nature of ^, or (a), in Au versus

that in Cu, Ag and Pb. In other words, the gold host

causes the details of the wave function at the impurity

site to change quite differently from the other three

hosts. This could, of course, involve local density of

states effects as well. We believe [7] that strong s-d

hybridization, arising from the proximity of the d band

to the Fermi level, is important to the Au behavior. Un-

fortunately, auxiliary specific heat, susceptibility, and

other experimental data which might help resolve this
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Figure 23. Impurity Knight shifts in Cu, Ag andAu hosts. Atomic

effects due to the hyperfine coupling constants are divided out, using

our H^fvaluesfor the impurities, listed in table 2. The resulting trends

are oppositefor a gold host thanfor copper and silver hosts. (Datafor

boron in gold [19.5] of 15X10-^% per kOe agrees with the upward

trendfor the gold host. The uncertainty in this value is greater than

that ofthe points given in the plot.) Points for impurities occurring in

the same row of the periodic table are connected with the line symbols

indicated in the lower left hand corner (e.g., the dotted line connecting

the square datum points is for Ag, Cd, In, Sn, and Sb in a silver

host). The Cu and Ag data were taken primarilyfrom Rowland and

Borsa [6]; the Au datafrom Bennett et al. [7]. This latter paper gives

in its table 1 further references to the literaturefor several ofthe

shown points. The Sb in Ag point was takenfrom Matzkanin et aL

[1941

matter is not readily available for the Au alloys. More
data of this type would be worth obtaining.

12. Magnetic Disturbances

The effects of a charge impurity in a metal have been

described above (sections 8, 10, 11). When a magnetic

impurity is introduced into the metal, a similar

Figure 24. Impurity (B) Knight shifts m a lead host divided by the

impurity hyperfine fields, H^jy. Data taken from Bennett et al. [193].

The dotted line connects pointsfor impurity atoms belonging to the Ag
row ofthe periodic table and the solid line connects thosefor impurity

atoms belonging to the Au row. The trend is similar to thatfor Cu and

Ag hosts and opposite thatfor an Au host.

response occurs: spin density oscillations (rather than,

or in addition to, charge oscillations) are set up around

the impurity, as discussed in section 8. The behavior is

similar to the oscillations shown in figure 13. The un-

balanced spin at a neighboring site interacts with that

nucleus via a spin-dependent interaction. Generally

this interaction is rather strong compared to charge ef-

fects causing correspondingly larger variations in the

Knight shift and thus larger values of Y.

Gardner and Flynn [196] have reported susceptibili-

ty and solvent Knight shift results for transition ele-

ment {3d) impurities in Uquid Cu. The dominant Knight

shift term in these cases is associated with the 3<i-

magnetic moment aligned at impurity sites by the mag-

netic field. The susceptibilities of alloys with Cr, Mn,

Fe, and Co as impurities obey the Curie-Weiss law im-

plying the existence of local paramagnetic o?-moments

at impurity sites. The moment values, fi, inferred from

the susceptibilities are plotted in figure 25. Sc, Ti and

Ni alloys do not follow a Curie-Weiss law, suggesting

that local virtual d-\e\e\ band paramagnetism

dominates.'^ The Mn, Fe, and Co moments plotted in

figure 25 are of some interest if one assumes that they

are entirely associated with impurity site (f-character,

i.e., little or no moment either residing on the host lat-

tice, or in conduction band character at an impurity

site. The moments then equal the number of holes in

the (f-bands and the quantity (lO-fx) provides an esti-

mate of the number of c/-electrons at a local site.

The detailed susceptibility behavior of the Cr, Mn, Fe and Co

alloys suggests the presence of a small term, of perhaps this sort,

in addition to local moment paramagnetism.
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Figure 25. r= 11^ AJ'/Ac values for 3d transition metal

impurities in liquid copper (solid line) and effective magnetic

moment, ft, (dashed line) plotted versus position in the periodic table.

Both sets ofdata are takenfrom Gardner andFlynn [196], The

vertical scale ofthe p. plot was arbitrarily chosen so that the height of

the r and p. peaks are nearly equal.

Gardner and Flynn [196] obtained values of 7.1, 6.4,

and 5 for the number of Co, Fe and Mn respectively.

These numbers are 0.5 to 1.0 electrons smaller than the

c?-electron counts beheved appropriate to the pure

solute transition metals and, if real, this trend offers

valuable evidence as to the electronic character of

these impurities. The estimate, of course, relies

strongly on the assumption that the moments are en-

tirely of impurity site <i-character with no hybridization

with the conduction bands. Electron count estimates

for lighter 3c?-element impurities, such as Cr, are

further hampered by the question of whether or not

there is any occupied c?-character of spin antiparallel to

the net spin of the moment. The density of states with

and without such behavior is shown schematically in

figure 26. It is probably reasonable to assume that a

strong paramagnetic moment such as Cr in Cu has little

or no c?-spin moment component antiparallel to the net

local moment.

The r values appropriate to the various 3d-Cu alloys

are also plotted in figure 25. These roughly follow the

moment behavior, are negative, and are large when
compared with the charge perturbation F's of, for ex-

ample, figure 17. They are large because a local 3d-

susceptibility, and its associated spin density

disturbance, contributes a larger Knight shift effect

LlJ
1
J
M

Cr or Cr ?

W

1

E F

Figure 26. Schematic density ofstates as afunction ofenergyfor Cr
metal. In thefirst case the spin up ( 'f ) band and spin down ( I ) band
do not overlap at the Fermi surface; in the second case both spin up,

and spin down bands are partiallyfilled.

than the weak perturbation of charge impurities.

Charge effects are undoubtedly also present in the

vicinity of 3c?-impurity sites, but these appear to be in-

significant if a local paramagnetic moment is formed.

The strength of the magnetic term, relative to other ef-

fects, is a prime reason for the observed linearity in

versus impurity concentration. (This assumes that the

magnetic term above tends to be linear.) The negative

sign of the F's might imply that the main peak of the

conduction electron spin disturbance (see fig. 13) has

its moment antiparallel to the local moment. This nega-

tive sign is reminiscent of charge impurity effects and

might instead indicate, as in the charge case, that the

main peak either fails to overlap solvent nuclear sites

or, if it does overlap, contributes satellite lines which

are shifted out of the main resonance {e.g., see fig. 14).

While the latter would be consistent with charge impu-

rity experience, most workers beheve that the main

peak is sampled by the main resonance line, and that a

negative F indicates spin moment antiparallel to the

local moment. This in turn implies that hybridization

and higher order effects predominate over electrostatic

exchange scattering. Combined hybridization and elec-

trostatic exchange terms will provide an effective

exchange coupling which is not constant as one traver-

ses the 3c?-elements. One thus expects a crude but by

no means linear relation between F and fx. This is seen

to be the case in figure 25. Gardner and Flynn showed

that a partial wave description involving c?-wave scatter-

ing crudely reproduces the trend and magnitude of the

F's.

Flynn and coworkers have also obtained [197]

results for 3c?-impurities in liquid Al and these are sum-

marized in figure 27. Since band, rather than local mo-

ment, paramagnetism prevails for all impurities, the

added susceptibihties per mole of solute have been

plotted (rather than local moment yu, values). The F

values, except for Sc and Ti, are smaller than those ob-

tained in the Cu alloys. This is largely accounted for by
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the smaller susceptibilities (per added solute atom) in

the Al alloys.

The Cu and Al hyperfine fields, per effective spin

moment induced on solute sites, are of the order of

— 100 kOe for impurities in the middle of the 3d-

series. The hyperfine fields obtained (and the ^'s

derived from them) for the Cu alloys are plotted in

figure 28. (A similar plot for 3c?-impurities in liquid Al

alloys results in much larger uncertainties.) One might

expect a somewhat smaller value of //gfr for Al relative

to that of Cu, since the free atom 5-contact interaction

of Al is approximately half that of Cu. The fact that it

has a similar value suggests that the magnetic response

in the Al matrix, due to a given moment on the im-

purities, is slightly larger'^ than in Cu.

If one attributes //^ff on an average solvent site to an

5-moment, with its associated atomic (a), the results

correspond to antiparallel spin moments of 0.05 to 0.08

fjLB for Al and up to 0.05 /xb for Cu for every Bohr mag-

neton of moment aligned at solute sites and in the sol-

vent matrix. The moment at any given solvent site is

small but the total moment residing in the solvent lat-

tice can become a significant fraction of that residing

on the solutes thus affecting the arithmetic average of

(f-electron population estimates from susceptibility

data.

A comparison of the F behavior and the susceptibili-

ties for the Al alloys (fig. 27) shows F tracking x more

poorly than was the case in the Cu alloys (fig. 25). When
making such a comparison it should be noted that the

F for Sc, Co, Ni and Cu are of the order of charge impu-

rity F's. Thus, charge as well as magnetic effects, may
be contributing to F. As we have discussed, the nega-

tive sign of the F's in figures 25 and 27 would seem to

indicate that hybridization exchange scattering

predominates over direct exchange effects (see sec. 8).

There is no reason why such hybridization effects

should be constant across the 3d row and the deviation

in F from the x curve in figure 27 is of a magnitude ap-

propriate to such a variation in hybridization effects.

Flynn and coworkers explain the trend with a particular

version of such higher order effects, in which the

exchange enhancement of the virtual c?-level suscepti-

bility (see eq. 20) plays an important role. The fact that

F lies higher for the lighter 3d impurities could be due

to charge effects but it would seem to imply that

hybridization effects are stronger (and/or coulomb

8.0

One might be tempted to attribute this to band effects associated

with the band paramagetism of the impurities in Al versus the local

moment paramagnetism of Cr, Mn, Fe and Co in Cu, but note the

small effective fields for the band paramagnetic impurities of V
and Ni in Cu.

4.0

I

Sc Ti V Cr Mn Fe Co Ni Cu

Solute

Figure 27. F = 7 / /Ac valuesfor 3d transition metal

impurities in liquid aluminum (solid line) and xu the susceptibilities

per mole ofsolute plotted versus position in the periodic table. Both

sets ofdata are takenfrom Flynn et al. [i97].
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Figure 28. Hyperfinefields and effective ^ valuesfor liquid copper

sampling the effects produced by liquid transition metal impurities.

Unlike the normal definition ofsuch quantities these are defined with

respect to the impurity susceptibility. This is accomplished by using

composition, rather than temperature, as the implicit parameter in a

versus x plot.

exchange weaker) for the Ughter elements in Al. The
peaking of F at Cr or Mn seen in figures 25 and 27 is

characteristic of the 3d elements. Quite different

behavior is seen for the rare earths (e.g., see fig. 29).

As already noted, the variation in Knight shift with

impurity concentration is strikingly linear in both the Al

and Cu alloys over the ranges of concentration studied.
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Figure 29. r=7/^- A^/Ac for rare earth metal impurities in Liquid

aluminum (circles with error bars) and Heff, the effective total

magnetic moment (dashed line) plotted versus position in the periodic

table. Both sets ofdata are takenfrom Stupian and Flynn [200^. Also

plotted is the effective spin moment (S), as discussed in the text (solid

lines with squares).

In some cases these extended up to five and six per-

cent. These are concentrations at which one magnetic

impurity would have another magnetic impurity as a

near neighbor roughly half the time. At such concentra-

tions it is doubtful that a Friedel or RKKY type of

theory should be expected to work, for they assume

noninteracting impurities which are dilute enough that

there are no saturation effects in the solvent. Any effec-

tive local-moment local-moment exchange coupling is

reduced due to the fact that the experiments were done

at high temperature (above 1000 K). This may serve to

reduce apparent nonadditive effects. It may be that

averaged multimoment effects are contributing to the

r's. Extremely dilute alloys were not examined; with

one exception the lower ranges of alloy concentrations

were one-half to one percent.

Knight shift data in alloys have also been obtained by

y-y, perturbed angular correlation experiments [198].

In such an experiment, a nucleus is observed which has

emitted a gamma ray in some particular direction. Thus

defining the nuclear orientation, one then observes that

nucleus as it emits a second gamma ray in some charac-

teristic multipole distribution. Application of an applied

magnetic field produces a Larmor precession of the

nucleus between the emission of the first and second

gamma ray. The precession rate, with its associated

Knight shift term, can be deduced from its effect on the

second gamma ray distribution. Rao et al. [198] have

recently used the technique to obtain the Knight shift

of very dilute Rh in Pd over a temperature range of 4.2

to 1053 K. They then used existing susceptibility data,

extrapolated to infinite Rh dilution, to obtain a JiT

versus impurity site x plot, which was not linear. The J/f

versus x slope appropriate to particular temperature

regimes are uncertain due to questions concerning

scatter in the Knight shift data and the purity of the

samples used in two different sets of susceptibility

measurements. (These are strongly paramagnetic

alloys and any magnetic impurities will strongly perturb

the magnetic response.) The results yield a large nega-

tive ^ versus x slope at high temperatures, which is

of the order of 4</-core polarization effects, but a much
smaller slope at low temperatures. This is consistent

with a picture where the impurity contribution to the

susceptibility at high temperatures is almost entirely

associated with Rh sites, but, due to exchange en-

hancement effects involves the entire Rh-Pd matrix at

low temperatures. The low temperature versus x
slope is consistent with an effective magnetic moment
of ~ lO^ts residing largely on the solvent matrix. Such

a moment was independently deduced [199] from

Curie-Weiss fits for these alloys at low temperatures.

Stupian and Flynn [200] studied the effect of adding

rare earth impurities to hquid Al. The susceptibihties

were consistent with local moments as predicted by

Van Vleck [201]. With the exception of Sm(4/)^ where

there is strong multiplet mixing, the moments are ap-

proximately

_L J + 2S J
(36)

where the Lande ^-factor has been written out. Very

substantial orbital terms contribute to and therefore

the r's should not, and do not, track fx. The F's are

compared with (S) in figure 29 where (S) is the spin

component along J, i.e.

2S-

J

2S-

J

L J + 2S J

2/M,eff (37)

is a measure of the spin component (in /xb) parallel to

the ahgned J. This provides a crude first order measure

of effective exchange perturbations. S is antiparallel to

J in the first half of the rare earth row and parallel in

the second, hence the sign reversal in (S). The F's dis-
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play a weaker reversal which is, in part, associated with

uncertainties such as the natural zero line for magnetic

contributions to P. [Note that La, Yb and Lu impurities

have zero-valued magnetic moments yet their T's lie

above the zero hne.] The differences between F and

(S) are on a similar scale to the effects seen in figure

27. Otherwise there are fundamental differences in F

behavior as one transverses the rare earths in contrast

to the 3c?'s. Negative F's prevail suggesting a tend-

ency for the conduction electron spin disturbance to

be antiparallel to the spin of the rare earth moment.

This is consistent with almost all experience with rare

earth elements in alloys or intermetallics. This sign was

also observed for rare earths as impurities in Pd [202-

204], at Al sites in REAI2 intermetallic compounds

[146], and for '^'P, ^'^As and '-'Sb in PrP, PrAs, TmP,
TmAs and TmSb'^ [206]. There is general agreement

that hybridization effects are responsible for these

results.

The situation with magnetic alloys is seen to be

similar to the charge impurity case. Both can be

described with models of the perturbations which

reproduce the experimental behavior, usually crudely,

although occasionally in detail. The magnetic alloy

problem is complicated by the presence of several scat-

tering mechanisms and by the fact that a magnetic im-

purity is also a charge impurity. Solvent Knight shift ex-

periments provide unique data for testing alloy models

in both magnetic and charge difference systems, but as

yet they have provided little unique insight into alloy

behavior. Further studies of very dilute systems and of

satellite lines outside the main resonance peak should

prove invaluable for this purpose.

13. intermetallic Compounds

Relating the Knight shift to the electronic density of

states in ordered alloys or intermetallic compounds

presents some problems which we have tacitly ignored

Jones [205] also succeeded in observing the "'Pr and '^^Tm

Knight shifts in these paramagnetic compounds. Shifts as large as

8,900 percent were observed. Jones showed that this is consistent

with theory and is due to large orbital hyperfine effects associated

with the 4/-moments. He also noted that the temperature dependence

of the rare earth and of the nonmagnetic site Knight shifts tracked

each other quite faithfully.

But other effects may also play a role. For example, direct

electrostatic exchange scattering was not added to hybridization

effects in Stupian and Flynn's consideration of the rare earth-Al

alloys. Reasonable estimates of the appropriate exchange integrals

suggest contributions to F of the order of (and opposite sign to)

the observed F behavior. Inclusion of the effect would have over-

burdened the model with too many disposable parameters.

when considering disordered systems. Let us review

the analysis of the Knight shift results [22,207,208] for

the technologically important V3X compounds [X = As.

Au, Ga, Ge, Pt, Sb, Si or Sn]. It was in their now classic

investigation of these intermetallic compounds that

Jaccarino and Clogston developed the graphic ^
versus x analysis described earlier [13]. versus x
plots (with temperature an implicit parameter) are

shown in figure 30 for V and Ga in VsGa. The tempera-

ture variation in x is huge. The variation in x P^r V atom

* 0 2 4 6 8 10 12

X 10"'
SUSCEPTIBILITY PER GRAM

Figure 30. Knight shift versus susceptibilityfor V and Ga in V^Ga,

as takenfrom Clogston andJaccarino [73].

as a function of temperature in VaGa is somewhat

larger than that per Pd atom in Pd metal. This strong

variation requires significant structure in the density of

states (e.g., see [110]) within /rr of the Fermi energy. To
investigate possible sources of density of states struc-

ture, Weger [209] considered the role of the linear

chains of V atoms which occur on the cube faces in the

V3X structure. These chains impose anisotropic elec-

tronic properties which, in turn, could produce strong

structure in N{E) near Ef- Gossard [210] has studied

Knight shift and quadrupole effect changes in VaSi

across the low temperature cubic-to-tetragonal phase
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transition. He interpreted the transformation in terms

of such a hnear chain model. Labbe and Friedel [211]

presented an alternative linear chain model which also

is in accord with the experimental situation.

Strong negative 9^ versus x slopes are seen in figure

30. The slope for Ga is twice as steep as that for V. The

X=0 intercepts of are positive and were attributed to

a temperature independent Pauli term arising from a

broad conduction band with s like wave function

character at both Ga and V sites. (There is probably

also a significant orbital Knight shift term contributing

to the V site intercept.) The temperature dependent

Knight shift was attributed to a narrow V 3c?-band into

which Ga 4p-character is hybridized, contributing shifts

of the form

J{Ga(T) = Woa{a)GaXj, (38)

where Xp is the <i-band Pauli susceptibility per formula

unit. The wi are weights per atom ofV and Ga character

in a formula unit in the band. They also account for any

deviation in the hyperfine constants from the chosen

values. With correct {a)'s chosen, then the wi are

simply weights and subject to the normalization

requirement^^

?>Wv-\-WGa=^- (39)

The (a)'s were assumed to arise from V 3c? and Ga 4p

core polarization. The free atom values of —117 and

— 44 kOelfjLB (consistent with table 3) were used,

respectively. Given these (a)'s, the slopes of the ^
versus x plots yield Wv — 0.13, and wca = 0.92. The

greater Wca value is in large part due to the steeper

slope of the Ga plot. Testing the normalization condi-

tion yields

Zwv^WGa=l.^l, (40)

a sum remarkably close to one. This might suggest that

the if's are essentially measures of wave function

weight. Clogston and Jaccarino observed trends in

Knight shift behavior of various V3X compounds which

further suggest this. If the vus are real weights, their

values are surprising, for they would indicate that Ga p-

character, rather than transition metal cZ-character,

dominates at the Fermi surface. Subsequent band cal-

Noting that the molar susceptibility appears in eq (38) and an

atomic Xp in eqs (31) and (32), eqs (38) and (39) £ire equivalent to,

and can be used to derive, eqs (31) and (32).

culations by Mattheiss [212], yield 2^ Wvlwan^?> un-

like a value of 1/7 obtained from ^ versus x plots. The
V3X compounds have large NiEpys, and their suscepti-

bilities are strongly temperature dependent. Such
behavior is characteristic of a (f-band metal. This would
suggest that the ratio obtained by Mattheiss is reasona-

ble, and thus, that the m;,'s obtained from the Knight

shifts are largely a measure of hyperfine field behavior.

Assuming a value for the weight ratio, the Knight shift

slopes can be used to estimate experimental (a) values

for this compound. A ratio of 2 yields values of —53 and
— 283 kOeliXB for V and Ga respectively. The reduced

(a)r could be caused by interatomic effects, by intrasite

5-band polarization, or by s-d hybridization. Three per-

cent 5-character admixture into the c/-band at Ep will ac-

count for the reduction. Large negative intra-atomic ef-

fects, over and above the core polarization term, are

unknown. The value for the core polarization term,

shown in table 3, includes the polarization of the closed

valence s-shell. Wave function changes on going from

a neutral atom to the metal might effect this core

polarization term by a factor of two or three but not like-

ly by an order of magnitude. Thus the enhanced {a)Ga

is most likely due to interatomic effects [(0)00 goes to

— 400 kOe/^tfi if wvlwca is taken equal to 3]. A similar

situation occurs in VsSi. The {a)si is observed to be

negative yet the core polarization hyperfine field ap-

propriate to atomic P, and thus presumably Si, is posi-

tive. The P atomic behavior might be irrelevant to Si

but the result again suggests the presence of substan-

tial negative interatomic terms at X sites in the V3X
compounds. An X-site in these compounds has twelve

nearest V neighbors. This implies the presence of a

nearest neighbor spin moment which is 20 to 40 times

that induced at the X site itself by the magnetic field.

Conduction electron polarization effects of the order of

those encountered for transition metals in either liquid

Cu or Al can, given such a large neighboring moment,

account for the value of (0)00 as well as the apparent

sign reversal in {a)si- With such a large near neighbor

moment, it is also possible that there is a substantial

contribution to (a) via direct exchange polarization of

the X-site ion core. Knight shift data [213,214] suggest

that similar effects occur at Sn sites in the isostructural

system NbsSn.

Subsequent investigations of rare earth and transi-

tion metal intermetallic compounds have often relied

on 3^ versus x plots to disentangle terms. Most of the

data are associated with nonmagnetic atomic sites and

band hybridization. Interatomic effects are featured

heavily whenjationalizing the behavior of the hyperfine

constants. Interatomic effects are normally interpreted
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in terms of an RKKY type of spin distribution induced

by the aligned spin moments on the magnetic ion sites.

A variant of the two-band description of the nonmag-

netic site Pauh shift has frequently proved useful,

namely

^/(T) = ^^ + Ji'ioc(T), (41)

where is the Knight shift associated with the con-

duction band Pauli term and ^loc is the shift arising

from the interatomic response to the aligned spin mo-

ment on the magnetic atom site, ^loc^ which is

presumably responsible for the temperature depen-

dence of has the form

gj
(42)

Here X\qc is the Pauli susceptibility of either the local

moment or band type associated with the moment in-

duced on the local moment site. The 2(g,j — l)lgj factor

is included in anticipation of the rare earths, so that

i/'eff is the hyperfine field at the nonmagnetic site per

local spin moment (per molecule) at the magnetic site.

The details of the conduction electron distribution arise

in the samphng

fi^ff-lpiR), (43)
H

where we have assumed that //'eff arises from the con-

tact interaction and the sum spans all interatomic radii,

R, connecting all magnetic sites with a nonmagnetic

atom. Efforts [215, 216] have been made to relate such

a sum to Ji^ values. These have been hampered by in-

adequate knowledge of p(R). Asymptotic RKKY dis-

tributions were of necessity used, although it is the near

R (nonasymptotic) region which is most important to

f/'eff. More often the alternate approach of assuming

that //'eff effectively samples the average p, i.e., the

Pauli or Zener response to the local moment exchange

field is used. Then

H'eff = ^„^/2/iB, (44)

where ^/2/ab is the exchange coupling per unit local

moment between the local moment and the Fermi sur-

face conduction electrons, is the Pauli response of

the conduction electrons to this exchange field. If one

assumes that the average hyperfine coupling in the

RKKY disturbance equals that associated with Fermi

surface states alone, then = JTo and

mT) = To[l + {gj -\)/x^oc(T)|gJN^LB']. (45)

Knowing from an isostructural nonmagnetic com-

pound, J' can be estimated. Physically reasonable

numbers for the exchange constants normally result.

Even assuming that the average spin moment sampled

is equal to the Pauli term in the RKKY response, it is

not inevitable that 3fa should equal .yTo. The spin

response involves states off Ef and the hyperfine

coupling for these states can vary radically from that at

Ef, as is indicated for the case of Cu in figure 11.

Another possible shortcoming of the scheme is that the

entire resonant scattering disturbance is not necessari-

ly describable in terms of an effective exchange scatter-

ing. Although J' can be numerically affected by factors

other than exchange coupling, tabulation of shift results

in this form can prove useful when comparing results

in a sequence of intermetallic compounds. For exam-

ple, Jones [205] has tabulated the nonmagnetic site

Knight shift results of rare earth intermetallic com-

pounds in terms of The same results [146,217-229]

are plotted in a different form in figure 31, namely in

terms of ^ = H' ^fJH-^ff. Atomic hyperfine behavior is

thus normalized out, providing a crude estimate, in fis,

of the spin moment residing at a nonmagnetic site due

to the local moment disturbance. The resulting |^'s are

an order of magnitude smaller than those appropriate

to the transition metal alloys (compare with figure 28)

implying much weaker magnetic perturbations in rare

earth compounds.'^ The ^'s appear to be in three

distinct groups; the Al compounds, the P, As and Sb

compounds, and those involving elements in the 6s-6p-

5d row of the periodic table. (Data also exist for two

hexaborides yielding ^'s of 0.005.) We presume the

grouping is associated with band and wave function

character specific to the various sets of compounds.

More interesting than the grouping is the variation in ^
across the rare earth row; ^ is largest at the Ce end,

falling and becoming relatively constant for the heavy

rare earths. The trend is very different than that seen

for 3c/-moments in figure 28 and appears characteristic

of rare earth 4/-moment effects. This trend was first ob-

served in electron spin and nuclear resonance of the

REAI2 compounds [202, 146] and subsequently in ESR
of rare earth impurities in Pd [203]. The negative sign

of ^ suggests that hybridization polarization effects

dominate. One contributing factor to the large ^ at the

Ce end is the well-known tendency for the occupied 4/

levels to be close to Ef- The resulting small energy

" This comparison underestimates the drop in polarization be-

cause the ^ values natural to ordered intermetallic compounds are

intrinsically larger than those in alloys by the nature of the differing

definition of these two f factors. For example, the ^ appropriate

to the intermetallic compounds REAI2 and REAli (see fig. 31) are

larger than those for the RE-Al alloys.
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Figure 31. Behavior of Knight's ^ factor as defined in the text, for the light metal site in rare earth intermetallic compounds. The data are

from a number of sources [205,217-229], as collected in tabular form by Jones [206].

denominators tend to enhance hybridization, and hence

^. An example of this 4/ behavior is that a phase transi-

tion occurs in metalHc Ce, one phase involving no 4/

electrons, and the other, one.

Positive, strongly temperature dependent ^'s have

been observed for nonmagnetic sites in UAI2 [215] and

USus [230]. The susceptibility behavior suggests the

presence of 5/ band paramagnetism, rather than local

moment paramagnetism. The resulting ^'s (~ 0.1 to 0.3)

for the two compounds are opposite in sign and sub-

stantially larger than the values appropriate to the iso-

structural rare earth compounds (fig. 31). The authors

[215,230] pointed out that the results could arise from

several percent Al (or Sn) valence s-orbital hybridiza-

tion into the 5/bands at Ep and/or from RKKY polariza-

tion with quite reasonable J' values. The positive sign

of the ^'s implies that electrostatic exchange then

dominates. The J/~ versus x plots for the two com-

pounds also indicated the presence of a strong ^ orb term

associated with 5/ character at the U sites, which

makes no contribution to the Al (or Sn) site Jf.

Abundant data exist for a variety of transition metal

compounds. In some of the more magnetic systems the

results are strongly dependent on metallurgical details

of the samples. For example, NiAl, CoAl and FeAl have

been studied by West [231,232] and by Seitchik and

Walmsley [216,233] at and off stoichiometry. West

found that the Co susceptibility results in CoAl are very

sensitive to the thermal history. These results sug-

gested nonequilibrium magnetic clustering. The effects

of thermal history on the Knight shift are less impor-

tant, because the number of atoms near clusters is

small and do not contribute sensibly to the observed

resonance. Despite these difficulties there are several

distinct features of the results which give insight into

the character of these compounds. First, the Al shift in

FeAl is negative and temperature dependent, suggest-

ing the existence of intersite effects of the sort encoun-

tered in the Al alloys and the V3X compounds. Second,

while the Co shift can be strongly temperature depend-

ent (depending on Co concentration), the Al shift in

CoAl is small and is effectively independent of tem-

perature (not depending on Co concentration). From
this it was concluded that there is little Al 5-character

in the Fermi surface states of CoAl. The slope of a

.^(Co) versus x plot, using composition as the intrinsic

parameter, is negative at room temperature and posi-

tive at low temperature. Thus there are at least two par-
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tially cancelling temperature dependent mechanisms

operative at the Co site in this system. West attributed

the positive slope to a temperature dependent orbital

term. Finally in NiAl, the Al shift, the Al relaxation

time, and the susceptibility are characteristic of an s-

band metal, suggesting that Al electrons "fill" the Ni Sd

band. This does not imply that there are ten 3d-

electrons at a Ni site in NiAl, just as there aren't at a Cu
site in pure Cu (see discussion of fig. 11). Instead,

charge effects have so affected the bands that there is

no substantial c?-band character at or within kT oiEp. A
similar situation appears to occur in dilute alloys of Ni

inCu[234].

Knight shift results have been obtained for both

transition metal sites and nonmagnetic sites in itinerant

ferromagnets [235,236,14] such as ZrZn2. These

systems are characterized by having ferromagnetic

saturation moments, Qs, which are small compared with

effective moments, qc, associated with the paramag-

netic susceptibility. This implies a band rather than

local Heisenberg type of ferromagnetism. A plot of the

qdqs ratio for a variety of compounds is shown in figure

32. These were obtained with the Rhodes-Wohlfarth

"intermediate model" [238]. There has been some un-

certainty as to whether magnetic impurities drive some

of the "itinerant" systems ferromagnetic. In cases.

1 1 1 1 1 1 1 1

'^'^0.99 ^® 0.01

1 1 1

- / - Zr Z n2
•
•

Sco./e''^ 0.24
•V-Ti Feo.4Coo.6

•
A- C r B e

1

2

-o -—\-ZrZn2

CrTeo^ —-2^
CrBrj 6d FeB

1 1 1 1 1 1 1 1

Fe
1 1 1

500 icoo'

Figure 32. The ratio qdqs of the number of magnetic carriers

deducedfrom the paramagnetic Curie-Weiss constant to the number

deducedfrom the saturation magnetization. Datum points are

identified by Rhodes and Wohlfarth [237] andSwartz et al. [15].

such as CrBei2 [236], the NMR lines are sharp and the

hyperfine fields track the magnetization, indicating that

the ferromagnetism is a bulk effect, whether or not trig-

gered by impurities. The slopes of the versus x plots

for hyperfine fields associated with magnetic atom

sites, such as Zr in ZrZn2, or Fe or Co in TiFe,rCoi.j-, are

generally small, ranging between 0 and ± 100 kOe//i,/j.

Similar small fields occur for Ti in paramagnetic TiBe2,

and V in the V:)X compounds, suggesting the presence

of band effects such as s-d hybridization. Weaker

hyperfine constants occur at nontransition metal sites

in the itinerant ferromagnets, implying that only weak

intersite effects are present in this class of compounds.

This contrasts with the X site behavior of the localized

paramagnetic V3X systems which we believe is due, in

large part, to substantial intersite effects.

There are a number of examples where Jf versus x
plots, with (a) assumed constant, have proven to be

very useful. This is not always the case. For example,

the Ga resonance in AuGa2 is temperature dependent

[12] and while follows x quite faithfully, T\ data in-

dicate a substantial variation with temperature in the

contact 5 contribution to (a). This has led to a model of

thermal population of an 5 band [238], which, however,

does not explain the susceptibility behavior. As of yet,

this system is not completely understood.

14. Summary

In this paper, we have dealt with the Knight shift and

its interpretation in terms of various models of the elec-

tronic behavior in metals, emphasizing recent develop-

ments. It is apparent that the relation of the Knight

shift to the density of states is complicated, but there

are compensations in that a large amount of closely re-

lated and more intricate information may be deduced

from Knight shift studies in metals, compounds and

alloy systems. Information may be obtained concerning

the wave functions of the electrons at the Fermi surface

as probed at the resonating nuclei. Contributions to Jf

can be separated into terms arising froms-electron and

c?-electron character, and in some instances there are

indications of contributions due top-character. In addi-

tion, orbital and diamagnetic contributions can be

deduced at times. We have discussed most of the

methods with which one obtains wavefunction insight

from Knight shifts. This wavefunction information is re-

lated directly to N(E) and is needed in the evaluation of

{a). The relations between , (a), and the density of

states are shown quantitatively in several equations

throughout the text.

These same equations display the unique relation of

3f with a local density of states due to the weighted

averaging associated with (a). This becomes useful

particularly in the case of intermetallic compounds and



less so for alloys where atoms occupy positions with a

random arrangement. Often it is preferable to absorb

this randomness into (a). In intermetallic compounds,

the Knight shift behavior definitely suggests a descrip-

tion in terms of wavefunctions and densities of states

that are different for inequivalent sites. In such a situa-

tion the magnetic response of one site to another is of

concern. In other words now there are inter- as well as

intra-atomic effects. In the case of pure metals this

complication also arises but is hidden in (a).

In this Symposium, a number of advanced theoreti-

cal and experimental techniques for studying the elec-

tron density of states have been discussed. It is to be

hoped that fruitful correlations between these methods

and Knight shifts will be obtained in the future.
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Discussion on "Relevance of Knight Shift Measurements to the Electronic Density of States" by
L H. Bennett (NBS), R. E. Watson (Brookhaven National Laboratory), and G. C. Carter (NBS)

R. V. Kasowski (DuPont and Co.): The density of states at the Fermi surface and find exact agreement

states for Cd as calculated by Shaw at the Fermi sur- with McMillan's superconductivity data and specific

face does not agree with superconductivity data as is heat.

shown in the W. L. McMillan paper (Phys. Rev. 167, [jj Allen, P. B., Cohen. M. L., Falicov. L. M.. and Kasowski, R. V..

331 (1968)). We have calculated [1] the density of Phys. Rev. Letters 21, 1794(1968).
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PauN Paramagnetism in Metals with High Densities of

States*'

S. Foner

Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39

Because the Pauli paramagnetic susceptibility of

a free electron gas, xli is proportional to the density of

states A'^(O) at the Fermi energy, it is expected that mea-

surements of x?' **f metals and alloys can yield a

reasonable measure of A^(0). If xl can be measured

directly, then A'^(O) can be determined with high accura-

cy. The major obstacle to this procedure is that the

measured static susceptibility Xp = X/V( 1~^'(0)^)~X/'^^

(for the Stoner model) where F is a measure of the elec-

tron-electron interaction potential. Unfortunately, V is

not easily determined experimentally, or theoretically,

so that measurements of Xp do not yield accurate mea-

sures of A'(O). More detailed (realistic) models involve

additional parameters which are also not accurately

determined. Thus direct measurements of Xp can yield

a measure of N{0), but these values of MO) are subject

to the uncertainties of various parameters in the theo-

ries. In this talk we discuss the present status of experi-

ments and theories of Xp metals and alloys with low

A^(0) where D is generally near unity, and high A*'(0)

where D is expected to be large. Comparisons with in-

dependent low-temperature electronic specific heat

measurements are discussed and attempts to derive

A^(0) from both susceptibility and specific heat are

reviewed.

Many recent investigations of metals and alloys with

high densities of states have been of great interest

because such systems start to approach ferromagnetic

order. The properties of Pd have been investigated ex-

tensively and very detailed band calculations now exist.

The large exchange enhancements in this metal and its

*An invited paper presented at the 3d Materials Research Sym-

posium, Electronic Density of States, November 3^6, 1969,

Gaithersburg. Md.
' Supported by the U.S. Air Force Office of Scientific Research.

alloys have permitted considerable progress to be

made. The properties of these systems are reviewed

and estimates ofMO) and V are examined. Here qualita-

tive and quantitative comparisons of various experi-

ments can be made. The possibilities of applying large

magnetic fields and thereby independently measuring

MO) and small changes of MO) near the Fermi energy

by such studies are discussed. Recent theories which

examine the changes of Xp with alloying are also com-

pared with experimental results.

A few useful references for relevant recent papers

concerning the susceptibility of nearly ferromagnetic

metals and alloys are tabulated in references 1 to 4.

Recent detailed band calculations in Pd have been re-

ported in references 5 to 8. Several papers at this con-

ference also deal with high densities of states materials.
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Discussion on "Pauli Paramagnetism in Metals with High Densities of States" by S. Foner

(Massachusetts Institute of Technology)

F. Ajami (Univ. of Pennsylvania): Would you care to

comment on the temperature dependence of the vari-

ous contributions to the susceptibility?

S. Foner (MIT): Most of the contributions to the total

susceptibility, X7Yr/vi/,, where Xtotal = X'/'" + X.vj^ + Xw +
Xf'+ <X""/' + X'>" )+ • • are not strongly temperature de-

pendent. This includes XrfiV/ (diamagnetic core), Xs.p (of

the s,p bands) and Xri- (the orbital or Van Vleck suscep-

tibility). For the strongly paramagnetic exchange

enhanced metal or alloy (which is the main topic of this

talk) the largest contribution comes from Xd ('he

enhanced Pauli paramagnetism of the relevant bands

in say Pd) and this can be strongly temperature depen-

dent. The terms in the ( ), x/mp (impurity) and Xsw (spin-

wave contributions of ferromagnetic systems) can often

be suppressed at low temperatures with a sufficiently

high magnetic field. If we can use the band calculations

we can in principle take into account the smearing of

the Fermi distribution as we increase the temperature

and hope to be able to calculate the temperature depen-

dent susceptibihty. There have been numerous at-

tempts of this in the literature; qualitatively, they will

give good results, but quantitatively, I am not sure that

one can really believe them.

O. K. Andersen (Univ. of Pennsylvania): About the

band structure calculations, I think perhaps you have

been a bit unfair to them, because I think all three or at

least the two — the Mueller, Freeman et al. and the

Mackintosh and Andersen agree. The Watson-

Misetich-Lang results differ somewhat. The two first

mentioned calculations are essentially first principles

calculations, either fitted to a first principle APW cal-

culation as closely as possible or done entirely with the

first principles relativistic APW method.

The discrepancy between different band structures

calculated for the same transition metal is mainly a dis-

crepancy in the width and the position of the c?-bands

relatively to the 5p-band. Therefore, for such parts of a

c?-band where hybridization with the sp-band is unim-

portant, the results of different calculations only differ

in the energy-scale; the shape of this part of the band,

which is a structural property, is unique. Now, in that

narrow energy range around the Fermi level, which is

relevant for the high field susceptibility of Pd, the domi-

nant contribution to the density of states comes from

such a purely (i-like part of the bands. If, therefore, the

density of states were calculated with infinitely high

resolution for each of the three above mentioned Pd-

bands, the derived deviations from Hnearity of the

curve magnetic field versus magnetization would in

each case have the same shape, but would differ by the

scale of the af-bandwidth; If the position of the Fermi

level within the d-band was the same for all those calcu-

lations then they would, for instance, all predict the ex-

istence of a van Hove singularity in the magnetization

curve for Pd at a magnetization of about 0.06 Bohr mag-

netons per atom, but the estimates for the correspond-

ing magnetic field would scale with the c?-bandwidths.

Finally, let me mention that from our relativistic

APW bands we have dared to derive the band structure

contribution to the deviation from linearity of the mag-

netization curve for Pd and, using the dubious rigid

band model, for dilute RhPd alloys. Our results seem

to agree with the measurements of Foner and McNiff,

but comparison is difficult, since the effect is of the

same order of magnitude as the experimental uncer-

tainty. We will report on these results at the coming

conference for Magnetism and Magnetic Materials.

R. E. Watson (Brookhaven National Lab.): It might be

best if I first reviewed the origin of the three sets of

band structure results. The Andersen-Mackintosh

result relied on a relativistic APW calculation: In a nar-

row range around the Fermi energy the details in the

density of states were calculated by tracing of constant

energy surfaces and by fitting the calculated volumes

to a power expansion in energy, which includes the

characteristic 3/2-power van Hove term. The Freeman-

Mueller, et al. results involved nonrelativistic APW
bands which were then fitted with Mueller's d tight

binding-OPW interpolation scheme and spin orbit ef-

fects were added. The resulting band structure was

then sampled with a quadratic interpolation scheme

when estimating N(E). The results of Misetich, Lange

and myself involved a fit, with the Hodges, Ehrenreich

and Lange tight binding-OPW scheme, to one set of the

Freeman, Dimmock, Furdyna nonrelativistic APW



results. A spin orbit constant was chosen (different

from that of Mueller et al.) and the interpolation

scheme parameters were further adjusted to improve

agreement with the experimental Fermi surface areas.

The final set of parameters was by no means unique.

There are obvious dangers in such adjustments to the

prediction of other quantities such as N(Ei.)- The bands

were then sampled with a quadratic scheme to con-

struct a histogram. Dr. Foner mentioned "high resolu-

tion calculations." The three sets of results are "high

resolution" in only one sense: Given particular band

structures, careful samphngs were taken when con-

structing density of states histograms. The Andersen

result is, in principle, to be preferred since it did not

utilize an intermediate tight binding-OPW description

of the bands with attendant questions, such as those

concerning subtle features of the d bands which are not

reproduced by the near neighbor tight binding scheme.

I would suggest that the three sets of results are in es-

sential agreement, though perhaps not for Dr. Foner's

purposes. Our experience with other transition metals

shows it is difficult to nail down such factors as d
bandwidth to the accuracy important to our estimates

of N(Ef) here. There may be serious shortcomings in

the potentials employed to date in the "a priori" calcu-

lations for the transition metals. Good predicted Fermi

surfaces are inadequate tests of band results; the band

structure results of Misetich, Lange, and myself are

probably the poorest of the three sets due to improving

the Fermi surface fit.

J. Callaway (Louisiana State Univ.): It was evident

from Professor Ziman's lecture earlier in the week that

d bands may be sensitive to the crystal potential in the

region between atomic spheres. One should therefore

be cautious in considering the APW results as valid

without independent confirmation. Specifically, the

density of states at the top of the d band will depend

sensitively on the relative positions of theX^ and theX?

levels. These have different symmetry, and are spht by

crystal field effects. The relation of those levels will be

affected by the non-spherical components of the crystal

potential and by the potential in the interstitial region.

It is thus possible that these levels may not be correctly

located by APW calculations which use a spherical

"muffin tin" potential. These considerations emphasize

the need for self-consistency.

A. J. Freeman (Northwestern Univ.): Let me point out

that the calculations originally done by myself, John

Dimmock and Anna Furdyna, a number of years ago,

were first principles APW calculations. We considered

a number of potentials; we did not just take the first

potential off the shelf. These calculations are, I think.

important for the following reasons: Palladium has now
become perhaps the best studied metal; all these vari-

ous APW calculations agree very well with each other

and with experiment.

I do not understand why the interpolation used by

Misetich, Lange, and Watson of the bands that were

calculated by the Furdyna, Dimmock, Freeman group

give such different results, because in fact, the agree-

ment of the relativistic calculations of Andersen and
Mackintosh with our calculations is remarkable (as you

saw and heard). Now as far as the question of sensitivi-

ty and so forth of those levels near the point X, well, you

are right, there is great sensitivity. It turns out that

despite this sensitivity, we do not find differences in the

results despite the differences expected, due to the use

of essentially different techniques. Andersen-Mackin-

tosh solved the Dirac equation. We solved the non-

relativistic Schriidinger form. Finally, let me say that

we have here a wealth of material to discuss, argue

about, and try to understand. I think that is what Si was

trying to do for us. At the moment, I would say that the

two of the three groups agree — the burden of proof is on

the third group, to ascertain why their results disagree.

A. R. Mackintosh (Lab. for Electrophysics, Tech.

Univ., Denmark): I just wanted to make a suggestion.

Could you not improve the accuracy of your experimen-

tal measurements by using field modulation and mea-

suring the gradient of the susceptibihty? I believe that

this is the direction in which improvement is to be

sought, rather than in attempting further refinements

of the calculations which, after all, already make much
more precise predictions than the experiments can test.

S. ¥oner (MIT): The modulation technique is probably

not the way to go. Estimates show that this approach

lacks about a factor of 100 in sensitivity over our

present magnetic moment measurements in high dc

fields (see S. Foner and E. J. McNiff, Jr., Rev. Sci.

Instr. 39, 171 (1968)). The major limitations are the

background noise in the high field magnets — even

0.01% peak to peak noise at 150 kG is a large flux

change. We wish to detect a change of 0.1% in the mo-

ment of Pd at 200 kG corresponding to a change of

about O.OIG at this field. As improvement of a factor of

10 in the signal-to-noise is needed in order to reexamine

the field dependence of x for pure Pd, where we have

high resolution band calculations. I want to make

another comment. One susceptibility measurement

which I have not discussed is the dHvA experiments

which have been carried out so well by the Argonne

group who are just starting to see parts of the pipes. If

they can get more information on these major pieces of

Fermi surface we would have much more confidence in
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the various Pd band calculations. Perhaps Windmiller
might want to say something about this.

L. Windmiller (Argonne National Labs.): We are try-

ing to press our measurements further. We have seen
some more of those pieces. The only other comment I

wanted to make was about the ^-factor. It is anisotropic
and deviates from 2. When we reported measurements
before, we only found the ^-factor being different from
2 on the T-centered surface. Since then, in both Pd and
Pt we have seen spin-sphtting zeroes for the large d-Vike

surface and in both of these the deviations from 2 are
even greater on the open hole surface than they are on
the F-centered surface. The relation of the susceptibili-

ty to the density of states thus seems to be a question.
I think we should start pushing the band structure peo-
ple to see what they can do. Also, questions concerning
how the ^-factor varies with the Fermi surface as we
start alloying things and putting in different materials
so that you keep the Fermi level fixed are moot points.

We just don't know what happens right now.
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Calculation of the Knight Shift in Beryllium'

J. Gerstner and P. H. Cutler

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

Key words: Beryllium; Knight shift; orthogonalized plane wave (OPW); pseudopotential.

A nonlocal pseudopotential theory has been used to

calculate the contributions to the Knight shift in berylli-

um. For the first time, the computed value has both the

correct sign and numerical agreement with recent ex-

periments. This work has been pubHshed in Physics

Letters 30A, 368 (1969) with the exception of the

following changes:

(^)ma.= - 0-00514%

(^] =-0.00410%
\ n /calc

*Research sponsored in part by the Air Force Office of Scientific Research, United States

Air Force, Grants No. 213-66 and 69-1704.
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Discussion on "Calculation of the Knight Shift in Beryllium" by J. Gerstner and P. H. Cutler

(Pennsylvania State University)

P. L. Sagalyn (Army Mails. & Mech. Res. Cent.,

Mass.): I would like to ask Dr. Gerstner whether he has

or possibly could, calculate the contribution of the

diamagnetic field to the spin-lattice relaxation time?

J. Gerstner (Operations Res. Inc.): The answer is no

and no. We have essentially stopped this calculation for

a lack of funds and time. So I consider it a closed sub-

ject. I would be glad to discuss it with you on the side

though and see what could be done.
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Knight Shifts of the Alkali Metals

A. Meyer

Northern Illinois University, DeKalb, Illinois 601 1

5

G. M. Stocks* and W. H. Young

University of Sheffield, Sheffield, England

K, Rb and Cs, being leading members of transition series, have pseudoatoms with virtual bound d
states; Li has a somewhat analogdus p state. By contrast, Na has no such states. Evidence is offered of

how the associated scattering accounts for the following observed electron transport properties: (a)

Under pressure, the resistance of Li rises and, eventually, so do those of Cs, Rb and K, (b) the ther-

mopower of Li is anomalous (positive) and stays so under pressure while that for Cs very quickly

becomes positive when pressure is applied.

The same features can now be used in the theory of Knight shifts to explain the following observa-

tions, (c) The conduction electron susceptibility for Li is enhanced very significantly above that for free

(and even interacting) electrons, (d) the nuclear contact density in Li is much lower than that predicted

by one-OPW theory, (e) the Knight shifts of Li and Na decrease and those for Rb and Cs increase when

pressure is applied, (f) the Knight shift for a given ion increases when it is successively resonated in Na,

K, Rb, and Cs matrices. The key to the interpretation of (e) and (f) is the variation in the density of states

(and therefore susceptibihty) under conditions of pressure change and alloying.

Key words: Alkali metals; alloys; cesium; Knight shift; lithium; potassium; pressure dependences;

pseudopotential; resistivity ratios; rubidium; sodium; thermoelement power.

1. Introduction

This paper is concerned with interpreting the ab-

solute Knight shifts of the alkahs, their variations with

pressure and the absolute Knight shifts in binary alkali

systems. While based on precise and detailed calcula-

tions [1-3], for the present conference it seems to us

desirable to give an overall (and less formal) perspec-

tive to the work, to highlight the main features and

show how the basic underlying explanation of these is

the same as for the electronic transport properties.

We will use for the Knight shift, K, the basic formula

[4]

K== [87r/3)xnP,-
(1)

where fi is the total volume of the metal, Pf is the

(average) density of valence electrons evaluated at the

resonant nuclear site and at the Fermi level, and x is

the magnetic susceptibihty per unit volume of the

*Present address: Metals and Ceramics Division, Oaic Ridge National Lahoratory,

Tennessee.

valence electrons. In section 2 we indicate the develop-

ment of a simple formalism that enables one to calcu-

late both X and ClPp in a mutually consistent manner.

Guided by the Ziman [5] pseudoatom concept, the

problem is reduced to the solution of radial Schrodinger

equations. HP/.' is given, after renormaHzation, by the

nuclear contact part, the latter being very conveniently

summarized by a simple formula, as we shall see. At

large distances the solutions are characterized by

phase shifts, these describing x and the renormaliza-

tion factors indicated above, as well as the transport

properties. The phase shifts have been tabulated [6]

and are not so conveniently summarized. Nevertheless,

each metal has its own characteristic behavior which

can be qualitatively illustrated by its transport proper-

ties. It seems better to do this (as we do in sec. 3) than

quote a lot of already available numbers.

Turning to the Knight shift appHcations, in section 4,

we consider the absolute Knight shifts, including those

under pressure [7] and in section 5 we present an in-

terpretation of recent work on alloys [8,9]. Finally, in

section 6, there is a summary.
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2. Formalism and

We consider an electron with Hamiltonian

H=T+2U{r~R)
(2)

R

where the f/'s describe the screened ion fields. (For the

moment we consider a pure metal where all the C/'s are

the same; the generaUzation to alloys is straightforward

and will be affected later.) Then we postulate the wave
function

1/;^°^ e<kr +2 e-k-R (/)^(r-R)
(3)

R

which is written so as to show a plane wave together

with the scattered waves
(J)
emanating from the various

ions. The latter interpretation is formahzed by comput-

ing the expectation value of (2) with respect to (3),

discarding multi-center terms and using the (/)'s as vari-

able functions. The result is

{T+U{r)) ^^(r) = {mV2m) ^,(r) (4)

where

^k(r) = e'kr +0^(r) (5)

In a similar approximation we find a mean contact

density of

(6)

The interpretation of this is clear. If the integral were

not present in the denominator, the result would cor-

respond to (4), i.e., one center in an otherwise feature-

less medium. The renormalizing term consists of equal

contributions from each of the A'^ sites and is an expres-

sion of electron-ion affinity.

The solutions (5) of (4) lead to phase shift rii(k), from

which, when small (modulo tt), the energy can be ob-

tained by first order perturbation theory. From

m£M2 = i A-2-27r(.TO)2:(2/+l)rj,/A-, (7)

one computes an effective mass at the Fermi level

given by

mim* = I + s — a, (8)

where

5= (2/377)2(2/+ l)r?,(A>) (9)

o-= (2l:iTT)l.{2l+l)(k;i7],l<-lk)r (10)

and a susceptibihty can then be computed from

(m*lm)xf where Xf is the free-electron value. One must

also incorporate an important valence electron correla-

tion correction [10-12], but the essential features seem
already to be present in the above analysis.

The phase shift gradients which occur in (10) are also

the parameters needed to evaluate the denominator of

(6). In fact (Khtel [ 13] ), on the mean,

(r)
I-
- l}dT= {27Tlk^)X{2l^l){kd'nildk)

(11)

Thus we need to compute f(0)'s for (6), and tj's and

d-q/dk's for (6) and (8); this can be done straightfor-

wardly from (4) once U is specified.

As developed above, the theory does not distinguish

between solids and liquids (except by the small density

change involved) and this is in agreement with experi-

ment [14]. In fact the apphcations to pure metals

under pressure given in section 4 are for sohds, while

those to the alloys in section 5 are for liquids.

The choice of U faces us with a difficult problem. In

the past, the present authors have used truncated ion

potentials and guided by pseudopotential theory [5]

,

have required (cf. (9) above) that 5=1/3 governs the

choice of cut-off. On the other hand, recently, it has

been suggested [15,16] that 5 — 0 (corresponding to

muffin tins; see below) might be better. Indeed Lee

[17] has fitted the observed Fermi surface anisotropics

in the soUd alkaUs to phase shifts which roughly satisfy

this criterion.

It seems to us [18] that the resolution of this difficul-

ty hes in remembering that pseudopotentials overlap

somewhat and are rigidly located on the various ions.

Thus, as the ions move about, fluctuations in the net

potential in the interstitial regions are described [19].

This physical aspect of the pseudopotentials is missed

by the muffin tins which correspond only to the mean

minimal nonoverlapping potential. If fluctuations are

unimportant, then the use of 5 = 0 should be better for

formulas derived on the basis of perturbation theory,

since the corresponding phase shifts are smaller. On
the evidence of computations, fluctuations are

important in electron transport theory for which 5 = 1/3

seems more appropriate. (Computations based on the

latter criterion are fairly successful [20-24] ; similar cal-

culations using a mean muffin tin are not.)

It may well be that 5 = 0 is more appropriate for cal-

culating m* via (8). Certainly, in the low temperature
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solids, fluctuations should be negligible; also the ex-

perimental evidence [25] suggests that x for Li is Httle

changed across the mehing point. However, at the

present time, we have not made enough systematic cal-

culations to report here fully in this approximation,

though it does appear that both criteria lead to the same
general conclusions, both explaining semi-quantitative-

ly the broad features of the Knight shifts in the alkahs

and their alloys.

Below, then, we rely on pseudopotential screening.

Ion core potentials are truncated to form U(r) and solu-

tions of (4) are found with the large r hehsLvior(kr)-^ sin

(kr — 1/2 l7T + 7)i(k)). In general, those phase shifts for

k= kF will not satisfy s = 1/3, but the cut-off radius in

U(r) is adjusted until the criterion is satisfied. Once
U(r) is fixed, 7]i(k) can be found for any A". Phase shifts

found in this way have been successful in explaining

the electron transport properties [20-24].

On evaluating the 5-wave functions at the origin, we
obtain values of the contact term. On analyzing these,

we find they are all well represented by the formula

|fA/. (0) |2 = 5~.3Z(A>.ao)-'-«a-3 ^g)

when Z is the atomic number and ao= fi^lme^, the first

Bohr radius.

3. Phase Shifts and Electron Transport

For very general reasons [26] , the low energy phase

shifts for a screened ion are described by

17,0= A-^'+>; A;a7j,/aA— (2/+1)t,, (13)

and, in fact, this is quite a reasonable representation of

the situation up to quite near the Fermi level (fig. 1).

The higher energy behavior then depends on the

specific ion. Most stay small over the ranges of energy

of interest, but certain exceptional tj's (two of which are

shown in fig. 1) grow large.

The latter behavior may be interpreted using the con-

cept of the virtual bound state [27]. The lowest unoccu-

pied energy level of the Cs atom is the 5c? level. When
the atoms join to form the metal, this level is not lost,

though it is no longer sharply defined. It may be de-

tected by the strong scattering it produces on electrons

of appropriate energy. Thus 172 for Cs rises to high

values characteristic of resonant scattering (172 ~ 7^/2

for maximum cross section; d^r)2ldk^ = 0 for maximum
delay time [26]). Similar behavior is found in the d

waves of Rb and K, though the onset of resonance oc-

curs at higher energies than for Cs. In Li, the 2p level

plays a role somewhat akin to the 5d level in Cs,

0 02 OA 0-6 0-8 10
k (Q.U.)

Figure 1. Energy dependence of two pseudoatom phase shifts

(172 for Cs and v^for Li).

Rb and K have similar tj's to Cs, thougli the resonance occurs at higher energies. All other
phase shifts for the alkalis are small over the energy range indicated. This seems to be the
rommiin feature correlating the experimental results of figures 2-5 and of table 1.

though, as is usual for a p level, the curve is much
broader.

If we squeeze or alloy a metal, the scattering charac-

teristics of the ions have to be worked out afresh. How-

ever it is a useful first approximation (and excellent for

illustrative purposes) to think of such curves as those

shown in figure 1 to stay the same, with only the Fermi

level moving.

To indicate that we have a basically correct picture

we quote a number of pieces of experimental evidence

and we emphasize that out comments on them have

been backed up by detailed computations [20-24].

Resistance measurements are, of course, good for

revealing strong scattering at the Fermi level; the

stronger the scattering, the higher the resistance.

Figure 2 shows the variation of the resistivities of the al-

kalis under pressure [28,22]. Normally, the resistance

of a metal drops under pressure, the e3tplanation being

[29] that the stiffer lattice is more favorable for

coherent diffraction by conduction electrons. Figure 2

indicates, however, that under pressure all the alkalis

behave abnormally; to explain this, we turn to the other

effect involved, namely, the strength of conduction

electron scattering at single sites.

Returning to figure 1, we see that for Li, even at zero

pressure, the Fermi level occurs well up the tji curve,

the application of pressure causing it to move further

up. The scattering is thus increased in intensity and

this is reflected in the increased resistance. In Cs, the

stiffening of the lattice wins to begin with, but very soon

the growing (f-wave scattering dominates and one ob-
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Figure 2. Experimental resistivity ratios versus fractional volume
changes [28].

The rising curve for Li reflects kp in figure 1 rising up the r), curve. The subsequent rise

in Cs is due to the same effect for the tj-^ curve in figure 1.

tains a sharp increase in resistance. To a much lesser

extent, Rb and K exhibit the same characteristics as

Cs, the resistivity increases being more delayed in

these cases because of the higher-energy positions of

the virtual bound states.

This picture is corroborated by the thermopower

measurements [30]. The thermoelectric power of a

metal depends on the change in the cross section ex-

perienced by electrons as the Fermi level is traversed.

Clearly the presence of a virtual bound state not far

above the Fermi level gives rise to a rapidly increasing

cross section at the Fermi level. The (positive) ther-

mopower thus produced is anomalous in that, contrary

to the simplest free-electron arguments, electrons dif-

fuse from cold to hot regions in the metal. Figure 3

shows the experimental situation. Li already shows an

anomalous thermopower, even at zero pressure, in-

dicating the already dominant tji, while the ther-

mopower of Cs becomes positive on applying only

modest pressures. That for Rb is beginning to turn in

the expected direction and at higher pressures the

same should happen to K. (Note that the compression

range is smaller in fig. 3 than in fig. 2.)

With the above general picture in mind, we now turn

to the Knight shifts.

4. Knight Shifts in Pure Metals

4.1 . Absolute Knight Shifts in Li and Na

Usually, susceptibility measurements refer to a sam-

ple as a whole. Actually, only for Li [31] and for Na

-12

-16

Li

^—

"

No
— -

Rb

•K

0-95 0-90 0-85

n/Ao

Figure 3. Experimental thermoelectric powers versus fractional
volume changes [30\.

The positive and constant value for Li arises from the shape air), in figure 1. wiiiie (he
shape o{ti'> explains the positive value for Cs under pressure.

[32] has X for the conduction electrons alone been ob-

served (conduction electron spin resonance being the

technique used). Since the Knight shifts are also known

[7,14], then, assuming (1), both x and flf*/.- are known
independently for these metals. The experimental

situation and our computed numbers are shown in table

1.

To understand the experimental effective masses, we
need, first, to remember that valence electron correla-

tion plays an important role [10-12]. In fact, this effect

can be "subtracted out" and, according to Rice's calcu-

lations [12] one needs an from eq (8), slightly

greater than unity for Na but considerably greater for

Li (see table 1).

Such behavior is easily explained by the present ap-

proach. Na has no nearby virtual bound state (cf. fig. 2).

All its phase shifts are rather small and also (cf. eq (13))

Table 1. Susceptibility and nuclear contact data

Metal
m*lm '

(expt.)

Target

m^'lm '

m*lm'
::alcu-

lated)
(expt.)

(calcu-

lated)
(OPW)

Li 2.6

1.7

1.6

1.1-1.2
1.8

1.0

15

119
21

120
54
176Na

' m*/m (expt.) is the ratio of the observed to the free-electron susceptibiHties. According

to theory [10-12], this contains a substantial contribution from conduction electron correla-

tion effects; when these are removed, one obtains a target m*/m which a one-electron theory

must aim at for eventual agreement with experiment. (There is a little uncertainty here due

to our imprecise knowledge of the susceptibiHty of an interacting electron gas. The numbers

quoted rely on the calculations due to Rice, the lower value for Na arising from the Hubbard

and the higher from the Silverstein interpolation formula. Both schemes give the same num-

ber, to the accuracy shown, for Li). The target m*/m's may thus be compared with those

calculated from eq (8). The experimental OPp's are obtained from eq (1) using the observed

/l's and x's and directly following them are the values obtained by the present techniques.

The one-OPW results quoted in the final column give a measure of the improvement

wrought by the present method of calculation.
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so are its phase shift gradients. It follows, therefore,

that m*jm, as given by eq (8) will be near to unity. But

for Li, the dominant 7)1 corresponds (of. eq (13) and fig.

1) to an even more dominant gradient and so eq (8)

leads to an elevated value o(m*lm (table 1).

Turning to the contact term, we see that the present

approach improves on the single-OPW method, espe-

cially for Li (table 1). To explain the numbers, note that

eq (6) gives 35 and 170 for Li and Na respectively and

in fact the corresponding OPW numerators [33] are

not radically different from these. The difference oc-

curs in the denominator of eq (6). In the OPW approxi-

mation this is always less than CI [33] (corresponding

to a displacement of the free electrons into the intersti-

tial regions) and is responsible for the enhanced OPW
results shown in table 1. But remembering the domi-

nant p wave in Li, on the basis of eq (11) we expect, and

find, a renormalized volume considerably in excess of

Cl in eq (6). This leads to the substantially reduced (and

very satisfactory) calculated value shown in table 1.

The strong p character lowers the contact density

which, of course, represents the 5-wave component

only. The result for Na, though less drastically affected,

is in the same direction and agrees well with experi-

ment.

4.2. Volume Dependence of Knight Shifts

We now provide an explanation of the experimental

results of Benedek and Kushida [7] shown in figure 4.

From (6), (8), (10) and (11), we may write (1) in the form

K/K,

K
877

3
'

Xj-

1+5 CT

leAF(O)

l+o- (14)

This omits the important effect of correlation on the ab-

solute magnitude of x (cf- 4.1. above) but is quite

adequate for explaining the qualitative variations of K
exhibited in figure 4. In view of (14), one might consider

as normal those cases where the volume dependence is

adequately described by Xf\^kF{0)\^. RecaUing (12) and

remembering that oc , we see that normal behavior

(as thus defined) corresponds to a slight decrease of

Knight shift with increasing pressure.

To understand departures from this behavior, one

must examine the two denominators of (14) which, un-

like the numerators, are pecuHar to the metal under

consideration. The important variable is cr for, in the

present pseudopotential screening approximation, 5 =
1/3 and even for muffin tins eq (13) applies.

As has been emphasized, all phase shifts and
gradients for Na remain small, even under pressure

(fig. 2). It follows, therefore, that Na will be normal as

indeed it is (fig. 4). Our calculations indicate that a

Figure 4. Knight shift ratio versus fractional volume changes.
The experimental values are taken from ref. [7); the theoretical values are computed

using eq (12) and the data of ref. (6). The use of muffin tins (of. sec. II) should improve
agreement with experiment. The rise shown for Cs and the fall shown for Li are explained
b y the curves of figure 1

.

similar explanation seems appropriate for Cu (eq (12)

being an adequate, if rather less accurate, representa-

tion of the contact term in this metal). The normal

behavior of Li follows since, while 171 is significant at

the Fermi level (and therefore giving, for example, as

we saw in 4.1., an enhanced m*), its gradient (cf. fig. 1)

is rather constant. There is a complete parallel with the

thermopower situation (fig. 3). The high value of the

gradient gives the anomalous negative result, while the

insignificant variation with pressure of the gradient im-

plies the constant thermopower shown.

Finally, to explain the observed abnormal response

of Rb and Cs we note the nearby virtual bound states in

these metals (figs. 1-3), these giving rise to sharply in-

creasing (t's when pressure is applied. The variation of

1 + 5 — cr in (14) is more important than that of 1 + tr

since the effect of the zero in the former (or, cf. (14), the

pole in x) can be felt even at the densities of interest.

(The eventual divergence in x is, of course, a purely

mathematical consequence of the terminated perturba-

tion expansion (7); physically a greatly enhanced value

should be anticipated.) Thus, one concludes that the

rising Knight shifts shown in figure 4 primarily arise

from the sharply increasing effective masses. Con-

sistent with figures 2 and 3, the curve for Cs rises more

rapidly than that for Rb.

5. Knight Shifts in Alloys

The observed Knight shifts of binary alkali systems

vary quite linearly with concentration across the com-
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Na K Rb
Matrix

Cs

Figure 5. Experimental Knight shift of a resonant ion, scaled by
its atomic number for various matrices.

The pure metal results are taken from Drain's review [14] and the alloy results from van
der Moien et al. [8]. (There is little difference between the latter's results and those of Kaeclc
[9|}. The present theory can explain (usinji figure 1; see also the caption) the trend from
matrix to matrix, but not the variations for a given matrix. The theoretical results labelled

MNY were computed using the data of ref. [6]. The results for Na. K. and Rb matrices
include correlation in the calculation of x but not that for Cs which would, in that case, be
divergent (recall the limitations of eq (7) discussed in sec. II). We believe the slight drop
thus calculated in moving from K to Rb matrices arises only from our inability to calculate

with adequate precision. To illustrate this, we show also theoretical results (labeled SY)
using the data of Stocks and Young [34] which are, in principle, an improvement on those
of ref. [6].

position diagrams [8,9]. The experimental situation

may, therefore, be summarized as in figure 5 where we
have plotted the Knight shifts for very low concentra-

tion solute ions as well as those for the pure metals.

To explain figure 5 we need to generalize section 2 to

the case of alloys. This is formally quite easy; one adds

appropriate subscripts to the f/'s and (/)'s of eqs (2) and

(3) and finds a Schrodinger equation of type (4) for each

type of ion, the appropriate k/- being that of the alloy.

Speciahzing to the case of solute shifts, the numera-

tor of (6), the unrenormalized contact density is for the

solute since this is the resonant ion but this must be

evaluated for kr defined by the solvent. Also, since the

denominator of (6) arises from the matrix ions (see the

comment following that equation), this, Hke Xi will be

given by the solvent. Thus, from (1), (6), (11) and (12),

we have

877 5.3Z
Xmatrix

'

resonator (^/'matrbi^ao)-'«a--'

l+o- matrix
(15)

We can look upon (15) as a generalization of the pure

metal formula, though in the latter case every ion is par-

ticipating in the resonance and the signal is much
stronger.

On scaling these Knight shifts by the atomic number

on the resonant ion, we expect, therefore, a number de-

pending only on the matrix. As figure 5 shows, this is a

fair first approximation, though there are systematic

trends for various ions in a given matrix which the

present theory cannot account for. The increase as one

moves to heavier matrices is, however, easily ex-

plained. Just as in section 4.2., the susceptibility

dominates the renormalization term and, in view of

figures 2-4, this should increase as one moves from Na
to heavier matrices. This conclusion is consistent with

the observed electronic specific heat data [35-37]

though the correlation is not clear-cut because of the

significant electron-phonon contributions to the effec-

tive masses in the latter cases [38]. The realization that

the susceptibihty dominates this problem was due to

Kaeck [9].

Note that we have not discussed the rate of change

of Knight shift as the alloy concentration is varied. This

would have involved us in different and, as yet, un-

resolved problems [39,40].

6. Summary

The scale and shape of the calculated 171 curve for Li

shown in figure 1 are corroborated by (a) the rise in re-

sistance with increasing pressure (fig. 2), and (b) the

sign and lack of variation of thermopower with pressure

(fig. 3). When apphed to the theory of Knight shifts, it

explains also (c) the enhanced susceptibility (table 1),

(d) the failure of the single-OPW method to predict the

contact term, and (e) thefall of Knight shift under pres-

sure (fig. 4).

Similarly, the virtual bound state shown in the 172

curve for Cs in figure 1 is corroborated by (a) the even-

tual rise in resistance shown in figure 2, and (b) the

change of sign of the thermopower shown in figure 3. In

the theory of Knight shifts, it explains also (c) the rise

of Knight shift with increasing pressure (fig. 4) and (d)

the enhanced Knight shifts exhibited by solute ions in

a Cs matrix. Virtual bound states associated with Rb
and K account for the corresponding properties of these

metals in a similar way.

Na has no strong phase shifts and so has unremarka-

ble transport properties: (a) a resistance which falls and

stays small when pressure is applied (fig. 2), and (b) a

negative thermopower which does not change much
under pressure. In the theory of Knight shifts (c) its

contact density and susceptibility can be understood by

free-electron arguments (table 1) though preferably, in

a correlated framework for (d) it has a normal (cf.

sec. 4.2.) falling shift (fig. 4) when pressurized, and (e)

the decreased shifts exhibited by solute ions dissolved

in Na is thus explained.
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Discussion on "Knight Shifts of the Alkali Metals" by A. Meyer (Northern Illinois University) and
G. M. Stocks and W. H, Young (University of Sheffield, England)

M. Natapoff (Newark College of Engineering): Do the

phase shifts mentioned here differ from those previ-

ously pubhshed by you?

A. Meyer (Northern Illinois Univ.): This is just the

comment I would make. The original sets of phase

shifts that were published were obtained using repul-

sive pseudopotentials. They are the ones that we
primarily relied on. However, we indicated that we
have others in which we do not use repulsive pseu-

dopotentials but use instead the full atomic potential

truncated to simulate screening. We simply subtract

our multiples of tt from the phase shifts so obtained and

we get the phase shifts modulo tt which are close to the

original set, and are far easier to obtain. Presumably we

would use this method in other cases for which doing a

full pseudopotential treatment would be just too hard.

A. Narath (Sandia Labs.): I would like to apologize to

the authors of the post deadhne papers. In view of the

hour, I think we should skip them and I therefore

declare this session closed.
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The influence of exchange and correlation of conduction electrons on the spin susceptibility, Xs • is

well understood in alkali metals. There is reasonable agreement between theoretical and experimental

results where the latter are available. No such comparison has been reported for the divalent metals,

mainly because of a lack of experimental information. Only for Be is Xs known (from spin resonance

measurements). We have made semi-empirical estimates of x.s for Mg and Cd by adjusting the measured

Knight shifts with theoretical values of the core polarization and (i/<'^(0)>. The values of Xs so deduced

are compared to theoretical estimates made by the method of Silverstein, who treated the exchange

enhancement by an interpolation procedure analogous to that of Nozieres and Pines for calculating cor-

relation energies, and included the effects of band structure through the calculated thermal (band) ef-

fective mass. Agreement is good for Mg, which behaves more like a free electron metal, and poor for Be

and Cd. Possible sources of the discrepancies are discussed.

Key words: Be; Cd; density of states; divalent metals; exchange enchancemnt; Mg; spin suscepti-

bility.

1 . Motivation for this Work

One of the major properties related to the density of

states, g(EF) at the Fermi surface (F.S.) in a metal is the

spin susceptibility, Xs- In the one-electron approxima-

tion the relation between Xs and giEf) is well-known,

[1] namely

Xs=^^lg{EF) (1)

where /Xb is the Bohr magneton. However, when one in-

cludes the effects of exchange and correlation among

electrons, the response of the electrons to the magnetic

field is expected to aher in the direction of increased

susceptibihty. Theories developed for quantitative

treatment of these effects are Umited in appUcabiUty to

free (uniform) electron systems [2,3] and only intuitive

extensions [3] have been made to take into account the

Bloch character of electrons in the metal. Such theories

are therefore expected to be reasonably valid for alkah

metals which are nearly free electron hke in their prop-

erties and this is indeed found to be true [3] in the

cases where Xs has been obtained directly from electron

spin resonance (esr) measurements. To subject the

theory to a more severe test for Bloch electrons, we

need to analyze the cases where there are strong depar-

tures from the free electron behavior. The divalent

metals, berylHum, magnesium, zinc, and cadmium are

particularly suitable examples in this respect. These

metals have four electrons per unit cell which fill up a

volume in k-space equal to two Brillouin Zones (B.Z.).

As a consequence, there are substantial intersections

between the Fermi surface and B.Z. boundary. The

electrons on the Fermi surface are therefore expected
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to depart rather markedly from free-electron character.

Among these metals, direct measurement of x.s from

esr experiment has been made only for beryllium [4].

However, one can extract experimental values of x.s- for

the other metals through analysis of Knight shift (Ks)

data from nuclear magnetic resonance (nmr) measure-

ments. For this purpose, one needs to evaluate the con-

duction electron spin density at the nucleus and make
use of the well known expression [5]

Ks=YXM\^^JO)\-^),,. (2)

fl being the volume of the unit cell over which the wave

function, Jr) is normalized. The average in eq (2) is

taken over the Fermi surface. Unfortunately, the

Knight shift of zinc is not currently available due to dif-

ficulties in observing nmr signals in this metal. Careful

determinations of the Knight shift have, however, been

made in magnesium [6] and cadmium [7] and concur-

rently, band structure studies are available for these

metals [8,9] to permit determination of the spin densi-

ties {|(//^ (0)|^)av We have analyzed the direct and

exchange core polarization (ECP) contributions to the

spin density in both of these metals [10,12,14] in order

to obtain Xs and study the trend of the agreement

between theory and experiment for x* in the series

formed by these two metals and beryllium.

2. Extraction of Spin Susceptibility of Mg and
Cd From Knight Shift Data

The direct spin density. (0)|^)av requires a

detailed scanning of (0)|^ over the F.S. with ap-

propriate weighting according to the local density of

states [10,15]. The ECP contribution was calculated

using the moment perturbation (MP) procedure [16]

which has been applied in the past to the study of this

effect in several metals [17]. The averaging of the ECP
effect was carried out in the same manner as for the

direct effect.

In the case of magnesium, there are four segments of

the F.S. [8] described respectively as lens, cigars, but-

terflies, and monster. Of these segments, the lens and

the butterflies were found [10] to have predominantly

s-character whiles the other two had substantial p-

character. In reference 10, the spin densities and local

density of states were calculated by using the

orthogonalized plane wave [OPW] procedure and a

potential constructed from first principle by Falicov

[11]. A more extensive scanning [12] of the Fermi sur-

face has been carried out using the nonlocal pseu-

dopotential of Stark and Mueller [13] and the spin den-

sities have been evaluated at 110 nonequivalent points

on the Fermi surface. The results of this calculation in-

dicate that the 5-character of electrons occupying the

cigar and the monster have been underestimated in the

earher OPW calculation [10] . This may be due to (1) in-

accuracies in the potential, (2) use of pseudo-core wave

functions instead of crystal-core functions for the pur-

poses of orthogonaHzation, and (3) insufficient scanning

of general points on the Fermi surface. Lens has the

strongest s-character, but in view of the large surface

areas associated with the butterflies and monster, the

latter two make the dominating contribution to the spin

density. The 5-part of the ECP contribution from vari-

ous segments was found to follow the same relative

trend as the direct spin density. The p-type ECP effect

was contributed to mainly by the monster. ECP con-

tributions from higher /-components of the wave func-

tions were found to be small. The 5-type ECP contribu-

tion to the spin density was found to be positive and

about 25% of the direct ECP effect. The p-type ECP
contribution was also positive and about 13% of the

direct. On including the small negative contributions to

the spin density from higher /-components, the net ECP
effect was found to be about 38% of the direct.

In cadmium, the F.S. has only two segments, lens

and monster. Both of these segments were found to

have substantial 5-character, with the monster making

the major contribution to the spin density both due to

its larger 5-character and larger surface area. The ECP
contribution was a smaller fraction (9%) of the direct

spin density. This smallness of the fractional ECP spin

density was a consequence of two factors. First, the

larger direct spin density compared to magnesium, and

secondly, the reduced exchange interaction between

the conduction electrons and 5-cores due to the screen-

ing effect of the intervening 4c?-core electrons. The p-

type ECP effect was again found to be positive but

much smaller in relative importance, namely 1.3% of

the direct spin-density. Substituting the total calculated

spin density including direct and ECP effects in eq (2)

we have obtained the experimental Xs listed in table 1.

Table 1. Susceptibility enhancement factors and
other pertinent parameters in Be, Mg, and Cd

[Extrapolated to 0 K]

Metal cja m,lm

Xs expt.

(cgs. vol.

units)

Xs band,

(cgs. vol.

units)

^expt. Iheo.

Be 1.567 0.45 0.20 X lO *^ 0.64 X 10-*^ 0.31 1.09

Mg 1.624 .95 1.14X 10-« .93 X 10-« 1.23 1.32

Cd 1.862 .54 1.03X lO-fi ..54 X 10-** 1.90 1.17
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It is appropriate to remark here about the possible in-

accuracies of these resuhs for due to the neglect

of the orbital contribution [18] to Kg. This latter effect

(only Landau diamagnetism) was found to be of deter-

mining importance [19] in explaining the negative sign

of Ks in beryllium. However, beryllium was somewhat
special in that the p-type ECP effect was substantial

and negative [15] and cancelled out the major part of

the direct spin density contribution to K^. In contrast,

the p-type ECP effect in magnesium [10,12] and cad-

mium [14] is positive and the absolute values of the

total spin densities are orders-of-magnitude larger, due

to a larger fractional 5-character. Thus, any contribu-

tion from either the Landau [20] or Van Vleck-Ramsey

type orbital effect [21] to Kg is expected to be a small

fraction of the spin-contribution to Kg.

3. Comparison of Theoretical and Experimen-
tal Spin-Susceptibilities— Discussion

The commonly used procedure for studying the ex-

change enhancement is the one based on the random

phase approximation [22] (RPA) of many-body theory.

This procedure involves a self-consistent treatment of

the wave functions for the electron gas in a magnetic

field. The difficulty with this procedure is that the RPA
approximation is strictly valid for high densities, that is,

for electron sphere radii rs' less than 1, and takes ap-

propriate account of the long range interactions (small

momentum transfer). Silverstein [3] has improved

upon the RPA by utihzing a momentum transfer inter-

polation procedure analogous to that developed by

Nozieres and Pines [23] for correlation energy calcula-

tions. The interactions in the presence of a magnetic

field involving small momentum transfers (long range

effect) are handled by the RPA procedure while the

large momentum encounters (short range effect) are

handled by second-order perturbation theory, an inter-

polation procedure being appHed for intermediate mo-

mentum transfers. Additionally, Silverstein [3] has at-

tempted to include the effects of band structure

through the thermal (band) mass, m, related to the den-

sity of states by the relation

where

m,lmn= g(Er)lgo{Ey) (3)

where goiEp) is the density of states for free-electrons

(mass Ttio). Silverstein's expression may be expressed

in the compact form

f3
= m,)lrnt

(5)

Xs* being the susceptibility obtained by Silverstein in

the absence of the band effect and

(6)

t; = 1/ 1
a-1

(4)

with Xx'"""' given by eq (1).

In table 1 are hsted the values of c/a, 1//3, x^''^^''->

y^theo. fi-oni eq (4).

For beryllium [15] and cadmium [24] , the density of

states at the F.S. giEf) has been calculated with great

accuracy and we have used these values to calculate

1//3. For magnesium, no such detailed calculation of

g(Ei.} is available. We have therefore utilized [10] the

density of state obtained from the specific heat mea-

surement after making appropriate corrections for the

phonon enhancement of g(Er). The results in the last

two columns show that agreement between nqf^^P^- and
y^theo.

f^jj- beryllium and cadmium is quite poor where as

for magnesium, the agreement is reasonably good.

Amongst the three, magnesium behaves more like a

free electron system and it is not surprising that an ef-

fect mass approximation for treating the exchange

enhancement of x is reasonably good for this metal.

The small theoretical value of t] for cadmium is primari-

ly due to the small value of milm, which indicates that

there are not enough electrons at the Fermi surface to

take part in the exchange enhancement process. It

should be pointed out that our derived experimental

value of rj for cadmium is 1.9 compared to 1.5 obtained

by Kasowski and Fahcov [24]. This discrepancy may

be due to (1) the choice of Hartree-Fock-Slater core

states in [24] and (2) the use of smaller number of

OPW basis functions to construct the conduction elec-

tron wave function which overestimates the theoretical

spin s„ density and hence underestimates tjpj^p'-.

There seems to be an interesting trend in the value

of 7}^^P'- in going from beryllium to cadmium, although

there is no trend with respect to the parameter /3. A
part of the difference between experiment and theory

could perhaps be due to the neglect of some additional

contributions to Knight shift in deriving Xs-

For beryllium, the theoretical situation is rather poor

since -q seems to have a de-enhancement from the band

susceptibility while theory predicts the reverse. As a

matter of fact, under no circumstances can eq (4) lead

to rj""""- less than unity.

While the Knight shift involves the susceptibihty Xs

in a uniform field, the nuclear spin lattice relaxation
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rate, r,"' requires an average [25,26] involving the mo-

mentum dependent susceptibility, X'<(q) over the range

(/
= 0 to 2A/. . We have utilized the calculated direct and

ECP spin densities for beryllium and cadmium to cal-

culate Ti~^ in these two metals where (T\T)'^ has been

studied experimentally [27,7]. In keeping with the

trend for x.s the theoretical (T^T)"^ in beryllium is found

to require a de-enhancement factor of .60 to agree with

the experiment [27] while cadmium requires an

enhancement factor of 3.10.

Evidently, two types of improvements are necessary

in the theory of the response of the electrons to a mag-

netic field. First one needs to handle actual electronic

densities (rs>l) more rigorously and second, to incor-

porate Bloch effects which lead to nonuniformity in the

electron density distribution. It appears that the latter

is the more pressing problem for the case of divalent

metals. It is hoped that present self-consistent

procedures [2] for the free-electron gas can be ex-

tended without too much complexity to the study of

Bloch electrons.
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Discussion on "Role of Exchange Effects on the Relationship Between Spin Susceptibility and
Density of States of Divalent Metals" by P. Jena and T. P. Das (University of Utah), S. D. Mahanti

(Bell Telephone Laboratories) and G. D. Gaspari (University of California, Santa Cruz)

R. V. Kasowski (DuPont and Co.): I have calculated

the Knight shift in cadmium and also the spin-suscepti-

bility. I find that the enhancement due to, say, many-

body effects, is about .54 (this was published in Phys.

Rev. Letters in March). I think in the units that the

author. Professor Das, uses, it is about 1.54. So I would

like to know what potential he used and how the density

of states at the Fermi level was calculated? We used

the potential that was fitted to data by Stark and Fal-

icov and it has been quite successful in a number of

Fermi surface properties for cadmium.

S. D. Mahanti (Bell Telephone Labs.): I believe that

for cadmium, the value of the exchange enhancement

factor for Xs (the spin susceptibihty) as calculated by

Dr. Kasowski is 1.54 compared to our value of 1.90. The

potential utilized in both the calculations are the

same — that of Stark and FaUcov. The density of states

used in our band susceptibility was that of Kasowski

and Falicov (your Phys. Rev. Letters paper of March

1969). However, the difference is in the calculated spin

density at the nucleus. Two plausible reasons that

come to mind are: (1) We have utilized Hartree-Fock

cores for constructing the OPW functions whereas Dr.

Kasowski uses Hartree-Fock-Slater cores. We have

found that this may lead to 15-20% difference in the

spin density. (2) The second reason is the difference in

the number of OPW's utiUzed to construct the conduc-

tion electron wavefunction. We have utilized nearly 25

OPW's, and if Dr. Kasowski has utilized a fewer num-

ber of OPW's, then this may explain the differences in

the calculated spin densities and the exchange en-

hancement factor.
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Correlation of Changes in Knight Shift and Soft X-Ray
Emission Edge Height Upon Alloying

L H. Bennett, A. J. McAlister, J. R. Cuthill, and R. C. Dobbyn

Institute for Materials Research, National Bureau of Standards, Gaithersburg, Maryland 20760

In simple metals and alloys — those having no significant local c?-character at or near the Fermi

level — the Knight shift provides a measure of the local ^-electron density of states. If the particular atom

under study has a p-like core level, then soft x-ray emission arising from transitions of electrons at the

Fermi level into p-like core vacancies should provide a similar measure. Using Al as the example, we

compare results of these two techniques by studying fractional changes, relative to Al metal, of the

Knight shift and L2,:) soft x-ray emission edge height of Al in NiAl, AuAl2, ]VIg2Al3, MgnA\y,, and AI2O3.

A distinct correlation is observed.

Key words: Aluminum oxide (AI2O3); electronic density of states: gold aluminide (AuAL); Knight

shift; magnesium-aluminum alloy phases; nickel aluminide (NiAl); soft x-ray emis-

sion.

1. Introduction

Among the various experimental techniques yielding

information on the occupied density of electronic states

in solids, we can distinguish two classes or families: the

Fermi level probes (Knight shift, specific heat, suscep-

tibility), and the deep band probes (photoemission, ion

neutralization, soft x-ray emission). There have been

many comparisons of results of techniques within a

family. However, so far as we are aware, there has been

no systematic attempt to correlate results of techniques

belonging to different families. In this paper, we exhibit

such a correlation, focusing attention on the Knight

shift and soft x-ray emission.

Analysis, given in the next section, shows that such

a correlation is predicted by the one electron model for

simple materials — those having no significant local d-

character at or near the Fermi level. An experimental

search for the correlation can serve two useful pur-

poses. If the one electron model is valid, these two

techniques should serve as sensitive tests of band

theory, particularly for alloys, since alone in each fami-

ly, they are capable of yielding information on the con-

tribution of a specific orbital component of the Bloch

waves to the state density, at a specific ion site. On the

other hand, if many body effects, such as exchange

enhancement of the Knight shift [1] or resonant

behavior of the soft x-ray emission rate at the Fermi

level [2], are important, we would expect to observe

systematic deviations from the predicted correlation.

As our example, we have chosen to study Al, in Al

metal, in alloys with Au, Ni, and Mg, and in the oxide

AlaOij. For the cases considered so far, a distinct cor-

relation is observed. No systematic deviations are

noted. Thus, many body effects are small, constant

upon alloying, or compensating.

2. Analysis

In simple materials as defined above, the Knight shift

provides some measure of the local density of 5-electron

states at the Fermi level. If the ion under study has a p-

like core level, the soft x-ray emission arising from

transitions of Fermi surface electrons into p-like core

vacancies, should provide a similar measure.

For the Knight shift, we assume a simple contact in-

teraction from which we write

Koc 2 l'l'JO)r'S(^(k)-EF), (1)

k, n

which, aside from constants, is the first term in the

usual expression,

K= asn.s (£'/••) + aaUdiEy) +
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The second term in the latter expression is an in-

direct contact term, arising from a net spin density at

the nucleus produced by polarization of core^-levels via

exchange interaction with unpaired t^-states. The ratio

of hyperfine couphng constants, aalag, is typically nega-

tive and of the order of 0.1. However, in our assumed
simple materials, n^Ei.) is assumed to be neghgible,

and we omit this and higher terms from consideration.

For the soft x-ray emission process, the spontaneous

L-emission rate from states near the Fermi level may be

written

RiXhoo) ^ ^ I

< ^iM4>i, > \-8{hoj-Er+Ec)
k, n

(2)

Both sums are carried out over the Brillouin Zone, n is

a band index, i//^ is a band wave function; i/zJO) its value

at the nuclear site, ipzp is the soft x-ray core state, and

Ec its excitation energy.

The suggested correlation can be clearly exhibited by

introducing orbital state weights, ivi", which are con-

veniently defined for an augmented plane wave (APW)
calculation employing a muffin tin potential by

pw
Jcell

^*(k, E)i}j{k,E)d^X^l

477 ( 2 / + 1 ) 2 c,cje''"^ - P, ( cos dij )ji (hA kjA .

)

i.j

denoting ion type. It is then tedious, but straightfor-

ward to show that the sums (1) and (2) may be rewritten

RUO, E,) Y nl(E,)

R'i(A,E,)) I'>^
(4)

and

2 ii'LJ'

5
nl (£/..) (5)

where

/9
Nl

^CU ., / ^Mr, Ey) Y
Jo \Rf {A„E,))

,
Rf {r, Er)

dr Ri (r) —-———

-

The Ri's in these expressions are the orbital com-

ponents of the radial wave functions with the APW
sphere.

For pure Al and the alloys under consideration, it is

reasonable to assume that 712 makes a neghgible

contribution to RL(hoif) [3,4]. We may therefore

rewrite eq (5) as

/R^> (0, Ey)\^ n^^ (Ef)

X
Jo

drr"
Rlir,E)

R{'{A,, E)
(3)

R^' (r, E,)

Rf (0, Er) (6)

wpu,=^ CiCji Cldij -iir'^Ale '''o-

ji{kijA„

Here v denotes the v"' ion in the unit cell. Ai, is the

APW sphere radius for the ion under consideration, g,

is a reciprocal lattice vector, and ki = k+gi. The c,'s

are coefficients of the normahzed band eigenfunction

expanded in APWs.ji(kA) is an /"* order spherical Bes-

sel function. k,j = ki — kj. dij is the angle between two

vectors k; and kj. Pi is the /"* order Legendre polynomi-

al, ft is the primitive cell volume.

These weights can be introduced into a sum over

states to yield local orbital state densities, ni'^iE), q

Only shght variation upon alloying is anticipated for the

integral on the right hand side of eq (6). Thus the essen-

tial difference in kai amd Ri/'(h(x)r) should be only a con-

stant. Both should yield measures of no'^'(EF). Further,

a plot of RaiioylRAt versus KaiioylKAi should yield a

straight line of unit slope.

3. Corrections to Measured Soft X-Ray
Emission Rate

Soft x-ray emission rates measured at constant volt-

age and current density differ from true emission rates,

and must be corrected for differences in absorption

coefficient, /x, and the density of radiating atoms, p/,(^),

as a function of depth f below the sample surface.
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These quantities enter the emission rate through a fac-

tor

I^j^^'' d^p, (O e-'^f/^i"*.
(7)

is a maximum depth, beyond which excitation of L
shell vacancies is no longer energetically possible. It is

a function of tube voltage, angle of incidence of the

electron beam, the rate of electron energy loss, and the

probability of inner level excitation. t|/ is the x-ray

takeoff angle. These quantities are schematically illus-

trated in figure 1. By taking the measured emission

rate, subtracting the background continuum from it,

and then dividing the difference by a reasonable ap-

proximation to the factor I, an estimate of the true emis-

sion rate can be obtained.

We calculate I in the following approximate way.

First, straight, average paths are assumed for the elec-

trons in the exciting beam, with electron energy varying

along the mean trajectory according to the prescription

V{0 = Vo~{^l(3smcf)yi- (8)

This expression is consistent with Feldman's empirical

range formula for 1 to 10 keV electrons in solids [5],

Vo is the initial electron energy in keV, and

l3
= 250AlpZ"l\

a= 1.2/(1 -0.29 log.oZ),

with A the atomic weight, Z the atomic number, and p
the density. For alloys, appropriate averages of ^ and

Z are used. We now write

Fl(;URE 1. The geometry ofsoft x-ray ficneration.

Electrons incident at anjlle (jj tn the sample surfai-e excite inner level vacancies at various
depths, ^, below the sample surface. To be collected by the spectrometer, an emitted photon
must traverse a distance ^/sin iff of the sample, and may be absorbed alotif: the way.

The absorption coefficients, /xihoj), are not known for

the alloys. We therefore make the estimate

^Al, B = CTaiH aI + (ThIIh

from the absorption cross sections o", of the pure

metals, and the appropriate ion densities in the sohds.

Table 1 lists our estimates of o"; and the data from

which they are evaluated.

Table 1. Numerical values for atomic density, linear

mass absorption coefficient, and absorption cross

section

Metal

Atoms per cm-'

m
Mass absorption

coefficient

IJLi (cm-')

Absorption

cross section

ai= iJ.ilm (cm^)

Al"' 6.07 X 10-^ 0.1 X 10"^ 0.16 X 10-'"

Mg'- 4.30 2.2 5.11

Au'" 5.93 7.5 12.64

Ni"' 9.17 8.6 9.37

From the expressions above, we write the factor I as

Jlj^l r/3sin,i(F„-F,,)"

Jo

where nAi is the density of Al sites in the material stu-

died, and PiX^) is the probability of direct 2p shell

ionization of an Al ion.

For the L shell ionization probability, we use Bethe's

nonrelativistic expression, as modified by Worthington

and Tomhn [6]

,

PlU) In UlVfU, (9)

where U^V(^)IVl, and Vl is the 2p excitation energy.

{In [Fo- (^/^ sin (/))'/"] - In V,}^

{Fo-(^/)8 sin 4,y!"]

'and evaluate it numerically. Appropriate data and

results are listed in table 2.
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Table 2. Numerical values for atomic densities,

linear mass absorption coefficient, and excitation

electron range parameters, a, /3

Alloy Atoms per

cm-*

Atoms per

cm' Ob

Mass ab-

sorption

coefficient

(cm '

)

(X P

Al 6.07 X 10-^ 0 X lO- '-i 0.1 X 10^ 1.77 2. .57 X 10^

3.1 2.08 1.11 1.76 3.11

Al,.Mg,7 2.05 2.90 1.51 1.75 3.32

ALAu 3.70 1.85 2.40 2.17, 0.85

AlNi 4.14 4.14 4.0 1.93 0.97

We have also estimated, by extrapolation of Green's

[6a] experimental results, the change in backscatter

loss on alloying. For the experimental conditions used

in the NiAl and AuAl2, we expect fractional losses

relative to Al metal of .04 and .09 respectively. For the

Mg alloys, the effect should be nil, owing to the negligi-

ble change in average atomic number.

While fairly reahstic, these approximate values of I

are generally overestimates, because of our straight

electron path assumption [7]. A further complication,

in the case of AuAl), is the possibility of enhancement

of the Al L emission rate via fluorescent excitation of Al

cores by Au N4,.5 radiation.

The experimental soft x-ray data employed here are

from three sources. In our own laboratory, we have

made measurements on Al, NiAl, and AuAL. The fol-

lowing experimental parameters were employed: —
90° 0 = 20°, Fo = 2.5 keV. We have also included in this

analysis the data of Appleton and Curry [8], who em-

ployed i// = 90°, 0 = 30°, and apphed a 4.0 keV peak

sinusoidal voltage to their x-ray tube, and corrected

the observed spectra for variations in nM. Since I is

not a hnear function of V , we have calculated a time

average of it for application to their data. Also included

in Fomichev's [9] measurement of the L-spectrum of

Al in AI2O3.

There remains one important consideration in the

reduction of the soft x-ray data. At what point along the

emission edge should one choose an intensity value

characteristic of emission at the Fermi energy? There

is some arbitrariness involved in answering such a

question. Aside from possible singular structure men-

tioned above, the emission edge is always broadened by

the instrument, by the finite temperature at which mea-

surements are made and by the finite lifetime of the ini-

tial state. All of these factors combine to render an

exact answer an arduous, if not impossible, task. We
therefore assume these factors constant with alloying

and use the intensity, above background, of the first

definite structural feature at or below the Fermi energy.

The emission edge of aluminum, in the metal and in the

alloys considered here, exhibits the sharp cut-off at the

Fermi energy characteristic of free electron metals, and

consequently, the location of this intensity value is

unambiguous. The Al spectrum of the oxide shows no

emission edge. The Fermi level falls within the band

gap, and the Fermi level emission rate is zero.

The soft x-ray measurements made in our laboratory

were performed on 99.999% pure aluminum and on the

single-phase alloys AUAI2 and NiAl. Details of sample

characterization and instrumentation are reported else-

where [4,10j. Resuhs for Al3Mg2 and Ali2Mgi7 are

based on measurements reported by Appleton and Cur-

ry, to which we have applied only the correction nAil\.

Knight shift measurements on pure aluminum [11],

AuAlo [12], and NiAl [13] have been previously re-

ported. Those on Al3Mg2 and Al:2Mgi7 were taken at

both 77 K and room temperature, on powders crushed

from arc-melted ingots. Measurements at 77 K indicate

a 0.01% reduction in k from room temperature values

in each case. The diamagnetic reference is AICI3. X-ray

diffraction and metallographic analyses showed them

to be primarily single-phase alloys, with minute traces

of second phase at the grain boundaries ( < 1%). Table

3 (a,b) gives the measured mean values of emission rate

Table 3. Numerical values of: measured A1L2,3

emission edge heights, at constant voltage, per scan,

per unit current density, AR; density of Al sites, per

A^, n^i; the partial range-absorption factor,!' —\lnp,\;

fractional backscatter loss, y; corrected emission

edge height, R(^i(Of); Al Knight shift, k; and values

relative to pure Al of emission edge height and

Knight shift, R' = Rai,oy/RAi and k' = K^noylKM-

Mate-

rial

AR /' y K R' k'

Al 458.4 0.0606 1.000 0.00 7564. 0.164 1.00 1.00

NiAl 23.1 .0414 .311 .04 1866. .061 .25 .38

AuAU 42.9 .0370 .391 .09 3232. .061 .43 .38

Material A/? /' K R' k'

Al 22.0 1.000 22.0 .164 1.00 1.00

Al:,Mg2 13.3 .616 21.6 .135 .98 .82

Al|2Mg,7 9.7 .509 19.0 .138 .86 .84

above background, Ai?, the correction I and nAi, and

measured Knight shifts, k. The data on Al3Mg2 and
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Figure 2. Lj.a 5o/i at-ray emission edge height versus Knight shift

ofAI in a number of compounds.
Each is expressed as a fraction of the pure metal value. The solid straight line of unit

slope is the one electron prediction for simple materials.

Ali2Mgi7 are shown separately (table 3b) since changes

in emission rate from these alloys are calculated with

respect to the pure aluminum data of Appleton and

Curry, and they have already been corrected for

changes in hai- Also listed are the ratios RaiioylRAi and

KaiioylKAi, plotted in figure 2.

4. Discussion

The correlation between the soft x-ray intensity at

the Fermi edge and the Knight shift is illustrated in

figure 2. The solid hne of unit slope passing through the

origin is the one electron prediction, and not an attempt

to fit the data. The point for Al metal falls on the line by

definition, and is not a verification of the correlation.

The point for Al20,3 at the origin is a valid data point,

and presumably is typical of nonmetallic compounds.

Here the Knight shift is expected to be zero because

there is no Pauli paramagnetism. All electrons are

paired in spin. Actually, quadrupole effects have

prevented a simple determination of a Knight shift. The

soft x-ray emission edge height is zero because the

Fermi level falls within the band gap, where the state

density is zero. We would expect semi-metals to have

near-zero Knight shifts and Fermi edge emission

heights as well.

The principal uncertainty in the Knight shift involves

such factors as chemical shifts, orbital shifts (paramag-

netic or diamagnetic), p-electron core polarization. All

must be considered carefully, or systems chosen in

which they are known to be small. Uncertainty in the

soft x-ray values comes mainly from our estimates of

the factor I, defined above. The values of I used can

reasonably be taken as upper hmits. Thus, the points

for NiAl, AuAL, Mg2Al3, and MgirAliQ He no higher on

the plot than shown. The extreme, and definitely incor-

rect, procedure of correcting only for changes in the

density of AI sites would reduce the corrected emission

edge heights by factors ranging from .3 to .6, and move
the points substantially below the line of unit slope.

Thus, there exists the possibility of a systematic devia-

tion from the expected correlation which, if real, could

be interpreted as due either to enhanced Knight shifts

or to reduced emission edge height enhancement in the

alloys, with respect to Al metal. A more exact estimate

of I can be made by replacing the assumption of

average straight line electron trajectories with a diffuse

scattering model. Considerably more labor would be in-

volved. The calculations of I can be experimentally

tested by studying emission edge height as a function

of exciting potential at constant current density. We
hope to make these better estimates in the future. How-
ever, our present feeling is that no gross error has been

made, and that the indicated correlation is real.

Within the approximations and uncertainties out-

lined above, we have shown that Knight shift and soft

x-ray estimates of local 5-wave state densities are

simply related. Although consideration has been given

to Al alloys, we expect that other simple metal alloy

systems will show similar correlation. We also expect

that phenomena such as melting, which produce

changes in the Knight shift in certain metals, will

produce comparable changes in soft x-ray emission

edge heights. Lastly, we would suggest that investiga-

tion of the soft x-ray emission edge heights can shed

light on the question of whether the small Knight shifts

observed in a number of metals and alloys [14] are due

to dominant p-character (i.e., little 5-character) at Ef or

to cancellation of 5-character by core polarization.
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Tunneling Measurements of Superconducting
Quasi-Particle Density of States and Calculation of

Phonon Spectra*

J. M. Rowell

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

It is an unfortunate fact that the tunneling technique, which has proved incredibly successful in the

study of superconductivity, has given little information about the normal state properties of metals and

semiconductors. It will be shown that, in the determination of the superconducting quasi-particle densi-

ty of states, it is the change in density induced by the onset of superconductivity which is measured

rather than the total density.

Returning to the problem of normal materials, a review of the limited achievements and failures of

tunneling will be presented. This will include the influence of band edges on tunneling in p-n diodes and

metal-semiconductor contacts, the structures observed in tunneling into bismuth and the negative

results obtained in nickel and palladium. The dominant effect i{ the change in barrier shape in most of

these tunneling characteristics wiU be iOustrated.

Key words: Density of states; phonons; semiconductors; superconductivity; tunneling.

Many of the talks heard this week have outlined ex-

perimental techniques which determine the density of

electron states in metals and semiconductors over ener-

gy ranges which are typically 1-10 volts. I would like to

discuss a technique which is much happier in the range

of 1-10 millivolts, is the only method which can measure

the change in density of electron states induced by su-

perconductivity, but which to date must be classed as

a failure in the determination of band properties of nor-

mal metals. For semiconductors and semimetals,

because of smaller energies and larger fractional

changes in electron density at band edges, the situation

is a little better. Even in these materials, however, we

can only say that density-of-states effects are observed

and cannot generally deduce a density measurement

from the experimental results.

After those opening remarks, it will be obvious that

most of you attending this conference should not be

familiar with the tunneling technique so I will briefly

*An invited paper presented at the 3d Materials Research Sym-

posium, Electronic Density ofStates, November 3-6, 1969, Gaithers-

burg, Md.

review the experimental method. Two structures are

commonly used, the metal-insulator-metal (M-I-M)

junction, which relies on the oxide of the first metal to

form the insulator, and the metal-semiconductor (M-S)

contact which uses the depletion layer (Schottky barri-

er) at the surface of the semiconductor. In the M-I-M

case it is generally hard to prepare sufficiently smooth

clean surfaces of bulk metal that oxidize in a controlled

way so films have been used in all but a few cases.

After evaporation of the first metal film (Al, Pb, Sn, Mg,

for example), oxidation takes place by exposure to air,

oxygen, or a glow discharge in oxygen, and the second

film is then cross evaporated to complete the junction.

Typical oxide thicknesses are 15-20 A. To make the

M-S contact a semiconductor is cleaved in vacuum and

covered with the metal very rapidly. The barrier is

lower and ~ 100 A thick. In some materials, where a

suitable Schottky barrier does not form at the surface

(e.g. InAs), a M-I-S structure can be made by oxidizing

the semiconductor before evaporation of the metal.

These three tunneling structures are shown in figure

1, with the circuit used to measure the current-voltage

characteristic or, if greater detail is required, the
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dynamic resistance (dV)j(dl) versus voltage. The figure

also shows schematically the potential barrier (with typ-

ical energies indicated) which separates the electrodes.

is the usual Fermi distribution and Ex the total electron

energy perpendicular to the barrier. The tunneling

probability P('£'x^ has the form

-HeTM.

Uewcowdoctor I

ls£rMCoNt.>)CTo«. I

r

_J

Figure 1. Schematics of three widely studied tunneling structures

and the circuit used to measure their I-V characteristics.

Considering the M-I-M junction as the most favorable

case for studying metals, I would like to make a number

of points regarding the theoretical possibilities of ob-

serving band structure effects and the probable experi-

mental difficulties.

The tunneling current through a barrier of the type

shown in figure 2 is given by [1],

K,

dExPa{E)p,{E)P{Ex) IfiE)

-f{E-eV)]. (1)

where pjE) and pb(E) are the density of states for a

given transverse momentum kt and total energy E,f(E)

ev

f

Figure 2. The potential in an ideal trapezoidal barrier between

metal electrodes.

P{Ex)=Aexp |-| j' [2m{c}>{x, V) -E,.)Vl'dx^ (2)

where d is the barrier thickness and [(f)(x,V)-Ex] is the

barrier potential at position x when a voltage V is ap-

plied. The pre-exponential factor A describes the

frequency with which an electron arrives at the barrier

interface and its exact form determines whether one ex-

pects to observe density of states effects at all. In the

W.K.B. approximation, which makes the metal-barrier

interface properties vary slowly compared to the

electron wavelength [1], A is proportional to

ll[pa(E)pij(E)] so that the current in (1) is independent

of electron density of states. The other extreme limit,

with the metal-barrier interface absolutely sharp, gives

a complicated prefactor A which does not exactly can-

cel the density terms in eq (1) [1,2] so some density of

states effect in tunneling might be expected. However,

as the interface properties can never be known in this

detail, a serious interpretation of any such observation

would be impossible. Rather than looking for results of

the slow energy variation oi p(E) within a band, a more

likely experiment is to look for effects of band edges,

where the number of final available states for the tun-

neling electron changes more abruptly. It is generally

felt that band edges can be observed in tunneling as

long as an appreciable fractional change in total elec-

tron density is produced by the new band. As we will

see later, this usually happens at convenient energies

only in semiconductors. Duke [3] has also pointed out

that an increased tunneling probability into the new
band will enhance the magnitude of the current onset

near the band edge.

Apart from the theoretical question of the exact na-

ture of the metal-insulator interface and its role in

producing density of states effects, there are a number
of serious experimental problems which lead me to

question whether these effects could be observed in

metals. These problems can be illustrated by reference

to figure 3. First, typical barrier heights in oxides are

~ 2 volts, which is a small energy compared to inter-

esting band structure in most metals. For an applied

bias > (^K, electrons from the Fermi level (at A for

example) tunnel into the conduction band of the insula-

tor rather than into the second electrode. Second, the

tunneling probability is much greater for electrons at B
than for those at C, which enter the second metal just

above the Fermi level. In figure 3b, for example, where
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we assume 4)r = (f>i,
= 2V, the transmission probability

at B is - 10--', whereas at C it is ~ 10->«. Thus the

chance of probing band edges far below the Fermi level

in the left metal seems remote, as practically none of the

t

Pi.

t—

A

2V

- B
t
2V

CO

Figure 3. Figure (a) shows the possible injection ofelectrons into

the conduction band of the insulator (Fowler Nordheim tunneling).

Figure (b) shows two possible tunneling paths into the second

electrode.

current, flows from these levels. The possibility of

probing band edges above the Fermi level (at B in the

right metal for example) raises the third problem,

namely that the current-voltage characteristic of the

junction is dominated very strongly by the changes in

barrier shape. Typical results obtained by Fisher and

Giaever [4] are shown in figure 4. At low voltages the

junctions are ohmic (small deviations are observable

only in detailed conductance plots) but from 0.2 to 1.4 V
the current depends almost exponentially on voltage.

This strong current dependence is purely the result of

the barrier becoming lower (for electrons leaving the

Fermi level) as the voltage increases. Thus any small

changes in current (or conductance) due to band edges,

superimposed on this exponential behavior, will be ex-

tremely hard to observe. There are also other difficulties

which one has to consider in many tunneling experi-

ments. If evaporated metal films are used it is unusual

for these to have the properties of single crystals or

even clean polycrystals. Even more critical are the

surface properties of the films, as tunneling between

normal metals is sensitive to the material only within a

screening length of the surface. As this surface is in

contact with (or diffused into) the insulating oxide the

chance of it having bulk properties seems remote.

After this very pessimistic survey of why tunneling

is not the right technique for the study of density of

states effect in metals, let me review a number of ex-

periments where band edges at least are observed, or

affect the tunneling characteristic noticeably.

to M
ltlLllVOI.T$

(a)

1.0

e .e
vaTs

is r!«

Figure 4. 1-V characteristics reported by Fisher and Giaever [4]. (a)

At low voltages, the current through thin oxidefilms is proportional

to voltage and tofilm area. Curves shown areforfivefilms with areas

in the proportions 5:4:3:2:1 as indicated, (b) At higher voltages, the

current increases exponentially with voltage.

1 . Metal-Semiconductor Contacts

In a heavily doped n-type semiconductor the Fermi

energy is relatively small (< 100 mV) and the depletion

layer formed at the surface is thin enough to permit tun-

neling. Unfortunately the barrier height is rather low

and barrier thickness varies with bias, leading to a

strong dependence of conductance on voltage.

Nevertheless, the calculation of Conley et al. [5] pre-

dicts that the minimum conductance occurs when the

bottom of the band crosses the Fermi level of the metal

(fig. 5). This has been observed in the experiments of
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Figure 5. Metal-semiconductor contact with bais applied to

produce a minimum in conductance.

Steinrisser et al. [6], as shown in figure 6. The barrier

parameters were determined independently and the

agreement between calculated and experimental con-

ductances is orders of magnitude better than in most

50
I

1—1—I—I

1—I—I—I
1—I—I—[—I—I—I—I—I—]—

r

1 I—1—J 1 I I I I I ] I I I I I I 1 I I I

-100 - 50 0 50 100

Bios Voltage (mV)

Figure 6. Calculation and measurement ofconductance in MS
contacts by Steinrisser et al. [6]. Comparison between three

experimentally measured conductance curves onn = 7.5 X IC/cm^ Sb-

doped Ge [solid lines (a), (c), and (d)] at 4.2 K and the calculated

conductance [dashed line (b)] for a barrier height V(,= 0.63 eV
obtainedfrom capacitance measurements. The most commonly

observed conductance curves were similar to (c), whereas (a) and (d)

represent the high- and the low-conductance extremes. The contact

metal is Pb and the contact area is 2..5±0..5 X 10"'* cm^. Structure

associated with the superconducting energy gap has been omitted. The

Fermi degeneracy /jlf = 25 mV has been indicated.

tunneling systems. The density of states in the

semiconductor band was assumed constant in this cal-

culation. The general aim of this type of experiment has

been to obtain such a satisfactory agreement with the

calculated conductance rather than to determine a den-

sity of states variation. Uncertainty in the energy de-

pendence of the barrier parameters would make such

a determination exceedingly difficult.

A second band structure effect, observed in Au-Ge

surface barrier contacts by Conley and Tieman [7], is

the onset of tunneling into the lc=0 conduction band

minimum, roughly 150 mV above the Fermi level. The
influence of the band edge is rather dramatic in this

case, as shown in figure 7, and a decrease of resistance

by at least a factor of 10 is observed within ~ 10 mV of

the edge. Note that the band edge is marked by a

decrease in resistance, or increase in conductance.

200| 1 1 1
1

1
1

1 1 1

1

Vo APPLIED BIAS (VOLTS)

Figure 7. Tunneling resistance ofa Au-Ge surface barrier contact,

measured by Conley and Tiemann [7] . The onset oftransitions to the

zone-centered (Fi') conduction band in Ge observed in the incremental

resistance dv/di at an applied bias Vn= —0.124 V. Note that that

threshold is 0.154 Vfrom the maximum, a value which corresponds to

the interbandh — To' separation.

2. Metal-Insulator-Semiconductor Junctions

In order to investigate tunnehng into semiconductors

to higher voltages, or study those materials which do

not form surface barrier contacts, an oxide can be

grown on the surface before evaporation of the metal.

Alternatively, for semiconductors which can be

evaporated, junctions of the type aluminum-aluminum

oxide-semiconductor have been fabricated. The current

calculated by Chang et al. [8] for such a structure, on

a degenerate p-type semiconductor, is shown in figure

8. The current is a maximum at the top of the valence
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band and a minimum at the bottom of the conduction current minimum is not so sharp as the calculated one,

band. At higher voltages it is interesting to see that pro- as shown in figure 8 for SnTe.

perties of the insulator, namely the increased tunneling The observation of interface states and impurity

probabihty at voltages corresponding to the heights (f>n bands has also been reported from tunneling studies,

and (f)L, dominate the characteristic. Experiments on a The left-hand plots of figure 9 show the conductance

number of different III-V and II-VI semiconductors results, obtained by Gray [9] , for two M-I-S structures

have confirmed this type of behavior except that the with different boron doping levels in sihcon.

VOLTS V (VOLTS)

Figure 8. Calculation and measurement of current in metal-insulator-semiconductor junctions by Chang et al. [8]. (a) Theoretical

current-voltage characteristics for a M-I-S junction. The semiconductor is degenerate p type and the conduction band of the insulator

provides the tunneling barrier, (b) Current-voltage characteristics for Al-Al-zOa-SnTe junctions at 4.2 K. Three sets ofcurves are shown

corresponding to samples with various oxide thickness.

3. p-n Diodes 4. Metal-Insulator-Metal Junctions

The I-V characteristic of the Esaki diode [10] is a

clear observation of the influence of band edges on tun-

nehng but recently this system has received little atten-

tion, probably because the barrier profile is difficult to

measure. It is also difficult in this case to decide how

much of the junction current is due to tunnehng.

An interesting effect which has been observed in p-n

diodes is the influence of Landau levels on the tunnel-

ing conductance. This was first reported by Chynoweth

et al. [11] for InSb diodes and extensive studies of Ge

diodes have been made by Bernard et al. [12]. Re-

cently Landau levels in InAs have been measured by

Tsui [13] in an M-I-S structure. Because only one elec-

trode is a semiconductor the latter results are simpler

to interpret.

This type of tunnehng structure is usually comprised

of aluminum-aluminum oxide-second electrode of

semimetal or metal. Considerable effort by various

groups has gone into trying to observe the band edges

in bismuth. Tunnehng structures at low energies (<50

mV) have been reported by Esaki et al. [14] but these

results have not been reproduced elsewhere [15]. At

higher voltages the characteristics for polycrystalline

films were first reported by Hauser and Testardi [16].

In figure 10 we show the good agreement between their

results and those of Sawatari and Arai [17]. However,

the exact position of the bands which give rise to this

structure is difficult to determine from the tunneling

characteristic.
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Figure 9. Observation of impurity levels in tunneling by Gray[9]. (a) dc conductance versus bias showing the effect of a boron-impurity band

at two different doping levels. The conductance of the more heavily doped sample is reduced XlOO for comparison, ib) Detailed dc con-

ductance near an impurity band (0.19 V). This sample was cleaved in air before mounting in the vacuum jar.

Figure 10. Tunneling conductance for Al-l-polycrystalline Bi, as determined by Hauser and Testardi [76] (left figure) and Sawatari

and Aral [i7] (right figure), (a) Insert: dV/dl vs V for an Al-AliO^-Bi junction. Bottom curve, adsorption as a function of energy. The

dashed line shows the contribution from free carriers, (b) dl/dV vs V (solid line) and background curve (dashed line); curve o/(dI/dV)

(dl/dVVv, vs V. (+V corresponds to Bi positive.) (c) Conductance-voltage curve in the voltage range —1.4 —1-2.3 V at 77 K. The

sample is different from that of (a) and (b).
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The conductance characteristics of M-I-M junctions

generally show considerable structure at voltages <1
volt, most of which is due to excitation processes in the

insulator (oxide). These excitation interactions of the

tunneling electron are with organic impurities in the

oxide [18], phonons of the oxide [18,19] or phonons of

the surfaces of the metal electrodes [19]. In a number
of junctions, (Al-I-Ni, Al-I-NiPd alloys [20] and single

crystal Cr-I-Pb [21]) there are additional effects which

are not yet understood. However, it would be unwise to

ascribe these to density of states variations without

much more detailed experimental work as the barrier

properties are, as usual, practically unknown.

5. Metal-lnsulator-Superconductor

There are two main reasons why tunneling into su-

perconductors has been so successful. First, the impor-

tant parameter is the normalized density of states,

which is the conductance versus voltage with the

second electrode superconducting divided by the con-

ductance with it normal. Thus it is not necessary to be

able to calculate, or even understand, the normal state

characteristic, as long as it is entirely due to tunneling.

The barrier parameters, which are exceptionally dif-

ficult to determine, can remain as unknowns as long as

they do not change when the electrode becomes super-

conducting. As far as we know, the only change might

be in the position of the excitation processes, but these

are fortunately weak compared with the superconduct-

ing effects. The second advantage of the superconduct-

ing measurement is that we can determine essentially

bulk properties of the superconductor, whereas all nor-

mal state measurements probe the interface and sur-

face properties of the normal electrode. As this

technique has been discussed in numerous publica-

tions [22], no more detail will be given in this text.
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Discussion on "Tunneling Measurements of Superconducting Quasi-Particle Density of States and
Calculation of Phonon Spectra" by J. M. Rowell (Bell Telephone Laboratories)

J. D. Penar (Harry Diamond Labs.): Do you know of

any work that has been done to control substrate tem-

peratures when the metal electrodes are deposited on

the films? In particular. I was wondering what would be

the effect of single crystal electrodes on the results that

were found?

J. M. Roweil (Bell Telephone Labs.): The only exam-

ple where you really see anything in the normal state is

bismuth. And there I believe that the characteristic

strength of those conductance structures changes

somewhat with the annealing of the film. I think Hauser

and Testardi [1] were typically evaporating bismuth

films on a hot substrate; in fact as close to the melting

point of bismuth as they could get. The bismuth effects

apparently changed in magnitude with the annealing of

the films.

J. D. Penar (Harry Diamond Labs.): Is this good or im-

portant when one is doing this?

J. M. Rowell (Bell Telephone Labs.): It made changes

in the strength of the structure in this case. One would

hope the annealed films were more representative of

bulk material. It is the only example we can point to.

J. W. Cadzuk (NBS): Band edge effects in field emis-

sion tunneling have been observed along certain

crystallographic directions in tungsten, molybdenum,

and rhenium both by Swanson and coworkers and by

Plummer and Young. Based upon the original observa-

tions and interpretation of the tungsten data, it was pre-

dicted that the band edges would be observed in molyb-

denum and rhenium. The experiments confirmed this.

Furthermore, such edge effects have not appeared

anomalously in materials or along crystallographic

directions where they would not be expected.

J. M. Rowell (Bell Telephone Labs.): I would have

thought that the energy distribution was so strongly

peaked from the Fermi level of the metal that the

chances of seeing any electrons coming from lower

energies would be almost zero.

J. W. Gadzuk (NBS): The width of this peak is

between .5 and 1 eV. If a band edge falls within this

range of the Fermi level, enhanced emission is seen as

structure upon the structure associated with the ex-

ponential tunneling probability drop off.

E. W. Plummer (NBS): All of the structure we have

seen in field emission is very dependent upon the

crystallographic direction of the exposed single crystal

face and to the amount of contamination. All of the

band edges which have been observed disappear when
less than a monolayer of any kind of chemisorbed gas.

It would seem that at a junction interface, any possible

band edge structure might be suppressed for similar

reasons.

[1] Hauser, J. J., and Testardi, L. R., Phys. Rev. Letters 20, 12

(1968).
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Density of States from Superconducting Critical Field

Measurements*

G. Dummer** and D, E. Mapother

Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61 801

For a superconducting metal, the entropy difference, AS, between the normal and superconducting

states is thermodynamically related to the critical field, by the equation

A5 = S„-S,= 1 (VHcl^rr) (dH,ldT),

where V is the molar volume and T is the absolute temperature. As the temperature approaches 0 K,

it can be shown that A5 is dominated by the normal electronic entropy, yT. where y is the temperature

coefficient of the normal electronic specific heat. This behavior has been known for a long time but

its application has been largely confined to inferences based on conjectural extrapolations of Hr data

measured about 1 K. In the limit of very low temperatures where AS = yT, it follows that

Hl{T) = HI- {^rTylV)T\

where //o is the limiting value of He at 0 K. For most superconductors the range of validity of this ex-

pression lies below 1 K but new techniques have made this range relatively accessible in recent years.

Within this range precise static measurements of He and T permit determination of the ratio, y*

= (ylV), with a relative accuracy of about 1:3000. This is considerably better than the accuracies typ-

ically obtained in low temperature calorimetry. This method has been used to study the change in y*

under hydryostatic pressures up to 1000 atm for In and Tl. Nonlinear changes in y* are clearly resolved

for the first time, despite the relatively low values of applied pressure. For In the values of y" show a

parabolic decrease with increasing pressure. The results for Tl show an initial increase in y* which

reaches a maximum near p = 500 atm. For larger pressures the value of y* shows the normal decrease

with increasing p.

Key words: Critical field: density of states; In: pressure dependence; superconductivity: Tl.

For a superconducting metal, the entropy difference

tsS(T), between the normal and superconducting states

is thermodynamically related to the critical field, HAT),

by the equation

^S{T) =Sn{T) -SsiT) =- iVHcl4rr) {dHddT) (1)

where V is the molar volume and T is the absolute tem-

perature. The change in lattice entropy during the su-

perconducting transition is negligibly small [1]. As a

result, the entropy difference of (1) is essentially the dif-

ference between the electronic entropies, Sen(T) and

SeJT), in the normal and superconducting states [2]

.

*This work was supported in part by the Advanced Research Projects Agency under Con-

tract No. SD-131.

**0n leave from the Universitat Karlsruhe, Karlsruhe, Germany.

It has long been recognized that, as T—*0 K, Seii(T)

decreases hnearly in T while Ses(T) falls much more

rapidly. As first noted by Daunt, Horseman, and Men-

delssohn [3], the imphcation of this circumstance is

that, for sufficiently low T,

\im AS(T) = yT, (2)

where y is the temperature coefficient of the normal

electronic specific heat. Early efforts to apply (2) were

hmited by the technical difficulties of making measure-

ments below 1 K and the resulting y values were rela-

tively imprecise [4]

.

The analytic form of Ses(T) can be estimated using

the BCS theory [5] from which it can be shown thatSes
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becomes negligible for temperatures lower than about

0.25 Tc. For temperatures below this value it follows

that the shape of the critical field curve is wholly deter-

mined by the normal electronic specific heat. Equating

he right sides of (1) and (2) and integrating yields

HnT) = Hl-{47Ty*)r (3)

where y* = yjV. It should be noted that this differs from

the parabolic dependence of He on T which is com-

monly assumed.

Three considerations make (3) an especially useful

and reliable means for the experimental determination

of y: (a) The validity of (3) is a general thermodynamic

consequence of two well established experimental

facts, the linear T dependence of Sen, and the fact that

Scs vanishes more rapidly than Sen as T approaches 0 K.

(b) The experimental parameters of (3) are quantities

which can be measured under conditions of static

equilibrium with very high precision, (c) The degree of

linearity exhibited by experimental Hc(T) data when

plotted according to (3) provides a test of the validity of

the analysis under the prevailing conditions of mea-

surement. For sufficiently low temperatures, this

linearity has been well confirmed by measurements on

several different superconducting elements [2]

.

For most Type I superconductors the range of validi-

ty of (3) lies below 1 K, but new techniques have made
temperatures down to about 0.03 K relatively accessi-

ble in recent years [6] . The experiment may be done as

a difference measurement between the He values of two

specimens held in isothermal equilibrium. This reduces

the effect of experimental uncertainty in the absolute

value of T and puts the main burden of accuracy on dc

magnetic field measurements which can be made with

high precision using conventional measuring methods.

The resulting values of the ratio, y* ~ iylV), from the

present measurements have a relative accuracy of

about 1:3000 which is substantially better than the typi-

cal precision of low temperature calorimetry.

The principles just described have been applied to

study the change in y* under hydrostatic pressures up

to 1000 atm for In and TI. In each case the measure-

ments consist of comparisons oi Hc(T,p) for pressurized

and unpressurized specimens mounted in thermal

equilibrium in a He^ cryostat. The experimental details

wiU be published separately but qualitatively similar

techniques have already been reported [2,7]

.

The critical field is displaced by pressure and, using

(3), the observed difference may be written as
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Figure 1. hobaric shifts in the critical field of In near 0 K plotted

according to (4).

where

and

Am(T,p) = HnT,p)-HUT,0),

^mip)=Hlip)-HHO),

Ay*(p)=y*(p)-y*(0).

Data for In are plotted in figure 1 for measurements at

four different pressures. The experimental points show

a satisfactory linear dependence on as expected

from (4) and the slope is directly proportional to the

change in y* with pressure. The critical field constants

for In are such that a change of 100 units on the A/Zc^

scale corresponds to a shift in He of approximately 0.18

G within the temperature range of figure 1.

The variation of y* calculated from the data of figure

1 is shown by the points in figure 2. The solid curve

represents the parabolic relation

Ay*(/>)=-6.5x 10-'p + 2x lO-'V^

Using the pressure dependent compressibility for In

[8] yields

yip) = y(0) - 1.4 X 10-5p + 3.4 x 10->2 (5)

AHUT, p) = AHUp) -47rAy*(p)r (4)

where p is in atm and y in mj/mol.deg.

For comparison with other measurements (5) may be

used to calculate the logarithmic derivative, d Iny/c? In

V. the nonlinearity of y(p) results in substantial varia-

tion of d \ny/d In V within the pressure range of the

present work. Its value drops from 3.40 ±0.1 at p = 0

to 1.80 ±0.05 at p= 1000 atm [9].
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Figure 2. Pressure induced shift in y*for In.

Comparable values reported for this derivative at p
= 0 are collected in table 1. Except for the low value ob-

tained in experiments on the volume change during the

superconducting transition, the values show a satisfac-

tory consistency within the experimental error.

Table 1. Experimental values of (d In y/d In V)p=o

for Indium

(dh^ yid lnF)p=„ Method

3.40 ±0.1 Present work.

2.9 ±0.8 Thermal expansion."

2.5 ±0.3 Pressure effect.''

1.0 ±0.5 Volume expansion at Tc.

"J. G. Collins. J. A. Cowan, and G. K. White, Cryogenics 7, 219 (1967).

''See Reference 10.

'H. Rolirer. Helv, Phys. Acta 33, 675 (1960).

At pressures above zero, our results are qualitatively

similar to those reported by Berman, Brandt, and Ginz-

burg [10] but the nonlinearity becomes apparent at

lower pressure in our data. Part of this difference may

be attributable to the smaller experimental scatter of

the present work. However the analysis used by

Berman et al. to derive the density of states, No(p),

involves two approximations which are inconsistent

with the present results. The Hmiting form of Hc(T) is

assumed to foUow a corrected parabolic law that is in-

compatible with (3) and leads to values of y which are

systematically too high by about 7%. Their analysis also

involves the so-called "similarity principle" [11]

which, according to our measurements, is not vahd.

These approximations have relatively little influence on

d In yId In V near p = 0 but they cause systematic errors

at higher pressures.

1.49
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Figure 3. Pressure induced shift in yfor Tl.

The results of equivalent measurements on Tl are

presented in figure 3 where yfpj is plotted vs. p. The
values of y are computed from observed values of y*

using a molar volume 16.9 cm^ and a compressibility of

2.64 X 10-« atm-i [12] . The observed value at p = 0,

y(0) = 1.489 mj/mol. deg.^, is in excellent agreement

with the values obtained by calorimetric measurement

[ 13] . The initial increase in the density of states with

pressure is very sharp, reaching a maximum near 600

atm. At p = 0, we find

(/ hi yId In r=-26±2

which, in absolute terms, is the largest value of any

material yet studied [11]-.

It should be noted that Tl is one of the few supercon-

ducting elements which shows an initial increase in

critical temperature, Tc, with applied pressure. The

shift of Tc with p is non-hnear reaching a maximum
value near 2000 atm [8] . This behavior and the present

results for y(p) indicate that the Fermi surface for Tl

lies near a critical energy value such that a small con-

traction in the lattice causes a relatively large change

in the electronic density of states.

In this connection it is of interest to mention a recent

brief report by Anderson, Schirber, and D. R. Stone

[ 14] . Using measurements of the deHaas-van Alphen

(dHvA) effect, these authors have studied pressure in-

duced changes in the Fermi surface of Tl. They find

•that the logarithmic pressure derivatives of certain

dHvA frequencies are as much as 9 times the value

estimated from the known compressibility of Tl. This

is about the same factor by which the present value of

d In yId In V for Tl exceeds that of the electronically

similar element. In.

683



In the literature of experimental superconductivity

it has been usual to calculate an "observed" density of

states at the Fermi level, N{0), from the relation

7* = S7r%2yv(0)

where kn is Boltzmann's constant. More recent theoreti-

cal arguments express the so-called "band structure"

density of states. M,,s(0). by the relation

A/„,,(0) = /V(0)/(l + A)

where the "enhancement factor," (1 + A.), is determined

by the electron-phonon coupling constant, k. The calcu-

lation of \ has been described by McMillan [ 15] who

gives numerical values for most of the superconducting

elements. Both A''hs(0) and A. are expected to change with

volume.

Reliable experimental evidence on the volume de-

pendence of X is lacking, but. for In, it can be estimated

that about 30-40% of the observed d In y/d In V is due

to this contribution. The values of X are identical for In

and Tl. Thus it appears that the abnormally large value

of d In yid In V for Tl is dominated by the volume de-

pendence of Nbs{0).
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Temperature Dependence in Transport Phenomena and
Electronic Density

of States for Transition Metals

M. Shimizu

Department of Applied Physics, Nagoya University, Nagoya, Japan

The calculated results of the temperature variations of electronic specific heat and spin suscepti-

bility and their comparison with the experimental results for various tiansition metals are briefly sum-

marized. In these calculations the empirical densities of states, which were determined in the rigid band

model from the experimental data of low temperature specific heat coefficient, were made use of. In a

model similar to the Mott model of s-d scattering, the electrical resistivity, thermal conductivity, and

thermoelectric power have been calculated at high temperatures for palladium, platinum, rhodium,

iridium, molybdenum, and tungsten, by assuming appropriate electronic structures and making use of

the same empirical densities of states. The calculated temperature dependences of electrical resistivity,

thermal conductivity, and thermoelectric power and the sign of the thermoelectric power at high tem-

peratures are found to be strongly dependent on the shape of the density of states and the position of the

Fermi level. It is shown that all of these temperature dependences and the sign of the thermoelectric

power are consistent with the experimental results. It is confirmed that there is a strong correlation

between these temperature dependences and those of the electronic specific heat and spin susceptibility.

Key words: Chromium; electronic density of states; iridium; low-temperature specific heat; mag-

netic susceptibility; molybdenum; niobium; palladium (Pd); platinum; rhenium;

rhodium; rigid band approximation; tantalum (Ta); thermal conductivity; thermoelec-

tric power; transition metal; transport properties; tungsten (W).

1 . Introduction

It has so far been shown [1] that electrical and ther-

mal resistivities, R and 1/k, at high temperatures in-

crease more rapidly than T for some transition metals,

molybdenum, tungsten, rhodium, iridium, etc., and in-

crease less rapidly than T for other metals, palladium,

platinum, niobium, etc. Hereafter we call the former

metals "plus group" and the latter ones "minus group,"

as defined before by us [2] . The fact that for palladium

and platinum of the minus group the temperature coef-

ficient R at high temperatures falls below the normal

value was first explained by Mott [1], using the s-d

scattering model. It was also suggested by Jones [3]

that the temperature dependence of R of tungsten may
be accounted for by occurrence of the Fermi level at

0 K,€/; , near a minimum in the electronic density of

states curve vie).

On the other hand, in the plus-group transition

metals, e.g., chromium, molybdenum, tungsten, rhodi-

um, etc., magnetic susceptibility x high tempera-

tures increases with increasing temperatures, whereas

in the minus group metals, e.g., palladium, platinum,

niobium, tantalum, etc., it decreases. In general, the

values of x smd the temperature coefficient y of elec-

tronic specific heat, Cg^jT, at low temperatures are

small in the plus group and large in the minus group

[4]. In the band model of rf-electrons in transition

metals, Stoner [4] showed that if the €f occurs near a

minimum of the v(e), the values of x and y at low tem-

peratures are small and x increases with increasing

temperatures. It was also shown [2] that y at lower

temperatures, as well as the spin susceptibility Xs, in-

creases with increasing temperatures in the plus group

metals and decreases in the minus group metals. Our

calculated results [2,5] of the temperature variations

of Xs and y for various paramagnetic transition metals

and their comparison with the experimental results are

briefly summarized in section 2. In these calculations

the viefs, which were determined in the rigid band
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Fk.URE 1. (o) Experimental and (b) calculated results of the reduced electronic specific heat coefficient y* = y/yn.

model from the experimental data of the low tempera-

ture specific heat coefficient yo without including cor-

rections due to the many-body effects of electrons,

phonons and paramagnons, were made use of.

From the experimental and calculated results of R,

K, y and it is easily seen that there are certain cor-

relations among their temperature variations for

paramagnetic transition metals. The object of this

paper is to explain the correlations among the tempera-

ture dependences of thermoelectric power S, R, k, y
and Xs and the sign of S in connection with the shape of

v(e) and the position of e/.- for typical transition metals

of the plus and minus groups.

Our recent calculated results [6] of the temperature

variations of R, k, and S at high temperatures for

molybdenum, tungsten, rhodium, iridium, palladium

and platinum metals by the usual theory of conduction

in a model similar to the Mott model of s-d scattering

[1] are shown in section 3. By using simple approxima-

tions R, K and S are expressed in terms of v{e) and

parameters of electronic band structures. These calcu-

lated results are compared with the experimental ones.

In section 4 it is concluded that the temperature varia-

tions of R, K, and S and the sign of S at high tempera-

tures are strongly dependent on the shape of vie) and

the position of 6/. .

2. Temperature Dependences of Electronic

Specific Heat and Magnetic Susceptibility

The part of the electronic specific heat CE= yT is

evaluated by subtracting the Debye specific heat and

dilatation correction from the observed specific heat at

constant pressure in the usual way [2]. The tempera-

ture variations of the ratio yexp*= y/yo obtained from

the experimental values of y^CglT and yo and of the

ratio of the observed value of x at Tto the one at 300 K,

i.e., Xcj-p^^x/XsnoA, for various paramagnetic transition

metals are shown in figures la and 2a, respectively (cf.

the references 2 and 5 for details of the experimental

data). From figures la and 2a, it is easily seen that for

the plus group metals, where the occurs in the
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Figure 2. (a) Experimental and (b) calculated results of the reduced susceptibility x/Xj'w a-

Table 1. Estimation of the molecular field coefficient oc and the constant part of the magnetic susceptibiHty Xc

a(10^ mole/emu) emu/mole)

Ti V Cr Ti V Cr

0.82 0 0 0.73 1.8 1.32

Zr Nb Mo Rh Pd Zr Nb Mo Rh Pd

0 0.24 0 1.33 0.72 0.83 0.82 0..55 -3.2 0

Hf Ta W Re Pt Hf Ta W Re Pt

0.88 0 3.06 0 0.74 0.14 0.71 0.31 0.42 -0.15

neighborhood of a minimum of 1^(6) and hence the

values of yo and Xs are small, yexp* and Xe-rp* increase

from one with increasing temperatures and for the

minus group, where the er occurs in the neighborhood

of a maximum of vie) and hence the values of yo and x.s

are large, they decrease from one with increasing tem-

peratures. Rhodium and rhenium metals are inter-

mediate between the plus and minus groups.

The Ce and x-i can be calculated in the one-particle

approximation by the usual electron theory of metals,

if the shape of v(e) is given. The curves of v{e) for

paramagnetic transition metals of 3d-, 4d- and 5c?-

groups with bcc and fee crystal structures were ob-

tained in the rigid band model from the experimental

data of yo for various metals and their alloys, as shown

in figure 3, where the positions of €/. for various metals

are also shown. It is easily seen that the width of the 4c?-

band is broader than that of the 3c?-band and narrower

than that of the 5o?-band.

From the t'(e)'s shown in figure 3, the temperature

variations of y= Ce/T and Xs are calculated in the usual

electron theory of metals. The total magnetic suscepti-

bility X is calculated from the calculated results of Xs by

using X~ Xs/(1 ~ Q^X*) + Xc' where a is a molecular field

coefficient and Xc is the sum of the constant orbital-

paramagnetic and core-diamagnetic susceptibilities. Xc

= Xor6 + Xd- The calculated results of the ratios, ycai*

= y/yo and Xcat* = xlx^oo are shown in figures lb

and 2b, respectively. The values of a and Xc are deter-

mined so as to get the best fit of the calculated values

of X to the observed ones for respective metals. These

values are shown in table 1. It seems that these values

of a are reasonable except rhodium and tungsten

metals, where the values of a are anomalously large,

and the values of Xc are consistent with the calcula-

tion of the Xorb by Place and Rhodes [7], except

rhodium metal. The agreement between the calculated

and experimental values of y* in rhodium is very
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Figure 3. (a) Electronic densities of states for transition metals o/3d-. 4d-, and 5d-groups with bcc structure and ib) those with fee structure.

satisfactory, nevertheless the variation of x for this

metal is very large and it is very difficult to explain the

reason.

From figures 1 and 2 we can see that there are

quaUtative agreements between the calculated and ex-

perimental results of y= CElT and x for various

paramagnetic transition metals of the plus and minus

groups.

3. Electrical Resistance, Thermal Conductivity
and Thermoelectric Power

By using a model similar to the Mott model of s-d

scattering [1] and by the usual theory of conduction

[8], the temperature variations of R, k and S at high

temperatures are numerically calculated for molyb-

denum, rhodium, palladium, tungsten, iridium, and

platinum metals. The main scattering of electrons at

high temperatures is due to electron-phonon interac-

tions, and for the sake of simplicity their matrix ele-

ments are averaged over the Fermi surfaces and as-

sumed to be a constant denoted by ^. Because of the ap-

proximation for the matrix elements of electron-phonon

interactions and of the effective mass approximation in

the simple model of electronic structure, R, k and S can

be expressed in terms of the v{e) and the parameter of

electronic band structures as follows;

K=(BQ-3lOiG,-GVGr)IT\

S = -(C,l(;,)l{eT),

(2)

(3)

R^ie'BQ-^IO-HTIG,), (1)

r;„ =-| de'^ (e-^)"-V(e)-'x;^m|/2£•?/^ (4)

where is a constant which depends on the lattice con-

stant, density, etc., Qu the Debye temperature, /(e) the

Fermi-Dirac distribution function, ^ the chemical

potential, and m, the effective mass ratio of electrons in

the t"* band. Further, in (4) is given by = € — or

e/i
— e for an electron or hole band, where or e/, is the

energy at the bottom or top of the respective bands.

The values of the parameters of electronic structure

m, , ee and en in (4) are determined in the following way.

For palladium and platinum the two band model of s-

electrons and c?-holes, for rhodium and iridium the four

band model of two hole surfaces around iheX point and

two electron surfaces around the F point, and for

molybdenum and tungsten the four band model of two

hole surfaces around the A'^ and H points and two elec-

tron surfaces around the F point and centered on the A

axis are made use of. These closed Fermi surfaces are

replaced by spheres of equal volume so as to be con-

sistent with the calculated results of electronic bands

and the observed results of yo and the de Haas-van

Alphen oscillations.
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Figure 4.
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T °K

Calculated results {solid cun>es) of the reduced electrical

resistivity divided by T.

Broken c urves are obtained for constant 0/j's.

500 1000

T °K

1500 2000

Figure 6. Calculated (solid curves) and observed [broken curves [9\)

results ofthermoelectric power S.

2000

Figure 5. Calculated [solid curves) and observed (broken curve [9])

results ofreduced thermal conductivity k*= kIk;),,,, k-

Table 2. Values of electron-phonon coupling con-

stant ^ in (eVf

Metals Mo Rh Pd W Ir Pt

1 10.5 1.92 1.63 13.3 4.56 2.46

for all metals except palladium metal (of. [6]). The cal-

culated results of the ratio of R/T to its value at 300 K
are shown by solid curves in figure 4, where the broken

curves are obtained without taking account of the tem-

perature variation of &d- The calculated results of the

ratio of k to its value at 300 K and of S are shown in

figures 5 and 6, respectively, where broken curves are

the observed results [9]. It is seen that there are

quahtative agreements between the calculated and ob-

served results of K andS.

By using the values of m, , e/, and €e determined in this

way and the p{e) shown in figure 3 and by taking ac-

count of the temperature variation of 0d due to the

thermal expansion [1] in (1) and (2), the temperature

variations of R, k and S are calculated by (1-4). The

value of ^ in (1) and (2) for each metal is determined in

such a way that the calculated value of R agrees with its

observed value at the highest temperature, and the

values of ^ obtained are shown in table 2. It is noted

that the values of ^ for superconducting metals are

larger than those for normal metals.

The calculated resuhs of R at high temperatures

agree almost completely with the observed results [9]

4. Discussion and Conclusion

At lower temperatures, R, k and S in (1-4) can be

panded as power series of T as [6]

ex-

(RmiiRIT) T=0-

k/(k) r=o" 1+- {TTkTy

1

3e
{TTkYTv, 1+7 {TTkT)

37

37

2 21

(5)

(6)

42

5 5 Vx

(7)
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where v„ = id"v{€r)ld€,.'")lu{e,.) and the contributions

from Ei in (4) are all neglected. The expression (5) was
given before by Jones [3]. The low temperature expan-

sion for x.s and y were giv^n by [4,2]

Xs= 2|x^p{e^') (7r/.T)2(i.f- j, (8)

y= -| iTrkY'vie,.-) {l
-^^

(tt/.T)'^ (si^f

(9)

From (5-9) it is expected that x.s, y,RIT, 1/k and TI\S\ at

lower temperatures increase with increasing tempera-

tures for the plus group metals where €/ occurs in the

neighborhood of a minimum of vie) or v> > vr — 0, and

they decrease for the minus group metals where 6/

occurs in the neighborhood of a maximum of vie) or v>

< 0. Moreover, from (5), (8) and (9), the temperature

variations of R/T are expected to be smaller for the

plus group metals and larger for the minus group

metals, respectively, than those Xs and y. Accord-

ingly, as shown by broken curves in figure 4, the

deviations of the values of R/T from unity at high tem-

peratures are relatively small for the plus group metals

and large for the minus group metals, respectively. As

the temperature variations of RIT are very small for

rhodium and iridium of the plus group it seems that V2

is nearly equal to Si^i^ in these metals. In the plus group

metals the temperature variations of Xs and y show a

maximum at a certain temperature because Xs and y
become zero at infinite temperature. It has been shown

[2,10,11] that even in the minus group metals, e.g., pal-

ladium, Xs and hence y may show a maximum if vi'^ — v-z

< 0 as seen from (8) and (9). As the sign ofS at low tem-

peratures is determined by the sign of as seen from

(7), from the results in figure 6 it is concluded that the

positions of Cf in v{e) shown in figure 3 are all con-

sistent with the experimental results of 5.

From the comparisons between the calculated and

experimental results shown in figures 1, 2, 4, 5 and 6, it

is concluded that the temperature variations of/?, k and

S and the sign of S at high temperatures are strongly de-

pendent on the shape of vie) and the positions of €/. , and

the Mott model for the s-d scattering is a satisfactory

approximation to calculate the temperature variations

of R, K and S at high temperatures for paramagnetic

transition metals. By our calculations of/?, k and S, it

is confirmed that for the transition metals of the plus

group, where the Fermi level occurs in the neighbor-

hood of a minimum of the vie) curve and the values of

yo and x.v are small, R/T and 1/k, as well as Xs and y, in-

crease with increasing temperatures and for the minus
group metals, where the Fermi level occurs in the

neighborhood of a maximum of the vie) and the values

of yo and X-s are large, they decrease with increasing

temperatures.
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Discussion on "Temperature Dependence in Transport Phenomena and Electronic Density of

States for Transition Metals" by M. Shimizu (Nagoya University, Japan)

J. F. Goff (NOL): I have treated k and p for chromium

(which Prof. Sliimizu does not treat) and find compati-

ble resuhs. I would recommend that people use this

method of moments formulation due to Klemous for

analysis. Since one would expect dense <i-bands not to

conduct, do your results for the elements to the right ol

the transition series imply the contrary?

M. Shimizu (Nagoya University, Japan): In our model

of transition metals, both s- and (/-electrons in the

neighborhood of the Fermi level contribute to

conduction.
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Metal-Semiconductor Barrier Junction Tunneling
Study of the Heavily Doped N-Type
Silicon Density of States Function"^

Y. Hsia** and T. F. Tao

University of California, Los Angeles, California 90024

Experimental and analytic techniques and procedure used in the study are described. Experimen-

tal data showing the dependency of the Fermi level on the dopant types of the heavily doped ra-type sil-

icon are reported. A dopant type dependent density of states effective mass is postulated to describe the

effect of different dopants on the Fermi level. The deviation of the experimental data curve from the cal-

culated curve is ascribed to the effect of degenerate semiconductor band tailing. In addition, through in-

terpretation of incremental conductance versus applied bias characteristic curves of the different tun-

nel junction evaluated, a consistent description of the density of states function of the heavily doped sil-

icon is obtained. The density of states function, dependent on the dopant type and dopant concentra-

tion, is generally parabolic above the band edge, but towards the band edge, band tailing can be severe.

Key words: Antimony-doped silicon; arsenic-doped silicon (As doped Si): band absorption: band

tailing; depletion layer barrier tunneling; electronic^ density of states; Esaki diode;

gallium-arsenide (GaAs); heavy doping with As, Ga, P, Sb; luminescence experi-

ments; P doped Si; Schottky-barrier: silicon: transport properties; tunneling.

1. Introduction

The study of the transport properties across a tunnel

junction has been an active field of research for a

decade. There are three types of tunnel junctions that

have been studied in various degrees: (1) p-n junction,

(2) insulated layer tunnel junction, and (3) depletion

layer metal-semiconductor tunnel junction. In this

paper, we are presenting some of our experimental

results on the metal-semiconductor barrier junction

tunneling study of the heavily doped n-type silicon den-

sity of states function.

It was Gechwend et al. [1] who first indicated the

possibihty of a metal-semiconductor depletion layer

tunnel junction. Since then, Conley, Duke, Mahan, and

Tiemann [2] calculated the tunneling current through

the depletion layer in a metal to heavily doped semicon-

ductor junction and found that dVjdl has a maximum
at a bias potential equal to the Fermi degeneracy calcu-

lated by the paraboHc band inodel. Conley and

*This paper is based on part of a dissertation submitted by Y. Hsia in partial fulfillment of

the requirements for a Ph. D. degree in the School of Engineering and Apphed Science.

University of California, Los Angeles. 1969.

**Mailing address: Litton Systems, Inc., Guidance and Control Division. Woodland Hills,

California91364.

Tiemann [3] reported reasonable verifications of the

calculations based on their measurements of metal to

n-type Ge Schottky barrier diodes. Conley and Mahan

[4,5], also studied n- and p-type GaAs. For p-GaAs,

they found that the location oi dVldl maximum was af-

fected by the band tailing in heavily doped semiconduc-

tor. For n-type GaAs, it occurred at a bias much smaller

than the calculated Fermi degeneracy. The deviation

was accounted for by the effect of band mixing in the

forbidden gap. Using a thin oxide layer as a tunneling

barrier, Chang, Esaki, and Jona [6] had earlier re-

ported their tunnehng study of metal to both n- and p-

type InSb junctions, and suggested that the dljdV

minimum observed in the case of p-InSb occurred at

Fermi degeneracy.

The depletion layer barrier tunneling appears to be

an amenable tool for the study of the properties of

heavily doped semiconductor near and about the band

edge, including the determination of the Fermi

degeneracy, the amount of band tailing, and generally

the effect of impurity band on the overall band struc-

ture of the heavily doped semiconductor; because the

tunnel current measurement is referenced to the zero

bias which is located at the Fermi level. This is an im-
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provement over the band absorption [7-10] and the lu-

minescence experiments [11-13] commonly used in

the study of the heavily doped semiconductors. In all of

these optical measurements, they are referenced to the

energy band gap, whereas the band edge phenomena to

be evaluated are only a small proportion of the

reference energy level. In addition, when measure-

ments are made as a function of dopant concentrations,

for example, in the study of the Fermi degeneracy due

to impurity dopant, data interpretation becomes ex-

tremely hazardous because of the existence of the band

gap narrowing phenomenon introduced by heavy impu-

rity doping [14-16].

2. Analyses of Tunneling Transport

2.1. Physical Model

When a metal-semiconductor junction is formed,

there is an exchange of carriers, such that the Fermi

level is continuous across the junction. In most of group

IV (Si included) and zinc blende III-V semiconductors.

Mead and Spitzer found that the Fermi level at the

junction interface is fixed very close to one-third from

the valence edge, and thus the potential barrier at the

interface which results from the redistribution of

charge depends not on the metallic element or the dop-

ing of the semiconductor [17]. The potential barrier is

maintained by the electric dipole layer at the contact.

The positive charge at the semiconductor side of the

junction is resultant from the fixed ionized donors hav-

ing a density much less than the ionized lattice metallic

atoms in the metal. Therefore, the ionized donors at the

semiconductor contribute a distributed charge layer

near the junction interface, quite different from the sur-

face charge layer at the metal element. The distributed

charge layer in the semiconductor is commonly called

the depletion region of the junction as the region has

been depleted of charge carriers, leaving behind the

fixed ionized impurities locked in the lattice. Figure 1

is a diagram showing the potential distribution at a

metal-semiconductor junction.

The I-V characteristics of a metal-semiconductor

tunnel junction is shown in figure 2. At zero bias, elec-

trons tunneling through the depletion layer barrier from

the metal to the n-semiconductor are in equihbrium

with electrons tunneling in the reverse direction, and

we have zero current flow. With forward bias, the elec-

trons in the conduction band of the n-semiconductor

are brought to opposite to the empty states above the

Fermi level of the metal, thus increasing the tunnel cur-

rent which is proportional to the joint probability of the

occupancy of the conduction band of the n-

semiconductor and the availability of empty states in

the metal. At forward bias above Vp where

eVp^ E,. —Ec (1)

Metal Semiconductor

(a ) Zero Bias



Figure 2. The idealized I-V characteristics of a metal-semicon-
ductor tunnel junction.

no additional filled electron states in the n-semi-

conductor are brought to opposite empty states in

the metal with increasing applied bias, and the tunnel

current remains approximately constant. The slight in-

crease in the tunneling current at bias above Vp is at-

tributed to the modification of the barrier transparency

by the apphed bias field.

2.2. Mathematical Model

The generahzed tunnehng equation that we are using

to study the analytic behavior of the metal-semiconduc-

tor barrier tunneling is

I= A j [f,n{E)-ME)]g,n{E)gs{E)P{E)dE (2)

where

/„,(£')= the Fermi function describing the occupancy

of the density of states function of the metal

/s(£') =the Fermi function describing the occupancy

of the density of states function of the semi-

conductor

^,H(£')=the density of states function of the metal/

superconductor

gsiE)—the density of states function of the semi-

conductor

P(£')=the tunneling probability

A — the constant of proportionality

This generalized tunneling equation is very similar to

the original tunnel diode equation proposed by L. Esaki

except that the tunnehng probabihty is P(E) instead of

an assumed constant [18] . It is also similar to the basic

equation used in the interpretation of superconductor

tunneling experiments [19]. Quantitative data on su-

perconductivity based on the interpretations of the tun-

nehng experiments have been obtained on the assump-

tion of the tunneling current being directly proportional

to the density of states of the quasi-particles in the su-

perconductors [20,21].

To determine the metal-semiconductor barrier tun-

nel current according to the generalized eqs (2-48) we
first derive the potential distribution of the tunnel barri-

er and then arrive at the tunnehng probabihty function

P(E) using the WKBS approximation solution of the

Schrodinger's equation describing the electronic wave

function across a barrier potential.

The potential distribution at the metal-semiconduc-

tor junction can be readily derived from Poisson's equa-

tion. The parabolic potential in the depletion region

results from the assumption of uniform distribution of

the impurity charge density A'o- The one-dimension

Poisson's equation is given by

d- qNo
(3)

where

V{x) = potential distribution as function of x

q= electronic charge

e= dielectric constant of material
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Assume widtli of depletion layer = d, then solution to

eqs (3) is given by

where

and

d=

2e

2e
{Vh+V,.— Va)

Vr (4)

(5)

Va — applied voltage bias

= Fermi voltage

Vh = barrier height of the junction in volts

For the Schottky barrier of heavily doped Si, in the volt-

age bias range of interest (< |±100| mv), the width of

the depletion layer d is of the order of 100 A.

Experiments to determine the barrier height of

metal-semiconductor junctions were carried out by C.

A. Mead and W. G. Spitzer on Si, Ge, and many group

III-V compound semiconductors [17]. The barrier

height was found to be nearly independent of the metal-

lic element work function or the doping of the semicon-

ductor. It was shown that one can estimate the barrier

height to a fair degree of accuracy by

2
4iH = eVH =-Eg

3
(6)

A detailed study of the interface surface states at the

metal-semiconductor junction by J. Bardeen [22] and

recently by V. Heine [23] led to the conclusion that the

barrier height is independent of the metal used pro-

vided the density of surface states is sufficiently high

( S 10^^ cm-2), a condition adequately met for the group

IV and III-V semiconductors.

In terms of our diode fabrication technique as wiU be

described in a later section, it is expected that the

description of the barrier height can be given by eq (6)

[24].

r(£, U{x)) =

In the development of the barrier potential function

(eq (4)), we neglected the effect of the image force ex-

perienced by an electron when it approaches the metal.

C. R. Crowell and S. M. Sze [25] have shown that even

at room temperature, with low doping impurity materi-

als and at large bias, i.e., high field, the effect of image

force barrier potential lowering does not affect ap-

preciably the current voltage characteristics of a

Schottky barrier. Therefore, image force consideration

is not included in our development of the barrier poten-

tial function.

Also assumed in deriving the barrier potential func-

tion is the uniform distribution of the doping impurities

in the semiconductor. The effect of random distribution

of impurities in the depletion region on the Schottky

barrier potential function has been studied by J. W.
Conley and G. D. Mahan [3]. They showed that inclu-

sion of the fluctuation in barrier height due to nonu-

niform impurity doping distribution changes little the

theoretical prediction of the tunneling current through

the barrier potential. Therefore, the assumption of

uniform distribution of impurity doping distribution in

the development of the barrier potential function can

be made.

The WKBJ approximation solution [26-28] of the

Schrodinger s equation describing the electronic wave

function across the depletion layer barrier potential

U{x)=eV{x)

yields the tunneling probability

P{E) =

W{E, U)=2
2m

{E-U{x))
1/2

dx

(7]

(8)

(9)

The integral function W(E,U) is the WKBJ integral. We
calculate the tunneling probability for the metal-

semiconductor barrier by eq (8), with IF(E,U) obtained

from eq (9) where V(x) is as given in eq (4). Then

{2Kd + l3} Va + (3d+Kd- fiVa
4k 4k

4aK — /3-

8k-"-
In

Va+ Bd-hKd' + dV^+-^
2Vk

(10)

2V^

where

a^^d^+VA-V,-q-'E

ft

K-

2e

qNo

€

2e
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It is noted that the independent-particle theory of barri-

er tunnehng using the WKBJ method [29] assumes a

tunnehng velocity in k-space and thus the tunnel

velocity must be included in the integrand as \(k) in the

generalized theory. And the general form for the tunnel-

ing current so obtained is independent of the density of

states function because the tunnehng velocity in the It-

space is taken to be reciprocal of the density of states.

J. W. Conley et al. [2] have calculated an exact solu-

tion of the one-dimensional Schrodinger equation for a

parabolic depletion layer potential and determined the

transparency of the barrier in the generalized tunnehng

equation originally derived by Fredkin and Wannier

[30].

2e Vs/. T„^]'\J',^E)-ME)^ (11)

The barrier transparency \T m^s
\
is found to contain the

factor E^^- describing the parabohc density of states

function of the semiconductor. To obtain analytic and

numerical correspondence between the exact barrier

transparency calculation containing the density of

states term E^l'^, represented to be Pcdmt, and the ap-

proximate transmission coefficient obtained from the

independent-particle WKBJ tunneling calculation,

Ph AB./, J- W. Conley and G. D. Mahan arrived at the fol-

lowing expression [5]:

7 = ^ - dEE'^-'P.vKB., (12;

where

7'iiA«./ = exp — 9 dzk(z, E)

an expression equivalent to the generalized tunneling

eq (2) we are using in this study. The validity of the eqs

(2) or (13) are shown empirically with the study of Con-

ley et al. on the Schottky barrier tunneling studies on

GaAs [6,7].

Comparing eq (12) with (13), R. Stratton and F. A.

Padovani [31] obtain:

/*( imr—
TUmE

ms(Efin — Efs+V+ E)

1/2

6miiA.'wj, + i exp (—&,„())

1 +
mAEf,„ — Ei.-s+V+ E)

X
4 2

wnere

biiM — {Eb + Ei.-m — ^')IEi)

Km J.
— Ej'lEm

E,o = kh{Nlm,„€ri-'

And the WKBJ approximation off is determined to be

l\vKH.i^ (6,„())'^'"^-(e//vT,u- V2)'<l,x exp (-6„,o) (14)

assuming E = E/.-, that is, all participating tunnehng

electrons are to originate at the Fermi level. Stratton

and Pado^vani then determine from both the exact and

approximate tunnel current calculations of incremental

junction resistance, the occurrence of sharp peaks in p-

type GaAs; n- and p-type Ge and Si are at the voltage

corresponding to the semiconductor Fermi energy and

in the case of n-type GaAs, at voltage lower than the

corresponding Fermi energy. They also obtain very ex-

cellent agreement for the WKBJ calculations with the

experimental incremental resistance data of the Ge
Schottky barrier by Conley and Tiemann [3].

More recently, F. A. Padovani and R. Stratton [32]

questioned the general applicability of the eqs (2) and

(12) through their detailed numerical analysis on Pcdmt

and on Pw khj derived with the same identical assump-

tions as those for the exact Pcdmt- The WKBJ expres-

sion is given as

W'KB.I
- exp —

] biiH)

biiio
2Ki, In

Then, from (11) and (12), according to the development

given by Mahan and Conley, the expression can be ob-

tained:

I^CDMT 2 E^I'-f'wKBJ (16)

And in the case of GaAs, through their numerical cal-

culations, Padovani and Stratton show that expression

biiio 1+1
biiii) (15)

2 is valid to an accuracy of about 6 percent only i{ E <
2.1 meV, a very narrow range.

Assuming a parabolic density of states function for

the heavily doped semiconductor, the tunneling current

of the metal-semiconductor is obtained as a function of

the voltage bias with either the WKBJ in the exact

method. Figure 3 compares the calculated 4.2 K tunnel
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Fk.URE 3. Comparison of calculcited tunnel junction incremental conductance characteristics, usinf: Pu kbj and Pcmdt-

junction incremental conductance characteristics of

several diodes using both methods. Both methods yield

the same characteristic features, especially the ex-

istence of an incremental conductance minimum cor-

responding to the Fermi voltage of the semiconductor.

Figure 3 also reveals that the parabolic density of

states function of the heavily doped semiconductor is

reflected in the incremental conductance of the junc-

tion diode. Study of eqs (2) and (13) indicate that at heh-

um temperatures, the equations can be approximated

by the incremental tunneling conductance equation:

dlldVoiFnKBsiV)^s{V) (17)

giving a mathematical designation of the dependence

of the incremental junction conductance of the

semiconductor density of state function.

To assure that variations of barrier heights due to dif-

ferent surface properties on different samples, image

force and nonuniformity of doping impurity distribution

do not significantly alter the interpretability of the data

generated by the tunneling current measurements, con-

ductance curves of different barrier heights [Vh = 1/2

F,,, 2/3 Vfi, 3/4 Vy) are compared (fig. 4). It is noted that

even though the absolute magnitude of the tunnel cur-

rent differs almost in orders of magnitude with the dif-

ferent barrier height assumed, the normalized con-

ductance curves do not differ widely with each other

(less than± 10 percent within the range of experimental

interest).

With the validity and accuracy of the function P(E)

and the mathematical model established, we can con-

clude that the calculated normalized conductance

curves based on eq (2) and typified by those given in
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figure 5 can be utilized to evaluate the experimental

tunneling curves with regard to the density of states

function of the heavily doped semiconductor.

3. Experimental Techniques and Procedures

3.1. Diode Preparation

Silicon wafers heavily doped with different dopants

and uncompensated, cut from an (111) pulled ingot are

purchased from Wacker Chemical Corporation, Los

Angeles, Cahfornia. The dopant types chosen are As,

P, and Sb for n-type Si and B for p-type Si, because of

their relatively high sohd solubility in Si so that heavy

doping concentrations are more readily available for

study. The highest concentration chosen for this study

in each dopant type is more than an order of magnitude

less than the maximum theoretical possible concentra-

tion so that we will not encounter experimental results

compHcated by precipitation effects in the extremely

heavily doped materials [32]. These wafers are

generally 3/4 inch to 1-1/4 inch in diameter, 10 to 15

mils thick, and mechanically lapped on both sides with

all traces of saw marks removed. Resistivity measure-

ments are made on the wafers with a four-point probe

[33]. Several measurements are made on each wafer

for a measure of the uniformity of electrical properties

of the wafer. With few exceptions at extremely low re-

sistivities, with measurements sensitive to electrical

statics due to low output signal voltages, variations in

resistivities measured for any wafer are within ± 10 per-

cent. Resistivity variations for the majority of the

wafers are within ± 5 percent. Carrier concentrations

for the n-type materials are interpreted from the re-

sistivity data interpreted from the published data by

Irvin [34], Logan, Gilbert and Trumbore [35], and Fu-

rukawa [36].

One of the early procedures used was a mechanical

polish step after completing the resistivity measure-

ments. Starting with a large (
~ 15 micron) particle size

abrasive, and progressing downward to abrasive size of

0.3 micron, the wafers were mechanically pohshed to

a mirror finish. This polishing step was eliminated after

it was found that the chemical etch that followed was

effective in etching down the wafer by a few mils and

polished it to mirror finish at the same time.

The chemical etch used is a modified CP-4 solution

[37], the etchant composition is 2 parts hydrofluoric

acid, 9 parts nitric acid and 4 parts acetic acid. At room

temperature, with a tumbling agitator, the etchant is ef-

fective in etching down uniformly the Si wafers to a

depth of 2-5 mils in about 30 minutes while at the same

time pohshes the wafer to a mirror finish. The etch

depth is more than sufficient to eHminate all surface

damages introduced when the wafer is cut from the

ingot [38]. If the surface damages are not removed

from the wafer, dislocations in the damaged semicon-

ductor crystal will distort the measured semiconductor

density of states function significantly by contributing

localized imperfection energy levels in the energy gap.

The electrons no longer need to tunnel completely

through the depletion layer barrier, but can make use

of these localized levels as trapping centers resulting in

a smearing of the tunneUng current whereby the volt-

age bias can no longer be considered as a good measure

of the energy of the electron involved in the current

transport [39].

The etch polished wafer is then diced into small dice

of 75 mils square with a string saw. The string saw is

used so that saw damage to the die edges will be

minimal. The dice are then mounted on a transistor TO-

5 header by a Si-Au eutectic alloy technique to result in

an ohmic contact.

We use a gold plated base TO-5 transistor header. A
98 percent Au-2 percent Si perform is placed between

the die to be mounted and the transistor header. Using
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Figure 5. Computed incremental conductance curves of metal-semiconductor tunnel junctions.

a molybdenum strip heater set at 450 °C, with a slight

pressure applied on the die to break the thin oxide layer

on the underside of the die, the Si-Au eutectic bound
can be obtained. The Si-Au eutectic is at 370 °C. The die

mounting operation is performed under flowing

nitrogen gas to minimize oxide formation on the top sur-

face of the mounted die.

The mounted die is then subjected to ultrasonic

cleaning. This cleaning serves two purposes. First, it

provides a check on the die bounding process. If a Si-

Au eutectic has not been obtained, the mechanical

bound of the die to the header is weak and the die will

break loose under ultrasonic vibration. Secondly, the

cleaning solvent (deionized distilled water) and the ul-

trasonic action will remove the last traces of organic im-

purities on the Si surface that have not been burnt away

in the die bounding process. After this cleaning

process, it is assumed that the Si surface is entirely free

of organic contaminants, residual abrasive particles

and dust particles, etc. From this point onward, ex-

treme care is taken to prevent introduction of contami-

nants on the Si surface. Between the processing steps

to follow, the mounted dice are stored under deionized

distilled water in chemically inert containers which

have been carefully cleaned. To handle the transistor

header on which the die is mounted, cleaned teflon-

coated tweezers are used.

The Si die is then masked for evaporation of the

metal-superconductor contact. The masking material

used is the black wax which does not outgas in a

vacuum. Enough area of the Si die is covered such that

damaged areas on the edge of the die which resulted

from the cutting action of the string saw during dicing

of the wafer are masked and eliminated from the junc-
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tion area of the tunnel barrier diode to be formed. The

masking procedure is performed under flowing

nitrogen gas on the molybdenum strip heater at the

temperature under which the wax will have the right

viscosity for ease of masking. This temperature is esti-

mated to be less than 75 °C.

Immediately prior to metal evaporation, the Si die is

etched in a solution of 1 part hydrofluoric acid and one

part H2O to remove the surface oxide formed during the

different preceding preparation steps.

The evaporation is done in a bell jar vacuum system

at 2 X 10"^mm Hg and lower; the pressure is measured

by an ion guage. The metal shots used for evaporation

(Pb, Sn, and In) are guaranteed 99.9999 percent chemi-

cally pure. No attempt is made to pre-etch the metal

shots before evaporation to remove the surface oxide.

The various forms of the metallic oxides either dis-

sociate before reaching the boiling point of the metal or

sublime in vacuum at relatively low temperatures. Or-

ganic surface contaminants on the shots are burnt off

at even lower temperatures. To prevent contamination

of the junction surface, a shutter is used. The shutter is

opened to permit evaporation onto the Si dice only dur-

ing the mid-period of metal evaporation, preventing the

deposition of low boiling impurities, as well as eHminat-

ing the possibility of the deposition of high boiling point

impurities when the metal source is depleted. A very

high rate of evaporation, approximately 1000 A per

minute, is used since it is found that it gives the best

results in terms of good evaporated films of highly

metallic appearance and subsequent good tunnel

diodes. It is suspected that a slow evaporation rate may

cause some oxidation of the evaporated films due to the

prolonged thermal radiation from the tungsten boat,

resulting in thin, dull appearance. The thickness of the

films are monitored during the evaporation by a Sloan

quartz crystal film thickness monitor. The film

thickness is made to be at least 5000 A, so that later on

when measurements are made at temperatures below

the superconductor transition temperature of the metal

electrode, the superconductors will behave as a bulk

superconductor, without the uncertainties introduced

by thin film superconductor behavior [40-42].

After the metal contact electrode evaporation, the

wax mask is cut to remove all electrical shorts

produced by the evaporated film. Then the electrode is

connected to the TO-5 header emitter binding post with

a 2-mil gold wire. The electrode contact solder used is

a liquid Hg-In-Tl alloy [43]. A hquid solder contact is

used so that there will be eliminated the possibility of

mechanical damages to the Si crystal or to the metal-

semiconductor junction using the commonly available

wire bounders. The Hquid alloy is found to be the best

among the several contact materials tried: the conduc-

tive paint has a tendency to open up when subject to

thermal stress, and the different low melting indium

alloy solders do not wet the metal surface as readily and

are difficult to use with manual tools. However,

because of the excellent wetting properties of the Hg-

In-Tl alloy solder, care has been taken to avoid possi-

bility of either destroying the evaporated film or form-

ing complicated superconducting alloy films [44,45]

right at the metal-semiconductor junction by applying

the alloy solder contact to the evaporated film on top of

the masking wax immediately adjacent to the junction

area (fig. 6).

After completion of the liquid solder contact to the

metal electrode, the diode fabrication is completed and

the device is ready for study. Figure 7 is a schematic

drawing of the metal-semiconductor barrier tunnel

diode thus made.

Several of the P doped n-type Si dice are prepared

slightly differently than reported above in that after

chemical etch of the wafer, the wafer is processed by

M. Weiss of TRW Semiconductors, into Si dice with

steam grown Si dioxide mask ready for mounting, and

metal electrode evaporation, after a ten second etch in

a 10 percent HF solution for removal of surface oxide

introduced in the junction area by transit and die

mounting and with further black wax masking needed

only for ease in the removal of electrical shorts caused

by the evaporated films. Diodes made from the masked

dice so obtained exhibit no difference in electronic pro-

perties when compared with the others, and are not

treated separately.

3.2. Electronic Measurements

For each junction, two types of curves are obtained:

the current versus voltage bias curve (I-V) and the in-

cremental conductance versus voltage bias curve

(dl/dV-V). Two separate ranges of voltage bias are used

for both types of curves: In the study of superconduc-

tivity structures about zero bias, a small voltage bias

range centered at zero volts and extended in both for-

ward and reverse bias directions over only a few mil-

livolts is used. For the study of Fermi degeneracy in

heavily doped Si, the voltage bias range used extends

from approximately 80 mV negative to over 120 mV
positive. To study the effects of superconductivity on

the barrier junction, the I-V and dl/dV-V curves are

evaluated over a temperature range extending from 4.2

to 1.1 K. In the case of Fermi degeneracy studies, the

experiments are performed in liquid helium under at-

mospheric pressure (4.2 K).
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A schematic of the measuring electronics is shown in

figure 8. The applied voltage bias is directly measured

across the tunnel diode, the tunnel current is measured

over a current sensing resistor. Using an X-Y recorder

and a variable voltage supply which can be swept auto-

matically with a timing motor drive, the measurements

of the I-V characteristics of the tunnel diode are easily

made. To avoid loading of the circuit, the input im-

pedance of both the X and Y channels must be high

with respect to the resistance of the diode and the cur-

rent sensing resistor. The X-Y recorder used has input

impedance ~ 1 megohm, a value much higher than the

usual kilo-ohm range of the diode, and the 1 to 100 ohm
resistance value of the current sensing resistor.

To measure the incremental conductance of the tun-

nel diode, we bias the tunnel diode at the dc level about

which the incremental value is to be measured, and ob-

tain the incremental conductance by measuring the ac

conductance of the diode under a small ac voltage

signal. A 500 Hertz signal is introduced into the diode
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circuit via an isolating, impedance matched trans-

former. The magnitude of the ac signal is adjustable via

the voltage divider RiR^. For good definition of the zero

bias tunneling structure, as well as the determination

of the incremental conductance minimum, the ac signal

is set to be ^ 50 /u,V. The incremental conductance

value is picked up by the current sensing resistor

because the ac signal voltage is coupled into the diode

circuit at a constant magnitude.

('nc^ (18)

Vs
J«c =^ (19)

where

^^'oc^the diode incremental conductance

Vs = signal voltage at Rs

The signal voltage is first amplified by the Keithley

AC amplifier (model 104) which is an ultra-low noise

preamplifier with high gain (100 to 1000) and high input

impedance (100 megohm). In addition, it provides high

and low frequency cut-off filter to reduce the effective

band width and improve signal to noise ratio, a feature

most suited for our apphcation because our ac signal is

narrow band (500 Hertz sinusoidal). The signal from the

preamplifier is then further ampUfied and converted to

a dc output which is proportional to the diode incre-

mental conductance, using the EMC model RJB, Lock-

In Amplifier employing the standard phase lock-in

technique of derivative measurements [46,47]. The

dc output from the Lock-In Amplifier can be appUed

directly to the Y input of the X-Y recorder for the

mechanized plotting of the incremental conductance

versus voltage bias curve of the tunnel diode.

It is important to note that the variable dc voltage

bias source is in series with the tunnel diode in both the

I-V and dlldV-V measurements. In order that the ob-

served bias dependent structures in the I-V and dl/dV-

V measurements are solely the results of the bias de-

pendent properties of the tunnel diode, the variable

voltage source must be such that its internal impedance

is independent of output voltage. In addition, its inter-

nal impedance must be low compared with the tunnel

diode, otherwise the measured I-V characteristics

reflect the internal impedance of the voltage source,

with the tunnel diode providing a second order pertur-

bation effect on the /-F curve. A detailed analysis of the

measurement circuits shows that under no case will the

voltage source constitute more than 0.5 percent error

to the measured tunnehng characteristics of the diode

under study [48].

Finally, it should be noted that the ac signal pickup

at the current sensing resistor R,, is of the order of one

microvolt. Because of the low signal level, and the long

lead length needed for diode measurements in the cryo-

stat, ground shields and low noise shielded cables must
be incorporated in the measurement set-up. Some basic

considerations such as avoidance of ground loops, use

of electrostatic shielding guards in the diode circuit,

minimization of lead length, etc., are included in the

packaging design of the measurement electronics and

the sample holders for use in the low temperature cryo-

stat and in the heUum dewer for measurements at

4.2 K.

4. Experimental Data and Analyses

There are two independent variables that can be ex-

perimentally varied in the study and evaluation of

heavily doped n-type Si. They are: (1) impurity dopant

concentration and (2) the type of impurity dopant used,

be it Sb, P, or As. We expect that the density of states

function of the semiconductor will be modified to some

extent according to the impurity doping concentration

and to the type of dopant used, and this modification of

the density of states function will show up in the mea-
sured tunneling current and more so in the measured

incremental conductance of the depletion layer tunnel

diode.

Figure 9 presents a current-voltag*- and incremental

conductance-voltage x-y recorder plot of a typical

metal-semiconductor tunnel diode. There is a zero bias

conductance structure similar to many reported in

literature. We found that by assuming the metal elec-

trode is superconducting and using the BCS theory in

describing the superconductivity, the zero bias con-

ductance structure can be matched very accurately

over the temperature range by the generalized tunnel-

ing eq (2) [48].

In addition to the zero bias features due to supercon-

ductor tunneling, we observe in the figure the presence

of an incremental conductance minimum which occurs

at a voltage Vmm in the forward bias direction. Accord-

ing to the analytic study given earlier, the incremental

conductance minimum is a result of the sharp change

in the density of states function at the bottom of the

conduction band, and qVmin is equivalent the Fermi

energy of the semiconductor.

With increasing carrier concentration, the density of

states function is occupied at higher and higher energy

levels, hence a corresponding increase in the Fermi
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Figure 9. Transport properties of a superconducting Pb-Si tunnel junction.

energy of the semiconductor. Figure 10 compares the

conductance curves of two diodes showing the shift of

the conductance minimum with impurity dopant con-

centration. In addition to the dependence on concentra-

tion, the Fermi level is found to be strongly dependent

on the type of impurity dopant in the semiconductor.

Figure 11 is a log-log plot of Ef versus No showing the

dependence of the Fermi level on impurity dopant con-

centration and on the type of impurity dopant. The

boundary of the rectangle about each point is the esti-

mate of possible error due to accuracy of measure-

ments.

A brief study of the figure will reveal several impor-

tant features: (1) the Fermi level of the heavily doped Si

at an impurity concentration is strongly dependent on

the type of impurity dopant in the semiconductor; (2)

the variation of the Fermi level as a function of impurity

dopant concentration approximates the same power de-

pendence of Ef and No irrespective of the dopant

type; (3) the separations in the Ef versus No curves for

Sb, P, and As doped Si are more than that can be ac-

counted for by the differences between their ionization

energies in Si which are 39, 45, and 49 meV, respective-

ly [49] . The separation increases with dopant concen-

tration. For example, in the case of P doped Si versus

As doped Si, it varies from 3 meV at the dopant concen-

tration of 2 X 10'^ cm-3 to 10 meV at 4 X 10 meV, com-

pared to a difference of 6 meV between the ionization

energies of P and As in Si.

It is noted that the Ef versus No curves for the three

different types of dopants tend to approach the slope as

given by the parabolic dependence of Ef and No- This

observation is further explored in figure 12, where as-

tride each of the Ef versus Nd experimental curve is an

assumed curve which corresponds to the paraboUc de-

pendence oi Ef and No- The offset of the three curves

can be interpreted to be the result of the dopant type

dependent density of states effective mass. A study of

the experimental curve and its adjacent assumed

parabolic curve reveals that they are actually separated

approximately by a small constant 8 throughout the en-

tire range. That is

iEF-8)^N-ji^ (20)
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where

8 — 1 meV for P-doped Si

1.6 meVfor Sb-doped Si

— 1.5 meV for As-doped Si

Therefore, according to the band-filling model of

electron occupancy where the dependence of the Fermi

level on the carrier concentration is taken to reflect

directly the density of states function of the semicon-

ductor, we can conclude from the empirical curves of

the Fermi dependence on impurity dopant concentra-

tion that allowing for some deviations at the lower range

of the density of states function, the paraboHc model of

the density of states function accurately describes the

heavily doped Si, provided we can assume a density of

states effective mass which is dependent on the impuri-

ty dopant type. At the lower energy range where £ is of

the same order of magnitude as 8, the paraboUc model

of the density of states function breaks down in that the

2/3 power dependence of Ef. and is no longer correct

even in the sense of eq (20) because 8 is only approxi-

mately a constant, as is shown in table 1.

Following the above discussion, according to eq (20),

we can approximate the density of states function of the

Table 1. Function Dependence of8 on N

N, cm -' 8(Sb),

meV S(P), meV 8(As),

meV

5x 10'« 1.6 1.2 -1.6

3 X lO'x 1.6 1.1 -1.3

2x 10>« 1.6 1.0 -1.1

1 X 10'« 1.4 0.7

heavily doped semiconductor, in the region where E >
8 as follows:

<;(£» = 8.,V^(fJ'(0"N£-6,.« (21,

in which m* is the dopant type dependent density of

states effective mass. It is 0.178 mo, 0.330 mo, and

0.418 mo for Sb, P, and As doped Si, respectively, ac-

cording to our experimental data as given in figure 12.

Reference can be made to figure 13 which summarizes

the resistivity vs carrier density measurements of

several investigators. The dopant-type dependence of

the resistivity is studied as an impurity effect upon

electron mobiUty in the heavily doped Si:

cr= p-'=-neix (22)
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At a given carrier concentration n, the resistivity in-

creases in the order p(Sb) < p(P) < p(As), so that mo-

bihty decreases in the order )a(Sb) > ix(P) > /u,(As). The

mobihty differences are not due to long range impurity

scattering which considers the effect of the Coulombic

forces acting at large distances proportional to the elec-

tronic charges involved and give rise to a mobility

which depends only on the impurity dopant density. In-

stead, the mobihty increases in the same order as the

ionization energy decreases, suggesting that there ex-

ists a scattering mechanism which interacts at close

range between the carrier electron and the impurity

atom. Description of the scattering mechanism must
take into account the nature of the potential well of the

impurity atom in the semiconductor. The same con-

siderations given for the differences in mobihty of the

differently doped Si can be given for the differences in

the density of states functions as manifested in the in-

equality m*(Sb) < m*(P) < TO*(As).

And, if we are to use the simple hydrogenic model to

describe the ionization of the impurity atom in a

semiconductor, we obtain for Si the following:

2eW 99.3 I—] meV
\mo/

(23)

From which we can obtain the impurity dopant depen-

dent effective mass which takes into account the effect

of the close range interaction between the conduction

electron and the impurity atom affecting its ionization

energy. They are m*(Sb) = 0.393 mo, m*(P) - 0.444

and m*(As) = 0.494 mg. The order and magnitude of the

differences are in general agreement with that sug-

gested for eq (21).

A detailed discussion on the significance of the do-

pant dependent density of states effective masses, and

their correlation with other known experimental data

available in hterature will be presented elsewhere by

the same authors.

Thus far we have directed our attention to the posi-

tion of the incremental conductance minimum and its

functional dependence on impurity dopant and dopant

concentration. Additional qualitative and quantitative
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information on the properties of the heavily doped Si

can be obtained from further analyses of the incremen-

tal conductance versus voltage bias curve based upon
the analytic treatment given earlier.

In figure 14, we compare the experimental incremen-

tal conductance curves of P-doped Si with the normal-

ized calculated incremental conductance curves based
on PwKBj and Pcmdt and the corresponding tunnehng

equations, assuming for the heavily doped semiconduc-

tor, the parabolic density of states function.

Near the band edge, i.e., below approximately 12

meV, the experimental conductance curves drop off at

a much lower rate than that predicted by the calcula-

tion using PwKBj or Pcmdt- Furthermore, the direction

from the paraboHc density of state function is observed

to be less for the very heavily doped material. The den-

sity of states tail has been interpreted as the result of

strong electron interaction with clustered impurity

atoms, assuming no correlation in the distribution of

the dopant impurity atoms. At high impurity concentra-

tions, the distribution of the impurity atom is strongly

correlated, resulting in minimizing the density of states

tail. And, hence, less deviation from the parabolic den-

sity of states function at higher dopant concentration.

Above the band edge, the experimental curve follows

closely the normalized calculated curve, demonstrating

the applicabihty of the parabolic form of the density of

states function for the heavily doped Si, in agreement

with the physical model for heavily doped semiconduc-

tor [48,50,51].

At high energies the experimental curve increases

more rapidly than the calculated curve, indicating the

density of states function increases at a more rapid rate

than parabolic. A review of the conduction band E(k)

function of Si shows that at the high energy range,

using the band filling model, we may be into the double

degeneracy at the X point (on the 100 axis of the

diamond structure).

Reference can be made to figure 12 and the cor-

responding discussion on it, where we observe that the

As doped Si is found to depart more from the parabohc

dependence of Ef and No than P doped Si. From the
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Study of the incremental conductance curves, a similar

difference between the P doped Si and the As doped Si

is found. Figure 15 compares the experimental incre-

mental conductance curves of the As doped Si with the

corresponding calculated curve. In comparison with

figure 14, it is seen that in the low energy range, band

tailing is more severe in magnitude and extent in the

case of As doped Si than P doped Si. And the energy

range in which the density of states functions follows

the parabolic form is relatively narrow in As doped Si.

On the other hand, it appears that the X point double

degeneracy for As doped Si occurs at a much higher

energy level for the impurity dopant concentration.

The incremental conductance of the metal-semicon-

ductor junctions is directly proportional to the products

of the tunnehng probabihty Pwhb./(E) and the density of

states function gs(E) according to eq (17). In the log-log

plot of the calculated incremental conductance curve,

as in figures 14 and 15, we can determine the power de-

pendence of P\visH./(E) on E from the slope of the incre-

mental conductance curve, given the parabohc density

of states function assumed in the calculation of the in-

cremental conductance. Then, with the power depen-

dence of PwKBj(E) on E known, we can determine the

power dependence of gs(E) on E from the slopes of the

experimental incremental conductance log-log plot for

aWE.

Based on the above procedure, we determine from

figure 14, the power dependency of gs(E) on E for P
doped Si at £"= 5 meV as follows:

A^-8.9x 10i« cm-\

/V= 4.7x IQi-' cm-\

A^=5.6X 10'-' cm-\

gsiE) oc£-o..n

gs{E) o^F'-^'^

gsiE) cc £"-3«

We note from figure 14 that the slope of the log-log

plot of the conductance curve is a monotonically

decreasing function of E near the band edge. We ob-

serve also that Vmiyi exists for = 8.9 X IQi^cm"''

implying a sharp drop of the density of states tail at

eVmi)!, even as the corresponding g/^"^ for Si of this do-

pant concentration at 5 meV above the band edge has

a negative power dependence on E, implying increasing

magnitude of the density of states function at that ener-

gy level. Therefore, we conclude that near the band

edge, for the less heavily doped Si, the impurity band

produces a small hump on the density of states function

of the semiconductor. At higher dopant concentrations,
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Figure 14. The effect of the density of states band tail in P doped Si on the incremental conductance of the metal-semiconductor tunnel
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by the evaluation of figure 14 and eq (21), based on

similar analysis, it can be concluded that the impurity

band near band edge becomes fully merged into the

density of states function by its complete disap-

pearance. Figure 16 summarizes the estimated density

of states functions for different levels of dopant concen-

trations of P doped Si. Included in the figure is also the

summary curves of the estimated density of states func-

tion of As doped Si based on similar analysis of the in-

crement conductance curves of the corresponding

metal-semiconductor junctions.

It is observed from the figure that for the As doped

Si, the density of states function as well as the band tail

near the bottom of the conduction band is distorted

from the parabolic dependency on energy much more

severely when compared with P doped Si, in agreement

with earlier observations in the study of figures 12-15.

The hump in the Si density of states function due to

the impurity band obtained experimentally by us is in

general agreement with the work by G. D. Mahan and

J. W. Conley [4] on their study of the heavily doped p-

type GaAs density of states function, except that the Si

impurity hump is confined to a narrower energy range

near the bottom of the conduction band than that ob-

tained for p-GaAs.

5. Conclusion

In this study, we have developed the necessary

mathematical analyses of the metal-semiconductor

junction for the evaluation of the experimental data.

Both the WKBJ approximation and the exact transmis-

sion coefficient calculations of the tunnel diode equa-

tion were used. For the case of silicon diode, both

methods yielded comparable solutions which predict

the characteristic features of the metal-semiconductor

tunneling current experimental curves.

Through the study of both the incremental resistance

and conductance curves of the metal-semiconductor
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diodes, it is concluded that the incremental con-

ductance curve describes to a greater degree of clarity

some of the important properties of the bulk material

under study than that possible with the incremental

conductance curve. Based on this evaluation, we mea-

sure directly the incremental conductance curves of

the diodes under study. In addition, the measurement

circuits have been analyzed to assure the accuracy of

the measurements made, as well as to determine the

magnitude of the inclusion of extraneous impedance ef-

fects from the measurement circuits in the diode con-

ductance curves.

Our tunneling data are interpreted by two different

procedures: (1) evaluation of the Vmin versus A'^ curves,

the curves being the compilation of the most prominent

features of all the diode conductance curves; (2) the

evaluations of the individual diode conductance curve.

Using the Vmin curves, we discover the dopant type de-

pendence of the Fermi level of the semiconductor, lead-

ing us to postulate a dopant type dependent density of

states effective mass for Si. This density of states effec-

tive mass also can be considered to be a measure of the

effect of different dopants on the density of states func-

tion of the heavily doped Si. Using the individual diode

conductance curves, we can determine the overall

characteristic features of the density of states function

of the heavily doped Si at particular dopant concentra-

tions and with specific dopants. And with either

procedure, we arrive at the same consistent interpreta-

tion that the density of states of the heavily doped

semiconductor is generally parabolic above the band

edge, but near the band edge, band tailing can be

severe, depending on the dopant type and on the do-

pant concentration.

Quantitative data on the density of states function of

the heavily doped Si are obtained through the com-

parison between the calculated curves, using known

functions for the density of the functions of the
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semiconductor, and the experimentally derived curves.

The data so obtained include the dopant dependent

density of states effective masses and the power depen-

dence of the density of states functions on energy in the

band tail region. Density of states functions of the

heavily doped Si, at different dopant levels and dif-

ferent dopant types, can also be derived from the ex-

perimental conductance curves. It is hoped that our ex-

perimental data on heavily doped Si will be of interest

to those active in the theoretical modeling of the heavily

doped semiconductors.
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Discussion on "Metal-Semiconductor Barrier Junction Tunneling Study of the Heavily Doped
N-Type Silicon Density of States Function" by Y. Hsia and T, F. Tao (University of California,

Los Angeles)

G. D. Mahan (Univ. of Oregon): In silicon metal-

semiconductor junctions it is very easy to get a signifi-

cant oxide layer unless proper precautions are taken.

This would seem to be the case here. Thus you should

be cautious about over-interpreting your data.

Y. Hsia (Litton Systems, Inc.): There is probably a
o o

residual layer of oxide about 30 A to 50A at the junction.

The effect of the oxide on the tunnel current should be

dopant independent. The main problem is its effect on

the assumed tunnel barrier and consequently the

theoretical calculation of the tunnel current. (Fig. 4 of

the text compares the effect of the tunnel barrier varia-

tion on the normalized incremental conductance fea-

tures which are utilized in comparison with our experi-

mental data.) The determination of the Fermi level by

interpreting Vmin measurements on oxide junctions has

been shown experimentally by the work of Esaki et al.

[1] on many materials.

M. Cardona (Brown Univ.): Have you compared your

results with those obtained from infrared reflectivity

measurements?

Y. Hsia (Litton Systems, Inc.): The dopant dependence

of the effective mass in heavily doped semiconductors

has actually been previously obtained by Spitzer et al.

[2] in their reflectivity measurements on As, P, and Sb

doped Ge to determine carrier density dependent den-

sity of states effective mass (though interpretation of

their data presented in fig. 8 of the cited reference).

The dependence is similar but differs in having smaller

differences of values. We are planning to do free carrier

reflectivity measurements in the infrared region on the

variously doped silicon to obtain density of states effec-

tive mass data for comparison with this tunneling work.

[1] Esaki, L., and Stiles, P. J.. Phys. Rev. Letters 14, 902 (1965); Es-

aki, L., and Stiles. P. J., Phys. Rev. LeUers 16, 574 (1966);

Chang, L. L., Esaki, L., and Jona, P., Appl. Phys. Letters 9, 21

(1966); Chang, L. L, Stiles, P. J., and Esaki, L., J. Appl. Phys.

38,4440(1967).

[2] Spitzer, W. G., Trumbore, F. A., and Logan, R. A., J. Appl. Phys.

32,1822(1961).
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The Effect of Hydrostatic Pressure on the Galvano-
Magnetic Properties of Graphite

I. L. Spain

Institute for Molecular Physics, University of Maryland, College Park, Maryland 20742

Measurements of the Hall Effect and magneto-resistance in crystals of graphite with current flow

in the basal planes at high pressures are described. Galvanomagnetic measurements enable the mag-

neto conductivity tensor components ctj-j and <Txy to be obtained, and from them the electron and hole

densities and mobilities. The results are compared with the band model for the semi-metal graphite

proposed by Slonczewski and Weiss. Of particular interest at the present time is the information that

these results give about the assignment of carriers at the symmetry point K in the Brillouin zone of gra-

phite and the properties of mobile minority carriers.

Key words: Electronic density of states; galvano-magnetic properties; graphite; Hall Effect; mag-

neto-resistance: pressure effects.

1. Introduction

The determination of the effect of pressure on the

electronic properties of graphite is of interest for

several reasons. The highest occupied valence band

overlaps the lowest unoccupied conduction band by

about 32 meV [1] , so that graphite behaves like a semi-

metal when the current flows along the layer planes. As

a result, changes in the lattice spacing induced by

hydrostatic pressure are expected to produce quite

large effects in the electronic properties. The large

elastic anisotropy enables the change in lattice parame-

ter in the plane (ao) to be neglected compared to the

change in c-axis spacing (co) ((Ac/co) ~ 29(Aa/a())) [2] so

that changes in electronic properties are expected to

originate from corresponding changes in the overlap in-

tegrals between planes.

The generalised band model proposed by Slonc-

zewski and Weiss [3], with adjustable parameters re-

lated to overlap integrals, has been successful in m-

terpreting many of the experiments on graphite, and

some experiments have attempted to directly relate

pressure effects to changes in these parameters [4-8].

However, recent studies of Schroeder, Dresselhaus,

and Javan [9], have proposed several fundamental

changes in the band structure that have important con-

sequences on the interpretation of galvanomagnetic

data.

A program to study the effect of pressure on the gal-

vanomagnetic properties of graphite, with current flow

both along and perpendicular to the planes, is being

carried out. So-called "c-axis effects" are very interest-

ing because of the possibility of observing the role of lo-

cahsed "electron-hole" or "exciton" states on the pro-

perties of solids [10] but this problem is not discussed

here. Measurements of pressure on the Hall Effect and

magneto-resistance of highly oriented graphite are re-

ported at two temperatures and the information that

they give about the band parameters and the density of

states discussed.

2. The Band Model of Graphite

The Slonczewski-Weiss band model [3] concerns

itself only with those states of interest to free-electron

phenomena near the vertical Brillouin zone edges

(HKH'). The variation of energy for electron states

along (HKH') is shown in figure la, being given by:

ei = A + 2yi cos (/>

€2 = A — 2^1 cos c/)

63 = 2y2 cos- 0
where

2

and yi72,A are related to out-of-plane overlap integrals.

The theory obtains the energy of those states near

the zone boundary by a perturbation calculation. In the

event that the effect of (other overlap) parameters
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A-2r

>r/Co Z

Figure 1(a). Sketch of the variation of electron energy for states

along the vertical zone edge HKH' of the Brillouin zone of graphite.
The assignment of electrons at point K is used in this diagram in agreement witli the work

of Dresselhaus et al. The variation of energy with wave-ratio component perpendicular to

HKH ' is indicated.

Fk.URE Kb). Sketch of the variation of electron and hole wave-
vector Kp along the Brillouin zone edge ofgraphite.

Figure 1(c). The basal velocity (vp) of carriers with the Fermi
energy.

73,74,7.5 appearing in the theory may be neglected (73

accounts for trigonal warping effects), the dispersion

relation may be written:

ei,2 + e:) ei,2 — eri'
1/2

2 / 4

where
€12 = ei or €2

Co is the lattice constant in the plane = 2.46 A
70 is an in-plane overlap integral

For the "four-parameter band model," the basal com-

ponent of the effective mass tensor along the zone edge

is given by m^x* (A; = 0)= 4/3^2(y, -y2)/3ao-7o2 ~ 0.061

mo cos The wave-vector Kj, is plotted as a function of

in figure lb, and the basal velocity (K/.) for electrons

on the Fermi surface in figure Ic. The following values

of the band parameters were used [9,11]

:

7(1 = 3 eV

7, =0.395 eV

72 = -0.016 eV

A = + 0.02 eV

g^ =- 0.0208 eV at r=0 K

Until recently, the value of 72 was taken to be posi-

tive, indicating that holes occupied that volume of the

Brillouin zone around point K. From magneto-reflection

data, Schroeder et al. [9] concluded that 72 was nega-

tive, implying electron occupancy at this point. The as-

signment is discussed later in relation to galvano-mag-

netic data.

Dresselhaus and Dresselhaus [12] also suggested

that A was positive, implying that the tips of the hole re-

gions of the Fermi surface protrude into the next zone.

As a result of spin orbit splitting, a pocket of holes (with

a positive value of 72, the pocket would be occupied by

electrons) is located at the zone corner, having very

small effective mass.

Dresselhaus has also suggested [13] that the value

of 73 (
~ 0.3 eV) is much larger than previously thought,

so that a perturbation calculation of the electron energy

for states near the zone edge is no longer applicable. A
large value for 73 implies that the electron energy sur-

faces are trigonally warped, possibly to the extent of

producing pockets of electrons split off from the main

body.

3. Galvanomagnetic Effects

In the experiments to be described, measurements

of the Hall Constant (/?//), zero field resistivity po and re-

sistivity in a magnetic field p(H} are reported. In

general it is convenient to compare theoretical models

with the conductivity tensor components. In the case of

current flow along the planes, magnetic field in the c-

axis direction (Hz) and no preferred direction along the

planes, the relationships between measured effects and

conductivity components are [14]:

Rh
' ry1

(Txx

(O'ix+O'xy)

with inverse relationships:
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cr

CTxx'

CTxy — CTjx (RllO-H)

cr = p ' = measured conductivity

The conductivity components may then be expressed

as integrals over the volume of reciprocal space in the

following way [15.16]

:

— e- r v'^T (A )

4^ J ( 1 + wW' (A-))

(Txy {Hz)

where

4iZ-'c J

VrT- (A)

rf^A-.

^V3A
m' (1 + wV- (A)) r)e

and xfAj = relation time for scattering electrons.

These equations hold to high magnetic fields in the

approximtion that the basal plane effective mass tensor

rriyy* does not vary appreciably with energy inm
a plane in A:-space perpendicular to kz. The approxima-

tion is not strictly vaUd for graphite, since the disper-

sion relation in such a plane is hyperbolic, not parabol-

ic. In addition, the strong variation of carrier properties

along the zone edge make the conductivity integrals dif-

ficult to calculate. Even if the details of the bands are

known, a detailed knowledge of the relaxation time as

a function of wave vector is required. Since this is

determined by the scattering of electrons by lattice im-

perfections it cannot be calculated precisely, and the

fine details of the bands become hidden by gross as-

sumptions made in the function T(k).

A simple solution presents itself, since the condition

of charge neutrality in the crystal imphes an equal

number of free carriers in the valence and conduction

bands. Soule [14] then suggested the following multi-

band formula:

2t
(Ti)i

• xy

H 2r
(=1

{HIHiY-

73,— number of carriers per unit volume in band i

A^= total number of bands

ei

(Toi

+
I

e
I

for holes, ~
|
?

|
for electrons

measured conductivity of band i in zero magnetic
field

= characteristic field of carriers in band i

cm* c

en jx,

fjLi
— carrier mobility

CTOi = niCfJLi.

The underlying assumption in this theory is that the

properties of the carriers can be approximated by

averaging effects from groups of carriers with different

properties as though they all had the same properties.

In addition, the relaxation time appearing in the

denominator of the integrals is assumed to be indepen-

dent of energy.

Galvanomagnetic data has been fitted using these

formulae by Soule for natural crystals and Spain, Ubbe-

lohde and Young [17], for synthetic material. In both

cases one majority band of holes and electrons was as-

sumed, with a minority carrier to explain marked devia-

tions from two-band behaviour in the Hall Constant at

low fields.

In the approximation of two majority carriers a sim-

plification may be made, enabling a mean mobihty to be

calculated.

If a =

b

n>

Til

fM

1 suffix (1) refers to majority electrons

1 suffix (2) refers to majority holes

Then jx- ~ c-
poH'

In summary, this simplified analysis enables the gal-

vanomagnetic data to be fitted approximately with

averaged parameters for the electron and hole bands,

yielding values for the average mobility yu,; and number
of carriers n,. The method enables the properties of

minority carriers to be explored from low-field Hall

data. From the number of carriers of each type, a direct

comparison may be made with the theoretical predic-

tion:

7j, = n (e) fn(e) de
J hand i

It must be remembered, however, that the number of

carriers calculated from galvanomagnetic data must

first be corrected by a numerical factor (
~ unity) which

comes from the integration procedure.
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Tlie measurement of the effect of pressure on the jial-

vanomagnetie coefficients gives information about the

changes occurring in the constant energy surfaces

brought about by changes in overlap parameters. This

is reflected in the change in the number of carriers with

pressure and in the mobility, since the relaxation time

depends on the energy wave-vector relationship. In the

case of scattering by lattice vibrations, the relaxation

time is inversely proportional to the density of states

into which scattering takes place [18], while for scat-

tering at crystallite boundaries it is inversely propor-

tional to the velocity of the carriers (i.e., proportional to

e~^l'^ for both scattering mechanisms for ellipsoidal

bands of standard form).

4. Experimental

Details of the experimental apparatus used for the

present work are to be reported elsewhere. Using heli-

um fluid as the pressure-transmitting medium, mea-

surements could be made to 10 kbar in magnetic fields

up to 15 kG, with the temperature controlled to

±0.02 °C. Conventional D.C. techniques were used to

measure the galvanomagnetic coefficients.

Techniques for fabricating bridge specimens and at-

taching leads to them have been described elsewhere

[17]. One unexpected problem was encountered that

has still not been solved. After compression to above

about 3 kbar, irreversible changes occurred in the

measured galvanomagnetic coefficients. This probably

arose from changes in the current and potential con-

tacts to the specimen. With a normal isotropic metal or

semiconductor, small changes in the probe configura-

tion do not affect the isopotential lines in the body of

the specimen, provided that the length to width or

thickness ratio is greater than about 5. However, in gra-

phite, the high anisotropy ratio (> 10'') ensures that

equal sharing of current between the planes is extreme-

ly difficult to achieve. Small changes in contacts could

easily produce the changes observed. Experiments

described in this paper are Hmited to the pressure

range below about 3 kbar for this reason. Attempts are

being made to improve contacts using different plating

and soldering techniques.

Experimental results are presented for two

specimens cut from different types of synthetic materi-

al. Material for specimen A-2 was obtained from Union

Carbide Corporation, hot pressed at 2500 °C and an-

nealed above 3000 °C. Stress recrystalhsed material

was used for specimen A-6 obtained from Pennsylvania

State University. Values of measured parameters for

these specimens are given in table 1, comparison being

Table 1. Galvanomagnetic coefficients of specimens

A-2 and A-6 compared with datafrom other sources

Ratio of Mobility at* Value of Hall Room
Sam pie resistance 77.5 K constant at temperature

p295/ (cm-/volt-s) maximum value resistivity

77.5 K

A-2t 1.30 4.87 X lO-- -0.005 cm '/C 3.54 X lO-''

A-6t 1.59 S.SXIO" -f 0.060 cm '/C 4.12X lO-'

EP-141: ~ 1.82 6.8X10^ **+0.18 cm'VC 4.42 X 10-'

.SA-20$ 1.41 4.85X10^ -0.005 cm-'/C 4.42 X lO-'

SA-261 1.74 5.75 X 10^ .07 cm-'/C 4.43 X lO" '

tPresent measurements.

tSoule. reference [14].

^Spain. Ubbeiohde and Young, reference [17].

*A11 data taken at 3.00 kG for exact comparison.

**A plateau rather than a maximum.

made with data from Soule's crystal EP-14. It can be

seen that A-6 compares quite closely with his crystal

and probably has a grain size greater than 10 microns.

A-2 is definitely an inferior specimen with a smaller

grain size. For comparison purposes, data is also in-

cluded from previous work on similar synthetic materi-

al [17] , close similarities being observed between sam-

ples SA-20 [17] and A-2; and SA-26 [17] and A-6.

5. Experimental Results at Room Temperature

Graphs of the variation of the Hall Effect and mag-

neto-resistance coefficient with pressure at room tem-

perature are shown in figures 2 to 5. It can be seen that

the trend in the Hall Constant is to more positive values

(dRHldp = 0.0025 cm^Ckbar for A-2, dR„ Idp =0.002,2

cmVC.kbar for A-6). This trend is in agreement v/ith

the results of Arkhipov et al. [6], but in numerical dis-

agreement. Their zero pressure value at 300 K at un-

specified magnetic field being ~ — 0.03 cm^/C com-

pared to ~ 0.05 cm^/C for A-2 and A-6, while their value

of dRjdp ~ 0.001 cm'^/C.kbar. This may be due in part

to differences in specimen perfection, Arkhipov et al.

[6], working with natural crystals of unspecified per-

fection.

The largest error in the measurements reported here

arises from the c-axis dimension {Sz) of the crystals (±
5%). Assuming a correct value for Sz, the Hall Con-

stant was then measured with a precision and repro-

ducibiUty of ~ ± 0.0002 cm^/C at 15 kG, reducing to

approximately ± 0.0005 cm'^/C at 1 kG.

The trend in the magneto-resistance coefficient

(Ap/p()//2) is to lower values as the pressure increases,

indicating that the average mobihty {Aplpon'^y- X

10® cm-'/volt-sec) also decreases. However p.'^ varies
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Mognetic Field (H) (kllogouss)

FliiURE 2. The effect of pressure on the Hall Constant (R„) plotted

us a function of magnetic field for two samples at room temperature.

Note thai the ordinate corresponding: to sample A-O is on the left-hand side, that cor-

respondin;: to A-2 on the ri;;ht-hand side.

linearly with pressure rather than /u.'. Values of /u,

were taken at 14 kG. Since the resistance does not

vary as the square of the magnetic field, a consistent

criteria for calculating fx is required. The magnetic

field was correspondingly chosen to be that value for

which Ap/po ~ 2.00. At this condition, minority carrier

effects should be unimportant, and the data susceptible

to accurate analysis.

Pressure (kilobar)

Figure 3. The value of the Hall Constant at 10 kCfor specimens A-2
andA-6 plotted as a function ofpressure at room temperature.

1300
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^
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1000 -
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9 10 II 12
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Figure 4. The value oj the mu^netoresistance coefficient (Ap/poH-)

for specimens A-2 and A-6 as a function of pressure at room
temperature.

The change in basal plane resistance was extremely

small [(l/porfpo/o?p~ 10"^/kbar)] indicating that an in-

crease in the number of carriers produced by swelling

of the energy surfaces was compensated very closely by

the decrease in mobiUty. This result agrees with that of

Spain [19] and Yeoman and Young [20]. The large

decrease in {AplpM'-) with pressure reported here (
~

-3.2%/kbar for A-2, -4.3%/kbar for A-6) is larger

1100

AP

xio"

gauss^

1000

900
I 2

Pressure (kilobar)

Figure 5. The variation with pressure of the parameter (Ap/poH")

obtainedfor sample 4-6 at 14 kC and2')8 K.
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Table 2. Experimental coefficients for A-2 and A-6

Temp. K Parameter A-2 A-6

298 M= f^^V
" X 10" (cm^/volt s)

\p,]H-/
(0.90 ±0.01) X 10' (1.05±0.01) X 10^

pn (Ocm) (3.45 + 0.15) X 10-^ (4. 12 ±0.15) X lO-"'

n total =— (cm"'')
efj.

(17.8±0.8) X IQix (14.5±0.7) X 10'«

Ah at lUk.g. (cm vC) — U.Uool ± U.UUUZ A A^C/; _i_ A AAA*!— 0.0656 ± 0.0002

^ (cm-VCk.bar)
dp

+ 0.0025 ±0.0002 + 0.0032 ±0.0002

-0.032 ±0.003 -0.043 ±0.003

(/(log pn)ldp (k.bar-') - (0.0004 ±0.0003) - (0.0005 ±0.0003)

77.5 IJ-=(-^)"' X 10« (cm^/volt-s)
\p(iH-/

(4.87 ±0.01) X W (5.35±0.01) X W

P(i (flcm) (2.72±0.10) X lO-'^ (2.61 ±0.10) X 10-^

n total =— (4.7 ±0.25) X 10'« (4.45 ±0.25) X 10"*

"2
Q —

-

7li

A qq _(_ A AAC A qq A on^,*

^-^^ 1.00±0.01 0.91 ±0.01*

*A three band model does not fit the data for SA-6 beyond about 8 k bar.

than that reported by Arkhipov at al. [16], ( 1.8%/ attributed to a minority electron, while at higher fields,

kbar) who also reported a linear variation of (AplpoH- ) the trend is produced through a small excess of majori-

with pressure. Results are summarised in table 2.

Computing the value of the number of carriers in all

bands from the simple formula:
o ^

H (kiiogauss)

n =
epL

gives the value (17.8 ± 0.8) X lO^s for A-2, (14.5 ± 0.7) X
10^^ for A-6. This compares with the value computed
for the four-parameter band model, with parameter

values given earlier.

n=13.3x lO's

6. Experimental Results at 77.5 K

The variation of Hall Constant with magnetic field for

sample A-2 at 77.5 K is shown in figure 6. The curve at

1 atmosphere is typical for synthetic material, with a

maximum ( 0.0050 cm''/c) at about 2 kG. Below
this, the downward trend in the Hall Constant may be

-.1

(cmVc)

-.3 -

1 1

Sample A-6

^^1 bar

Sample A-2

1 bar —

^

755 bars —

^

1090 bars—

^

1 1

Figure 6. The effect of pressure on the Hall Constant of Sample
A-2 at 77.5 K.
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Fk.URE 7. The effect of pressure on the Hall Constant of sample
A-6 at 77.5 K.

ty electrons (a ~ 0.99). The effect of pressure is to move

the curves to more negative values (dRuldp ~ — .001

cm'^/C.kbar) — a smaller effect than at room tempera-

ture, and in the opposite direction.

The curve for specimen A-6 is shown in figures 7 and

8. Several different features are observed. Firstly, the

maximum in the room pressure curve occurs at a posi-

tive value of the Hall Constant ( —h 0.050 cm^/c) in-

dicating a smaller value for the ratio b — fJixIfJiz {b ~ 0.91

for A-6; b — 1.00 for A-2). Secondly, a minimum in the

Hall curve at approximately 13 kG(/?w 0.084 cm^/c)

can be seen — a feature not previously reported in the

hterature. The cause of the minimum is not known at

present. This feature invahdates the simple three band

model, and awaits detailed interpretation until mea-

surements at high field are made. Thirdly, the Hall

Constant does not change in a simple way with pres-

sure, decreasing below about 3 kG and increasing

between ~ 3kG— 15kG.

For both specimens the small changes in Hall Con-

stant and magneto-resistance coefficient (fig. 9) are to

be noted, and were too small to effectively determine

whether the pressure variation was linear or not.

The number of carriers calculated for this tempera-

ture is (4.7± 0.25) X 10'« for A-2; (4.45± 0.25) X 10>« for

A-6. This compares with a value n — 4.2 X 10^* based on

the four-parameter band model.

7. Galvanomagnetic Data and the
Assignment of Holes at the Point K in the

Brillouin Zone of Graphite

For the interpretation of any electronic property of

graphite, the carrier assignment at point K is of the ut-

+ 0.025

Figure 8. The effect of pressure on the Hall Constant of sample
A-6 at 77.5 Kfor loiv values ofmagnetic field only (0-3 k('j).

most importance. From galvanomagnetic data it is con-

cluded that electrons are located at point K, in agree-

Ap

29

28

27

26

25

8 24
XIO

gauss^

23

22

21

20

19 -

18
-

-700 bars

•1350 bars

1940 bars

_L
5 10

H (kilogauss)

15

Figure 9. The effect of pressure on the magnetoresistance coeffi-

i Ap/poH- ) for sample A-6 at 77.5 K.
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ment with the assignment of Schroeder et al. The

strongest reasons for this are as follows:

(1) For the most perfect specimens, the ratio b =
is less than unity for the temperature

range ~ 50 to 200 K. Since the electrons are

predominantly scattered by phonons in this

temperature range, this fact is explained only

by a heavier effective mass for electrons than

holes.

(2) At a given temperature in the temperature

range below about 150 K, increase of specimen

perfection decreases the ratio b. For poorer

specimens, boundary scattering is increased.

If the average hole velocity is greater than that

of electrons, then the observed behavior can be

explained (see fig. Ic).

(3) As the temperature is reduced below about 50

K, the ratio b is observed to increase. This is

consistent with an increase in the importance

of boundary scattering as the phonon-electron

scattering probability decreases, and is con-

sistent with the new assignment.

Above about 200 K. the observed rise in the ratio b

above unity for even the best specimens can be at-

tributed to the following effects:

(1) A shift in the value of the mean chemical poten-

tial to more negative values (see fig. la) as the

temperature is raised.

(2) Effects arising from the excitation of carriers to

levels within about 2kT of the mean chemical

potential, thereby averaging the properties of

electrons and holes.

(3) The increased importance of intervalley scatter-

ing which acts to average the properties of the

carriers.

(4) The change in overlap parameters arising from

thermal expansion of the crystal.

This last effect may be estimated from the gal-

vanomagnetic data reported here. A pressure of about

2kbar reduces the c-axis spacing by approximately the

same amount that a 100 K change in temperature in-

creases the spacing. Since the pressure coefficient of

the Hall Effect is ~ 0.0025 cm'VC.kbar, a temperature

change from 200-300 K probably increases the ratio b

by about 4%, through the expansion of the lattice only.

8. Minority Carrier Behaviour

With the new assignment of electrons at point and

with a positive value of A demanded by de Haas-van

Alphen measurements [21], the pocket of minority car-

riers at points H and H' can only contain holes. The
Hall Constant at low fields for synthetic materials

clearly indicates the presence of a mobile minority elec-

tron, since the sign of the contribution to the tensor

component cTjy is only determined by the sign of the

charge of the carrier.

The de Haas-van Alphen period A ('/H)= 2.24x 10-»

gauss"' observed by Williamson et al. [21] cor-

responded to an extremal cross sectional area of

minority carriers in the basal plane (S) equal to 4.25 X
10" cm"-. This compares with the value predicted by

the Slonczewski Weiss model [3]:

S = -^^^^-<^;7^) =2.16X10" cm-
40570

with parameters defined before.

A period anisotropy of only 1.9 in synthetic material

corresponds to a spheroidal Fermi surface of the same

axial ratio containing 3.2 X 10''' available electronic

states per cm^ of material. For the specimens used in

the present measurements, the minority carrier density

is ten times greater than this (~ 3 X lO'^^cm"-'). This

points to the conclusion that the minority carriers ob-

served in the de Haas-van Alphen effect (not identified

as holes or electrons by this measurement) do not

originate from the same volume of the Brillouin zone as'

the minority electrons observed in the Hall Effect.

An attempt was made to observe minority hold

behavior in the Hall Effect. Assuming that the minority

holes are more mobile than the observed minority elec-

trons, an upward trend in the Hall Constant should be

seen at very low magnetic fields. Data was obtained

down to 10 gauss (fig. 8) where some indication was ob-

tained for this effect. However, the Hall voltage was ex-

tremely small at this field (0.12)U,v) and even with re-

peated measurements and data averaging, the best that

can be said at the moment is that the possibility of such

minority hole behavior is not ruled out. Shortly, mea-

surements will be made utilizing a two frequency Hall

technique with a PAR Lock-In-Amplifier. With this

system measurements can be made in principle to 0.1

gauss.

Another indication that the minority electrons do not

originate from the corners of the Brillouin zone is given

by the effect of pressure on the Hall Constant at low

magnetic field values (fig. 8). Application of pressure

does not distort the curves, but only moves them

downwards. This implies that the number of minority

carriers and their mean mobility does not change with

pressure within the precision of the measurement.

However, measurements by Anderson et al. [5] on the

change of de Haas-van Alphen periods for minority

electrons at point H indicate that the parameter A,

724



which largely controls the properties of these carriers,

changes by approximately 9%/kbar.

The mobile minority electrons could originate in the

feet of the energy surfaces, connecting electron-like

with hole-like surfaces. Dresselhaus [22] has sug-

gested that if the trigonal warping is large enough, aris-

ing from a value of 73 ~ 0.3 eV, outrigger electron sur-

faces may be formed there. Such electrons might have

relatively low values of the effective mass, and have

properties relatively independent of pressure.

9. Conclusions

Measurements of the Hall Effect and magne-

toresonance are reported for two synthetic specimens

of graphite at 298 and 77.5 K at hydrostatic pressures

up to 3 kbar. The data supports the assignment of elec-

trons at point K in the Brillouin zone of graphite as sug-

gested by magneto-reflection experiments of Schroeder

et al. [9]. Minority electron behavior observed in the

Hall Effect at low fields at 77.5 K cannot be accounted

for using the "four-parameter band model." When a

calculation is made for the dispersion relation of elec-

trons at points near the zone edges with 7,3 ~ 0.3 eV it

is possible that pockets of electrons near the "feet" of

the energy surfaces (outrigger pieces) may account

for the observed properties. The number of carriers cal-

culated from the four-parameter band model agrees

quite well with the number obtained from the experi-

ments.
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Electrical Resistivity as a Function of Hydrogen
Concentration in a Series of Palladium-Gold Alloys

A. J. Maeland

Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

The changes occurring in the electrical resistance of a series of gold-palladium alloys during

hydrogen absorption have been measured. The results are presented for each alloy in the form of rela-

tive resistance, R/Ru vs. hydrogen concentration H/M; R is the resistance of a particular gold-palladium

alloy containing a certain amount of hydrogen, given by HIM, the atomic ratio of hydrogen to metal, and

Ro is the resistance of the same hydrogen free alloy. For pure palladium the relative resistance increases

as a function of hydrogen concentration to a maximum value of —1.80 at HjM =0.75; further hydrogen

absorption results in a decrease in R/Rd. Similar maxima are found in some gold-palladium alloys; how-

ever, the maxima occurs at decreasing RIRo values and also shifts to lower H/M values with increasing

gold concentrations. At sufficiently high gold contents the maximum disappears and a continuous

decrease in resistance with increasing hydrogen content occurs. The results are evaluated in terms of

the band model.

Key words: Electron donation model; electronic density of states; gold-palladium alloys; hydrogen

absorption; hydrogen in palladium-gold alloys: palladium-gold alloys; rigid-band

approximation.

1 . Introduction

The earliest application of the band theory of sohds

to a process of chemical interest [ 1] appears to be that

of Mott and Jones [2] who proposed the electron dona-

tion model for hydrogen absorption by pure palladium.

According to this model, hydrogen is considered to be

absorbed as protons plus electrons. The electron from

hydrogen is assumed to be donated primarily to the par-

tially empty d band of palladium. The protons enter in-

terstitial sites in the palladium lattice where c?-band

electrons pile up to screen them. Subsequent work has

shown these sites to be the octahedral interstices in the

face-centered cubic palladium lattice [3] . The behavior

of the magnetic susceptibility of H-Pd alloys [4] is

usually cited, perhaps unjustifiably so, as strong

evidence in favor of a simple rigid-band model which in-

dicates that pure palladium has roughly 0.6 holes per

atom in the d band. However, recent work [5] on the

band structure seems to point to a much smaller

number, namely 0.36. Thus the rigid-band approxima-

tion appears to be invalid. The electron donation model,

however, is not invalidated by these results. It has, in

fact, been substantially strengthened by some very

recent low-temperature electronic heat capacity mea-

surements on the hydrogen-palladium system by

Mackleit and Schindler [6] who obtained direct

evidence that the density of states in thee? band of pal-

ladium decreases with hydrogen absorption.

The utility of the electron donation model may be

tested by applying it to alloys of palladium. Gold-pal-

ladium alloys are of particular interest in this respect

because gold is believed to donate a 65 electron to the

d band of palladium. Thus in the gold-palladium-

hydrogen system both hydrogen and gold act as elec-

tron donors to thed band of palladium. We have previ-

ously reported x-ray and thermodynamic results on the

gold-palladium-hydrogen system [ 7] . The data, we feel,

was successfully interpreted in terms of this model,

thus contributing further evidence in its favor. In the

present experiments we have measured the electrical

resistivity of a number of gold-palladium alloys as a

function of hydrogen concentration. The results may be

rationalized in terms of the electron donation model

referred to above.

2. Experimental

The gold-palladium specimens were in the form of

wires 0.012 and 0.025 cm in diameter and were supplied
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by Engelhard Industries, Inc., who also performed the

analysis. The samples had been prepared from 99.99%

purity gold and palladium melted under argon. X-ray

powder patterns revealed that the alloys were face-cen-

tered cubic and showed no evidence of long-range

order. Hydrogen was introduced by direct absorption

from hydrogen-stirred dilute HCl solutions ( < 0.04 N)

under slow absorption conditions; i.e., the hydrogen

pressure was reduced to below 1 atm. by dilution with

helium. Details of the technique as well as the sample

holder are available in the literature [7.8]. The re-

sistance was determined potentiometrically; the volt-

age across the specimen was matched with that across

a standard resistor. All measurements were made at

25.0 ±0.1 °C. Hydrogen contents were established by

vacuum degassing in a calibrated volume apparatus.

The procedure was to remove the specimen from the

reaction vessel after charging it to a certain hydrogen

concentration and submerging it in cold acetone con-

taining sulfur (catalytic poison). The sample holder was

then attached to the vacuum line which was sub-

sequently evacuated. Degassing the sample was accom-

plished by passing a current directly through the

specimen until it reached a dull red color. This heating

was sufficient to remove all of the hydrogen from the

1.15

0 0.02 004 006 0.08 0.10

H/M

Fi(;L!RE 2. Relationship between relative resistance and hydrofien

content in the a-phase.

1. Pure Fd; 2, .5.66 percent Au: 3. 11.90 percent Au; 4. 15.26 percent Au; 5. 18.80 percent

,\u; 6. 26.48 percent Au; 7. 35.07 percent Au; 8. 44.76 percent .Au: 9. 5.5.77 percent \u.

specimens. Any loss of hydrogen occurring between the

time of measuring the resistance and the time of

degassing was shown to be minimal [9]. The two sizes

of wires used gave essentially identical results indicat-

ing again no hydrogen loss during the transfer and

evacuating stage. Any such loss would have affected

the smaller diameter specimens proportionally more

than the larger because hydrogen loss would be propor-

tional to the surface/volume ratio.

3. Results and Discussion

The relative resistance, RIRn, as a function of

hydrogen content, HjM, was determined for a number

of gold-palladium alloys. Some of the results are shown

in figure 1; here only those gold-palladium-hydrogen al-

loys which exhibit one phase behavior of 25 °C are in-

cluded; i.e., alloys having more than 17 atomic percent

gold [7a]. Alloys having less than 17 atomic percent

gold behave like the palladium-hydrogen system in the

sense of having a two phase region at room temperature

[7a]. The two phases are commonly referred to as a-

phase (hydrogen poor) and jS-phase (hydrogen rich).

Figure 2 shows in detail the changes in resistance oc-

curring at low hydrogen contents; here we have in-

cluded some alloys which do have a two phase region

(curves 1-4). As in the palladium-hydrogen system there

is a discontinuous change in the slope, d(RIR»)ld(HjM),

at the point where the second phase begins to form (not

shown in fig. 2). The change in slope may, in fact, be

used to determine the phase boundary [7a].
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It may be noted that some of the curves in figure 1

show maxima in R/Ro vs. H/M. A maximum has also

been observed in the Pd-H system; this maximum oc-

curs at RIR„ ~ 1.80 and H/Pd - 0.75 [10]. The maxima
move toward lower values of R/Ro and HjM with in-

creasing gold content. At sufficiently high gold concen-

tration the maximum disappears and a continuous

decrease in resistance with increasing hydrogen con-

tent occurs (e.g., the 44.76% Au alloy).

A qualitative rationalization based on electron dona-

tion to the partially filled d band of palladium may be

made as follows: The electrical resistance in transition

metals is believed to be mainly due to scattering

processes in which the electron makes a transition from

the 5 to the d band: the current is carried by 5 electrons.

The probability of an s-d transition is proportional to the

density of states in the d band; the density of states is

in turn proportional to the cube root of the number
holes in the d band. Therefore the resistance, R, may
be written [2]

R.^^ (1)
ns

where na stands for the number of holes in the d band
and n,s denotes the number of 5 electrons.

On one hand the introduction of hydrogen into the

palladium lattice destroys the periodicity of the poten-

tial field of the lattice and leads to an increase in the re-

sistance. Furthermore, the lattice expands causing ad-

ditional increase in resistance [11] {d In R/dln V= i.O

at room temperature for pure Pd). On the other hand,

hydrogen reduces the s-d scattering if its electron en-

ters the d band of palladium, thereby decreasing the

number of holes in the band. This leads to a decrease

in the resistance which can be estimated from (1).

d^.'^'s^^A-^J

We have assumed here than n,, is constant. This is ap-

proximately true since the density of states of the d
band in pure palladium is about 10 times that of the s

band. Consequently the electrons from hydrogen enter

primarily the d band without increasing the number of

s electrons appreciably. The first two effects initially

dominate the resistance behavior as hydrogen is ab-

sorbed. However, as the d band gradually fills, the

s-d scattering becomes less probable and the resist-

ance begins to decrease. Furthermore, as the d band

fills, its density of states in relation to the density of

states of the 5 band decreases and the electrons begin

to enter the s band, resulting in further decrease of

the resistance.

The decrease m slope of R/Rn vs. H/M, figure 2, with

increasing gold content may be explained similarly.

The addition of gold also decreases the number of holes

in the d band of palladium. From eq (2) it can be seen

that dR/drid decreases more as n,i becomes less (by ad-

dition of gold, e.g.). If the two other effects, i.e., the in-

crease in resistance due to alteration of the periodicity

of the lattice and volume increase, are assumed to be

essentially independent of gold content, then the net ef-

fect should be a smaller increase in R/Ro vs. H/M with

increasing gold content. Also when a substantial por-

tion of the d band holes in Pd has been filled by the ad-

dition of Au, dRldn,i becomes large enough to dominate

the resistance behavior. In addition relatively more

electrons enter the 5 band providing more conduction

electrons. As a result, when enough gold has been

added, the addition of hydrogen causes a decrease in

the resistance.
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The Volume Dependence of the Electronic Density of

States in Superconductors

R. I. Boughton,* J. L. Olsen, and C. Palmy

Laboratorium fur Festokorperphysik, Swiss Federal Institute of Technology, Zurich, Switzerland

The volume dependence of the electronic specific heat coefficient y can be obtained from measure-

ments of the low temperature thermal expansion, from observations on the pressure dependence of the

superconducting threshold curve, and from the volume change occurring at transition. We make use of

recent theoretical results to obtain values of the change in the density of states with volume from the ex-

isting experimental data for a number of metals.

Key words: Aluminum (Al); electronic density of states; electronic specific heat; gallium; Gru-

neisen parameter, electronic: superconductivity; thermal expansion; thorium;

volume dependence of density-of states.

1 . Introduction

The volume dependence of the electronic specific

heat y is of interest since it is a function of the volume

dependence of the electronic density of states, and of

the electron-phonon interaction and its volume depen-

dence. It is a quantity that is difficult to measure

directly, but a number of simple thermodynamic rela-

tionships exist which allow it to be determined in-

directly by several methods. The logarithmic volume

derivative of 7, commonly referred to as the electronic

Gruneisen parameter Yg, can be obtained from the elec-

tronic thermal expansion coefficient, from a knowledge

of the change of the superconducting critical field

curve under pressure, and from measurements of the

difference in volume between the normal and supercon-

ducting states.

It is the purpose of the present note to present data

from measurements of the critical fields of aluminum,

gallium, and thorium under pressure and to make a

brief summary of available results on other supercon-

ductors.

2. Thermodynamic Expressions

The relations connecting the measured properties

with the electronic Gruneisen parameter in the three

methods referred to above are the following:

Ye is related [1] to the electronic volume expansion

|8,by

r,= ;^P, (1)

where T is the absolute temperature, and k is the

isothermal compressibiHty. Due to the fact that this

type of experiment is easily carried out only at zero

pressure, it can only give the inital slope in the depend-

ence of 7 on volume. The second method, which is ap-

plicable only to superconductors, involves the measure-

ment of the superconducting threshold curve as a func-

tion of pressure. In general, the threshold relation for

any superconductor can be written

Hc = H^{t) (2)

where Ho is the critical field at 0 K; ^ = T/Tc is the

reduced temperature; and, f(t) is the normalized

threshold function. The electronic specific heat coeffi-

cient is related to the threshold parameters by the well-

known relation [2]

V

477 n (3)

'Present address: Northeastern University. Department of Physics, Boston. Mas-

sachusetts 02115.

where /"(O) is the second derivative of the threshold

function at 0 K. Here, yiV) is determined directly from

measurements of //o and Tc as functions of the volume.

The threshold function,/frj, is usually assumed to be in-

dependent of pressure (the similarity principle) and

most of the existing experimental evidence indicates

that this is indeed so [3,4].
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Finally, we arrive at the third metlioti whic h involves

the measurement of the change in volume at the

normal-to-superconducting transition as a iunction of

temperature. This quantity is related [5] to tlie deriva-

tive of the critical field with respect to pressure by the

following equation

^V Vn-V, He fdHc

47r \ dp Jr
(4)

The derivatives of H, at T = 0 K and T — Tc can be re-

lated to Fp by making use of (2) and (3), and by assuming

f(t) to be unaffected by pressure. We find [6]

F=^|-^f-
k//oI/'(1)\

djlc

dp
+
dth

dp
+ 1 (5)

where/' (1) is the slope of the threshold function at T=
Tc. The experimental techniques required to make such

measurements are quite similar to those used in mea-

suring thermal expansion, and unfortunately suffer

from the same limitation, namely that only a zero pres-

sure value of Fp can be obtained.

3. Theory

In order to relate the electronic specific heat coeffi-

cient to the band-structure density of states, it is neces-

sary to include the effect of electron-phonon enhance-

ment [7,8] to give

y= i7r-A-7*/V(0)(l + \) (6)

where X = 7V(0) Ve,j, and Vg/j is the electron-phonon in-

teraction. From this expression it follows that the band-

structure Gruneisen parameter F.v is given by

=
d In V

"^^
a In \

+ dlnV (7)

The second term on the right-hand side is thus seen to

have an influence which tends to reduce the total value

of F.v below the observed Fe if d In X/d In F is a positive

quantity as it usually is.

Several authors [9-13] have obtained expressions for

X which differ from each other somewhat. It has been

demonstrated elsewhere [14] that by using an expres-

sion due to Baryakhtar and Makarov [12] , a reasonably

good fit to the existing data on the volume dependence

of Tc is obtained for several elements. On this basis, the

following expression results

a In \

d In V 2Ta (l + X) 2Fr;-Fe- (8)

where I f, is the lattice (^runeisen parameter. Twice Ff;

is usually larger than (F,. + 2/3), and therefore k is in

general a decreasing f unction of pressure.

Substitution of (8) into (7) yields

F.v=F,,(l+A)-A(2Fr.-!). (9)

Although no theoretical calculations have yet been

made to determine F.v for any real metals except

copper, the nearly-free-electron (nfe) model predicts a

value of 2/3 for an isotropic metal [15]. This is simply

the result of the fact that in this approximation the

Fermi surface scales with the reciprocal lattice as the

volume is changed. Such a result would, of course, be

most likely in the case of a cubic metal like aluminum

under hydrostatic pressure. However, for an anisotrop-

ic material, an applied hydrostatic pressure gives rise

to a nonuniform strain field and may change the band

structure considerably, even in the nfe model. It is

therefore reasonable to assume that somewhat dif-

ferent values of F.v will result from measurements on

anisotropic metals. It should also be pointed out that

measurements on anisotropic materials using uniaxial

stress or change in length at transition should give a

more detailed idea of how the band structure is af-

fected.

4. Results

Experiments on the change in the superconducting

threshold curves under pressure for aluminum, galli-

um, and thorium have been carried out and the results

are presented in figure 1, where y. as determined from

(3), is plotted against the reduced volume, using

published values of the volume dependence of the com-

pressibility at room temperature [ 16] . It is apparent

that within the present range of experimental accuracy

4,5

K2 mol

THORIUM

GALLIUM

10075

Fl(;URE 1. Electronic specific heat as a function of relative change

in volumefor gallium, aluminum, and thorium.
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Table 1. Experimental values of Tg at zero

sure and calculated values o/Fn
pres-

Element Method* r,.(p=o) Kg r.,{p = 0) Ref.

Al Te 1.8±0.1 0.38 2.18 1.1 In)

PL i.y it u. /
1 9
1 .Z ib)

Cd TE . 0.7 + 1.5 .38 2.30 -0.5 (r)

PE 5.4 ±2 6.0 (d)

Ga PE -0.8± 1 .40 1.45 -1.4 (6)

Hg a PE 7.3±0.3 1.0 3.00 9.3 (e)

VC 10.2 + 2 15.1 (/I

In IL Q o -+- n /I u,oy 9 /1QZ.'+O 9 A (.'/)

PE 3.4+ 0.1 2.8 (/i

VC 1.0±0.2 -1.3 (/)

Ir it, Z. 1 0.6 9 9Z.Z l/i)

La 1 L — z.U + U.z .84 n 7/1 (J)

VC -3.4±1.0 -6.9 i/l

Mo TE 1.6 + 0.3 .41 1.65 1.2 (r)

INb TI?
It, 1.0 + U.z .OZ 1 7/1 U.4 (I/)

rb Tt?
1 L 1 T -4- n c

1. / + 0.0 1.1/ 9 Q/1 9 n I")

PE 6.0 + 0.9 7.1 ai

VC 1.8±0.4 -1.8 1/ 1

Ke Tt?
It, 4.0 + U.o 0.46 2.66 (f)

Sn TE = 1.0 .60 2.27 -0.7 (/.)

PE 2.0 + 0.3 0.9 ((')

T TCUh 1. / + 0.O III)

la TT?
1 L l.o + 0.

1

.DO l.o/ n 9U.z ('/)

PE 4.0±0.5 4.7 I/I

Th PE 0.6 + 1 .53 1.41 -0.2 IM

Ti TE « 2.0 .38 1.33 2.0 (m)

Tl
11

DI?rL /I A -1- 1— 4.U + 1
7 1

. ( 1 — y .0 l/< I

V TE 1.7±0.1 .60 1.55 1.2 1'/)

VC -0.8±0.6 -2.7 (/)

Zn PE 4.7±2 .38 2.1 5.2 id)

Zr TE 0.0±0.2 .41 0.82 0.4 Im)

"TE — Thermal expansion; PE— Pressure effect; VC — Volume change; US — Uniaxial

stress.

"J. G. Collins and G. K. While. Progress in Low Temp. Physics, Vol. IV, Ed. C. J. Gortei

(North Holland Publ. Co.. Amsterdam. 1964).

''Present work.

' K. Andres, Phys. kondens. Mat. 2, 294 (1964).

dl. V. Berman, N. B. Brandt and N. 1. Ginzburg, Zh. Eksp. i Teor. Fiz. 53, 124 (1967);

Sov, Phys. JETP 26, 86 (1968).

•J. E. Schirber and C. A. Swenson, Phys. Rev. 123, 1115 (1961).

/ H. Rohrer. Helv. Phys. Acta 33, 675 (1960).

"J. C. Collins, J. A. Cowan and G. K. White, Cryogenics 7, 219 (1967).

I' E. Fawcett and G. K. White, Jour. Appl. Phys. 39 . 576 (19681.

K. Andres. Phys. Rev. 168, 708 (19681.

j -M. Garfinkel and D. E. Mapolher. Phys. Rev. 122, 459 11961).

G. K. White, Phys. Letters 8, 294 (1964).

' C. H. Hinrichs and C. A. Swenson. Phys. Rev. 123, 1106 (1961).

J. A. Cowan, A. T. Pawlowics and G. K. White. Cryogenics 8, 155 (1968).

" M. D. Fiske. J. Phys. Chem. Solids 2. 191 (1958).

" C. Grenier, Compt. Rend. 241, 862 (1955).

See Ref. 16.

See Ref. 6.

'"G. Dummer and D. E. Mapother, Proc. N.B.S. Electronic Density of States Symposium,

Nov. 3-6, 1969.

no definite conclusions as to the detailed behavior of 7
as a function of volume can be made, other than that

the slope appears to be positive (y decreases with

decreasing volume) for Al and Th while being nearly

zero for Ga.

Earlier pressure effect data on Al yielded values of Fe

several times as large as those obtained from thermal

expansion data. The present results show that the two

methods are capable of yielding consistent results.

For Th and Ga our measurements provide only an

order of magnitude estimate of the magnitude of the ef-

fect.

In order to summarize the present situation in this

field, we compare the existing data for a number of ele-

ments in table 1. As is evident from the table, there ap-

pear to be rather large discrepancies between the su-

perconducting and thermal expansion results for Fe. At

present, this lack of agreement is still unexplained and

will certainly require further experimental work to be

resolved. The most reliable results appear to be those

obtained from thermal expansion measurements,

because of the^small errors reported in most cases. In

particular, the F.v values for the nontransition elements

are of the predicted order of magnitude and, for exam-

ple, the experimental value of 1.1 for Al is not very far

from the nfe model's prediction.

5. Conclusion

It is readily apparent that more accurate techniques

for the measurement of the threshold parameters are

necessary to determine the volume dependence of A'^(O)

with any accuracy. The present experiments only serve

to give an order of magnitude estimate of the effect and

therefore any detailed comparison with theory cannot

be attempted. It should be realized, however, that

theoretical information will be required on both the

band-structure density of states and on the volume de-

pendence of the electron-phonon coupling in order to

completely resolve the question.
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A great deal of progress has been made recently in

calculating the energy band structure of random alloys

[1] . In searching for an experimental test of these theo-

ries, we have found that the rapid variation with con-

centration of the pressure and strain derivatives of the

superconducting transition temperature {dTddp and

dTclde) observed [2.3] in the In-Cd alloy system has a

direct connection with the alloy density of states n(E)

at the Fermi level Ef. These measured derivatives are

proportional to the energy derivative of n(E) at Ep,

hence show strong structure near van Hove singulari-

ties where the Fermi surface (FS) topology changes.

The amount of broadening of the singularities is a mea-

sure of the Bloch state lifetime, and the sign and shape

of the observed structure is a direct indicator of the

type of FS topology change.

The basic formahsm for the dTddp calculation and

its application to In-Cd has been presented elsewhere

[4]. We shall concentrate here on important cor-

rections to that calculation which were found in the

course of interpreting the dTdde data on whiskers

which has recently been reported [3]. Since pressure

and uniaxial stress are just special cases of a general-

ized stress, the analysis is similar. As in [4] we take

into account the rapid variation in n(E) near a singular

point Ec by separating n(E) into a rapidly varying part

8n{EF — Ec) plus a monotonic background noiEp). It

follows that the varying part of the derivative may be

written:

dTc _ Tc dF dig y __

'dX~2noiEr) d-q dX
"^'^

'Research supported by the National Science Foundation. This is a portion of the Ph. D.

thesis work of Mr. H. D. Kaehn, the full details of which will be published shortly elsewhere:

H. D. Kaehn and R. J. Higgins (to be published).

where 7] is (Ep — Ec)l\\ T is A/r, and F{iq) is dn(Ef —
Ec, r) convoluted with a broadening function of width

kTc. The calculated impurity dependence of dTddp is

shown in figure 1 compared with experiment assuming

electron saddle point and pocket singularities in n(E)

near 0.8% and 1.9% Cd, respectively. These features

are consistent with available information on the pure In

FS. It is convenient to compare the calculated ratio of

the derivatives at the peak values

dp I de

with the experimental value of —2 X 10"^ (%

e)/(kg/cm^). We find that by neglecting the derivatives

of Ec, as in [4] , the calculated value is an order of mag-

nitude too large. We associate Ec with a feature of the

dP ' kg/cm'

EXPER.

r K
-j- \, 1.5-

1

1.0-

1 1

10 2.0 3.0

at. % Cd in In

Fl(;URE 1. Computed dT<./dp for In doped with Cd [4] compared
with experiment [2].
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lliiid zone Fermi surface near the corners T of the Bril-

louin zone and write

Ec= Er+ EHS

where Ens is the band structure contribution to the free

electron value of Er for the bottom of the band near T.

The calculation of R including the derivatives of Er and

Ens leads to a value in good agreement with the experi-

mental data. It is interesting to note, however, that the

pressure derivative of Er nearly cancels the pressure

derivative oi Er so that the smaller term from Ens is sig-

nificant.
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Hydrogenation Effects on Palladium Tunnel Junctions
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The effects of hydrogenation on the electron tunnehng characteristics of Al-oxide-Pd junctions
have been investigated. It is found that the impedance of the junctions increases from 1 to 5 percent

with increasing hydrogenation. with the greatest increase occurring at large positive bias on the Pd. We
attribtue this effect to the introduction of electrons from hydrogen into the d bands of palladium.

Key words: Al-oxide-Pd; electronic density of states; hydrogen in palladium; rigid-band approxima-

tion; tunnel junctions.

1. Introduction

We have ineasured the tunneUng characteristics of

the Al-insulator-Pd junctions, ranging in zero-bias im-

pedance from 50 to 12,000 ohms, at 4.2 and 120 K. The
experiment was designed to investigate the effect of

hydrogenation upon the level and shape of the dif-

ferential impedance curves of the junctions.

Hydrogen dissolves in sizable quantities in palladi-

um, and dissociates, leaving an increased number of

electrons per Pd atom, plus interstitial protons [1,2,3].

Measurements with increasing hydrogen show a

decrease in the specific heat [4] , paramagnetic suscep-

tibility [4], temperature dependent resistivity [5], and

thermoelectric power [6]. All of these measurements,

combined with de Haas-van Alphen experiments [7]

,

galvanomagnetic experiments [8], and, more recently,

band calculations [9] indicate that Pd has a closed

electron Fermi surface, centered about the Y point of

the Brillouin zone, and two hole surfaces, one of which
is open, and both of which are centered about the X
point of the zone [7,9]. The Fermi level of Pd is near

the top of the d band of the copper-like band structure,

resulting in a rapidly varying density of states with

sharp peaks in the vicinity of the Fermi surface.

Hydrogenation of the Pd raises the Fermi level in the

approximately rigid d band by fiUing some of the d
states. This reduces the energy density of states at the

Fermi surface, and moves the peaks with respect to it.

The tunneling current is given by a sum of the con-

tributions from the portions of /f-space falling within the

bands in question. The energy density of states does

not appear explicitly in these contributions. However,

the departures from simple one-band spherical energy

surfaces in /r-space and the degeneracy of the bands,

which account for the variations in the energy density

of states, also determine the E{k) relations in the in-

tegral and the limits of the integrals [10]. Thus, if any

metal were to show any reflection of its electron struc-

ture in its tunneling behavior, Pd, with its rapidly vary-

ing density of states near the Fermi surface, might be
expected to do so.

2. Experimental Results

Hydrogenation experiments have been performed

with a large number of samples. On each substrate

there are three similar junctions, 6.3x10"^ mm- in

area, of Al-oxide-Pd, and a control junction with a

counter electrode usually of Al, Pb, or Ag. The oxide is

produced by glow discharge in dry oxygen, and all

layers are formed before the evaporator is opened. Dif-

ferent junctions with the same counter electrode on the

same substrate have zero-bias resistances typically

within 20 percent of each other. However, their dif-

ferential resistance curves normalized to the same zero-

bias level are usually within 2 percent of each other

over the range —0.5 to +0.5 volts. The resistance level

for different junctions is determined by time in the glow

discharge.

The maximum in the differential resistance of the Al-

oxide-Pd junctions is shifted toward positive bias on

the Pd, by about 100 mV. A similar shift occurs injunc-

tions with control electrodes, and is characteristic of

our method of oxidizing. It suggests a barrier height at

the counter-electrode oxide interface about twice that

at the Al-oxide interface [11].
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Figure 1. Differential resistance versus voltage for an Al-oxide-Pd

junction at 120 Kfor different levels ofhydrogenation.

A is the unhydrofienated sample. B and C have increasinj: levels oi hydrojien.
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Applied Bias
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Fl(;URE 2. Percent change in differential resistance versus voltage

due to hydrogenation for Al-oxide-Pd and A]-oxide-A\ junc-

tions on the same substrate.

An example of the effect of hydrogenation upon the

differential resistance curves of Al-oxide-Pd junction is

shown in figure 1. The junction was hydrogenated at

120 K, and measurements at this temperature are

shown. The curves A, B, and C were taken before

hydrogenation, after 1/2 hr. of hydrogenation, and after

4 1/2 hrs. of hydrogenation at 300/Lt pressure, respec-

tively. The zero-bias differential resistances were

2220n, 2240a, and 22900 respectively. The curves

have been normalized at zero-bias for comparison.

After the completion of these measurements, the sam-

ple was brought to room temperature in dry nitrogen, to

drive off the hydrogen. A fourth curve, which falls

directly upon curve A, was then run at 120 K, indicating

a reversible hydrogenation process, and reversible

response in the tunneUng resistance.

In order to clarify the shift of resistance with

hydrogenation, we show in figure 2 the percentage

change in resistance, A/?, as a function of voltage for

the sample of figure 1, for a second Al-oxide-Pd sample,

and a control junction with an Al counter electrode, all

on the same substrate. The zero bias differential re-

sistance for each of the junctions is shown in the figure.

The variation ofR with V for the control is due to a com-

bination of data plotting error and instrument zero shift

totaUing about 1/4 percent. The downward shift of 1

percent represents a reduction in from ISlOfi to

17950 upon hydrogenation. Ro remained at 1795fl

after dehydrogenation. Ro returned to its original

value for both Pd junctions, when they were

dehydrogenated and measured, 5 days after these ex-

periments. In figure 2, we observe a minimum in the

percent resistance rise at applied voltages close to the

Applied Bias

Figure 3. Differential conductance near zero-bias at 4.2 K, for an
Al-I-Pd junction, compared with data ofRowetl {12\. and resistance

structure due to the superconducting energy gap oj the aluminum ,

electrode, at 1 .2 K.

i;

resistance maximum at about 65 mV, followed by a;

general rise to the right, reaching 4 or 5 percent at +500 ^

mV.
We have also performed such measurements at 4.2 i

K. For low-impedance junctions at the higher tempera-

ture, appHcation of the relatively large biases in mea-^

surement warms the junction enough to drive out the
:

hydrogen. The results of measurements at 4.2 K are not

significantly different from those obtained at 120 K, but

the use of the low temperature reduces the effects of
;

heating.

As an indication that the observed effects are in fact!
i

due to tunneling, we show in figure 3 the zero-bias'

structure at 4.2 K, compared with the data of Rowell
^

[12], and the aluminum gap at 1.2 K. Calculation from I
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this gap yields a transition temperature of 1.4 K for the

aluminum.

3. Conclusions

We have found a reversible tunnel resistance in-

crease of up to 5 percent at positive Pd bias, in Al-I-Pd

junctions. This effect increases with increasing apphed

voltage with that polarity. No evidence for such an ef-

fect is found with Al, Pb, or Ag counter electrodes. The

change in tunneUng characteristics seems to be due to

the introduction of electrons into the Pd electrode. It

may arise directly from a change in density of tunneling

states near the Fermi surface of the Pd, or from a

change in the effective barrier height at the Pd-oxide in-

terface, either one produced by the introduction of the

electrons. We are conducting further studies, in order

to clarify this point, and are also attempting to deter-

mine quantitatively by other measurements, the

amount of hydrogen introduced into the samples.
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Calculation of Thermodynamic Information Based
Density of States Curves of Two Allotropes of

on the

Iron*

D. Koskimaki and J. T. Waber**

Northwestern University, Materials Science Department, Evanston, Illinois 60201

The use of density of states curves to obtain thermodynamic information associated with the al-

lotropic phase transitions in iron is discussed. The density of states curves for both body-centered cubic

and face-centered cubic iron are determined using a program which randomly interpolates between

previously calculated eigenvalues to generate a large number of new energy solutions. These new eigen-

values enable a more accurate determination of density of states curves than is possible by plotting and

averaging the original eigenvalues themselves. The density of states curves determined for each phase

are used to obtain the energy sum of the eigenvalues of the valence electrons, the shift in the Fermi

potential with temperature for the two curves, and the electronic specific heat versus temperature

curves for both phases of iron over the temperature range from 0 K to the melting point.

Key words: Electronic density of states: iron; phase transitions; thermodynamic information.

1 . Introduction

1.1. Phase Changes in Iron

Pure iron experiences two allotropic phase changes

as it is heated from 0 K to its mehing point. Iron is body-

centered cubic (a-iron) from 0 to 1183 K. face-centered

cubic (y-iron) from 1183 to 1673 K, and once again body-

centered cubic (8-iron) from 1673 to 1812 K, the melting

point. In addition, a-iron experiences a ferromagnetic

Curie point at 1042 K. From a thermodynamic view-

point, these phase changes have been explained from

experimental specific heat and enthalpy values ad-

justed for thermodynamic consistency. Very little suc-

cessful work has been done, however, to derive these

thermodynamic relations entirely from the basic elec-

tronic structure of the phases, mostly because energy

band calculations at least initially lacked the accuracy

needed for these calculations. The present work is a

calculation of the information which is directly obtaina-

ble from density of states curves for both crystal struc-

tures, that is, the summation of the energy eigenvalues

of the valence electrons, and the electronic specific

*Tliis research was supported by the Advanced Research Priijects Agency of the Depart-

ment of Defense, through the Northwestern University Materials Research Center.

**(iraduate student and Professor, respectively, Department of Materials Science and

Materials Research Center, The Technological Institute. Northwestern University, Evan-

ston. Illinois 60201.

heat versus temperature curves for the entire tempera-

ture range of solid iron. To our knowledge, a true elec-

tronic specific heat versus temperature curve based on

an actual density of states has never been calculated

for any element.

1 .2. Previous Work

In 1932, Austin [ 1] first discussed the allotropic

phase changes in iron in light of the temperature depen-

dence of the specific heats and free energies of both

crystal structures. He indicated the necessary ther-

modynamic equations and used a mixture of observed

and hypothetical specific heats and enthalpy dif-

ferences to obtain a consistent set of free energies for

the two phases. As Austin indicates, the most stable

phase at any temperature must have the lowest value

for the Gibbs free energy in relation to other possible

phases at this temperature. The Gibbs free energy is

given by

G = H-TS
or

G{T)=Ho+ r C,dT-T {' ^,dr (1)
Jo Jo I

where Ho is the enthalpy at zero degrees, and C,, is the

specific heat at constant pressure for the phase. Since
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the entropy term or third term on the rijrht side of

eq (1) has a greater magnitude than the second term,

the free energy will decrease with increasing tempera-

ture. The temperature T in front of the entropy term in-

tegral gives the term an increasingly large magnitude

at higher temperatures, while the temperature T' in the

denominator of the integrand causes the specific heat

at higher temperatures to become increasingly less im-

portant in relation to the specific heat at lower tempera-

tures. For this reason differences in the specific heat at

low temperatures have a more profound effect on the

free energy and hence the phase stability at higher tem-

peratures than do the specific heat differences at these

higher temperatures. Obviously, since the stable phase

at zero degrees is body-centered cubic, the free energy

at zero degrees is lower for the bcc phase than for the

fee phase. At low temperatures the specific heat of

fee iron must exceed the specific heat of bee iron,

if the free energy of fee iron is to be lowered relative

to bee iron as the temperature is raised, causing the first

phase transition. However, if the bcc phase is to reoc-

cur above 1673 K, the specific heat versus temperature

curves must intersect at some intermediate tempera-

ture far enough below 1673 K to allow the specific heat

difference to have an appreciable effect in lowering the

free energy of bee iron relative to fee iron as the

temperature is raised. Obviously, to predict this

behavior, one needs the specific heat curves for both

phases at all temperatures between zero degrees and

the melting point, along with the difference in enthal-

pies between the two phases at 0 K. Since each phase

exists only in a certain range of temperatures, the

specific heat curves and enthalpy difference at zero

degrees must be derived theoretically for these phases

outside their observed range of existence.

Austin obtained the specific heat relations for y-iron

in the temperature range from 0 to 1183 K by ex-

trapolating the specific heat values for face-centered

cubic iron alloys of 19.4 and 30% manganese con-

tent. Using these values for fee iron and experimen-

tally observed values for bee iron, he obtained curves

for the temperature dependence of the free energy.

Then, by adjusting these curves to coincide at the first

transition temperature, he found an enthalpy difference

of 960 calories per gram-mole at 0 K.

In 1942, Seitz [2] showed that the necessary

behavior of the specific heat versus temperature curves

for the two crystal structures could be explained if

bee iron had a higher electronic specific heat, while

fee iron had a higher lattice specific heat in relation

to the other phase. Since the electronic specific heat is

a significant part of the total specific heat only at high

and very low temperatures, the higher electronic
|

specific heat of bee iron would allow the total specific

heat of this phase to exceed that for fee iron at high

temperatures, while the higher lattice specific heat of

fee iron would enable the total specific heat of this

phase to dominate at lower temperatures. The total '

^

specific heat curves of the phases would then be con-
|

sistent with the behavior necessary for the phase transi-
!

tions as suggested by Austin.
j

|'

In 1943. Manning [3] and Greene and Manning [4]
j

calculated the electronic band structures of both bee
'

and /cc iron, using a Wigner-Seitz method. They were
^

able to show that the electronic specific heat coefficient '

'

of bee iron does indeed exceed the electronic specific
\

heat for fee iron. At low temperatures the electronic
j

'

specific heat is proportional to the density of states at

the Fermi level and can be found approximately by
;

using a formula derived by E. C. Stoner [ 5] :

|^

Ce( = 0.209 X 10-^ ) «r (2) la

where niEy) is the density of states at the Fermi level

El-' in states/Rydberg K, and R is the gas constant. \

Manning and Greene obtained Fermi level density of \

states values of 17 and 11.4 states/atom Rydberg for !

bee and fee respectively. However, due to the ap-
j j,

proximate nature of their density of states curves, they i

j,

did not attempt to derive any further thermodynamic
^

information from these curves.
|,

By extrapolating and adjusting existing s|)ecific heat
j,

curves to conform to the observed phase changes in
|,

iron, Johanson [6] and Darken and Smith [7] have ob-

tained values for the total specific heat of both crystal
j,

structures of iron at temperatures outside the range of
„

their observed existence.
,j

Zener[8] and Weiss and Tauer [9] have divided the
jj

total specific heat of a-iron into magnetic and nonmag-
|

netic contributions. Using their nonmagnetic specific
\

heat curves and Manning and Greene's values for the
|

electronic specific heat coefficients, Weiss and Tauer

concluded that fee iron has a Debye temperature of

335 K as compared to 420 K for bee iron, and that
1

fee iron would be stable by 130 calories/mole at 0 K I

in the absence of magnetic effects.

Kaufman, Clougherty and Weiss [10] have analyzed

thermal expansion data, the effects of pressure on elec-

trical resistance, and extrapolated results from fee al-

loys of iron to conclude that fee iron has two spin

states. At very low temperatures fee iron is antifer-

romagnetic with a moment of less than one Bohr mag-

neton, while at high temperatures it has a high moment, "

greater than two Bohr magnetons, and is not ferromag- '

I
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netic. As the temperature is raised, the transition from

the low spin to the high spin state imparts an extra en-

tropy to the fee structure, lowering the free energy for

fee iron and causing the stabilization of this phase

above 1183 K. As the temperature continues to rise the

entropy resulting from the magnetic disordering above

the Curie point for bee iron is multiplied by an in-

creasing value for temperature and eventually over-

rides the entropy of the fee structure, causing the

bee phase to once more become stable above 1673 K.

Based on their calculations, Kaufman and coworkers

found that the values of the Debye temperature and the

electronic specific heat coefficients are approximately

the same for both phases (Oo ~ 432 K, yi.e ~ 12 X lO-*

cal/mole K).

In addition to the work of Manning and Greene, ener-

gy bands have been calculated by Wood [11], Stern

[12], Abate and Asdente [13] and Snow and Waber

[14]. The present work is based primarily on the calcu-

lations of Snow and Waber.

2. Theory

tron. The summation j is over all the occupied orbitals

including j = i. The total energy, which is used to find

the electronic enthalpy difference, is given by

(4)

where the second and third terms on the right side of

the equation are correction terms due to the fact that

each electron pair is counted twice in eq (3). The first

term on the right is the sum of the eigenvalues, which

is easily evaluated at 0 K by integrating the density of

states times the energy, or

En{E)dE. (5)

The electrostatic and exchange energy corrections

can be approximated using an equation given by Snow,

Canfield and Waber [15]

:

"^^V; + h^W;j = \ j p (r)[F(/-) + r(r)] d'^r (6)

2.1. The Enthalpy Difference at 0 K

The electrons in a metal are generally divided into

core electrons and valence electrons. In iron and other

3d transition elements, the core electrons exist in the

argon configuration, that is, ls'^2s'^2p^3s''3p^ . Between

two phases, the core electrons are altered only sHghtly

and, as such, their effect on the enthalpy difference for

two phases is ignored in this paper.

The enthalpy difference due to the valence electrons

consists of a magnetic part and an electronic part. The
magnetic enthalpy difference results from the fer-

romagnetic ordering of unpaired electron spins in ad-

jacent atoms of bee iron, which has been calculated

by Weiss and Tauer [9] to lower the energy of bee

iron by approximately 2086 cal/mole at 0 K.

To calculate the electronic enthalpy difference, the

eigenvalues of the energy band calculation are con-

sidered. In most calculations, the eigenvalues are given

by

(3)

where p(r) is the charge density which is found by

summing the square of the radial electron wave func-

tions, or

(7)

V(r) is the self-consistent crystal potential used in the

energy band calculation and W(r) is the exchange

potential which can be approximated using Slater's p^l^

method [16]. Thus

(8)

where W(r) is in Rydbergs when p is given in elec-

trons/(atomic unit)^.

2.2. The Shift in Fermi Potential with Temperature

At any temperature above zero degrees, eq (5) must

include the Fermi-Dirac distribution, or

Ef{E, r, i)n{E)dE (9)

where T, is the kinetic energy of the ith electron with

respect to the nucleus, Vi is the electrostatic potential

of the ith electron with respect to the nucleus, Vij is the

electrostatic potential of the ith electron with respect

to the yth electron, and Wij is the exchange potential

energy of the ith electron with respect to the jth elec-

where E-i and E\ are the upper and lower limits respec-

tively of the density of states curve, and

/

{E.T, I,) is the

Fermi-Dirac distribution given by

f(E.T.Q= ^^^^ (10)

1 + exp
E-i (T)

kT

743



The function f{E,T,Q {lives the probabihty that an elec-

tron will occupy a state at a {liven energy and tempera-

ture. The Fermi potential l,(T). which is equal to the

Fermi level Ef at absolute zero, is defined as the energy

level at which the Fermi-Dirac function

/

{E,T,(,) equals

1/2. The Fermi level £"/ is defined as the energy at

which the number of vacated levels below this level

equals the number of excited electrons above. As the

temperature is raised above 0 K, the Fermi potential

shifts in energy from its value of £'/ at 0 K, the Direction

and magnitude of this shift depending upon the tem-

perature and on the shape of the density of states curve

near the Fermi level. This behavior can be understood by

studying figure 1. At any temperature, the electron dis-

tribution is given by the product of the Fermi-Dirac dis-

tribution curve and the density of states curve, as

shown in figure 1(c). However, if the Fermi potential is

prevented from shifting, the number of states vacated

from below the Fermi level will not necessarily equal

the number of electrons excited to above the Fermi

level, due to the asymmetry of the density of states

curve about the Fermi level. In order that the number
of valence electrons remain conserved as the tempera-

ture is raised, the Fermi potential must shift, as shown

in figure 1(d). Mathematically, this shift can be un-

derstood from the following argument. The total

number of valence electrons n is given by

n= \'''n{E)f{E, T, QdE (11)
J/;i

At absolute zero the Fermi-Dirac distribution is unity

for energies less than the Fermi level and zero above,

as shown in figure 1(a). Therefore, at 0 K eq (11) can be

reduced to

n = 1^'' n{E)dE (12)

At any temperature, the integral in eq (11) can also be

split into two integrals at some constant energy which

can be chosen as the Fermi level ,

n= \' u{E)f(E. r, OdE+ n(E)f{E, T, QdE.

(13)

Substituting eq (12) for n, one obtains

f'' n{E) [1 -/(£. r. QME = n{E)f{E, T. 0<IE.
jEi jEf

(14)

The left side of this equation represents the number of

empty states below the Fermi level E/.-, as can be seen

1 T = O'K

f(E.T)

\ > O'K

(a)

0
E F

n (E)

U-------------^ (b)

M 1 1 1 II STATES VACATED BY
EXCITED ELECTRONS

n(E)f(E.T) 1 t:>^^H STATES FILLED BY
\ r ^ rH EXCITED ELECTRONS

|L—^ (0

n(E)f(E.T)

Al 1

31 1

? ENERGY

Figure la. The Fermi-Dirac distribution, which fiives the proba-

bility that a state will be occupied at a given energy and
temperature.

in this case, the Fermi potential is assumed to e<iual the Fermi level.

Fl<;URE lb. A hypothetical density ofslates curve.

Figure Ic. The Fermi-Dirac distribution for some temperature

than zero multiplied by the density of states curve of figure 1(b)

to give the distribution of electrons.
Tile Fermi potential t, is assumed ecjual to the Fermi level E^-. The cross-hatch re^iions

represent states vacated by and filled by thermally excited electnms. Note that the area
representing; the states vacated by these electrons is une(]ual to the area of the slates filled

by these electrons, violating: the fact that electrons must be conserved as the temperature
is raised.

Figure Id. The Fermi-Dirac distribution for some temperature
greater than zero multiplied by the density ofstates curve.

In this case the correct Fermi potential is used. et|uating: the areas representin;: states

vacated and filled by thermally excited electrons.

by the fact that if/ {E,T, Q is the probability that a state

at a certain energy and temperature is occupied, then

[l-/(£',7', ^)] is the probability that this state is unoccu-

pied. The right side of the equation gives the number of

electrons excited to states above the Fermi level. When
a certain temperature and density of states curve are

given, then eq (14) determines the position of the Fermi

potential i,(T), contained in the expression f(E,T,0,

since the Fermi potential is the only quantity in this

equation which remains a variable. It is important to

note that at all temperatures the definite integrals of eq
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(14) are integrated over the limits of to E,.' and E,. to

E-2 rather than from E\ to [,(T) and ^(Tj to E>, as this

condition is necessary to conserve the number of elec-

trons occurring at 0 K. If the latter limits were taken,

then eq (14) would no longer uniquely determine the

position of l,(T).

2.3. The Electronic Specific Heat

The electronic specific heat is found by taking the

derivative with respect to temperature of the energy e-r

given by eq (9). Ideally, the derivative of the total elec-

tronic energy Et given by eq (4) should be used instead,

but the temperature dependence of the electrostatic

and exchange potential energy corrections is assumed

small enough to be neglected. Values for the electronic

specific heat must be obtained numerically, since the

energy integral of eq (9) must be obtained numerically.

The Fermi potential shift with temperature complicates

this energy integral even further.

Ziman [17] has given an expression for the elec-

tronic specific heat which is usually quite accurate at

low temperatures:

el- Tn{E,) + in{i]
lie TT-k-T iinjE)

(IT 3n(E) c)E

(15)

The second term accounts for the Fermi potential shift

with temperature, which can be found using the ap-

proximate formula

6 niEf)

ME)
,iE E = Ef

(16)

Eq (16) is only approximate since dn{Ef)ldE gives the

slope at the Fermi level, but other than this, no account

is made of the shape of the density of states curve near

the Fermi level.

3. Procedure

The starting point in the calculation was a set of

eigenvalues for both bcc and fee iron calculated by

Snow and Waber using the augmented plane wave

method. They used a reciprocal lattice grid spacing of

27T(m,n,p)l4'a where a is the unit vector of the real lat-

tice. For bcc and fee lattices, this lattice spacing

amounts to 128 and 256 points respectively, within the

Brillouin zone of each structure.

Snow and Waber calculated these eigenvalues for

two electron configurations, 3c/^4s' and SdHs^, and con-

cluded on the basis of calculated occupancies for the

bands, that 3c?^4s' is the preferred configuration for

both phases. Stern [12] also found previously that the

3d''4<s^ configuration was the most compatible with his

self-consistent field calculations for bcc iron. Since

there are substantial changes in charge distribution and

energy with changes in configuration, the Softs'

configuration is used for both phases, although we
recognize that the Engel-Brewer theory [18] predicts

the configuration offee iron to be SdHsp'^.

Although the density of states curves calculated by

Snow and Waber have a resolution of roughly 0.03 Ryd-

bergs, which is better than any previously pubHshed

curves for iron, this resolution is not small enough for

an accurate calculation of the temperature dependence

of the Fermi potential and the density of states at the

Fermi potential. The energy range of the electrons af-

fected by the Fermi-Dirac function is about 1 or 2 on

each side of the Fermi level, and at 1000 K this energy

span amounts to only 0.02 Rydberg. Thus, any fine

peaks or other detailed structure in the density of states

curve which might affect the Fermi-Dirac distribution,

would be partially or wholly smoothed out if such detail

occurred over a span less than the resolution of 0.03

Rydberg.

Fortunately, an ingenious program written by F. M.

Mueller, et al. [18], was made available to the authors,

which takes the set of original reciprocal lattice points

and interpolates quadratically for points between them

to obtain new eigenvalues. In order to prevent false

structure in the density of states curve from the regular

choice of these points, the new points are chosen ran-

domly. In this way 20,000 new points and their eigen-

values were obtained on a CDC 6400 computer in just

five minutes of machine time. The reliability of this

QUAD method is discussed by Kennard et al. in

another paper of this Conference (p. 795).

Using the density of states curves obtained in this

way, the Fermi levels for both phases were found by

using eq (12) to fill the density of states curves to con-

tain eight electrons.

3.1. The Shift in Fermi Potential

The Fermi potential shift was found by solving eq (14)

for the Fermi potential Since both sides of the

equation had to be numerically integrated, the Fermi

potential shift could not be obtained directly. Instead,

a trial and error method was used in which the Fermi

potential was first chosen randomly, and then interpo-

lated between successive solutions for the right and left

sides of the equation, until the two sides were equaL
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Fii:L'RE 2. The density oj states curves for 3d' 4s' iron.

These curves \sere ubliiined Uy usiii}! eijienvulues l aleuljted by StiDW jnd Waber [141

as input for the QL'AD interpolation profiram of Mueller et al. [19]. Twenty thousand points
in the Brillouin zone were used.

For each temperature, eq (14) had to be solved for about

five iterations to obtain a consistent value for (,(T).

3.2. Total Energy and Specific Heat

The energy summation of the eigenvalues was found

for a range of temperatures by using the shifted value

for the Fermi potential and numerically integrating eq

(9).

The electronic specific heat was found by plotting

the energies obtained from eq (9) for a range of tem-

peratures and determining the slope of this curve at

each temperature. A smooth curve was constructed

from these graphical values.

4. Results and Discussion

4.1. Density of States Curves

The density of states curves obtained for both crystal

structures are presented in figure 2. The energy scale

is chosen to give the same zero energy as that used in

the self-consistent crystal potential of the APW calcula-

tion by Snow and Waber. This energy scale gives the

2 5

2.0

2.5

FACE - CENTERED CUBIC

2 -I.I -10 -09 -08 -0.7 -0.6

BODY - CENTERED CUBIC

-I.I -1.0

ENERGY

-09 -08 -0.7

RYDBERGS

-0.6 -05

Fl(;URE 3. The smoothed density of states curves for 3d" 4s' iron as

calculated bv Snow and W aber.
One hundred twenty-eight and 256 points in the Brillouin zone were used for body-

( ciitcrcd c-ubi<- and face-centered cubic iron respectively. Note that these curves lack

nuicli ol the structure of the curves of fij;ure 2 which were obtained usinj; the Ql \V)
interpolation pro}:ram.

energy of an electron state in the density of states curve

relative to the energy of an electron just free of the

solid. For the purposes of comparison, the density of

states curves calculated by Snow and Waber are given

in figure 3. The curves of the present calculation con-

tain much more structure than the curves of Snow and

Waber. However, one should note that the Fermi levels

and the density of states at the Fermi levels agree sur-

prisingly well.

4.2. The Summation of the Eigenvalues

At 0 K the summation of the energy eigenvalues was

found to be —7.1868 Rydbergs/atom for bcc iron and
— 7.0257 Rydbergs for fee iron. To obtain a value for

the enthalpy difference of the valence electrons, these

values must be corrected for the electrostatic and

exchange potential energies given in eq (6). This calcu-

lation is presently being carried out by the authors. If

one can assume that the largest term in the enthalpy

difference between two phases is that given by the dif-

ference in the sum of the eigenvalue energies, then a
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Figure 5. The change in the density of states at the Fermi potential

with temperature.

rough indication of the stability of one phase with

respect to another is possible by comparing these sums.

As such, the difference in the eigenvalue sums for both

phases is 0.1611 Rydberg/atom at 0 K with the b.c.c.

phase having the lower energy. This value, about 50,400

cal/mole, is large compared to the approximately 1000

calories/mole accepted by most workers to be the

enthalpy difference at 0 K. However, when compared

to the sums of the eigenvalues for both phases, the

value represents only about 2% of these sums.

4.3. Electronic Specific Heat

Figure 3 gives the result of calculating the Fermi

potential shift with temperature for a range of tempera-

tures from 0 to 2000 K. Figure 4 gives the correspond-

ing change in the density of states curve at the Fermi

potential. From figure 1, one could expect the Fermi

potential to shift along the density of states curve from

regions of higher density toward regions of lower den-

sity. As can be seen from figures 4 and 5, this is indeed

the case. Face-centered cubic iron shifts down the den-

sity of states curve over the entire temperature range.

Body-centered cubic iron shifts down the slope initially,

but as the temperature is raised the direction of the

shift is reversed. The reason is that the Fermi-Dirac

function extends over an increased energy range to in-

clude the whole peak rather than just part of the double

peak in the immediate vicinity of the Fermi level. At

this higher temperature the tendency of the Fermi

potential is to move away from the center of the entire

double peak and to do this the Fermi potential must

shift temporarily up the slope of one part of the double

peak.

The density of states at the Fermi level obtained by

various authors are compared with the present results

in table 1. The experimental electronic specific heat

coefficient of bcc iron is slightly higher than that pre-

dicted by eq (2), since the electron-phonon enhance-

ment has not been included in the present work. On the

basis of their energy band calculations. Snow and

Waber have estimated this enhancement to increase

the value of the electronic specific heat for Sd'^'is^ iron

by factors of 1.09 and 2.09 for bcc and fee iron

respectively.

The electronic specific heat versus temperature

curves are presented in figure 6 with numerical values

given in table 2. The values extrapolated from low tem-

perature are plotted as dotted lines. It can be seen that
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Table 1. Density of states at the fermi level and elec-

tronic specific heats found by several authors

5.0

States/eV-atom
2

10-"calories/moleK °
<

y.
' o

(ireene and Manning [3, 4]

Snow and Waber [14]

Kaufman et al. [10]
< ;h< ng, Wei, and Beck [26]

l)i-.-an [27]

1.823

1.25

1.862

1.67

1.005

0.85

.978

1.12

10.3

7.1

10.5

12

*11.9

9.4

4.8 <^

5.5 f
12 2

6.3

'Obtained experimentally.

T.\BLE 2. The electronic specific heat and the elec-

tronic components of the Gibbs Free Energy for bcc

and fee iron between 0 K and 1812 K. Values for the

specific heat are in caloriesjK mole and values for
thefree energy are in calories!mole.

T. K -(Go-Gr)" G'j'

100 0.102 0.056 0 0 0
200 .208 .112 10.3 5.6 -4.7
300 .312 .169 30.9 16.9 -14.0
400 .421 .230 61.5 33.9 -27.6
500 .532 .295 103 .56.4 -47
600 .645 .363 155 84.8 -70
700 .762 .433 218 122 -96
800 .865 .507 292 162 -130
900 .943 .586 376 208 -168
1000 .990 .664 471 262 -209
1100 1.024 .737 575 323 -252
1183 1.043 .800 668 380 -288
1200 1.045 .812 690 390 -300
1300 1.061 .890 812 463 -349
1400 1.071 .966 942 542 -400
1500 1.077 1.043 1082 631 -451
1600 1.085 1.112 1224 726 -498
1700 1.096 1.180 1376 822 -554
1800 1.102 1.240 1536 929 -607
1812 1.104 1.246 1555 942 -613

the electronic specific heat deviates substantially from

the linear behavior usually assumed by most authors.

With increasing temperature, the bcc curve deviates

first positively and then negatively from linear behavior

while the fee curve deviates positively. This behavior

can be only partly predicted by eqs (15) and (16). Calcu-

lations performed using these equations correctly give

the initial change in Fermi potential along with the

resulting change in the electronic specific heat. How-

ever, eq (16) is an approximation which gives the

change in Fermi potential as a function of the slope of

the density of states at the Fermi level. No provision is

made for the fact that the slope of the density of states

curve may change substantially on both sides of the

Fermi level. Perhaps eq (16) could be improved using

terms of a higher order with respect to T, but it would

be simpler and more accurate to obtain the electronic

u
a

z
o

y 0.5

800 1200

TEMPERATURE °K

600

Figure 6. The electronic specific heat versus temperature for both

phases of iron.

The dotted lines are extrapolated from the low temperature behavior. The two curves

intersect at 1560 K.

specific heat directly by finding the change with

respect to temperature of the energy given by eq (9).

The unusual behavior of the electronic specific heat

of bcc iron is due to the fact that the Fermi level coin-

cides with a large double peak in the density of states

curve. The Fermi-Dirac function changes from 0.99 to

0.01 over an energy span of about 13 kT. The number of

electrons which are thermally excited is a rough func-

tion of the average density of states in this energy span.

At 1000 K this energy span amounts to about 0.08 Ryd-

berg, while the total width of the double peak is only

about 0.06 Rydberg. As the temperature is increased

above 1000 K, the number of electrons thermally

excited is a function of a decreasing average density of

states, and this behavior is reflected by the decreasing

slope in the electronic specific heat curve above 1000

K. Similarly, around 600 K the energy span of the major

change in the Fermi-Dirac function occurs over about

0.05 Rydberg, which is less than the total width of the

double peak. Since the Fermi level occurs in the dip

between the peaks, the average density of states in this

region is increased, causing the positive deviation from

hnear behavior of the electronic specific heat curve

around 600 K.

The behavior of the electronic specific heat curve for

fee iron can be explained in a similar manner.
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4.4. Comparison of the Contributions to the Total

Specific Heat

To determine what effect the electronic specific heat

has iflj-elation to the phase transitions in iron, a rough

calculation was performed to resolve the total specific

heat for each phase into its various components. These

are compared in tables 3 and 4. The free energy dif-

ference resulting from each of these components was

then calculated using eq (1) and compared in table 5.

This calculation is described in the following para-

graphs.

The total specific heat is given by

C,{T) = C, (1^] [1 + arjT] + CeiiT) + C}AT), (17)

where Cv (QdIT) is the lattice specific heat at constant

volume; do is the Debye temperature; is the volume

coefficient of thermal expansion; Cei(T) is the elec-

tronic specific heat; and C,f-(T) is the magnetic

specific heat. The Gruneisen constant is given by

where /3 is the compressibility or — \IV{dVldP)T. The

first term, diOolT) [1 + aryT"] , is the lattice specific

heat at constant pressure, C,,. When T < do, Cv is pro-

portional to the cube of the temperature, and when T >
do, Cv is approximately constant and equal to the Du-

long-Petit value of 3R or 5.96 cal/K mole.

Basinsky, Sutton, and Hume-Rothery [19] have mea-

sured ar in the range 300 K ^ T ^ 1812 K, thus deter-

mining av for both crystal phases of iron. For a-iron, the

value of the Gruneisen constant y has been determined

by Kittel [20] to be 1.6 and by Slater [21] to be 1.4, em-

ploying a correction to Slater's value given by Dugdale

and MacDonald [22]. However, the present authors

could not find an experimentally determined value for

the Gruneisen constant for y-iron, nor a value of the

compressibility or bulk modulus of y-iron measured at

high temperatures. Referring to eq (18), one would ex-

pect the Gruneisen constant for y-iron to be slightly

higher than the constant for a-iron, since a,, is higher

for y-iron and could be expected to be less for the

more densely packed fee structure. A rough estimate

of the Gruneisen constant for fee iron is possible from

the temperature dependence of Young's modulus as

determined by Koster [23]. Since Young's modulus is

approximately equal to the bulk modulus (assuming

Poisson's ratio ~ 0.33), then the bulk modulus of fee

iron is about 12 X 10^ Kg/cm ^ at 1200 K, giving a com-

Table 3. Components of the Total Specific for bcc

iron. All values are in caloriesjK mole. The elec-

tronic specific heat includes an electron-phonon

enhancement factor of 1.15

T. K c.

magnetic

c„

unknown

Cp (total)

100 2.72 0.01 0.11 0.02 2.86

200 4.77 .05 .24 .10 5.06

300 5.38 .07 .36 .19 6.00

400 5.63 .10 .48 .28 6.49

500 5.76 .15 .61 .53 0.02 7.07

600 5.83 .20 .74 .79 .05 7.61

700 5.87 .25 .88 1.20 .10 8.30

800 5.88 .31 1.00 1.80 .22 9.21

900 5.89 .37 1.10 2.90 .32 10.58

1000 5.90 .43 1.14 5.70 .46 13.63

1100 5.91 .50 1.18 2.10 .73 10.42

1183 5.91 .56 1.20 0.90 .75 9.32

1200 5.92 .57 1.21 .80 .76 9.26

1 ^nnLow Q9 .4*0 on Q Id

1400 5.92 .74 1.23 .25 1.06 9.20

1500 5.93 .83 1.24 .12 1.20 9.32

1600 5.93 .92 1.25 .06 1.37 9.53

1673 5.93 .99 1.26 .03 1.50 9.71

1700 5.93 1.02 1.26 .02 1.53 9.76

1800 5.94 1.12 1.27 .01 1.68 10.02

1812 5.94 1.13 1.27 .01 1.70 10.05

Table 4. Components of the total specific heat for

fee iron. All values are in caloriesjK mole. The elec-

tronic specific heat includes an electron-phonon

enhancement factor of 1.11

T, K c,. C
J)

C f Cel C,, (total)

100 3.65 0.07 0.06 3.78

200 5.22 .20 .12 5.54

300 5.61 .32 .18 6.11

400 5.76 .44 .26 6.46

500 5.82 .54 .33 6.69

600 5.88 .65 .40 6.93

700 5.90 .75 .48 7.13

800 5.91 .85 .56 7.32-

900 5.92 .96 .65 7.53

1000 5.92 1.06 .74 7.72

1100 5.93 1.16 .82 7.91

1183 5.93 1.24 .89 8.06

1200 5.93 1.26 .90 8.09

1300 5.94 1.36 .99 8.29

1400 5.94 1.46 1.07 8.47

1500 5.94 1.56 1.16 8.66

1600 5.95 1.65 1.24 8.84

1673 5.95 1.72 1.29 8.96

1700 5.96 1.74 1.31 9.00

1800 5.95 1.83 1.38 9.16

1812 5.95 1.84 1.38 9.17
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Table 5. Free energy differences between fee and bcc

iron due to the various components of the total

specific heat for each phase. All values are in

calorieslmole. Note that the total free energy dif-

ference refers both phases to zero energy at 0 K.

To get the actualfree energy difference, 1131 calories!

mole must be added to the free energy of the fee

phase

(fit Pa\
(,(/ Kj )

ra (a

uue 10 Liu ( due to elec- unknown mag- total

tronic netic

1 on on — 9')z /

A,o 9

1 Q Qo — 98d

•J 1 91 — d97T-Z 1

=ino — 71 •j'j dl — S(S9

600 — 747 — 108 81 71 — 703

700 — 904 — 153 114 2 113 — 828

goo- — 1061 — 205 152 4 165 — 945

900 — 1218 — 265 187 10 242 — 1043

1000 -1375 -330 247 18 350 -1090

1100 -1534 -403 300 32 481 -1124

1183 -1664 -467 347 49 604 -1131

1200 - 1692 -481 356 52 626 -1139

1300 -1849 -565 415 79 778 -1146

1400 -2008 -665 475 112 942 -1144

1500 -2166 -749 538 153 1083 -1141

1600 -2324 -848 600 202 1235 -1135

1673 -2441 -924 646 243 1345 -1131

1700 -2483 -952 663 260 1388 -1124

1800 -2642 -1061 726 326 1539 -1112

1812 -2661 -1074 733 335 1557 -1110

pressibility of 8.33 X 10"^ cm^/Kg. Using this value and

the value of determined by Basinsky, et al., the Gru-

neisen constant offee iron was found to be 2.48.

Using the thermal expansion data of Basinsky, et al.,

and Gruneisen constants of 2.48 and 1.6 for fee and

bcc iron respectively, Cp-Cv was calculated for each

phase. The lattice specific heat was calculated for each

phase using Debye temperatures of 330 and 432 K for

fee and bcc iron respectively.

Assuming that there is no magnetic contribution to

the specific heat for fee iron, an experimental value

for the electronic specific heat can be found by sub-

tracting the calculated lattice specific heat Cp at con-

stant pressure from the experimental specific heat

measured for fee iron over its stable range of tem-

perature. Using the experimental results of Anderson

and Hultgren [24], it was found that the electronic

^specific heat determined in the present investigation

should be multiplied by an electron-phonon enhance-

ment of approximately 1.11 to be consistent with ex-

perimental data. This value is very close to the

electron-phonon enhancement of 1.15 which results for

bcc iron when the low temperature experimental heat

coefficient determined by Cheng, Wei and Beck [25]

is compared with the results of this investigation.

The magnetic specific heat due to the second-order

ferromagnetic transition in bcc iron was found graphi-

cally by assuming that this contribution is almost zero

below 200K and above 1700K.The nonmagnetic specific

heat was then interpolated between these temperatures

and subtracted from the total specific heat, leaving the

magnetic specific heat. It was found, however, that

when the contributions from the lattice specific heat

and the enhanced electronic specific heat are added

and compared to the experimental specific heat above

1700 K, a large part of the total specific heat was unac-

counted for. To account for this unknown contribution,

which amounts to 1.7 cal/K mole at 1800 K, an electron-

phonon enhancement of about 2.6 at 1800 K would be

necessary for bcc iron, in contrast to the value of 1.15

at low temperatures. It was decided to treat this con-

tribution as a separate component and simply call it Cp

(unknown).

When the free energies resulting from each specific

heat contribution are calculated and compared in table

5, it is apparent that the largest free energy differences

are due to the ferromagnetism of bcc iron, and to the

difference in C,, between fee and bcc iron. Since aU

values in table 5 are determined by subtracting the free

energy of bcc iron from the free energy of fee iron,

all negative values for the free energy difference tend

to stabilize fee iron and all positive values tend to sta-

bilize bcc iron. Thus the negative values are responsi-

ble for the bcc ^fee transition at 1182 K, and the

positive values are responsible for the fee bcc

transition at 1673 K. It is apparent that the major cause

of the first transition is the free energy difference due

to the larger Cv for fee iron, while a minor cause is the

free energy difference due to the larger rate of thermal

expansion for fee iron, which is determined from

AfCp — Cv). The largest component responsible for the

second phase transition is the magnetic free energy due

to the ferromagnetic specific heat of bcc iron. The

contribution to the free energy due to the larger elec-

tronic specific heat for bcc iron is about one-half the

contribution from ferromagnetism.

In this calculation, any effect due to the low spin

high spin transition described by Kaufman et al., was

ignored. This was done as a matter of convenience, as

we were only interested in showing the effect of the

electronic specific heat in relation to the phase transi-

tions. Presumably, the free energy difference which
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results from differences in Cv for the two phases could

be accounted for instead by a low spin <=^ high spin

transition as Kaufman et al., have done. It should also

be noted that Kaufman et al., assumed that C"; = Cj,

and that = Cj,, in disagreement with the results of

this investigation. However, when taken together, the

contributions to the free energy difference due to AC?/,

AfCp — C„j and Cp (unknown) approximately cancel

each other out, unaffecting the rest of the investigation

by Kaufman et al.

4.5. Factors Needed for a More Complete Analysis

The authors clearly recognize that a number of im-

f)ortant factors have been neglected in this paper.

These are briefly summarized here.

(a) As previously mentioned, the electrostatic and

exchange potential corrections have not been taken

into account to calculate the difference in enthalpy at

zero degrees. The summation of the eigenvalues gives

only a rough comparison as to which phase is stable at

zero degrees.

(b) Although the core electrons can normally be

neglected, for the purpose of calculating the enthalpy

difference between two phases they must be taken into

account. Since the enthalpy difference is a small quan-

tity which is found by subtracting two comparatively

large sums, any small factor such as the difference in

energy of the core electrons may have a substantial ef-

fect on the total enthalpy difference.

(c) The effect of the thermal expansion of the lattices

on the energy bands, and hence on the density of states

curves has not been considered. In fact, the fee lat-

tice parameter used by Snow and Waber is for 910 °C

and the bee lattice parameter is for 25 °C. For this

reason, the energy summation of the eigenvalues may
be slightly in error, and there will be a change in this

energy summation as the temperature is changed.

(d) The bands for up and down spins will be slightly

different, giving a different density of states curve for

each spin, with a slightly different density of states at

the Fermi level for each spin.

5. Conclusion

The density of states for the 3o?^4s' configuration of

both crystal structures of iron have been determined

using a set of eigenvalues previously determined by

Snow and Waber and an interpolation program which

randomly generates new eigenvalues. The density of

states curves established by these new eigenvalues

were found to contain more sharp peaks and dips than

the original density of states curves determined by

Snow and Waber; however, the Fermi levels and densi-

ty of states at the Fermi levels were very similar.

The density of states curves times the energy were

integrated for both crystal structures to establish a

rough indication of the enthalpy difference at 0 K and

the phase stability. The difference in energy was found

to be 50,400 calories with bee iron having the lower

energy. This is quite large when compared to the ex-

perimental enthalpy difference of approximately 1000

cal/mole. However, a large number of factors were

neglected in the calculation, the most important of

which are the electrostatic and exchange potential cor-

rections.

The electronic specific heat versus temperature

curves were determined for the two phases. These

curves were found to deviate substantially from the

linear behavior given by Cei = ^ eiT where yei is the elec-

tronic specific heat coefficient. Although at lower tem-

peratures the electronic specific heat of bee iron is

greater than that for fee iron, the two curves intersect

at 1560 K.

When the values obtained for the electronic specific

heat were added to calculated lattice specific heat

values, an electron-phonon enhancement factor of 1.11

for fee iron was needed to adjust the theoretical

values to the observed values for the total specific heat

curves. For bee iron, the low temperature electron-

phonon enhancement was found to be 1.15. At high

temperatures, there is an increasingly large unknown
component for the specific heat oibee iron.

The high temperature phase transition at 1673 K is

due to: (1) the magnetic specific heat resulting from the

ferromagnetic phase transition in bee iron; (2) the

electronic specific heat difference due to the higher

electronic specific heat for bee iron; and (3) an un-

known component in the specific heat of bee iron.

The phase transition at 1182 K is due to: (1) either a

low spin high spin transition in fee iron, or a dif-

ference in Cv for the two phases with 0d ~ 330 K for

fee iron and ©o = 432 K for bee iron; and (2) a higher

(Cp — Cv) value forfee iron.
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Discussion on "Calculation of Thermodynamic Information Based on the Density of States Curves
of two Allotropes of Iron" by D. Koskimaki and J. T. Waber (Northwestern University)

O. K. Andersen (Univ. of Pennsylvania): In calcula-

tions like this, where you have calculated the shift in

the Fermi energy as function of temperature, you seem

only to be interested in a small energy region of about

10 mRy. Why do you in this case use a histogram

technique which puts equal weight on every point in the

Brillouin zone? Actually the information used is con-

tained in a tiny fraction of the zone, and even your

20,000 points/zone probably does not give very good

statistics. One would think that tracing of constant

energy contours is a more appropriate technique, and

it has the additional advantage of yielding the Van Hove

singularities.

J. T. Waber (Northwestern Univ.): I think your point

is well taken and we would be well-advised to look at

the actual region of the Brillouin zone from which the

electrons are thermally excited and into which they go.

The nature of the electronic contributions to the

specific heat would be revealed. We have not done that.

But I think that spikes from electron-phonon interac-

tions and Van Hove singularities might very well con-

tribute more to the specific heat, etc., than has been in-

corporated in detail in either our work or literature on

iron in the past. The point I wish to make is that we
have established that it was not necessary to invoke a

magnetic transformation to be able to get the BCC —

>

FCC —* BCC phase transformation in Fe. I will not go

into the details here.

M. B. McNeil (Mississippi State Univ.): How does the

A^" calculated on Fe due to Fermi level shift compare,

at high temperatures, to TAS due to differences in the

lattice specific heats?

J. T. Waber (Northwestern Univ.): Considering just

the body-centered cubic gamma phase at high tempera-

tures, TAS due to lattice specific heat is approximately

20,000 cal/mole. This is offset by an enthalpy of about

10,000 calories/mole, to give a net change in free energy

of around 10,000 calories/mole. The change in the elec-

tronic free energy is about 1,500 calories per mole,

which is quite a bit smaller. When the two phases are

compared, the free energy difference due to lattice

specific heats is about 3,600 calories/mole and the free

energy difference due to electronic specific heats is

around 700 calories/mole.

It is important to realize that Afi" for the electronic

energy is not due to the Fermi level shift, but is primari-

ly due to the redistribution of the electrons having ener-

gies nearly equal to the Fermi level. The Fermi level

shift results from this redistribution.

K. J. Duff (Ford Motor Co.): Just a comment to per-

haps dampen your enthusiasm for the prospect of doing

the calculation sufficiently well when magnetic interac-

tions are included. I would refer you to a paper

presented on Monday by Prof. Das and myself. It is our

conclusion that the density of states at the Fermi sur-

face is probably the least reliable number that can

come out of even a careful band calculation. We found

that satisfactory agreement with all other aspects could

be obtained with a variation of that number by a factor

of something like 4.

J. T. Waher (Northwestern Univ.): Of how much?

K. J. Duff fForc?Afoior Co.;.- A factor of 4 would be the

range of theoretical predictions of the density of states

at the Fermi surface.

J. T. Waber (Northwestern Univ.): I believe that those

properties which involve integration over the entire

density of states, such as magnetism does, may be in-

sensitive to N(Ef). But when you attempt to calculate

the temperature dependence of that property, the slope

and height of the N(E) curve, both above and below

become significant. They sensitively influence the

answer. Well, I will not try to quote numbers here about

how reliable our density of state curves are, but will

refer you to our post-deadUne paper [1]. We are trying

to make an effort to find better ways of obtaining relia-

ble curves. We recognize that peaks may exist which

lead to very high values of N(E) which we might not ob-

serve or see in our "smoothing" method. It is less clear

at this time, whether "false" peaks might be developed-

when using either the specific sampling method of

Snow and Waber, or the QUAD interpolation scheme;

I am inclined to think not. However, if there are large

narrow peaks, then a small error in determining Er
could have a profound effect on the value oiN(Ef). The
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specific question of how well we can perform the in-

tegration oiN(E) to locate precisely, has not been in-

vestigated in our post-deadline paper and will be a topic

for future work. Nevertheless, it is clear that by in-

creasing the number oi E(k) values which lie in each

interval E; + A£', will improve our reliability of both the

N(E) curve and the Fermi level.

[1] Kennard, E. B., Koskimaki, D., Waber, J. T., and Mueller, F. M.,

these Proceedings, p. 795.
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Potential-Independent Features of Crystal Band-Structure^

M. M. Saffren

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91 103

Key words: Band structure; crystal potential

Using theorems in addition to those previously

developed [ 1] it has been shown that a portion of the

band structure of a crystal is independent of crystal

potential depending solely on the space-group to which

the crystal belongs. As a result, the band structure of a

crystal can be analyzed in terms of its potential-depen-

dent and potential-independent parts. The latter, which

we caU the "invariant" band structure, is predicted as

soon as the symmetry of a crystal is known.

The invariant band structure of the face-centered,

body-centered, and tetragonal lattices have been

deduced. One of the more interesting results is the in-

variant structure associated with the 3-d, and 4-/bands.

This structure remains the same regardless of the

width these bands may have.

•This paper presents the results of one phase of research carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored

by the National Aeronautics and Space Administration.

electronic density of states; pseudopotential.

The existence of an invariant band structure can be

applied to the problem of the determination of crystal

pseudopotentials. In fact, it can be shown that any local

pseudopotential for a 3c?-transition metal must nearly

be as strong as the actual crystal-potential itself.

In subsequent work, it has been shown that the band

structure of two or more phases of the same material

can be precisely related. In particular the correlation

between band structure of a material in its body-cen-

tered and face-centered phases have been deduced.

The correlations then allow the band structure of one

phase of a material to be deduced from that of any one

of its other phases.

Reference

[ 1] Saffren, M. M.. Phys. Rev. 165, 870 (1968).
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Discussion on "Potential-Independent Features of Crystal Band Structure" by M. M. Saffren

(California Institute of Technology)

J. F. Goff (NOL): In the first long period it is observed

that the transport properties of the transition metals

and their compounds show a remarkable similarity

when they are compared in terms of their electron num-

bers [1]. It would seem that the potential independent

portions of the Fermi surface must be responsible for

these similarities. Thus, the transport properties of

these solids can serve as a sort of test of the effect of

core potential on the higher energy portions of the band

structure.

M. M. Saffren (California Inst, of Tech.): I don't quite

see the connection really.

J. F. Goff (NOL): You have the band structure as inde-

pendent of the core potential essentially. And transport

properties seem to be dependent upon that indepen-

dent portion of the band structure. Did I understand

you?

M. M. Saffren (California Inst, of Tech.): Well per-

haps we can talk about it privately.

J. T. Waber (Northwestern Univ.): If I understood you

correctly, you said that the ns level is always below np !

level. My recollection is that for heavy elements, where

spin-orbit splitting is important, the order can be 2 p 1/2
j< 2 5 1/2 < 2 p 3/2. Have you considered relativistic ef-
]

fects such as spin-orbit splitting and the relabelling of

your states?

M. M. Saffren (California Inst, of Tech.): No I did not

say that. In fact np and ns cannot be ordered indepen-

dent of potential. As for relativistic levels, I have not I

found a way so far to order relativistic states. The

results stand as results for non-relativistic bands.

' !f
[1] Goff,J.F.,J. Appl.Phys.39,2208(1968).
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Nonlinear Optical Susceptibility of Semiconductors with
Zincblende Structure

^

M. I. Bell**

Physics Department, Brown University, Providence, Rhode island 02912

A simple model for the band structure and electronic density of states in zincblende semiconduc-

tors has been used to calculate the dispersion of the nonhnear susceptibility responsible for second-har-

monic generation. The calculation req'uires no adjustable parameters, and results have been obtained

for GaAs, InAs, ZnTe, and InSb in substantial agreement with experiment in the energy range 0-2.0 eV.

Key words: Electronic density of states; gallium arsenide (GaAs); indium antimony (InSb); indium

arsenide (InAs); joint density of states: nonlinear optical susceptibiUty; optical pro-

perties; semiconductors; zincblende structure; ZnTe.

1 . Introduction

The dispersion of the nonlinear optical susceptibility

X'^^\(t>) which is responsible for the second harmonic

generation of light (SHG) has been calculated for four

semiconductors of the zincblende type (GaAs, InAs,

InSb, and ZnTe) in the energy range 0-2 eV. A highly

simplified band-structure model has been used, and as-

sumptions introduced which reduce the calculation to

a form similar to that of density-of-states calculations

of the linear dielectric constant.

SHG is by now a well-known phenomenon, and its

quantum-mechanical description has been developed

fully, both for localized (atomic) systems [1] and in the

context of band theory [2-6]. The process is described

by a third-rank tensor x*^* which relates the applied

macroscopic field € to a polarization which is quadratic

in the field:

Pi{2co)=X^li(o)€j{w)eAoj). (1)

The profusion of variables and indices surrounding x'^'

has led to a variety of conventions and notations, most

of which are described by Robinson [7]. The definition

of eq (1) will be used here.

2. Theory

2.1. General

In materials with zincblende structure (point group

43m) the tensor x'^' is particularly simple. The only non-

zero components X'A^^^ ^re those in which no two o{i,j,

and k are equal. In addition, all such nonvanishing com-

ponents are equal. Hence x'^' is completely specified by

the single component Xi2.3*^* which will be calculated

here.

The results of Butcher and McLean [3] , evaluated in

the one-electron approximation, give for the suscepti-

bihty

TTmco
'1

jJ B.Z.

+

+

P^,(k)P|,(k)P3.(k) + P,',(k)Pf,(k)P?,(k)

[aj,,(k) + 2o}][a)rtik) + w]

P^;,(k)Pj,(k)P?,(k) + P%(k)Pl,{k)PUk)

[(Ors(k) — (J)] [(Ur((k) + Co]

P2,,(k)P3,(k)P,V(k) + P3,(k)P^,(k)P?,(k)
,

•Supported in part by ARPA contract SD 86.

**Corning Glass Works Foundation Fellow.

[a;rs(k) — oj] [wrf(k) — 2oj]

Here the electrons are assumed to occupy Bloch states

^Jr) = ujr)e^^- (3)

specified by the band label n and the wavevector k.

The frequencies are complex and restricted to the

upper half-plane; frk is the Fermi-Dirac function for the

state i//rk; and Prs(k) is the matrix element of the hnear

momentum operator between states i//rkand »|/sk-

Two useful observations can be made concerning eq

(2). First, the result of applying the time reversal opera-
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tor T = — i(T,iK (where cr is the Pauli spin operator and

K is the complex conjugation operator) to a Bloch func-

tion is another Bloch function i//-^ which is

degenerate with and orthogonal to t/v Since TVT~^
=— P one obtains

(/, k|P|5, k) =- <r, - k|P|5, - k)^ (4)

Thus in the integration over the Brillouin zone a

product of the form P,/(k)P/(k P,r^(k) can be

replaced by its imaginary part. This result is not altered

when the spin-orbit interaction is taken into account,

since this requires only that P be replaced [3J in eq (2)

by

h
P = P +

4mc
(5)

and rPT"'=— P'. The second observation is that if

all the momentum matrix elements in (2) are replaced

by components in the [111] direction

1

(6)

one obtains a quantity Xfi 1 1 which is given by

V3 A 123 (7)

Thus Xi-i.V'* can be written in a form which depends only

upon the [111] components on the momenta. Both of

these results have been used elsewhere [8] to obtain

simplified expressions equivalent to (2).

In the summation over bands in (2) three types of

terms can be distinguished [5]. The labels r, 5, t may
refer to states in one, two, or three bands. In the first

case it is easy to see (by writing (2) in terms of

that the contribution to Xi^.i*^' vanishes. For two bands

one may use the symmetry requirement Xi2.'i
= X2i3~

X312 and the first observation above to show that these

contributions must also vanish. As Kelley [5] has

pointed out, the two-band contributions may in general

be nonzero; the present zero result is due to the par-

ticular point-group symmetry of the zincblende struc-

ture. Thus only three-band terms need be included in

the summation in (2).

2.2. Three-Band Model

Even with these simphfications eq (2) is not amena-

ble to direct calculation without some approximations

for the matrix elements and energy denominators. It

has been found that in general |Prs"(k)| is nearly con-

stant across the Brillouin zone [9,10]. For the imagina-

ry part of the linear dielectric constant €>, this approxi-

mation leads to the conclusion that the dispersion oi

is governed by the behavior of the joint density of states

for the various possible transitions [9]. The dispersion

can then be obtained from consideration of critical

points in the density of states [11]. The corresponding

approximation for /'„"(k)P,s/(k)P,r">'(k) can be justified

only by a detailed examination of band structure calcu-

lations [8], but with the aid of eq (4) it can easily be

shown that to third order in k

r,...(k) = Im [PlJk,)P-i,{ki)PUki)] =F + F'kj (8)

Then the assumption that |Prs"(k)| is approximately

constant leads to the conclusion that at worst |F| =
|F' |. Thus treating r,.sf(k) as a constant is no less (or

more) justified than the assumption usually made in

density-of-states calculations that |Prs"(k)| is constant.

If the Fermi-Dirac function fru is approximated by 1

for valence bands and zero for conduction bands, the

contribution to X123'"' of a valence band |1, k) and two

other bands |2,k),|3,k) can be written

Ax^l!, = -
iF

16^- TTmoj

[a>,2(k)

where

. V3

riioj] [a»i:5(k) — m/w]
(9)

2
^'.'2' " ( 0) P\,v ' KO)P\,v '1(0) = 1^123 (0)

5;= 1, i-

-1, i

1, 3

4, 6
(10)

n; = -2, 1, 1,-1.-1,2

mj =— 1,— 1, 2,-2, 1, 1

Suitable approximations for the energy denominators

in (9) are also needed. The upper valence and first two

conduction bands of InAs are shown in figure 1 as cal-

culated by the full-zone k-p method [12]. The main

features of the band structure of other zincblende-type

semiconductors have been found to be qualitatively

similar [12-14]. The major contributions to e-zio)) in the

range 0-4 eV have been found [12] to come from transi-

tions at r(k = 0) and along A(k = (A:/V3j) [111]. These

transitions are Fsi, — Fee (Eg); F71. — Fee (Eo+ Ao); Aav,

Asc — Agc (El); and As,. — Aec (Ei + At). The band struc-

ture model used was chosen to provide critical points

of the proper type at the energies of these transitions.
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k=f(lll) k=(000) k=^(IOO) k=^(||-0) k=(000)

Figure 1. Band structure of InAs as calculated by the full-zone

k • p method.

and includes a second conduction band in order to per- therefore approximate these critical points by 2-dimen-

mit calculation of three-band terms. The transitions at sional minima while retaining a paraboHc second con-

r are described by parabolic bands extended to infini- duction band:

ty:

Wi2(k) = — OJo-
2mi2

(11)

<iJi2(k)

a>,:,(k)

2m j_

2m 13

(15)

2/7? 13

The integrals in (9) then take the form

dHc

[aji2(k) — «;a)] [aji3(k) — m,w]

a^l'-da

Jo (2xi-\- a){2x\ + a)

where

x\= mi2(ti)()+ nno)

x'l = m 13 (oj^ + m iO)

)

A contour integration yields

8m 12m 1377

where the subscripts on k^, k\\, and mj_ refer to

directions parallel and perpendicular to [111]. While

this approximation is crude, it has been used, together

with that of eq (11), to obtain a quite satisfactory

description of the intrinsic piezobirefringence of Si, Ge,

and GaAs [15]. For this case (9) becomes

(12)

dfx

le F
mj.m 13

>!

(13)

where

log — (16)

"1

ie-^Finv>iiiv.
(14)

k,.

The exact locations in the Brillouin zone of the A and ki, = TT\^la is the magnitude of the wavevector at

critical points are difficult to determine, and in fact L. The integral in (16) cannot be evaluated in closed

reference to figure 1 indicates that the upper valence form, so a numerical integration is required. Before at-

and lowest conduction bands are very nearly parallel in tempting to obtain numerical results from eqs (14) and

the [111] direction for perhaps 2/3 of the zone. We can (16) it is necessary to make an observation which will
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lead to a rather extended digression. The results (14)

and (16) have been derived from (2) and therefore

describe the frequency dependence of the entire (com-

plex) susceptibility — no attempt has been made to

separate the real and imaginary parts. However, when
an exactly analogous technique [15,16] is used to com-

pute €\, the real part of the linear dielectric constant, it

is found that a constant (frequency-independent) term

must be added to the result in order to fit the experi-

mental data. This term results from the neglect of the

higher conduction bands which contribute to €> at high

frequencies and hence, through the dispersion

(Kramers-Kronig) relations, to d at low frequencies.

Since identical dispersion relations [16] apply to x*^'

one would anticipate that the results (14) and (16) un-

derestimate the real part of Xi23'^'. If the neglected con-

duction bands are assumed to lie high enough in energy

that (012, Wi.j S> (o for oi in the region of interest then the

contribution of these bands to Re Xi23*^* can be regarded

as a constant. The frequency dependence of Xias'^* is

thus given by

(17)

where Axi23*^*(<y) is computed from (14) and (16), and

is a real, frequency-independent correction(2)
8x
given by

and

(19)

(20)

for the polarization P and total energy W of the system

in an applied field e (in the zero-frequency limit). If the

Hamiltonian is taken to be

(21)

then for unit cells per unit volume perturbation

theory gives

where

W=NEo (22)

£o= n'" + £i,'' + n'* + n''+ • • (23)

Ho\m ) = m) (24)

E^^'^ = eea{0\xa\0) ^ee..Xa (25)

Fo-'= -e-eae0 2,

—

£|o)_£(m) (26)

23 (18)

(Here w — 0 must always be interpreted as referring to

frequencies well below those of the electronic transi-

tions but above the lattice resonances). While 8x123'^*

could be treated as an adjustable parameter or inferred

from infrared (10.6/x) measurements of Xi23'^', it is more

satisfying to obtain this quantity from a direct calcula-

tion ofXl23<''(0).

2.3. Low-Frequency Limit

A number of calculations of Xi23*^'(0) have been made

for various zincblende-type materials [18-20] , based on

an approach originated by Robinson [7]. The results of

these calculations differ significantly, so it is

worthwhile to attempt yet another calculation along

these lines but employing the same model as will be

used to compute Axi23'-*(w). The basis for the calcula-

tion is provided by the relations

{0\Xa\s){s\xi3 — Xi3\t{)t\xy\0)

(27)

A comparison of (20) with (26) and (27) would permit

evaluation of x'^'(O) X*^'(0)' given a method of per-

forming the summations involved. Jha and Bloem-

bergen [18] employ a single energy denominator and

the closure property, while Flytzanis and Ducuing [19]

use the method of Delgarno and Lewis in the form of a

variational principle, and Phillips and Van Vechten

[20] assume the existence of only two states. The

method here will be to use the formalism of band theory

and restrict the summations to states in the three bands

described above. Since the lowest valence band lies

well below any bands with which it can interact through

the perturbation in (21), the perturbation energies (25)

and (26) can be regarded as arising entirely from pertur-

bation of states in the top valence band |1). Then (20),

(26), and (27) give

V(l) : 2Ne'
{l\xa\2}\^

,

\{l\Xa\3)

^31
(28)
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((l|::ta|2)<2|x^|3){3|xy|l)

+ (l|x„|3 )( 3|;c^|2 )( 2|xy|l ))+ ( l\x,,\2 )( 2|x„| 1)
'21

i(2\x0\2)-{l\x0\l)) + -^ (l\xa\3){3\xy\l)i{3\x0\3 )
- (IxplD) (29)

These results can be expressed in terms of the well-

known relation for off-diagonal matrix elements of P
and X [21]

( a
I

P
I
)8 ) = imxoan ( a |

x
|
/3 )

.

(30)

As before,
|
P,s"(k)

I

and 7',.s7(k) will be approximated as

constant throughout the Brillouin zone. These quanti-

ties will be evaluated at k = 0, employing a model

proposed by Cardona [22] in which the zincblende-

type material is regarded as derived from a fictitious

diamond-type material by the action of an antisymmet-

ric potential V. In the diamond-structure materials the

top valence and first two conduction bands at k = 0

have the symmetries described by the representations

r25', r^', and Ti5 of the full cubic group. If all other

states are neglected, the effect of V is to mix the r2.-,'

and states to produce two states belonging to the

representation Fis of 43m. The r25' state (now Fi) is

unaffected, and the Hamiltonian for the Fis states

(referred toF25', F15 basis) is

H=
V* 0

(31)

where jE'(F25')=0, and £'(Fi5)=£'. This Hamiltonian has

eigenvalues

£(Fi5c)=H£+[^'+(2n']''-}

E{Y,,,)^l{E-[E^+{2VYyi-^}

and eigenvectors

J/'15C= ai//i5 — 6l//25'

015!;=6»/'l5 + ai/'25'

where

1 / £;u + E \

" V2 \ Esi

(32)

(33)

(34)

and

£:n = £(Fi5c)-£(F,5,)= [^'+ {2Vy-yi-^ (35)

If ^iii'^ > E-,i-' then in this model eqs (28) and (29) give

where

(36)

(37)

While Xaa'^' can be determined experimentally, Q and

V depend upon the fictitious diamond-structure materi-

al referred to above. Since E31 is known from experi-

ment, V can be found from (35) if E is known. Figure 2

shows E and Q as a function of the lattice parameter a

for Si, Ge, and a-Sn. The values for E are those of the

5.0 5.5 6.0
„

LATTICE CONSTANT (A)
6.5

Figure 2. Dependence on lattice constant of the ^5 — FisfEi) gap
and the matrix elements in diamond structure materials.
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Eo' peak in the electroreflectance spectra [23]. The

matrix elements are determined from cyclotron

resonance [24.25]. For a zincblende-type material of

lattice constant a, figure 2 was used to determine the

values oiE and Q for a fictitious diamond-type material

of the same lattice constant. Since Eo' varies in almost

exactly linear fashion with the lattice constant from Si

to a-Sn, E was obtained by linear interpolation. Since

Q varies httle (less than 8%) the method used to esti-

mate it is not of great importance. Compounds of ele-

ments from the same row of the periodic table were as-

signed the value of Q belonging to the group IV material

in that row. In general, compounds of elements from

different rows were assigned the average of the values

for the group IV materials in each row. The details of

this procedure are given elsewhere [14]. The Unear

susceptibility XaV (0) ^"^'^^ obtained from Phillips and

Van Vechten [20]. and E31 from electroreflectance

data [22]. Table 1 lists all the necessary parameters

and the results of eq (36) for 9 zincblende-type semicon-

ductors.

Table 1. Parameters used in the calculation and re-

sults for the low-frequency limit

a(A) £.u(eV) fleV) X'" Q (a.u.) 2F(eV) (10-« esu)

GaAs 5.62 4.44 3.15 0.79 0.535 3.12 97.7

GdSh 6.11 3.27 2.63 1.07 .518 1.94 199

InAs 6.05 4.44 2.69 0.90 .518 3..53 122

InSb 6.49 3.16 2.22 1.17 .501 2.25 271

(;aF 5.45 4.78 3.34 0.65 .530 3.42 70.0

InP 5.87 4.72 2.89 .68 .535 3.73 83.7

AlSb 6.14 3.72 2.60 .73 .513 2.66 126

ZnTe 6.09 5.40 2.65 ..50 .518 4.71 50.3

CdTe 6.48 5.30 2.23 .49 .501 4.81 51.4

2.4. Dispersion

The dispersion of x\t.i can now be obtained from

eqs (14). (16). and (17). Since experimental data are

available [8.26] only for GaAs, InAs, InSb, and ZnTe.

discussion will be restricted to these four materials.

With the aid of eqs (33-35) we find that at k = 0

where

F=iP''QVIE,,

a n,|p|n }=p.

(38)

(39)

Examinations of the matrix elements for the various

possible transitions show that the spin-orbit splitting

of the valence band at Y mav be taken into account bv

evaluating (14) with ^cij(i = £'o, ^wo' = £"(>' (for the light-

hole and heavy-hole bands) and with ^cdo — Eo + Ao. hwo'

= £'o' + Ao (for the split-off band). The spin-orbit

splitting of the Fi.-, conduction states has been

neglected.

The valence band masses (m*//,, m*/,/,, and m*sh for

the light-hole, heavy-hole and split-off hole bands,

respectively) were obtained from the average masses

[22].

m
m A-B 1

Ih

m
m

-A+B 1 +
hh 1052 (40)

m = -A'
sh

A'=l(^;^^+2C+ 2M 1 + 1
3 \ £0+ Ao

where

6 = -0.8

PHE:n + E)

Ei\Ei\

{E,, + E)

E:n
(42)

2^^

E:n

The assumption that the shape of the second conduc-

tion band near F is determined entirely by its interac-

tion with the valence band leads (neglecting the spin-

orbit interaction) to the result that the effective mass is

approximately m*hh- In eq (16) the value mi.3= m'^/,/,/2

has been used.

The spin-orbit splitting along .V can be treated in

the same way as that at F. but the spHt-off valence band

may be ignored. The interband mass m^ is found by

assuming that the shape of the valence band is deter-

mined by the A3,.— Aic interaction. Then m^ = m'^^

(L,r)/2.

Table 2 lists the values used in the calculation. The

energies £",). F,. A,i. and Ai were obtained from elec-

troreflectance measurements [22.28]. with the excep-

tions noted in table 2. The matrix element P was deter-

where A, B. and C are the inverse mass parameters of ^

Dresselhaus. Kip. and Kittel [27]. and A' is given by '

[22] f

(41) b

762



Table 2. Parameters used in the calculation of

CiaAs InAs InSb ZnTe

Ria.u.) 0.68 0.62 0..56 0.62

£o(eV) 1.43 ^41 M7 2.25

£,(eV) 3.12 2.50 1.88 3.61

Ao(eV) 0.34 "0.43 0.82 0.93

A,(eV) .23 .28 ..50 .57

.067 .026 .0145 M80

.116 .132 .127 M99
^ -7.39 -17.1 -26.5 -4.0

B -4.93 -14.9 -24.1 -2.3

\c\ 5.06 10.9 13.9 2.0

4' '-6.30 '-8.71 '-7.68 '-3.23

^'F. Matossi and F. Stern. Phys. Rev, 111, 472 (1958).

''0. Madelung. I'hysics of III -I ('compounds (J. Wiley and Sons. Inc.

p. .S3.

'(Calculated as described in text.

New York. iy64).

mined by the method described above for Q. The in-

verse mass parameters for InSb and ZnTe are available

from cyclotron resonance experiments [29,30]. Those

for InAs and GaAs were obtained from the full-zone

k-p band structure calculations [12.14] , and the calcu-

lated values for InSb [ 14] were found to give slightly

better results than the experimental ones.

The conduction band masses (at F) were taken

from magneto-optical absorption and Faraday rotation

measurements [31-33], except in the case of ZnTe
where no experimental data are available. In the three-

band approximation this mass is given by [22]

m
1 + E:u + E ( 2

3

1

Eq Eo + ^o/ Esi—Eo
Esi-E

(43)

The results of (43) agree well with experiment (10% or

better) in the three materials where m*c has been mea-

sured, so the use of this approximation for ZnTe is

probably justified. Finally, m*^(Lic) was obtained from

the k-p calculations, again with the exception of ZnTe
where (43) was used with Eo and Ao replaced by Ex and

Ai, Em replaced hy EfLsc) — E(L:ii-), and £ by the La,- —
L.3r gap in the corresponding homopolar material

(average of Ge anda:-Sn)[22]

.

The frequencies appearing in (9) are complex; the

real-frequency limit can be taken in the conventional

way [3] . However, for the sake of comparison with ob-

servations at room temperature, thermal broadening

has been included by using the complex frequency 0) +
ir), with T) = 0.0.5 eF ( = 2 kT).

Equation (17) was evaluated for energies from 0.05

to 2.0 eV at intervals of 0.05 eV by a computer pro-

gram which required approximately 2 minutes per

0.5 -

1.0

ENERGY (eV)

2.0

Figure 3. Real and imaginary parts of xilSjCfij) as calculated for
GaAs.

material on an IBM 360 Model 50 computer. (The in-

tegral in (16) was evaluated by a 6-point Gauss quadra-

ture.) Figure 3 shows the real and imaginary parts of

Xi2:i'~'(w) for GaAs. The modulus of the susceptibility

1.0

ENERGY (eV)

2.0

Figure 4. The modulus Ix'IU'"'! ^-^ calculated /or GaAs.
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3.0

1.0

ENERGY (eV)

2.0

Figure 5. The modulus Ix'lil'^)! '^^ calculated for InAs.

IXi23*^'(<^)| is given in figures 4-7, together with the

available experimental data. The experiments of

Chang, Ducuing, and Bloembergen [26] measured

IXi23'''(w)| relative to its value in KH2PO4 (KDP). The
resuh of Bjorkholm [34] for KDP, |xi2:i'''| = (1.6±0.4)

X 10"^esu, was used to convert these measurements to

absolute values. The results, indicated by circles in

figures 4-7, have a total uncertainty of about 30%, most

of which is contributed by the 25% error in the mea-

surement for KDP. The relative measurements for the

semiconductors have an error of about 15%. Also

shown (by triangles) are the results of absolute mea-

surements at 10.6/i. by Patel [35] and Wynne and

Bloembergen [36]. These have uncertainties of the

order of 30-50%.

1.0

ENERGY (eV)
2.0

Figure 7.

1.0

ENERGY (eV)

The modulus Ixijjitij)
|
as calculated for InSb.

2.0

3. Discussion

3. 1 . Low-Frequency Limit

Table 3 compares the results of the present calcula-

tion with those of Flytzanis and Ducuing [19] and Phil-

Table 3. Comparison of the results for the low-

frequency limit XilUO) with experiment and with the

calculations of Flytzanis and Ducuing (F— D) [19]

and Phillips and Van Vechten (P-W) [20], Values

are in units of 10^'^ esu.

F-D
P-VV Present

work Expt.

x'^'

GaAs 190 256 122 97.7 "90 + 30

GaSb 160 433 236 199 ' 302 ±100

InAs 410 380 157 122 '"'200±60

InSb 650 611 282 271

GaP 140 ,186 85 70.0 ^52 ±17

InP 280 269 106 83.7

AlSb 70 337 111 126

ZnTe 257 53 50.3 "44 ±16

CdTe 257 27 51.4 "80 ±30

Figure 6. The modulus |x'^:i('^) I

'^^ calculated for ZnTe.
Ref. 36.

" Ref. 35.
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lips and Van Vechten [20]. Two values of Xi2:)*^*(0) are

given for [20] since the authors argue that their results

should be multiplied by a factor of/c^, where fr is the

fraction of covalent character in the crystal bonding

[37]. It is interesting to note that in five of the seven

cases treated by Flytzanis and Ducuing their results

agree well with the uncorrected values of Xi23'^'(0) ob-

tained by Phillips and Van Vechten. The present

results, however, are in general agreement with the cor-

rected values /c^Xi23^(0). Both of the calculations [19]

and [20] employ pure sp^ hybrid molecular orbitals,

and Phillips and Van Vechten suggest that the cor-

rection fp^ may arise from the neglect of other elec-

tronic configurations. The use of a band-structure for-

malism and experimentally determined momentum
matrix elements seems to avoid this difficulty.

3.2. Dispersion

The results for GaAs and InAs are qualitatively

similar and will be discussed together. In each case the

most notable feature in the dispersion is a peak in the

vicinity of Eil2 and (Ei + Ai)/2 which arises from the

coincidence of the harmonic photon energy 2fio) with

the energy of the Asi, — Ai,. transitions. The broken

curve for InAs (fig. 5) was calculated by assuming the

experimental value Xi2:/^'(0) = 2 X 10-^esu [35] rather

than xi23*''(0) = 1.22 X 10"6 as calculated above. The
result indicates that the present calculation of the

dispersion is consistent with the observed low-frequen-

cy value and that the result of part 2.3 is probably too

small.

It has been suggested [26] that the sharp decrease

in Xi23'^H<y) observed between 1.62 and 1.66 eV in these

two materials is due to the variation of Hk) across the

Brillouin zone, since no pronounced structure is ob-

served in the linear dielectric constant e(o)) or e(2co) at

this energy. While it is likely that the wavevector de-

pendence of r produces some structure in Xi23*^'(w), the

present calculation (which assumes T constant)

reproduces the structure near 1.66 eV fairly well. As

can be seen in figure 2 (for GaAs) the calculated

decrease is caused primarily by a sharp drop in the real

part of the susceptibihty. The results are similar for

InAs. It should be noted that it is possible for the non-

linear susceptibility to show rapid variations as a func-

tion of energy in regions where the linear susceptibility

does not. While Imx*^' will in general exhibit rapid

variation only where Imx'^' does also, the linear suscep-

tibihty is restricted by the requirement Imxi > 0 [38]

while no such restriction applies to the nonlinear

susceptibility. Thus, contributions to Imx*-' from dif-

ferent points in the Brillouin zone may be of opposite

sign. In an energy region where Imx''' is (for example)

increasing rapidly, Imx*"' may decrease or even change

sign. The real part of the susceptibility, which is related

to the imaginary part by the Kramers-Kronig relations,

may then behave quite differently in the linear and

nonlinear cases. The fact that most experiments

measure only the modulus |xi23'^'(w) |
of the suscepti-

bility further complicates the situation. While structure

in x'^*(<^) can be expected at energies where x*"(w)

or x*'*(2a)) varies rapidly, x'^* does exhibit additional

structure unrelated to the matrix element product

Hk).

In ZnTe (fig. 6) the main peak near 1.8 eV is also due

to the coincidence of the harmonic photon energy 2fi(o

with that of the Ei and E^ + Ai transitions. The small

peak near 1.15 eV is produced by transitions at F. The

failure of this peak to appear experimentally casts some

doubt on the accuracy of eq (14). Further experimental

results in the 0.5-1.5 eV region for these materials

would be needed to confirm (14).

The calculation for InSb is less satisfactory than the

others. The experimentally observed peak near 1.6 eV
has been attributed to the coincidence of the funda-

mental photon energy ho) with the Ei peak [8,26] . This

structure appears in the calculation, but it occurs about

0.2 eV too high in energy. Band structure calculations

[39] indicate that the critical point aiEi may occur ex-

actly at L. In that case the eqs (15) would not apply, and

(16) would have to be modified to take into account the

correct symmetry of the critical point.

4. Conclusion

A highly simplified band-structure model has been

found to predict the dispersion of the nonhnear optical

susceptibility of four zincblende-structure semiconduc-

tors with reasonable accuracy in the energy range 0-2

eV. Separate calculations were made of the low-

frequency limit and of the contributions of critical

points in the joint density of states for the top valence

band and the first two conduction bands. The results

for the low-frequency limit were found to agree well

with the calculations of Phillips and Van Vechten [20]

,

and the calculated dispersion is in substantial agree-

ment with the experimental work of Chang, Ducuing

and Bloembergen [26]. Variations in the susceptibility

which had previously been regarded as arising from the

wavevector dependence of interband momentum
matrix elements are successfully predicted by the

model in spite of the fact that the momenta are treated

as constant throughout the Brillouin zone.
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Model Density of States for High Transition

Temperatures Beta-Tungsten Superconductors^

R. W. Cohen, G. D. Cody, and L. J. Vieland

RCA Laboratories, Princeton, New Jersey 08540

We have applied a simple density of states model to the problem of superconductivity in high T,.

beta-tungsten superconductors. If we assume that the interaction responsible for superconductivity is

predominately between c/-band carriers and acoustic phonons via a deformation potential matrix ele-

ment, simple analytic expressions for the effective electron-electron coupling constant k and /"( (Alcan

be obtained. The quantities \ and Tc can then be estimated using parameters determined from an appli-

cation of the density of states model to the cubic state elastic constants. We are able to establish the

simple condition k > kcu ~ 0.7 for the existence of a cubic-tetragonal lattice transformation in these

materials. Using our result for Tc. we find Tc > 15K for all materials which exhibit a lattice transforma-

tion. Thus, we have established the relation between high Tc superconductivity and lattice transforma-

tion in the ^-W compounds.

Key words: Beta-tungsten; lattice transformation; model electronic density of states; superconduc-

tivity.

1 . Introduction

In the field of superconductivity, it is of prime im-

portance to determine the cause(s) of the observed high

transition temperatures in the jS-tungsten compounds

and to utihze this knowledge, if possible, to exceed the

present maximum Tc of about 21 K. In approaching the

problem of the transition temperature, it can be as-

sumed that there is little hope unless an understanding

is achieved of the anomalous normal state properties

[ 1] of these materials with particular attention to the

cubic-tetragonal lattice transformation [2,3] . Recently

attention has been focused on a unique structure in the

electronic density of states for these materials as the

source of their unusual normal state properties, and

models have been developed which permit the correla-

tion of this structure with high Tc- The Labbe-Friedel-

Barisic [4.5] model used a one dimensional (3 indepen-

dent degenerate sub-bands) tight binding calculation to

obtain a density of states in energy N(E) for electrons

with d-\ike character which has singularities at the

band edges and a gradually decreasing N(E) as one

proceeds away from the band edge. This model can ac-

count for the tetragonal transformation in V.jSi and

*W()rk supported in part by the National Aeronautics and Space Administration under

Contract No. NAS 8-21384.

NbsSn. The authors further proposed [5] that the high

Tc's in these materials result from the same source,

i.e., the placement of the Fermi level in a high density

of states region near a band edge. It was later shown

[6,7] that singularities in N(E) are not necessary in

order to explain the anomalous normal state properties,

but that the idea of independent c^-sub bands is essen-

tial.

It is possible to explain a wide variety of experimen-

tal results in both the high temperature cubic and low

temperature tetragonal lattice phases using simple

rectangular energy bands [6,7] with just three impor-

tant band structure parameters obtained from experi-

ment. The results of calculations using this simple

model are often in simple analytic form and are surpris-

ingly successful in quantitatively understanding the ex-

perimental data. Indeed the success of this model sug-

gests its use in an attempt to calculate Tc from the basic

parameters of the normal state.

The usual calculations of superconducting transition

temperatures require detailed information about the

phonon spectrum, the Fermi surface, and the electron-

phonon coupling [8]. Such information is clearly not

available for the high Tc ;S-tungsten superconductors,

so that accurate calculations of Tc are not yet possible.

However, as noted above, our analyses of the normal

state properties of these materials has led to an experi-
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mentally determined set of parameters that can be used

in a first principles calculation of Tc. The primary as-

sumption is that the predominant contribution to the

electron-phonon interaction is between (i-band parti-

cles and acoustic phonons via a simple deformation

potential matrix element. With this assumption, simple

analytic expressions for the effective electron-electron

coupling constant \ and the transition temperature can

be obtained. The quantities X and Tc can then be com-

puted using parameters determined only from an analy-

sis of the temperature dependent elastic constants [6]

.

Although such an approach is, admittedly, over sim-

plified, we believe that it contains the essential in-

gredients of the problem of superconductivity in these

materials. It enables us to establish, in a simple way,

the relation between high Tc superconductivity and the

cubic-tetragonal lattice transformation.

In section 2, we sketch the important aspects of the

electronic band structure model for ^-W superconduc-

tors. In the next section we derive expressions for Tc

and X and relate the magnitude of k to the condition for

the existence of the lattice transformation from the high

temperature cubic to the low temperature tetragonal

phase. The effect of the tetragonal transformation on

the Tc's of VcSi and NbsSn is discussed and compared

to the results of previous work. In a final section, we
enumerate our conclusions.

2. The Model Density of States

We present here the important aspects of the model

electronic density of states. This model has been suc-

cessful in explaining for NbaSn and VsSi (where data is

available) [6,7,9,10] the behavior of the elastic con-

stants and magnetic susceptibility in both the cubic and

tetragonal lattice states, the magnitude of the

tetragonal lattice distortion, the temperature depen-

dence of the electrical resistivity, the acoustic attenua-

tion, and the low temperature specific heat.

As is usual in the case of transition metals, the rele-

vant electronic band structure is presumed to consist

of a narrow high density of states c?-band overlapping a

wide, low density of states s-band. The additional as-

sumption is made that the c?-band is almost entirely

empty (or filled) so that the Fermi level at r= 0 K would

occupy a position E = £/. (0) = ksTo ~ 10^ K, very close

to the cZ-band edge E= 0. Over the energy range of in-

terest (<103 K), the density of electronic states N(E) is

regarded as constant both above and below the (/-band

edge. For the purpose of calculating the superconduct-

ing transition temperature, we shall assume that only

the c?-band carriers contribute to superconductivity, so

that we may ignore the 5-band entirely. We consider,

without loss of generality, the case of a nearly empty

band. The density of electronic states for electrons of

one spin in the cubic lattice state, including all interac-

tion effects, is written in the form

N{E)=No,E>0 (2.1)

= 0,E<0.

The density of states in the cubic state is shown in

figure la. In order to deal with the effect of homogene-

ous uniaxial strains en directed along the crystallo-

graphic axes j(i= 1,2,3), we follow Labbe and Friedel

[4] and assume that the c?-band consists of three inde-

pendent equal contributions (sub-bands) arising from

the chains of the /3-tungsten lattice. Because of the as-

sumed independence of the sub-bands, under a uniaxial

strain directed along a single transition metal chain,

only the sub-band associated with that chain is per-

turbed. The shift of the sub-band i under the strain e,-,-

is given by

8Ei=Ueii (2.2)

where f/ is a deformation potential. Thus, in the

tetragonal lattice state in which the spontaneous strains

N(E)

Figure 1. The density ofstates configuration in (a) the cubic lattice

state and (6) the tetragonal lattice phase with the sense of eo

corresponding to that for NbsSn.
At 7'= 0K, the Fermi energy E/. — fcBT^t in the cubic state and E^ = (—\]e,}-i-3kHTa] in

the tetragonal state. The sub-band displacement at T=0 K VG,tlkrt = 2To [1-exp (—TalT,„]]~'.

For Nb..,Sn, 71, = 80 K, T,„ = 43 K, and U = 4. 1 eV, so that Ue„/i„ = 190 K and 6, = 4.0 X 10-\



are en = — ^n(T) and e>2 = = 1/2 €.o(T), the positions

of the sub-band edges are

bE, = -Ue,,{T)

(2.3)

S£2 = S£3 = i f/eo(r).

The density of states in the tetragonal state is shown in

figure lb for the case eo(T} > 0 (the case of Nb^Sn).

where An and Ai-z are temperature independent core

contributions to Cn and C12, respectively. The quanti-

ties NoU^, Au, A12 and To can be determined by fitting

the above expressions to experimental data. As can be

seen from eq (2.4a), the quantity [Cu(T) — Cr2(T)]

decreases with decreasing temperature. If the condi-

tion

iNoV'> (Au-Aro) (2.5)

is obeyed, the quantity (Cn — C12), which represents

the restoring force against a tetragonal transformation,

will vanish at a finite temperature. The lattice then

transforms to a stable tetragonal phase, the sense of the

transformation (the sign of eo) being determined by the

higher order elastic constants. The transformation is

predicted to be first order, occurring at a temperature

Tm which is slightly higher than the temperature at

which (Cn — C12) extrapolates to zero. We shall ignore

this small temperature difference (about 2 K for Nb:iSn

[Tm — 43 K]) and define T,,, by setting the right side of

eq (2.4a) equal to zero:

1-exp {-TolTm) = 3iAn-Ay,)l2NoU-\ (2.6)

At temperatures below Tm, the spontaneous tetragonal

distortion €o(T) grows rapidly, and the elastic constants

Cij are soon restored to their lattice values Aij [7,10].

The values of the sub-band displacement at r= OKfor

€0 > 0 (NbsSn) and Co < 0 (VsSi) are given by the expres-

sions

UeoiO)=2kBTo [1-exp (-ro/r„,)]-', (NbsSn) (2.7a)

= -^b7^o [1-exp {-mTm)]-\ (VSi) (2.7b)

In this equation, gj(k') is the temperature dependent

propagator for quasi-particles of 4-momentum k' ={k',

id)') in sub-band j, and d{q. A.) is the propagator for

The experimental quantities which will concern us in

superconductivity calculations are the temperature de-

pendent elastic constants Q\\(T) and CitiT) and the

sub-band displacement Ueo(T). These quantities have

been calculated in previous work [6], and we merely

state the results here. In the cubic lattice state, which

exists above a lattice transformation temperature Tm,

we have

(2.4a)

(2.4b)

Even for fairly large reduced temperatures T/Tm ^ 0-7,

the results (2.7) are good approximations for the spon-

taneous strains. Thus, given the expressions (2.3) for

the various sub-band displacements and the result (2.7),

we can determine the Fermi level position in relation to

the various sub-band edges. This is shown in figure lb.

The various energies at T = 0K are given in the figure

caption. It is noteworthy that at sufficiently low tem-

peratures the final density of states is 1/3 No for NbaSn

(2/3 No for VsSi).

3. Calculation of Tc for (3-\N Superconductors

3.1. Formalism and Assumptions

In order to treat superconductivity in these materi-

als, we shall make certain reasonable simplifying as-

sumptions that will allow us to give estimates of Tc from

the elastic properties alone and to pinpoint the parame-

ters which control Tc. First, we shall assume that the

first order process for virtual phonon exchange is the

essential interaction for superconductivity [11]. We
shall also assume that the c?-electrons are primarily

responsible for superconductivity. The large penetra-

tion depths [12] and small coherence lengths [13] in

these materials are justifications for this assumption.

We treat each sub-band separately; each sub-band has

its own energy gap parameter and density of states

function. In the Nambu [14] formalism, the self energy

Si of an electron in sub-band i is

(3.1)

phonons of 4 momentum q= (Q, i&> - i&>') . The summa-
tion convention has been employed for the index j. The
matrix element Mij(q,X) is the electron-phonon coupHng

Cn{T) -C,2{T) =-! yVot/2[l -exp (- To/r)] +^n -An

Cn(r)=-^7Voi/2[l-exp {-T,ITn+An,

i ^ ' n' X
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for transferring a quasi-particle from sub-band i to j

using a phonon (q, k). The t, are the Pauli spin matrices

(with To the unit matrix), and all frequencies have the

discrete values w = ttT (2n + 1) with n integral (we use

units where h = kB = 1). We have, temporarily, ignored

the Coulomb repulsion. Nambu's ansatz for the self

energy is

^ (A-)=ico(l-Z;(A))To + xKA-)T,-, + (p,-(A-)Ti. (3.2)
i

Here Xi(k)lZi(k) is the contribution of (3.1) to the quasi-

particle energy and (f)i(k)IZi(k) is the energy gap

parameter. The quasi-particle Green's function at Tc is

given by

i'ji)Zii k)To—eiik)T:i + ipiik)Ti ,„ „,

(fa>Z.(A))2-i^U) '

^^-^^

where the energy ei(k) is written in the form

ii{k) = €{k)+Xi{k). (3.4)

In eq (3.4), €(k) is the quasi-particle energy without in-

cluding renormalization effects, measured from the un-

renormahzed Fermi energy. For the phonon propagator,

we use that of bare phonons of frequency ojq:

d{q, X)
2aJo

(lo) — ico' )- — oj'jj

(3.5)

In order to evaluate the functions Z,x and c^, we em-

ploy the method of Koonce and Cohen [15], valid for

the case where the Fermi energy is larger or of the

order of the important phonon energies. We first per-

form the sum on n' in eq (3.1) where the functions

Zj(k'), Xi(^') 4>j(k') are considered to be indepen-

dent of 0)'
. Performing the sum using the Poisson sum-

mation formula and requiring the self-consistent condi-

tion that the T3 and ti components of X/fA^ be indepen-

dent of (X) and the To component be proportional to o)

[16] , we find

f/k' \Mij{q.k)[' ^, d— sgn ^.
— 1

Z'
J

(3.6a)

-1 dh' \Mij{q,k}[' sgngj

{27Ty
(3.6b)

(3.6c)

In eqs (3.6), Z; = Zi{k), Z- = Zj(k' ) , etc., Ar
= Tc~Kf{^j') is the Fermi function, and

^j=-ejlZj = Ej-EATc}

4>ijZi,Pc mation potential matrix element for longitudinal

phonons [17]:

(3.7) Wij{q, k) \'- = q-U-l2po)qL for longitudinal phonons

is the quasi-particle energy; the observed density of

states refers to the energies Ej. Thus, the functions Xi

do not appear explicity in eqs (3.6a) and (3.6c) forZ, and

A;, so that for the purposes of calculating Tc, it is not

necessary to calculate the x;- In deriving eqs (3.6), we
have ignored the effect of real phonons, which are not

expected to be important at low temperatures Tc ^ ojq.

We have also replaced Z, and x; by their T=OK values

since these quantities do not vary significantly in the

temperature range T < Tc-

It is now necessary to make some statement about

the matrix element Mijiq, X). We shall employ a defor-

= 0 for transverse phonons,
(3.8)

where U is the' deformation potential defined in section

2 and p is the atomic mass density. The actual matrix

element is undoubtedly reduced by screening [17], but

Umklapp processes and a nonspherical Fermi surface

may bring in transverse phonons [17] and thereby in-

crease the effective interaction. Therefore, the errors

involved in using (3.8) tend to cancel and may permit

(3.8) to give us a rough picture of the magnitude of the

interaction. We shall also assume that this matrix ele-

ment apphes to both inter- and intra-sub-band transi-

tions, a crucial assumption in considering the effect of
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the lattice transformation on Tc. Next, for w^/, we em- (3.6) by the BCS-like model

ploy a Debye spectrum:

(3.9)

D= (cogL)-' for If: I < do

= 0 for|f'|>0D,
(3.11)

where 5/, is the longitudinal sound velocity which, at low

temperatures, is given approximately by [7,10]

where do is the Debye temperature. The choice of do as

a cut-off energy is reasonable since 6d is approximately

equal to the average longitudinal phonon energy. Using

eqs (3.8)-(3.11) in eqs (3.6a) and (3.6c) we find that Z,

Finally, we replace the factor D= (wg + |fj'|)"' in eqs and A, are constant and are given by

(3.10)

A,= (AjU-^IAuZ;) /i^:i<«„c^f;yV6(^')(l/2^') tanhi^^'.

(3.12a)

(3.12b)

Here Nbi^j) is the "bare" density of states of sub-band

7. The renormalized density of states N{^j), which was

given in section 2, is related to Nbi^j) through the

formula

N{^j)=ZjN,{^j). (3.13)

3.2. Tc in the Cubic State

We first solve eqs (3.12) for the cubic state which will

exist at the lowest temperature if the inequality (2.5)

does not hold. Here the A, and Z, = Z are the same for

all sub-bands, and we easily obtain

Z-^l+^k (3.14)

rc= 1.13 (ft,ro)'/^exp|-^^^|, (3.15)

where the effective electron-phonon coupling constant

A. is given by

X(l+H)=/Vof/-/^ii. (3.16)

In eq (3.15), we have included the term yu,*, which

represents the Coulomb repulsion [18]. In deriving eq

(3.15) for Tc, we have assumed Tc is sufficiently low so

that E,(Tc) = To >Tc.

Equations (3.14) and (3.15) are our equations for Z
and Tc for high Tc ^-W superconductors which are

analogous to those of McMillan [19] for ordinary super-

conductors. The reduction of (Z — 1) by a factor of two

from the expression of McMillan results from the fact

that the band edge cuts off phonon interactions at ener-

gies below the Fermi level. The factor To^'^ in the pre-

exponential in eq (3.15) results for the same reason.

Note the predicted isotope effect Tc ^ M~"^ instead of

the usual M'^i- dependence. Equations (3.14) and (3.15)

would be of little use were it not for the fact that we

can use eq (3.16) to estimate X from quantities deter-

mined from the cubic state elastic constants (sec. 2).

For example, if we apply our equations to transforming

NbuSn and V,Si, we find, respectively [20], k= 0.92, Tc

= 28 K and \ = 0.72, Tc = 21 K. Our values of k, calcu-

lated from eq (3.16) are quite close to those given by

McMillan [19] from his equation for Tc. However,

because of the difference between our eq (3.15) for Tc

and that of McMillan, there is only an approximate rela-

tion between them. Our calculated value of Tc for VaSi

is close to the observed value of 17 K, whereas the com-

puted value is about 10 K too large for NbsSn. The sig-

nificance of this discrepancy will be discussed below

when we calculate Tc for the tetragonal lattice configu-

ration.

3.3. Relation of k to the Tetragonal Transformation

Using the foregoing results, we can easily relate the

magnitude of the electron-phonon coupling k to the con-

dition for the existence of the cubic-tetragonal lattice

transformation. From eqs (2.5) and (3.16), and noting

the empirical relation [20] Arz = 1/3 An which holds

for NbsSn and VsSi, we have immediately,

X>0.7, (3.17)

for a tetragonal transformation. Equation (3.17) illus-

trates the intimate relation between high Tc's and the

lattice transformation; large X's favor high Tc's but lead

to the lattice instabilities.

3.4. Tc in the Tetragonal State

Let us now solve eqs (3.12) for the tetragonal lattice

state of VaSi and NbsSn and compare the results with

those for the cubic state. For NbsSn the relevant densi-

ty of states configuration is shown in figure lb. For our
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purposes, the T — 0 K values of the various energies

shown in the figure are sufficiently accurate. We find

once again the result

Z=l+U
for all sub-bands. However, there are now two values of

the energy gap, i.e., the gap Ai for the single widened

The factor 1/3 occurs in the denominator of the argu-

ment of the exponential in eq (3.18) because the final

density of states in the tetragonal state of NbitSn is

reduced to 1/3 of the cubic state value. Note the large

predicted isotope effect in the tetragonal state Tc °^

/k/"'"''. Substituting our values of the parameters for

NbiiSn, we compute To = 8 K, and the energy gap

parameters A| and differ by less than 1%. A similar

calculation for VsSi yields 7'c = 20K, close to the cubic

state value. The small difference in the cubic and

tegragonal Tc's for VsSi results primarily from its low

[2] Tm = 22K; at Tc, the effective density of states at

the Fermi level is still large, so that the interaction

extends over roughly the same energy range in all

sub-bands as it would if the material were cubic.

Thus, we have the result that the approximations we

have made work well for VsSi; we calculate Tc's close

to the observed value and predict little difference

between the cubic and tetragonal TcS. On the other

hand, Nb:iSn is predicted to have a high Tc (28 K) in the

cubic state and a relatively low one (8 K) in the tetra-

gonal state. This is suprising because we would expect

our approximations to be either uniformly good or

uniformly bad for these materials. We believe that we

have considerably underestimated the tetragonal Tc

for Nb.iSn. Evidence for this exists in the low tem-

perature susceptibility data which indicates a fall-off

of the final density of states to about 0.5 A^o rather than

1/3 A^o. The value 0.5 A'n is very close to the value

predicted from the band model if we employ the

effective mass approximation [10] (N{E) E^l'^) rather

than rectangular energy bands. The final density of

states is critical in determining Tc, since it occurs

in the exponential, so that close agreement with the

observed value of Tc is obtained if we employ this

modification to our model. On the other hand, we

believe that the figure of 28 K for cubic NbuSn may

actually represent the Tc that this compound would

have if it did not first undergo a lattice transformation.

There is some experimental [21] and other theoretical

sub-band and the gap Aj for the two narrowed sub-

bands. Equation (3.12b) is then actually two coupled

homogeneous algebraic equations for A| and A'>. The
transition temperature is obtained by setting the deter-

minant of the coefficients equal to zero. If the energy

difference (1/2 U,q = Ef)=3To (exp(ro/7;„) - 1)"'

> Tc, we find

(3.18)

[22] evidence that NbuSn ought to have a much higher

Tc than the observed 18 K. If we are correct, it is then

a simple matter to show by a calculation similar to

that of McMillan [19] that the maximum Tc occurs for

\ = 4 and is 45 K for Nb:,Sn and 40K for V:,Si. Thus,

in contrast to McMillan, we find that Nb:jSn has an

intrinsically higher Tc than that of V:(Si. Of course,

our result rests on the assumptions we have made in

obtaining our equations for Tc and X; of particular

importance is the assumption of equal intra- and inter-

sub-band coupling in our model, Labbe, Barisic, and

Friedel [5] did not calculate the difference in Tc in

the two lattice states but felt that the difference

between them ought to be small because Tc in the cubic

phase varies only slowly with No in their model. The ex-

perimental situation with regard to the effect of the

lattice transformation on Tc is not clear. A Nb.iSn

crystal ' which showed lattice softening [23] but

did not transform according to x-ray measurements

had a Tc only 0.2 K larger than that for a transforming

crystal [3] . However, analysis of the elastic constants

[24] to obtain the quantities in eqs (3.15) and (3.16)

yields the smaller computed values of \ = 0.78 and Tc

— 20 K, so that the failure to realize a significantly

higher Tc in this particular nontransforming crystal is

understood. The situation is further complicated by the

fact that tetragonal crystals of NbsSn are heavily

twinned [25,26], and the effect of the attendant inter-

nal strains is not known.

4. Conclusion

The results presented here and in previous papers

show that a simple electronic density of states model

can account for many properties of the normal

tetragonal and cubic phases and the high Tc's of these

materials. Our approach to the density of states differs

only in detail from that of Labbe-Friedel-Barisic [4,5],

although our model gives better numerical agreement

' This crystal was found to c()ntain 1.5% interstitial H.

1+H
Tc =1.13 idom"- d„[exp (To/r,,,) -1] exp [" i (x-^*) }
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with most of the experimental data [6]. The present

treatment of superconductivity differs considerably

from that of other authors [5,19,22] in that (a) we
specifically treat the effect of the tetragonal transfor-

mation, and (b) attempt to estimate the magnitude of

the electron-phonon interaction from the elastic

properties of the material.

Despite the success of the model, certain important

questions remain to be answered. First, and perhaps

most important, is it true that transforming NbsSn
would have a Tc of substantially higher than 18 K were

it not for the lattice transformation? This question can

only be answered experimentally. The question which

is most relevant to this conference is the relation of the

model density of states to the actual band structure in

the vicinity of the Fermi surface. This question is very

difficult to answer because ordinary band calculations

overlook structure on the energy scale that we have

considered. If our success in explaining the properties

of these materials has a physical basis, then the essen-

tial features of our model must result from a fundamen-

tal treatment of the /3-W compounds. The early pioneer-

ing calculation of Mattheiss [27] and the insights of

Weger [28] and the Orsay group [4,5] provide the

foundation for such a study. The technical and theoreti-

cal importance of understanding the source of high Tc's

should provide sufficient motivation.
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Summary of the Conference on Electronic Density of

States* ^

H. Ehrenreich

Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts

It is very difficult to summarize a conference such as

this, involving as it did a many splendored array of top-

ics, both experimental and theoretical, expounded in no

less than ninety papers. The organization of a con-

ference of such size is ordinarily impossible without

resort to simultaneous sessions. When there are simul-

taneous sessions, of course, it is easier for a single sum-

marizer because he can only be at one place at one time

and therefore can be excused for faihng to do justice to

half of the papers. It is also easier for the audience

because if you permit people to resonate between ses-

sions, you also allow them to become trapped in the

halls, advertently or inadvertently as the case may be.

However, through the devilish cleverness of the or-

ganizers of the present conference, a goodly fraction of

the papers were delivered by a rapporteur. Ac-

cordingly, the entire audience, including the sum-

marizer were exposed to everything during a period of

three and a half hard-working and elaborately or-

ganized days. Furthermore, I lose my excuse for having

overlooked, as I undoubtedly did, some of the impor-

tant new developments presented or presaged here.

As it is, in the time of thirty-two minutes that have

been allotted to me it is, of course, impossible to men-

tion even a representative fraction of the contributions.

Indeed, even the various areas discussed here can only

be sketched in broad outHnes. Fortunately my task is

considerably eased by the various excellent review lec-

tures and rapporteur summaries that punctuated the

conference. In order to avoid the risk of offending a

few, I have decided instead to offend everybody by not

mentioning names in this talk, except when referring to

work which was not explicitly reported at this con-

ference which is appropriately referenced.

*An invited paper presented at the 3d Materials Research Symposium, Electronic Densily
o/Siaies. November 3-6. 1969, Gaithersburg, Md.

' Supported in part by Grant No. GP-8019 of the National Science Foundation and the

Advanced Research Projects Agency.

At the outset, let me thank the organizers on behalf

of everyone attending it for providing us with an out-

standing scientific program that clearly focussed on the

principal questions which those of us who are grapphng

with the electronic structure of condensed matter are

facing. During the time when we were not riding buses

or listening to papers, there was also a most pleasant

social program, and mercifully, a few hours for sleep.

I would regard the title of the present symposium,

"Electronic Density of States" a leitmotif rather than

an idee fixe because the subject matter presented at

the conference in fact was far more general than might

be implied by the title. Since the density of states is

very influential in the determination of many basic

physical properties, it provides an excellent focal point

for presenting some of the more recent developments

in the electronic properties of condensed matter.

More importantly (and to my view this is one of the

chief motivations of this conference) the density of

states is a convenient central quantity for confronting

theory arid experiment even though, unfortunately, it

never seems to be measured directly by any

experiment. In the jargon of the modern theorist one

might phrase this difficulty in the following way. The

density of states is proportional to the imaginary part of

the single particle Green's function, whereas many ex-

periments determine a response function, which in-

volves Green's functions of two or more particles.

When suitable approximations are made, however, the

state density enters in a fairly direct way into the

theoretical interpretation of all of the various kinds of

measurement described at this conference.

The list of techniques available to the solid state

physicist, which was extensively sampled here, is truly

impressive and stands in contrast to the much more

limited variety available to our colleagues in the ele-

mentary particle field. We heard about optical absorp-
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tion and reflectance, x-ray spectroscopy, photoemis-

sion, Fermi surface experiments, tunneling, measure-

ments of the electronic specific heat, magnetic suscep-

tibility, superconducting critical fields, and transport

properties, positron annihilation, Compton scattering,

ion neutralization spectroscopy among others, and how

some of these are influenced by pressure, strain, and

temperature.

The preceding list reflects the fact that photons con-

tinue to be one of the favorite probes for studying the

microscopic properties of matter. It is therefore tempt-

ing to use the 1965 Conference in Paris on the Optical

Properties and Electronic Structures of Metals and Al-

loys [ 1] which dealt with the same class of materials as

the present conference and similar ideas concerning

the interpretations of experiments as a fiducial mark to

give us some indication of what we have learned about

metals and alloys during the interim.

Pippard, in his summary of that conference, re-

marked on the extraordinary number of times the au-

dience was shown the Cu band structure. Since then

the variety of band calculations, and, in particular the

kinds of materials considered has proliferated greatly.

Pd has received a great deal of recent attention largely

as a result of excellent high field susceptibility and

photoemission measurements. Other examples

discussed here involved more exotic materials such as

AuAl2, EuO and Ge02. Evidently the machinery for

doing such calculations on ordered alloys containing

several atoms per unit cell, some of which are suffi-

ciently heavy that relativistic effects become impor-

tant, is now available at several laboratories in a readily

usable form. However, as in all band calculations, even

if one accepts the Hartree-Fock approximation, the

result obtained is only as good as the potential that is

used as input information. In metallic alloys one might

expect some charge transfer among the atoms belong-

ing to a single unit cell. In my view this possibility has

not yet received adequate attention.

^ For example, AuAl2 has the CaF2 structures and is

one of the few metals in which a Raman frequency has

been observed [2]. Remarkably, its magnitude is

similar to that of CaF2. One might ask whether the very

similar stiffness of the optical frequencies in these

materials is purely an accident or whether there could

be enough charge transfer among the atoms in the cell

to result in appreciable ionic character. I realize that I

am undoubtedly not saying anything that is not already

familiar to band theorists. However, experimentalists

should be warned that the construction of alloy poten-

tials, even for ordered systems, is still a problem that

requires attention.

Indeed, the simpler problem of calculating band

structures for monatomic metals on the single particle

picture is still controversial. As we saw in connection

with several of the contributions and much of the

spirited discussion that followed them, we still don't un-

derstand clearly how, when, or why to localize the

exchange interaction. To date no sufficient theoretical

reason has been advanced for preferring either the

Slater or the Gaspar-Kohn-Sham versions of this poten-

tial. Proponents of either point of view, or those favor-

ing intermediate values of the coefficients at present

usually support their position by comparison with ex-

periment rather than basic theoretical arguments.

In this same connection we might note the debate fol-

lowing the introductory lecture concerning the relative

merits of first principles and pseudo- or model-potential

band calculations. The essential point made in that lec-

ture, in my view, is that "pseudism" is important

because it provides elementary insight into the mean-

ing of the results of the elaborate machine computa-

tions. The two approaches, in fact, are complementary

and the proponents of each have a genuine need for,

and indeed ideally should merge with the other.

There is no doubt whatsoever that band theory has

done sufficiently well that it is worth using its results to

calculate the density of states accurately. This is a dif-

ficult numerical problem, particularly if one resignedly

accepts spending ceilings that curtail the amount of

available computer time, for one needs to know the

energy at many millions of points in the BriUouin zone

in order to construct adequate histograms that yield aU

the fine detail in the density of states that is often

necessary to interpret experimental information re-

liably. We saw several examples of advances in per-

forming such calculations more economically at this

conference. The QUAD scheme is one of these.

Another, which I will call the IBM scheme, not after the

machine but the workers, is similar to QUAD in its

ability to generate very detailed E{k) curves, but it

avoids the use of histograms. All these result in very

finely grained structure in the state density.

In this same connection, I think the importance of

learning how to sum functions of A: over constant energy

surfaces in the BriUouin zone efficiently and reliably

needs emphasis. This is important not only for calculat-

ing the state density, but also for computing Green's

functions that are central to the solution of alloy band

problems, frequency dependent dielectric functions

that can be compared with optical data, susceptibili-

ties, and many other quantities. While many theorists

may think such problems as insufficiently dignified, I

would, nevertheless, stress that their solution is impor-
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tant if one ever expects to confront theory and experi-

ment realistically on a more complete basis for more

complicated systems.

At the same time let me temper this call to computer

and numerical analysis handbooks by reminding you of

the obvious fact stressed by many speakers that band

calculations are single particle descriptions involving

electrons or holes as ideal quasi-particles which in-

teract with a self-consistent field that is in practice

determined more or less self-consistently. However,

due to electron interactions including those involving

phonons, real quasi-particles acquire finite lifetimes,

except right at the Fermi surface. Some of the papers

presented here reflected the fact that methods of taking

quasi-particle effects into account more systematically

in band calculations are now being developed. I would

look towards greater exploitation of such techniques in

the band calculations of the near future. It is important

to remember that when we speak of dressing effects,

say, due to electron-phonon interactions, we ought to be

dressing the right bare object, namely the correctly cal-

culated quasi-particle appropriate to the stationary

lattice.

One should again be reminded of the fact that very

few if any of the experiments discussed at this meeting

correspond to creation of just one quasi-particle near

the Fermi surface. This fact was also stressed already

at the Paris Conference. Optical experiments, for ex-

ample, correspond to the creation of two quasi-particles

and ion neutralization measurements to three. These

may interact with each other as well as with the other

particles in the system. This was illustrated in the

discussion of the various types of phenomena that can

occur in x-ray emission, which lead to the conclusion

that the observed spectrum of the valence band may

bear less resemblance than one would hope to what is

calculated from band theory. In addition to the long

familiar Landsberg or Auger tails that smear out the

lower valence band edge, there are recently predicted

elementary excitations such as the plasmaron and other

broad structures that also result from interactions with

plasmons. Another effect that was reported on here

results from exciton type interactions between elec-

trons near the Fermi surface and the core holes with

which they combine in an x-ray emission process.

These may strongly affect the transition rate and lead

to substantial enhancement or dimunition of the ob-

served intensity near the Fermi surface. As has been

pointed out to us, these effects must be quantitatively

understood before information concerning band struc-

ture can be reliably extracted from such experiments.

As a result of particle interaction effects, the informa-

tion supplied, even what would in a simple minded view

correspond to the same theoretical quantity, often dif-

fers from experiment to experiment. The Fermi surface

effective mass determined from electronic specific heat

and Pauli susceptibility measurements is an example

of this.

Even within a single particle framework, the state

density function is only characteristic of a particular

type of experiment. For example, in x-ray emission ex-

periments, optical selection rules pick out only those

components of the valence band state density having

appropriate symmetries with respect to the core hole.

We saw that this fact has particular utility in providing

insight into the character of the wave function overlap

and hybridization among different components in both

ordered and disordered alloys. Since the core hole is lo-

calized in a given atomic site, the study of say the

Al-L2,3 emission spectrum in systems such as AuAU
and others discussed here, provide an indication of the

amount of d wave function in these systems located on

the Al sites.

As another example, we might mention the k-conver-

sation rule entering interband optical processes which

implies that the state density appearing in theoretical

expressions for the optical constants is the so-called

"joint density of states." This seemingly innocuous fact

has led to a spirited controversy in connection with the

interpretation of photoemission experiments which was

already in full bloom at the Paris Conference. As you all

know by now, there are two schools of thought whose

proponents we might call the k-conservationists and the

k-nonconservationists. The latter group has main-

tained, on the basis of a considerable body of experi-

mental evidence, that particularly in materials having

narrow bands such as the noble and transition metals,

the energy distribution of the photoemitted electrons

should directly reflect the structure in the density of

states pertaining to these bands. The k-conservationists

on the other hand have asked, "Why should this con-

servation law be violated?" Indeed, one of the papers,

which represents the first attempt at the formulation of

a systematic theory of the photoelectric effect in solids,

points to ways in which this might come about.

Several of the other contributions point to progress

towards a reconciliation of these viewpoints. For exam-

ple, we have heard in connection with Cu that a direct

transitions analysis using constant matrix elements ac-

counts quite well for the observed energy distribution.

Similar conclusions have been reached on the basis of

very detailed calculations for Pd. The essential pointy

which was emphasized by both camps, is that the stron-

gest peak in the joint density of states coincide with
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peaks in the calculated state density, particularly in the

case of narrow valence bands.

While in many cases the photoemission technique is

a very useful tool, this may not be the case universally.

It was suggested, for example, that it is less successful

in providing information concerning f states in the Eu
chalcogenides and rare earth metals since these states

are seen to give rise to abnormally low quantum yield

relative to, for example, p states. It is also clear that the

variation of optical matrix elements with energy and

selection rules, which can also lead to structure in the

observed spectra, needs further attention because in

many calculations this matrix element is still regarded

to be a constant.

Before leaving the subject of optical properties of

crystal, two other points are worth making. Despite the

fact that one learns only about the joint density of states

in such experiments, it is, in fact, possible to derive the

conventional state density from optical data by a more

circuitous route. The usefulness of differential

reflectance techniques is now well established and was

illustrated in several of the contributions presented

here which even extended to the x-ray case. Informa-

tion from such measurements can be used as input for

pseudopotential band calculations or those based on

the k • p approximation. The problem of constructing

potentials which plague first principle band calcula-

tions is thereby avoided. Since the secular equations

for such problems are generally smaller, they can be

solved at sufficiently large numbers of points in the

Brillouin zone to obtain the state density.

The other point concerns another recent develop-

ment. A fact that has been distressing to many theorists

is that, while in semiconductor calculations of optical

coefficients there was always good agreement between

theory and experiment in regard to both the position

and magnitude of the observed structure, this has not

been the case in metals. For the case of Al we saw quite

convincing evidence that such discrepancies are on the

point of disappearing, largely as a result of better calcu-

lations which deal more adequately with the k-depend-

ence of the momentum matrix element. Indeed, other

recent investigations have shown that electron-electron

scattering effects, which lead to vertex corrections that

might be expected to be stronger in metals than

semiconductors, are, in fact, very weak in this material

[3]. Even though the so-called Mayer-El Naby
resonance is probably no longer with us [4] , our un-

derstanding of the alkali metals is unfortunately still

not in as good a shape.

It is regrettable that relatively few papers presented

at the conference attempted to provide a detailed com-

parison between the results obtained by different types

of experiments. There was only one noteworthy excep-

tion, which was concerned with efforts to confront

Knight shift data with those of soft x-ray emission ex-

periments. There is a real need for more such detailed

comparisons, even on the basis of band theory alone.

According to a paper count, superconductors and

semiconductors received less attention than the simple,

transition, and rare earth metals. However, there are

good reasons for mentioning them even in this broad

summary. As appropriate, superconductivity was not

discussed as a phenomenon, but rather as a tool to ex-

tract information relevant to the state density. On the

positive side, we heard how strong coupling theory can

be used together with other measurements to obtain the

electron-phonon coupling constants, and how measure-

ments of the critical field at very low temperatures can

be made to yield the electronic specific heat as a func-

tion of pressure with high accuracy. On the negative

side, it was pointed out in connection with a general

review of the information provided by tunneling experi-

ments, that such measurements for superconductors do

not really tell us all that much about the normal state

properties of metals and semiconductors.

It is clear from the exquisitely detailed interpretable

information being currently obtained from cyclotron

resonance, magneto-optical, and even nonlinear optical

data in simple semiconductors and semimetals, that

our understanding of these materials is still in a

somewhat more mature state than that of most metals.

Of course this applies only to the classical and long stud-

ied materials like Ge and InSb and not to amorphous

semiconductors which were discussed in only a single

paper. However, the very beautiful interplay and agree-

ment between theory and experiment must still be re-

garded as serving as a standard of excellence which

solid state physics in general must continue to emulate.

Surfaces also were not discussed extensively here,

largely, I think, because the theoretical ideas and

techniques for dealing with such problems in realistic

systems are only beginning to be developed. However,

some very promising experimental techniques, notably

ion neutralization spectroscopy and resonance tunnel-

ing which shed light on the nature of surfaces and im-

portant phenomena like chemisorption were described.

This area will surely see a great deal of activity in the

near future.

Since the discussion of a large variety of alloy

systems occupied so much of the conference, let me
conclude this summary with some remarks concerning

this subject. We were exposed to a wide variety of data

concerning many alloy systems, most of them involving
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transition metals. Certainly there are many more than

were considered at the Paris Conference. However,

this comparison is somewhat unfair since even now,

with one or two notable exceptions which were

presented here, there is still a dearth of optical informa-

tion concerning disordered alloys. This is to be con-

trasted with the situation involving specific heat and

transport measurements about which we heard a great

deal. Indeed, most of the papers dealing with the elec-

tronic specific heat were concerned with alloy systems.

A most interesting effect that was described dealt with

the recently discovered magnetic clusters in NiCu al-

loys which can make their own appreciable contribu-

tion to the specific heat. This conjecture is quite new
and deserves detailed theoretical treatment. There was

also an intriguing discussion concerning rare earth

metals which raised the question as to whether the /
electrons could possibly be at least partially itinerant in

some of these systems.

One fairly obvious thing that needs emphasis in con-

nection with these papers and that was stressed in a

number of them is the need for data of single crystaF

specimens having known phases, and how crucial it is

to avoid samples involving mixture of phases. Without

these precautions, the overanxious theorists will, as

they did in the case of the Mayer-El Naby anomalies,

find themselves in the awkward position of explaining

what Pippard already warned in 1965 might be non-

facts.

As we saw, many of the experimental techniques ap-

plicable to pure metals are relevant for disordered al-

loys as well. We have already mentioned optical and x-

ray data in this connection. The fruitful and relatively

easily interpretable Fermi surface experiments, alas,

seem to be much more difficult for many alloy systems.

However, measurements such as those involving

positron annihilation which also probe the Fermi sur-

face geometry are not restricted by such criteria. They

have already been very successfully used to investigate

detailed Fermi surface changes in Cu-Al [ 5] and as we
heard here, to brass.

A great deal of progress in this area since the Paris

Conference has come along the theoretical front. Until

a few years ago the only theoretical models available for

describing alloy behavior involved perturbation theory,

the virtual crystal, or the rigid band models. However,

recently a number of rather effective techniques based

on scattering theory have been adapted to this problem

and implemented by calculations for both model and

realistic systems. These all transcend the earlier, more

limited approaches. The first incisive contributions to

electronic theory, made by Edwards and Beeby [6] , in-

volved the so-called average t-matrix approach which

Soven [ 7] applied to brass. An extension of such calcu-

lations was discussed here. Subsequently, Soven [8]

formulated a more general self-consistent effective

field approach that he termed the coherent potential

approximation which is more general than the other.

While this was mentioned in several of the papers, it is

perhaps worthy of some additional commentary
because of its possible applicability to realistic alloy

systems.

In this approximation the alloy is replaced by an ef-

fective medium described by a single particle non-Her-

mitian and complex Hamiltonian which, however, is

still periodic in the case of substitutional alloys. The
self-consistency condition determining this Hamiltoni-

an is simply that an effective electron wave travelling

through the crystal which impinges on an atomic site

suffers no further scattering due to the random

character of the crystal potential. Put another way, the

effective wave, just like a Bloch wave in a crystal, is not

scattered by the atoms. However, unlike the Bloch

wave, the effective wave may be damped as it

propagates through the crystal. The present limitation

of this description is that it is only applicable to certain

classes of Hamiltonians in which the random character

is cell localized. The theory has the virtue of correctly

reducing to the known results for small impurity con-

centrations and arbitrary scattering strengths on the

one hand, and for arbitrarv concentrations but small

scattering strengths on the other. It interpolates in a

physically reasonable way between these hmits, yield-

ing results that are valid for arbitrary alloy concentra-

tions and reasonably strong scattering strengths. It fails

in predicting band taihng effects, experimental

evidence for which we heard described here in connec-

tion with semiconductor tunneling experiments. Also,

it does not yield strictly localized states except in the

limit of very small impurity concentrations.

We should note parenthetically that while the ex-

istence of such states near band edges is generally be-

lieved, some questions were raised here as to whether

or not such states can exist in the middle of a tight bind-

ing band and whether or not the frequently made
hypothesis that there exists a sharp demarcation

between localized and nonlocalized states is correct. As
we were reminded, locahzed states such as those due

to f-electrons, can exist even in periodic systems when
the Coulomb interaction is sufficiently strong. As was

shown, conventional band descriptions break down
under these circumstances.

To obtain the effects omitted by the coherent poten-

tial description of disordered alloys it is necessary to
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allow for the possibility of statistical clustering effects.

This is a much more difficult problem. But as we heard

in two of the papers presented here, some very promis-

ing progress is beginning to be made in these

directions. Indeed, the early work of I. M. Lifshitz [9]

has already given us an indication of the sorts of results

to be expected.

Because of the previously stated limitations, the

coherent potential theory in its present form is strictly

speaking applicable only to isoelectronic alloys like

GeSi, where the random part of the potential is substan-

tially confined to the core region at each site, or to 3d

transition-noble metal alloys in which the d-states that

are most affected by the disorder are substantially

localized.

To give these remarks a sharper focus, I should like

to show you by means of one example the results of an

application of this theory to CuNi alloys. Figure 1 ex-

hibits S. Kirkpatrick's calculations [10] for the density

of states of these alloys and also the results of

photoemission experiments by Seib and Spicer [11],

which, for reasons already mentioned, should only be

compared qualitatively with the theoretical results. It

should be emphasized that these calculations do in-

volve approximations, most of them probably not too

serious. Since it would be inappropriate to discuss

these in the present context, I would like to confine my
remarks to a few brief comments. The first is that the

coherent potential approximation is evidently applica-

ble to quite complicated density of states functions
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Figure 1. The hybridized d state densities, calculated in the

coherent potential approximation, are compared with the optical

state density obtained from photoemission experiments [10.11].
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which include degenerate d-bands and hybridization

with conduction bands. Second, the only input informa-

tion needed for nickel-rich alloys is the hybridized

nickel state density, the positions of the resonant Ni

and Cu d-levels which give rise to the d-bands, and the

concentration. Third, the distortion in the state density

curve with increased alloying shows the rigid band

model, which has been particularly popular for this

alloy system, does not really apply. This is seen even

more clearly in the results of calculations of the mag-

netic properties [12]. Finally, the prominent calculated

structures and their behavior is qualitatively in accord

with the experimental observations. The principal

peaks remain stationary, but they change in intensity

and shape in both the calculations as well as the experi-

ment. The contribution of copper to the state density

turns out to be broad and relatively structureless and

comes principally from the lower regions of the d-band.

While this kind of theory predicts a wealth of detail,

its quantitative validity remains an open question that

must be explored further. More important, some of its

present limitations must be overcome to render it ap-

plicable to a wider class of alloys. However, given the

improving theoretical and experimental situation that

is clearly evidenced from this conference, it seems

clear that at the next meeting of this type we will surely

hear about further, more extensive developments

which will place the theory of alloys on a firmer footing.

After these somewhat discursive concluding re-

marks, let me close the conference by once again

thanking everyone; organizers, speakers, and rappor-

teurs, questioners, commenters, and listeners for hav-

ing made it as stimulating as it turned out to be.
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Thermal Electron Effective Mass of Rubidium and
Cesium

D. L. Martin

Division of Physics, National Research Council of Canada, Ottawa, Canada

Key words: Cesium; effective mass; electronic density of states; rubidium; specific heat.

Specific heat measurements in the range 0.4 to 3.0 K
on 99.99% pure rubidium give a thermal electron effec-

tive mass of 1.37 ±0.01 and on 99.97% pure cesium

give an effective mass of 1.80 ±0.04. These results are

much closer to the previous specific heat results of

Lien and Phillips [ 1] than to those of Martin, Zych and

Heer [2] . The result for rubidium is in good agreement

with the theoretical resuhs of Ashcroft [3] (1.38 ±0.09)

and Wasserman and deWitt [4] (1.36). The cesium

result is in fair agreement with Wasserman and deWitt

[4] (1.69) and Mahanti and Das [5] (1.63). This work

has been published in Canadian Journal of Physics 48,

1327(1970).
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Density of States and Numbers of Carriers from the

dHvA Effect*

S. Hornfeldt, J. B. Ketterson, and L. R. Windmiller

Argonne National Laboratory, Argonne, Illinois 60439

With the dHvA effect, one can determine the angular dependence of the extremal area and effec-

tive mass over all sheets of the Fermi surface. Using recently developed techniques this data can be in-

verted and the angular dependence of the Fermi radius and Fermi velocity determined. Techniques

have been developed to allow the inversion of both open and closed surfaces. For closed surfaces we use

an expansion in symmetry adapted spherical harmonics (to order / = 60) while for open surfaces a three-

dimensional Fourier series representation is used. With this information one may determine, for a given

sheet of the surface, the number of carriers n(Er) and density of states N(Ey) by performing the ap-

propriate integrations.

Key words: Electronic density of states; de Haas van Alphen effect; Fermi surface; Fermi velocity;

Fourier series; spherical harmonics; symmetrized techniques.

1. Introduction

In this paper we will discuss methods for deducing

the Fermi radius and Fermi velocity from measure-

ments of the de Haas van Alphen (dHvA) effect. The

period of the dHvA oscillations determines the ex-

tremal cross-sectional areas of the Fermi Surface (FS)

A{d,(p), where 6 and cp are the polar angles of the mag-

netic field. In addition, dHvA measurements allow a

determination of the associated cyclotron effective

masses m* = 1/277 dA{d,ip)ldE. We will discuss the

mathematical techniques that allow one to determine

the Fermi radius and velocity from a knowledge of

A{d,ip) and m*{d,ip).

If we have the radius k{d,ip) then by integration we
can determine the number of carries, n(E), contained

within a given sheet of surface, i.e.

:

2 r
n (Ef) — 37"^—^ I k"^ (6, (f) sin dddd<p.

o^lTT)-" J
(1)

Furthermore, a knowledge of k{9,(p) and \{0,<p) allows us

to determine the density of states, N(E>, for each sheet

of the surface, i.e..

N(Er)
2 [kHd,

(277)^ J

(p) sin dd6d<p
(2)

*Work performed under the auspices of the U.S. Atomic Energy Commission.

It is well known that the inclusion of many-body ef-

fects decreases the magnitude of the Fermi velocity

from the single particle value that would be deduced

from a band structure calculation. As can be seen from

eq (2), this results in an increase in N(Ef). Such many-

body effects include electron-electron and electron-

phonon interactions. The paramagnon contribution,

which is really a form of electron-electron interaction,

has received considerable attention recently. Accord-

ing to the Landau's Fermi liquid theory, the density of

states determined according to eq (2) (using techniques

to be described here) should be identical to that deter-

mined in a heat capacity experiment, i.e., the quasi-par-

ticle density of states accounts for all of the density of

states. Actually the Fermi velocity information should

be regarded as potentially much more valuable than the

density of states since there is probably a wealth of in-

formation in the anisotropy of the velocity reduction

and its variation from sheet to sheet of the surface.

In order to accomplish this "inversion" it is useful to

have a mathematical representation for the surface (or

surfaces in cases where the FS consists of several

sheets). Two cases arise quite naturally; either the sur-

face is open or it is closed. For a closed surface our

representation must be invariant to the operations of

the point group of the surface. For an open surface the

representation must be invariant under the operations

of the space group of the crystal. We will discuss these

two cases separately.
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2. The Point Group Representation

Lifshitz and Pogorelov [ 1] have shown that closed

surfaces containing a center of inversion symmetry are

invertable providing the radious vector measured from

this center is single valued. The theorem, in its original

form, was awkward to apply and Mueller [2] has refor-

mulated it in a manner which considerably simplifies

its application. A comparison of the Lifshitz-Pogorelov

and the Mueller formulation has been given by Foldy

[3] . For the representation of the surface we use sym-

metry adapted spherical harmonics. Since the radius

vector is a real quantity we deal with the real spherical

harmonics.

I III

I III

1

V2

1

iV2

[Yi, in{d,ip) + Yl.-,„id,<f)]

C,o^YnAe,<p)

(3a)

(3b)

(3c)

We expand the area .4(6, (f) and the square of the radius

vector k'~{d,(p) as follows:

I, III

Aid, ^) =E [^f, iiR J0^^)+ i.iC',[ ,„
id,^)].

I, III

What Mueller showed was that

l3,.„i = TTP,{0)y,.

(4)

(5)

(6)

where P/(0) is the Legendre function of order /. A
unique connection between the radii and areas requires

even / since Pi(0) = 0 for odd /. Even / is the same as

requiring inversion symmetry since the parity of spheri-

cal harmonics is (—1)'. Of the 32 crystal point groups

10 contain the inversion element, these being S,. C2/i.

Dih, Caii, D-1/,, Cui, Dlid, Ch^, D«/,, and O/,. The values of

m to be summed over in eqs (4) and (5) depend on which

of these 10 point groups the surface in question belongs

[4]. The z-axis is chosen as the axis of highest sym-

metry. The inclusion of even ig) and uneven (u) coeffi-

cients are required when the z-axis does not lie in a mir-

ror plane. If the z-axis does lie in a mirror plane, then

the z-axis is also chosen to lie within the mirror plane

and only even coefficients are required. All values of m
(0 — /) are required for the group S-> along with both

even and odd coefficients. Only even coefficients are

required for the groups D2/,, D^/,, D:if/, and Dm, and m =
0 (mod 2), m = 0 (mod 4), m = 0 (mod 3), and m = 0 (mod

6) respectively. Both even and odd coefficients are

required, and the x-axis may be chosen arbitrarily, for

the groups C>h, C-m, and Cm, and m = 0 (mod 2), m
= 0 (mod 4), TO = 0 (mod 3), and m = 0 (mod 6) respec-

tively. The group O/, requires special consideration [5].

The symmetrized harmonics /^/,,(0.(^) which transform

according to the cubic group are called Kubic har-

monics. These harmonics are linear combinations of

real even spherical harmonics.

(7)

The coefficients aj ,„ have been tabulated to order / =

30 by Mueller and Priestley [5] and to order / = 60 by

Aurbach, Ketterson, Mueller, and Windmiller [6].

The actual inversion proceeds as follows. The coeffi-

cients (Bim are found by least squares fitting the availa-

ble experimental areas to eq (5). The Fermi momentum
then follows by combining eqs (4) and (6). It is necessa-

ry that the available experimental areas be measured

over a wide range of angles, otherwise the number of

coefficients which can be determined is limited [4,5].

Often one encounters surfaces which are nearly ellip-

soidal in shape. This is particularly true in semi-metals.

Equations (4) and (5) do not terminate for eUipsoids and

converge slowly if the ellipsoid is quite elongated. For

such surfaces it is convenient to perform a "spherical

mapping" on the coordinates in order to map the "ellip-

soid" into a "sphere" [4]. We do this by the following

transformation

x' = ax

'y' = y (8|

z' = yz.

Let T represent this transformation, i.e., T(x,y,z) =

(x\y',z') or in polar coordinates T{y,d,(p) = iy',d',(p')

We will also need the inverse transformation

T~^{x\y\z')={x,y,z) or equivalently T-^{y\0' ,(p')

(y.d.(p). It is easy to show the following

cos

cos B' =

r'-{d, (f) [sin- 0(sin- ip + a- cos- if) + y- cos- 6]

a cos (f

(sin- if + a- cos- (p)''-

y cos 6

[sin- 0(sin- ip + a- cos- tp) +y'- cos- 0] '

-
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The question arises as to what the relation is between the area in the transformed system and the untransformed

system. It can be shown that [4]

A'iT-'d, r-V) =a7[sin' 9(sm' cp + a"^ cos-^ V?)
+y-- cos^ 6»]i/^^(0, ip). (10)

What one does in practice is map the areas measured mapped back to the untransformed system using eq

in the untransformed to the transformed system using (9a).

eq (10). The coefficients in eq (5) are then determined We now turn to the inversion of areas and effective

by the least squares procedure. The radii in the trans- masses into the Fermi velocity \f{6,(p) [7]. The velocity

formed system (which follow from eq (6)) are then is given by = 1):

We expand dA{6,(p)ldE (= 2TTm*(Q,ip)) in a series of the form given in eq (5)

S [i8;;VCi/,„,(0, ^)+^;,%C[',je. v^)] (12)

(, m

where )8,',,„ = 7rf/(0)7,' VK iO,(p) we have immediately the k component of the

Since dk^ {6,(p)ldE = 2k {d,<p) dkid,<p)ldE-^2kid,ip)l velocity (since A- is known from eq (4)), i.e.,

v,=-^ (14)

I, m

The other two components may easily be calculated using the laws for the differentiation of implicit functions, i.e..

I, m
Vh'-

I. m in

1/2

(15)

Thus we find:

Vf-- 7 ^-j^ y[7J. (16)

E ^l^J^l m ( ) + y[%fl J ) ] S ^y't irfl J0,^)+ yl J 0. ^ ) ]
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It is also possible to obtain similar formulas when using

the spherical mapping procedure [6].

3. The Space Group Representation

A representation which is invariant under the opera-

tions of the space group is a three-dimensional Fourier

series of the form:

k R
(17)

where the Cr are the Fourier coefficients. This

representation was used by Roaf [8] to construct the

FS of Cu, Ag and Au from the dHvA data of Shoenberg

[9]. The vectors R are the vectors of the real space

lattice:

RImn ' /a+ mb + nc (18)

where /, m, and n are integers and a, b, and c are the

primitive translation vectors of the lattice. The vectors

R/mii may be factored into sets, which we will call stars,

according to their length |Rn„„| [10]. Thus eq (17) may
be written in the form

F{k) = ^CjSj{k) (19)

where the j number the stars of increasing length, and

Sj(k) is the sum of e'l' R over all R in the jth star. In eqs

(17) and (19) F(k) is not necessarily identical to the

band structure £^(k). If the coefficients are deter-

mined by fitting to a band structure calculation over

some range of energy then F(k) will approximate

dCj

2^' {A':-Ai) dAl

''N
1̂=1

and

dCj
(24)

the band structure in that interval. In this case the

Fermi velocity is given by

ik R
(20)

If on the other hand the Cj are determined only from in-

formation involving the shape of the FS (e.g. dHvA
areas) then F(k) = £'/ is a number which may be chosen

arbitrarily and the velocity is not given by eq (20). If,

however, we have both area and effective mass data

then we can construct both the Fermi radii and Fermi

velocities.

We discuss first the inversion of areas to radii. The

calculated area is given by

1 f-TT

=2jo (21)

where kj_ measures the component of the momentum in

the plane of the orbit, and <// measures the angle of ki in

the plane of the orbit. Since eq (19) is an implicit func-

tion of k we must solve using the Newtron-Raphson

technique. Assume that we have a set of areas Ai and

an initial set of coefficents Cj. The problem is to vary

the Cj until the areas calculated using eqs (19) and (21)

minimizes the rms error A between the calculated and

measured areas where A is given by:

(Af-AiY
N ^AHCj)

i=l
Ai

(22)

The amount 8Cj by which we must correct Cj follows

from minimizing eq (22), i.e.:

dCj
jl

dCjdC,
(23)

It can be shown that the vector and tensor coefficients

in eq (23) are given by [ 1 1] :

dCjdC, N ^
I !=1

bA\ i)A\

i)Cji)Ci_

1

(25)

where

and

3^'

bCj

Ztt

0 k^-VF

d-'A'

Sj{k)d4i (26)

dCjdC

r
,
S^.(k)S,(k)

,
Sj(k)k^ • V SKk) +S,(k)k^ • V 5j(k)

_ S,-(k)5,(k)k^- VVF-k^
^ (kx • VF)3

dijj.
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Using the above equations we can determine a set of Cj

which fit the data and thus construct the shape of the

surface. This technique is apphcable to both open and

closed surfaces.

We will now show how this technique can be ex-

tended to determining Fermi velocities from area and

effective mass data. As mentioned previously V F will

not yield the Fermi velocity when the Cj are determined

using eqs (23) through (27). While it is possible to deter-

mine a set of coefficients Cj such that V£' = \f it is sim-

pler to introduce a new set of coefficients C'-. We
define these coefficients by writing the velocity in the

following form

VF(k)

X qs,-(k)
(28)

J

2 (m.*' -m.*) dm*'-

'N' 2j

and

dC.
J 1=1

m *2

J

(31)

The effective mass follows from

1 dA 1 r-'^ Ai
m

277 (lE 2-77 Jo kj^ • V £

277 VF (29)

We assume that the Cj which yield F(k) are already

known and that we vary the Cj until a best fit is

achieved to the effective masses. We define a new
function A' similar to eq (22) by

1 m.*'--m*-
'

(30)

which on minimizing leads to an equation similar to

(23). Thus we need

dC'rlC. N
dmr\(dmi

dC.
J J

+ {m*'-m*)
i

' c)C'.c)c: m.
(32)

These derivatives follow immediately from eq (29) (re-

calling A\l does not change on varying C')

dm

dC'j

1

2^

cf^m*'-
0. (33)

The important point is that

was already evaluated when doing the area to radii in-

version. Thus it is only necessary to save these coeffi-

cients in order to perform the effective mass inversion.

To evaluate the number of carriers and density of

states using the Fourier series representation it is con-

venient to evaluate the integrals differently than in eqs

(1) and (2). We rewrite (1) and (2) in the following form:

and

niE)=^:^^ j A{kii)dkii (34)

(35)^(E)=j~7, j 2TTm*{k\i)dk
II

where A;|| is measured normal to the plane of the orbit.

A problem arises when the surface is open in that the

orbits can change from "hole like" to "electron like."

This problem is solved by subtracting the area of the

hole orbits from the corresponding area of the Brillouin

zone, and selecting the direction of k\\ such that no
open orbits occur.

4. Applications

The techniques involving the symmetrized spherical

harmonic representations have been applied to the F

centered electron surfaces in Pt [ 7] and Pd [ 12] . For

Pt the number of carriers in the 6th band electron sur-

face is found to be n{Er) =0.419 electrons/atom while

the corresponding density of states if N(Ef) = 6.35

electrons/atom Ry. The data are not yet sufficient to

allow an inversion of the heavy "c? like" open hole sur-

face of Pt but should be in the near future. Fermi radii

in Cu, Ag and Au were deduced by Roaf using the

Fourier series approach [8]. This was extended by

Halse to calculate the Fermi velocity in Cu and Ag

[ 13] . The improved Fourier series techniques

developed here will shortly be applied to recent dHvA
data in Au [ 14] . An inversion of the As and Sb electron

Fermi surface was reported recently using the sym-

metrized spherical harmonic approach [4]

.
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A Note on the Position of the ''Gold 5d Bands'' in AuAl^ and
AuGa 2

*

p. D. Chan and D. A. Shirley

Department of Chemistry and Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

Switendick and Narath [1] recently proposed a solution for the "AuGao dilemma" pointed out by

Jaccarino, at al. [2] . This solution was based on the results of band structure calculations [ 1] . The den-

sity of states for AuAL derived from these band-structure calculations were presented at this con-

ference [3] . A surprising result of this calculation was the position of the "gold rf-band" states. These

states were located at about — 7 eV in AuAL and at similar energies in AuGai. and Aului; [1]. The in-

teresting optical properties of gold intermetallic compounds (e.g., AuAls is violet) are often attributed to

the proximity of the gold (/-bands to the Fermi energy, . If these states really lay at Ef -7 eV, and were

as flat (i.e., the p(E) peak was as narrow) as the calculation indicated, then they could scarcely affect the

compounds' optical properties [4]. To help resolve this "(/-band dilemma," we undertook measurements

of the valence-band spectra of AuAb and AuGa^ by x-ray photoelectron spectroscopy (XPS). This

method has been described elsewhere [.5] : accordingly we describe below only those experimental fea-

tures of this work that were peculiar to the AuAL-AuGa^ problem. The two compounds are first treated

in separate sections. The results are then discussed in the final section.

Key words: Electronic density of states; gold ahiniinum two (AuAl..); gold gallium two (AuGa2); x-

ray photoelectron spectrosfcopy.

1. AuAl,

This compound was prepared by heating

stoichiometric amounts of metalHc Au and Al to ~ 1000

°C in an induction furnace which was flushed a few

times with argon and then pumped down to 2 X 10"*'.

One of the compounds (sample B.l) was further re-

melted at ~ 1000 °C in an arc furnace also flushed with

arg(m and then pumped down to 10"^. The resulting al-

loys were spark-cut and polished with size 600 sand

paper and, in two cases, with one micron diamond

paste and kerosene on a canvas wheel; but they were

not etched. They were rinsed with absolute ethanol be-

fore mounting. A total of three samples were used to

collect the data that were accepted for final analysis.

The samples were studied in a Hj atmosphere (/> = 0.01

torr) at temperatures indicated in table 1. The signal-to-

noise ratio for energies near £/ was unusually low, and

it was not possible to make a detailed study of the den-

sity-of-states function pAu.m (E). The Spectra showed

'Work perl"rmed under the auspices cit the U.S. Atomic Energy Commission.

one dominant peak Ep — 6 eV, however. A least-

squares analysis was made on each spectrum. The trial

function consisted of a hnear, sloping background plus

a (iaussian with a constant tail on the low energy side.

This combination usually fits XPS spectra quite well,

and it did in this case. For some of the spectra the "rf-

band" peak appeared on visual inspection to be shghtly

asymmetric, and two-Gaussian fits were made. These

fits give a very weak higher-energy peak of variable

position and shifted the main peak only a few tenths

eV. We therefore did not regard the experimental

evidence for a second peak as being conclusive, and the

question was of no particular interest, so only the one-

Gaussian fits are presented in table 1.

One of the AuAl2 spectra is shown in figure 1. Our

final values for the position and width of the "c?-band"

peak are

(6.0±0.3) eV,

^E^ (4.1 ±0.5) eV FWHM.

The Al 2p peak was found to be at

E = Ef-75.05±0:20 eV.
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Table 1

AuAl-i sample no. i{ C)
T } r
Keierence — A J? ~E ^E

peak (PWHM) (5J-band) (FWHM)

B.l 25 5.99(14)

5.71(19)

4.6(3)

4.6(4)B.2 25 A12p 75.0(2)

B.3 600 A12p 75.2(2) 6.42(14) 3.3(4)

Adopted values

AuGa2 sample no.:

75.1(2) 6.0(3) 4.1(5)

A.3 400 Ga Mil)

Ga 3</(2)

20.1

18.2

"1.8

1.8

5.62(21) 5.9(5)

A.4 AC\(\ v^a OtHl )

Ga3</(2)

20.8

18.9

1 Q'^l.VO

1.95

5.81(14) 4.6(3)

O i o

Ga 3(f(2)

20.5

18.7

2.0

1.5

5.90(8)

Adopted values ^
20.5(4)

18.6(4)

1.9 5.8(2) 4.6(3)

1.8

All energies in eV. relative to the Fermi Energy. Errors in last place are indicated parenthetically.

Adopted values and assigned errors reflect some systematic errors.

^' The Ga 3<A2) peak was 0.4-0.6 times as intense as the Ga3(/(1) peak.

^ For samples A, 3 and A,4, peak widths were constrained to be equal.

15.0 10.0 5.0 0.0 -5.0 -10.0

Binding energy (Ej-E )

Figure 1. Typical x-ray photoemission spectrum for AuAl , near the

Fermi energy.

Filled circles represent data points. Top solid curve was fitted to the data. It was composed
of background, indicated by sloping solid line, plus a response curve indicated by dashed
curve. The main peak of this dashed curve arises through photoemission from the "gold 5rf"
bands by MgKctiz radiation. Core-level peaks in inset indicate chemical purity of sample.

2. AuGa2

Dr. Narath kindly provided one of our AuGa2

samples: the other two were prepared in our laboratory

as described above for AuAl2. The experimental and

data reduction procedures were also similar to those

used for AuAl2. Again a single Gaussian was fitted to

the "<f-band" peak; in this case the peak was quite sym-

metrical and no attempt was made to fit two Gaussians

to it. The Ga 3c? peak, which lay about 20 eV below Ef,

was asymmetric, however. It appeared to consist of two

peaks, each of width 2 eV FWHM, and spaced about 2

eV apart, with the higher-energy peak about 0.4 as in-

tense as the lower-energy peak. We attributed the high-

energy peak to free Ga, and auxiliary experiments on

nonstoichiometric samples seemed to support our as-

signment, although we were not able to eliminate this

peak. Further support is given by the Au 4/5/2, 4/7/2

doublet in AuGa2, which showed no evidence of a

second phase. It is also possible that the asymmetric 2>d

25.0 20.0 15.0 10-0 5.0 0.0

Binding energy (E^-E)

Figure 2. Typical x-ray photoemission spectrum from AuGaa near

the Fermi energy.
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peak shape reflects real broadening arising from its

proximity to Er-

A spectrum of AuGa2 is shown in figure 2. Our final

values for the "(/-band" peak are

£= (5.8±0.2) eV,

AE= (4.6±0.4) eV.

3. Discussion

The peaks at ~ £/ — 6 eV in the photoemission spec-

tra from AuAl2 and AuGa2 can be attributed to the

"gold 5c? bands" with considerable confidence. We in-

terpret these spectra as giving strong support for

Switendick's band structure calculations, in a qualita-

tive way: the positions of these peaks are in good agree-

ment with his predictions. On closer inspection, how-

ever, there are points of difference. The experimental

peaks are not quite so deep {Ef — 6 eV) as the theoreti-

cal value {Ef — 7 eV), and the experimental linewidth

(~ 4 eV) is about twice theoretical. In fact the combina-

tion of less depth and greater width for the experimen-

tal d bands somewhat weakens the conclusion that

these bands are not important in optical phenomena.

Comparison with the A1(L2,3) soft x-ray emission

spectrum from AuAl2, reported by WiUiams, et al. [6]

,

is interesting. These workers studied x-ray spectra

from transitions in which holes in the 2p shell of Al

were filled by electrons from s-like states at Al sites.

States derived from Al 35 atomic states are of course 5-

like at Al sites, but so also are some states that are d-'

like on Au sites. Thus the strong peak that WiUiams et

al., found at — 8 eV could be attributed in part to the

"gold 5c? bands," and they took this as support of

Switendick's calculation. Our results are basically in

very good agreement with Switendick's band structure

results and the x-ray spectra results of Williams et al.,

but the small differences are also of interest. The soft

x-ray work shows a peak at Ef — 8.3 eV, while the XPS
peak in the AuAh is at Ef — 6.0 eV. We attribute this

difference to the fact that XPS is most sensitive to d
electrons and thus determines the position of the "gold

5c? bands" directly, while the soft x-ray emission work
is sensitive to bands with 5-hke symmetry at the Al

sites. Switendick [3] has calculated, for AuAl2, peak

positions of Ef — 8.0 eV and£'/.' — 7.1 eV, respectively,

for the peak in the Al 3s-hke states and the peak in the

total density of states. This would account for some, but

not all, of the difference between the positions of the

experimental peaks obtained by the two methods.

Another more direct point of disagreement is the posi-

tion of the Al 2p state. Switendick calculated = £'f —
(73.8 ±0.1) eV for this state, and he quoted an experi-

mental value of E'^' — (73.5 ±0.5) eV. Our XPS spectra

showed this peak at Ef - (75.1 ±0.2) eV. While these

points of disagreement in detail are worth further stu-

dy, it now seems clear that the three investigations

mentioned here — Switendick's theoretical work, the x-

ray emission work of Williams et al., and our XPS
results — all concur on one major point: the gold 5c?

bands in the AuAl2-type alloys He 6-8 eV below the

Fermi energy.
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The Reliability of Estimating Density of States Curves
from Energy Band Calculations'^

E. B. Kennard,** D. Koskimaki, J. T. Waber,*** and F. M. Mueller****

Materials Science Department, Northwestern University, Evanston, Illinois 60201

The density of states curve for aluminum was calculated for different initial energy bands using the

quadratic interpolation method (QUAD) developed by Mueller et al. In one case, a true parabolic energy

band was used as input and in the second, the £. (k) values were those obtained for aluminum by Snow

using the APW method. Deviations from the parabohc density of states curve were found to be inversely

proportional to the number of E(kj values per histogram box and hence inversely proportional to the

square root of the number of random k points in the Brillouin zone. It was necessary to use 100,000

points to obtain a relative deviation of 0.3%. In the second case, the self consistent band calculations for

2048 points in the full Brillouin zone and for a subset of 256 of these were used as input data. The effect

of increasing the number of input values was assessed for 25,000 random points in the Brillouin zone.

The relative errors were 26 and 9 respectively for 256 and 2048 points.

The effects of "smoothing" as an alternative method of reducing statistical error in computing den-

sity of states curves are also discussed.

Key words: Aluminum; electronic density of states: free electron parabola; QUAD scheme: relia-

bility of smoothing procedures.

It has been known by many workers in the field of

energy bands that substantial statistical errors could

occur in drawing the histograms for a density-of-states

curve when a small set o{E(U.) values was used. We can

imagine a discrete spectrum of calculated Eih) values

falling randomly within the set of n boxes given by £",„,,,

+ nAE. Therefore, the relative errors would be depen-

dent upon not only on the width of the energy intervals

Af" but also on their relative location. Waber and Snow

[1] discussed a smoothing procedure in their paper on

copper, in which several sets of N(E) curves were com-

puted. The value of £" at the location of the first histo-

gram was given by E,i,ii, + (AEplq) where q is an integer

and />=1,2 . . . (q-l). The resulting set of q density

of states curves were than averaged at energy points

which were separated by ^Elq. Despite this procedure.

Snow [2] observed that the N(E) curve for aluminum

was very ragged when only 256 input k values were

used. He observed that a smoother A^ffJ curve resulted

*Research supported by the Advanced Research Projects Agency of the Department of

Defense through the Materials Research (-enter of Northwestern University.

**Work done in partial fuHlllment of (he requirements of the degree of Doctor of

Philosophy. Materials Science Dept.. Northwestern University. Evanston. Illinois 60201.

***Research Assistant and Prtjfessor. respectively. Materials Science Dept.,

Northwestern University. Evanston, Illinois 60201.

****Solid State Physics Division, Argonne National Laboratory, Argonne, Illinois 60439.

when he employed 2048 points in his study of the self-

consistent APW bands. An N(E) curve drawn from the

data of Snow [2] using only 256 points is presented as

figure 1; it may be compared with his published curve

for 2048 points.

Figure 1. Density of States curve drawn from the E(k) data which
Snow [2] obtained in his self-consistent band study of aluminum.
The subset with /= 1 was employed. The smoothing; procedure of Snow and Waber [l]

was employed with q~S.
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An idealized free-electron band in a body-centered

cubic Brillouin zone was studied by Wood [3] to assess

the efficacy of this technique. A fixed number of k

points and three different widths of the histograms

were employed. The strong dependence of the N(E) on

the number of values per box was demonstrated. A
N(E) curve which almost reproduced the parabola was

found for the largest width. The difficulty is that

although a smooth N(E) could be obtained by increas-

ing A^, one simultaneously becomes less able to esti-

mate the value of Ei,- accurately. It would appear that

the smoothing procedure would also tend to level peaks

and valleys and thus eliminate some of the fine-struc-

ture in N(E), which is legitimately there. Thus, one is

lead to the necessity of using small energy intervals and

many E(k) values. Of course, it is impractical to carry

out full scale band calculations for 100.000 points in the

Brillouin zone in order to obtain more precise values for

both the Fermi level Ey and the density-of-states at the

Fermi level A^f

An alternative method of estimating A^('£'j curves has

been developed by Mueller et al. [4] . In this quadratic

interpolation scheme (QUAD), the ^(k) surface is fitted

locally by a quadratic expression to a set of input ener-

gies which have been calculated by any independent

method for fixed values of k. A Monte-Carlo method is

used to generate a large number of random k points, the

appropriate £'(k) values are found from the local fitting

expression, and these are used to construct an im-

proved density-of-states curve.

Because an energy surface is locally fitted to a given

set of £'(k) values, the reUabihty of the curved surface

directly depends on how accurately the actual set of

£'(k) can represent the surface when the k points have

high local symmetry and when therefore several sheets

of the £'(k) surface intersect at k or nearby. This

question is quite apart from the precision of the QUAD
method. The interpolated values cannot be superior to

the input information. One way to improve the accura-

cy of the density-of-states curve and hence, of informa-

tion derived from it is to increase the number of mem-
bers in the set of calculated ^^(k) which are used as

input.

To evaluate the effectiveness of the QUAD scheme

in reducing statistical error, the input values oi E(k)

were taken from an ideal parabolic band. As a further

test, a set and a subset ofE(k) values obtained an actual

band structure calculation were also used.

1 . Methods

In the original QUAD method, the values of £(k)
were calculated in terms of a model Hamiltonian matrix

of nine basis functions representing the interaction of

5 and d bands of a fee transition metal. The method
was adapted in the current study to permit one to use

an input Elk) values obtained in any separate inde-

pendent manner.

For example, in the idealized parabolic band (using

atomic units where h = m = e=l) the energy £'(k)=/r2/2

Rydbergs. We used as the coordinates of k the set of

evenly spaced points in the Brillouin zone which were

given by (m/2, n/2, />/2) tt/o,/. Herein Qo is the lattice

parameter of the direct lattice,/is an integer and the in-

tegers m, n, p individually range from 0 to 8. A unit

value of / corresponds to 256 points in the Brillouin

zone which is associated with a face centered cubic

metal and / = 2 yields 2048 points. For the Brillouin

zone associated with the body centered cubic metals,

a unit value of/ yields 128 and/= 2 yields 1024 k points.

The QUAD method was apphed to free-electron E(k)

values with / set equal to unity and only a single E(kj

curve was used. Only those grid points were used for

which k was less than or equal to the distance from F to

X. In the study of the smoothing procedure, single ener-

gy band was used and/was set equal to 2.

For the input from an APW calculation, we employed

2048 points arranged in the coordinate grid given above

as well as a subset of 256 of these. In order to shorten

the machine time required, the random k values were

obtained by a Monte-Carlo method in only 1/48 of the

Brillouin zone. The remainder of the zone was "filled"

by symmetry operations and the resulting ^(k) values

were sorted into the energy "boxes."

In the case of aluminum. Snow [2] did not find the £'(k)

roots for all of the 2048 k values where the energies

were well above the Fermi level. Those needed to

complete the four 5 plus p bands were obtained in two

ways. In the first case, all the unknown £'(k) values

were set equal to zero. This choice had a strong effect

on the N(E) curve at values near the Fermi level and

produced an abnormally high spike at = 0. In the

second case, the unknown values were estimated by

the formula

E(k)^Eo + a(k - koP

where ko and Eq correspond to values already found in

a given band. This method was used for the construc-

tion of figure relating to the effect of the number of

points used in the Brillouin zone.

2. Results

Three "smoothed" density-of-states curves obtained

using the parabolic band are shown in figures 2a, 2b,
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Figure 2. Smoothed Density of States curve for a free electron

parabola.
The effect of increasing the energy interval for a fixed set of £(k) values in a single

band, (a) For AE = 0.125, (b) for AE = 0.250, (c)/or AE = 0.500.

and 2c. These pertain to using 1024 k values in the full

Brillouin zone of a bcc metal and three energy inter-

vals, AE = 0.125, 0.25 and 0.5 Ryd. The smoothing in-

teger q was set at 5. The mean number of points per in-

terval was obtained by dividing the number of k values

by the number of histogram intervals before smoothing.

The results in terms of points per histogram box are

presented in table 1. The precision, as indicated by the

maximum [N(E) — k^]lk'^, is clearly dependent on the

number of values per "box."

In a rather similar way, the ability to reproduce the

ideal free-electron parabola was investigated with the

QUAD method. The results are presented in figures 3a,

3b, and 3c. The three graphs pertain to using v equal to

5,000, 25,000, and 100,000 random A values in a cell

which is 1/48 of the fee Brillouin zone. The root mean

square relative deviation, from the parabola, namely

{28N(E)lk'^) were computed using all of the histograms.

These results are given on these graphs. The ragged ap-

pearance of these curves is apparent. It is clear that
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EFFECT OF THE NUMBER OF POINTS

IN THE BRILLOUIN ZONE ON THE DENSITY OF STATES CURVE
I
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1

100,000 pts-

2 10 14 ' I's ' 22 ' 26 30 34 38

ENERGY

Figure 3. Illustration of the effect of increasing the number of
E(k) values found by the QUAD procedure for a fixed number of
input values, (a) v= 5,000 pts, (b) v= 25,000 pts, (c)v= 100,000 pts.

one must employ a large number of random k values to

obtain a smooth parabolic curve. The precision de-

pends upon how many ^(k) values are found within

each energy box of width AE. Table 2 presents the

values found for the ideal parabolic band.

In figure 3, only the first band of a free electron metal

was used. However, in a realistic solid, the £'(k) curves

are disjoint and piecewise continuous — the separation

being caused by the lattice potential. Thus, one woul

anticipate that when the wave vector (k+g) takes on

critical values which correspond to touching the sur-

face of the Brillouin zone, there would be large peaks in

the N(E) curve. The reason is that dE/dk becomes ap-

proximately equal to zero on "each side" of the critical

k value. Thus, when one includes the four s plus p
bands of a metal hke aluminum several peaks in the
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Table 1. Deviation of the smoothed N(E) curve from

the free electron parabolic curve (1024 k points)

Energy Mean Maximum
interval points per deviation

(Ryd) histogram percent

0.125 16 50.5

.250 32 15.0

.500 64 8.8

—
\ 1 \ 1 \ 1

1

\

r

FREE ELECTRON

DENSITY OF STATES FOR FCC LATTICE

ENERGY RYDBERGS

030 _ FREE ELECTRON
Density of States for FCC Lattice

2 2048 POINTS QUAD INPUT

ENERGY RYDBERGS

Figure 4. Effect of increasing the number of input k values from
256 to 2048 on the standard deviations with a total of 25,000

points found by the QUAD scheme. For 4 bands if an FCC metal,

[a) For subset with f= 7, (h)fuller set with f= 2.

N(E) curve would be observed even though the N(E)

curve would confirm to a parabola for small k values.

Table 2. Deviation of calculated density of states

curve from a parabolic band (120 energy intervals)

Total k Values per Standard

points histogram deviation

percent

5,000 42 9.84

25.000 210 5.59

100,000 840 3.56

The effect of increasing the set of E(k) values before

using QUAD was investigated. In figure 4, the calcu-

lated N(E) curves are presented for 256 and 2048 input

values using the free-electron model for a fee metal.

The standard deviations are 26 and 9 percent respec-

tively. This was done to make the fourth test more

vahd. The location of various states is also illustrated.

The fourth test made was of the abihty of the QUAD
scheme to reproduce not only an idealized parabola but

also a real N(E) with its peaks and valleys. Aluminum

was chosen, since Snow [2] and Harrison [5] have

shown it to approach very closely to being a free-elec-

tron metal. The close agreement with a parabola is seen

at low energies.

In a similar test on aluminum, the N(E) curves are

presented for 2048 points and the subset of 256 of

these. Both parts of figures 4 and 5 relate to extending

the calculations to 25,000 points by the QUAD method.

For comparison with figure 4, the location of specific

states and their relation to the peaks in the N(E) curve

are indicated.

3. Discussion and Conclusions

As Mueller et al. [3] pointed out, when the mesh

points of the Brillouin zone are a simple fraction of the

distance from F to X, a number of peaks in the N(E)

curves will occur. This is illustrated for figures 4 and 5

drawn for face centered cubic metals. A large prime

value of/ would have been desirable in such an analy-

sis, but suitable input values were not available. The

use of the free electron curve for N(E) forms a reliable

test of the interpolation method since the correct

answer for a single band is known a priori; procedures

for choosing the number of £'(k) values are identical to

those used in most band structure calculations. The

present study emphasizes two points about reliabihty;

there is a joint dependence on both the fineness of the
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Figure 5. A similar calculation for aluminum using the Snow's
values of E(k) at 2048 vectors of the Brillouin Zones and completing
the values for the 4 bands where necessary, (a) For subset of 256
points a = l).(h) for 2048 points ({=2).

mesh of points in the Brillouin zone and on number of

values available per histogram interval. The first point

is illustrated by the effect of the number of input values

on either the smoothed curve from Snow's data or the

subsequent tests in figures 4 and 5. The effect of the

number of values per interval is shown in table 2. The

two parameters are not wholly independent of each

other but both are important if one wishes to know

simultaneously the value o{N(Er) and the location of E/.-

to better than 1 percent precision.

Wood [6] recently called our attention to the local

gradient method of (iilot and Raubenheimer [7] . He re-

ports that his study of this method by a scheme similar

to that outlined herein indicates an equivalent (or su-

perior) reliability can be achieved at a similar cost.

It has been shown that the reliability of estimating

N(E) curves from calculated data can be improved so

that a precise measure of the error for each E can be

given by increasing the number of points for which E(k)

values are obtained and by increasing the number of

values per histogram box. A procedure such as the

QUAD interpolation scheme can contribute signifi-

cantly the reliability by gaining more E(k) values for

interval without incurring an excessive cost in machine

time that would be necessary to solve the det\ H-E(k)\

= 0 at many points.
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